intel.

Intel® QuickAssist Technology (Intel®QAT)
Software for Linux*

API Programmer’s Guide

Revision 013

September2024

Document Number: 330684-013US

intel

Legal Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more on Intel’s Performance Index site .

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

See Intel’s Legal Notices and Disclaimers.

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

2 API Programmer’s Guide

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Contents

[N OTUCTION ettt a bbb ARt R b
1.1 Intended Audience
1.2 Related Documents and REfErENCES. ...ttt se s se e seseees 9
1.3 USING ThiS DOCUMENT ...ttt sssssssssssssssssssssssssssssssssssssesssssssesssssssessnsansessssesssanes 10
1.4 QLI 01T o Y PP 10
2 Base APIand APl CONVENTIONSoeiiereieieiseseaessesseesessssse e tssesss st sss st ssssssssssssssssessesssens 12
2.1 Intel® QAT Technology Base APl ...t st ssssssssssssssssssssssssssssseans 12
2.1.1 Data BUfer MOUEIS ...ttt s et 12
2111 Flat BUTFEIS ..ttt ses st 12
2112 Scatter-Gather LiStS ...t essessessessesssssesssenns 13
2.2 Intel® QuickAssist Technology API CONVENTIONSccererererneererereessesesessessessesssssessesenssens 14
221 INSTANCE DISCOVEIY ...ttt 14
222 (NG ToTe L=Y o) A @ 0T =Y oY o PP 16
2.2.21 AsynChronNous OPeratioN.... s ssssssssssesssssssssesssenes 16
2222 SYNChroNous OPErationcoreneernesnsesererssesessesresssssessessssssssenans 17
2.2.3 Memory Allocation and OWNErShip ... sessssees 18
224 Data Plane APIS ...ttt es s s ses s ees 19
3 Intel® QuickAssist Technology CryptographiC AP ... ssesesessessessesssssessseens 21
3.1 OVEIVIBWY .ieeeeeeetseeeeast e tsease sttt sttt E st b s e asb s s neanbnan
3.11 Sessions
312 PrIOTIEY oo
3.2 Using the Symmetric Cryptography APl sssssssssssssssssssssssssessnsas 22
3.2 GENEIAl CONCEPLS. ... rererieerereeresesrer s ses e s raes 22
3.2.1.1 SESSION ettt 23
3.212 In-Place and Out-of-Place SUPPOIrtneenresesneenerseesenneens 23
3.213 Partial SUPPOIT ... nsessensen 23
3.2.2 (O o) 1T PP
3.2.21 SYMCAIIBACK ..ot nees
3.2.2.2 cipherSample
3.23 HASH et
324 [Y] T T =TTV
3.25 Chained Cipher and Hash
3.2.6 Chained Cipherand Hash — IPSec Like Use Caseccovreenreneereremrernessesserseens 35
3.2.7 Chained Cipherand Hash — SSL Like Use Case......currnerneeneensessemressessesserseenes 39

3.2.8 Chained Cipher and Hash - CCM Use Case
3.29 Chained Cipherand Hash - GCM Use Case

3.2.10 Chained Cipher and Hash Using the Symmetric Data Plane API 51
3.21 TLS Key and MGF Mask GENEIatioNeeeisrisisesssssssesssssssessssssessssssesssssssens 56
3.2.111 Setting CpaCyKeyGenTlIsOpData Structure Fields..........cccc...... 56
3.2.12 Session Update for Chained Cipher and Hash Operation.......ccccoevcuvevnecnne. 58
3.212.1 Create and Initialize @ SESSION:corirereirerererer e 58
3.2.13 HIKDF USE CaSE...cuiiurieireerieineareseseases s sessessssesstsssesst s sesst s ssse st ss s et ns st st sssseanen 61
3.2.13.1 Instance Configuration and Memory Allocation........ceeenenenns 61
3.213.2 HKDF Extract Expand Operationneeenesneenesssesessesseessens 61
3.2.13.3 HKDF Extract Expand Label Operation.........nnnennnenns 62

API Programmer’s Guide 3

intel

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Tables

Table1.
Table 2.

Listings

Listing 1.
Listing 2.
Listing 3.
Listing 4.
Listing 5.

3.2.13.4 HKDF Extract Expand Label and Sublabels operation................. 63
3.2.14 Perform HKDF OPerationssessssssessssssssssssssessssssssssssssssssssssesssssseses 64
3.3 Using the Diffie-Hellman APl ... sessesses s sssssssessessesssssesees 64
3.3.1 Prime NUMDEr TeSHING oo resesssessessssssssessessessessesssssesssssssaseane 66
34 USING the SIM2 AP ...ttt bbbt 67
3.4.1 SM2 Digital Signature Generation and Verification......oncnenenerneens 67
3.4.2 SM2 PUblic KeY ENCIrYPtioN ..cuceceeeeeeeeesseresresseesesssssesesssssessessesssssessessssssssssssessesses 69
343 SM2 KEY EXCNANGE ...ttt ass st ssnsnas 71
344 SM2 Elliptic CUIVE POINt ...t sesesea s ses st bsss st sesss 74
Intel® QuickAssist Technology Data Compression APl sessssssessnes
4.1 OVEIVIBW ettt sttt
4.1.1 SO SION ettt ettt st
4.2 Sample — Stateful Data CoOMPrESSION ...ttt sssss s s sessssassans
4.21 SesSioN EStabliSNmMENnt ...ttt
4.2.2 Sample — Stateless Data Compression
4.3 Sample — Stateless Data Compression Using Multiple Compress Operations.............. 92
4.4 Sample — Data Compression Data Plane APlL..... s sssssssssssssssssssssas 92
4.5 Sample - Chained Hash and Stateless COMPresSioN. ... eeenerseesssserssesessessessssseens 96
Flat BUTfEr DIiagram... et ssssssssssssessssssssssssssssssssssasssssssesssssssessssessesssssssssssessssassessssansens 13
SCatter-Gather LiST Diagramm.. . csssisesisisesssssessss s ssassssessssanss 14
Asynchronous Operation
S Ted el o) a YoYU TR @ oY= = d o o TP
IPSEC OUDOUNG.....ce ettt
1YYl 1T oo 10 o o FE PO
SSL OULDOUNG .ttt s st b et
Secure SOckets Layer INDOUNG ... ses s s s ssessesesens 40
Related Documents and RETEIENCES. ...ttt 9
L= ¢ 0 01 T o T 1Y TP 10
G NG AN INSTANCE .ttt 15
Querying and STarting @n INSTANCE ... s st sss s s ss st s st s anen 16
[OF1 1 oT-To1 1@ U 1 g Te3 4T o VPOV

Getting an Instance
Set Address Translation Function

API Programmer’s Guide

Listing 6.
Listing 7.
Listing 8.
Listing 9.
Listing 10.
Listing 11.
Listing 12.
Listing 13.
Listing 14.
Listing 15.
Listing 16.
Listing 17.
Listing 18.
Listing 19.

Listing 20.

Listing 21.

Listing 22.
Listing 23.
Listing 24.
Listing 25.
Listing 26.

Listing 27.

Listing 28.
Listing 29.
Listing 30.

Listing 31.

Listing 32.
Listing 33.
Listing 34.
Listing 35.
Listing 36.
Listing 37.
Listing 38.
Listing 39.
Listing 40.

Listing 41.

Listing 42.
Listing 43.
Listing 44.
Listing 45.
Listing 46.
Listing 47.
Listing 48.
Listing 49.
Listing 50.

Listing 51.

Listing 52.
Listing 53.
Listing 54.
Listing 55.
Listing 56.
Listing 57.

RS 2= o AU o T SO SPTPTTT
Create and Initialize Cipher Session
N =TaiaTe] AV N [FoT o= 4 e o PP
Set Up Cipher Operational Data ... iiisiesssssessssssessssssessasssessasas
Perform Cipher OPEration ... ssse s sssssessssesas
LA T Lo T @ e g T o] 1= T o 1P
Wait for QutStanding REQUESTS ...t ssssssssssssssssssssssssssssssessssssenas
REMOVE CIPNEN SESSIONerirrecrreeeeeeeses e s s
Create and Initialize Hash Session
Set Up Hash Operational Dataicsicsessessessssssssssesssssssssssssssssssssssssssssesssssssesssssssessssssessssssesanes
Hash SESSION SETUP Data ... rersesseseesesessesssssess s sesse s ssssssssessessessssssssesssssssssaseane
L F= Y] a1 K= N o =TT
Create and Initialize Session Cipher and Hash....... e ssrersessseessesessessessesssssesees 34
Set up Operational Data Cipher and Hash.........creeeeeseeseseses e sssssessessessesssssesees 34
Session Setup Data IPSeC OUDOUNT ...ttt esassnnns 36
Operational Data IPSEC OULDOUNG........ceceecrereeerre e sses e ssaenan 37
Session Setup Data IPSEC INDOUNG ...ttt ss sttt ssansnnn 37
Operational Data IPSEC INDOUN ...ttt s s s s s s sss s s s s s asassessnnas 38
SeSSION Data SSL OULDOUN ...ttt s bbb 41
BUFfer Size SSL OUIDOUNT ...ttt ss bbb 41
Buffer Setup SSL OULDOUNG...... s 41
BufferList SEtup SSL OULDOUN ... s ens 42
Operational Data SSL OUDOUNT ...ttt s s sss s sss s s s s s sessnnas 42
SeSSION Data SSL INDOUNG ..ottt ettt 43
Calculating padLen SSLINDOUNG ...ttt s s s ssse s s sssesssssssesassessanas 44
Operational Data SSL INDOUNG ...ttt ss s s s s s s s s s ensanas 44
Session Data CCM Generate-ENCIYPTL .. rerereereesessesessessssserssssssssssesessessessesssssessssssssssessesssssesens 45
Session Data CCM DeCryPt-Verify ..t sssssssssssssssssessssssssssssssssssssssesas 46
CCM Allocate IV and AAD Buffers
CCM OPEratioNal Datacccrieeeeeerresreressessessessssesesseessessessesssssessessssssssssessessessesssssssssssssssssssasessessessesssssessssas
SesSioN Data GCM AULN-ENCIYPT .ttt sssses s ssessssssessssssssssssssssssssssssssssssssssssssassssessasas
Se5SioN Data GCM AULN-DECIYPL ... ssessessesens
GCM Allocate IV and AAD Buffers
GCM OpPeratioNal DAta ... sessesssessessssssssssssssssssssssssssesssssssssssssssesssssssesssssssssssssssssssans
Register Callback FUNCHION ... s s sesssssesens
Create and Initialize Data Plane SESSION ... inineneeesiseseeses s sssessessesssssssssssssssassane 52
Data Plane Operational Data ... rerneeereesesesessesssssessssssssssssssssessessesssssessssssssssssssssessessessssssssssssas
Data Plane ENQUEUE......... s esses s sssessesses s sssssssessesnesnes

Data Plane Performm ... essssses st essssse s nessessessess
Wait for Outstanding Requests

Data Plane REMOVE SESSION.....cerirereiseeseise s essssses s s s s st
Register Calllback FUNCHION ...t sss st s s s s s st s s es s snsssessnsanes
Create and Initialize Data Plane SESSION ...ttt s s s sssseas 58
Data Plane OperatioNal Data ... eiiniesesssessesssssssasssssssssssssssessssssssanes 60
Data Plane Enqueue

Data Plane PerfOrim ... ettt sttt
SESSION UPAALE oottt ettt a s ee st
HKDF Operation Data = Memory AllOCAtioN ...t ssans 61
HKDF Extract EXPand OPeratioN ... ceenesiesesssssssssssessassssanes 62
HKDF Extract Expand Label Operation....... o cneseressesesesessessesssssessesssssssssesessesssssessssssssssssssens 62
HKDF Extract Expand Label and Sublabels Operation.........ssssessessssesessssssssssssessnens 63
L L T @ o Y=Y = 4] o PP 64

API Programmer’s Guide 5

intel

Listing 58.
Listing 59.
Listing 60.

Listing 61.

Listing 62.
Listing 63.
Listing 64.
Listing 65.
Listing 66.
Listing 67.
Listing 68.
Listing 69.
Listing 70.

Listing 71.

Listing 72.
Listing 73.
Listing 74.
Listing 75.
Listing 76.
Listing 77.
Listing 78.
Listing 79.
Listing 80.

Listing 81.

Listing 82.
Listing 83.
Listing 84.

Allocate Memory and Populate Operational Data.......nrensnessesssessessssssesssssssssssssssssssssssssssenes 64
Perform Phase T OPEration ...t sssssssssessenes 66
Perform Phase 2 OPeration ... esesessesssssess s ssessss s esssssessssss s sssessessesssssesssssesas 66
Setup Operational Data and TeSt Prime ...t tssssss s ssssssssssssssssssssssssssssssssssssns 67
Create and Initialize Stateful SESSION ...ttt s 80
Stateful Compression Memory AlIOCAtION ... sssssssesessesssssersssnes 81
CrEATE HEAUE ..ttt b bbbkt 82
Perform Stateful Compression OPeration ... ssesessessessesssssesees 83
CrATE FOOTEN ettt s 85
Perform Stateful Decompression OPeratioN ... esessssseesssssssssssssssssssssssssssssssssssesssssssessnes 85
REMOVE STAtEUI SE@SSION ..ottt sttt 88
Querying and Starting a Compression Instance. ..89

Create and Initialize Stateless Session....................

Data Plane Remove COMPreSSION SESSIONrreiessssisssssssssssssssssssssesssssssssssssssassssssssssssessssas 91
Setting the Initial Value of the CheCKSUM...... e 92
Register Compression Callback FUNCHION ...ttt sse s sssssessssanes 93
Create and Initialize Compression Data Plane SeSSIiON...... s sssessssssesssssssssssssesssens 93
SELUP SOUICE BUFFEI ...t 94
Compression Data Plane Operational Data ... sssssssssssesssssssssssssssssssssssssns 95
Data Plane ENQUEUE and SUDMIt ... sessessessessessessessessssssssssessessessessssssssssssssens 96
Data Plane Remove COMPIreSSiON SESSION ... cerereriresseremsrssessessesssssessssssssssssssessessessesssssessssssssssssssens 96
Querying and Starting a Compression INSTANCE ...t ssssssssssasnes 96
Create and Initialize Session Hash and CoOmMPreSSioN........eeeeressesnessesesssesessessesssssessesssssessees 98
Chained Hash and Stateless Compression Memory AlOCatioN.......ensnenensnesenssessssanenns 100
Set Up Operational Data Hash and COMPIreSSIONcresinesresesessessssssessssssssssssssssssssssssssssssssenes 101
Verify the Output of Chained Hash and Stateless Compression........eneeeneseneenessessesnees 102
Remove Chained Hash and Stateless Compression SESSIONcnseseenessesssessessssssessssssseens 104

API Programmer’s Guide

Revision History

intel.

Document
Number

Revision
Number

Description

Revision Date

330684

013

e Updated Legal Notices & Disclaimers section

e Updated Listing 79 -- Querying and Starting a Compression

Instance

September 2024

330684

012

Updated Section 2.1.1- added a note that source and

destination buffer types must match.

December 2022

330684

on

Updated Section 3.1-added cpa cy ecsm2.hfile reference
as the APl for SM2

October 2021

330684

010

Updated Section 3.2.11- TLS Key and MGF Mask Generation

Updated Section 3.4 - Using the SM2 API

June 2021

330684

009

e Updated cpaDcGenerateFooter Content

April 2021

330684

008

Updated Section 1.3 Using this Document

Updated Section 3.2.2, Cipher AES-256

Listing 7, Updated to use newer cipher function in place of

occurrence 3DES

Updated Section 3.2.3, Hash with SHA-256

Listing 14, Updated to use a newer hash function in place of
occurrence of MD5

Listing 18, Updated to use newer cipher function in place of

occurrence 3DES

Updated Section 3.2.10 Chained Cipher and Hash using the
Symmetric Data Plane API

Listing 41and 42, updated to use newer cipher functionin

place of occurrence 3DES

Section 3.2.11.2, Setting CpaCyKeyGenT1sOpsData updated

code

May 2020

330684

007

e Added Section 3.2.13, HKDF Use Case

February 2020

330684

006

o Added Section 4.5 Chained Hash and Stateless
Compression

March 2019

330684

005

e Updated Section 3.1 Overview

December 2018

330684

004

e Updated Listing 13. Remove Cipher Session
e Updated Section 4.0 Note

June 2018

API Programmer’s Guide

intel.

Document Revision Description Revision Date
Number Number
e Updated Section 4.2 Sample - Stateful Data Compression
e Updated Listing 56. Remove Stateful Session
330684 003 o Added requirement that customers using Static or Dynamic
Compression must decompress data and verify that it February 2018
matches original source data.
330684 002 o Updates to code samples. September 2017
330684 001 e First public version of the document based on Intel June 2014
Confidential document number 442844
330684 1.3 e Added new API function,
cpaCySymSessionCtxGetDynamicSize (),to Section May 2014
3.2.2.2, plus other minor updates.
330684 12 e Updated Listing 26, 27, and 30 in Section 3.2 January 2014
330684 11 o Updates for stateless data compression samples:
e Updated Section 4.3 March 2013
e Added Section4.4
330684 1.0 e Initial release of the document September 2012
§
8 API Programmer’s Guide

]
Introduction I n te I ®

/ Introduction

This APl programmer’s guide describes the sample code that demonstrates how to use the
Intel® QuickAssist Technology (Intel® QAT) APIs.

1.1 Intended Audience

This document is intended to be used by software engineers who wish to develop application
software that uses the Intel° QAT APIs to accelerate the supported workloads and/or

services.
1.2 Related Documents and References
Table. Related Documents and References
Document Document Number /Location

Intel® QuickAssist Technology API Reference Manual, Combined 330685
Cryptographic and Compression
Intel® QuickAssist Technology Performance Optimization Guide 330687
Intel® QuickAssist Technology Software for Linux* - CE 336210
Programmer’s Guide
Intel® Communications Chipset 8925 to 8955 Series Software 330751
Programmer's Guide
Intel® Communications Chipset 8900 to 8920 Series Software 330753
Programmer's Guide
Intel Atom” Processor C2000 Product Family for 330755
Communications Infrastructure Software Programmer's Guide
Intel® QuickAssist Technology Software for Linux* CE Release 33621
Notes

NIST publication SP800-38C Recommendation for Block Cipher | https://nvlpubs.nist.gov/nistpubs

Modes of Operation: il
The CCM Mode for Authentication and Confidentiality egacy/sp/nistspecialpublication8
00 -38c.pdf

NIST publication SP800-38D Recommendation for Block Cipher | https://nvlpubs.nist.gov/nistpubs
Modes of Operation: Galois/Counter Mode (GCM) and GMAC /Legacy/SP/nistspecialpublicatio

n80 0-38d.pdf

NIST SP 800-90, March 2007 https://csrc.nist.gov/publications

Recommendation for Random Number Generation Using /d etail/sp/800-
90/revised/archive/2007-03-14

Deterministic Random Bit Generators (Revised)

API Programmer’s Guide 9

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14

@
I n te I ® Introduction

1.3

1.4

Table 2.

Document Document Number /Location
GZIP file format specification v4.3 RFC 1952
GZIP file format specification v3.3 REC 1950
The Transport Layer Security (TLS) Protocol Version 1.0 REC 2246
The Transport Layer Security (TLS) Protocol Version 1.1 REC 4346
The Transport Layer Security (TLS) Protocol Version 1.2 RFC 5246
The Secure Sockets Layer (SSL) Protocol Version 3.0 RFEC 6106

Using This Document

This document is structured as follows:

e Section 2 Base APland APl Conventions describes aspects common to all Intel®
QuickAssist Technology APIs

e Section 3 Intel® QuickAssist Technology Cryptographic API describes the Intel®
QuickAssist Technology Cryptographic API

e Section 4 Intel” QuickAssist Technology Data Compression AP| describes the Intel®
QuickAssist Technology Data Compression API

Code for all the examples in this document is contained in the software package and after
installation, can be found in a sub-directory of the following directory:

SICP_ROOT/quickassist/lookaside/access layer/src/sample code/functi
onal

Refer to Table 2 for alist of terms and acronyms used in this manual.

Terminology

Terminology

Term Description
AAD Additional Authenticated Data
AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
CCM Counter mode with Cipher-block chaining Message authentication code
CPM Content Processing Module

API Programmer’s Guide

https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc4346
http://www.rfc-base.org/rfc-5246.html
http://www.rfc-base.org/rfc-5246.html
https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc6101

Introduction

intel

Term Description
CY Cryptographic
DC Data Compression
DRBG Deterministic Random Bit Generator
DSA Digital Signature Algorithm
ECDH Elliptic Diffie-Hellman
EC Elliptic Curve
ESP Encapsulating Security Payload
GCD Greatest Common Divisor
GCM Galois Counter Mode
HKDF HMAC Key Derivation Function
HMAC Hashed Message Authenticate Code
ICV Integrity Check Value
IPSec Internet Protocol Security
MAC Message Authentication Code
NRBG Non-Deterministic Random Bit Generator
PKE Public Key Encryption
PV Pubic Value
Intel” QAT Intel® QuickAssist Technology
RBG Random Bit Generation
RSA A public-key encryption algorithm created by Rivest, Shamir, and Adleman
SSL Secure Sockets Layer
TLS Transport Layer Security (SSL successor)

API Programmer’s Guide

n

]
I n te I ® Base APl and APl Conventions

2 Base APl and APl Conventions

This chapter describes aspects common to all Intel® QAT Technology APIs, starting with the
base APl and followed by conventions.

2.1 Intel® QAT Technology Base API

The Base APl is a top-level API definition for Intel® QAT Technology. It contains structures,
data types, and definitions that are common across the interface.

2.1.1 Data Buffer Models

Data buffers are passed across the APl interface in one of the following formats:

o Flat Buffers representa single region of physically contiguous memory and are described in
detail in Section 2.1.1.1, Flat Buffers.

e Scatter-Gather Lists are essentially an array of flat buffers, for cases where the memory is
not all physically contiguous. These are described in detail in Section 2.1.1.2, Scatter-Gather
Lists.

Note: The source and destination buffer types must match. For example, if the source buffer type is
set to flat buffer, the destination buffer type must also be a flat buffer.

2111 Flat Buffers

Flat buffers are represented by the type CpaFlatBuffer, definedinthe file cpa.h. It consists
of two fields:

e Data pointer pData: points to the start address of the data or payload. The data pointeris a
virtual address; however, the actual data pointed to is required to be in contiguous and
DMAable physical memory. This buffer type is typically used when simple, unchained
buffers are needed.

e Length of this buffer: dataLenInBytes specified in bytes.

Fordataplane APIs (cpa sym dp.h andcpa dc dp.h),a flat bufferis represented by the
type CpaPhysFlatBuffer,also definedin cpa.h. Thisis similartothe CpaFlatBuffer
structure; the difference is that, in this case, the data pointer, buf ferPhysAddr, is a physical
address rather than a virtual address.

Figure 1shows the layout of a flat buffer.

12 API Programmer’s Guide

@
Base APl and APl Conventions I n te I ®

Figurel. Flat Buffer Diagram

dataleninByles

bufferPhysAddr / Buffer

(physically contiguous)

2.1.1.2 Scatter-Gather Lists

A scatter-gather listis defined by the type CpaBufferList,also definedin the file cpa.h.
This buffer structure is typically used where more than one flat buffer can be provided to a
particular API. The buffer list contains four fields, as follows:

The number of buffers in the list.
Pointer to an unbounded array of flat buffers.
User Data: an opaque field; is not read or modified internally by the API.

This field could be used to provide a pointer back into an application data structure,
providing the context of the call.

Pointer to metadata required by the API:

— Themetadatais required forinternal use by the API. The memory for this buffer needs
to be allocated by the client as contiguous data. The size of this metadata bufferis
obtained by calling cpaCyBufferlListGetMetasSize forcrypto, cpaBufferLists,
and cpaDcBufferListGetMetasSize for datacompression.

— Thememory required to hold the CpaBuf ferList structure and the array of flat
buffers is not required to be physically contiguous. However, the flat buffer data
pointers and the metadata pointer are required to reference physically contiguous
DMAable memory.

— Thereis aperformance impact when using scatter-gather lists instead of flat buffers.
Referto Table 1, Intel® QAT Performance Optimization Guide for additional
information.

Figure 2 shows a graphical representation of a scatter-gather buffer list.

API Programmer’s Guide 13

]
I n te I ® Base APl and APl Conventions

Figure 2.

2.2

2.2.1

Scatter-Gather List Diagram

#Buffers
pBuffers leninBytes,
UserData pData,
pMetaData leninBytes,
pData,

Buffer 1

User must also allocate this data

Fordata plane APIs (cpa sym dp.handcpa dc dp.h)aregion of memory thatis not
physically contiguous is described using the CpaPhysBuf ferList structure. Thisis similar to
the CpaBuf ferList structure; the difference, in this case, the individual flat buffers are
represented using physical rather than virtual addresses.

Intel® QuickAssist Technology APl Conventions

Instance Discovery

Intel® QAT API supports multiple instances. An instance represents a "channel” to a specific
hardware accelerator. Multiple instances can access the same hardware accelerator (that is,
the relationship between instances and a hardware accelerator is N:1). The instance is
identified using the CpaInstanceHandle handle type. This handle type represents a specific
instance within the system and is passed as a parameter to all APl functions that operate on
instances.

Instance discovery is achieved through service-specific APl invocations. This section

describes the instance discovery for data compression (dc); however, the flow of the calls is
similar for the cryptographic service.

API Programmer’s Guide

u
Base APl and APl Conventions I n te i

Listingl. Getting an Instance

In this example, the number of dc instances available to the Application is queried via the
cpaDcGetNumInstances call. The Application obtains the instance handle of the first
instance.

The next example shows the Application querying the capabilities of the data compression
implementation, and verifying the required functionality is present. Each service
implementation exposes the capabilities that have been implemented and are available.
Capabilities include algorithms, common features, and limits to variables. Each service has a
unique capability matrix, and each implementation identifies and describes its particular
implementation through its capability’s API.

API Programmer’s Guide 15

u
I n te i Base APl and APl Conventions

Listing2. Queryingand Starting an Instance

222

2.2.2]

16

In the example, the application requires stateless deflate compression with dynamic Huffman
encoding and stateful decompression with support for CRC32 checksums. The example also
sets the address translation function for the instance. The specified function is used by the API
to perform any required translation of a virtual address to a physical address. Finally, the
instance is started.

Modes of Operation

The Intel® QAT API supports both synchronous and asynchronous modes of operation. For
optimal performance, the Application should be capable of submitting multiple outstanding
requests to the acceleration engines. Submitting multiple outstanding requests minimizes the
processing latency on the acceleration engines. This can be done by submitting requests
asynchronously or by submitting requests in synchronous mode using multi-threading in the
Application.

Developers can select the mode of operation that best aligns with their Application and
system architecture.

Asynchronous Operation

Toinvoke the APl asynchronously, the user supplies a callback function to the API, as shown in
Figure 3. Control returns to the client once the request has been sent to the hardware

APl Programmer’s Guide

]
Base APl and APl Conventions I n te I ®

accelerator, and the callback s invoked when the engine completes the operation. The
mechanism used to invoke the callback is implementation-dependent. For some
implementations, the callback is invoked as part of an interrupt handler bottom half. For other
implementations, the callback is invoked in the context of a polling thread. In this case, the user
applicationis responsible for creating and scheduling this polling thread. Refer to Table 1for
the implementation of specific documentation for more details.

Figure 3. Asynchronous Operation

Control is immediately
returned to the calling
application

,’f Some time
later, the
Ap!fvlir.ation Application apﬁtljicaEc_:-n
calls cal ack I1s
perform / invoked.
operation \\\0 Guil::plﬁs.smﬂ
Gv/ o/
Service
Access
Layers
©
Message
is placed | celeration Driver Framework
onto the
ring

3

Intel® QuickAssist Technology Firmware

2222 Synchronous Operation

Synchronous operation is specified by supplying a NULL function pointerin the callback
parameter of the perform API, as shown in Figure 4. In this case, the function does not return
until the operation is complete. The calling thread may spend on a semaphore or other
synchronization primitive after sending the request to the execution engine.

Upon the completion of the operation, the synchronization primitive unblocks, and execution
resumes. Synchronous mode is therefore blocking and should not be used when invoking the

function from a context in which sleeping is not allowed (for example, an interrupt context on
Linux*).

API Programmer’s Guide 17

]
I n te I ® Base APl and APl Conventions

Figure4. Synchronous Operation

2.2.3

Control is
returned to
the calling
operation
/
— Application
Application pp
calls
perform é
operation
\a Quick Afsist APls Signal
L completion
of the
reguest
Wait For Completion L~
Service Access
Layers
Message is ration Driver Framework
placed onto
the ring \T ?
Intel® QuickAssist Technology Firmware

Memory Allocation and Ownership

The convention is that all memory needed by an APl implementation is allocated outside of
that implementation. In other words, the APIs are defined such that the memory needed to
execute operations is supplied by a client or platform control entity rather than having memory
allocated internally.

Memory used for parameters is owned by the side (caller or callee) that allocated the memory.
Anowner is responsible for de-allocating the memory when itis no longer needed.

Generally, memory ownership does not change. For example, if a program allocates memory
and then passes a pointer to the memory as a parameter to a function call, the caller retains
ownership and is still responsible for the de-allocation of the memory. Default behavior and any
function which deviates from this behavior clearly state so in the function definition.

For optimal performance, data pointers should be 8-byte aligned. In some cases, thisis a

requirement, while in most other cases, it is arecommendation for performance. Refer to
Table 1forthe service-specific APl manual for optimal usage of the particular API.

API Programmer’s Guide

Base APl and APl Conventions I n te I ®

224 Data Plane APlIs

The Intel® QAT APIs for symmetric cryptography and for data compression supports both
“traditional” (cpa cy sym.handcpa dc.h)and “dataplane” APls

(cpa cy sym dp.handcpa dc dp.h). The dataplane APIs are recommended for
applications running in a data plane environment where the cost of offload (that is, the cycles
consumed by the driver sending requests to the accelerator) needs to be minimized. Several
constraints have been placed on these APIs to minimize the cost of offload. If these
constraints are too restrictive for a given application, the more general-purpose "traditional”
APIs can be used (at an increased cost of offload).

The data plane APIs can be used if the following constraints are acceptable:

Thereis no support for partial packets or stateful requests.

Thread safety is not supported. Each software thread should have access to its unique
instance (CpaInstanceHandle).

Only asynchronous invocation is supported.

Polling is used, rather than interrupts, to dispatch callback functions. Callbacks are invoked
in the context of a polling thread.

— Theuserapplication is responsible for creating and scheduling this polling thread.
Polling functions are not defined by the Intel®° QAT API. Implementations provide their
polling functions.

— Referto Table1 for Implementation Specific Documentation containing further
information on polling functions.

Buffers and buffer lists are passed using physical addresses to avoid virtual-tophysical-
address translation costs.

Alignment restrictions may be placed on the operation data (that is, CpaCySymbDpOpData
and CpaDcDpOpData) and buffer list (that is, CoaPhysBufferList) structures passed to
the data plane APIs. For example, the operation data may need to be at least 8-byte aligned,
contiguous, resident, DMAaccessible memory. Referto Table 1 for Implementation
Specific Documentation for more details.

For CCM and GCM modes of the AES, when performing decryption and verification, if the
verification fails, then the message buffer is not zeroed.

The data plane APIs distinguish between enqueuing a request and submitting that request
to the accelerator to be performed. This allows the cost of submitting a request (which can
be expensive, in terms of cycles, for some hardware-based implementations) to be
amortized over all enqueued requests on thatinstance (CpaInstanceHandle).

To enqueue one request and to optionally submit all previously enqueued requests, the
function cpaCySymDpEnqueueOp (or cpaDeDpEnqueueOp for data compression service)
can be used.

To enqueue multiple requests and to optionally submit all previously enqueued requests,
the function cpaCySymDpEnqueueOpBatch (or cpaDeDpEnqueueOpBatch for data
compression service) can be used.

'There is no “data plane” support for asymmetric cryptography services.

API Programmer’s Guide 19

]
I n te I ® Base APl and APl Conventions

e Use the function cpaCySymbpPerformOpNow (or cpaDcDpPerformOpNow for data
compression service) that can be used to submit all previously enqueued requests.

¢ Different implementations of this APl may have different performance trade-offs. Refer to
Table 1 for documentation forimplementation details.

20 API Programmer’s Guide

|
Intel® QuickAssist Technology Cryptographic AP/ I n te I g

3 Intel® QuickAssist Technology
Cryptographic AP/

This chapter describes the sample code for the Intel® QuickAssist Technology Cryptographic
API, beginning with an API overview, and followed by descriptions of various scenarios to
illustrate the usage of the API.

3.1 Overview

The Intel® QuickAssist Technology Cryptographic API can be categorized into the following
broad areas:

e Common: Thisis defined by the file cpa cy common.h. Thisincludes the functionality for
the initialization and shutdown of the service.

¢ Instance Management: The filecpa cy im.h definesthe functions for managing
instances. A given implementation of the APl can present multiple instances of the
cryptographic service, each representing a logical or virtual "device". Request order is
guaranteed within a given instance of the service.

¢ Symmetric: The following files constitute the symmetric API:

— Thecpa cy sym.h file contains the symmetric API, used for ciphers,
hashing/message digests, "algorithm chaining” (combining cipher and hash into a
single call), and authenticated ciphers.

- Thecpa sy sym dp.hfilealso contains the symmetric API, used for ciphers,
hashing/message digest, "algorithm chaining” (combining cipher and hash into a
single call) and authenticated ciphers. This APlis recommended for data plane
applications, in which the cost of offload (i.e. the cycles consumed by the APl in
sending requests to the hardware and processing the responses) needs to be
minimized. Several constraints need to be acceptable to the Application. To use this
API, these are listed in Section 2.2.4, Data Plane APIs.

— Thecpa cy key.h filecontainsthe APIfor key generation for Secure Sockets
Layer (SSL) and Transport Layer Security (TLS).

e Asymmetric: The following files constitute the asymmetric API:
- Thecpa cy rsa.hfile definesthe APIfor RSA.
- Thecpa cy dsa.hfile defines the API for Digital Signature Algorithm (DSA).
— Thecpa cy dh.hfiledefinesthe API for Diffie-Hellman.
— Thecpa cy ec.h filedefinesthe APIfor"base” elliptic curve cryptography.
— Thecpa cy ecdsa.nhfile defines the API for Elliptic Diffie (EC) DSA.
- Thecpa cy ecdh.hfile defines the API for Elliptic Diffie-Hellman (ECDH).
— Thecpa cy prime.hfile definesthe APIfor prime number testing.
— Thecpa cy 1n.hfiledefinesthe APIforalarge number of math operations, such as
modular exponentiation, etc.
— Thecpa cy ecsm2.hfiledefines the APl for SM2 algorithm which is based on
— Elliptic Curves Cryptography (ECC).

API Programmer’s Guide 2]

i
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

3.1.1

3.1.2

3.2

3.2.1

22

¢ Random Bit Generation (RBG): The following files constitute the RBG APl and have
been deprecated because random bit generation can be handled in the CPU:
- Thecpa cy drbg.hfile defines the API for deterministic random bit generation.
- Thecpa cy nrbg.h file defines the API for a non-deterministic random bit
generation.

The Cryptographic APl uses the base API, which defines base data types used across all
services of the Intel* QAT API.

Sessions

The symmetric APl is the only APl with the concept of sessions. The meaning of a session
within the symmetric APl is defined below.

Priority

The Cryptographic symmetric APl has support for priorities. Priority can be specified ona
per-session basis. Two levels of priority are supported: high priority and normal priority.

Implementations may use a strict priority order or a weighted round robinbased priority
scheme.

Using the Symmetric Cryptography API

This section contains examples of how to use the symmetric API. It describes general
concepts and how to use the symmetric API to perform various types of cipher and hash.

Note: Examples are simplified and demonstrate how to use the APIs and build the structures
required for various use cases.

These examples may not demonstrate the optimal way to use the API to get maximum
performance for a particularimplementation. Refer to Table 1 for Implementation Specific
Documentation and performance sample code for a guide on how to use the API for best
performance.

Note: All of the symmetric examples follow the same basic steps:

o Define a callback function (if the APl is to be invoked asynchronously)

e Discoverand start up the cryptographic service instance

e Create andinitialize a session

¢ Invoke multiple symmetric operations (cipher and/or hash) on the session
e Teardown the session

e Stop the Cryptographic service instance

General Concepts

This section describes the following concepts:

API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic AP/ I n te I g

3.2.1.1

3.21.2

3.2.13

Note:

e Session
e Place and Out-of-Place Support
e Partial Support

Session

In case of the symmetric API, a sessionis a handle that describes the cryptographic
parameters to be applied to several buffers. This might be the buffers within a single file or all
the packets associated with a particular Internet Protocol Security (IPSec) tunnel or security
association. The data within a session handle includes the following:

e The operation (cipher, hash, or both, and if both, the order in which the algorithms should
be applied).

e The cipher setup data, including the cipher algorithm and mode, the key and its length, and
the direction (encrypt or decrypt).

e The hash setup data, including the hash algorithm, mode (plain, nested or authenticated),
and digest result length (to allow for truncation).

— Theauthenticated mode can refer to Hashed Message Authenticate Code (HMAC),
which requires that the key and its length are also specified. It is also used for Galois
Counter Mode (GCM), and Counter mode with Cipher-block Chaining Message
authentication code (CCM) authenticated encryption, in which case the Additional
Authenticated Data (AAD) length is also specified.

— Fornested mode, the innerand outer prefix data and length are specified, as well as
the outer hash algorithm.

In-Place and Out-of-Place Support

An In-Place operation means that the destination buffer is the same as the source buffer. An
Out-of-Place operation means that the destination buffer is different from the source buffer.

Partial Support

Most of the examples in this chapter operate on full packets, as indicated by the packetType
of CPA CY SYM PACKET TYPE FULL. The APlalso supports operatingin partial mode,
where, for example, state (e.g., cipher state) needs to be carried forward from one
packet/record to the next. In Section 3.2.4, Hash a File, there is an example of hashing a file
that uses the partial API.

1. The size of the data to be hashed or ciphered must be a multiple of the block size of the
algorithm for all partial packets.

2. Forhash/authentication, the digest verify flag only applies to the last partial packet.

3. Foralgorithm chaining, only the cipher state is maintained between calls. The hash state
is not maintained between calls; instead, the hash digest is generated/verified for each
call. The size of the data to be ciphered must be a multiple of the block size of the
algorithm for all partial packets. The size of the data to be hashed does not have this
restriction. If both the cipher state and the hash state need to be maintained between
calls, then algorithm chaining cannot be used.

API Programmer’s Guide 23

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

3.2.2

3.2.2.1

Cipher

This example demonstrates the usage of the symmetric API, specifically using this APl to
perform a cipher operation. It encrypts some sample text using the AES-256 algorithm in
Cipher Block Chaining (CBC) mode.

These samples are located in:

The following subsections describe the main functions in this file.

symCallback

A callback function must be supplied to use the APl in asynchronous mode, and this function
is called back (that is, invoked by the implementation of the API) when the asynchronous
operation has completed. The context in which it is invoked depends on the implementation.
For example, it could be invoked in the context of a Linux* interrupt handler's bottom half orin
the context of a user created polling thread. The context in which this functionis invoked
places restrictions on what processing can be done in the callback function. On the AP, it
states that this function should not sleep (since it may be called in a context that does not
permit sleeping, for example, a Linux* bottom half).

This function can perform whatever processing is appropriate for the Application. For
example, it may free memory, continue the processing of a decrypted packet, etc. In this
example, the function only sets the complete variable to indicate it has been called, as
illustrated below.

Listing 3. Callback Function

24

APl Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

3.22.2 cipherSample

This is the main entry point for the sample cipher code. It demonstrates the sequence of calls
to be made to the API to create a session, perform one or more cipher operations, and then
tear down the session. The following is performed:

¢ Callthe instance discovery utility function - sampleCyGetInstance - whichis a simplified
version of instance discovery, in which exactly one instance of a crypto service is
discovered. It does this by querying the API for all instances, and returning the first
instance, as illustrated in Listing 4.

e This stepis described in Section 2.2.1, Instance Discovery, but is repeated here for
convenience.

Listing4. Gettingan Instance

API Programmer’s Guide 25

il
I n t e I Inte/® QuickAssist Technology Cryptographic AP/
®

}

#endif

Set the address translation function for the instance. This function will be used by the APl to
convert virtual addresses to physical addresses.

Listing5. Set Address Translation Function
status = cpaCySetAddressTranslation (cyInstHandle,
sampleVirtToPhys) ;

Start the crypto service running as shown below.

Listing 6. Startup

status = cpaCyStartInstance (cyInstHandle) ;

The next step is to create and initialize a session. First, populate the fields of the session
initialization operational data structure.

Note: The size required to store a session is implementation-dependent, so you must query the API
first to determine how much memory to allocate, and then allocate that memory.

One of two available queries can be used:

e cpaCySymSessionCtxGetSize (const CpalnstanceHandle instanceHandle in,
const CpaCySymSessionSetupData *pSessionSetupData, Cpa32U
*pSessionCtxSizelInBytes)

e This will always return the maximum session context size (i.e., the full size of the session
including padding and other session state information) (see Listing 7 below).

e cpaCySymSessionCtxGetDynamicSize (const CpalnstanceHandle
instanceHandle in, const CpaCySymSessionSetupData *pSessionSetupData,
Cpa32U *pSessionCtxSizelInBytes)

e This query can be used instead to return a reduced memory size, based on whether the use
case meets certain session setup criteria (see Listing 7 below).

e This query will return one of three values forpSessionCtxSizeInBytes as follows:

— If partial packets are not being used and the Symmetric operation is AuthEncrypt
(i.e., the cipher and hash algorithms are either CCM or GCM)), the size returned will be
approximately half of the standard size.

— If partial packets are not being used and the cipher algorithm is not ARC4,

Snow3g UEA2,AES CCMorAES GCM, and the hashalgorithmis not Snow3G UIA2,
AES CCMorAES GCM,and Hash Mode is not Auth, the size returned will be between
half and one third of the standard size.

— Inallother cases, the standard size is returned.

Note: The following parameter existsinthe CpaCySymSessionSetupData structure:

26 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

CpaBoolean partialsNotRequired

This flag indicates if partial packet processing is required for the session. If partial packets are
not being used and the preference is to use one of the reduced session memory sizes, set this
flag to CPA TRUE before calling the cpaCySymSessionCtxGetDynamicSize () function.

Note: The equivalent reduced memory context query for Data Plane API (Refer to Section 3.2.10,
Chained Cipher and Hash Using the Symmetric Data Plane APl is:

cpaCySymDpSessionCtxGetDynamicSize (const CpalnstanceHandle
instanceHandle in, const CpaCySymSessionSetupData *pSessionSetupData,

Cpa32U *pSessionCtxSizeInBytes)

Listing7. Create and Initialize Cipher Session

API Programmer’s Guide 27

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

e Callthe function cipherPerformOp, which actually performs the cipher operation. Thisin
turn performs the following steps:

Memory Allocation: Different implementations of the APl require different amounts of
space to store metadata associated with buffer lists. Query the API to find out how much
space the current implementation needs, and then allocate space for the buffer metadata, the
buffer list, and for the buffer itself. You must also allocate memory for the initialization vector.

Listing8. Memory Allocation

Memory Allocation: The memory for the source buffer and initialization vector is
populated with the required data.

Set Up Operational Data: Populate the structure containing the operational data that is
needed to run the algorithm as shown below.

Listing9. SetUp Cipher Operational Data

28 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

¢ Perform Operation: Initialize the completion variable, which is used by the callback
function to indicate that the operation is complete, then perform the operation.

Listing10. Perform Cipher Operation

¢ Wait for Completion: Because the asynchronous APl is used in this example, the
callback function must be handled. This example uses a macro that can be defined
differently for different operating systems. In a typical real-world application, the calling

thread would not block, and the callback would essentially re-inject the (decrypted,
decapsulated) packet into the stack.

Listing1l. Wait for Completion

In a normal usage scenario, the session would be reused multiple times to encrypt multiple
buffers or packets. In this example, however, the session is torn down.

Listing12. Wait for Outstanding Requests

Since cryptographic APl v2.2 before removing the symmetric session context it is

recommended to wait for the completion of any outstanding request using
cpaCySymSessionInUse.

Itis executedinthe symSessionWaitForInflightReqcall which polls for the in-flight
requests.

Listing13. Remove Cipher Session

e Query statistics at this point, which can be useful for debugging.

APl Programmer’s Guide

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

¢ Someimplementations may also make the statistics available through other mechanisms,
such as the /proc virtual filesystem.

¢ Finally, clean up by freeing up memory, stopping the instance, etc.

e Since Cryptographic APIv2.2 two new functions have been implemented:

e The function cpaCySymUpdateSession canbe used to update certain parameters of a
session like the cipher key, the cipher direction, and the authentication key.
cpaCySymSessionInUse, indicates whether there are outstanding requests on a given
session.

As a result of the implementation of this feature, the behavior of cpaCySymRemoveSession
has been changed. cpaCySymRemoveSession will fail if there are outstanding request for the
session that the user is trying to remove.

As aresult, itis recommended to wait for the completion of any outstanding request, using
cpaCySymSessionInUse, before removing a session.

3.2.3 Hash

This example demonstrates the usage of the symmetric API, specifically using this APl to
perform a hash operation. It performs an SHA-256 hash operation on some sample data.

These samples are located in /sym/hash sample
The example is very similar to the cipher example, so only the differences are highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different from the cipher case, as shown below.

Listing14. Create and Initialize Hash Session

When calling the function to perform the hash operation, some of the fields of the operational
data structure are again different from the cipher case, as shown below.

30 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

Listing15. Setup Hash Operational Data

3.24 Hash a File

This example demonstrates the usage of the symmetric API for partial mode, specifically
using this API to perform hash operations. It performs a SHA1hash operation on a file.

These samplesare located in /sym/hash file sample
The example is very similar to the cipher example, so only the differences are highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different from the cipher case, as shown below.

Listing16. Hash Session Setup Data

¢ Memory is allocated for the source bufferin a similar way to the cipher case.

e To perform the operation datais read from the file to the source buffer and the symmetric
APlis called repeatedly withpacketType setto CPA CY SYM PACKET TYPE PARTIAL.
When the end of the file is reached the APl is called with packetType set to
CPA CY SYM PACKET TYPE PARTIAL LAST.Thedigestisproduced only onthelastcall

tothe API.

APl Programmer’s Guide

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing17. Hashing a File

32 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

3.25

Chained Cipher and Hash

This example demonstrates the usage of the symmetric API, specifically using this APl to
perform a "chained" cipher and hash operation. It encrypts some sample text using the AES-
256 algorithm in CBC mode, and then performs an SHA-256 Hashed Message Authenticate
Code (HMAC) operation on the ciphertext, writing the Message Authentication Code (MAC)
to the bufferimmediately after the ciphertext.

These samplesare locatedin /sym/alg chaining sample

The example is very similar to the cipher and hash examples, above, so only the differences
are highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different, as shown below.

APl Programmer’s Guide 33

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing18. Create and Initialize Session Cipherand Hash

When calling the function to perform the chained cipher and hash operation, some of the
fields of the operational data structure are again different from the cipher case, as shown
below.

Listing19. Setup Operational Data Cipherand Hash

34 API Programmer’s Guide

@
Intel® QuickAssist Technology Cryptographic AP/ I n te I g

3.2.6

Figure 5.

Notice the digestIsAppendedis setinthe session; therefore, the MAC is placed
immediately after the region to hash, and the pDigestResult parameter of the operational
dataisignored.

Chained Cipher and Hash — IPSec Like Use Case

This example demonstrates the usage of the symmetric API for IPSec-like use cases, as
described in Figure 5 and Figure 6. For the outbound direction, this example uses the
symmetric API to perform a "chained" cipher and hash operation. It encrypts some plaintext
using the Advanced Encryption Standard (AES) algorithm in CBC mode, and then performs a
SHA1HMAC operation on the ciphertext, initialization vector, and header, writing the
Integrity Check Value (ICV) to the bufferimmediately after the ciphertext. For the inbound
direction, this example again uses the symmetric API to perform a "chained" hash and cipher
operation. It performs a SHATHMAC operation on the ciphertext, initialization vector, and
Header and compares the Result with the input ICV. Then it decrypts the ciphertext using the
AES algorithm in CBC mode.

IPSec Outbound

Cipher Offset
Hash Length

Cigher Length e

Eneryptand Generate ICV . ;

API Programmer’s Guide 35

intel

Figure 6.

IPSec Inbound

Inte/® QuickAssist Technology Cryptographic AP/

Hash Length

Cipher Offset

Cipher Length

These samplesare located in /sym/ipsec sample.

Again, only the differences compared to previous examples are highlighted:

When creating and initializing a session in the outbound direction, the session initialization
operational data structure is shown below.

Listing 20. Session Setup Data IPSec Outbound

36

APl Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

When calling the function to perform the chained cipher and hash operation, the fields of the
operational data structure are shown below.

Listing 21. Operational Data IPSec Outbound

In this example samplePayloadis the packet data plus the Encapsulating Security Payload
(ESP) trailer.

When creating and initializing a session in the inbound direction, the session initialization
operational data structure is shown below.

Listing 22. Session Setup Data IPSec Inbound

APl Programmer’s Guide

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

When calling the function to perform the chained hash and cipher operation, the fields of the
operational data structure are listed below

Listing 23. Operational Data IPSec Inbound

Inthe example above, buf fersize is the size of the data input (header, iv, ciphertext, and
ICV).

38 API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic AP/

3.2.7

Chained Cipher and Hash — SSL Like Use Case

intel.

This example demonstrates the usage of the symmetric API for SSL-like use cases, as
described in Figure 7 and Figure 8. For the outbound direction, this example employs the
symmetric API to perform a "chained" hash and cipher operation. It performs a SHATHMAC2

operation on a sequence number, part of the header, and the plaintext.

The resultant MAC is placed immediately after the plaintext. Then it encrypts the plaintext,
MAC, and padding using the AES algorithm in CBC mode.?

For the inbound direction, this example again employs the use of the symmetric API to
perform a "chained" cipher and hash operation. It decrypts the ciphertext using the AES
algorithm in CBC mode. Then it performs a SHATHMAC operation on the resultant plaintext,
sequence number, and part of the Header and compares the Result with the input MAC.

Note: Fortheinbound direction to use the "chained” API, the length of the plaintext needs to be
known before the ciphertext is decrypted to setmessageLenToHashInBytes and the length field in

the Header correctly.

Figure 7.

For stream ciphers (e.g.,, ARC4), there is no padding added in the outbound direction, so the
length of the plaintext is simply the length of the ciphertext minus the length of the MAC.
However, for block ciphers in CBC mode (as used in this example), the padlen is required to
calculate the plaintext length. The final block of the ciphertext needs to be decrypted to
discover the padlen. In this example, before calling the "chained" API, the final block of the
ciphertextis decrypted to discover the padlen.

SSL Outbound

Hash Offset Cipher Offset
| HasH Langth

Cipher Length

T

Space for | Pal &

.

Generate YIAC and Encrypt
. . -

o

Pada
mac | Fie

E E ==

* hdr = type, version len fields of the header

2Notall SSL use cases use HMAC. For example, The Secure Sockets Layer (SSL)
Protocol Version 3.0 (SSL)v3 (RFC 6106) does not use HMAC (in this case the nested hash functionality on the APl can be
used). However, The Transport Layer Security (TLS) Protocol (TLS) V1.2 (Table 1), for example, does use the HMAC

algorithm.

API Programmer’s Guide

39

intel.

Figure 8.

Secure Sockets Layer Inbound

Inte/® QuickAssist Technology Cryptographic AP/

CipherOffset __---- —————

i

Hash Length

r
]

CipherLength S~ ~

~
Decrypt final block only to get\ AR
length

Some
MAC

Pad &

Len

Decrypt and Verify MAC

hdr

Plaintext

If using a block cipherin CBC mode, then the last ciphertext block is used as the IV for
subsequent packets (orrecords) in Secure Sockets Layer (SSL) and TLSv1.0, whereas in
TLSv1.1and 1.2 an explicit IV is used. However, if using a stream cipher that does notuse a
synchronization vector (such as ARC4), the stream cipher state from the end of one packet is
used to process the subsequent packets. If using the QA APl in this case, then partial mode
should be used to ensure the stream cipher state is maintained across multiple calls to the

API.

Again, these examples are very similar to previous examples, so only the differences are

highlighted:

When creating and initializing a session in the outbound direction, the session setup data

structure is shown below.

40

API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

Listing 24. Session Data SSL Outbound

A buffer large enough to hold the plaintext, MAC and padding is required. The size of this
buffer will be.

Listing 25. Buffer Size SSL Outbound

This buffer is filled with plaintext and padding leaving room for the “chained” API operation to
add the MAC.

Listing 26. Buffer Setup SSL Outbound

API Programmer’s Guide 41

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

The session sequence number, the header and the buffer with the plaintext are described
usinga CpaBufferList:

Listing 27. BufferList Setup SSL Outbound

When calling the function to perform the chained hash and cipher operation, the fields of the
operational data structure are shown below.

Listing 28. Operational Data SSL Outbound

When creating and initializing a session in the inbound direction, the session setup data
structure is shown below.

42 APl Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I ‘

Listing 29. Session Data SSL Inbound

In this case the length of the ciphertextis buf fersize to calculate the padLen the final block
is decrypted.

API Programmer’s Guide 43

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing 30. Calculating padLen SSL Inbound

When calling the function to perform the chained cipher and hash operation, the fields of the
operational data structure are.

Listing 31. Operational Data SSL Inbound

3.2.8 Chained Cipher and Hash - CCM Use Case

This example demonstrates the usage of the symmetric APl to perform a CCM operation as
described in NIST publication SP800-38C (Recommendation for Block Cipher Modes of
Operation: the CCM Mode for Authentication and Confidentiality, refer to Table 1).

This sampleislocatedin /sym/ccm sample
The example is very similar to the cipher example, so only the differences are highlighted:

For the generation-encryption process the session setup data is shown below:

44 APl Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I 2

Listing 32. Session Data CCM Generate-Encrypt

For the decryption-verification process the session setup datais:

API Programmer’s Guide 45

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing 33. Session Data CCM Decrypt-Verify

The IV and AAD buffers are allocated as shown below:

Listing 34. CCM Allocate IV and AAD Buffers

46 APl Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

The operational data needed to perform the generate-encrypt or decrypt-verify operation is
shown below:

Listing 35. CCM Operational Data

3.2.9 Chained Cipher and Hash - GCM Use Case

This example demonstrates the usage of the symmetric APl to perform a GCM operation as
described in NIST publication SP800-38D (Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, referto Tablel).

These samples are located in /sym/gcm_sample

An example of the session setup data and operational data for GCM authenticated encryption
and decryption is shown below.

API Programmer’s Guide 47

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

For authenticated encryption, the session setup data is:

Listing 36. Session Data GCM Auth-Encrypt

48 APl Programmer’s Guide

Intel® QuickAssist Technology Cryptographic AP/ I n te I

For authenticated decryption the session setup datais:

Listing 37. Session Data GCM Auth-Decrypt

API Programmer’s Guide 49

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

The IV and AAD buffers are allocated as shown below:

Listing 38. GCM Allocate IV and AAD Buffers

The operational data needed to perform the encrypt or decrypt operationis:

Listing 39. GCM Operational Data

GMAC is supported using the same APl and similar data structures as the general GCM case
shown above. However, for GMAC, themessagelLenToCipherInBytes will be set to O.

50 API Programmer’s Guide

|
Intel® QuickAssist Technology Cryptographic AP/ I n te I g

3.2.10

Chained Cipher and Hash Using the Symmetric Data Plane API

This example demonstrates the usage of the data plane symmetric API to perform a
“chained” cipher and hash operation. It encrypts some sample text using the AES-256
algorithm in CBC mode, and then performs an SHA-256 HMAC operation on the ciphertext,
writing the MAC to the bufferimmediately after the ciphertext.

This example has been simplified to demonstrate the basics of how to use the APl and build
the structures required. This example does not demonstrate the optimal way to use the API
to get the maximum performance for a particularimplementation. Refer to Implementation
Specific Documentation in Table 1 (for example, the Intel®° Communications Chipset 8900 to
8920 Series Software Programmer’s Guide) and performance sample code fora guide on
how to use the API for best performance.

These samples are locatedin /sym/symdp sample

Note: Use of the data plane symmetric API follows some of the same basic steps as the traditional
symmetric API:

e Discoverand start up the cryptographic service instance.
e Registera callback function for the instance.

e Create andinitialize a session.

¢ Enqueue the symmetric operation on the instance.

e Submit the symmetric operation for processing.

e Polltheinstance foraresponse.

e Teardown the session.

e Stop the Cryptographic service instance.

The following are the steps in more detail:

e Cryptographic service instances are discovered and started in the same way and using the
same API as the traditional symmetric use cases described in Listing 4, Listing 5,

and,Listing 6.

e The next stepis to register a callback function for the cryptographic instance:

The functionis called back in the context of the polling function when an asynchronous
operation has been completed. This function can perform whatever processing is appropriate
to the Application.

Callback differs from the traditional symmetric API, where the callback function is registered
for the session.

Listing 40. Register Callback Function

status = cpaCySymDpRegCbFunc (cyInstHandle, symDpCallback) ;

Create and initialize a session:

API Programmer’s Guide 51

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing 41. Create and Initialize Data Plane Session

52 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

In this example, data is stored in flat buffers (as opposed to scatter gather lists). The
operational data in this case is shown below.

Listing 42. Data Plane Operational Data

API Programmer’s Guide 53

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

54 API Programmer’s Guide

|
Intel® QuickAssist Technology Cryptographic AP/ I n te I g

do {
status = icp sal CyPollDpInstance (cyInstHandle, O0);

} while (CPA STATUS SUCCESS != status):;
}

#endif

This request is then enqueued on the instance.

Listing 43. Data Plane Enqueue

Listing 44.

Listing 45.

Listing 46.

status = cpaCySymDpEnqueueOp (pOpData, CPA FALSE) ;

Otherrequests can now be enqueued before submitting all the requests to be processed.
Enqueued requests allow the cost of submitting a request (which can be expensive, in terms
of cycles, for some hardware-based implementations) to be amortized over all enqueued
requests on the instance. Once sufficient requests have been enqueued they are all
submitted for processing.

Data Plane Perform
status = cpaCySymDpPerformOpNow (cyInstHandle) ;

e Analternative to calling the cpaCySymbpPerformOpNow functionisto set performOpNow
to CPA_TRUE when calling the enqueue functions (cpaCySymDpEnqueueOp or
cpaCySymDpEnqueueOpBatch). Thisisillustrated in Sections 4.4, Sample — Data
Compression Data Plane APl example.

e After submitting several requests and possibly doing other work (e.g., enqueuing and
submitting more requests), the Application can poll for responses that invoke the callback
function registered with the instance. Refer to Table 1 Implementation Specific
Documentation for information on the implementation’s polling functions.

e Once all requests associated with a session have been completed, the session can be
removed.

Wiait for Outstanding Requests

symSessionWaitForInflightReq (sessionCtx)

Since cryptographic APIv2.2 before removing the symmetric session context, itis
recommended to wait for the completion of any outstanding request using
cpaCySymSessionInUse.

Itis executedinthe symSessionWaitForInflightReq call, which polls forthein-flight
requests.

Data Plane Remove Session

sessionStatus = cpaCySymDpRemoveSession (cyInstHandle, sessionCtx) ;

Since Cryptographic APl v2.2, two new functions have been implemented:

API Programmer’s Guide 55

il
I n t e I Inte/® QuickAssist Technology Cryptographic AP/
®

3.2.1

3.2.11.1

56

cpaCySymUpdateSession and cpaCySymSessionInUse

e Thefunction cpaCySymUpdateSession canbe used to update certain parameters of a
session like a cipher key, the cipher direction, and the authentication key.
cpaCySymSessionInUse indicates whether there are outstanding requests on a given
session.

As a result of the implementation of this feature, the behavior of
cpaCySymRemoveSession has beenchanged. The cpaCySymRemoveSession fails if
there is an outstanding request for the session that the user is trying to remove.

e Asaresult, itisrecommended to wait for the completion of any outstanding request, using
cpaCySymSessionInUse, before removing a session.

TLS Key and MGF Mask Generation

Refer Table 1to the API manuals for full details of Key and Mask Generation operations.

1. Define a Flat Buffer callback function as per the APl prototype, Refer Table 1to the API
manuals.

If synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.

2. Allocate memory for the operation.

3. Populate data for the appropriate operation data structure, Refer Table 1to the API
manuals.

a. Fillinthe Flat Buffers, a pointer to data, and length.
b. Fillinthe options for the operation required.

4. Callthe appropriate key or Mask Generation API.

5. Complete the operation.

The APl for TLS key operations is based on the Transport Layer Security (TLS) Protocol
Version 1.1 standard, RFC 4346, Backward compatibility is supported with the legacy
Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246, refer to Table 1.
The user-defined label should be used for backward compatibility with the client write key,
server write key, and iv block. Refer to Table 1 Intel° QAT .

Cryptographic APl Reference Manual for details of populating CpaCyKeyGenT1sOpData, the
operation data structure.

The following sections describe examples of the parameter mapping to the Cryptographic
API.

Setting CpaCyKeyGenTlsOpData Structure Fields

The Transport Layer Security (TLS) Protocol Version 1.1 standard, RFC 4346, referto Table 1,
Section 6.3 key blockis describedas:

key block = PRF (SecurityParameters.master secret,

"key expansion",

SecurityParameters.server random +

API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

This maps to the Cryptographic API's CpaCyKeyGenT1sOpData as follows:
TLS Key-Material Derivation:
t1sOp = CPA CY KEY TLS OP KEY MATERIAL DERIVE
secret = master secret key seed =
server random + client random

userLabel = NULL

Setting CpaCyKeyGenT1sOpData Structure Fields for Backward Compatibility.

1. Inthe Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246, refer to
Table], Section 6.3 final client write keyisdescribed as:

This maps to the Cryptographic API’s CpaCyKeyGenT1sOpData as follows:

TLS User Defined Derivation: tlsOp =
CPA_CY KEY TLS OP USER DEFINED secret
= client write key seed =

client random + server random

userlLabel = "client write key"

N

In the Transport Layer Security (TLS) Protocol v1.0 standard, RFC 2246, refer to Table 1
Section6.3 final server write keyisdescribed as:

This maps to the Cryptographic API's CpaCyKeyGenT1sOpData as follows:

TLS User Defined Derivation: tlsOp =
CPA_CY KEY TLS OP USER DEFINED secret
= server write key seed =

client random + server random

userLabel = "server write key"

w

In the Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246, refer to
Table 1, Section 6.3 iv_block is described as:

This maps to the Cryptographic API’s CpaCyKeyGenT1sOpData as follows:

API Programmer’s Guide 57

]
I n t e I Inte/® QuickAssist Technology Cryptographic AP/
®

3.2.12

Listing

3.2.12.

Listing

58

TLS User Defined Derivation:

tlsOp = CPA CY KEY TLS OP USER DEFINED
secret = NULL seed = client random +

server random userLabel = "IV block"

Memory for the user label must be physically contiguous memory allocated by the user. This
memory must be available to the API for the duration of the operation.

Session Update for Chained Cipher and Hash Operation

This example demonstrates the usage of the session update together with data plane
symmetric API to perform a “chained” cipher and hash operation. It performs a KASUMI F9
hash operation on the sample text and then encrypts the sample text using the KASUMI F8
algorithm. After the operation is complete, the cipher and authentication keys are updated
inside the session and the operation is performed again with different keys.

Note: Thisexampleis simplified to demonstrate the basics of how to use the APl and how to build
the structures required. This example does not demonstrate the optimal way to use the API to get
maximum performance for a particularimplementation. Refer to Table 1 forimplementation specific
documentation and performance sample code for a guide on how to use the API for best
performance.

These samples are located in /sym/update sample

The following are the details of the steps performed in the sample:

e Cryptographic service instances are discovered and started in the same way and using the
same APl as the traditional symmetric use cases described in Listing 4, Listing 5 and

Listing 6.

¢ Nextregister a callback function for the cryptographic instance.

The functionis called back in the context of the polling function when an asynchronous
operation has been completed. This function can perform whatever processing is
appropriate to the application. Note this differs from the traditional symmetric APl where
the callback function is registered for the session.

47. Register Callback Function

status = cpaCySymDpRegCbFunc (cyInstHandle, symDpCallback) ;

1 Create and Initialize a Session:

48. Create and Initialize Data Plane Session

sessionSetupData.sessionPriority = PA CY PRIORITY HIGH;
sessionSetupData.symOperation = CPA CY SYM OP ALGORITHM CHAINING;
sessionSetupData.algChainOrder =
CPA_CY SYM ALG CHAIN ORDER HASH THEN CIPHER;

sessionSetupData.cipherSetupData.cipherAlgorithm =

API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I "

In this example, data is stored in flat buffers (as opposed to scatter gather lists). The
operational data in this case is:

API Programmer’s Guide 59

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing 49. Data Plane Operational Data

This request is then enqueued on the instance.

Listing 50. Data Plane Enqueue

Other requests can now be enqueued before submitting all the requests to be processed.
This allows the cost of submitting a request (which can be expensive, in terms of cycles, for
some hardware-based implementations) to be amortized over all enqueued requests on the
instance. Once sufficient requests have been enqueued they are all submitted for processing.

Listing 51. Data Plane Perform

e Analternative to calling the cpaCySymDpPerformOpNow function is to set per formOpNow
toCPA TRUE when calling the enqueue functions (cpaCySymDpEnqueueOp or
cpaCySymDpEnqueueOpBatch). Thisisillustrated in the data compression data plane
example.

After submitting a number of requests and possibly doing other work (e.g. enqueuing and
submitting more requests) the application can poll for responses which will invoke the
callback function registered with the instance. Refer to Table 1 forimplementation specific
documentation for information on the implementations polling functions.

After the operation is complete cipher key and authentication key are updated in the
existing session via session update API:

Listing 52. Session Update

60 API Programmer’s Guide

|
Intel® QuickAssist Technology Cryptographic AP/ I n te I g

3.2.13

3.2.13.1

Listing 53.

3.2.13.2

Note:

status = cpaCySymUpdateSession (sessionCtx, &sessionUpdateData) ;

o With the keys changed, the chained cipher and hash operation is performed again, just as
described above.

e Once all requests associated with a session have been completed, the session can be
removed.

HKDF Use Case

This section contains sample code that demonstrates the usage of the symmmetric AP,
specifically using this API to perform hash-based message authentication code key
derivation function (HKDF) operations. It performs HKDF Extract and Expand and Extract
and Expand Label operations without and with sub labels (KEY and V).

The simplified code example below is simplified and demonstrates how to use the APl and
build the structures required. This example does not demonstrate the optimal way to use the
API to get maximum performance forimplementation.

This sample is located in the directory:

/quickassist/lookaside/access layer/src/sample code/functional/sym/hkdf
s ample

Instance Configuration and Memory Allocation

Cryptographic service instances are discovered and started in the same way and using the
same APl as the traditional symmetric use cases.

1. Iftheinstanceis polled, start the polling thread.
Polling is done in an implementation-dependent manner.
2. Allocate memory for HKDF operation data:
HKDF Operation Data — Memory Allocation
pOpData = gaeMemAllocNUMA (sizeof (CpaCyKeyGenHKDFOpData) ,

instanceInfo2.nodeAffinity,
BYTE ALIGNMENT 64);

This structure must be allocated with USDM to be pinned in physical memory.
3. Allocate memory for HKDF output data. Output datais CpaFlatBuffer type:

PHYS CONTIG ALLOC (&pHkdfData, hkdfDataSize);

HKDF Extract Expand Operation

To perform an Extract Expand operation, go to the CpaCyKeyGenHKDFOpData structure, and
sethkdfKeyOptoCPA CY HKDF KEY EXTRACT EXPAND.

Provide the lengths seedlLen, secretLen,and infoLenand copy all datainto the seed,

secret, and info tables.

API Programmer’s Guide 61

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Listing 54. HKDF Extract Expand Operation

3.2.13.3 HKDF Extract Expand Label Operation

To perform an Extract, Expand Label operation:

1. GototheCpaCyKeyGenHKDFOpData structure and set hkdfKeyOp to
CPA CY HKDF KEY EXTRACT EXPAND LABEL.

N

Provide the lengths seedlLen, secretlen,and infolen and copy all data into the seed,
secret,and info tables.

Set the number of labels in the numLabe1s field.

Setlabel[0].labellen.

Copy label dataintothe 1abel [0] . 1abel table.

Finally, setthe 1abel [0] .sublabelFlag field to 0x00 to disable generating sublabels.

oo dw

Listing 55. HKDF Extract Expand Label Operation

62 API Programmer’s Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

3.2134 HKDF Extract Expand Label and Sublabels operation

To perform an Extract, Expand Label and Sublabels operation:

1.

Go tothe CpaCyKeyGenHKDFOpData structure and set hkdfKeyOp to

CPA CY HKDF KEY EXTRACT EXPAND LABEL.

— Provide thelengths seedl.en, secretlen,and infolenand copy all data into the
seed, secret, and info tables.

— Setthe number of labels in the numLabe1s field.

— Setlabel[0].labelLen.

Copy label dataintothe label[0].label table.

Setthe label [0] .sublabelFlagandlabel [0].sublabelFlag field as shown below
to generate Key and IV sublabels.

Listing 56. HKDF Extract Expand Label and Sublabels Operation

API Programmer’s Guide 63

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

3.2.14 Perform HKDF operation

The crypto instance must be specified inthe instanceHandle toexecute the HKDF
operation. When the operation is performed asynchronously, the callback function and
callback tag should be setin the pKeyGenCb and pCallbackTagarguments. Operational data
is provided in pkeyGenT1sOpData, and CpaCyKeyHKDFCipherSuite must be chosen. The
outputis passed to the CpaFlatBuffer. Allgenerated values are arranged one after the other
in a single buffer. Depending on what operations are performed, the buffer length should be
adjusted.

Listing 57. HKDF Operation

3.3 Using the Diffie-Hellman API
This example demonstrates the usage of the Diffie-Hellman API.
These samplesare locatedin /asym/diffie hellman sample

The following steps are carried out:

e The example uses the APl asynchronously; therefore, you must defineaDiffieHellman
callback function per the APl prototype.

¢ Instance, discovery, and start-up are made in a way similar to that defined for the symmetric
examples above.

e The function sampleDhPerformOp is called, which does the following:

— Allocate memory for the operation and populate data for the appropriate DH phase 1
operation data structure to generate the public value. The fields to be allocated and
populated are the prime P, the base G, and the private value X. Space must also be
allocated for the output, which is the public value (PV).

Listing 58. Allocate Memory and Populate Operational Data

64 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I 2

Invoke the phase 1operation, which performs the modular exponentiation such that PV =
(baseG ~ privateValueX) mod primeP.

API Programmer’s Guide 65

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

Note: Inthe case of phase 1, the operation is invoked synchronously, hence the NULL pointer for the
callback function.

Listing 59. Perform Phase 1 Operation

In a real-world implementation of a key exchange protocol, the public value generated above
would now be shared with another party, B. This example uses this public value to go on and
invoke the second phase operation. First, allocate memory for the secret value, set up the
operational data for the phase 2 operation, and then perform that operation. This operation is
invoked asynchronously, taking the callback function defined earlier as a parameter:

Listing 60. Perform Phase 2 Operation

Finally, clean up by freeing up memory, stopping the instance, etc.

3.3.1 Prime Number Testing
This example demonstrates the usage of the prime number testing API.
These samplesare locatedin /asym/prime sample

The following steps are carried out:

¢ The APlis used asynchronously: therefore, a callback function is defined as per the API
prototype.

¢ Instance, discovery, and start-up is made in a way similar to that defined for the symmetric
examples above.

e The function primePerformOp is called, which does the following:
— Allocate memory for the operation

66 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

— Populate data for the appropriate input fields and perform the operation. The fields
populated include the following:

— Prime Candidate

— Whether to perform the greatest common divisor (GCD) test

— Whether to perform the Fermat test

— Number of Miller-Rabin rounds

— Whetherto perform Lucas test

Listing 61. Setup Operational Data and Test Prime

Finally, statistics are queried and the service stopped.

3.4 Using the SM2 API

This example demonstrates the usage of the SM2 API.

The following steps are carried out:

e The example contains synchronous and asynchronous API. For latter one, you must define a
proper callback function per the API prototype for different SM2 operations.

¢ Instance, discovery, and start-up are made in a way similar to that defined for the symmetric
examples above.

e This sample involves sign/verify, encryption/decryption, key exchange, point
multiplication/verify.

3.4.1 SM2 Digital Signature Generation and Verification

This operation is to sign a given message and output its digital signature (r,s) then verify (r,s).

API Programmer’s Guide 67

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

e The function sampleEcsm2SignPerformOp provisions parts of example implementation,
which does the following:
— Allocate memory and populate data for input buffer which includes scalar multiplier k,
digest of the message e and private key d.
— Allocate memory for output buffer which includes signature r and s. — Call function
cpaCyEcsm2Sign forsignoperation.

e The function sampleEcsm2VerifyPerformOp provisions parts of example implementation,
which does the following:
— Allocate memory and populate data for input buffer which includes digest of the
message e, signature rand s, x coordinate of public key and y coordinate of public key.
— Callfunction cpaCyEcsm2vVerify forsignature verification operation.

68 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

3.4.2 SM2 Public Key Encryption

This operation is to encrypt a given message then decrypt the cipher and compare to the given
message.

e The function sampleEcsm2EncPerformOp provisions parts of the example implementation,
which does the following:
— Allocate memory and populate data for input buffer which includes scalar multiplier k,
x coordinate of public key xP and y coordinate of public key yP.
— Allocate memory for output buffer which includes x coordinate of [k]IG x1,y
coordinate of [k]G y1, x coordinate of [k]Pb x2 and y coordinate of [k]Pb y2.
— Callfunction cpaCyEcsm2Encrypt forencryption operation.

API Programmer’s Guide 69

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

e The function sampleEcsm2DecPerformOp provisions parts of example implementation,
which does the following:

— Allocate memory and populate data for input buffer which includes private key d, x
coordinate of [k]G x1and y coordinate of [k]G y1.

- Allocate memory for output buffer which includes x coordinate of [k]Pb x2 and y
coordinate of [k]Pb y2.

— Callfunction cpaCyEcsm2Decrypt for decryption operation.

— Callfunction sm3 and hashCheck to check correctness of decryption.

70 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

3.4.3 SM2 Key Exchange

This operation is to exchange key between A side and B side, and check if the shared keys are
the same.

e The function sampleEcsm2KeyExPerformOp provisions parts of example implementation,
which does the following:

APl Programmer’s Guide

Allocate phase 1input buffer which includes scalar multiplier r for A side and B side
separately.

Allocate phase 1output buffer which includes x coordinate of a point on the curve x
and y coordinate of a point on the curve y for for A side and B side separately.
Callfunction cpaCyEcsm2KeyExPhasel for A side and B side separately.

Allocate phase 2 input buffer which includes scalar multiplier r, private key d, x
coordinate of a point on the curve from other side x1, x coordinate of a point on the
curve from phase 1x2, y coordinate of a point on the curve from phase 1y2, x
coordinate of public key from other side xP and y coordinate of public key from other
side yP for A side and B side separately.

Allocate phase 2 input buffer which includes x coordinate of a point on the curve x and
y coordinate of a point on the curve y for A side and B side separately.
Callfunction cpaCyEcsm2KeyExPhase? for A side and B side separately.

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

72 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

API Programmer’s Guide 73

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

344 SM2 Elliptic Curve Point

This operation is to calculate a point on the curve according to a given random number and
verify if the point (x,y) on the curve or not.

74 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I i

e The function sampleEcsm2PointMultiply provisions parts of example implementation,
which does the following:
— Allocate memory and populate date for input buffer which includes scalar multiplierk,
x coordinate of a point on the curve x and y coordinate of a point on the curve y.
— Allocate memory for output buffer which includes x coordinate of the resulting point
multiplication pXk and y coordinate of the resulting point multiplication pYk.
Call function cpaCyEcsm2PointMultiply for point multiply operation.

e The function sampleEcsm2GeneratortMultiply provisions parts of example
implementation, which does the following:
— Allocate memory and populate date for input buffer which includes scalar multiplier k.
— Allocate memory for output buffer which includes x coordinate of the resulting point
multiplication pXk and y coordinate of the resulting point multiplication pYk.
— Callfunction cpaCyEcsm2GeneratorMul tiply for generator multiply operation.

API Programmer’s Guide 75

u
I n t e I Intel® QuickAssist Technology Cryptographic AP/
®

e The function sampleEcsm2PointVeri fy provisions parts of example implementation,
which does the following:
— Allocate memory and populate date for input buffer which includes x coordinate of a
point on the curve x and y coordinate of a point on the curvey.
— Callfunction cpaCyEcsm2PointVerify for EC point verification.

76 API Programmer's Guide

)
Intel® QuickAssist Technology Cryptographic AP/ I n te I 3

Finally, statistics are queried and the service stopped.

API Programmer’s Guide 77

|
Intel® QuickAssist Technology Data Compression
inte
®

4.1

4.1.1

78

4 Intel® QuickAssist Technology
Data Compression AP/

This chapter describes the sample code for the Intel® QuickAssist Technology Data
Compression API, beginning with an APl overview, and followed by descriptions of various
scenarios toillustrate the usage of the API.

Note: This document does not cover data integrity concepts. Referto Table 1in the Programmer's
Guide, Compress and Verify (CnV) Related APIs for your product for important information on data
integrity concepts, including the Compress-and-Verify feature.

Overview

The Intel® QuickAssist Technology Data Compression API can be categorized into three broad
areas as follows:

e Common: This includes functionality for the initialization and shutdown of the service.

¢ Instance Management: A given implementation of the API can present multiple instances of
the compression service, each representing a logical or virtual "device".

¢ Request orderis guaranteed within a given instance of the service.

e Transformation:
- Compression functionality
- Decompression functionality

These areas of functionality are defined in cpa dc.handcpa dc dp.h.

The Intel” QAT Data Compression APl uses the "base" API (cpa), which defines base data
types used across all services of the Intel® QAT Technology API.

Session

Similar to the symmetric cryptography API, the data compression API has the concept ofa
session. In the case of the compression API, a session is an object that describes the
compression parameters to be applied across several requests. These requests might submit
buffers within a single file, or buffers associated with a particular data stream or flow. A session
objectis described by the following:

e The compression level: Lower levels provide faster compression and the cost of
compression ratio, whereas higher levels provide a better compression ratio as the cost of
performance.

¢ The compression algorithm: to use (e.qg. deflate) and what type of Huffman trees to
use (static or dynamic).

e The session direction: If all requests on this session are compression requests, then the
direction can be set to compress (and similarly, for decompress). A combined direction is
also available if both compression and decompression requests are called using this session.

APl Programmer's Guide

Intel® QuickAssist Technology Data Compression AP/ I n te I g

¢ The session state: a session can be described as stateful or stateless. Stateful sessions
maintain history and state between calls to the API, and stateless sessions do not.

— Stateless compression does not require history data from a previous
compression/decompression request to be restored before submitting the request.
Stateless sessions are used when the output data is known to be constrained in size.
An overflow condition (when the output data is about to exceed the output buffer) is
treated as an error condition in the decompression direction. In the compression
direction, the Application can keep submitting data from where the overflow was
registered in the input stream. The Data Plane API treats overflow as an error. In this
case, the overflow is treated as an error rather than an exception. The client
application is required to resubmit the job in its entirety with a larger output buffer.
Requests are treated independently; state and history are not saved and restored
between calls.

Note: When using a stateless session, it is possible to feed a seed checksum to the
cpaDcCompressData () orthe cpaDecDecompressData () APlwhenthe CPA DC FLUSH FULL flush
flag is used. The user application is responsible for maintaining the checksum across requests. This
feature is also known as Stateful Lite.
— Stateful sessions are required when the data to be decompressed is larger than the
buffers being used. This is a standard mode of operation for applications such as
GZIP, where the size of the uncompressed data is not known before execution, and
therefore the destination buffer may not be large enough to hold the resultant output.
Requests to stateful sessions are not treated independently, and state and history can
be saved and restored between calls. The amount of history and state carried
between calls depends on the compression level. For stateful decompression, only
one outstanding request may be in-flight at any one time for that session.

4.2 Sample — Stateful Data Compression

This example demonstrates the usage of the synchronous API, specifically using this APl to
perform a compression operation. It compresses a file via a stateful session using the deflate
compress algorithm with static Huffman trees and using GZIP style headers and footers.

These samples arelocatedin /dc/stateful sample

Note: Stateful data compressionis not available in Intel® QAT v1.8 and later releases. However,
stateful decompressionis available in Intel* QAT v1.8 and later releases.

421 Session Establishment

This is the main entry point for the sample compression code. It demonstrates the sequence of
calls to be made to the API to create a session, perform one or more compress operations, and
then tear down the session. At this point, the instance has been discovered and started, and
the capabilities of the instance have been queried and found to be suitable.

API Programmer’s Guide 79

- Intel® QuickAssist Technology Data Compression
INnte
®

A session is established by describing a session, determining how much session memory is
required, and then invoking the session initialization function cpabDcInitsSession.

Listing 62. Create and Initialize Stateful Session

80 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

Note: Source and destination buffers must be established.

Listing 63. Stateful Compression Memory Allocation

API Programmer’s Guide 81

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 64. Create Header

At this point, the application has opened an instance, established a session, and allocated
buffers. It is time to start some compress operations. To produce GZIP style compressed files,
the first thing that needs to be performed is header generation. Create a header using the
following code:

82 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

cpaDcGenerateHeader producesa GZIP style header (compliant with GZIP file format
specification v4.3, RFC 1952, refer to Table 1) when the session set up data is set such that
compTypeis CPA_DC DEFLATE and checksumis CPA DC CRC32.

Note: Alternatively, a zlib style header (compliant with ZLIB Compressed Data Format
Specification, v3.3, RFC 1950, refer to Table 1) can be produced if the session setup data is set such
that compType is CPA DC DEFLATE and checksumis CPA DC ADLER32.This operation demonstrates
looping through a file, reading the data, invoking the data compress operation, and writing the results
to the output file.

Listing 65. Perform Stateful Compression Operation

API Programmer’s Guide 83

- Intel® QuickAssist Technology Data Compression
INnte
®

84 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression
INnte
®

Finally, a GZIP footeris generated. Similar to the call to cpaDcGenerateteader, aGZIP
footer (compliant with GZIP style header (compliant with GZIP file format specification v4.3,
RFC 1952, refer to Table 1) is produced because the session setup data is set such that
compTypeis CPA DC DEFLATE and checksumis CPA DC CRC32.

The call to cpaDcGenerateFooter increments the produced field of the CpaDcRgResults
structure by the size of the footer added. In this example, the data produced so far has already
been written out to the file. As such, the produced field of the CpaDcRgResul ts structure is
cleared before callingthe cpabDcGenerateFooter function.

In the event the destination buffer would be too small to accept the footer, the
cpaDcGenerateFooter () APlwill return aninvalid parameter error. The
cpaDcGenerateFooter () APl cannot return an overflow exception. Itis application’s
responsibility to ensure that there is enough allocated buffer memory to append the algorithm
specific footer.

Listing 66. Create Footer

Because this session was created with CPA DC DIR COMBINED it canalso be used to
decompress data.

The Stateful Decompression Operation demonstrates looping through a file, reading the

compressed data, invoking the data decompress operation, and writing the results to the
output file. In this case, the overflow condition has to be considered.

Listing 67. Perform Stateful Decompression Operation

85 API Programmer's Guide

- Intel® QuickAssist Technology Data Compression
INnte
®

86 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

API Programmer’s Guide 87

- Intel® QuickAssist Technology Data Compression
INnte
®

Once all operations on this session have been completed, the session is torn down using the
Remove Stateful Sessionin Listing 68.

Listing 68. Remove Stateful Session

Query statistics at this point, which can be useful for debugging.

Finally, clean up by freeing up memory, stopping the instance, etc.

422 Sample — Stateless Data Compression

This example demonstrates the usage of the asynchronous AP, specifically using this APl to
perform a compression operation. It compresses a data buffer through a stateless session
using the deflate compress algorithm with dynamic Huffman trees.

The example below compresses a block of data into a compressed block.

88 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

These samplesare located in /dc/stateless sample
In this example, dynamic Huffman trees are used. The instance can be queried to ensure

dynamic Huffman trees are supported, and if an instance-specific bufferis required to perform
a dynamic Huffman tree deflate request.

Listing 69. Querying and Starting a Compression Instance

API Programmer’s Guide 89

- Intel® QuickAssist Technology Data Compression
INnte
®

The create and initialize stateless session demonstrates the sequence of calls to be made to
the API to create a session. To establish a session: describing the session, determining how

much session memory is required, and then invoke the session initialization function
cpaDcInitSession.

Listing 70. Create and Initialize Stateless Session

90

APl Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

Source and destination buffers are allocated in a similar way to the stateful example above.

Perform Operation: This listing demonstrates invoking the data compress operation, in the
stateless case.

Listing71. Data Plane Remove Compression Session

API Programmer’s Guide 91

|
Intel® QuickAssist Technology Data Compression
inte
®

4.3

Sample — Stateless Data Compression Using Multiple
Compress Operations

This example demonstrates the use of the asynchronous API: specifically, using this APl to
perform a compression operation. It compresses a data buffer using multiple stateless
compression APl requests and maintains length and checksum information across the
multiple requests without the overhead of maintaining full history information as used in a
stateful operation.

The samples arelocated in: /dc/stateless multi op checksum sample
In this sample, session creation is the same as for reqular stateless operation. Refer to the

previous sample described in Section 4.3, Sample — Stateless Data Compression Using
Multiple Compress Operations for details.

Perform Operation: This listing demonstrates the invoking of the data compress operation
in the stateless case while maintaining checksum information across multiple compress
operations. The key points to note are:

The initial value of dcResults.checksumis setto O for CRC32 orset to1for Adler32 when
invoking the first compress or decompress operation for a data set.

Listing 72. Setting the Initial Value of the Checksum

4.4

92

if (sd.checksum == CPA DC ADLER32) ({

/* Initialize checksum to 1 for Adler32 */
dcResults.checksum = 1;
} else {

/* Initialize checksum to 0 for CRC32 */
dcResults.checksum = 0;
}

The value of dcResults.checksumwheninvoking a subsequent compress operation fora
data setis setto the dcResults. Checksum value returned from the previous compress
operation on that data set.

Sample — Data Compression Data Plane API

This example demonstrates the usage of the data plane data compression API to perform a
compression operation. It compresses a data buffer via a stateless session using the deflate
compress algorithm with dynamic Huffman trees. This example is simplified to demonstrate
the basics of how to use the APl and how to build the structures required. This example does
not demonstrate the optimal way to use the API to get maximum performance for a particular
implementation. Refer to Table 1 Implementation Specific Documentation and performance
sample code for a guide on how to use the API for best performance.

APl Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

These samples are located in /dc/dc _dp sample

The data plane data compression APl is used in a similar way to the data planesymmetric
cryptographic API:

Data compression service instances are queried and started in the same way and using the
same functions as before (see Listing 1and Listing 68).

Listing 73. Register Compression Callback Function

This listing registers a callback function for the data compression instance.

Next, create and initialize a session.

Listing 74. Create and Initialize Compression Data Plane Session

API Programmer’s Guide 93

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 75. Setup Source Buffer

In this example, input and output data is stored in a scatter gather list. The source and
destination buffers are described using the CpaPhysBuf ferlList structure. In this example
the allocation (which needs to be 8-byte aligned) and setup of the source bufferis shown. The
destination buffers can be allocated and set up in a similar way.

94 API Programmer's Guide

s
I n te g Error! No text of specified style in document.

The operational data in this case is:

Listing 76. Compression Data Plane Operational Data

This request is then enqueued and submitted on the instance.

95 API Programmer's Guide

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 77. Data Plane Enqueue and Submit

e Afterpossibly doing other work (e.g., enqueuing and submitting more requests), the
Application can poll for responses that invoke the callback function registered with the
instance. Refer to Table 1 Implementation Specific Documentation on the implementations
polling functions.

¢ Once allrequests associated with a session have been completed, the session can be
removed.

Listing 78. Data Plane Remove Compression Session

Clean up by freeing up memory, stopping the instance, etc. using this command:

4.5 Sample - Chained Hash and Stateless Compression

This example demonstrates the use of the asynchronous API, specifically, using the data
compression chain API to perform chained hash and stateless compression operations. It
performs a sha256 hash on the sample text and then compresses the sample text through a
stateless session using the deflate compress algorithm with static Huffman trees.

These samplesare locatedin /dc/chaining sample

Listing 79. Querying and Starting a Compression Instance

96 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

API Programmer’s Guide 97

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 80. Create and Initialize Session Hash and Compression

98 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

API Programmer’s Guide 99

- Intel® QuickAssist Technology Data Compression
INnte
®

Note: cysessionData.digestIsAppendedshould bealwayssetto CPA FALSE as the digest must
not appended in the end of output.

Listing 81. Chained Hash and Stateless Compression Memory Allocation

100 API Programmer's Guide

)
Intel® QuickAssist Technology Data Compression AP/ I n te I i

Listing 82. Set Up Operational Data Hash and Compression

Hash and stateless dynamic compression are also supported. Refer to Listing 64 and Listing

65 to add dynamic compression released buffers and session data.

Note: Hash algorithms are not limited to shaland sha256. Refer to Intel® QuickAssist Technology
Software for Linux* Release Notes (Table 1) for any limitations on using other hash algorithms in the
current release.

API Programmer’s Guide 101

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 83. Verify the Output of Chained Hash and Stateless Compression

APl Programmer's Guide

Intel® QuickAssist Technology Data Compression AP/

API Programmer’s Guide

- Intel® QuickAssist Technology Data Compression
INnte
®

Listing 84. Remove Chained Hash and Stateless Compression Session

L oot - ceabechaihiecove s silonl S basclndlle ssssionide L]
§

104 API Programmer's Guide

	1 Introduction
	1.1 Intended Audience
	1.2 Related Documents and References
	1.3 Using This Document
	1.4 Terminology

	2 Base API and API Conventions
	2.1 Intel® QAT Technology Base API
	2.1.1 Data Buffer Models
	2.1.1.1 Flat Buffers
	2.1.1.2 Scatter-Gather Lists

	2.2 Intel® QuickAssist Technology API Conventions
	2.2.1 Instance Discovery
	2.2.2 Modes of Operation
	2.2.2.1 Asynchronous Operation
	2.2.2.2 Synchronous Operation

	2.2.3 Memory Allocation and Ownership
	2.2.4 Data Plane APIs

	3 Intel® QuickAssist Technology Cryptographic API
	3.1 Overview
	3.1.1 Sessions
	3.1.2 Priority

	3.2 Using the Symmetric Cryptography API
	3.2.1 General Concepts
	3.2.1.1 Session
	3.2.1.2 In-Place and Out-of-Place Support
	3.2.1.3 Partial Support

	3.2.2 Cipher
	3.2.2.1 symCallback
	3.2.2.2 cipherSample

	3.2.3 Hash
	3.2.4 Hash a File
	3.2.5 Chained Cipher and Hash
	3.2.6 Chained Cipher and Hash – IPSec Like Use Case
	3.2.7 Chained Cipher and Hash – SSL Like Use Case
	3.2.8 Chained Cipher and Hash – CCM Use Case
	3.2.9 Chained Cipher and Hash – GCM Use Case
	3.2.10 Chained Cipher and Hash Using the Symmetric Data Plane API
	3.2.11 TLS Key and MGF Mask Generation
	3.2.11.1 Setting CpaCyKeyGenTlsOpData Structure Fields

	3.2.12 Session Update for Chained Cipher and Hash Operation
	3.2.12.1 Create and Initialize a Session:

	3.2.13 HKDF Use Case
	3.2.13.1 Instance Configuration and Memory Allocation
	3.2.13.2 HKDF Extract Expand Operation
	3.2.13.3 HKDF Extract Expand Label Operation
	3.2.13.4 HKDF Extract Expand Label and Sublabels operation

	3.2.14 Perform HKDF operation

	3.3 Using the Diffie-Hellman API
	3.3.1 Prime Number Testing

	3.4 Using the SM2 API
	3.4.1 SM2 Digital Signature Generation and Verification
	3.4.2 SM2 Public Key Encryption
	3.4.3 SM2 Key Exchange
	3.4.4 SM2 Elliptic Curve Point

	4 Intel® QuickAssist Technology Data Compression API
	4.1 Overview
	4.1.1 Session

	4.2 Sample – Stateful Data Compression
	4.2.1 Session Establishment
	4.2.2 Sample – Stateless Data Compression

	4.3 Sample – Stateless Data Compression Using Multiple Compress Operations
	4.4 Sample – Data Compression Data Plane API
	4.5 Sample - Chained Hash and Stateless Compression

