

Document Number: 335148-001

Enabling Multi-COM Port for Microsoft

Windows OS 8.1 & 10 / IoT Core

White Paper

October 2016

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

2 Document Number: 335148-001

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 3

Contents

1.0 Executive Summary .. 5

2.0 Background ... 6

2.1 Differences between SerCx2.sys and Serial.sys .. 6

3.0 SerCx2 Framework Overview ... 8

4.0 Implement Multi-COM Port ..10

4.1 Create COM Port Peripheral Device at BIOS ... 10

4.2 Build Peripheral Driver for COM Port .. 12

4.2.1 File Manifest .. 12
4.2.2 Driver Interfaces .. 12
4.2.3 System Requirements for Compiling Driver.. 13
4.2.4 Driver Installation ... 14

5.0 Serial Communication with COM Port ..15

5.1 RS-232 Serial COM Protocol ... 15

5.2 USB Serial Port - FT232R .. 16

5.3 User Application for Serial Communication .. 17

5.3.1 ExtraPutty ... 18

6.0 References ...19

Figures

Figure 1. SerCx2 Serial Framework Diagram ... 8
Figure 2. Device Manager View of New COM Port ... 14
Figure 3. HSUART Level Shift Circuit from 1.8V to 3.3V ... 16
Figure 4. RS-232 Voltage Level Convert Circuit .. 16
Figure 5. FT232 Module Picture .. 17
Figure 6. Putty Configuration ... 17

Tables

Table 1. Terminology .. 7
Table 2. File Manifest ... 12
Table 3. Implementation for I/O Request Callback Function ... 13
Table 4. Support IOCTL Command List ... 13
Table 5. RS-232 Logic and Voltage Levels .. 15
Table 6. Intel HSUART Interface Signals .. 15

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

4 Document Number: 335148-001

Revision History

Date Revision Description

October 2016 1.0 Initial release.

§

Executive Summary

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 5

1.0 Executive Summary

COM port is a popular communication interface with customers and end-users.

Although an Intel LPSS IO processor component includes 2-4 HSUART devices,

HSUART has not been enumerated as a COM port device since Windows 8.

This paper presents a complete solution for enumerating a HSUART device as a typical

RS-232 COM port device on Windows 8.1, Windows 10 and Windows 10 IoT Core. It

addresses software and hardware changes, providing key information to end-users to

improve their products.

 §

Background

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

6 Document Number: 335148-001

2.0 Background

A Serial (COM) port is a hardware communication interface on a serial controller, which

is a 16550 UART or compatible device. Through COM port, a serial controller

communicates with a serially connected peripheral device. All versions of Windows

provide driver support for serial controller devices. Windows includes the Serial.sys and

Serenum.sys, and SerCx and SerCx2.

Starting with Windows 8.1, (included Windows 10), Versions 2 of serial framework

extension (SerCx2) are used to assist an extension-based serial controller driver by

handling many of the processing tasks that are common to serial controllers. However,

this framework makes a serial controller driver unable to enumerate UART or HSUART

as a typical COM port device, even though these ports conform to the RS-232 standard.

2.1 Differences between SerCx2.sys and Serial.sys

Serial.sys is designed to control named COM ports that are driven by 16550A or similar

UARTs. External peripheral devices can be dynamically plugged into and removed from

these ports. In principle, Serial.sys could use the system DMA controller, but, in a PC,

this controller is an 8237 device with limited capabilities. A multiport board, which

implements several serial ports, might contain a master DMA controller, but the

hardware vendor for the board must write a custom serial driver to exploit these DMA

capabilities.

Serial interfaces are now widely used to provide low-pin-count communication

between integrated circuits on a printed circuit board. Data transmission rates through

these interfaces can be relatively high due to the low impedance and short path lengths

involved.

SerCx2.sys is designed to work with dedicated serial ports that are permanently

connected to peripheral devices and that support high data rates. SerCx2.sys is flexible

in its support for DMA. Complex data transfers that use system DMA are fully

supported. In addition, SerCx2.sys provides an optional custom transfer mode to

support a serial controller that has built-in bus-master DMA capability.

A COM port controlled by Serial.sys is assigned with a device name. A user-mode

application can open this port by name, and then send I/O requests directly to the port.

In contrast, a serial port controlled by SerCx2.sys and a serial controller driver is

unnamed. Typically, only the slave driver can send I/O requests directly to the port. An

application that needs to configure the port or to transfer data through the port sends

I/O requests to the slave driver. Then, acting as intermediary, this driver sends the

corresponding I/O requests to the port.

Background

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 7

Another difference is that Serial.sys implements software flow control, but SerCx2.sys

does not. Both Serial.sys and SerCx2.sys support hardware flow control using the RTS

and CTS signals.

A final difference is that Serial.sys can work in conjunction with Serenum.sys, but

SerCx2.sys cannot. Serenum.sys is a filter driver that enumerates devices that are

connected to serial ports.

Table 1. Terminology

Term Description

(HS)UART (High Speed) Universal Asynchronous Receiver/Transmitter

RS-232 A standard for serial communication transmission of data

IOCTL I/O Control Request

COM Serial Communication Port

TTL Transistor-transistor Logic

ACPI Advanced Configuration and Power Interface

ASL ACPI Source Language

SerCx2 Version 2 of Serial Framework Extension

RTS/CTS Request To Send / Clear To Send

DTR/DSR Data Terminal Ready / Data Set Ready

TXD/RXD Transmit Data / Receive Data

§

SerCx2 Framework Overview

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

8 Document Number: 335148-001

3.0 SerCx2 Framework Overview

SerCx2 works together with a serial controller driver to enable communication between

a peripheral driver and a serially connected peripheral device.

The following diagram shows the working framework of SerCx2.

Figure 1. SerCx2 Serial Framework Diagram

This peripheral driver runs in either kernel mode or user mode, and sends I/O requests

to the serial port to which the peripheral device is connected. The COM port device is a

peripheral device, and the related peripheral driver is sub-device driver of HSUART.

Once the sub-device driver is implemented, additional COM port devices based on HS-

UART can be used. These COM port devices are connected by wire to the HS-UART port

of SOC.

SerCx2 and the HSUART controller driver both run in kernel mode, and communicate

with each other through the SerCx2 device-driver interface (DDI). Typically, only drivers

send I/O requests directly to the HSUART controller. When a user-mode application,

such as Putty or Extra Putty, needs to communicate with a serially connected peripheral

device, the peripheral driver for the device acts as intermediary between the

SerCx2 Framework Overview

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 9

application and the device. If the application needs to transfer data to or from the

peripheral device, the application sends a write request or read request to the

peripheral driver, and the peripheral driver responds by sending a corresponding write

and read request to the HSUART controller. In addition, the peripheral driver can send

device I/O control requests (IOCTLs) to configure the serial port.

The peripheral device is our sub-device for HSUART; the peripheral driver is sub-device

driver for this COM port device.

The next chapter introduces sub-device and sub-device driver for HSUART, which band

together to implement multi-COM port on Windows OS 8.1 and 10 IoT Core.

§

Implement Multi-COM Port

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

10 Document Number: 335148-001

4.0 Implement Multi-COM Port

This section presents the complete solution for enabling multi-COM port with HSUART.

As described in the previous chapter, two important parts must be implemented. First,

create a COM port peripheral device. Even though this device is not a real physical

device, the ACPI description for this COM port device must be included in the BIOS

ACPI table. Second, on the software side, the related driver for this serial peripheral

device should support the basic interface of SerCx2.

4.1 Create COM Port Peripheral Device at BIOS

The peripheral device for COM port is virtual hardware. The BIOS must assign a unique

ACPI Hardware ID for this special peripheral device and store it in its ACPI table.

The default Hardware IDs (INT3511 and INT3512) used here are Intel HS-UART COM

port peripheral device IDs.

The following sample ASL code is used to define the description of the ACPI table for

“COM port for HSUART1”:

Device (VUT0)

{

 Name (_HID, "INT3511") // _HID: Hardware ID

 Method (_STA, 0, NotSerialized) // _STA: Status

 {

 If ((BDID == CHRB))

 {

 If (_OSI ("Android"))

 {

 Return (Zero)

 }

 Else

 {

 Return (0x0F)

 }

 }

 Else

 {

 Return (Zero)

 }

 }

 Method (_CRS, 0, NotSerialized) // _CRS: Current

 Resource Settings

 {

 Name (BBUF, ResourceTemplate ()

 {

 UartSerialBus (0x0001C200,

Implement Multi-COM Port

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 11

 DataBitsEight, StopBitsOne,

 0xFC, LittleEndian, ParityTypeNone,

 FlowControlNone,

 0x0020, 0x0020, "_SB.PCI0.URT1",

 0x00, ResourceConsumer, ,

)

 })

 Return (BBUF) /* _SB_.PCI0.URT1.VUT0._CRS.BBUF */

 }

}

The following sample ASL code is used to define the description of the ACPI table for

“COM port for HSUART2”:

Device (VUT1)

{

 Name (_HID, "INT3512") // _HID: Hardware ID

 Method (_STA, 0, NotSerialized) // _STA: Status

 {

 If ((BDID == CHRB))

 {

 If (_OSI ("Android"))

 {

 Return (Zero)

 }

 Else

 {

 Return (0x0F)

 }

 }

 Else

 {

 Return (Zero)

 }

 }

 Method (_CRS, 0, NotSerialized) // _CRS: Current

 Resource Settings

 {

 Name (BBUF, ResourceTemplate ()

 {

 UartSerialBus (0x0001C200,

 DataBitsEight, StopBitsOne,

 0xFC, LittleEndian, ParityTypeNone,

 FlowControlHardware,

 0x0020, 0x0020, "_SB.PCI0.URT2",

 0x00, ResourceConsumer, ,

)

 })

Implement Multi-COM Port

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

12 Document Number: 335148-001

 Return (BBUF) /* _SB_.PCI0.URT2.VUT1._CRS.BBUF */

 }

}

Note: When HSUART controller is in PCI mode, the parameter 10 of UartSerialBus

should be “_SB.PCI0.URT2”. For ACPI mode, it should be “_SB.URT2”.

Note: For more information about UartSerialBus functionality, refer to Section 6.0

References.

4.2 Build Peripheral Driver for COM Port

4.2.1 File Manifest

The source files listed in Table 2 are located in the “Sub Device Driver Sample

Code\UartSample” folder. These files are used to build the UART sub-device driver.

Table 2. File Manifest

File Description

Device.c & Device.h WDFDEVICE related functionality and callbacks.

Driver.c & Driver.h DriverEntry and WDFDRIVER related functionality and callbacks.

Public.h Header file to be shared with applications.

Queue.c & Queue.h WDFQUEUE related functionality and callbacks.

Trace.h Definitions for WPP tracing.

UartSample.inf Sample INF file that contains installation information for this sub-device
driver.

4.2.2 Driver Interfaces

This driver uses the Microsoft Kernel Mode Driver Framework. It provides functions for

the user application and help application to send I/O requests to the SerCx2

framework. The requests are handled by the HSUART controller.

For example, ReadFile calls the EvtIoRead request; WriteFile calls EvtIoWrite;

DeviceIoControl calls EvtIoDeviceControl, and so on.

Table 3 lists callback functions which are implemented at this HSUART Sub-device

driver.

Implement Multi-COM Port

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 13

Table 3. Implementation for I/O Request Callback Function

I/O Request Callback API Callback Implementation

PFN_WDF_IO_QUEUE_IO_WRITE

EvtIoWrite

UartSampleEvtIoWrite

PFN_WDF_IO_QUEUE_IO_READ

EvtIoRead

UartSampleEvtIoRead

PFN_WDF_IO_QUEUE_IO_DEVICE_CONTROL
EvtIoDeviceControl

UartSampleEvtIoDeviceControl

PFN_WDF_IO_QUEUE_IO_STOP
EvtIoStop

UartSampleEvtIoStop

PFN_WDF_IO_QUEUE_IO_CANCELED_ON_QUEUE
EvtIoCanceledOnQueue

UartSampleEvtIoCanceledOnQueue

Note: For more information about the serial I/O request interface, refer to:

https://msdn.microsoft.com/en-us/library/ff552359(VS.85).aspx

During data transfer by the serial communication interface, some IOCTL command are

very important to configure HSUART working parameters. This serial communication

interface is implemented at the UartSampleEvtIoDeviceControl callback function.

In the current Sub-device driver, we only implement part of SerCx2 serial interface.

Table 4 list the IOCTLs.

Table 4. Support IOCTL Command List

IOCTL_UARTTESTTOOL_OPEN IOCTL_UARTTESTTOOL_CLOSE

IOCTL_SERIAL_SET_BAUD_RATE IOCTL_SERIAL_GET_BAUD_RATE

IOCTL_SERIAL_SET_MODEM_CONTROL IOCTL_SERIAL_GET_MODEM_CONTROL

IOCTL_SERIAL_SET_LINE_CONTROL IOCTL_SERIAL_GET_LINE_CONTROL

IOCTL_SERIAL_SET_CHARS IOCTL_SERIAL_GET_CHARS

IOCTL_SERIAL_SET_HANDFLOW IOCTL_SERIAL_GET_HANDFLOW

IOCTL_SERIAL_GET_MODEMSTATUS IOCTL_SERIAL_GET_DTRRTS

IOCTL_SERIAL_GET_MODEMSTATUS IOCTL_SERIAL_GET_COMMSTATUS

IOCTL_SERIAL_GET_PROPERTIES IOCTL_SERIAL_SET_FIFO_CONTROL

IOCTL_SERIAL_GET_STATS IOCTL_SERIAL_CLEAR_STATS

IOCTL_SERIAL_PURGE IOCTL_SERIAL_SET_TIMEOUTS

Note: For more information about the serial I/O request interface, refer to:

https://msdn.microsoft.com/en-us/library/windows/hardware/dn265347(v=vs.85).aspx

4.2.3 System Requirements for Compiling Driver

 Microsoft Visual Studio* 2012 or higher

https://msdn.microsoft.com/en-us/library/ff552359(VS.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn265347(v=vs.85).aspx

Implement Multi-COM Port

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

14 Document Number: 335148-001

 Microsoft Windows* Driver Kit (WDK) Version 8.0 or higher

4.2.4 Driver Installation

For probing the COM Port peripheral device in the driver, the Hardware IDs shown in

the driver’s .inf file (INT3511 and INT3512) should be identical with the IDs defined in

the BIOS device description of the ACPI table.

%UartSample.DeviceDesc%=UartSample_Device, ACPI\INT3511; TODO:

edit hw-id

%UartSample.DeviceDesc%=UartSample_Device, ACPI\INT3512; TODO:

edit hw-id

Because the sub-device driver depends on the HSUART controller driver before

installing the sub-device driver, ensure that the HSUART host controller driver has

already been installed successfully.

Figure 2 illustrates how the new COM port devices are available and displayed under

the HSUART controller in Device Manager, after installing the HSUART sub-device

driver successfully.

Figure 2. Device Manager View of New COM Port

Note: After clicking “View” and selecting “Devices by Connection”, the Device Manager

will display above view.

§

Serial Communication with COM Port

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 15

5.0 Serial Communication with COM Port

When transferring data via the serial communication port between two ends, the

important rule is that the identical signal protocol will be used at two serial

communication ends. The most common serial communication protocol is RS-232. A

more popular and widely used chip, the FT232R, is the converter between the USB and

UART interface. This chip can also implement serial communication.

5.1 RS-232 Serial COM Protocol

The RS-232 standard defines the voltage levels that correspond to logical one and

logical zero levels for the data transmission and the control signal lines. Valid signals

are either in the range of +3 to +15 volts or the range -3 to -15 volts with respect to the

“Common Ground” GND pin. Consequently, the range between -3 to +3 volts is not a

valid RS-232 level. For data transmission lines (TXD, RXD), logic one is defined as a

negative voltage. The signal condition is called “mark”. Logic zero is positive and the

signal condition is termed “space”. Control signals have the opposite polarity: the

asserted or active state is positive voltage and de-asserted or inactive state is negative

voltage.

Table 5. RS-232 Logic and Voltage Levels

Data Circuits Control Signals Voltage

0 (space) Asserted/Active +3 to +15 V

1 (mark) Deasserted/Inactive -15 to -3 V

However, the HS-UART signal from the Intel SOC chip belongs to the TTL signal. The

HSUART interface signal output voltage should be 1.8 V.

Table 6. Intel HSUART Interface Signals

Signal Name Direction /
Type

Voltage Description

Hsuart_rxd I 1.8 v High-Speed UART receive data input

Hsuart_txd O 1.8 v High-Speed UART transmit data output

Hsuart_rts O 1.8 v High-Speed UART request to send

Consequently, when we need to connect to the RS-232 serial peripheral device via our

new COM port base on HSUART, there are two important circuits that should be wired

to the Intel HSUART output pin. The first is Voltage Level Shift Circuit, whose

responsibility is to convert output voltage from 1.8 Volts to 3.3 Volts. See Figure 3 for

an example of this circuit.

Serial Communication with COM Port

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

16 Document Number: 335148-001

Figure 3. HSUART Level Shift Circuit from 1.8V to 3.3V

Second circuit should convert TTL voltage to the RS-232 voltage level to meet the RS-

232 standard. See Figure 4 for an example of this circuit.

However, when serial communication is between two identical TTL voltage devices, the

RS-232 converter circuit can be left out. When we connect by loop two SOC's HS-UART

interfaces without a converter circuit, the serial communication can still work well.

Figure 4. RS-232 Voltage Level Convert Circuit

5.2 USB Serial Port - FT232R

The FT232R is a USB to serial UART interface, as shown Figure 5. The left side

interfaces, such VCC/GND/TXD/RXD/RTS/CTS, could be 5V/3.3V/2.8V/1.8V CMOS drive

output and TTL input. Consequently, Intel SOC chip HSUART interfaces are able to

Serial Communication with COM Port

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 17

connect to these pins. The USB port is connected to the other host device. This

connection method is the common circuit to design for a USB debug port on a platform

layout. The FT232 driver should be installed successfully to the host machine. After

that, the debug message can be outputted and displayed via the debug COM port.

Figure 5. FT232 Module Picture

5.3 User Application for Serial Communication

In this section, the user applications’ usage examples are introduced, such as Putty and

Extra-Putty.

For more information about Putty, see http://www.putty.org/.

The following represents a basic Putty configuration that could be used to operate a

user application.

Figure 6. Putty Configuration

As shown in the figure above, when opening a COM port for serial communication,

parameters such as transfer speed, data bits, stop bits, parity and flow control must be

set.

http://www.putty.org/

Serial Communication with COM Port

Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

White Paper October 2016

18 Document Number: 335148-001

5.3.1 ExtraPutty

For complete information about ExtraPutty, go to http://www.extraputty.com/.

Extra Putty has the same configuration as Putty. Compared to Putty, ExtraPutty is able

to transfer a file by following the XMODEM/YMODEM/ZMODEM rule.

§

http://www.extraputty.com/

References

 Enabling Multi-COM Port for Microsoft Windows OS 8.1 & 10 / IoT Core

October 2016 White Paper

Document Number: 335148-001 19

6.0 References

https://msdn.microsoft.com/en-us/library/windows/hardware/ff546939(v=vs.85).aspx

http://www.acpi.info/spec.htm

https://msdn.microsoft.com/en-us/library/windows/hardware/dn265347(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff546939(v=vs.85).aspx
http://www.acpi.info/spec.htm
https://msdn.microsoft.com/en-us/library/windows/hardware/dn265347(v=vs.85).aspx

