Intel® Quark™ microcontroller
D1000

Programmer’s Reference Manual

November 2015

Document Number: 332913-002US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting:
http://www.intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more
at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, Intel Quark, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*QOther names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® Quark™ microcontroller D1000
PRM November 2015
2 Document Number: 332913-002US

http://www.intel.com/design/literature.htm
http://www.intel.com/

. ®
Contents—Intel® Quark™ microcontroller D1000 l n tel >

Contents
I R g o Yo [' o ') o T 12
1.1 Intel® Quark™ microcontroller D1000 CPU OVEIVIEWiiviieiiiiniieiieiiiniieiieesannnnennans 12
3 1 0 =T o U) 12
3 N 7 12
1.4 Code and Data INterfaCes . ..iiiuiieiii it e e ae e 13
1.4.1 Instruction AlIgNMENT ..o e 13
1.4.2 Data AlIgNment ..o s 13
1.4.3 Stack AlIGNmMEnt. ..o e 13
8T o Y= o[o N 2o 1 o | PP 13
b2 © TR O T 0 a] o 1= X 1 1 o 1 1 1Y/ P 14
3.0 MEMOKY MOEI uiiiiiiii e e 16
3.1 Bit @nd BYte OFder. . e 16
G 20 A Vo (o [=TT 1 o o PP 16
GG B 1 [T 0 Lo VA @ T /s [=T 7 o T [P 16
3.3.1 Strong Ordering RUIES. ... ettt e et e e aeees 17
3.3.2 Weak Ordering RUIESviuiiriiiiicii st e e e e raeees 17
3.3.3 Mixed Ordering RUIESccuiiii i e e et es 17
3.3.4 WrIte FIUSHING...c it e 18
3.4 Self-Modifying COe....cuieiiii i 18
3.5 StACK BERaViO . ittt e 18
3.5.1 Stack AlGNMIENt. i 18
3.5.2 Stack OVer/UNAer loW vuuuiiiiiiiiiiii it esiiisseesssaisssesssansssessssansssesrsnnnnes 18
O T =T | 153 = = 20
4.1 General PUrPOSE REGISTEIS ... uiiuiieii i e et e e e e e e eaens 20
4.2 Special PUrPOSE REISTEIS ... vt 21
L T] PP 21
LS 3O T 5o T o) [0 o 1= N 24
5.1 b eqol=T o1 u [o] I NV o 1= PP 24
Lo 0 A 1 =T f o o) o= P 24
L 0 - T | P 24
LS G T I - [1= o P 25
514 AD OIS ceiiiii i e 25
LI = (/=] o 1o [T = =Y o | 11 T [P P 25
LI T I o] [T = 1 1 PPN 25
5.4 Interrupt Descriptor Table .. e 26
5.5 Format of Interrupt DeSCriPtOrS . .uui i e e e as 26
5.6 Exception 0 - Divide Error (#DE) ...ciuiiiiiiiiiiiiii ittt 27
oI ST R vl o o [O F= 1= PRI 27
L T A o o] @ Y = PP 27
5.6.3 Saved INStrucCtion POINTer ...uivi i e 27
5.6.4 Program State Change ...c.viiiiiniiiiiii i i et a e rnanneans 27
5.7 Exception 1 - Debug EXCeption (#DB)ciuiieiiiiiiiiiiiiiiiii et e 27
S0 R =5 o =T o w o o 1 = T~ 28
I A A = o o] ol @Y [P PP 28
5.7.3 Saved Instruction POINtEr ..o 28
5.7.4 Program State Changecciviiiiiiiiiiiii i et et r e e ae e aeaneaees 28
5.8 Exception 3 - Breakpoint (FBP) ...ciiiiii i i e 28
5.8.1 EXCePLion StacK Frami. it e e aas 29
TS TP =5 o =T o] w o o I O = T~ P 29
Intel® Quark™ microcontroller D1000
November 2015 PRM

Document Number: 332913 002US 3

6.0

7.0

®
l n tel Intel® Quark™ microcontroller D1000—Contents

oIS T TR = o g e T L= 29
5.8.4 Saved INStrucCtion POINTer. . ..iviei i e 29
5.8.5 Program State Changeccoiiiiiiiiiii e 29
5.9 Exception 6 - Invalid Opcode (#UD) ..ciiiiiiiiiiiiic i e et 29
5.9.1 EXCeption Stack Framie ..cciiiiiii i e e e 30
5.9.2 EXCEPLION ClaSS tuviriiiiitiiiieiiiteee ettt e e st e e e s e s r e e e s te e e an e aneareranennes 30
oIS T T = o g e T [30
5.9.4 Saved INStruction POINter. . .c.oe it iiiir i e e e nnen s 30
5.9.5 Program State Changeccoiiiiiiiiii e 30
5.10 Exception 8 - Double Fault (ZEDF) . iiiiiiii i e e 30
5.10.1 EXCeption Stack Frame . .ciiiiiiii i e e e et 30
5.10.2 EXCEPLION ClaSS tuiutiiiiiteiieintiitiate it st tate s it ee s e saeeaaesaaeraesaneaneaareraeanns 31
oI O G B = o o e T L= P 31
5.10.4 Saved INnStruction POINter. . .ccuire it e e rarenes 31
5.10.5 Program State Changeccooiiiiiiiiiiii e 31
5.11 Exception 11 - NOt Present (ZNP) ..ot s e e e e 31
5.11.1 EXCeption Stack Frame . oot e e e e 31
5.11.2 EXCEPLION ClaSS tuiitiiuiiiteiiiiintiiteee it st tate e s e ea e saeeaaesate st eaneaneaareraeannes 32
o I G = o e T [32
5.11.4 Saved InStruction POINter. . .cciire it r e anennes 32
5.11.5 Program State Changeccooiieiiiiiiii it e s 32
5.12 Exception 13 - General Protection (#GP) .. .cciiiiiiiiiiii i 32
5.12.1 EXCeption Stack Frame . .ciiuiiiiiii i e e e e 33
T A el o) o [0 I O 1= =1 PP 33
oI G B = o g e T L= 33
5.12.4 Saved INnStruction POINter. . .cciire it e e anennes 33
5.12.5 Program State Changeccooiiiiiiiiiiiii e e 34
5.13 Exception 18 - Machine Check (#MC) ..iiiiiiiiiiiiiiii i e e e 34
5.13.1 EXCeption Stack Frame . .oiiiiiii i i e e e e 35
5.13.2 EXCEPLION Class tuiiiriiiiiiti ittt eittee ittt ae e e e e e e e s e e e e s teraeaaneaeaarerneanns 35
oI G G T = o o e T [35
5.13.4 Saved INStruction POINter. . .cciiri it s rne e anennes 35
5.13.5 Program State Changecooiiiiiiniiiii e e 35
5.14 Exceptions 32-255 - User Defined INterruptsooviiiiiiiiiiiiiiiiic i nae e 36
5.14.1 EXCeption Stack Frame ..ot e e e e e 36
T I A el o o (o] o I O 1= 1 PP 36
oI I G B = o o e T [36
5.14.4 Saved INnStruction POINter. . .cciii it e e anennes 36
5.14.5 Program State Changeccooiiiiiiiiiiii e e 36
5.15 Exception Ordering and Priority ...ccoviiieieiiiiii s s esae e e raeanean e raeeas 36
5.15.1 Trap and Fault Order...cooiiiiiiiii i e e e e as 37
5.15.2 Interrupts Versus Trap and Fault Order......ccociiiiiiiiii i e nae s 37
5.16 Logical AlgOrithms ... e 37
L S E=T =Y P 42
6.1 Firmware Initialization OVEIrVIEWiuii i e ne e ra 42
6.2 Stack INitialization .o e 42
6.3 IDT INitialiZation .o e 43
(ST 10 A 5 [o o | o] I PP 43
6.3.2 IDT AlGNMENE it 43
YN o [Or=T g Lo B @ N o L N 44
7.1 Interrupt Vectors and Prioriti@scceieii it eens 44
/2 A = (=T 1= | N gL =T o U o) o PP 44
20 T W Tor- Y I AN o (O = o1 = o= PP 45
7.3.1 Task Priority Register (TPR) ...uiiiiiiiiiii i e e eeaaae s 46

Intel® Quark™ microcontroller D1000

PRM
4

November 2015
Document Number: 332913-002US

. ®
Contents—Intel® Quark™ microcontroller D1000 l n tel >

7.3.2 Processor Priority Register (PPR) ..o e 46

7.3.3 End-of-Interrupt Register (EOL)......cciuiiiiiiiiiiiii et e e e e aeeaeas 47

7.3.4 Spurious Interrupt Vector Register (SIVR)c.iiieiiiiiiiiniiiiiii e eeeneeaens 47

7.3.5 In-Service Register (ISR) Bits 47:32 ...iiuiiiiiiiiiiiiiiii i i aeraeens 47

7.3.6 Interrupt Request Register (IRR) Bits 63:32...cciiiiiiiiiiiiiiiiiiiie i ieeaaeraens 48

2 S W o Yo=Y = (G o 01T o P 48
7.4.1 Local Vector Table Timer Register (LVTTIMER)ccooviiiiiiiiiiiiii e 48

7.4.2 Initial Count Register (TICR).....iiuiuiiiiiiiiti it e e e e e e 49

7.4.3 Current Count Register (CCR)uiiiieiiiie i e e e e ee e ensaeaens 49

20 T 1@ 7N o (O 2= =] = 50
7.6 IOAPIC Redirection Entry REGISTEIS . uuiuiiiiiiiiiiiiiii ittt nees 50
7.7 Edge/Level Triggered INterrUPES . it e naeas 51
7. INEErrUPE POIaritY e s 51
£ 20 I =y g [ox o Lo g TS = N 52
8.1 Intel® Quark™ microcontroller D1000 CPU INStructionsc.ccvvvviiiiiiiiniiiiiiiieinnnens 52
S T A 1 g =) o ot o] T o = i D= PR 52
8.2.1 16-bit Operand OVEITIde ...iiiiiiiii i i e e e e aaeas 52

8.3 AdAreSSIiNG MOGES .uuviiiiiii ittt ettt 53
S T4 SN 1 o =1 o U (ot T] o o o o = | PP 53
8.5 1 [T |2 o T o o 0T 53
T ST Y 1 = T e o o = 1 PPN 54
8.7 Displacement and Immediate ByteS ...iiiiiiiiiiiii i e 54
8.8 Opcode Column in Instruction DesCription.....cciiiiiiiiii i e 55
8.9 Instruction Column in Instruction Descriptioncciviiiiiiiiiic e 59
8.10 Operation SECHION. . c.ui i e 59
S 70 A O oY= =1 o o [o =T P 61
8.12 ADC - Add With Carry . .c.e ettt e et e e e e s e e a e ee e aes 61
ES 0 0 R @ oY= = o o] I P 62

LS A (el =] o) o (o] = PR 62

.13 ADD = Add . ittt e aanas 62
B.13.1 OPEIraAtION e 64

S 10 G T =Y o [=P 64

8.14 AND - LOGICAl AN ...utiuiitiitiiii ettt e ettt e 64
S I R @ T oY= = o o] I P 65

L I A (o= 0 o (o] = P P 65

8.15 BSWAP - Byl SWaD ittt e 65
B.15. 1 OPEIraAtION et 65

T ST = % I = 11 o I =T o TP 66
B.16.1 OPEIraAtiON cuuiiiii i 66

8.17 BTC - Bit Test and Complement.o e e aaeas 67
S A B @ oY= = o o] o I P 67

8.18 BTR - Bit Test @nd RESEE .. uiiviiiiiiiiiiii e e e aans 68
B.18.1 OPEIraAtION s e 68

8.19 BTS - Bit TeSt @nd Sl .uiiiiiiiiiiii i e e s n e ae e rar e e annennens 69
8.10.1 OPEratiON cui i 69

8.20 CALL - Call ProCeAUIE ..ottt et et e e e e s e e e a e e e e e ene e ananeerans 70
LS 20 O T B @ oY= =1 o o] o PR 70

8.21 CBW/CWDE - Convert Byte to Word/Word to Doublewordcccviviiiiiiiieiieninnnnnns 70
B.21.1 OPEIraATION et 71

8.22 CLC - Clear CaArry Flag ..ot st e st e e e s e s e e eneaeaaans 71
8.22.1 OPEIraAtION cuii i e 71

8.23 CLI - Clear INEerrupt FIag . ..coueiiie i et et e e e e e s e e e e e e e eaes 71
£ I2C T B O 10T =1 o o] o PP P 72

8.24 CMC - Complement Carry Flag ...vueiiiiiiiie i i e e e e e aneanannens 72

November 2015

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913 002US 5

®
n tel Intel® Quark™ microcontroller D1000—Contents

8.25

8.26

8.27

8.38

8.39
8.40
8.41
8.42
8.43

8.44
8.45

8.46

8.47

8.48

8.24.1 OPEIratiON 1.uiti i et 72
CMP - Compare TWO OPEIraNGdsS. ... uuuiue ittt raaeaeae e re e e aaa e e e raeeaaraaeeaees 72
8.25.1 OPIratioN tuuiueii i e 73
CWD/CDQ - Convert to Doubleword or QUadword.......ccvieiiiiiiiiiiiiii i i as 73
£ I S T A @ T oY= o= (o] 1S 74
DEC - DeCrement DY L.ttt e e et e e 74
8.27.1 OPEIaAtION 1ttt e 75
(D) AV A U o =Y Te T T=Ta I 1 AV T = PP 75
8.28.1 EXCEOPHIONS 1uitii ittt e 75
L 1 I o - 1L PP 75
LB) AV Y o o 1< I B T1 o [PP 76
£ TG 1 O A (=T o o o] 1S 76
IMUL - Signed MUIIPIY .oiniiieii ettt e s ae e e e e s e aaeens 76
8.31.1 DESCIIPHION Lottt e 76
8.31.2 OPEIraAtiON 1uuiiiii i e 77
INC - INCremeEnt DY 1 oo e e et r et as 78
NG 27 R @ T oY= o= of o I PN 78
INT - Call to Interrupt ProCeaUIE. . .ovi it e e aaneans 78
8.33.1 DESCIIPHION Lottt e 79
8.33.2 EXCEOPIIONS ettt e aaaas 79
IRET - Interrupt REEUIN «ovii i s 79
£ TG L I B 7<= ol i 0] [o] o SN 79
NG L @ 0T = | o o] PN 79
Jcc - Jump if CoNdition 1S Met cuviiiii i e 80
0 U)o oY 81
LEA - Load EffeCtive AdAreSS .vuiriiire it vieeae s saeeaesa e sanes s sne e sanesnnanneranenns 82
8.37.1 DESCHIPHION Lottt e 82
NG A = (ol=] 01 (o] =S PN 82
LIDT - Load Interrupt Descriptor Table Registercocvviiiiiiiiiiiiiiiiii e 82
£ TG 2 0 A I 7= T=T'o] o o) o o o P S 82
8.38.2 EXCEOPIIONS et e aaaas 83
L@ XY 1 o Y= 84
8.39.1 OPEIratiON tuuiitii i e 85
MOVSX - Move With Sign-EXEeNd......ccccviiiiiiiiiiiii s e eas 85
MOVZX - Move With Zero-EXTeNdcciviiiiiiiii i ie e aeas 85
MUL - UNnsigned MU PIY .voneiiii e s e e e ne e e e eanes 85
S T Y R B T ==Yl T o] o] o I PP 86
I A @] o= = | o [PP 87
NEG - Two’s Complement Negationo.viiieiiiiiii it e e 88
3G T R @ T oY= o= o o] I PN 88
N[O \\[o T @ s 1= =1 (o] o H TR 88
NOT - One’s Complement Negation ...c.oveiiiiiiii i e 89
8.45.1 OPEIratiON c.uiiiii i e 89
OR - Logical INCIUSIVE OR ...uiiiiiiii i et e e e e rae e e e aans 89
8.46.1 OPEIratioN cvieii i e 90
POP - Pop a Doubleword from the Stack........cciiiiiiiiiiii e 90
I R @ T oY= o= | o o] I PPN 91
POPFD - Pop Stack into EFLAGS ReGiSter.....couiiiiiiiiiiiiiiiiiie st ne e e e 91
T2 R @ o= o= | o] [PP 91
PUSH - Push a Doubleword onto the Stackccooiiiiiiiiiii e 91
PUSHFD - Push EFLAGS 0Nto the StacKciviiiiiiiiiiiiii i ae e e 92
8.50.1 OPEIratioN cuuiuiii i e 92
RCL/RCR - Rotate Through Carry ..v.ivieeiiiiii it s es s e s e s e naannanennennans 92
RET - Return from ProCEAUIEttt et e e e e s e s as e s e e e neans 93
£ I 272 I @ T oY= o= 1 of (o] 1 S 93

Intel® Quark™ microcontroller D1000

PRM
6

November 2015
Document Number: 332913-002US

. ®
Contents—Intel® Quark™ microcontroller D1000 l n tel >

8.53 ROL/ROR = RO 1.ttt i ettt et e et it e et e eae e aaaeaanees 94

8.54 SAL/SAR - Shift Arithmetic ..o e 94

8.55 SBB - Integer Subtraction With BOMOWoeiiiiiiiii i 95

LS IS T A O 0T < =1 o o] o P P 96

8.56 SHL/SHR - Shift .o e e 96

8.57 SIDT - Store Interrupt Descriptor Table Register......ccovovviiiiiiiiiiii e 97

S TR A R 1=t o] o o P 98

B.57.2 EXCOPUIONS. ettt e 98

8.58 STC - Set Carry Flag ... v et e e e 98

LS oY S T B O oY= =1 o (o] o P P 98

8.59 STI - Set INterrUPt Flag. . oo i e e e st et e e e arans 98

L1 A @ oY= o= of o] I 99

8.60 SUB - SUDEIaCE. .ottt e 99

8.60.1 OPEraliON et 100

8.61 TEST - LOGICAl COMPAIE . uiuiniieieiieieie ittt e e e e e e et ie e e s s e e e a e e e e e aanaeaees 100

b A R B 7= 1Yol o [o) o o o A PP 100

S N A @ oY= =1 o (o] o P Y 101

8.62 UD2 - Undefined INStruCtionccvviiiiiiiiiiiii i 101

B.62.1 EXCOPUIONS. ..ttt 101

8.63 XOR - Logical EXCIUSIVE OR ...ciuiiiiiiii et e e 102

8.63.1 OPEralioON cuui i e 102

A [ado) d] T I 0 a'a T 1 104

AL L PUSH A st araas 104

O O] PP 104

AN R (@1 = [O PP 105

N N o 1= o W (o [0 o /=Y = 105

S A\ = o Vo AV 1 O 106

YA SO (g =] o g U] o) BT <T Yol 0] o] =T PPN 106

A (O B 1 o =] o B ot [0 1= 106

F S T] I Y € PP 106

LS T o= o o 1= PP 107

LW Y =T [o ¢ T=T L= o [o PP 108

B IOAPIC Programming EXampPles ..o s s s s s snassassesaesnens 110

= T A |7 = 1= T T g =] o U o PP 110
Figures

1 CPU Byte Order that Follows the Little-Endian Convention........c.coviiiiiiiiiiinicc e 16

2 General PUrpOSE REGISEEIS. ...ttt et et e e 20

3 SpecCial PUrPOSE REGISTEIS. .. ittt et e et e s e e aeanearans 21

4 Flags Defined in the EFLAGS REGISTEIucuiiiiii i et e e eaens 21

5 CPU Interrupt and Trap Descriptor FOrmat.....ccviiiiiii i 26

6 Exception Frame Saved on the Stack for the #DE Exceptionc.covviiiiiiiiiiiiiiiiiiiciiieieas 27

7 Exception Frame Saved on the Stack for the #DB EXCeptionccoviviiiiiiiiiiiii i ceens 28

8 Exception Frame Saved on the Stack for the #BP EXceplion.......ccooviiiiiiiiiiiiiiiiiiiee s 29

9 Exception Frame Saved on the Stack for the #UD EXceplioncooviiiiiiiiiiiiiiiiiiieeans 30

10 Exception Frame Saved on the Stack for the #DF EXception........cooovviiiiiiiiiiiiiiiens 30

11 Exception Frame Saved on the Stack for the #NP EXception.......cccoiiiiiiiiiiiiiiiiic i 31

12 Exception Frame Saved on the Stack for the #DF EXception......ccoviiiiiiiiiiiiiiiiiiiiieaeens 33

13 Exception Frame Saved on the Stack for the #MC EXCEpPLionccvoviiiiiiiiiiiiiii s 35

14 Exception Frame Saved on the Stack for External Interrupts.......ccooiiiiiiiiiiiiiiin i 36

15 Hardware Operations Performed on Exception ENtrycoociiiiiiiiiiiiiiiieeeeee 38

Intel® Quark™ microcontroller D1000

November 2015 PRM

Document Number: 332913 002US 7

u ®
< l n tel > Intel® Quark™ microcontroller D1000—Contents

16

Hardware Operations Performed on Exception Entry Primarily Related to the IDT.P Bit
(Continued from FIGUIE 15) ..ttt et e e e e e e s e e e e e e e e e eaeneneaeenn 39
Hardware Operations Performed on Exception Entry from Supervisor Mode (Continued from
[T U1 ST 1) T P 40
Hardware Operations Performed O0n ReSet........oiiiiiiiii e 42
Overview of the APIC that Integrates Both Local APIC and IOAPIC Functionality................ 45
LI 1S S] A =T | = o P 46
Processor Priority REGISTEI .. e 46
ENd-0f-INterrupt REGIST I .vvitii i e e e 47
Spurious Interrupt VeCtor RISt .. .uvi it e e e e e s aneaaaees 47
IN=SEIVICE REGIS I . it e 48
Interrupt REQUESE REGISTEI .. vttt e as 48
I I =Tl =TT o T 48
Local APIC Timer Initial Count REGISTEI .. .uiiuii it e e e eaans 49
Local APIC Timer Current CouNt RegiSter . .ciuiiuiiiiiiiiiii e i e e enaaas 49
Format of The IOAPIC Redirection Entry Registers......c.coviiiiiiiiiiiiiiiiiiciii e 51
The CPU Instruction Format Exactly Follows IA-32 ENCOAING ..uvivieiiiiiiiiiiiiieieneeieienans 53
Structure of the MOAR/M ByEe ... e 54
Structure of the Scale-Index- Base (SIB) Byte......ccoiiiiiiiiiiiiii e 54
PN BT ORAN e o) o o [PP 62
PN BT B 21N [« o] o1 f] o HPU R PP 64
PN R Y o [o] o1 o o [PPN 65
BSWAP AlGOFI TN e s 65
23 AN [o T o1 o o PR PP 66
BTC AlGOrtmM . . e 67
(3 I AN [o] 1 o o] o VAP P P TPTPP 68
(3 ISR 2 [o] o1l oV o T PP 69
CALL Procedure using Relative Jump with Opcode E8 cd.......civviiviiiiiiiiiiiiiicini e 70
CALL Procedure using Absolute Address with Opcode FF /2.....c.cviiiiiiiiiiiiiiiiiee 70
(@8 ATV e o) o o 71
L@LT1T] DT Y e o /) o o T o o 1R 71
(@ I @Y [e o /1 o] o U PP 71
(@ I A Fe o) o | o 1P P 72
(@117 [N Y o [o] 1 a0 o ISP PSPPI 72
(@11 o [T o1 of o1 o T P 73
(@111 2N [o o1 o o o T P 74
(@] 1@ Y e o 1l Vo [74
(D = @AY [o 1 o a1 o AP PP 75
L1710 N Fe oY1 o 1 1 o S P 77
1\ (@R 2Y [e o] 1 1 o1 o o FA T PP 78
2= AN L o T) o o 79
D I 2 o 0 0 83
Example Use of the LIDT Instruction to Setup an IDT with a Full 256 Entries 83
1 (@ VAN [e o] 1] o VA PP 85
[L0 TIRAN [e o) o | o [PP 87
NN =L CRAN [o o] o1 o] 0 [P PP 88
NV @ Y e o o 1 T PP 89
OR AlGOTI M. et 90
(0] o7 =T o] a0l =10] = = I R P 91
(51212 27N Lo o] 1 o o H P P 96
Y IO Y e o 11 o T 1 PP 98
YL I A AN e [0 1] 0 o 1S PP 99
SUB AlIGOIIENM 1uit it 100
TEST AlGOT TN e e 101
XOR AlGOrM . e e 102

Intel® Quark™ microcontroller D1000

PRM
8

November 2015
Document Number: 332913-002US

. ®
Contents—Intel® Quark™ microcontroller D1000 l n tel >

69 Flags Defined in the EFLAGS ReGISTOruiuiiiiiiiii e a e e e 107
Tables

1 Strong and Weak Order MEMOIY ...c.c ettt et e s r e a e s s e e e s s e eaerasasanaeenanaenns 17
A W O BT o= 1] (=T I B Tt of ' o] o o o 1= PP 22
3 Interrupt DesCriptor Table (IDT) . uuiii ittt ir it et e et e et e a e aeeaaeaeans 26
4 CPU Interrupt and Trap DeSCriptioNS ..ttt it e e i e r e st e e e e eaaaens 27
5 Exception Stack Frame DesCriplion ... iriiiiiiii i i 32
6 Exception Stack Frame DesCriplionciuciiiiiiiiiii e 33
7 Exception Frame Stack DesCriptionscouieieiiiiiiiiiii it n e ee e eas 35
8 External Interrupt Sources and Associated Interrupt VECtorc.coiviviiiiiiiiii i 45
9 Local APIC Memory Mapped RegiStersuuuiiriiiiiiiiiii e et et e e ee e raeeas 46
10 IOAPIC Memory Mapped ReGiSTOrS . ..uuuuuiiitiiiiitiieiieit ettt e e aa e e et e e e raearaneaneanes 50
11 TOAPIC Memory Mapped REGISTEIS. vttt ittt ettt e st e at e a e ane e e reaanaanens 50
12 INSErUCEiON PrefiX By ... 52
13 Addressing Modes Specified with the MOdR/M Bytecvviiiiiiiiiii i e e ea e 56
14 Addressing Modes Specified with the SIB Bytec.oiiiiiiiiii e e 57
15 Addressing Modes Specified with the SIB Byte for Base Encoding of 5 (101b)................... 58
16 Instruction Column Details ..ueiiieiiei i e e e e e e 59
17 Behavior of the Overflow Flag (EFLAGS.OF) Bit After an Arithmetic Operation................... 60
18 All EFLAG Combinations After Executing ADD for Various 8-bit Operandsccoevunne. 63
19 All EFLAG Combinations After Executing CMP for Various 8-bit Operandsc.coeeennen. 73
20 Results of the MUL INSErUCHION .ouiiiiiie i e e ar e e e neaaeas 76
21 Common Aliases for JCC INSTrUCTIONS .. .viviiii i a e 81
22 EFLAGS Condition Codes Associated with Each Conditional Jump Instruction 81
23 Results of the MUL INSErUCTION ..viiiii e e e e 86
24 INStruCtion PrefiX BYteS. . i e 106
25 Interrupt Descriptor Table (IDT) ..i.iiuiieii i et e s 107
Intel® Quark™ microcontroller D1000

November 2015 PRM

Document Number: 332913 002US 9

intel.

Revision History

Intel® Quark™ microcontroller D1000—

Date Revision | Description
November 2015 002 Revised table 11 IOAPIC Memory Mapped Registers
October 2015 001 Initial release

8 8§

Intel® Quark™ microcontroller D1000

PRM
10

November 2015
Document Number: 332913-002US

®
—Intel® Quark™ microcontroller D1000 I n tel

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913 002US 11

Intel® Quark™ microcontroller D1000—Introduction

Introduction

1.1

1.2

1.3

This document describes the external architecture of the Intel® Quark™ microcontroller
D1000 processor. This description includes core operation, external interfaces, register
definitions, etc. This document is intended as a reference for a logic design group,
architecture validation, firmware development, software device developers, test
engineers or anyone who may need specific technical or programming information
about the Intel®™ Quark™ microcontroller D1000.

Intel® Quark™ microcontroller D1000 CPU Overview

Important characteristics of the Intel® Quark™ microcontroller D1000 CPU are
provided in the following list:

e 32-bit processor core

e IA-32 instruction encoding

e 5 stage pipeline

e Harvard architecture

e 8KB of on-chip data SRAM

¢ 32KB of on-chip data/execution FLASH

e Deterministic 21 Cycle interrupt latency

e Minimal processor initialization for fast power-up

Interrupts

The CPU implements an Advanced Programmable Interrupt Controller (APIC) with an
integrated IOAPIC. The CPU routes incoming interrupts via an Interrupt Descriptor
Table (IDT). The IOAPIC is tightly coupled with the local APIC. The IOAPIC supports
external interrupts that map to the Interrupt Descriptor Table (IDT) starting at vector
20h. Vectors 0 to 1Fh are reserved for processor exceptions.

1/0

All I/0 interaction occurs via Memory Mapped I/O (MMIO). MMIO device registers map
into the Strongly Ordered memory range as described in *“Memory Ordering” on
page 16.

Intel® Quark™ microcontroller D1000

PRM
12

November 2015
Document Number: 332913-002US

™1 ®
Introduction—Intel® Quark™ microcontroller D1000 l n tel >

1.4

1.41

Note:

1.4.2

1.4.3

1.5

November 2015

Code and Data Interfaces

The CPU uses a Harvard architecture, which means separate physical interfaces for
code and data. Data interfaces are 32-bits wide, support read-modify-write
transactions efficiently and allow memory modification at byte granularity. The
instruction interface provides a 16 byte fetch width. Due to the variable length
instruction set of the CPU, a wider instruction fetch path improves performance. This
issue is of particular importance for branch performance in which the pipeline must
restart instruction fetch at the branch target address.

Instruction Alignment

The CPU imposes no instruction alignment restrictions. However, alignment can affect
hardware instruction fetch efficiency, particularly alignment of the target of jump or call
instructions. For these cases, instruction alignment up to an 8 byte boundary may
improve efficiency.

RTL simulators often assert on a read from uninitialized memory. This may occur when
an instruction fetch near the end of the elf code segment reads uninitialized memory
following the last instruction byte. Pad the code segment using linker script commands
to avoid this problem.

Data Alignment

The CPU imposes no data alignment restrictions. When fetching arbitrary data, the CPU
performs one or possibly two reads from 4 byte aligned addresses. To maximize
efficiency, software should arrange data items on natural boundaries up to a maximum
alignment of 4 bytes.

Stack Alighment

As with data accesses, the Intel® Quark™ microcontroller D1000 CPU does not impose
alignment restrictions on the stack pointer (ESP). However, a stack pointer that is not
aligned with respect to push/pop size imposes a significant efficiency penalty. Software
should maintain the stack on 4 byte boundary.

Floating Point

The CPU does not implement hardware floating point support. The compiler provides a
software implementation of floating point functions transparently to the C/C++
programmer.

SRS

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 13

m ®>
l n tel Intel® Quark™ microcontroller D1000—Compatibility

2.0 Compatibility

The CPU borrows IA-32 instruction encoding, but is not an IA-32 processor and is not
compatible with existing IA-32 applications or operating systems. Specifically, the
Intel® Quark™ microcontroller D1000 CPU supports only a subset of the full IA-32
instruction set. Likewise, the CPU architecture excludes many legacy features such as
segmentation. The CPU implements system software features not available or solved
differently on IA-32. Software written for IA-32 processors requires porting to the
Intel® Quark™ microcontroller D1000.

Intel® Quark™ microcontroller D1000
PRM November 2015
14 Document Number: 332913-002US

®
Compatibility—Intel® Quark™ microcontroller D1000 I n tel

8§88

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 15

®
l n tel Intel® Quark™ microcontroller D1000—Memory Model

Memory Model

3.1

Figure 1.

3.2

3.3

The CPU provides a simple linear physical 32-bit memory model. The CPU does not
support any form of memory address segmentation. The following sections provide
additional detail.

Bit and Byte Order

The CPU uses little-endian byte order. See Figure 1.

CPU Byte Order that Follows the Little-Endian Convention

31 2423 1615 87 >
hglfid}ris Byte 14 Byte 13 Byte 12 0Ch

Long O 08h

Word 1 Word 0 04h

Pred Byte 2 Byte 1 e, | 00N

The CPU supports 8-bit (byte), 16-bit (word) and 32-bit (dword) data accesses. The
CPU does not support 64-bit (qword) access. Instructions performing 16-bit data
accesses require a 66h instruction prefix byte. In general, the 66h prefix provides an
operand size override for most data or register access instructions.

Addressing

The CPU uses flat and physical addressing for memory. Flat means that the CPU does
not use any form of memory segmentation. Physical means the CPU does not perform
memory address translations. Software uses physical memory addresses.

Memory Ordering

The CPU supports two memory ordering models, Strongly Ordered and Weakly ordered.
The CPU differentiates between Weakly Ordered and Strongly Ordered memory by the
highest address bit. Thus Memory-Mapped IO devices appear at addresses higher than
80000000h as shown in Table 1.

Intel® Quark™ microcontroller D1000

PRM
16

November 2015
Document Number: 332913-002US

™1 ®
Memory Model—Intel® Quark™ microcontroller D1000 l n tel)

Table 1.

3.3.1

3.3.2

3.3.3

November 2015

Memory located in the Weakly Ordered memory range must be free of side effects.
Thus, a read or write to an address in Processor Ordered memory must not affect the
contents of a different address in Processor Ordered memory or any other memory
region. This guarantee allows the processor to more efficiently access Processor
Ordered memory. The CPU may perform speculative reads in Processor Ordered
memory.

A read or write to Strongly Ordered memory need not be free of side-effects. Thus, a
read or write to an address in Strongly Ordered memory may affect the content of a
different Strongly Ordered memory address. A read or write to Strongly Ordered
memory must not affect the content of Processor Ordered memory.

Strong and Weak Order Memory

Address Range Memory Ordering Model

FFFFFFFFh
Strongly Ordered

80000000h
7FFFFFFFh

Weakly Ordered

00000000h

Strong Ordering Rules

For Strongly Ordered accesses, the CPU issues reads and writes on the external
memory interface in the same order encountered in the instruction stream.

Weak Ordering Rules

For accesses to Weakly Ordered memory, the following rules apply.
e Reads are not reordered with other reads.
e Writes are not reordered with other writes
e Writes are not reordered with older reads.

e Reads may be reordered with older writes to different locations but not with older
writes to the same location

e Reads or writes cannot be reordered with respect to serializing instructions.

Mixed Ordering Rules
For access sequences involving both Weakly Ordered memory and Strongly Ordered
memory, the following rules apply.

e Writes to Weakly Ordered memory are not reordered with respect to Strongly
Ordered writes.

e Reads to Weakly Ordered memory may be reordered with respect to Strongly
Ordered reads or writes.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 17

u ®
l n tel) Intel® Quark™ microcontroller D1000—Memory Model

3.5

3.5.1

3.5.2

Write Flushing

Writes to MMIO registers in devices may traverse a variety of intermediate buffers
depending on the nature of the embedded design. These buffers may not be visible to
the CPU. If software requires a strongly ordered write to take immediate effect, then
software must cause a write flush. The recommended method is to follow a strongly
ordered write with a read to the same MMIO address.

Self-Modifying Code

Except for bulk FLASH reprogramming, the CPU cannot create self-modifying code. The
CPU cannot execute out of on-chip SRAM.

Stack Behavior

The CPU uses a grow-down stack. The CPU follows decrement-then-write behavior for
pushes and read-then-increment behavior for pops. The CPU stack pointer register is
ESP. Other than being the implied pointer in stack specific instructions, the %esp
register behaves as a general purpose register.

Stack Alignment

As with data accesses, the CPU does not impose alignment restrictions on the stack
pointer (ESP). However, a stack pointer that is not aligned with respect to push/pop
size imposes an efficiency penalty. Software should maintain the stack on 4 byte
boundary.

Note that the PUSH instructions are irregular with regard to stack alignment. 8-bit push
instructions sign extend the value to enforce stack alignment but 16-bit push

instructions do not sign extend and cause an unaligned stack. See Section 8.49 for
more information.

Stack Over/Underflow

In general, stack over/underflow behaves like an errant data pointer bug.

Intel® Quark™ microcontroller D1000

PRM
18

November 2015
Document Number: 332913-002US

®
Memory Model—Intel® Quark™ microcontroller D1000 I n tel

8§ 8

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 19

®
l n tel Intel® Quark™ microcontroller D1000—Registers

Registers

4.1

Note:

Figure 2.

The CPU defines 7 general purpose registers, a stack pointer and an instruction pointer.
The CPU also implements several other system support registers such as a supervisor
stack pointer.

General Purpose Registers

The CPU 32-bit general purpose registers (see Figure 2) have 8-bit and 16-bit renames
as shown. The 16-bit forms of EAX, EBX, ECX and EDX are AX, BX, CD, DX respectively.

16-bit wide accesses requires the 66h prefix on the instruction. 32-bit and 8-bit forms
are encoded without a prefix.

General Purpose Registers

31 16 15 87 0
EAX AH AL

EBX BH BL

ECX CH CL

EDX DH DL

ESI SI

EDI DI

EBP BP

ESP Stack Pointer

The instruction opcode specifies the effective width of the register as either an 8-bit or
32-bit form. The 66h prefix provides an operand width override which converts the 32-
bit operand form into a 16-bit operand form.

Intel® Quark™ microcontroller D1000

PRM
20

November 2015
Document Number: 332913-002US

™1 ®
Registers—Intel® Quark™ microcontroller D1000 l n tel >

4.2

Figure 3.

4.3

Figure 4.

November 2015

Special Purpose Registers

In addition to the general purpose registers, the CPU defines several special purpose
registers. See Figure 3.

The IDTR Address register contains the starting address of the Interrupt Descriptor
Table (IDT). The IDTR Limit register contains the size in bytes of the IDT. The IDTR
Limit register allows software to reduce the memory footprint of the IDT by eliminating
unneeded vectors. For more information, see Section 8.38 which describes initialization
of this register.

If an external interrupt or INT instruction requires a vector beyond the byte limit in the
IDTR Limit register, the CPU generates a General Protection Fault (#GP) with the IDT
flag set in the error code. See Section 5.12. The exception handling algorithm in
Figure 15, Figure 16 and Figure 17 provide additional detail.

The Interrupt Descriptor Table Register (IDTR) is split into a 32-bit Address field and a
16-bit Limit field.

Special Purpose Registers

31 0
\ Instruction Pointer (EIP)

‘ IDTR.Address
‘ IDTR.Limit

EFLAGS

The CPU supports a status register called EFLAGS as shown in Figure 4 and Table 2.

The CPU reserves EFLAGS bits shaded gray. For a comparison with IA-32, refer to
Appendix A.8. Status flags represent the status of arithmetic operations or other cases
that can be manipulated by user-mode processes. Fixed flags are read-only and do not
change state. System flags r present processor state that cannot be altered by a user-
mode process. Writes in user-mode to these bits are ignored. Reserved flags cannot be
altered by a user or supervisor mode process. Writes to these bits generate a General
Protection Fault (#GP).

Flags Defined in the EFLAGS Register

31 121110 9 8 7 6 5 4 3 2 1 0
0] I/T|S|Z C
0 0 0 1
FI| |F|F|F|F F
Flag Bit Type Description
CF 0 Status Carry Flag
1 Fixed Always 1
2 Reserved
5-3 Reserved
ZF 6 Status Zero Flag

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 21

®
l n tel Intel® Quark™ microcontroller D1000—Registers

Flag Bit Type Description
SF 7 Status Sign Flag
TF 8 System Trap Flag
IF 9 System Interrupt Enable Flag
10 Reserved
OF 11 Status Overflow Flag
12-31 Reserved
Table 2. FLAG Detailed Descriptions
Flag Description

Carry Flag - The CPU sets this flag if an arithmetic operation generates a carry or a borrow
out of the most-significant bit of the result; The CPU clears CF otherwise. This flag indicates
CF an overflow condition for unsigned-integer arithmetic. CF is also used in multiple precision
arithmetic. Software may manipulate the CF directly using the STC, CLC, and CMC
instructions.

Zero Flag - The CPU sets this flag if the result of the operation is zero; The CPU clears ZF

2F otherwise.

SF Sign Flag - The CPU sets this flag equal to the most-significant bit of the result, which is the
sign bit of a signed integer. A 0 indicates a positive value and 1 indicates a negative value.

Overflow Flag - The CPU sets this flag if the integer result is too large a positive number or
OF too small a negative number (excluding the sign-bit) to fit in the destination operand. The

CPU clears OF otherwise. This flag indicates an overflow condition for signed-integer (two's
complement) arithmetic.

Trap Flag - Software sets this flag to enable single-step mode for debugging. Software
clears TF to disable single-step mode. In single step mode, the CPU generates a debug
exception after each instruction. This allows the execution state of a program to be
inspected after each instruction. If software sets the TF flag using a POPFD or IRET
instruction, the CPU generates a debug exception after the instruction that follows the
POPFD or IRET. When accessing an exception or interrupt handler through either an
interrupt gate or a trap gate, the CPU clears the TF flag in the EFLAGS register after saving
the contents of the EFLAGS register on the stack. Clearing the TF flag prevents instruction
tracing from affecting interrupt response. A subsequent IRET instruction restores TF to the
value in the saved contents of the EFLAGS register on the stack.

TF

Interrupt Enable Flag - This flag controls the response of the processor to maskable
hardware interrupt requests. Software sets IF using the STI instruction to respond to
maskable hardware interrupts. Software clears the IF flag with the CLI instruction to inhibit
maskable hardware interrupts. Similarly, the IRET and POPFD instructions load EFLAGS
from the stack, including the IF flag value. The CPU clears the IF flag on an interrupt
through an interrupt gate.

Intel® Quark™ microcontroller D1000
PRM November 2015
22 Document Number: 332913-002US

®
Registers—Intel® Quark™ microcontroller D1000 I n tel

8§ 8

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 23

u ®
l n tel > Intel® Quark™ microcontroller D1000—Exceptions

Exceptions

5.1

5.1.1

5.1.2

An exception is a discontinuity in the instruction stream to handle unusual
circumstances or external events. The CPU implements an exception handling
architecture based on an Exception Processing Unit (EPU), an Advanced Programmable
Interrupt Controller (APIC) and integrated IOAPIC. The EPU directs exception handling
by means of a memory resident Interrupt Descriptor Table (IDT) which is controlled by
software. The APIC and IOAPIC provide an interface to external interrupt sources as
described in Chapter 7.0, "APIC and IOAPIC” on page 44. Because the CPU eliminates
segmentation and other overheads, interrupt processing requires approximately 21
cycles from assertion of an interrupt at the IOAPIC input to execution of the first
instruction of the interrupt handler.

Exception Types

The CPU supports interrupts, faults, traps and aborts. The CPU treats faults and traps
as synchronous exceptions associated with a specific instruction. Interrupts and aborts
are not associated with a specific instruction.

When an exception occurs, the CPU’s Exception Processing Unit (EPU) redirects
execution to the appropriate exception handler routine. System software specifies
exception handler entry points via a Interrupt Descriptor Table (IDT) in memory.
Software executing in supervisor mode loads the location of the IDT using the LIDT
instruction.

Interrupts

An interrupt is an external asynchronous event routed to the CPU through the APIC,
e.g. device and timer interrupts.

Faults

A fault is an exception that can generally be corrected and that, once corrected, allows
the program to be restarted with no loss of continuity. When a fault is reported, the
processor restores the machine state to the state prior to the beginning of execution of
the faulting instruction. The return address (EIP in the stack frame) for the fault
handler points to the faulting instruction, rather than to the instruction following the
faulting instruction.

For a Not-Present Fault (#NP) or General Protection Fault (#GP), the CPU pushes an
additional 32-bit error code in the exception stack frame. The error code allows
software to resolve ambiguities regarding the source of the #NP or #GP.

For a Machine Check Fault (#MC), the CPU supports an additional 32-bit error code and
a 32-bit address on the exception stack frame.

Intel® Quark™ microcontroller D1000

PRM
24

November 2015
Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel >

5.1.3

5.1.4

5.2

5.3

November 2015

Traps

A trap is an exception that is reported immediately following the execution of the
trapping instruction. Traps allow execution of a program or task to be continued without
loss of program continuity. The return address for the trap handler (EIP in the stack
frame) points to the instruction to be executed after the trapping instruction.

If the CPU detects a trap for an instruction which transfers execution, the return
instruction pointer (EIP in the stack frame) reflects the transfer. For example, if a trap
is detected while executing a JMP instruction, the return instruction pointer points to
the destination of the JMP instruction, not to the next address past the JMP instruction.

Aborts

An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow a restart of the program or task
that caused the exception. The CPU uses aborts to report severe errors, such as double
faults.

Exception Handling

After recognizing an exception, the CPU saves context information to the stack, then
jumps to the address specified by the matching IDT entry. The format of the saved
stack frame depends on the nature of the exception. The sections describing each
exception provide specific stack frame information.

Triple Fault

The CPU generates a Triple Fault when unable to process a Double Fault (#DF) due to
problems in the Interrupt Descriptor Table (IDT). On a Triple Fault, the CPU takes the
following actions:

e Enters the stopped state
e Asserts the CPU_ERR output signal

Exit from the stopped state is by an external hardware signal only, specifically, one of
the following.

e Power cycle

e External reset

¢ Reset from the Debug Controller
e Reset from the Watchdog Timer

In the stopped state, the CPU does not respond to external interrupts. The CPU clears
the CPU_ERR output only on reset. Chapter 6.0 describes the reset process.

Triple Fault conditions often occur during early software development in which the
developer has not yet implemented exception handling. In such cases, any exception
becomes a Triple Fault due to an absent or uninitialized IDT.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 25

intel)

Table 3.

Note:

5.5

Figure 5.

Intel® Quark™ microcontroller D1000—Exceptions

Interrupt Descriptor Table

Software specifies all interrupt handlers in the Interrupt Descriptor Table (IDT). During
exception processing, the Exception Processing Unit (EPU) reads the IDT Entry
associated with the pending exception. During initialization, software loads the
Interrupt Descriptor Table Register (IDTR) structure described in Section 8.38, “"LIDT -
Load Interrupt Descriptor Table Register” on page 82. The IDTR specifies the base
physical address and the number of entries in the IDT. Table 3 shows the layout of the
IDT. By convention, vectors 0 to 31 are reserved for processor exceptions.

Interrupt Descriptor Table (IDT)

Vector Name Type Error Code? Description
0 #DE Fault No Divide by 0
1 #DB Trap No Debug Exception
2 Reserved
3 #BP Trap No Breakoutpoint(INT3)
4-5 Reserved
6 #UD Fault No Invalid Opcode
7 Reserved
8 #DF Abort Yes Double Fault
9-10 Reserved
11 #NP Fault Yes Not Present
12 Reserved
13 #GP Fault Yes General Protection
14 -17 Reserved
18 #MC Abort Yes Machine Check
19 - 31 Reserved
32 - 255 Interrupt No Asynchronous IRQ

Each entry in Table 3 occupies 8 bytes. For a comparison with IA-32 exception vectors,
refer to Section A.9, “Exceptions” on page 107.

Format of Interrupt Descriptors

Figure 5 shows the format of the CPU interrupt descriptors. These structures differ only
in bit 8 which differentiates traps from interrupts. The CPU generates a General
Protection Fault (#GP) when the requested vector lies outside the range of the
Interrupt Descriptor Table.

CPU Interrupt and Trap Descriptor Format

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address 31-16 P|0|0|0|1|1|1|0| 0 04h
0 Address 15-0 00h

Intel® Quark™ microcontroller D1000

PRM
26

November 2015
Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel >

Note:

Table 4.

5.6

Figure 6.

5.6.1

5.6.2

5.6.3

5.6.4

5.7

November 2015

Shaded areas are reserved and software must set these bits as shown in Figure 5.

CPU Interrupt and Trap Descriptions

Field Description

Software sets this field to the EIP of the interrupt service routine for this vector. The

Address descriptor splits this field into high and low halves.

Present - Software sets this bit to 1 for valid descriptors that contain vector and 0 for invalid
descriptors that do not contain a vector. The IDTR described with the LIDT instruction

P specifies the total number of descriptors, up to the maximum of 256. Vectors greater than
the IDTR limit are automatically invalid. The CPU generates a General Protection Fault
(#GP) for exceptions to a vector with an invalid descriptor.

Exception O - Divide Error (#DE)

The #DE fault indicates the divisor operand for a DIV or IDIV instruction is 0 or that the
result cannot be represented in the number of bits specified for the destination
operand.

Exception Frame Saved on the Stack for the #DE Exception

31 0
EFLAGS ESP+8
0/Ignored ESP+4
EIP ESP

Exception Class

Fault.

Error Code

None.

Saved Instruction Pointer

The exception stack frame contains the EIP of the instruction that generated the
exception.

Program State Change

A program-state change does not accompany this exception, because the exception
occurs before the CPU executes the faulting instruction.

Exception 1 - Debug Exception (#DB)

The CPU generates a #DB trap after retirement of every instruction while executing in
Software Single-Step (SWSS) mode. Software enables SWSS mode by setting the Trap
Flag (EFLAGS.TF).

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 27

™ ®
l n tel) Intel® Quark™ microcontroller D1000—Exceptions

Figure 7.

Note:

5.7.1

5.7.2

5.7.3

5.7.4

5.8

Note:

Exception Frame Saved on the Stack for the #DB Exception

31 0

EFLAGS ESP+8
0/Ignored ESP+4
EIP ESP

The CPU also supports In-Circuit Emulation Single Step (ICESS) capability provided by
the Debug Controller. The Debug Controller provides a hardware based mechanism to
place the CPU in ICESS mode without support from software in the target platform. In
this case, the CPU does not generate a #DB exception, but instead enters Probe Mode
and transfers control to the Debug Controller. In Probe Mode, the CPU interacts with a
debugger via a JTAG interface. For more information, refer to the Intel® Quark™
microcontroller D1000 User Guide.

Exception Class

Trap.

Error Code

None.

Saved Instruction Pointer

The exception stack frame contains the EIP of the instruction following the trapping
instruction.

Program State Change

The state of the program is essentially unchanged because the #DB trap does not
affect any register or memory locations. A debugger can resume the software process
by executing IRET.

Exception 3 - Breakpoint (#BP)

#BP indicates that the CPU executed a breakpoint instruction (INT3), resulting in a
breakpoint trap. Typically, a debugger sets a breakpoint by replacing the first opcode
byte of an instruction with the opcode for the INT3 instruction. The INT3 instruction is
one byte long, to simplify opcode replacement.

Software may invoke the #BP exception using either the 1 or 2 byte INT instruction
forms. These are ‘CC’ and 'CD 03’ respectively. Both instruction forms behave
identically.

For breakpoint support, the CPU offers debug registers accessible via the JTAG
interface. Debug registers are much more convenient than injecting INT3 into the
instruction stream. If more breakpoints are needed beyond what the debug registers
allow, software may still rely on INT3.

Intel® Quark™ microcontroller D1000

PRM
28

November 2015
Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel >

5.8.1

Figure 8.

5.8.2

5.8.3

5.8.4

5.8.5

5.9

November 2015

Exception Stack Frame

Exception Frame Saved on the Stack for the #BP Exception

31 0

EFLAGS ESP+8
0/Ignored ESP+4
EIP ESP

Exception Class

Trap.

Error Code

None.

Saved Instruction Pointer

The exception stack frame contains the EIP of the instruction following the trapping
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the
state of the program is essentially unchanged because the INT3 instruction does not
affect any register or memory locations. A debugger can resume the software process
by replacing the INT3 instruction that caused the breakpoint with the original opcode
and decrementing the EIP register value saved in the stack frame. In this case, IRET
resumes program execution at the replaced instruction.

Exception 6 - Invalid Opcode (#UD)

#UD indicates that the CPU did one of the following things:
e Attempted to execute an invalid or reserved opcode.

e Attempted to execute an instruction with an operand type that is invalid for its
accompanying opcode.

e Executed a UD2 instruction.

e An instruction repeats a prefix byte, such as 66 66. Refer to Section 8.2,
“Instruction Prefixes” on page 52.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 29

m ®>
‘ l n tel Intel® Quark™ microcontroller D1000—Exceptions

5.9.1 Exception Stack Frame
Figure 9. Exception Frame Saved on the Stack for the #UD Exception
31 0
EFLAGS ESP+8
0/Ignored ESP+4
EIP ESP
5.9.2 Exception Class
Fault.
5.9.3 Error Code
None.
5.9.4 Saved Instruction Pointer
The exception stack frame contains the EIP of the instruction that generated the
exception.
5.9.5 Program State Change

A program-state change does not accompany this exception, because the exception
occurs before the CPU executes the faulting instruction.

5.10 Exception 8 - Double Fault (#DF)

#DF indicates that the CPU detected a second exception while calling an exception
handler for a prior exception. Normally, when the processor detects another exception
while trying to call an exception handler, the two exceptions can be handled serially.
The CPU generates a Double Fault when the two exceptions cannot be processed
serially.

See the interrupt entry algorithms in Section 5.16, “Logical Algorithms” on page 37 for
the precise circumstances that generate #DF.

5.10.1 Exception Stack Frame

Figure 10. Exception Frame Saved on the Stack for the #DF Exception

31 0

EFLAGS ESP+12
0/Ignored ESP+8
EIP ESP+4
0 ESP

Note: The Error Code field is always 0.

Intel® Quark™ microcontroller D1000
PRM November 2015
30 Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel >

5.10.2

5.10.3

5.10.4

5.10.5

5.11

5.11.1

Figure 11.

Note:

November 2015

Exception Class

Abort.

Error Code
The CPU always pushes an error code of zero. Software must pop the error code from

the stack before returning from the exception service routine. The stack pointer (ESP)
must point to the EIP field of the stack frame before executing IRET.

Saved Instruction Pointer

EIP in the stack frame is undefined.

Program State Change
Software process state following a Double Fault is undefined. The software processes
cannot be resumed or restarted. The only available action of the Double Fault exception

handler is to collect all possible context information for use in diagnostics and reset the
CPU.

Exception 11 - Not Present (#NP)

#NP indicates that an exception occurred and the corresponding Interrupt Descriptor
Table Entry for that exception has the ‘P’ bit clear, indicating not present.

See the interrupt entry algorithms in Section 5.16, “Logical Algorithms” on page 37 for
the precise circumstances that generate #NP.

Note that if the exception vector number is larger than the size of the IDT table, then
the CPU generates a General Protection Fault (#GP), and not #NP.

Exception Stack Frame

Exception Frame Saved on the Stack for the #NP Exception

31 1110 32 1 0

EFLAGS ESP+12
0/Ignored ESP+8
EIP ESP+4
E
Reserved Vector 0|1|X|ESP
T

Software should not alter the value of the reserved field.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 31

u ®
l n tel) Intel® Quark™ microcontroller D1000—Exceptions

Table 5.

Note:

5.11.2

5.11.3

5.11.4

5.11.5

5.12

Exception Stack Frame Description

Field Description

This field contains the 8-bit index of the Interrupt Descriptor Table (IDT) Entry that caused

Vector the exception.

External Flag - The CPU sets this bit to indicate that the exception occurred during delivery

X of an event external to the program, e.g. an interrupt.

ERRATA: For this exception, the EXT bit in the error code field is incorrect. Do not rely
on this bit.

Exception Class

Fault.

Error Code

The CPU pushes an error code containing the vector number of the exception that
caused the #NP.

Software must pop the error code from the stack before returning from the exception
service routine. The stack pointer (ESP) must point to the EIP field of the stack frame
before executing IRET.

Saved Instruction Pointer

If the #NP is the result of instruction execution, then EIP points to the instruction that
initiated the exception. Otherwise, the #NP is the result of an external interrupt and
EIP points to the next instruction the CPU will execute on return from interrupt.

Program State Change

A process state change does not accompany the exception. Recovery from this
exception is possible by setting the present flag in the gate descriptor.

Exception 13 - General Protection (#GP)

The CPU generates #GP in the following cases:
e An exception occurred with a vector number larger than the size of the IDT table.

e An exception occurred and the corresponding IDT entry is not an Interrupt or Trap
gate.

e An exception occurs during interrupt or exception entry, such as a bus error.
e Attempt to set a reserved EFLAGS bit.

Intel® Quark™ microcontroller D1000

PRM
32

November 2015
Document Number: 332913-002US

Exceptions—Intel® Quark™ microcontroller D1000

5.12.1

Figure 12.

Note:

Table 6.

Note:

5.12.2

5.12.3

5.12.4

November 2015

Exception Stack Frame

Exception Frame Saved on the Stack for the #DF Exception

31 11 10 1 0
EFLAGS
0/Ignored
EIP
I|E
0 Vector D|X
T|T

ESP+12

ESP+8

ESP+4

ESP

The precise content of the Error Code field depends on the source of the #GP fault as
described in this section. Software should not alter the value of the reserved field.

Exception Stack Frame Description

Field Description

This field contains the 8-bit index of the Interrupt Descriptor Table (IDT) Entry that caused

of an event external to the program, e.g. an interrupt.

Vector the exception if the IDT Flag is 1. If the IDT Flag is 0, then this field is reserved.

IDT IDT Flag - The CPU sets this bit to indicate the exception is associated with an error in the
IDT. In this case, the Vector field is valid. The CPU clears this bit otherwise.

EXT External Flag - The CPU sets this bit to indicate that the exception occurred during delivery

ERRATA: For this exception, the EXT and IDT bits in the error code field are in correct.

Do not rely on these bits.

Exception Class

Fault.

Error Code

The CPU pushes an error code for #GP. If the fault is associated with an IDT entry, the
CPU pushes an error code containing the vector number of the exception that caused

the #GP. For all other cases, the CPU pushes an error code of 0.

Software must pop the error code from the stack before returning from the exception
service routine. The stack pointer (ESP) must point to the EIP field of the stack frame

before executing IRET.

Saved Instruction Pointer

If the #GP is the result of instruction execution, then the EIP points to the instruction
that initiated the exception. If the #GP is the result of an external interrupt, then the

EIP points to the next instruction the CPU will execute on return from interrupt.
Otherwise, the EIP points to the instruction that generated the fault.

Intel® Quark™ microcontroller D1000

Document Number: 332913-002US

PRM
33

™ ®
l n tel) Intel® Quark™ microcontroller D1000—Exceptions

5.12.5

5.13

Program State Change

In general, a state change does not accompany a #GP, because the CPU does not
execute the invalid instruction or operation. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and resume the
software process without any loss of program continuity.

Exception 18 - Machine Check (#MC)

The CPU generates #MC faults in response to errors detected by hardware. Currently,
the only source of the #MC fault is the CPU’s BUS_ERR input on any of the CPU’s
memory interfaces. Hardware external to the CPU may assert the BUS_ERR input in
response to an erroneous read or write transaction. The exact reason for asserting the
BUS_ERR input is hardware dependent, but could for example include fundamental
memory transaction errors such as writes to ROM.

While software may be able to implement system recovery in some platform specific
cases, the #MC exception is an Abort class exception. In general, software does not
have enough information to recover a system to a known good state after a #MC.

The two sources of #MC are in attempting to fetch an instruction from an address
beyond ICCM address range.

Intel® Quark™ microcontroller D1000

PRM
34

November 2015
Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel >

5.13.1

Figure 13.

Note:

Table 7.

5.13.2

5.13.3

5.13.4

5.13.5

November 2015

Exception Stack Frame

Exception Frame Saved on the Stack for the #MC Exception

31 54 3 21 0
EFLAGS ESP+16
0/Ignored ESP+12
EIP ESP+8
0 | I | |W 1 [ESP+4
Fault Address ESP

The CPU pushes 2 additional 32-bit values on the stack as shown in Figure 13. Software
reads these values in the exception handler to determine the address and nature of the
access that generated the fault. When a fault occurs, the CPU always reports in the
lowest address of a multi-byte data access or instruction fetch. Software should not
alter the value of the reserved field.

Exception Frame Stack Descriptions

Field Description

Write Flag - 1 if the fault was caused by a write operation. 0 if the fault was caused by a
read operation. This bit is only valid when the Instruction Flag is 0.

Instruction Flag - 1 if the fault was caused by an instruction fetch. 0 if the fault was not
caused by an instruction fetch.

Exception Class

Abort.

Error Code

The CPU pushes two 32-bit words of error information for #MC as described in
Figure 13.

Software must pop the error code from the stack before returning from the exception

service routine. The stack pointer (ESP) must point to the EIP field of the stack frame
before executing IRET.

Saved Instruction Pointer
The exception stack frame contains the EIP of the instruction executing at the time of

the exception. The relationship between the EIP and the source of the #MC is
undefined.

Program State Change

A program-state change does not accompany this exception, because the exception
occurs before core executes the faulting instruction.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 35

m ®>
‘ l n tel Intel® Quark™ microcontroller D1000—Exceptions

5.14

5.14.1

Figure 14.

5.14.2

5.14.3

5.14.4

5.14.5

5.15

Exceptions 32-255 - User Defined Interrupts

The CPU generates a User Defined interrupt when:
e Software executes an INT instruction
e The CPU recognizes an external interrupt from the APIC

Exception Stack Frame

Exception Frame Saved on the Stack for External Interrupts

31 0
EFLAGS ESP+8
0/Ignored ESP+4
EIP ESP

Exception Class

Interrupt.

Error Code

None.

Saved Instruction Pointer

The exception stack frame contains the EIP of the instruction following the INT
instruction or the instruction following the instruction on which the external interrupt
occurred.

Program State Change

A software process may resume on return from the interrupt handler without loss of
continuity, provided the interrupt handler saves the state of the CPU before handling
the interrupt and restores the CPU’s state prior to a return.

Exception Ordering and Priority

This section describes the general ordering and prioritization of exception conditions by
the CPU. At any given moment, the CPU will have multiple instructions in flight, each of
which might generate a trap or fault. Simultaneously, the CPU also handles interrupts
as well as machine check conditions. The CPU does not architecturally guarantee every
aspect of exception processing, but follows general rules.

Intel® Quark™ microcontroller D1000

PRM
36

November 2015
Document Number: 332913-002US

™1 ®
Exceptions—Intel® Quark™ microcontroller D1000 (l n tel >

5.15.1 Trap and Fault Order

When considering only a single in-flight instruction, the CPU guarantees trap and fault
order as follows. This is not prioritization per se, but the in-order sequence of possible
events as an instruction progresses through the processor pipeline:

1. (Highest Priority) Machine Check Fault (#MC) (BUS_ERR) on code read
2. Invalid Opcode Fault (#UD)

3. Divide Error (#DE), INT instruction

4. (lowest priority) Machine Check Fault (#MC) (BUS_ERR) on data write

When two or more in flight instructions generate a trap in the same cycle, the exception
from the oldest instruction (closest to retirement) takes priority.

5.15.2 Interrupts Versus Trap and Fault Order

When an external interrupt and a trap or fault are pending in the same cycle, the CPU
uses the priority shown below to determine which event to service. Lettered sub-items
within each priority level are also shown in priority order.

Note that the servicing an exception may itself trigger a fault condition, usually due to
problems detected in the Interrupt Descriptor Table (IDT).
1. (Highest Priority) Hardware Reset and Errors
a. RESET input

2. Exception Processing Unit (EPU) exceptions generated during active exception
processing:

a. Triple Fault

b. Double Fault (#DF) (after #MC, #DE, #GP, #NP)

c. General Protection Fault (#GP) on IDT length error

d. Not-Present Fault (#NP)

e. Machine Check Fault (#MC) on IDT read
3. Traps on the current instruction

a. INT instruction

b. Hardware Breakpoint

c. Probe Mode Breakpoint

d. EFLAGS.TF
4. Machine Check Fault (#MC) on BUS_ERR input asserted for a data write
5. Faults on the current instruction (see Section 5.15.1)
6. (Lowest Priority) Maskable hardware interrupts

5.16 Logical Algorithms

The CPU follows the algorithms shown in Figure 15, Figure 16 and Figure 17 for
exception handling. For details on interrupt exit processing, refer to the IRET
instruction in Section 8.34.

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 37

[| ®
l n tel Intel® Quark™ microcontroller D1000—Exceptions

Figure 15. Hardware Operations Performed on Exception Entry

INPUT: Vector - Vector number of this exception, 0-255

INPUT: ErrVector - Vector number for IDT Errors, 0-255

INPUT: IDT - 1 =IDT Entry error, 0 =no IDT Entry error

INPUT: EXT - 1 = External interrupt, 0 = trap or fault. EXT = I implies INT =0
INPUT: INT - 1 = INT instruction, 0 = not INT. INT = 1 implies EXT =0

/* Inputs needed for #MC */

INPUT: Address - Faulting Address, if applicable

INPUT: I - 1 = Instruction fetch, 0 = not instruction fetch

INPUT: W - 1 = Data write, 0 = data read

/* Remember old state and switch to supervisor */

1 TempEFLAGS € EFLAGS;
2 TempPM € PM;
3 PM.U € 0;
4 EFLAGS.TF € 0;
5 IF ((Vector << 3) + 7) > IDTR.Limit THEN
/* IDT error is new #GP. If already #DF, then triple fault */
6 IF Vector = 8 THEN
7 Triple Fault;
8 DONE
9 ENDIF
/* If already #DE or #GP or #MC, then double fault */
10 IF (Vector = 0) or (Vector = 13) or (Vector = 18) THEN
11 #DF(ErrVector=0,IDT=0,EXT=0);
12 DONE
13 ENDIF
14 #GP(ErrVector=Vector,IDT=1,EXT=EXT);
15 DONE
16 ENDIF

17 DescAddr € IDTR.Base + (Vector << 3);
/* Continued in Figure 16*/

Note: The algorithm continues in Figure 16 This algorithm is an architectural representation
that does not reflect any particular hardware implementation

Intel® Quark™ microcontroller D1000
PRM November 2015
38 Document Number: 332913-002US

[|} ®
Exceptions—Intel® Quark™ microcontroller D1000 l n tel

Figure 16. Hardware Operations Performed on Exception Entry Primarily Related to the IDT.P
Bit (Continued from Figure 15)

/* Continued from Figure 15*/
18 Desc € Read(DescAddr);
19 IF (Desc.P = 0) or ((Desc.Type # TRAP GATE) and (Desc.Type # INTERRUPT
GATE) THEN
/* IDT error is new #NP or #GP */
20 IF Vector =8 THEN /* If already #DF, then triple fault */
21 Triple Fault;
22 DONE
23 ENDIF
/* If already #DE or or #NP or #GP or #MC, then double fault */
24 IF (Vector = 0) or (Vector = 11) or (Vector = 13) or (Vector = 18) or (Vector =
24) THEN
25 #DF(ErrVector=0,IDT=0,EXT=0);
26 DONE
27 ENDIF
28 IF (Desc.P = 0) THEN
29 #NP(ErrVector=Vector,IDT=1,EXT=EXT);
30 ELSE
31 #GP(ErrVector=Vector,IDT=1,EXT=EXT);
32 ENDIF
33 DONE
34 ENDIF
/* 1f INT instruction, check privilege */
35 IF (INT = 1) and (Desc.U = 0) and (PM.U = 1) THEN
36 #GP(ErrVector=Vector,IDT=0,EXT=0);
37 DONE
38 ENDIF
39 IF Desc.Type = INTERRUPT GATE THEN
40 EFLAGS.IF € 0;
41 ENDIF
/* Continued in Figure 17*/
Note: The next figure, Figure 17, continues the algorithm beginning with exception handling

from user mode illustration. This algorithm is an architectural representation that does
not reflect any particular hardware implementation.

November 2015

Intel® Quark™ microcontroller D10

00

PRM

Document Number: 332913-002US

39

Figure 17.

Note:

intel.

Intel® Quark™ microcontroller D1000—Exceptions

Hardware Operations Performed on Exception Entry from Supervisor Mode
(Continued from Figure 16)

/* Continued from Figure 16*/
/* Exception entry from supervisor mode */
/* No stack switch, ESP update is all-or-nothing */
42 [ESP- 4] € TempEFLAGS;
43 [ESP-8] € TempPM,;
44 IF (INT = 1) or (Vector = 1) THEN
/* Trap, so IRET to next instruction */
45 [ESP - 12] € Next EIP;
46 ELSE
/* Fault or interrupt, so IRET to current instruction */
" [ESP -12] € EIP;
48 ENDIF
49 IF (Vector = 13) or (Vector = 8§) THEN
/* Push error code for #GP or #DF */

50 [ESP - 16] € Error Code(ErrVector,IDT,EXT);
51 ESP < ESP - 16;
52 ELSE
53 IF (Vector = 18) or (Vector = 24) THEN
/* Push error code and address for #MC */
54 [ESP- 16] € Error Code(I, TempPM.U,W);
55 [ESP-20] € Address;
56 ESP € ESP - 20;
57 ELSE
/* No error codes */
58 ESP € ESP - 12;
59 ENDIF
60 ENDIF

61 EIP € Desc.Address(31-0);

This is an architectural representation that does not reflect any particular hardware
implementation.

8§88

Intel® Quark™ microcontroller D1000

PRM
40

November 2015
Document Number: 332913-002US

®
Exceptions—Intel® Quark™ microcontroller D1000 I n tel

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 41

u ®
l n tel) Intel® Quark™ microcontroller D1000—Reset

6.0 Reset

On a hardware reset, the CPU performs the initialization procedure shown in Figure 18.
From end of reset to execution of the first instruction requires approximately 14 clock

cycles.
Figure 18. Hardware Operations Performed on Reset
1 EIP «0;
2 ESP «0;
3 EFLAGS « 0x2;
4 EAX «0;
5 EBX «0;
6 ECX «0;
7 EDX «0;
s EBP «0;
9 ESI «0;
10 EDI «0;
11 PM.U «0;
12 ESPO «0;

13 IDTR.Address «0;
14 IDTR.Limit « 0;

6.1 Firmware Initialization Overview

The CPU resets into 32-bit physical addressing mode. At a minimum, the CPU requires
firmware to initialize the stack pointer (ESP) and the Interrupt Descriptor Table (IDT).

Firmware created with C/C++ typically contains additional initialization overhead as
required by the .elf format firmware image, such as clearing the .bss section.

6.2 Stack Initialization

Before other initialization, firmware should initialize the stack pointer. The stack grows
downward in memory. Because a PUSH instruction decrements the stack pointer first,

then stores data, firmware should initialize the stack pointer to the first 32-bit address
after data RAM. Placing data in RAM above the stack is hot recommended since stack

underflow would result in a silent data corruption.

Intel® Quark™ microcontroller D1000
PRM November 2015
42 Document Number: 332913-002US

™1 ®
Reset—Intel® Quark™ microcontroller D1000 < l n tel)

6.3

6.3.1

6.3.2

November 2015

IDT Initialization

For exception handling, the CPU requires firmware to create an Interrupt Descriptor
Table (IDT) and load the location of the table using the LIDT instruction. See

Section 8.38 and Chapter 5.0. Each entry in the IDT consumes 8 bytes, with the first
32 entries reserved for processor generated traps and faults.

IDT Location
During exception processing, the Exception Processing Unit (EPU) performs one or
more data reads (as opposed to code reads) from the IDT. Firmware may locate the IDT

in code FLASH, data FLASH or SRAM. An easily identifiable IDT base address can help
with debugging.

IDT Alignment

The CPU does not have alignment restrictions on the IDT. However, software should
align the IDT on an 8 byte boundary to maximize efficiency.

88

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 43

Intel® Quark™ microcontroller D1000—APIC and 10APIC

APIC and IOAPIC

7.1

7.2

The CPU Advanced Programmable Interrupt Controller (APIC) controls external
interrupt processing for the CPU and also provides a programmable timer. The APIC
contains 2 main sub-modules: the I/O APIC (IOAPIC) and the Local APIC (LAPIC), each
modeled on the x86 equivalent. The following sections describe each module in detail.
This document uses APIC to refer to the interrupt controller as a whole, including both
IOAPIC and LAPIC. Figure 19 shows an overview of the APIC.

Interrupt Vectors and Priorities

The CPU associates a vector number with each interrupt source. The APIC and core use
the vector to determine interrupt priority as well as the IDT entry for the interrupt
service routine address. The CPU uses 8 bit vector numbers, of which software
programs the bottom 5 bits. The CPU reserves the low 32 vectors (0-31) for
synchronous exceptions generated caused by software. External IOAPIC interrupts and
the APIC Timer interrupt use vectors from 32 to 47.

The larger the vector number, the higher the priority of the interrupt. Higher priority
interrupts preempt lower priority interrupts. Lower priority interrupts do not preempt
higher priority interrupts. The APIC holds the lower priority interrupts pending until the
interrupt service routine for the high priority interrupt writes to the End of Interrupt
(EOI) register. After an EOI write, the APIC asserts the next highest pending interrupt.

External Interrupts

This section describes the association of the external interrupts with processor interrupt
vectors. The CPU provides 16 external interrupt sources as shown in Table 8.

The APIC Timer interrupt occurs at the vector value specified by software in the
LVTTIMER register (Refer to Section 7.4.1, “Local Vector Table Timer Register
(LVTTIMER)” on page 48). To avoid a conflict with external interrupts, the CPU reserves
vector 45 for use by the APIC timer. Alternatively, software may program any vector
value 32-47 for the APIC Timer if the external interrupt source is not in use.

Intel® Quark™ microcontroller D1000

PRM
44

November 2015
Document Number: 332913-002US

APIC and 10APIC—Intel® Quark™ microcontroller D1000

intel)

Figure 19. Overview of the APIC that Integrates Both Local APIC and IOAPIC Functionality
Integrated APIC
LAPIC IOAPIC Jj«=—IRQO
: «~—[RQ1
Vector : Vector :
To Core < : CP + <_§—IRQZ
Ti :
i Ran
Note: The APIC has 16 IRQ inputs.
Table 8. External Interrupt Sources and Associated Interrupt Vector
Vector IDT Offset Description
32 100h GPIO
33 108h 12C
34 110h UART 0
35 118h UART 1
36 120h SPI Slave
37 128h SPI Master
38 130h Comparator
39 138h ADC Command Complete
40 140h ADC Mode Change Complete
41 148h FLASH Command Complete
42 150h Timer 0
43 158h Timer 1
44 160h Real-Time Clock
45 168h APIC Timer
46 170h Watch Dog Timer
47 178h Security
Note: Interrupt priority increases with the vector number, ie. the security IREQ at Vector 47
has the highest priority.
7.3 Local APIC Registers

This section describes the memory-mapped registers implemented in the APIC. The
base address for the Local APIC is FEEO0000h and the memory range reserved for the
Local APIC is FEEOO0O0Oh to FEEFFFFFh. The CPU ignores reads or writes to reserved
registers or fields. Refer to Table 9.

November 2015

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
45

intel)

Table 9.

Note:

7.3.1

Figure 20.

Note:

7.3.2

Figure 21.

Note:

Intel® Quark™ microcontroller D1000

PRM
46

Intel® Quark™ microcontroller D1000—APIC and 10APIC

Local APIC Memory Mapped Registers

Memory Register A
Mapped Name Access Description
Address
FEE00080h TPR R/W Task Priority Register
FEEOOOAOQOh PPR RO Process Priority Register
FEEO00BOh EOI WO End-of-Interrupt Register
FEEOOOFOh SIVR R/W Spurious Interrupt Vector Register
FEE00110h ISR RO In-Service Register, vectors 63-32
FEE00210h IRR RO Interrupt Request Register, vectors 63-32
FEE00320h LVTTIMER R/W Local Vector Table Timer Register
FEEO0380h ICR R/W Timer Initial Count Register
FEE00390h CCR RO Timer Current Count Register

All registers are 32-bits wide and have a reset value of 0, except the LVTTIMER Register
which has a reset value of 00010000h.

Task Priority Register (TPR)
Address: FEE00080h

Software writes to this register with a vector number to set a priority threshold. The
APIC will not deliver unmasked interrupts with a vector number lower than the TPR
value. For example, a value of Oh allows all interrupts. A value of FFh disallows all

interrupts.

Task Priority Register

31

87 0

0/Ignored

Vector

Use this register to block low priority interrupts from interrupting the CPU. This register
is read and writable.

Processor Priority Register (PPR)

Address: FEEOOOAOh

The APIC sets the Processor Priority Register to either to the highest priority pending
interrupt in the ISR or to the current task priority, whichever is higher.

Processor Priority Register

31

87 0

0/Ignored

Vector

Use this register to determine the priority at which the APIC is currently blocking
interrupts. This register is read-only.

November 2015
Document Number: 332913-002US

. ®
APIC and 10APIC—Intel® Quark™ microcontroller D1000 l n tel >

7.3.3

Figure 22.

Note:

7.3.4

Figure 23.

Note:

7.3.5

November 2015

End-of-Interrupt Register (EOI)
Address: FEEO00BOh

After an interrupt handler for any interrupt has completed servicing the interrupt
request, the handler must write to this register before executing the IRET instruction at
the end of the handler. Upon receipt of the EOI write, the local APIC clears the highest-
priority ISR bit, which corresponds to the interrupt that was just serviced. The APIC
ignores the value written to the EOI Register.

End-of-Interrupt Register
31 0
| 0/Ignored

Use this register to tell the APIC when software completes interrupt processing. This
register is write-only.

Spurious Interrupt Vector Register (SIVR)
Address: FEEOOOFOh

Software writes the vector used for spurious interrupts to the SIVR. The power-on
default is OxFF, but software may select any value from 20h to FFh.

Spurious Interrupt Vector Register
31 87 0
0/Ignored Vector

Use this register to handle the rare corner case of spurious interrupts. This register is
read and writable.

A spurious interrupt occurs when an interrupt is pending, i.e. not yet acknowledged by
the CPU and a write to the TPR register occurs with a new vector value greater than or
equal to the pending interrupt vector. The APIC would normally disallow the pending
interrupt, but since the interrupt signal is already asserted, the interrupt remains
asserted until acknowledged.

However, in this special case the APIC generates this spurious vector number instead of
the original vector number of the pending interrupt. After software acknowledges the
spurious interrupt, the APIC does not set a status in the In-Service Register.
Furthermore, the spurious interrupt handler is a simple stub containing only an IRET
instruction. Software does not write to EOI for spurious interrupts since the APIC does
not set a corresponding bit in the In-Service Register.

In-Service Register (ISR) Bits 47:32
Address: FEE00110h

The ISR tracks interrupts that have already requested service to the CPU but have not
yet been acknowledged by software. The APIC set the bit in ISR after the CPU
recognizes the corresponding interrupt. The APIC clears the bit in the ISR when
software writes to the EOI register. Bit N corresponds to interrupt request N for
interrupt vectors 32 to 47.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 47

n ®>
‘ l n tel Intel® Quark™ microcontroller DLOOO—APIC and I0APIC

Figure 24.

Note:

7.3.6

Figure 25.

Note:

7.4

7.4.1

Figure 26.

In-Service Register
3130 29 28 27 26 2524 232221201918 17 161514131211109 8 7 6 5 4 3 2 1 0

Reserved (0) |47|46|45‘44|43|42‘41|40|39|38|37‘36|35|34‘33|32‘

Each bit in the ISR corresponds to an in-service interrupt on the given vector number.
Use this register to determine which interrupts the CPU is actively processing. This
register is read only.

Interrupt Request Register (IRR) Bits 63:32
Address: FEE00210h

The IRR contains the active interrupt requests that have been accepted, but not yet
dispatched to the CPU for servicing. When the local APIC accepts an interrupt, it sets
the bit in the IRR that corresponds the vector of the accepted interrupt. When the CPU
is ready to handle the next interrupt, the local APIC clears the highest priority IRR bit
that is set and sets the corresponding ISR bit. The vector for the highest priority bit set
in the ISR is then dispatched to the processor core for servicing.

Interrupt Request Register
31302928 27 26 25 24 232221201918 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
Reserved (0) |47|46|45‘44|43|42‘41|40|39|38|37‘36|35|34‘33|32‘

Each bit in the IRR corresponds to an interrupt on the given vector number that has not
yet been dispatched to the CPU. Use this register to determine which interrupts are
waiting for service. This register is read only.

Local APIC Timer

The Local APIC supports a timer. The timer runs at a constant rate regardless of clock
and power state transitions in the CPU.

The following sections describe LAPIC registers pertaining to the timer.

Local Vector Table Timer Register (LVTTIMER)

Address: FEE00320h

The LVT Timer Register controls interrupt delivery when the APIC timer expires.

LVT Timer Register

31 18 17 16 15 87 6 54 0
0/Ignored | P ‘ M| 0/Ignored ‘ 0 ‘ 0 | 1 ‘ Vector
P Periodic Mode - Software sets this bit to operate the timer in

periodic mode. In this mode, the timer automatically reloads the
initial count value when the current count reaches zero. When

Intel® Quark™ microcontroller D1000

PRM
48

November 2015
Document Number: 332913-002US

. ®
APIC and 10APIC—Intel® Quark™ microcontroller D1000 l n tel >

Note:

7.4.2

Figure 27.

Note:

7.4.3

Figure 28.

Note:

November 2015

this bit is clear, the timer operates in one-shot mode and does
not automatically reload the count down value.

M Mask - Software sets this bit to mask the timer interrupt. When
this bit is clear, the timer generates an interrupt when the
current count value reaches zero. When this bit is set, the timer
does not generate an interrupt. On reset, the Mask bit is 1 which
masks the interrupt.

Vector Software writes this value to specify the interrupt vector used
for timer interrupts. The LAPIC hard-codes bits 5,6 and 7 of the
vector number as shown. The LAPIC ignores writes to the hard-
coded bits.

Use this register to initialize the timer’s behavior and interrupt vector. This register is
read and writable.

Initial Count Register (ICR)
Address: FEE00380h
The initial count for the timer. The timer counts down from this value to zero.

In periodic mode, the timer automatically reloads the Current Count Register (CCR)
from the ICR when the count reaches 0. At this time, the APIC generates a timer
interrupt to the CPU and the countdown repeats. If during the countdown process
software writes to the ICR, counting restarts using the new initial count value. A write
of 0 to the ICR effectively stops the local APIC timer, in both one-shot and periodic
mode.

The LVT Timer Register determines the vector number delivered to the CPU when the
timer count reaches zero. Software can use the mask flag in the LVT timer register to
block the timer interrupt.

Local APIC Timer Initial Count Register
31 0
‘ Initial Count

Use this register to set the timer’s duration. This register is read and writable.

Current Count Register (CCR)
Address: FEE00390h

The current count for the timer.

Local APIC Timer Current Count Register
31 0
Current Count

Use this register to determine how many cycles remain before the timer expires. This
register is read and writable.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 49

n ®>
l n tel Intel® Quark™ microcontroller DLOOO—APIC and I0APIC

7.5

Note:

Table 10.

Note:

Table 11.

Note:

7.6

IOAPIC Registers

The CPU implements an integrated IOAPIC to simplify design effort and reduce
interrupt latency. Software uses the IOAPIC register interface to mask or unmask
interrupt inputs and assign interrupt vector numbers. Software accesses the IOAPIC
registers by an indirect addressing scheme using two memory mapped registers,
IOREGSEL and IOWIN. Only the IOREGSEL and IOWIN registers are directly accessible
in the memory address space. To reference an IOAPIC register, software writes to
IOREGSEL with a value specifying the indirect IOAPIC register to be accessed. Software
then reads or writes the IOWIN register for the desired data from/to the IOAPIC
register specified by bits [7:0] of the IOREGSEL register. Software must access the
IOWIN register as a dword quantity.

The IOREGSEL register retains the last value written by software. Software may
repeatedly access the one IOAPIC register with IOWIN without rewriting IOREGSEL.

Table 10 list the memory mapped registers of the IOAPIC. The IOAPIC ignores reads
from or writes to reserved registers or fields.

Appendix B provides examples of C- code to interact with the IOAPIC.

IOAPIC Memory Mapped Registers

Memory Mapped . .
Address Register Name Access Description
FEC00000h IOREGSEL R/W IOAPIC Register Select (index)
FEC00010h IOWIN R/W IOAPIC Register Windows (data)

All registers are 32-bits wide and have a reset value of 0.

IOAPIC Memory Mapped Registers

Register Index Register Name Access Description
10h IOREDTBL 0 [31:0] R/W Redirection Entry 0 low
12h IOREDTBL 1 [31:0] R/W Redirection Entry 1 low
10h + 2N IOREDTBL N [31:0] R/W Redirection Entry N low
2Eh IOREDTBL 15 [31:0] R/W Redirection Entry 15 low

All registers are 32-bits wide and have a reset value of 0.

IOAPIC Redirection Entry Registers

For each external interrupt source, software must program the corresponding IOAPIC
Redirection Entry Register to set the Mask bit to enable or disable the interrupt.
Figure 29 shows the format of the Redirection Entry Register.

Intel® Quark™ microcontroller D1000

PRM
50

November 2015
Document Number: 332913-002US

®
APIC and 10APIC—Intel® Quark™ microcontroller D1000 l n tel

Figure 29.

Note:

7.7

7.8

November 2015

Format of The IOAPIC Redirection Entry Registers

63 32
| 0/Ignored |
31 17 16 15 14 0
| 0/Ignored | M | T ‘ 0/Ignored |
M Mask - Software sets this bit to mask the interrupt signal and

prevent the IOAPIC from delivering the interrupt. The IOAPIC
ignores interrupts signaled on a masked interrupt pin and does
not deliver nor hold the interrupt pending. Changing the mask
bit from unmasked to masked after the APIC accepts the
interrupt has no effect on that interrupt. This behavior is
identical to the case where the device withdraws an interrupt
before the APIC posts that interrupt to the processor. Software
must handle the case where it sets the mask bit after the APIC
accepts the interrupt, but before the CPU processes that
interrupt.

When this bit is 0, the IOAPIC does not mask the interrupt and
results in the eventual delivery of the interrupt. The CPU sets
the M bit on reset such that all interrupts are masked.

T Trigger - Software sets this bit to configure the interrupt signal
as level sensitive. Software clears this bit to configure the
interrupt signal as edge sensitive.

Use these registers to enable or disable specific IRQ’s. Software must write 0 to
reserved bits.

Edge/Level Triggered Interrupts

The IOAPIC supports software configuration of edge or level triggered interrupts.
Software must set the T bit in the IORDTBL register as appropriate for the interrupt
input.

Interrupt Polarity

The IOAPIC does not support software configuration of interrupt polarity. Designers
must fix the polarity in hardware as appropriate for the source of each interrupt.

SRS

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 51

®
l n tel Intel® Quark™ microcontroller D1000—Instruction Set

Instruction Set

Note:

8.1

8.2

Table 12.

8.2.1

The CPU uses variable length instructions which provide the most commonly used
integer operations used by C/C++ compilers. The shortest instruction is 1 byte and the
longest instruction is 12 bytes. The CPU does not impose address alignment restrictions
on instructions.

The CPU supports a subset of the IA- 32 instruction set. Most instructions are machine
code compatible with IA-32.

Intel® Quark™ microcontroller D1000 CPU Instructions
The Intel® Quark™ microcontroller D1000 CPU instruction set was selected using the
following criteria:

e Integer instruction

e Used by C compilers

e No microcode required

e Low gate count

In addition, the instruction set includes several instructions necessary to support
operating systems, e.g. LIDT.

Instruction Prefixes

The CPU supports two instruction prefixes that may be applied to most arithmetic and
move type instructions. Refer to Table 12. The description for each instruction
specifically states if an instruction prefix may be applied to that instruction.

Instruction Prefix Bytes

Prefix Byte (hex) Description

66 16-bit Operand Size

16-bit Operand Override

The 16-bit Operand Size Override prefix (66h) changes the logical width of an operation
from 32-bits to 16-bits for most ALU and move type instructions. The description for
each instruction specifically lists the opcodes that allow the 66h prefix in the
instruction’s opcode table. Specifying the 66h prefix multiple times for the same
instruction results in a Invalid Opcode Fault (#UD).

Intel® Quark™ microcontroller D1000

PRM
52

November 2015
Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.3

8.4

Figure 30.

Note:

8.5

November 2015

Addressing Modes
The CPU supports many addressing modes in flat (non-segmented) memory.
Specifically, these addressing modes are:

e Displacement (also called Absolute)

e Base (also called Indirect)

e Base + Displacement

¢ (Index * Scale) + Displacement

e Base + Index + Displacement

e Base + (Index * Scale) + Displacement

Instruction Format

The machine code format of Intel® Quark™ microcontroller D1000 CPU instructions is
identical to IA-32.

The CPU Instruction Format Exactly Follows IA-32 Encoding

Prefixes Opcode ModR/M SIB Displacement Immediate
0-2 bytes 1-2 bytes 1 byte 1 byte 1,2 or 4 bytes | 1,2 or 4 bytes

All instructions use Opcode and require the other fields only as needed.

ModR/M Format

Many instructions that refer to an operand in memory have an addressingform specifier
byte (called the ModR/M byte) following the primary opcode. The ModR/M byte contains
three fields of information:

e The Mod field combines with the R/M field to form 32 possible values: eight
registers and 24 addressing modes. The Mod field is the two most significant bits of
the ModR/M value.

e The Reg/Opcode field specifies either a register number or three more bits of
opcode information. The purpose of the Reg/Opcode field depends on the particular
instruction.

e The R/M field can specify a register as an operand or can be combined with the Mod
field to encode an addressing mode. Sometimes, certain combinations of the Mod
field and the R/M field is used to express opcode information for some instructions.
See Figure 31 for the bit format of the ModR/M byte.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 53

u ®
< l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

Figure 31.

Note:

8.6

Figure 32.

Note:

8.7

Structure of the ModR/M Byte

7 6 5 4 3 2 1 0
Reg (/1)
Mod Opcode (/digit) RIM

Bits 5-3 represent either a register selection (/r) or 3 additional opcode bits (/digit).
Refer to Table 13 for more information.

SIB Format

Certain encodings of the ModR/M byte require a second addressing byte specifying a
Scale-Index-Base (SIB). The base-plus-index and no-base-plus-index forms require the
SIB byte. The SIB byte includes the following fields:

e The scale field specifies the scale factor.
e The index field specifies the register number of the index register.
e The base field specifies the register number of the base register.

See Figure 32 for the bit format of the SIB byte.

Structure of the Scale-Index- Base (SIB) Byte

Scale Index Base

Refer to Table 14 for more information on SIB Byte.

Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M byte
or the SIB byte if one is present. A displacement operand, if present, can be 1, 2, or 4
bytes. An immediate operand, if present, follows any displacement bytes. An
immediate operand can be 1, 2 or 4 bytes.

Intel® Quark™ microcontroller D1000

PRM
54

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™

[|} ®
microcontroller D1000 (l n tel >

8.8 Opcode Column in Instruction Description

The Opcode column in the following sections shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than
hexadecimal bytes are as follows.

/digit

/r

cb, cw, cd

ib, iw, id

November 2015
Document Number: 332913-002US

A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The
reg field contains the digit that provides an extension to the
instruction’s opcode.

Indicates that the ModR/M byte of the instruction contains a
register operand and an r/m operand.

A 1-byte (cb), 2-byte (cw) or 4-byte (cd) value following the
opcode. This value is used to specify a code offset relative to the
address of the first byte past the end of the instruction.

A 1-byte (ib), 2-byte (iw) or 4-byte (id) immediate operand to
the instruction that follows the opcode, ModR/M bytes or scale
indexing bytes. The opcode determines if the operand is a
signed value. All words and double words are given with the low-
order byte first.

Intel® Quark™ microcontroller D1000
PRM
55

u ®
l n tel Intel® Quark™ microcontroller D1000—Instruction Set

Table 13. Addressing Modes Specified with the ModR/M Byte

r8(/r) AL CcL DL BL AH CH DH BH

ri6(/r) AX CcX DX BX SP BP Si DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI

Extended Opcode (/digit) 0 1 2 3 4 5 6 7
REG (binary) 000 001 010 011 100 101 110 111
Effective Address | Mod R/M Value of ModR/M Byte (Hexadecimal)
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 00 001 01 09 11 19 21 29 31 39
[EDX] 00 010 02 0A 12 1A 22 2A 32 3A
[EBX] 00 011 03 0B 13 1B 23 2B 33 3B
SIB 00 100 04 0oC 14 1C 24 2C 34 3C
[Disp32] 00 101 05 ob 15 1D 25 2D 35 3D
[ESI] 00 110 06 OE 16 1E 26 2E 36 3E
[EDI] 00 111 07 OF 17 1F 27 2F 37 3F
[EAX]+disp8 01 000 40 48 50 58 60 68 70 78
[ECX]+disp8 01 001 41 49 51 59 61 69 71 79
[EDX]+disp8 01 010 42 4A 52 5A 62 6A 72 7A
[EBX]+disp8 01 011 43 4B 53 5B 63 6B 73 7B
SIB+disp8 01 100 44 4C 54 5C 64 6C 74 7C
[EBP]+disp8 01 101 45 4D 55 5D 65 6D 75 7D
[ESI]+disp8 01 110 46 4E 56 5E 66 6E 76 7E
[EDI]+disp8 01 111 47 4F 57 5F 67 6F 77 7F
[EAX]+disp32 10 000 80 88 90 98 A0 A8 BO B8
[ECX]+disp32 10 001 81 89 91 99 Al A9 Bl B9
[EDX]+disp32 10 010 82 8A 92 9A A2 AA B2 BA
[EBX]+disp32 10 011 83 8B 93 9B A3 AB B3 BB
SIB+disp32 10 100 84 8C 94 9C A4 AC B4 BC
[EBP]+disp32 10 101 85 8D 95 9D A5 AD B5 BD
[ESI]+disp32 10 110 86 8E 96 9E A6 AE B6 BE
[EDI]+disp32 10 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 11 000 co c8 DO D8 EO E8 FO F8
ECX/CX/CL 11 001 C1 (6°] D1 D9 El E9 F1 F9
EDX/DX/DL 11 010 Cc2 CA D2 DA E2 EA F2 FA
EBX/BX/BH 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 11 100 c4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 11 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 11 110 Cé CE D6 DE E6 EE F6 FE
EDI/DI/BH 11 111 c7 CF D7 DF E7 EF F7 FF
Note: Rows with SIB indicate that a Scale- Indexed-Base byte follows the ModR/M byte in the

instruction encoding. Refer to Table 14 for information on the SIB format.

Intel® Quark™ microcontroller D1000
PRM November 2015
56 Document Number: 332913-002US

Instruction Set—Intel® Quar

Table 14.

Note:

November 2015

kTM

microcontroller D1000

Addressing Modes Specified with the SIB Byte

ntel.

SIB Base EAX ECX EDX EBX ESP [*] ESI SIB Base

(Decimal) (0] 1 2 3 4 5 6 (Decimal)

(Binary) 000 001 010 011 100 101 110 (Binary)

Scaled Index SS Index Value of SIB (Hexadecimal) Slcaled
ndex

[Base+EAX] 00 000 00 01 02 03 04 05 06 07
[Base+ECX] 00 001 08 09 0A 0B ocC 0D 0OE OF
[Base+EDX] 00 010 10 11 12 13 14 15 16 17
[Base+EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
[Base] 00 100 20 21 22 23 24 25 26 27
[Base+EBP] 00 101 28 29 2A 2B 2C 2D 2E 2F
[Base+ESI] 00 110 30 31 32 33 34 35 36 37
[Base+EDI] 00 111 38 39 3A 3B 3C 3D 3E 3F
[Base+EAX*2] 01 000 40 41 42 43 44 45 46 47
[Base+ECX*2] 01 001 48 49 4A 4B 4C 4D 4E 4F
[Base+EDX*2] 01 010 50 51 52 53 54 55 56 57
[Base+EBX*2] 01 011 58 59 5A 5B 5C 5D 5E 5F
[Base] 01 100 60 61 62 63 64 65 66 67
[Base+EBP*2] 01 101 68 69 6A 6B 6C 6D 6E 6F
[Base+ESI*2] 01 110 70 71 72 73 74 75 76 77
[Base+EDI*4] 01 111 78 79 7A 7B 7C 7D 7E 7F
[Base+EAX*4] 10 000 80 81 82 83 84 85 86 87
[Base+ECX*4] 10 001 88 89 8A 8B 8C 8D 8E 8F
[Base+EDX*4] 10 010 90 91 92 93 94 95 96 97
[Base+EBX*4] 10 011 98 99 9A 9B 9C 9D 9E 9F
[Base] 10 100 AO Al A2 A3 A4 A5 A6 A7
[Base+EBP*4] 10 101 A8 A9 AA AB AC AD AE AF
[Base+ESI*4] 10 110 BO B1 B2 B3 B4 B5 B6 B7
[Base+EDI*4] 10 111 B8 B9 BA BB BC BD BE BF
[Base+EAX*8] 11 000 co C1 Cc2 C3 Cc4 C5 Cc6 Cc7
[Base+ECX*8] 11 001 c8 c9 CA CB CcC CD CE CF
[Base+EDX*8] 11 010 DO D1 D2 D3 D4 D5 D6 D7
[Base+EBX*8] 11 011 D8 D9 DA DB DC DD DE DF
[Base] 11 100 EO El E2 E3 E4 E5 E6 E7
[Base+EBP*8] 11 101 E8 E9 EA EB EC ED EE EF
[Base+ESI*8] 11 110 FO F1 F2 F3 F4 F5 F6 F7
[Base+EDI*8] 11 111 F8 F9 FA FB FC FD FE FF

SIB byte sometimes follows the ModR/M byte in the instruction encoding. A Base
encoding of 5 (101b) shown as the [*] column is a special case. The effective address
for SIB Base=5 depends on the MOD field of the ModR/M byte as shown in Table 15.

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
57

intel.

Intel® Quark™ microcontroller D1000—Instruction Set

Table 15. Addressing Modes Specified with the SIB Byte for Base Encoding of 5 (101b)

MOD bits (Table 13) 00 01 10
('IS';%ISyltéel) SS Index Effective Address

05 00 000 [Disp32+EAX] [Disp8+EBP+EAX] [Disp32+EBP+EAX]
0D 00 001 [Disp32+ECX] [Disp8+EBP+ECX] [Disp32+EBP+ECX]
15 00 010 [Disp32+EDX] [Disp8+EBP+EDX] [Disp32+EBP+EDX]
1D 00 011 [Disp32+EBX] [Disp8+EBP+EBX] [Disp32+EBP+EBX]
25 00 100 [Disp32] [EBP+Disp8] [EBP+Disp32]
2D 00 101 [Disp32+EBP] [Disp8+EBP+EBP] [Disp32+EBP+EBP]
35 00 110 [Disp32+ESI] [Disp8+EBP+ESI] [Disp32+EBP+ESI]
3D 00 111 [Disp32+EDI] [Disp8+EBP+EDI] [Disp32+EBP+EDI]
45 01 000 [Disp32+EAX*2] [Disp8+EBP+EAX*2] | [Disp32+EBP+EAX*2]
4D 01 001 [Disp32+ECX*2] [Disp8+EBP+ECX*2] | [Disp32+EBP+ECX*2]
55 01 010 [Disp32+EDX*2] [Disp8+EBP+EDX*2] | [Disp32+EBP+EDX*2]
5D 01 011 [Disp32+EBX*2] [Disp8+EBP+EBX*2] | [Disp32+EBP+EBX*2]
65 01 100 [Disp32] [EBP+Disp8] [EBP+Disp32]
6D 01 101 [Disp32+EBP*2] [Disp8+EBP+EBP*2] | [Disp32+EBP+EBP*2]
75 01 110 [Disp32+ESI*2] [Disp8+EBP+ESI*2] [Disp32+EBP+ESI*2]
7D 01 111 [Disp32+EDI*4] [Disp8+EBP+EDI*4] | [Disp32+EBP+EDI*4]
85 10 000 [Disp32+EAX*4] [Disp8+EBP+EAX*4] | [Disp32+EBP+EAX*4]
8D 10 001 [Disp32+ECX*4] [Disp8+EBP+ECX*4] | [Disp32+EBP+ECX*4]
95 10 010 [Disp32+EDX*4] [Disp8+EBP+EDX*4] | [Disp32+EBP+EDX*4]
9D 10 011 [Disp32+EBX*4] [Disp8+EBP+EBX*4] | [Disp32+EBP+EBX*4]
A5 10 100 [Disp32] [EBP+Disp8] [EBP+Disp32]
AD 10 101 [Disp32+EBP*4] [Disp8+EBP+EBP*4] | [Disp32+EBP+EBP*4]
B5 10 110 [Disp32+ESI*4] [Disp8+EBP+ESI*4] [Disp32+EBP+ESI*4]
BD 10 111 [Disp32+EDI*4] [Disp8+EBP+EDI*4] | [Disp32+EBP+EDI*4]
cs 11 000 [Disp32+EAX*8] [Disp8+EBP+EAX*8] | [Disp32+EBP+EAX*8]
cD 11 001 [Disp32+ECX*8] [Disp8+EBP+ECX*8] | [Disp32+EBP+ECX*8]
D5 11 010 [Disp32+EDX*8] [Disp8+EBP+EDX*8] | [Disp32+EBP+EDX*8]
DD 11 011 [Disp32+EBX*8] [Disp8+EBP+EBX*8] | [Disp32+EBP+EBX*8]
E5 11 100 [Disp32] [EBP+Disp8] [EBP+Disp32]
ED 11 101 [Disp32+EBP*8] [Disp8+EBP+EBP*8] | [Disp32+EBP+EBP*8]
F5 11 110 [Disp32+ESI*8] [Disp8+EBP+ESI*8] [Disp32+EBP+ESI*8]
FD 11 111 [Disp32+EDI*8] [Disp8+EBP+EDI*8] | [Disp32+EBP+EDI*8]

Note: The two MOD bits that select the column are the MOD field of the preceding ModR/M

byte. Only MOD bit combinations 00, 01 and 10 allow a SIB byte.

Intel® Quark™ microcontroller D1000
PRM

58

November 2015

Document Number: 332913-002US

™1 ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel

8.9 Instruction Column in Instruction Description

The Instruction column gives the syntax of the instruction statement as it could appear
in an assembly program. Table 16 provides a list of the symbols used to represent
operands in the instruction statements.

Table 16. Instruction Column Details

Instruction Description

A relative address in the range from 128 bytes before the end of the instruction to 127

rel8 bytes after the end of the instruction.

A relative address in the range from 32768 bytes before the end of the instruction to
rell6 32767 after the end of the instruction. The rel16 symbol applies to instructions with
an operand size attribute of 16 bits.

A relative address in the range from 231 bytes before the end of the instruction to
rel32 23171 after the end of the instruction. The rel32 symbol applies to instructions with an
operand size attribute of 32 bits.

r8 One of the general-purpose byte registers: AL, CL, DL, BL, AH, CH, DH, or BH.

ri6 One of the general-purpose word registers: AX, CX, DX, BX, BP, SI or DI.

32 One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI
or EDI.

maddr8 An absolute address (32-bit) of a byte in memory.

maddrl6 An absolute address (32-bit) of a 16-bit word in memory.

madd32 An absolute address (32-bit) of a 32-bit dword in memory.

An immediate byte value. The imm8 symbol is a signed number between -128 and
+127 inclusive. For instructions in which imm8 is combined with a word or doubleword

imm38 operand, the immediate value is sign-extended to form a word or doubleword. The
upper byte of the word is filled with the topmost bit of the immediate value.

imm16 An immediate word value used for instructions whose operand-size attribute is 16
bits. This is a number between -32,768 and +32,767 inclusive.

imm32 An immediate doubleword value used for instructions whose operand-size attribute is

32 bits. This is a number between 27~31-1 and -2731 inclusive.

A byte operand that is either the contents of a byte general purpose register (AL, CL,
r/m8 DL, BL, AH, CH, DH, BH) or a byte from memory. The contents of memory are found
at the address provided by the effective address computation.

A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, CX, DX,

r/mi6 BX, SP, BP, SI, DI. The contents of memory are found at the address provided by the
effective address computation.
A doubleword general-purpose register or memory operand used for instructions
r/m32 whose operand-size attribute is 32 bits. The doubleword general purpose registers

are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of memory are found at
the address provided by the effective address computation.

A memory operand consisting of data item pairs whose sizes are indicated on the left
m16&32 and the right side of the ampersand. All memory addressing modes are allowed. The
LIDT and SIDT instructions use the m16&32 operand.

8.10 Operation Section
The Operation section contains an algorithm description written in pseudo-code for the
instruction. Algorithms are composed of the following elements.:
e Comments are enclosed within the symbol pairs /* and */.

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 59

. ®
l n tel > Intel® Quark™ microcontroller D1000—Instruction Set

e Compound statements are enclosed in bold-face keywords, such as: IF, THEN, ELSE
and END for an if statement; or CASE... OF for a case statement.

e Early termination of the algorithm is indicated by DONE. Otherwise the algorithm
runs to the end of the listing.

o A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, [EDI] indicates the contents of the location whose address is
in register EDI.

e Parentheses around the E in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute is
16 bits, or from the ESI register if the address-size attribute is 32 bits.

e A < B indicates that the value of B is assigned to A.

e The symbols =, #, >, <, <, and = are relational operators used to compare two
values, meaning equal, not equal, greater than, less than, greater or equal, less or
equal respectively. A relational expression such as A = B is TRUE if the value of A is
equal to B; otherwise it is FALSE.

¢ The expression << COUNT and >> COUNT indicates that the destination operand
should be shifted left or right by the number of bits indicated by the count operand.

e The operator ‘and’ is a boolean and returning true or false.
e The operator ‘or’ is a boolean or returning true or false.
e The operator AND performs a bitwise logical AND operation.

e The operator NOT performs a bitwise logical inversion operation. A 0 bit becomes a
1 and a 1 becomes a 0.

e The operator OR performs a bitwise logical OR operation.
e The operator XOR performs a bitwise logical Exclusive-OR operation.

e The expression Carry() represents a carry or borrow out of the most significant bit
of the unsigned result of an instruction. Carry() is 1 for a carry or borrow out
condition, 0 otherwise.

e The expression Zero() is 1 if the result of an instruction is zero, 0 otherwise.

e The expression Sign() is 1 if the most significant bit (the sign bit) of the result of an
instruction is set, 0 otherwise.

e The expression Overflow() represents a carry or borrow out of the most significant
bit of the signed result of an instruction. This condition occurs when the sign of
both operands is the same but different than the sign of the result. See Table 17.

e The expression Sizeof() represents the number of bytes in specified operand.

Table 17. Behavior of the Overflow Flag (EFLAGS.OF) Bit After an Arithmetic Operation

Operands Result

Sign = Sign Sign OF
0+0 0 0
0+0 1 1
0+1 0 0
0+1 1 0
1+0 0 0
1+0 1 0

Intel® Quark™ microcontroller D1000
PRM November 2015
60 Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

Table 17.

Note:

8.11

8.12

November 2015

intel.

Behavior of the Overflow Flag (EFLAGS.OF) Bit After an Arithmetic Operation

Operands Result

Sign = Sign Sign OF

o

1+1

1+1

0-0

0-0

0-1

0-1

1-0

1-0

1-1

Rr|lo|lr|o|r|oOo|lr|oO| R
o|lo|o|lrr||lO|lO|O| O] —#

1-1

The operands and result have sign bits as shown. Overflow cases (OF=1) are shaded
gray.

Operand Order

For instructions with two operands, the instruction descriptions show the operands
Destination,Source order. For example, the ADD instruction:

ADD r/m32, r32

...describes the source operand (second operand) as r32 and the destination operand
(first operand) as r/m32. Specific assembler tools may use a different format.

ADC - Add with Carry

Opcode Instruction
10 /r ADC r/m8, r8
66 11 /r ADC r/mi16, ri6
11 /r ADC r/m32, r32

12 /r ADC r8, r/m8

66 13 /r ADC r16, r/ml6

13 /r ADC r32, r/m32

14 ib ADC AL, imm8

66 15 iw ADC AX, imm16

15 id ADC EAX, imm32

80 /2 ib ADC r/m8, imm8

66 81 /2 iw ADC r/m16, imm16

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
61

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.12.1

Figure 33.

8.12.2

8.13

Opcode Instruction
81 /2 id ADC r/m32, imm32

66 83 /2 ib ADC r/m16, imm8

83 /2 ib ADC r/m32, imm8

Adds the first operand (DEST), the second operand (SRC) and the carry flag
(EFLAGS.CF) and stores the result in the first (DEST) operand. The destination operand
can be a register or a memory location. The source operand can be an immediate, a
register, or a memory location. Two memory operands cannot be used in one
instruction. When an immediate value is used as an operand, the CPU sign extends the
value to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is often part of a multi-byte or multi-word addition in which an ADC
instruction follows an ADD instruction. In this case, the state of the EFLAGS.CF
represents the carry from the preceding ADD. The addition operation treats EFLAGS.CF
as an integer 1 or 0.

Operation

ADC Algorithm
1 Temp € SignExtend (SRC);

2DEST € DEST + Temp + EFLAGS.CF;
3 EFLAGS.CF < Carry(DEST);
4 EFLAGS.ZF ¢« Zero(DEST);

5SEFLAGS.SF € Sign(DEST);

6 EFLAGS.OF &« Overflow(DEST);

Exceptions
#MP If the destination is a memory address and is unwritable or the
source is a memory address and is unreadable. To detect this
condition, the Intel® Quark™ microcontroller D1000 CPU must
be configured with a Memory Protection Unit.
ADD - Add
Opcode Instruction
00 /r ADD r/m8, r8
66 01 /r ADD r/m16, ri16
01 /r ADD r/m32, r32

Intel® Quark™ microcontroller D1000

PRM
62

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

Table 18.

Note:

November 2015

Opcode Instruction

02 /r ADD r8, r/m8

66 03 /r ADD rl16, r/ml6
03 /r ADD r32, r/m32
04 ib ADD AL, imm8

66 05 iw ADD AX, imm16
05 id ADD EAX, imm32
80 /0 ib ADD r/m8, imm8

66 81 /0 iw ADD r/m16, imm16
81 /0 id ADD r/m32, imm32

66 83 /0 iw ADD r/m16, imm8 (sign extended)
83 /0 id ADD r/m32, imm8 (sign extended)

Adds the first operand (DEST) and the second operand (SRC) and stores the result in
the first (DEST) operand. The destination operand can be a register or a memory
location. The source operand can be an immediate, a register, or a memory location.
Two memory operands cannot be used in one instruction. When an immediate value is
used as an operand, the CPU sign extends the value to the length of the destination
operand format.

The ADD instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and CF
flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result. For all possible operations, the ADD instruction
produces 9 possible flag combinations. Table 18 shows an example of each
combination.

All EFLAG Combinations After Executing ADD for Various 8-bit Operands

DEST SRC DEST + SRC EFLAGS
h ud d h ud d h ud d OF SF ZF CF
7F 127 127 0 0 0 7F 127 127 0 0 0 0
FF 255 -1 7F 127 127 7E 126 126 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
FF 255 -1 1 1 1 0 0 0 0 0 1 1
FF 255 -1 0 0 0 FF 255 -1 0 1 0 0
FF 255 -1 FF 255 -1 FE 254 -2 0 1 0 1
FF 255 -1 80 128 -128 7F 127 127 1 0 0 1
80 128 -128 80 128 -128 0 0 0 1 0 1 1
7F 127 127 7F 127 127 FE 254 -2 1 1 0 0

The h, ud and d columns show hexadecimal, unsigned decimal and signed decimal
values respectively. Operation for 16 and 32-bit operands follows the same pattern.
ELFAGS combinations not shown in this table cannot be generated by ADD.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 63

8.13.1

Figure 34.

8.13.2

8.14

Intel® Quark™ m
PRM
64

Intel® Quark™ microcontroller D1000—Instruction Set

Operation

ADD Algorithm
1 DEST ¢ DEST+SRC;

2 EFLAGS.CF < Carry(DEST);
3 EFLAGS.ZF & Zero(DEST);

4 EFLAGS.SF < Sign(DEST);

5 EFLAGS.OF €« Overflow(DEST);

Exceptions

#MP If the destination is a memory address and is unwritable or the
source is a memory address and is unreadable. To detect this
condition, Intel® Quark™ microcontroller D1000 CPU must be
configured with a Memory Protection Unit.

AND - Logical AND

Opcode Instruction
20 /r AND r/m8, r8
66 21 /r AND r/m16, ri6
21 /r AND r/m32, r32
22 /r AND r8, r/m8
66 23 /r AND r16, r/ml6
23 /r AND r32, r/m32
24 ib AND AL, imm8
66 25 iw AND AX, imml6
25 id AND EAX, imm32
80 /4 ib AND r/m8, imm8
66 81 /4 iw AND r/m16, imm16
81 /4 id AND r/m32, imm32
66 83 /4 ib AND r/m16, imm8 (sign extended)
83 /4 ib AND r/m32, imm8 (sign extended)

Performs a bitwise AND operation on the first operand (DEST) and second operand
(SRC) and stores the result in the first (DEST) operand. The source operand can be an
immediate, register or memory location. The destination operand can be a register or a
memory location. Two memory operands cannot be used in one instruction. The CPU
sets each bit of the result to 1 if both corresponding bits of the first and second
operands are 1. Otherwise, the CPU sets the bit to 0.

icrocontroller D1000

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

8.14.1

Figure 35.

8.14.2

8.15

8.15.1

Figure 36.

November 2015

Operation

AND Algorithm

1 DEST < DEST AND SRC;
2 EFLAGS.CF <« O;
3 EFLAGS.ZF <& Zero(DEST);

4 EFLAGS.SF € Sign(DEST);

5 EFLAGS.OF < 0;

Exceptions

#MP If the destination is a memory address and is unwritable or the
source is a memory address and is unreadable. To detect this
condition, CPU must be configured with a Memory Protection

Unit

BSWAP - Byte Swap

Opcode

Instruction

OF C8+rd

BSWAP r32

Reverses the byte order of a 32-bit register and stores the result in the register. This
instruction converts little-endian values to big-endian format and vice versa. To swap
bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP

instruction references a 16-bit register, the result is undefined.

Operation

BSWAP Algorithm

1 Temp €« DEST;

2 DEST[7:0] € Temp[31:24];

3 DEST[15:8] € Temp[23:16];

4 DEST[23:16] <« Temp[15:8];

5 DEST[31:24] € Temp[7:0];

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
65

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.16 BT - Bit Test

Opcode Instruction

66 OF A3 BT r/mi16, ri6
OF A3 BT r/m32, r32

66 OF BA /4 ib BT r/m16, imm8
OF BA /4 ib BT r/m32, imm8

Selects the bit in the first operand (BASE), at the bit-position designated by the second
operand (OFFSET) and stores the value of the bit in the CF flag. The bit base operand
can be a register or a memory location. The bit offset operand can be a register or an
immediate value.

The instruction takes the modulo 16 or 32 of the bit offset operand for 16 and 32 bit
operands respectively. The CPU ignores the upper bits of the offset operand.

If the bit base operand is a memory address, then this operand specifies is the address
of the byte containing bit 0 of the bit base.

8.16.1 Operation

Figure 37. BT Algorithm
LIF Sizeof(BASE)=2 THEN

/* 16-bit offset range. */
2 Temp € 1 << OFFSET[3:0];
3 ELSE
/* 32-bit offset range. */
4 Temp € 1 << OFFSET[4:0];
5 ENDIF
6 IF (BASE AND Temp) # 0 THEN
7 EFLAGS.CF €« 1;
8 ELSE
9 EFLAGS.CF & O;
10 ENDIF
11 EFLAGS.SF €« Undefined;

12 EFLAGS.OF € Undefined;

Intel® Quark™ microcontroller D1000

PRM November 2015
66 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.17 BTC - Bit Test and Complement
Opcode Instruction
66 OF BA /7 ib BTC r/m16, imm8
OF BA /7 ib BTC r/m32, imm8
66 OF BB BTC r/m16, r16
OF BB BTC r/m32, r32

Selects the bit in the first operand (BASE), at the bit-position designated by the second
operand (OFFSET) and stores the value of the bit in the CF flag, then complements the
bit in the bit base. The bit base operand can be a register or a memory location. The bit
offset operand can be a register or an immediate value.

The instruction takes the modulo 16 or 32 of the bit offset operand for 16 and 32 bit
operands respectively. The CPU ignores the upper bits of the offset operand.

If the bit base operand is a memory address, then this operand specifies is the address
of the byte containing bit 0 of the bit base.

8.17.1 Operation

Figure 38. BTC Algorithm
1 IF Sizeof(BASE) =2 THEN

/* 16-bit offset range. */
2 Temp € 1<<OFFSET[3:0];
3 ELSE
/* 32-bit offset range. */
4 Temp € 1<<OFFSET[4:0];
5 ENDIF
6 IF (BASE AND Temp) 0 THEN
7 EFLAGS.CF € 1;
8 BASE.Temp & 0;
9 ELSE
10 EFLAGS.CF € 0;
11 BASE.Temp & [
12 ENDIF
13 EFLAGS.SF € Undefined;

14 EFLAGS.OF € Undefined;

Intel® Quark™ microcontroller D1000
November 2015 PRM

Document Number: 332913-002US 67

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.18 BTR - Bit Test and Reset

Opcode Instruction
66 OF B3 BTR r/m16, r16
OF B3 BTR r/m32, r32
66 OF BA /6 ib BTR r/m16, imm8
OF BA /6 ib BTR r/m32, imm8

Selects the bit in the first operand (BASE), at the bit-position designated by the second
operand (OFFSET) and stores the value of the bit in the CF flag, then clears the bit in
the bit base. The bit base operand can be a register or a memory location. The bit
offset operand can be a register or an immediate value.

The instruction takes the modulo 16 or 32 of the bit offset operand for 16 and 32 bit
operands respectively. The CPU ignores the upper bits of the offset operand.

If the bit base operand is a memory address, then this operand specifies is the address
of the byte containing bit 0 of the bit base.

8.18.1 Operation

Figure 39. BTR Algorithm.
1 IF Sizeof(BASE) =2 THEN

/* 16-bit offset range. */
2 Temp € 1<<OFFSET[3:0];
3 ELSE
/* 32-bit offset range. */
4 Temp € 1<<OFFSET[4:0];
5 ENDIF
6 IF (BASE AND Temp) # 0 THEN
7 EFLAGS.CF € 1,
8 ELSE
9 EFLAGS.CF € 0;
10 ENDIF
11 BASE.Temp & 0

12 EFLAGS.SF € Undefined;

13 EFLAGS.OF € Undefined;

Intel® Quark™ microcontroller D1000

PRM November 2015
68 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.19 BTS - Bit Test and Set

Opcode Instruction

66 OF AB BTS r/mi16, rl6
OF AB BTS r/m32, r32

66 OF BA /5 ib BTS r/mi16, imm8
OF BA /5 ib BTS r/m32, imm8

Selects the bit in the first operand (BASE), at the bit-position designated by the second
operand (OFFSET) and stores the value of the bit in the CF flag, then sets the bit in the
bit base. The bit base operand can be a register or a memory location. The bit offset
operand can be a register or an immediate value.

The instruction takes the modulo 16 or 32 of the bit offset operand for 16 and 32 bit
operands respectively. The CPU ignores the upper bits of the offset operand.

If the bit base operand is a memory address, then this operand specifies is the address
of the byte containing bit 0 of the bit base.

8.19.1 Operation

Figure 40. BTS Algorithm
1 IF Sizeof(BASE) =2 THEN

/* 16-bit offset range. */
2 Temp €& 1<<OFFSET[3:0];
3 ELSE
/* 32-bit offset range. */
4 Temp € 1<<OFFSET[4:0];
5 ENDIF
6 IF (BASE AND Temp) #0 THEN
7 EFLAGS.CF € 1;
8 ELSE
9 EFLAGS.CF € 0;
10 ENDIF
11 Base.Temp & 1;

12 EFLAGS.SF € Undefined;

13 EFLAGS.OF € Undefined;

Intel® Quark™ microcontroller D1000
November 2015 PRM

Document Number: 332913-002US 69

u ®
(l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.20

8.20.1

Figure 41.

Figure 42.

Note:

8.21

CALL - Call Procedure

Opcode Instruction
E8 cd CALL rel32
FF /2 CALL r/m32

Saves procedure linking information on the stack and branches to the called procedure
specified using the target operand. The target operand specifies the address of the first
instruction in the called procedure. The operand can be an immediate value, a general-
purpose register, or a memory location.

The E8h opcode form specifies a 32-bit relative code offset from the end of the
instruction. The FFh opcode form performs an indirect branch to the value contained at
the effective address of the operand.

Operation

CALL Procedure using Relative Jump with Opcode E8 cd

1 ESP & ESP-4;
/* sizeof(CALL) is 5 */
2 [ESP] & EIP+5;

3EIP & EIP +cd;

CALL Procedure using Absolute Address with Opcode FF /2
1 ESP € ESP-4;

/* sizeof(CALL) varies */
2 [ESP] € EIP + Sizeof(CALL);

3 EIP & DEST;

The DEST value of the jump is specified by r/m32.

CBW/CWDE - Convert Byte to Word/Word to Doubleword

Opcode Instruction
66 98 CBW AX
98 CWDE EAX

Intel® Quark™ microcontroller D1000

PRM
70

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™

microcontroller D1000

Doubles the size of the AL or AX register by means of sign extension and stores the
result in the register AX or EAX respectively. The CBW instruction copies the sign (bit 7)
of the value in the AL register into every bit position in the AH register. The CWDE
instruction copies the sign (bit 15) of the value in the AX register into the high 16 bits
of the EAX register.

The CBW instruction can be used to produce a word dividend from a byte before byte
division. The CWDE instruction can be used to produce a doubleword dividend from a

word before word division.

8.21.1 Operation

Figure 43. CBW Algorithm

1 AH[7:0] € AL[7];

Figure 44. CWDE Algorithm

‘1EAX[31:16] & AX[I5];

8.22 CLC - Clear Carry Flag

Opcode Instruction
F8 CLC
Note: Clears the CF flag in the EFLAGS register.

8.22.1 Operation

Figure 45. CLC Algorithm

‘ 1 EFLAGS.CF € 0;

8.23 CLI - Clear Interrupt Flag

Opcode Instruction
FA CLI
Note: CLI clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF

flag causes the processor to ignore maskable external interrupts.

November 2015
Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
71

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.23.1

Figure 46.

8.24

Note:

8.24.1

Figure 47.

8.25

Operation

CLI Algorithm
‘ 1 EFLAGS.IF € 0;

CMC - Complement Carry Flag

Opcode Instruction

F5 CMC

Complements the CF flag in the EFLAGS register.

Operation

CMC Algorithm
‘ 1 EFLAGS.CF € NOT EFLAGS.CF;

CMP - Compare Two Operands

Opcode Instruction
38 /r CMP r/m8, r8

66 39 /r CMP r/m16, ri16
39 /r CMP r/m32, r32
3A /r CMP r8, r/m8

66 3B /r CMP rl16, r/ml6
3B /r CMP r32, r/m32
3C ib CMP AL, imm8

66 3D iw CMP AX, imml6
3D id CMP EAX, imm32
80 /7 ib CMP r/m8, imm8

66 81 /7 iw CMP r/m16, imm1l6
81 /7 id CMP r/m32, imm32

66 83 /7 ib CMP r/m16, imm8
83 /7 ib CMP r/m32, imm8

Compares the first operand (SRC1) with the second operand (SRC2) and sets the
status flags in the EFLAGS register according to the result. The CPU performs the
comparison by subtracting SRC2 from SRC1 and then setting the status flags in the
same manner as the SUB instruction, but without storing the result.

Intel® Quark™ microcontroller D1000

PRM
72

November 2015
Document Number: 332913-002US

™1 ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel

When the second operand is an immediate value, the CPU sign extends the value to the
length of the first operand (SRC1).

For all possible comparisons, the CMP instruction produces 7 possible flag
combinations. Table 19 shows an example of each.

Table 19. All EFLAG Combinations After Executing CMP for Various 8-bit Operands

SRC1 SRC2 SRC1-SRC2 EFLAGS
h ud d h ud d h ud d CF SF ZF CF
FF 255 -1 FE 254 -2 1 1 1 0 0 0 0
7E 126 126 FF 255 -1 7F 127 127 0 0 0 1
FF 255 -1 FF 255 -1 0 0 0 0 0 1 0
FF 255 -1 7F 127 127 80 128 -128 0 1 0 0
FE 254 -2 FF 255 -1 FF 255 -1 0 1 0 1
FE 254 -2 7F 127 127 7F 127 127 1 0 0 0
7F 127 127 FF 255 -1 80 128 -128 1 1 0 1

The h, ud and d columns show hexadecimal, unsigned decimal and signed decimal
values respectively. Operation for 16 and 32-bit operands follows the same pattern.
ELFAGS combinations not shown in this table cannot be generated by CMP.

8.25.1 Operation

Figure 48. CMP Algorithm

1 Temp € SignExtend (SRC2);

2 Temp € SRCI - Temp;

3 EFLAGS.CF € Carry(Temp);

4 EFLAGS.OF €& Overflow(Temp);
5 EFLAGS.SF < Sign(Temp);

6 EFLAGS.ZF & Zero(Temp);

8.26 CWD/CDQ - Convert to Doubleword or Quadword

Opcode Instruction
66 99 CWD DX:AX
99 CDQ EDX:EAX

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 73

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

Doubles the size of the AX or EAX register by means of sign extension and stores the
result in the register DX:AX or EDX:EAX respectively. The CWD instruction copies the
sign (bit 15) of the value in the AX register into every bit position in the DX register.
The CDQ instruction copies the sign (bit 31) of the value in the EAX register into every
bit position in the EDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before
word division. The CDQ instruction can be used to produce a quadword dividend from a
doubleword before doubleword division.

Note: The GNU objdump utility reports the CDQ instruction as CLTD

8.26.1 Operation

Figure 49. CWD Algorithm
‘1 DX[15:0] € AX[15];

Figure 50. CDQ Algorithm
‘ 1 EDX[31:0] € EAX[31];

8.27 DEC - Decrement by 1
Opcode Instruction
66 48 DEC AX
66 49 DEC CX
66 4A DEC DX
66 4B DEC BX
66 4D DEC BP
66 4E DEC SI
66 4F DEC DI
48 DEC EAX
49 DEC ECX
4A DEC EDX
4B DEC EBX
4C DEC ESP
4D DEC EBP
4E DEC ESI
4F DEC EDI
FE /1 DEC r/m8
66 FF /1 DEC r/m16
FF /1 DEC r/m32

Intel® Quark™ microcontroller D1000
PRM November 2015
74 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.27.1

Figure 51.

8.28

8.28.1

8.29

November 2015

Subtracts 1 from the operand (DEST), while preserving the state of the CF flag. The
CPU updates the OF, SF and ZF flags according to the result.

Operation

DEC Algorithm
1 DEST ¢ DEST-[;

2 EFLAGS.OF & Overflow(DEST);

3 EFLAGS.SF ¢ Sign(DEST);

4 EFLAGS.ZF & Zero(DEST);

DIV - Unsigned Divide

Opcode Instruction
F6 /6 DIV r/m8
66 F7 /6 DIV r/m16
F7 /6 DIV r/m32

Divides the unsigned value in the AX, DX:AX or EDX:EAX registers (dividend) by the
source operand (divisor) and stores the result in the AX, DX:AX or EDX:EAX registers.
The source operand can be a general purpose register or a memory location. The action
of this instruction depends on the operand size (dividend/divisor). The CPU truncates
(chops) non-integral results towards 0.

The remainder is always less than the divisor in magnitude. The CPU indicates overflow
with the #DE (divide error) exception rather than with the CF flag.

Exceptions
#DE If the source operand (divisor) is 0.
#DE If the quotient is too large for the designated register.
HLT - Halt
Opcode Instruction
F4 HLT

Stops instruction execution and places the CPU in a HALT state. An enabled interrupt, a
debug exception or the RESET signal will resume execution. If an interrupt is used to
resume execution after a HLT instruction, the saved instruction pointer (EIP) in the
interrupt stack frame points to the instruction following the HLT instruction.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 75

intel)

8.30

8.30.1

8.31

8.31.1

Table 20.

Intel® Quark™ microcontroller D1000—Instruction Set

IDIV - Signed Divide

Opcode Instruction
F6 /7 IDIV r/m8
66 F7 /7 IDIV r/m16
F7 /7 IDIV r/m32
Exceptions
#DE If the source operand (divisor) is 0.
#DE If the quotient is too large for the designated register.

IMUL - Signed Multiply

Opcode Instruction

66 OF AF /r IMUL r16, r/mil6
OF AF /r IMUL r32, r/m32

66 6B /r ib IMUL r16, r/mil6, imm38
6B /r ib IMUL 32, r/m32, imm8

66 69 /r vlv IMUL rl16, r/ml6, imm16
69 /r id IMUL 32, rr/m32, imm32
F6 /5 IMUL r/m8

66 F7 /5 IMUL r/m16
F7 /5 IMUL r/m32

Description

Performs a signed multiplication of the first operand (destination operand) and the
second operand (source operand) and stores the result in the destination operand. The
destination operand is an implied operand located in register AX, DX:AX or EDX:EAX
depending on the size of the operand. The high-order bits of the product are contained
in register AH, DX, or EDX, respectively. The source operand is located in a general-
purpose register or a memory location. The action of this instruction and the location of
the result depends on the opcode and the operand size as shown in Table 20.

Results of the MUL Instruction

Opcode Operand Size(bits) Source 1 Source 2 Destination
F6 /5 8 AL r/m8 AX
66 F7 /5 16 AX r/mi6 DX:AX
F7 /5 32 EAX r/m32 EDX:EAX

Intel® Quark™ microcontroller D1000

PRM
76

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™

8.31.2 Operation

microcontroller D1000

Figure 52. IMUL Algorithm

1 IF Sizeof(SRC) =1 THEN
2 AX € AL *SRC;

3 IF AH =0 THEN

4 EFLAGS.CF € 0;
5 EFLAGS.OF € 0;
6 ELSE

7 EFLAGS.CF € [;
8 EFLAGS.OF € 1;
9 ENDIF

10 ELSE

11 IF Sizeof(SRC)=2THEN

12 DX:AX € AX* SRC;
13 IF DX =0 THEN

14 EFLAGS.CF & 0;
15 EFLAGS.OF & 0;
16 ELSE

17 EFLAGS.CF & 1,
18 EFLAGS.OF & 1;
19 ENDIF

20 ELSE

21 EDX:EAX € EAX * SRC;
22 IF EDX =0 THEN

23 EFLAGS.CF & 0;
24 EFLAGS.OF & 0;
25 ELSE

26 EFLAGS.CF & [
27 EFLAGS.OF ¢ 1;
28 ENDIF

29 ENDIF

30 ENDIF

31 EFLAGS.SF € Undefined;
32 EFLAGS.ZF € Undefined;

November 2015
Document Number: 332913-002US

Intel® Quark™ microcontroller D1000
PRM
77

u ®
l n tel Intel® Quark™ microcontroller D1000—Instruction Set

8.32 INC - Increment by 1
Opcode Instruction
66 40 INC AX
66 41 INC CX
66 42 INC DX
66 43 INC BX
66 45 INC BP
66 46 INC sI
66 47 INC DI
40 INC EAX
41 INC ECX
42 INC EDX
43 INC EBX
44 INC ESP
45 INC EBP
46 INC ESI
47 INC EDI
FE /0 INC r/m8
66 FF /O INC r/m16
FF /0 INC r/m32

Adds 1 to the operand (DEST), while preserving the state of the CF flag. The CPU
updates the OF, SF and ZF flags according to the result.

8.32.1 Operation

Figure 53. INC Algorithm.
I DEST € DEST + I;

2 BFLAGS.OF ¢ Overflow(DEST);
3 EFLAGS.SF € Sign(DEST);

4 EFLAGS.ZF & Zero(DEST);

8.33 INT - Call to Interrupt Procedure
Opcode Instruction
CcC INT3
CD ib INT imm8

Intel® Quark™ microcontroller D1000
PRM November 2015
78 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.33.1 Description

The INT instruction generates a trap to the exception handler specified with the source
operand. The CPU pushes the next EIP on the interrupt stack frame because INT is a
trap type exception. A subsequent IRET instruction thus returns to the next instruction
after the INT. If the INT instruction causes one of the following fault conditions, the CPU
treats the INT as a fault and not a trap. In the faulting case, the CPU pushes the EIP of
the INT instruction itself. A subsequent IRET will then re-execute the faulting INT.

8.33.2 Exceptions

#GP If the destination address is outside the IDT limit.

8.34 IRET - Interrupt Return

Opcode Instruction

CF IRET

8.34.1 Description

The IRET instruction returns program control from an exception or interrupt handler to
a program or procedure that was interrupted by an exception, an external interrupt, or
a software generated interrupt.

8.34.2 Operation

Figure 54, IRET Algorithm
1 tempEIP < [ESP];

2 tempPM & [ESP+4];

3 tempEFLAGS ¢ [ESP+8];
4ESP &« ESP+12;

5 EFLAGS < tempEFLAGS;
6 PM & tempPM;

7 EIP & tempEIP;

Intel® Quark™ microcontroller D1000
November 2015 PRM

Document Number: 332913-002US 79

intel.

Intel® Quark™ microcontroller D1000—Instruction Set

8.35 Jcc - Jump if Condition is Met

Opcode Instruction
70 cb JO rel8
71 «cb INO rel8
72 cb JB rel8
73 c¢b JAE rel8
74 cb JE rel8
75 c¢b IJNE rel8
76 cb JBE rel8
77 c¢b JA rel8
78 c¢b Js rel8
79 c¢b INS rel8
7C c¢b JL rel8
7D cb JGE rel8
7E cb JLE rel8
7F cb JG rel8
OF 80 cd JO rel32
OF 81 cd IJNO rel32
OF 82 «cd JB rel32
OF 83 «cd JAE rel32
OF 84 «cd JE rel32
OF 85 «cd IJNE rel32
OF 86 «cd JBE rel32
OF 87 «cd JA rel32
OF 88 «cd JS rel32
OF 89 «cd IJNS rel32
OF 8C cd JL rel32
OF 8D cd JGE rel32
OF 8E cd JLE rel32
OF 8F cd JG rel32

The Jcc instructions conditionally jump depending on the state of one or more of the
status flags in the EFLAGS register: CF, OF, SF and ZF. If the flags match the specified
condition, execution jumps to the target instruction specified by the destination
operand. If the flags do not match the specified condition, the jump is not performed

and execution continues with the instruction following the Jcc instruction.

The destination operand specifies the target instruction as a signed relative offset from
the address of the next byte after Jcc instruction.

Intel® Quark™ microcontroller D1000
PRM
80

November 2015

Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

Table 21. Common Aliases for Jcc Instructions
Original Aliases
JA JNBE
JAE INB
JB iC,
JBE INA
JE JZ
JG INLE
JGE JNL
JL INGE
JLE ING
INE INZ
Note: Assembler and disassembler tools may support these alternatives
Table 22. EFLAGS Condition Codes Associated with Each Conditional Jump Instruction
Name Jump Condition Description
JA CF=0 and ZF=0 Jump if above.
JAE CF=0 Jump if above or equal.
B CF=1 Jump if below
JBE CF=1 or ZF=1 Jump if below or equal
JE ZF=1 Jump if equal
JG ZF=0 and SF=0F Jump if greater
JGE SF=0F Jump if greater or equal
JL SF+ OF Jump if less
JLE ZF=1 and SF# OF Jump if less or equal
INE ZF=0 Jump if not equal
JNO OF=0 Jump if not overflow
INS SF=0 Jump if not sign
Jo OF=1 Jump if overflow
JS SF=1 Jump if sign

8.36 JMP - Jump

Opcode Instruction
EB cb JMP rel8
E9 cd IJMP rel32
FF /4 IJMP r/m32

November 2015
Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
81

8.37

8.37.1

8.37.2

8.38

8.38.1

Intel® Quark™ microcontroller D1000—Instruction Set

Transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address of
the instruction to which the CPU jumps. This operand can be an immediate value, a
general-purpose register, or a memory location. JMP instructions with opcodes EB and
E9 specify a relative offset from the address of the byte following the JMP instruction.

LEA - Load Effective Address

Opcode Instruction
66 8D /r LEA r16, m32
8D /r LEA r32, m32

Description

Computes the effective address of the second operand (the source operand) and stores
it in the first operand (destination operand). The source operand is a memory address
specified with one of the processors addressing modes. The destination operand is a
general-purpose register.

Both forms of LEA compute the effective 32-bit address of the second operand.

However, the form with the 66 prefix discards the upper 16-bit bits of the effective
address and stores the lower 16-bit bits into the selected register.

Exceptions

#UD If the source operand is not a memory location.

LIDT - Load Interrupt Descriptor Table Register

Opcode Instruction

OF 01 /3 LIDT m

Description

The LIDT instruction loads the Interrupt Descriptor Table Register (IDTR) from a 6 byte
memory structure defined in Figure 55. The operand m is the memory address of the
structure.

Intel® Quark™ microcontroller D1000

PRM
82

November 2015
Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

Figure 55. IDTR Format

31 16 15 0

unused IDT Address 31-16 04h

IDT Address 15-0 Byte Limit minus 1 | OOh

Note: The LIDT instruction loads a pointer to this memory structure in the CPU’s IDTR
register.
Figure 56 shows example use of the LIDT instruction to setup an IDT with a full 256
entries.
Figure 56. Example Use of the LIDT Instruction to Setup an IDT with a Full 256 Entries
.extern my_idt # define non-local label
idtr_value: # Reference address of 6 byte IDTR
.word OxO7FF # 8*N - 1 for N entries in the IDT
_long my_idt # Address of start of IDT
start_of_code:
lidt idtr_value
8.38.2 Exceptions
#UD If the source operand is not a memory location.
#UD If the 66h prefix is used.
Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US

83

u ®
l n tel Intel® Quark™ microcontroller D1000—Instruction Set

8.39 MOV - Move

Opcode Instruction
88 /r MOV r/m8, r8
66 89 /r MOV r/m1i6, ri6
89 /r MOV r/m32, r32
8A /r MOV 8, r/m8
66 8B /r MOV rie, r/mi16
8B /r MOV r32, r/m32
AO MOV AL, maddr8
66 Al MOV AX, maddr16
Al MOV EAX, maddr32
A2 MOV maddr8, AL
66 A3 MOV maddri6, AX
A3 MOV maddr32, EAX
BO MOV AL, imm8
B1 MOV CL, imm8
B2 MOV DL, imms
B3 MOV BL, imm8
B4 MOV AH, imm8
B5 MOV CH, imm8
B6 MOV DH, imm8
B7 MOV BH, imm8
66 B8 MOV AX, imm16
66 B9 MOV CX, imm16
66 BA MOV DX, imm16
66 BB MOV BX, imm16
66 BD MOV BP, imm16
66 BE MOV SI, imm16
66 BF MOV DI, imm16
B8 MOV EAX, imm32
B9 MOV ECX, imm32
BA MOV EDX, imm32
BB MOV EBX, imm32
BC MoV ESP, imm32
BD MOV EBP, imm32
BE MOV ESI, imm32
BF MOV EDI, imm32
cé6 /0 MOV r/m8, imm8
66 C7 /0O MOV r/m16, imm16
c7 /o MoV r/m32, imm32

Intel® Quark™ microcontroller D1000
PRM November 2015
84 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

Copies the second operand (SRC) to the first operand (DEST). The source operand can
be an immediate value, general-purpose register or memory location. The destination
register can be a general purpose register or memory location. Both operands must be
the same size, which can be a byte, a word (16-bit) or a doubleword (32-bit). MOV
does not affect processor flags.

8.39.1 Operation

Figure 57. MOV Algorithm.
‘ 1 DEST € SRC;

8.40 MOVSX - Move with Sign-Extend

Opcode Instruction

66 OF BE /r MOVSX r16, r/m8
OF BE /r MOVSX r32, r/m8
OF BF /r MOVSX r32, r/m16

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and sign extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

8.41 MOVZX - Move with Zero-Extend
Opcode Instruction
66 OF B6 /r MOVZX r16, r/m8
OF B6 /r MOVZX r32, r/m8
OF B7 /r MOVZX r32, r/ml6

Copies the contents of the source operand (register or memory location) to the
destination operand (register) and zero extends the value to 16 or 32 bits. The size of
the converted value depends on the operand-size attribute.

8.42 MUL - Unsigned Multiply

Opcode Instruction
F6 /4 MUL r/m8

66 F7 /4 MUL r/m16
F7 /4 MUL r/m32

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 85

intel)

Table 23.

Intel® Quark™ microcontroller D1000

PRM
86

Description

Intel® Quark™ microcontroller D1000—Instruction Set

Performs an unsigned multiplication of the first operand (destination operand) and the
second operand (source operand) and stores the result in the destination operand. The
destination operand is an implied operand located in register AX, DX:AX or EDX:EAX
depending on the size of the operand. The high-order bits of the product are contained
in register AH, DX, or EDX, respectively. The source operand is located in a general-
purpose register or a memory location.

The action of this instruction and the location of the result depends on the opcode and
the operand size as shown in Table 23.

Results of the MUL Instruction

Opcode Operand Size (bits) Source 1 Source 2 Destination
F6 /4 8 AL r/m8 AX

66 F7 /4 16 AX r/m16 DX:AX
F7 /4 32 EAX r/m32 EDX:EAX

November 2015

Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

8.42.2 Operation

Figure 58. MUL Algorithm

1 IF Sizeof(SRC) =1 THEN

2 AX € AL * SRC;

3 IF AH =0 THEN

4 EFLAGS.CF € 0;

5 EFLAGS.OF € 0;

6 ELSE

7 EFLAGS.CF € 1;

8 EFLAGS.OF € 1,

9 ENDIF

10 ELSE

11 IF Sizeof(SRC) =2 THEN
12 DX:AX € AX *SRC;
13 IF DX =0 THEN

14 EFLAGS.CF& 0;
15 EFLAGS.OF € 0;
16 ELSE

17 EFLAGS.CF € 1;
18 EFLAGS.OF & 1,
19 ENDIF

20 ELSE

21 EDX:EAX& EAX * SRC;
22 IF EDX =0 THEN

23 EFLAGS.CF& 0
24 EFLAGS.OF €« 0;
25 ELSE

26 EFLAGS.CF € 1;
27 EFLAGS.OF ¢ 1;
28 ENDIF

29 ENDIF

30 ENDIF

31 EFLAGS.SF € Undefined;

32 EFLAGS.ZF € Undefined;

November 2015

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000
PRM
87

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.43 NEG - Two's Complement Negation
Opcode Instruction
F6 /3 NEG r/m8
66 F7 /3 NEG r/m16
F7 /3 NEG r/m32

Replaces the value of the operand (DEST) with its two’s complement. This operation is
equivalent to subtracting the operand from 0. The destination operand is located in a
general-purpose register or a memory location.

8.43.1 Operation

Figure 59. NEG Algorithm
I DEST ¢ 0-DEST;

2 IF DEST =0 THEN

3 EFLAGS.CF € 0;

4 ELSE

5 EFLAGS.CF € 1,

6 ENDIF

7 EFLAGS.OF & Overflow(DEST);

8 EFLAGS.SF € Sign(DEST);

9 EFLAGS.ZF € Zero(DEST);

8.44 NOP - No Operation

Opcode Instruction
90 NOP
66 90 NOP

This instruction performs no operation. NOP that takes up space in the instruction
stream but does not impact machine context, except for the EIP register. The NOP
instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Intel® Quark™ microcontroller D1000
PRM November 2015
88 Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.45 NOT - One’'s Complement Negation
Opcode Instruction
F6 /2 NOT r/m8
66 F7 /2 NOT r/m16
F7 /2 NOT r/m32

Performs a bitwise NOT operation on the operand (DEST) and stores the result to the
operand. The operand is modified such that each 1 is set to 0 and each 0 is set to 1.
The operand can be a register or a memory location. NOT does not affect processor
flags.

8.45.1 Operation

Figure 60. NOT Algorithm.
‘DEST < NOT DEST;

8.46 OR - Logical Inclusive OR

Opcode Instruction
08 /r OR r/m8, r8
66 09 /r OR r/m16, r16
09 /r OR r/m32, r32
OA /r OR r8, r/m8
66 0B /r OR r16, r/m16
0B /r OR r32, r/m32
0C ib OR AL, imm8
66 0D iw OR AX, imm16
0D id OR EAX, imm32
80 /1 ib OR r/m8, imm8
66 81 /1 iw OR r/m16, imm16
81 /1 id OR r/m32, imm32
66 83 /1 ib OR r/m16, imm8
83 /1 ib OR r/m32, imm8

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 89

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

Performs a bitwise inclusive OR operation between the first operand (DEST) and second
operand (SRC) and stores the result in the destination operand. The source operand
can be an immediate, a register, or a memory location. The destination operand can be
a register or a memory location. However, two memory operands cannot be used in one
instruction. Each bit of the result is set to 0 if both corresponding bits of the first and
second operands are 0. Otherwise, the corresponding bit in the result is set to 1.

8.46.1 Operation

Figure 61. OR Algorithm.
I DEST € SRC OR DEST;

2 EFLAGS.CF € 0;
3 EFLAGS.OF € 0;
4 EFLAGS.SF € Sign(DEST);

5 EFLAGS.ZF & Zero(DEST);

8.47 POP - Pop a Doubleword from the Stack

Opcode Instruction
58 POP EAX
59 POP ECX
5A POP EDX
5B POP EBX
5C POP ESP
5D POP EBP
5E POP ESI
5F POP EDI
8F /0 POP r/m32

66 8F /0 POP r/m16

Loads the value from the top of the stack to the location specified by the operand
(DEST) and then increments the stack pointer. The destination operand can be a
general-purpose register or a memory location.

Intel® Quark™ microcontroller D1000
PRM November 2015
90 Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

8.47.1

8.48

8.48.1

Figure 62.

8.49

November 2015

Operation

1 DEST< [ESP];

2 IF Operand Size = 16 THEN
/* Opcode 66 8F */

3 ESP<& ESP+2;

4 ELSE

5 ESP <& ESP+4;

6 ENDIF

POPFD - Pop Stack into EFLAGS Register

Opcode

Instruction

9D

POPFD

Pops a 32-bit value from the top of the stack and stores the value in the EFLAGS
register. This instruction reverses the operation of the PUSHFD instruction.

Operation

Operation of POPFD

1 EFLAGS(CF,ZF,SEIF,OF,TF) & [ESP];

2ESP & ESP+4;

PUSH - Push a Doubleword onto the Stack

Opcode Instruction
50 PUSH EAX
51 PUSH ECX
52 PUSH EDX
53 PUSH EBX
54 PUSH ESP
55 PUSH EBP
56 PUSH ESI
57 PUSH EDI
68 id PUSH imm32

66 68 id PUSH imm16
6A ib PUSH imm8

Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
91

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.50

Note:

8.50.1

8.51

FF /6 PUSH r/m32

66 FF /6 PUSH r/m16

Decrements the stack pointer (ESP) by 4 then stores the operand (SRC) at the new
address in ESP. The CPU sign extends 8-bit immediate values to 32-bits to preserve
stack alignment. The CPU does not extend 16-bit immediate values and executing push
imm16 (opcode 66h 68h) causes an unaligned stack.

The PUSH ESP instruction pushes the value of the ESP register as it existed before the
instruction was executed. If a PUSH instruction uses an ESP relative address mode, the
CPU computes the address of the operand before decrementing the ESP register.

1 IF Operand Size = 16 THEN
/* Opcode 66 68 or 66 FF */
2 ESP& ESP-2;
3 [BESP] ¢ SRC;
4 ELSE
5 Temp € SignExtend(SRC);
6 ESP& ESP-4;
7 [ESP]¢ Temp;

8 ENDIF

PUSHFD - Push EFLAGS onto the Stack

Opcode Instruction

9C PUSHFD

The PUSHFD instruction pushes the 32-bit EFLAGS register onto the stack.

Operation

1 ESP & ESP-4;

2[ESP] € EFLAGS;

RCL/RCR - Rotate Through Carry

Opcode Instruction Opcode Instruction
C0 /2 ib RCL r/m8, imm8 C0 /3 ib RCR r/m8, imm8
66 Cl1 /2 ib RCL r/m16, imm8 66 Cl1 /3 ib RCR r/m16, imm8

Intel® Quark™ microcontroller D1000

PRM
92

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™ microcontroller D1000

8.52

8.52.1

November 2015

intel)

Cc1/2ib RCL r/m32, imm8 Cc1/3ib RCR r/m32, imm8
DO /2 RCL r/m8, 1 DO /3 RCR r/m8, 1

66 D1 /2 RCL r/mi6, 1 66 D1 /3 RCR r/m16, 1
D1 /2 RCL r/m32, 1 D1 /3 RCR r/m32, 1
D2 /2 RCL r/m8, CL D2 /3 RCR r/m8, CL

66 D3 /2 RCL r/m16, CL 66 D3 /3 RCR r/m16, CL
D3 /2 RCL r/m32, CL D3 /3 RCR r/m32, CL

Rotates the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination
operand. The destination operand can be a register or a memory location. The count
operand is an unsigned integer that can be an immediate or a value in the CL register.
The CPU restricts the count to a number between 0 and 31 by masking all the bits in
the count operand except the 5 least-significant bits.

The rotate through carry left (RCL) instruction shifts all bits toward more significant bit
positions, except for the most-significant bit, which is rotated to the least significant
bit. The Carry Flag is included in the rotation as if in bit position 33.

The rotate through carry right (RCR) instruction shifts all bits toward less significant bit
positions, except for the least-significant bit, which is rotated to the most significant
bit. The Carry Flag is included in the rotation as if in bit position 33.

This instruction defines EFLAGS.OF only for 0 and 1 bit rotates. For rotates greater than
1 bit, EFLAGS.OF is undefined. For O bit rotates, flags are unaffected.

For 1 bit left rotates, the CPU sets the OF flag as the exclusive OR of the CF bit (after

the rotate) and the most-significant bit of the result. For 1 bit right rotates, the CPU
sets the OF flag to the exclusive OR of the two most-significant bits of the result.

RET - Return from Procedure

Opcode Instruction

C3 RET

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made to
the instruction that follows the CALL instruction.

Operation

1 EIP € [ESP];

2ESP & ESP+4;

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 93

. ®
l n tel > Intel® Quark™ microcontroller D1000—Instruction Set

8.53

8.54

ROL/ROR - Rotate

Opcode Instruction Opcode Instruction
CO0 /0 ib ROL r/m8, imm8 Co/1ib ROR r/m8, imm8
66 C1 /0 ib ROL r/m16, imm8 66 C1 /1 ib ROR r/m16, imm8
Cl1 /0 ib ROL r/m32, imm8 Ci/1ib ROR r/m32, imm8
DO /0 ROL r/m8, 1 DO /1 ROR r/m8, 1
66 D1 /0 ROL r/m16, 1 66 D1 /1 ROR r/m16, 1
D1 /0 ROL r/m32, 1 D1 /1 ROR r/m32, 1
D2 /0 ROL r/m8, CL D2 /1 ROR r/m8, CL
66 D3 /0 ROL r/m16, CL 66 D3 /1 ROR r/m16, CL
D3 /0 ROL r/m32, CL D3 /1 ROR r/m32, CL

Rotates the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination
operand. The destination operand can be a register or a memory location. The count
operand is an unsigned integer that can be an immediate or a value in the CL register.
The CPU restricts the count to a number between 0 and 31 by masking all the bits in
the count operand except the 5 least-significant bits.

The rotate left (ROL) instruction shifts all bits toward more-significant bit positions,
except for the most-significant bit, which is rotated to the least significant bit.

The rotate right (ROR) instruction shifts all bits toward less-significant bit positions,
except for the least-significant bit, which is rotated to the most significant bit.

For left rotates, the CPU sets the OF flag as the exclusive OR of the CF bit (after the
rotate) and the most-significant bit of the result. For right rotates, the CPU sets the OF
flag to the exclusive OR of the two most-significant bits of the result.

The EFLAGS.OF is defined only for 1-bit rotates. For rotates greater than 1 bit, the
EFLAGS.OF is undefined. For left rotates, the CPU sets the OF flag as the exclusive OR
of the CF bit (after the rotate) and the most-significant bit of the result. For right
rotates, the CPU sets the OF flag to the exclusive OR of the two most-significant bits of
the result.

SAL/SAR - Shift Arithmetic

Opcode Instruction Opcode Instruction
C0 /4 ib SAL r/m8, imm8 C0 /7 ib SAR r/m8, imm8
66 Cl1 /4 ib SAL r/m16, imm8 66 Cl1 /7 ib SAR r/m16, imm8
Cl/4ib SAL r/m32, imm8 Cl/7ib SAR r/m32, imm8
DO /4 SAL r/m8, 1 DO /7 SAR r/m8, 1
66 D1 /4 SAL r/m16, 1 66 D1 /7 SAR r/m16, 1
D1 /4 SAL r/m32, 1 D1 /7 SAR r/m32, 1
D2 /4 SAL r/m8, CL D2 /7 SAR r/m8, CL
66 D3 /4 SAL r/m16, CL 66 D3 /7 SAR r/m16, CL
D3 /4 SAL r/m32, CL D3 /7 SAR r/m32, CL

Intel® Quark™ microcontroller D1000

PRM
94

November 2015
Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.55

November 2015

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the
destination operand.

The destination operand can be a register or a memory location. The count operand can
be an immediate value or the CL register. The count is masked to 5 bits. The count
range is limited to 0 to 31. A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) instruction shifts the bits in the destination operand to
the left (toward more significant bit locations). For each shift count, the most
significant bit of the destination operand is shifted into the CF flag, and the least
significant bit is cleared.

The shift arithmetic right (SAR) instruction shifts the bits of the destination operand to
the right (toward less significant bit locations). For each shift count, the least significant
bit of the destination operand is shifted into the CF flag, and the most significant bit is
set to correspond to the sign (most significant bit) of the original value in the
destination operand. In effect, the SAR instruction fills the empty bit position’s shifted
value with the sign of the unshifted value.

The SAR instruction can be used to perform signed division of the destination operand
by powers of 2. For example, using the SAR instruction to shift a signed integer 1 bit to
the right divides the value by 2. Using the SAR instruction to perform a division
operation does not produce the same result as the IDIV instruction.

The quotient from the IDIV instruction is rounded toward zero, whereas the “quotient”
of the SAR instruction is rounded toward negative infinity. This difference is apparent
only for negative numbers. For example, when the IDIV instruction is used to divide -9
by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9
right by two bits, the result is -3 and the “remainder” is +3; however, the SAR
instruction stores only the most significant bit of the remainder (in the CF flag).
EFLAGS.OF is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits of
the original operand were the same). Otherwise, the CPU sets EFLAGS.OF to 1. For the
SAR instruction, the OF flag is cleared for all 1-bit shifts.

SBB - Integer Subtraction with Borrow

Opcode Instruction Opcode Instruction
18 /r SBB r/m8, r8 66 1D iw SBB AX, imm16

66 19 /r SBB r/m16, r16 1D id SBB EAX, imm32
19 /r SBB r/m32, r32 80 /3 ib SBB r/m8, imm8
1A /r SBB r8, r/m8 66 81 /3 iw SBB r/m16, imm16

66 1B /r SBB r16, r/m16 81 /3 id SBB r/m32, imm32
1B /r SBB r32, r/m32 66 83 /3 ib SBB r/m16, imm8
1Cib SBB AL, imm8 83 /3 ib SBB r/m32,imm8

Adds the second operand (SRC) and the carry (CF) flag, and subtracts the result from
the first operand (DEST). The result of the subtraction is stored in the second operand
(DEST). The destination operand can be a register or a memory location. The source
operand can be an immediate, a register or a memory location. However, two memory
operands cannot be used in one instruction.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 95

Intel® Quark™ microcontroller D1000—Instruction Set

intel)

Before executing this instruction, the state of the CF flag represents a borrow from a
previous subtraction. The subtraction operation treats EFLAGS.CF as an integer 1 or 0.

Immediate values are sign-extended to the length of the destination operand format.
The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the EFLAGS.OF
and EFLAGS.CEF flags to indicate a borrow in the signed or unsigned result, respectively.
The SF flag indicates the sign of the signed result.

Software usually executes the SBB instruction as part of a multibyte or multiword
subtraction in which a SUB instruction is followed by a SBB instruction.

8.55.1 Operation
Figure 63. SBB Algorithm
1 Templ € SignExtend(SRC);
2 Templ € Templ + EFLAGS.CF;
3 DEST €& DEST - Templ;
4 EFLAGS.CF € Carry(DEST);
5 EFLAGS.ZF € Zero(DEST);
6 EFLAGS.SF & Sign(DEST);
7 EFLAGS.OF € Overflow(DEST);
8.56 SHL/SHR - Shift
Opcode Instruction Opcode Instruction
CO /4 ib SHL r/m8, imm8 Co /5 ib SHR r/m8, imm8
66 C1 /4 ib SHL r/m16, imm8 66 C1 /5 ib SHR r/m16, imm8
Cl /4 ib SHL r/m32, imm8 Cl1/5ib SHR r/m32, imm8
DO /4 SHL r/m8, 1 DO /5 SHR r/m8, 1
66 D1 /4 SHL r/m16, 1 66 D1 /5 SHR r/m16, 1
D1 /4 SHL r/m32, 1 D1 /5 SHR r/m32, 1
D2 /4 SHL r/m8, CL D2 /5 SHR r/m8, CL
66 D3 /4 SHL r/m16, CL 66 D3 /5 SHR r/m16, CL
D3 /4 SHL r/m32, CL D3 /5 SHR r/m32, CL

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the
destination operand.

The destination operand can be a register or a memory location. The count operand can
be an immediate value or the CL register. The count is masked to 5 bits. The count
range is limited to 0 to 31. A special opcode encoding is provided for a count of 1.

Intel® Quark™ microcontroller D1000

PRM
96

November 2015
Document Number: 332913-002US

™1 ®
Instruction Set—Intel® Quark™ microcontroller D1000 (l n tel >

The shift left (SHL) instruction shifts the bits in the destination operand to the left
toward more significant bit locations. For each shift count, the most significant bit of
the destination operand is shifted into the CF flag, and the least significant bit is
cleared.

The shift right (SHR) instruction shifts the bits of the destination operand to the right
toward less significant bit locations. For each shift count, the least significant bit of the
destination operand is shifted into the CF flag, and the most significant bit is cleared.

Software may use the SHR instruction to perform unsigned division of the destination
operand by powers of 2.

EFLAGS.OF is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits of
the original operand were the same). Otherwise, the CPU sets EFLAGS.OF to 1. For the
SHR instruction, the OF flag is set to the most significant bit of the original operand.

8.57 SIDT - Store Interrupt Descriptor Table Register
Opcode Instruction
OF 01 /1 SIDT m

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 97

. ®
l n tel) Intel® Quark™ microcontroller D1000—Instruction Set

8.57.2

8.58

8.58.1

Figure 64.

8.59

Description
The SIDT instruction stores the Interrupt Descriptor Table Register (IDTR) to a 6 byte
memory structure defined in “LIDT - Load Interrupt Descriptor Table Register” on

page 82 for the LIDT instruction. The operand m is the memory address of the
structure.

Exceptions

#UD If the 66h prefix is used

STC - Set Carry Flag

Opcode Instruction

F9 STC

Sets EFLAGS.CF. All other flags are unaffected.

Operation

STC Algorithm.
‘ 1 EFLAGS.CF € 1;

STI - Set Interrupt Flag

Opcode Instruction

FB STI

Sets EFLAGS.IF to enable external maskable interrupts. If interrupts were disabled
(ELFAGS.IF=0) when executing STI, the CPU may service an interrupt immediately
after retiring this instruction.

Software must take special care when executing an STI immediately before a HLT
instruction. In this case, the CPU may recognize an interrupt before executing the HLT.
The interrupt service routine would then IRET to the HLT instruction which stops
execution. If this behavior is not desired, the interrupt service routine can inspect the
instruction pointed to by the EIP value on the interrupt stack frame. If the EIP points to
a HLT (F4h) then the interrupt service routine can increment the value of the EIP in the
stack frame. Incrementing the EIP causes the subsequent IRET to return to the next
instruction after the HLT.

Intel® Quark™ microcontroller D1000

PRM
98

November 2015
Document Number: 332913-002US

Instruction Set—Intel® Quark™

8.59.1 Operation

Figure 65. STI Algorithm.

microcontroller D1000

‘ 1 EFLAGS.IF € 1;

8.60 SUB - Subtract

Opcode Instruction
28 /r SUB r/m8, r8

66 29 /r SUB r/m16, r16
29 /r SUB r/m32, r32
2A /r SUB r8, r/m8

66 2B /r SUB r16, r/m16
2B /r SUB r32, r/m32
2C ib SUB AL, imm8

66 2D iw SUB AX, imm16
2D id SUB EAX, imm32
80 /5 ib SUB r/m8, imm8

66 81 /5 iw SUB r/m16, imm16
81 /5id SUB r/m32, imm32

66 83 /5 ib SUB r/m16, imm8
83 /5 ib SUB r/m32, imm8

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand can
be a register or a memory location. The source operand can be an immediate, register,
or memory location. However, two memory operands cannot be used in one instruction.
The sign extends immediate operands to the length of the destination operand. The
SUB instruction performs integer subtraction. The CPU evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign of

the signed result.

November 2015
Document Number: 332913-002US

Intel® Quark™ microcontroller D1000

PRM
99

8.60.1

Figure 66.

8.61

8.61.1

Operation

SUB Algorithm

Intel® Quark™ microcontroller D1000—Instruction Set

1 DEST €& DEST - SRC;

2 EFLAGS.CF & Carry(DEST);
3 EFLAGS.ZF & Zero(DEST);,
4 EFLAGS.SF € Sign(DEST);

5 EFLAGS.OF & Overflow(DEST);

TEST - Logical Compare

Opcode Instruction
84 /r TEST r/m8, r8
66 85 /r TEST r/m16, r16
85 /r TEST r/m32, r32
A8 ib TEST AL, imm8
66 A9 iw TEST AX, imm16
A9 id TEST EAX, imm32
F6 /0 ib TEST r/m8, imm8
66 F7 /0 iw TEST r/m16, imm16
F7 /0 id TEST r/m32, imm32

Description

Performs a bitwise AND operation on the first operand (SRC1) and second operand
(SRC2) and sets the SF and ZF status flags according to the result. The result is then

discarded.

Intel® Quark™ microcontroller D1000

PRM
100

November 2015

Document Number: 332913-002US

. ®
Instruction Set—Intel® Quark™ microcontroller D1000 l n tel >

8.61.2

Figure 67.

8.62

Note:

8.62.1

November 2015

Operation

TEST Algorithm

1 Temp € SRCI1 AND SRC2;
2 EFLAGS.SF € Sign(Temp);
3 IF Temp = 0 THEN

4 EFLAGSZF ¢ [

S ELSE

6 EFLAGS.ZF & 0;

7 ENDIF

8 EFLAGS.CF & 0;

9 EFLAGS.OF < 0;

UD2 - Undefined Instruction

Opcode Instruction

OF 0B ub2

Generates an Invalid Opcode Fault (#UD). This instruction is provided for software
testing to explicitly generate an invalid opcode exception. The opcode for this
instruction is reserved for this purpose. Other than raising the invalid opcode exception,
this instruction has no effect on processor state or memory.

The instruction pointer in the exception stack frame references the UD2 instruction and
not the following instruction.

Some disassemblers such as the GNU objdump utility use UD2A for this opcode.

Exceptions

#UD This instruction always causes this exception.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 101

u ®
l n tel Intel® Quark™ microcontroller D1000—Instruction Set

8.63 XOR - Logical Exclusive OR

Opcode Instruction
30 /r XOR r/m8, r8
66 31 /r XOR r/m16, r16
31 /r XOR r/m32, r32
32 /r XOR r8, r/m8
66 33 /r XOR r16, r/m16
33 /r XOR r32, r/m32
34 ib XOR AL, imm8
66 35 iw XOR AX, imm16
35 id XOR EAX, imm32
80 /6 ib XOR r/m8, imm8
66 81 /6 iw XOR r/m16, imm16
81 /6 id XOR r/m32, imm32
83 /6 ib XOR r/m16, imm8
83 /6 ib XOR r/m32, imm8

Performs a bitwise exclusive-OR (XOR) operation on the first operand (DEST) and the
second operand (SRC) and stores the result in the first operand. The source operand
can be an immediate, a register, or a memory location. The destination operand can be
a register or a memory location. Two memory operands cannot be used in one
instruction. Each bit of the result is 1 if the corresponding bits of the operands are
different. Each bit is 0 if the corresponding bits are the same.

8.63.1 Operation

Figure 68. XOR Algorithm.
I DEST € SRC XOR DEST;

2 BFLAGS.CF € 0;
3 EFLAGS.ZF € Zero(DEST);
4 BFLAGS.SF € Sign(DEST);

5 EFLAGS.OF & 0,

88

Intel® Quark™ microcontroller D1000
PRM November 2015
102 Document Number: 332913-002US

®
Instruction Set—Intel® Quark™ microcontroller D1000 I n tel

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 103

Intel® Quark™ microcontroller D1000—Porting From 1A

Appendix A Porting From IA

A1

A.2

The following sections show software substitutions for some unsupported IA-32
instructions. The following sections also list key functional differences between IA-32
and Intel® Quark™ microcontroller D1000 CPU instructions.

PUSHA

The following code emulates the action of the PUSHA instruction:

pushl
pushl
pushl
pushl
pushl
addl

pushl
pushl
pushl

%eax
%ecx
Y%edx
Y%ebx
%esp
$16,
%ebp
%esi
Y%edi

pusha emulation start

pushes esp value before decrement
(%esp)

pusha emulation end

POPA

The following code emulates the action of the POPA instruction:

popl
popl
popl
popl
popl
popl
popl
popl

Y%edi
Y%esi
%ebp
%ebx
%ebx
Y%edx
ecx

%eax

popa emulation start

#dummy pop

popoa emulation end

Intel® Quark™ microcontroller D1000

PRM
104

November 2015
Document Number: 332913-002US

[|} ®
Porting From 1A—Intel® Quark™ microcontroller D1000 l n tel

A3

Note:

A4

Note:

November 2015

XCHG

The CPU does not support the XCHG instruction, except for the special NOP cases:

xchg %eax, %eax # one byte NOP
xchg %ax, %ax # one byte NOP with 66h prefix

In general use, you can replace XCHG with a three instruction sequence as shown in
the following example:

xchg %heax , %ebx
xchg emulation start
pushl %ebx

movl %eax , %ebx

popl Y%eax

xchg emulation end

If your code can ignore the resulting EFLAGS value, then replace XCHG with 3 xor
operations. This substitution executes faster by eliminating the push/pop memory
touches.

xchg %heax , %ebx
xchg emulation start
xor Y%eax , %ebx

Xor %ebx , %eax

Xor %eax , %ebx

xchg emulation end

Exchanging a register with the stack pointer (ESP) requires special handling as shown:

xchg %esp,%ebp

xchg emulation start

pushl %ebp # save ebp, esp too low by 4

lea 4(%esp) ,%ebp # copy low esp to ebp and Ffixup ebp
popl %esp # copy ebp to esp

xchg emulation end

The XCHG instruction also implies a locked transaction. These substitutions do not
provide any locking.

Instruction Prefixes

The CPU supports a subset of the IA-32 instruction prefix possibilities. See Table 24.

Only the Pentium 4 implemented branch hint prefixes. All other IA processors ignore
branch hints.

Intel® Quark™ microcontroller D1000
PRM

Document Number: 332913-002US 105

u ®
< l n tel > Intel® Quark™ microcontroller D1000—Porting From 1A

Table 24.

Note:

A.5

A.6

Note:

A.7

A.8

Instruction Prefix Bytes

Prefix Byte (hex) Description Supported?
66 16-bit Operand Size Yes
67 16-bit Address Size No
FO Lock Yes
F3 REP/REPE/REPZ No
F2 REPNE/REPNZ No
2E,36,3E,26,64,65 Segment Overrides No
2E,3E Branch Hints No

The CPU does not support IA-32 prefixes shaded gray.

INT and INT3

The CPU INT instruction with operand value of 3 behaves identically to the INT3
instruction.

Interrupt Descriptors

Intel® Quark™ microcontroller D1000 processor supports a subset of IA-32 Interrupt
Descriptor functionality. Intel® Quark™ microcontroller D1000 processor supports only
descriptors for a 32-bit address space and only the Interrupt Gate and Trap Gate types.
Furthermore, many fields in the IA-32 descriptor format are reserved in Intel® Quark™
microcontroller D1000 processor.

The description of the IA-32 IDT is in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1 Chapter 6.

10 Instructions

The CPU does not implement the IA-32 IN and OUT instructions. Accordingly, the CPU
does not have the concept of IO Privilege Level (IOPL) and does not implement the
EFLAGS IOPL bits.

Developers must substitute memory mapped I0 (MMIO) accesses in place of IN and
OUT instructions. Designers should map devices with MMIO interfaces in the Intel
Quark™ microcontroller D1000 processor strongly ordered memory region. For
information on strongly ordered memory, see Section 3.3.

EFLAGS

Intel® Quark™ microcontroller D1000 processor supports a status register called
EFLAGS that resembles the IA- 32 EFLAGS register. The behavior of the arithmetic
EFLAGS bits, namely CF, OF, SF and ZF is upward compatible with IA-32 processors.
Table 24 highlights differences from IA-32. Notable exceptions are the EFLAGS.L1,0
bits which are unique to Intel® Quark™ microcontroller D1000 processor.

Intel® Quark™ microcontroller D1000

PRM
106

November 2015
Document Number: 332913-002US

®
Porting From 1A—Intel® Quark™ microcontroller D1000 l n tel

Figure 69. Flags Defined in the EFLAGS Register

31 1211 10 9 8 7 6 5 4 3 2 1 0
0 [ofofr[T[s[z[For]t [c]
Flag Bit Type Supported? Description
CF 0 Status Yes Carry Flag
1 Fixed Yes Reserved
2 Fixed No Reserved
3 Fixed No Reserved
4 Fixed No Reserved
5 Fixed No Reserved
ZF 6 Status Yes Zero Flag
SF 7 Status Yes Sign Flag
TF 8 System Yes Trap Flag
IF 9 System Yes Interrupt Enable Flag
10 Fixed No Reserved
OF 11 Status Yes Overflow Flag
12-31 Fixed Yes AI-32 Reserved
Note: Intel® Quark™ microcontroller D1000 processor does not support IA- 32 EFLAGS bits

shaded gray.

A.9 Exceptions

Intel® Quark™ microcontroller D1000 processor supports an exception vector table
which is a generally a subset of IA-32. Table 25 highlights the differences.

Table 25. Interrupt Descriptor Table (IDT)
Vector Name Type Error Code? Description
0 #DE Fault No Divide by 0
1 #DB Trap No Debug Exception
2 No Reserved
3 #BP Trap No Breakpoint (INT3)
4 #OF Trap No Reserved
5 #BR Fault No Reserved
6 #UD Fault No Invalid Opcode
7 #NM Fault No Reserved
8 #DF Abort Yes Double Fault
9 Fault No Reserved
10 #TS Fault No Reserved

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 107

[| ®
l n tel Intel® Quark™ microcontroller D1000—Porting From 1A

Table 25. Interrupt Descriptor Table (IDT)
Vector Name Type Error Code? Description
11 #NP Fault Yes Not Present
12 #SS Fault No Reserved
13 #GP Fault Yes General Protection
14 #PF Fault No Reserved
15 Intel Reserved
16 #MF Fault No Reserved
17 #AC Fault No Reserved
18 #MC Fault Yes Machine Check (non-IA)
19 #XM Fault No Reserved
20-31 Intel Reserved
32-255 Interrupt No Asynchronous IRQ
Note: Shaded areas denote IA-32 exceptions not supported by Intel® Quark™ microcontroller

D1000 processor.

A.10 Segmentation

Intel® Quark™ microcontroller D1000 processor does not support any form of
segmentation. All addresses are linear as described in Chapter 3.0. Modern IA-32 code
configures segmentation to behave in a pass-through manner and in most cases
porting code to Intel® Quark™ microcontroller D1000 processor requires no effort in
this regard. The notable exception is IA-32 threadlocal storage (TLS). Quark D1000
does not currently support TLS and TLS specific code must be reimplemented for Intel®
Quark™ microcontroller D1000 processor.

88

Intel® Quark™ microcontroller D1000
PRM November 2015
108 Document Number: 332913-002US

®
Porting From 1A—Intel® Quark™ microcontroller D1000 I n tel

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 109

Intel® Quark™ microcontroller D1000—IOAPIC Programming Examples

Appendix B IOAPIC Programming Examples

B.1

This section provides IOAPIC Programming examples.

Masking Interrupts

These functions enable or disable the specified IOAPIC interrupt input while preserving
the remaining bits of the Redirection Entry Register associated with the interrupt.

#define 10REGSEL ((volatile unsigned int *)OxFEC00000)
#define 10WIN ((volatile unsigned int *)OxFEC00010)
#define MASK_BIT 0x00010000

/*
* Disable external interrupt.
* Offset is 0x10 plus 8 bytes per irq.

*

* irq: The interrupt input number on the 10APIC

* Range from O to N

*/

void mask_irq(unsigned int irqg)
{

*IOREGSEL = 0x10 + irq * 2;
*IOWIN |= MASK_BIT;

* Enable external interrupt
* Offset is 0x10 plus 8 bytes per irq.

* irq: The interrupt input number on the 10APIC

* Range from O to N

*/

void unmask_irq(unsigned int irq)
{

*I0REGSEL = 0x10 + irqg * 2;
*1OWIN &= ~MASK_BIT;

Intel® Quark™ microcontroller D1000

PRM
110

November 2015
Document Number: 332913-002US

®
I0APIC Programming Examples—Intel® Quark™ microcontroller D1000 I n tel

88§

Intel® Quark™ microcontroller D1000
November 2015 PRM
Document Number: 332913-002US 111

	Intel® QuarkTM microcontroller D1000
	Legal Lines and Disclaimers
	Contents
	Figures
	Tables

	Revision History

	1.0 Introduction
	1.1 Intel® Quark™ microcontroller D1000 CPU Overview
	1.2 Interrupts
	1.3 I/O
	1.4 Code and Data Interfaces
	1.4.1 Instruction Alignment
	1.4.2 Data Alignment
	1.4.3 Stack Alignment

	1.5 Floating Point

	2.0 Compatibility
	3.0 Memory Model
	3.1 Bit and Byte Order
	3.2 Addressing
	3.3 Memory Ordering
	3.3.1 Strong Ordering Rules
	3.3.2 Weak Ordering Rules
	3.3.3 Mixed Ordering Rules
	3.3.4 Write Flushing

	3.4 Self-Modifying Code
	3.5 Stack Behavior
	3.5.1 Stack Alignment
	3.5.2 Stack Over/Underflow

	4.0 Registers
	4.1 General Purpose Registers
	4.2 Special Purpose Registers
	4.3 EFLAGS

	5.0 Exceptions
	5.1 Exception Types
	5.1.1 Interrupts
	5.1.2 Faults
	5.1.3 Traps
	5.1.4 Aborts

	5.2 Exception Handling
	5.3 Triple Fault
	5.4 Interrupt Descriptor Table
	5.5 Format of Interrupt Descriptors
	5.6 Exception 0 - Divide Error (#DE)
	5.6.1 Exception Class
	5.6.2 Error Code
	5.6.3 Saved Instruction Pointer
	5.6.4 Program State Change

	5.7 Exception 1 - Debug Exception (#DB)
	5.7.1 Exception Class
	5.7.2 Error Code
	5.7.3 Saved Instruction Pointer
	5.7.4 Program State Change

	5.8 Exception 3 - Breakpoint (#BP)
	5.8.1 Exception Stack Frame
	5.8.2 Exception Class
	5.8.3 Error Code
	5.8.4 Saved Instruction Pointer
	5.8.5 Program State Change

	5.9 Exception 6 - Invalid Opcode (#UD)
	5.9.1 Exception Stack Frame
	5.9.2 Exception Class
	5.9.3 Error Code
	5.9.4 Saved Instruction Pointer
	5.9.5 Program State Change

	5.10 Exception 8 - Double Fault (#DF)
	5.10.1 Exception Stack Frame
	5.10.2 Exception Class
	5.10.3 Error Code
	5.10.4 Saved Instruction Pointer
	5.10.5 Program State Change

	5.11 Exception 11 - Not Present (#NP)
	5.11.1 Exception Stack Frame
	5.11.2 Exception Class
	5.11.3 Error Code
	5.11.4 Saved Instruction Pointer
	5.11.5 Program State Change

	5.12 Exception 13 - General Protection (#GP)
	5.12.1 Exception Stack Frame
	5.12.2 Exception Class
	5.12.3 Error Code
	5.12.4 Saved Instruction Pointer
	5.12.5 Program State Change

	5.13 Exception 18 - Machine Check (#MC)
	5.13.1 Exception Stack Frame
	5.13.2 Exception Class
	5.13.3 Error Code
	5.13.4 Saved Instruction Pointer
	5.13.5 Program State Change

	5.14 Exceptions 32-255 - User Defined Interrupts
	5.14.1 Exception Stack Frame
	5.14.2 Exception Class
	5.14.3 Error Code
	5.14.4 Saved Instruction Pointer
	5.14.5 Program State Change

	5.15 Exception Ordering and Priority
	5.15.1 Trap and Fault Order
	5.15.2 Interrupts Versus Trap and Fault Order

	5.16 Logical Algorithms

	6.0 Reset
	6.1 Firmware Initialization Overview
	6.2 Stack Initialization
	6.3 IDT Initialization
	6.3.1 IDT Location
	6.3.2 IDT Alignment

	7.0 APIC and IOAPIC
	7.1 Interrupt Vectors and Priorities
	7.2 External Interrupts
	7.3 Local APIC Registers
	7.3.1 Task Priority Register (TPR)
	7.3.2 Processor Priority Register (PPR)
	7.3.3 End-of-Interrupt Register (EOI)
	7.3.4 Spurious Interrupt Vector Register (SIVR)
	7.3.5 In-Service Register (ISR) Bits 47:32
	7.3.6 Interrupt Request Register (IRR) Bits 63:32

	7.4 Local APIC Timer
	7.4.1 Local Vector Table Timer Register (LVTTIMER)
	7.4.2 Initial Count Register (ICR)
	7.4.3 Current Count Register (CCR)

	7.5 IOAPIC Registers
	7.6 IOAPIC Redirection Entry Registers
	7.7 Edge/Level Triggered Interrupts
	7.8 Interrupt Polarity

	8.0 Instruction Set
	8.1 Intel® Quark™ microcontroller D1000 CPU Instructions
	8.2 Instruction Prefixes
	8.2.1 16-bit Operand Override

	8.3 Addressing Modes
	8.4 Instruction Format
	8.5 ModR/M Format
	8.6 SIB Format
	8.7 Displacement and Immediate Bytes
	8.8 Opcode Column in Instruction Description
	8.9 Instruction Column in Instruction Description
	8.10 Operation Section
	8.11 Operand Order
	8.12 ADC - Add with Carry
	8.12.1 Operation
	8.12.2 Exceptions

	8.13 ADD - Add
	8.13.1 Operation
	8.13.2 Exceptions

	8.14 AND - Logical AND
	8.14.1 Operation
	8.14.2 Exceptions

	8.15 BSWAP - Byte Swap
	8.15.1 Operation

	8.16 BT - Bit Test
	8.16.1 Operation

	8.17 BTC - Bit Test and Complement
	8.17.1 Operation

	8.18 BTR - Bit Test and Reset
	8.18.1 Operation

	8.19 BTS - Bit Test and Set
	8.19.1 Operation

	8.20 CALL - Call Procedure
	8.20.1 Operation

	8.21 CBW/CWDE - Convert Byte to Word/Word to Doubleword
	8.21.1 Operation

	8.22 CLC - Clear Carry Flag
	8.22.1 Operation

	8.23 CLI - Clear Interrupt Flag
	8.23.1 Operation

	8.24 CMC - Complement Carry Flag
	8.24.1 Operation

	8.25 CMP - Compare Two Operands
	8.25.1 Operation

	8.26 CWD/CDQ - Convert to Doubleword or Quadword
	8.26.1 Operation

	8.27 DEC - Decrement by 1
	8.27.1 Operation

	8.28 DIV - Unsigned Divide
	8.28.1 Exceptions

	8.29 HLT - Halt
	8.30 IDIV - Signed Divide
	8.30.1 Exceptions

	8.31 IMUL - Signed Multiply
	8.31.1 Description
	8.31.2 Operation

	8.32 INC - Increment by 1
	8.32.1 Operation

	8.33 INT - Call to Interrupt Procedure
	8.33.1 Description
	8.33.2 Exceptions

	8.34 IRET - Interrupt Return
	8.34.1 Description
	8.34.2 Operation

	8.35 Jcc - Jump if Condition is Met
	8.36 JMP - Jump
	8.37 LEA - Load Effective Address
	8.37.1 Description
	8.37.2 Exceptions

	8.38 LIDT - Load Interrupt Descriptor Table Register
	8.38.1 Description
	8.38.2 Exceptions

	8.39 MOV - Move
	8.39.1 Operation

	8.40 MOVSX - Move with Sign-Extend
	8.41 MOVZX - Move with Zero-Extend
	8.42 MUL - Unsigned Multiply
	8.42.1 Description
	8.42.2 Operation

	8.43 NEG - Two’s Complement Negation
	8.43.1 Operation

	8.44 NOP - No Operation
	8.45 NOT - One’s Complement Negation
	8.45.1 Operation

	8.46 OR - Logical Inclusive OR
	8.46.1 Operation

	8.47 POP - Pop a Doubleword from the Stack
	8.47.1 Operation

	8.48 POPFD - Pop Stack into EFLAGS Register
	8.48.1 Operation

	8.49 PUSH - Push a Doubleword onto the Stack
	8.50 PUSHFD - Push EFLAGS onto the Stack
	8.50.1 Operation

	8.51 RCL/RCR - Rotate Through Carry
	8.52 RET - Return from Procedure
	8.52.1 Operation

	8.53 ROL/ROR - Rotate
	8.54 SAL/SAR - Shift Arithmetic
	8.55 SBB - Integer Subtraction with Borrow
	8.55.1 Operation

	8.56 SHL/SHR - Shift
	8.57 SIDT - Store Interrupt Descriptor Table Register
	8.57.1 Description
	8.57.2 Exceptions

	8.58 STC - Set Carry Flag
	8.58.1 Operation

	8.59 STI - Set Interrupt Flag
	8.59.1 Operation

	8.60 SUB - Subtract
	8.60.1 Operation

	8.61 TEST - Logical Compare
	8.61.1 Description
	8.61.2 Operation

	8.62 UD2 - Undefined Instruction
	8.62.1 Exceptions

	8.63 XOR - Logical Exclusive OR
	8.63.1 Operation

	Appendix A Porting From IA
	A.1 PUSHA
	A.2 POPA
	A.3 XCHG
	A.4 Instruction Prefixes
	A.5 INT and INT3
	A.6 Interrupt Descriptors
	A.7 IO Instructions
	A.8 EFLAGS
	A.9 Exceptions
	A.10 Segmentation

	Appendix B IOAPIC Programming Examples
	B.1 Masking Interrupts

