
R

Intel® Ethernet Controller E810
Application Device Queues (ADQ)
Configuration Guide

NEX Cloud Networking Group (NCNG)

Rev. 2.8

March 2023

Doc. No.: 609008, Rev.: 2.8

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

This document (and any related software) is Intel copyrighted material, and your use is governed by the express license under which it is provided to
you. Unless the license provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this document (and related
materials) without Intel's prior written permission. This document (and related materials) is provided as is, with no express or implied warranties, other
than those that are expressly stated in the license.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

Copyright © 2020–2023, Intel Corporation. All rights reserved.

R

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
2 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0

Contents

Revision History..5

1.0 Fixed and Known Issues - Read First.. 10
1.1 Fixed Issues...10

1.1.1 ADQ PF Issues..10
1.1.2 ADQ Setup Script Issues.. 10
1.1.3 ADQ VF Issues..11

1.2 Known Issues...11
1.2.1 ADQ PF Known Issues..11
1.2.2 ADQ Setup Script Known Issues..13
1.2.3 ADQ VF Known Issues... 13

2.0 Introduction..14
2.1 ADQ Overview..14
2.2 ADQ Reference... 16

3.0 ADQ Requirements..17
3.1 Hardware Requirements...17
3.2 Software Requirements..17

4.0 ADQ System Under Test (SUT) Installation... 19
4.1 Install OS.. 19
4.2 Update Kernel (If Needed)... 21
4.3 Install ice Driver with ADQ Flags... 23
4.4 Install iproute2 (Update If Needed)... 24
4.5 Install cgroup Packages (If Needed).. 25

5.0 General System Tuning... 26

6.0 ADQ Setup Using ADQ Setup Script... 31
6.1 ADQ Setup Script Prerequisites...31
6.2 ADQ Setup Script Installation... 33
6.3 ADQ Setup Script Usage.. 33

7.0 ADQ Configuration on SR-IOV Virtual Functions..37
7.1 General SUT Configuration for VFs...37
7.2 SUT Configuration Bare Metal VF...39
7.3 SUT Configuration VF Inside a VM... 41
7.4 ADQ VF Configuration..43

8.0 Troubleshooting..45

9.0 Testing ADQ with Netperf... 46
9.1 Installation and Configuration – Both Systems.. 46
9.2 netperf Server..48
9.3 netperf Client... 50

10.0 Testing ADQ with Redis...53
10.1 Redis Server Setup..53
10.2 Redis Clients (non-ADQ) Configuration... 56

RContents—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 3

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

11.0 Testing ADQ with Memcached/rpc-perf.. 60
11.1 Memcached Server Setup...60
11.2 Memcached/rpc-perf Clients (non-ADQ) Configuration..65

12.0 Testing ADQ with NGINX...67
12.1 NGINX Server Setup..67
12.2 wrk Clients Configuration... 74

13.0 Testing ADQ with AF_XDP...76
13.1 AF_XDP Server Configuration..77
13.2 Traffic Generator Example Configuration (Non-ADQ).. 81

13.2.1 Traffic Pattern to Be Generated... 81
13.2.2 Example: Running DPDK-pktgen Traffic.. 81

14.0 Testing ADQ with Apache Traffic Server (ATS)..86
14.1 ATS Server Setup..86
14.2 Vegeta Clients Configuration...94

15.0 Testing ADQ with VirtIO..96
15.1 Installation and Configuration - Both Systems...96
15.2 Run the Traffic.. 103

Appendix A ADQ Configuration Reference (Manual)..104
A.1 ADQ Configuration on SUT... 104

A.1.1 Adapter Preparation.. 104
A.1.2 Configure ADQ Traffic Class (TC) on SUT.. 107
A.1.3 Independent Pollers (Optional)..115
A.1.4 Apply Adapter Tuning...121
A.1.5 Configure Symmetric Queues..122
A.1.6 Configure Intel® Ethernet Flow Director Settings... 123
A.1.7 Set cgroup Priority for Application Network Traffic (If Needed).......................125
A.1.8 Verify ADQ Application Traffic and Independent Pollers (If Applicable).............129
A.1.9 Clear the ADQ Configuration...130

R ADQ—Contents

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
4 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Revision History

Revision Date Comments

2.8 March 20, 2023 Updates include the following:
• Renamed Fixed and Known Issues - Read First.
• Added Fixed Issues.
• Added ADQ PF Known Issues.
• Renamed ADQ Setup Script Known Issues.
• Renamed and updated ADQ VF Known Issues.
• Updated Introduction.
• Updated Software Requirements.
• Updated Install OS.
• Updated Update Kernel (If Needed).
• Updated Install cgroup Packages (If Needed).
• Renamed and moved ADQ Setup Using ADQ Setup Script to

chapter level. Updated content including new subsections.
• Updated ADQ Configuration on SR-IOV Virtual Functions.
• Updated ADQ VF Configuration.
• Updated Testing ADQ with Netperf.
• Updated Installation and Configuration – Both Systems.
• Updated netperf Server.
• Updated netperf Client.
• Updated Testing ADQ with Redis.
• Updated Redis Server Setup.
• Updated Redis Clients (non-ADQ) Configuration.
• Updated Testing ADQ with Memcached/rpc-perf.
• Updated Memcached Server Setup.
• Updated Memcached/rpc-perf Clients (non-ADQ)

Configuration.
• Updated Testing ADQ with NGINX.
• Updated NGINX Server Setup.
• Updated Testing ADQ with AF_XDP.
• Updated NGINX Server Setup.
• Updated Example: Running DPDK-pktgen Traffic.
• Updated ATS Server Setup.
• Moved ADQ Configuration on SUT and subsections to

Appendix.
• Removed Appendix "TC Reference".

2.7 November 2, 2022 Updates include the following:
• Updated "Known Issues ADQ Configuration Script".
• Updated Introduction.
• Updated Hardware Requirements.
• Updated Software Requirements.
• Updated Install OS.
• Updated Update Kernel (If Needed).
• Updated Install ice Driver with ADQ Flags.
• Updated General System Tuning.
• Updated ADQ Configuration on SUT.
• Updated Adapter Preparation.

continued...

RRevision History—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 5

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Revision Date Comments

• Updated Create TCs.
• Updated TC Filtering.
• Updated Configure Independent Pollers.
• Updated Set cgroup Priority for Application Network Traffic (If

Needed).
• Updated Clear the ADQ Configuration.
• Updated ADQ Setup Script Usage.
• Updated ADQ VF Configuration.
• Updated Troubleshooting.
• Updated netperf Server.
• Updated netperf Client.
• Updated Redis Server Setup.
• Updated Redis Clients (non-ADQ) Configuration.
• Updated Memcached Server Setup.
• Updated Memcached/rpc-perf Clients (non-ADQ)

Configuration.
• Updated NGINX Server Setup.
• Updated wrk Clients Configuration.
• Updated AF_XDP Server Configuration.
• Added section, Testing ADQ with Apache Traffic Server (ATS).
• Updated appendix, "Clear the ADQ Configuration".

2.6 July 29, 2022 Updates include the following:
• Updated "Known Issues".
• Added new section, "Known Issues ADQ Configuration Script.
• Updated "ADQ Overview".
• Updated "Software Requirements".
• Updated "Install OS".
• Updated "Update Kernel (If Needed)".
• Updated "Install iproute2 (Update If Needed)".
• Updated "Install cgroup Packages (If Needed)".
• Moved "General System Tuning".
• Updated "ADQ Configuration on SUT".
• Moved "Adapter Preparation".
• Updated "Configure ADQ Traffic Class (TC) on SUT".
• Updated "Create TCs".
• Updated "TC Filtering".
• Updated "Confirm TC Configuration".
• Added new section, "Independent Pollers (Optional)".
• Updated "Apply Adapter Tuning".
• Updated "Configure Intel Ethernet Flow Director Settings".
• Updated "Set cgroup Priority for Application Network Traffic (If

Needed)".
• Updated "Verify ADQ Application Traffic and Independent

Pollers (If Applicable)".
• Updated "Clear the ADQ Configuration".
• Added new section, "ADQ Setup Using ADQ Configuration

Script".
• Updated "Testing ADQ with Netperf".
• Updated "Installation and Configuration – Both Systems".
• Updated "netperf Server".
• Updated "netperf Client".
• Updated "Testing ADQ with Redis".
• Updated "Redis Server Setup".
• Updated "Testing ADQ with Memcached/rpc-perf".
• Updated "Memcached Server Setup".

continued...

R ADQ—Revision History

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
6 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Revision Date Comments

• Updated "Testing ADQ with NGINX".
• Updated "Testing ADQ with AF_XDP".
• Updated "AF_XDP Server Configuration".
• Updated "TC Creation on Interface".
• Added new section, "TCP: Source IP + L4 Source Port".
• Updated "View All Filters".
• Updated "Clear the ADQ Configuration".

2.5 June 15, 2022 Updates include the following:
• Updated Section 1.0, “Known Issues - Read First”.
• Updated Section 4.1, “Install OS”.
• Updated Section 4.2, “Update Kernel (If Needed)”.
• Updated Section 5.1, “General System Tuning”.
• Updated Section 5.2, “Adapter Preparation”.
• Updated Section 6.1, “Configure ADQ Traffic Class (TC) on

SUT”.
• Updated Section 6.1.2, “TC Filtering”
• Updated Section 6.4, “Configure Intel® Ethernet Flow Director

Settings”.
• Updated Section 6.5, “Set cgroup Priority for Application

Network Traffic”.
• Updated Section 6.7, “Clear the ADQ Configuration”.
• Updated Section 7.2, “SUT Configuration Bare Metal VF”.
• Updated Section 7.3, “SUT Configuration VF Inside a VM”.
• Updated Section 9.2, “netperf Server”.
• Updated Section 9.3, “netperf Client”.
• Updated Section 10.1, “Redis Server Setup”.
• Updated Section 11.1, “Memcached Server Setup”.
• Updated Section 12.1, “NGINX Server Setup”.
• Updated Section 13.1, “AF_XDP Server Configuration”.
• Updated Section A.1, “TC Creation on Interface”.
• Updated Section A.2.1, “Definitions”.
• Updated Section A.3.1, “Clear the ADQ Configuration”.

2.4 December 20, 2021 Updates include the following:
• Updated Section 1.0, “Known Issues - Read First”.
• Updated Section 3.2, “Software Requirements”.
• Updated Section 4.2, “Update Kernel (If Needed)”.
• Updated Section 5.2, “Adapter Preparation”.
• Updated Section 6.7, “Clear the ADQ Configuration”.
• Updated Section 7.2, “SUT Configuration Bare Metal VF”.
• Updated Section 7.3, “SUT Configuration VF Inside a VM”.
• Updated Section 8.0, “Troubleshooting”.
• Updated Section 9.2, “netperf Server”.
• Updated Section 9.3, “netperf Client”.
• Updated Section 12.2, “wrk Clients Configuration”.
• Added Section 13.0, “Testing ADQ with AF_XDP”.
• Updated Section A.3.1, “Clear the ADQ Configuration”.

2.3 September 2, 2021 Updates include the following:
• Updated Section 1.0, “Known Issues - Read First”.
• Added Section 2.2, “ADQ Reference”.
• Updated Section 4.2, “Update Kernel (If Needed)”.
• Updated Section 4.3, “Install ice Driver with ADQ Flags”.
• Updated Section 5.2, “Adapter Preparation”.
• Updated Section 6.2, “Apply Adapter Tuning”.

continued...

RRevision History—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 7

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Revision Date Comments

• Updated Section 6.3, “Configure Symmetric Queues”.
• Updated Section 6.4, “Configure Intel® Ethernet Flow Director

Settings”.
• Updated Section 6.5, “Set cgroup Priority for Application

Network Traffic”.
• Updated Section 6.6, “Verify ADQ Application Traffic”.
• Updated Section 6.7, “Clear the ADQ Configuration”.
• Updated Section 7.2, “SUT Configuration Bare Metal VF”.
• Updated Section 7.3, “SUT Configuration VF Inside a VM”.
• Added Section 8.0, “Troubleshooting”.
• Updated Section 9.0, “Testing ADQ with Netperf”.
• Updated Section 10.0, “Testing ADQ with Redis”.
• Updated Section 11.0, “Testing ADQ with Memcached/rpc-

perf”.
• Updated Section 12.0, “Testing ADQ with NGINX”.
• Updated Appendix A, “TC Reference”.

2.2 March 19, 2021 Updates include the following:
• Updated Section 1.0, “Known Issues - Read First”.
• Updated Section 3.2, “Software Requirements”.
• Updated Section 4.1, “Install OS”.
• Updated Section 4.2, “Update Kernel (If Needed)”.
• Updated Section 4.4, “Install iproute2 (Update If Needed)”.
• Updated Section 5.2, “Adapter Preparation”.
• Updated Section 6.1.1, “Create TCs”.
• Updated Section 6.1.2, “TC Filtering”.
• Updated Section 6.1.2.1, “TC Filtering Requirements”.
• Updated Section 6.1.3, “Confirm TC Configuration”.
• Updated Section 6.4, “Configure Intel® Ethernet Flow Director

Settings”.
• Updated Section 6.5, “Set cgroup Priority for Application

Network Traffic”.
• Added Section 6.6, “Verify ADQ Application Traffic”.
• Added Section 6.7, “Clear the ADQ Configuration”.
• Updated Section 7.4, “ADQ VF Configuration”.
• Updated Section 9.1, “Installation and Configuration - Both

Systems”.
• Updated Section 9.2, “netperf Server”.
• Updated Section 9.3, “netperf Client”.
• Updated Section 10.1, “Redis Server Setup”.
• Updated Section 10.2, “Redis Clients (non-ADQ)

Configuration”.
• Updated Section 11.1, “Memcached Server Setup”.
• Updated Section 11.2, “Memcached/rpc-perf Clients (non-

ADQ) Configuration”.
• Updated Section 12.1, “NGINX Server Setup”.
• Updated Section A.1, “TC Creation on Interface”.
• Updated Section A.1.1, “TC Minimum Rate Creation”.
• Updated Section A.1.2, “TC Maximum Rate Creation”.
• Updated Section A.1.3, “TC Minimum and Maximum Rate

Creation”.
• Updated Section A.2.2, “TCP: Dest IP + L4 Dest Port”.
• Updated Section A.2.3, “TCP:DEST IP + L4 Source Port”.
• Updated Section A.2.5, “View All Filters”.
• Updated Section A.3.1, “Clear the ADQ Configuration”.
• Added Section A.3, “Post-Testing Steps”.

continued...

R ADQ—Revision History

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
8 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Revision Date Comments

2.1 October 8, 2020 Updates include the following:
• Updated Section 2.1, “ADQ Overview”.
• Updated Section 4.2, “Update Kernel (If Needed)”.
• Updated Section 5.2, “Adapter Preparation”.
• Updated Section 6.1.1, “Create TCs”.
• Updated Section 9.2, “netperf Server”.
• Updated Section 9.3, “netperf Client”.
• Updated Section 10.1, “Redis Server Setup”.
• Updated Section 10.2, “Redis Clients (non-ADQ)

Configuration”.
• Updated Section 11.1, “Memcached Server Setup”.
• Updated Section 11.2, “Memcached/rpc-perf Clients (non-

ADQ) Configuration”.
• Updated Section 12.1, “NGINX Server Setup”.

2.01 July 28, 2020 Initial public release.

Note: 1. There are no previous publicly-available versions of this document.

RRevision History—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 9

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

1.0 Fixed and Known Issues - Read First

The code contains the following fixed and known issues.

Fixed Issues

ADQ PF Issues

• ice driver version 1.1.x can create unnecessary Linux kernel (kworker) threads,
under certain workloads with an uncabled port on an E810 Network Interface Card
(NIC) port. This can increase CPU utilization, which might impact ADQ
performance.

Mitigation: Use ice driver version 1.2.1 or later.

• VXLAN stateless offloads (checksum, TSO) and TC filters directing traffic to a
VXLAN interface are not supported with Linux v5.9 or later, using older versions of
the ice driver.

Mitigation: Use ice driver version 1.9.7 or later.

• ADQ configuration commands that update settings on the interface (i.e., tc
qdisc add and ethtool -L) cause the driver to close the associated RDMA
interface and reopen it. This disrupts RDMA traffic on the interface. RDMA and
ADQ configurations are not supported on the same interface simultaneously.

• When TCs are created, deleted, then recreated, Intel® Ethernet Flow Director
might not work as expected. To recover, reload ice driver and reapply ADQ
configuration.

Mitigation: Use ice driver version 1.5.8 or later.

• The ice driver can return an error when trying to create TC filters using ipv6 filter
rules.

Mitigation: Use ice driver version 1.9.7 or later.

ADQ Setup Script Issues

None

1.1

1.1.1

1.1.2

R ADQ—Fixed and Known Issues - Read First

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
10 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ADQ VF Issues

• When ADQ is enabled on VFs, TC filters on the VF TC0 (default TC) are not
supported and do not pass traffic. It is not expected to add TC filters to TC0 since
it is reserved for non-filtered default traffic.

• When TC offload is disabled on a VF interface, the iavf driver allows ADQ
configuration steps to add TCs and TC filters to the VF interface. Expected
behavior is for the iavf driver to return an error message if hw-tc-offload is set to
off.

Mitigation: Enable the hw-tc-offload flag on the VF interface:

ethtool -K $vf_iface hw-tc-offload on

• When ADQ is enabled on a VF interface, the tc qdisc add command causes the VF
connection (ping) to drop when using ice-1.8.x and iavf-4.4.x

Mitigation: Use previous versions of the ice and iavf drivers for ADQ VF
(ice-1.7.16 with iavf-4.3.19).
.

• Configuring ADQ traffic classes with an odd number of HW queues on a VF
interface might result in system hang in the iavf driver.

Mitigation: Configure even number of queues in the tc qdisc add dev command.

• TC VF filters do not correctly handle ADQ filter queues, causing ADQ SR-IOV
application traffic to be directed to hardware queue(s) in the default traffic class
(TC0).

Mitigation: Use ice driver version 1.6.4 or later.

Known Issues

ADQ PF Known Issues

• Latest RHEL* and SLES* distributions have kernels with back-ported support for
Application Device Queues (ADQ). For all other OS distributions, you must use LTS
Linux kernel v4.19.58 or higher to use ADQ. The latest out-of-tree driver is
required for ADQ on all operating systems. For more details, see Software
Requirements and Install OS.

• ADQ configuration must be cleared following the steps in Clear the ADQ
Configuration. The following issues might result if steps are not executed in the
correct order:

— Removing a Traffic Class (TC) qdisc prior to deleting a TC filter will cause the
qdisc to be deleted from hardware and leave an unusable TC filter in software.

— Deleting a ntuple rule after deleting the TC qdisc, then re-enabling ntuple,
might leave the system in an unusable state that requires a forced reboot to
clear.

Mitigation: Follow the steps in Clear the ADQ Configuration.

• ADQ configuration is not supported on a bonded or teamed Intel® E810 Network
adapter interface. Issuing the ethtool or tc commands to a bonded E810 interface
will result in error messages from the ice driver to indicate the operation is not
supported.

1.1.3

1.2

1.2.1

RFixed and Known Issues - Read First—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 11

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

• If the application should stall for some reason when using application dependent
polling, this can cause a queue stall for application-specific queues for up to two
seconds.

Mitigation: Recommend configuration of only one application per TC channel.

• DCB and ADQ are mutually exclusive and cannot coexist. A switch with DCB
enabled might remove the ADQ configuration from the device.

Mitigation: Do not enable DCB on the switch ports being used for ADQ. Disable
LLDP on the interface by turning off firmware LLDP agent using:

ethtool --set-priv-flags $iface fw-lldp-agent off

Alternatively, use independent poller configuration that is not dependent on the
application returning to drain the queues.

Note (unrelated to Intel drivers): The 5.8.0 Linux kernel introduced a bug that
broke the interrupt affinity setting mechanism.

Mitigation: Use an earlier or later version of the kernel to avoid this error.

• Core-level reset of an ADQ-configured PF port (rare events usually triggered by
other failures in the NIC/ice driver) results in loss of ADQ configuration. To
recover, reapply ADQ configuration to the PF interface.

• When the number of queues is increased using ethtool -L, the new queues will
have the same interrupt moderation settings as queue 0 (i.e., Tx queue 0 for new
Tx queues and Rx queue 0 for new Rx queues). This can be changed using the
ethtool per-queue coalesce commands.

• To fully release hardware resources and have all supported filter type
combinations available, the ice driver must be unloaded and re-loaded.

• When using multiple TCs for ADQ application traffic, adding ntuple rules to the first
queue of TC2 or higher does not work as expected. The ethtool ntuple rule fails
for the first queue. This does not affect ntuple rules on TC1.

• TC filters can unexpectedly match packets which use IP protocols other than what
is specified as the ip_proto argument in the tc filter add command. For example,
UDP packets may be matched on a TCP TC filter created with ip_proto tcp without
any L4 port matches.

• Creating more than 10k TC filters on an interface can result in errors talking to the
kernel and the filters fail to get created. (The maximum number of supported TC
filters is 32k.)

• TC filters do not function correctly when GTP encryption is enabled in the TC filter
add command (enc_key_id 1).This causes traffic to go to default TC 0.

Mitigation: Use ice driver version 1.11.x and later

R ADQ—Fixed and Known Issues - Read First

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
12 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ADQ Setup Script Known Issues

• ADQ independent pollers timeout argument passed to ADQ setup script (poller-
timeout) does not get processed correctly by the script.

Mitigation: Use adqsetup from ice driver version 1.10.x or later, or use
poller_timeout (underscore instead of hyphen) as a workaround.

ADQ VF Known Issues

NOTE

Several of the issues listed above also apply to both PF and VF. In addition, the issues
below are specific to VF.

• Core-level reset of an ADQ-configured VF port (rare events usually triggered by
other failures in the NIC/iavf driver) results in loss of ADQ configuration. To
recover, reapply ADQ configuration to the VF interface.

• iavf driver must use Trusted mode with ADQ: Trusted mode must be enabled for
ADQ inside a VF. If TC filters are created on a VF interface with trusted mode off,
the filters are added to the software table but are not offloaded to the hardware.

• VF supports Max Transmit Rate only: iavf driver only supports setting maximum
transmit rate (max_rate) for Tx traffic. Minimum transmit rate (min_rate) setting
is not supported with a VF.

• VF Max Transmit Rate: The tc qdisc add command on a VF interface does not
verify that max_rate value(s) for the TCs are specified in increments of 500 Kb/s.
TC max_rate is expected to be a multiple of (or equal to) 500 Kb/s.

• VF errors when deleting TCs or unloading iavf driver in a VF: ice and iavf driver
error messages might get triggered in a VF when TCs are configured, and TCs are
either manually deleted or the iavf driver is unloaded. Reloading the ice driver
recovers the driver states.

• VF Max Transmit Rate: When a maximum TX transmit rate is specified in the tc
qdisc add command on a VF interface, the max rate does not get applied
correctly causing inconsistent TX rate limit for some applications.

• The system reboots/crashes when the number of queues on the VF interface is
changed using the ethtool command while traffic is flowing from client to SUT,
using ice driver version 1.10.X and iavf version 4.6.X.

Mitigation: After the TCs have been created, add at least 2 seconds of sleep
time.

1.2.2

1.2.3

RFixed and Known Issues - Read First—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 13

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2.0 Introduction

This document is designed to provide instructions for configuring and testing Intel®
Ethernet Controller E810 with Application Device Queues (ADQ).

NOTE

This package contains licenses and patches to enable ADQ with applications listed in
the Software Requirements section. If you are viewing this document in HTML, click
the Download PDF button to download the zip package.

ADQ Overview

Intel® Ethernet 800 Series Network Adapters feature Application Device Queues
(ADQ), an Intel technology designed to prioritize application traffic to deliver the
performance required for high-priority, network intensive workloads. By performing
application-specific queuing and steering, ADQ can improve response time
predictability, reduce latency, and improve throughput for critical applications.

ADQ improves performance in the following ways:

• Dedicated Resources = Increased Predictability

ADQ leverages multiple Intel hardware technologies to steer, load balance, and
isolate incoming application traffic to a set of dedicated application queues. By
preventing other traffic from contending for resources with a chosen application's
traffic, performance becomes more predictable and less prone to jitter.

• Efficient Packet Processing = Higher Throughput and Scalability

ADQ ensures that all packets from a queue are processed in one thread and are
for the same application, which enables polling for data to be more performant.
For example, the application might accept a few packets, choosing to process
them sooner, rather than spending more time accepting many packets, and so
taking longer before any processing starts. Queuing attributes can be customized
based on an application's traffic profile, for example, significantly reducing the
number of interrupts per second.

• Customizable Traffic Shaping = Application Level QoS Control

ADQ allows for dedicated application traffic queues, to have custom QoS (for
example: rate limits) applied to them, allowing traffic to be shaped per application
instead of per class or VM.

• Optimized Polling = Lower Latency

Application Dependent Polling Method: ADQ provides hints to the application
for each application thread to service incoming and outgoing traffic from a single
device queue. By doing so, a queue is drained in order by one thread, minimizing
context switching, cache misses, and sub-optimal thread scheduling.

Application Independent Polling Method (ADQ 2.0): In this mode, an
independent poller drains the packets from the device queues and pushes them to
socket queues associated with application threads. This avoids the need for

2.1

R ADQ—Introduction

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
14 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

application threads to poll the device queues directly. As independent pollers can
be used to poll multiple queues, a smaller number of pollers can service a large
number of application threads and is more scalable. The poller threads minimize
interrupts by polling the device queues, minimize context switches by pre-filling
socket queues and avoiding the application threads from going through sleep/
wakeup cycles. Although an application need not be modified to use the hints
provided by ADQ to align the application threads to device queues in this mode,
doing so can further improve the performance.

ADQ Versions 1.0 and 2.0

ADQ version 1.0 was released in 2019. It uses an application dependent (triggered)
polling approach. ADQ version 2.0 offers an alternative to application-dependent
polling where polling is triggered independent of the application.

1. ADQ 1.0 (ice driver version 1.8.x and earlier) contains all of the functional support
and enhancements for ADQ acceleration. It uses application dependent (triggered)
polling which normally requires the application vendor to make a small code
change to provide a hint to the application for optimal application thread to NIC
queue alignment. In addition to establishing the application threads with queue
connections, busy polling is also triggered and managed by the application
threads. This document will refer to this method as application dependent
polling.

2. ADQ 2.0 (ice driver version 1.9.x and later) supports all of the ADQ enhancements
included in previous driver versions and introduces a new independent polling
method that does not require the application vendor to make a code change. ADQ
2.0 introduces a new independent polling method which does not require the
application vendor to make a code change. ADQ 2.0 enables application agnostic
ADQ acceleration, where the queueing and steering for ADQ workloads is done
independently from the application threads. This approach enables ADQ
acceleration to be configured for broader range of cloud to edge applications and
environments. This document will refer to this method as application
independent polling. See Independent Pollers (Optional) for more details.

3. Other new capabilities released in ADQ 2.0 include:

ADQ 2.0 Feature Description

Application Independent Polling Polling triggered independent of the application.
Queueing and steering is done independently from
the application threads.

ADQ Setup Script (applies to ADQ 1.0 and 2.0) Provides a user-friendly method to input
configuration details. Script generates and executes
commands in the back end. Debug mode and
command logging options, and option to make ADQ
configuration persistent across reboots.

New and enhanced steering modes:
TC ingress & egress forward to queue
TC egress set priority Large TC (256 queues), shared
queue set

Enables ADQ in more environments (TC limited, KVM
based VMs, K8s pods)

Kubernetes Plugins (Applies to ADQ2.0) Allows ADQ acceleration for applications running in
K8s pods. ADQ container orchestration with device
plugins and CNI chaining.

Acceleration for VirtIO-net based VMs (Applies to
ADQ2.0)

ADQ provides dedicated HW queues and enhanced
polling capability to VMs without direct SR-IOV
passthrough interfaces.

RIntroduction—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 15

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ADQ Reference

• ADQ Resource Center

https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/
adq-resource-center.html

• ADQ Training Videos

— Intel® Ethernet 800 Series Training (1 of 3):

Introduction to Application Device Queues (ADQ) Video

https://www.intel.com/content/www/us/en/design/products-and-solutions/
networking-and-io/ethernet-800-series/introduction-to-application-device-
queues.html

— Intel® Ethernet 800 Series Training (2 of 3):

How ADQ Improves Performance with Application Device Queues (ADQ) Video

https://www.intel.com/content/www/us/en/design/products-and-solutions/
networking-and-io/ethernet-800-series/ada-improves-performance-
application-device-queues.html

— Intel® Ethernet 800 Series Training (3 of 3):

Requirements and Capabilities of Application Device Queues (ADQ) Video

https://www.intel.com/content/www/us/en/design/products-and-solutions/
networking-and-io/ethernet-800-series/requirements-capabilities-application-
device-queues.html

• NVM Express over TCP with SPDK for Intel® Ethernet Products with ADQ
Configuration Guide

https://cdrdv2.intel.com/v1/dl/getContent/633368

• NVM Express over TCP with Linux Kernel for Intel® Ethernet Products with ADQ
Configuration Guide

https://cdrdv2.intel.com/v1/dl/getContent/691440

• Principled Technologies Aerospike 3-node Scaling Performance Report

https://www.principledtechnologies.com/Dell/Intel-Ethernet-800-ADQ-PowerEdge-
R740xd-0421.pdf

2.2

R ADQ—Introduction

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
16 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/introduction-to-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/introduction-to-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/introduction-to-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/ada-improves-performance-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/ada-improves-performance-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/ada-improves-performance-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/requirements-capabilities-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/requirements-capabilities-application-device-queues.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-800-series/requirements-capabilities-application-device-queues.html
https://cdrdv2.intel.com/v1/dl/getContent/633368
https://cdrdv2.intel.com/v1/dl/getContent/691440
https://www.principledtechnologies.com/Dell/Intel-Ethernet-800-ADQ-PowerEdge-R740xd-0421.pdf
https://www.principledtechnologies.com/Dell/Intel-Ethernet-800-ADQ-PowerEdge-R740xd-0421.pdf
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

3.0 ADQ Requirements

Hardware Requirements

• System Under Test (SUT) – A server platform with an available PCI Express (PCIe)
slot.

• Clients – Any comparable server platform to the SUT

• Device Under Test (DUT) is equipped with one or more Intel retail or OEM generic
adapters such as; Intel® Ethernet 800 Series Network Adapters.

Software Requirements

• Operating System:

— Refer to the Intel® Ethernet 800 Series ice driver documentation for the list of
supported Linux-based operating systems for your driver version.

— This document has examples in RHEL 8.0+, but others can be used with slight
modifications.

Refer to Install OS for a list of OS distributions with back-ported kernel
support for ADQ.

• Kernel:

— ADQ technology might require a kernel update. Refer to Install OS and Update
Kernel (If Needed) for more details on OS and kernel requirements for ADQ.
Refer to the OS vendor's documentation for the base kernel version of an OS.

• iproute2-ss180813 or later, which is included in operating systems with inbox
base kernels 4.17.19 or newer. If the OS has an older inbox base kernel (even if
back-ported as above), an iproute2 update may be required:

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/

NOTE

This step is not required if the ADQ setup script is used to create an ADQ setup.

• The latest Linux ice driver (out of tree only - inbox drivers not supported):

https://sourceforge.net/projects/e1000/files/ice%20stable/

• Linux iavf driver version 4.0.1 or later (if using Virtual Functions):

https://sourceforge.net/projects/e1000/files/iavf%20stable/

• Applications (Note that other versions may be used but are out of scope of this
document):

— Redis version 4.0.11:

http://download.redis.io/releases/redis-4.0.11.tar.gz

3.1

3.2

RADQ Requirements—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 17

Did this document help answer your questions?

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/
https://sourceforge.net/projects/e1000/files/ice%20stable/
https://sourceforge.net/projects/e1000/files/iavf%20stable/
http://download.redis.io/releases/redis-4.0.11.tar.gz
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

— The following Redis benchmark patch (included with this document):

redis-benchmark.patch

— Memcached version 1.6.9:

https://memcached.org/files/memcached-1.6.9.tar.gz

— Netperf version 2.7.0

— NGINX version 1.16.1

http://nginx.org/download/nginx-1.16.1.tar.gz

— The following NGINX ADQ enablement patch (included with this document):

nginx_reuseport_bpf.patch

— ATS version 9.1.2

https://dlcdn.apache.org/trafficserver/trafficserver-9.1.2.tar.bz2

NOTE

If you are viewing this document in HTML, click the Download PDF button to
download the zip package for the application specific patches listed above.

R ADQ—ADQ Requirements

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
18 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://memcached.org/files/memcached-1.6.9.tar.gz
http://nginx.org/download/nginx-1.16.1.tar.gz
https://dlcdn.apache.org/trafficserver/trafficserver-9.1.2.tar.bz2
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

4.0 ADQ System Under Test (SUT) Installation

Install OS

Install any Intel® Ethernet 800 Series supported Linux-based operating system with
software development packages. This document has examples for RHEL 8.0+, but
others can be used.

ADQ technology support might require a kernel update. ADQ requires capabilities in
the Linux kernel available in LTS Linux kernel. Refer to the OS vendor's documentation
for the base kernel version of an OS. Refer to kernel and operating system
requirements in this section for ADQ-specific kernel support.

NOTE

The kernel-modules-extra package is required for RHEL 8.0 or higher:

yum install -y kernel-modules-extra

ice-1.7.x and Earlier

• Linux kernel v4.19.x or higher.

• Inline Flow Director is configured using the channel-inline-flow-director ethtool
private flag (set globally on the interface for all TCs).

• ADQ kernel support has also been back-ported to the following operating systems,
which are based on earlier base kernel versions. These operating systems do not
require a kernel update even though their base kernel version is lower than
4.19.58:

— RHEL 8.0 or higher (inbox kernel)

— SLES 12 SP5 or higher (inbox kernel)

— SLES 15 SP1 or higher (inbox kernel)

— Ubuntu 20.04 or higher (inbox kernel)

ice-1.8.x and Later

• Linux kernel v5.6 or higher, for devlink parameter support:

https://www.kernel.org/doc/html/v5.6/networking/devlink/devlink-params.html

• Inline Flow Director is configured using per-TC inline flow director.

4.1

RADQ System Under Test (SUT) Installation—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 19

Did this document help answer your questions?

https://www.kernel.org/doc/html/v5.6/networking/devlink/devlink-params.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

• The following operating systems contain kernels with devlink parameter support
and do not require a kernel update even though their base kernel version may be
lower than 5.6:

— RHEL 8.6 or higher (inbox kernel)

— RHEL 9.0 or higher (inbox kernel)

— SLES 15 SP4 or higher (inbox kernel)

— Ubuntu 20.10 or higher (inbox kernel)

NOTE

To check if a kernel has the required devlink parameter support:

devlink dev param show

If the kernel supports devlink params, output is displayed for each E810 device
interface. Otherwise, an error message is returned by the kernel, similar to: Command
“param” not found.

In addition to the kernel requirements listed for ice-1.8.x and later, ice-1.9.x and later
requires Linux kernel v5.12 or higher if using independent pollers with kthread based
napi poll (earlier kernel versions use ksoftirqd threads to act as independent pollers).
See Independent Pollers (Optional) for more details.

The following operating systems include kernel support for kthread-based napi poll
and do not require a kernel update even though their base kernel version may be
lower than 5.12:

• RHEL 8.6 or higher (inbox kernel)

• RHEL 9.0 or higher (inbox kernel)

• SLES 15 SP4 or higher (inbox kernel)

NOTE

Some applications or use cases might require a newer version of the kernel than what
is listed in this section. The kernel version listed here is required for ADQ feature
support in the kernel. See application-specific sections in this document to verify if
there are any additional kernel requirements for the application.

For operating systems that require a kernel update, proceed with updating the kernel
following the instructions in Update Kernel (If Needed).

For operating systems that do not require a kernel update, move directly on to Install
ice Driver with ADQ Flags.

R ADQ—ADQ System Under Test (SUT) Installation

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
20 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Update Kernel (If Needed)

NOTE

Kernel versions required for full ADQ support with older operating systems, unless the
OS includes back-ported ADQ kernel support (and devlink param support).

• ice version 1.7.x and earlier requires LTS 4.19.x or later.

• ice version 1.8.x and later requires LTS 5.6 or later, or kernel with devlink param
support for per-TC flow director.

• ice version 1.9.x and later requires LTS 5.6 or later, or kernel with devlink param
support for per-TC flow director and independent poller. For independent poller
using kthread-based napi poll, LTS 5.12 or later is required.

Refer to Install OS for determining if your OS includes ADQ kernel support or if a
kernel update is required.

If kernel update is required, follow these steps:

1. Clone the kernel using git.

git clone http://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

2. Checkout to use long term stable branch (based off v5.12).

git checkout -b local_5.12 v5.12

OR

git reset --hard v5.12

3. Install the necessary packages to compile the kernel.

Package installation can be done through several methods that are relevant to the
base distribution, such as yum/dnf/apt-get. Packages needed are gcc, bc,
make, git, ncurses-devel, kernel-devel, kernel-headers,
openssl, openssl-devel, binutils, bison, flex, and network-
scripts.

Some kernel/arch combinations might require a package with the development
version of libelf (for example, libelf-dev, libelf-devel, or elfutils-libelf-devel).

Example (RHEL):

yum install -y gcc bc make git ncurses-devel kernel-devel kernel-headers openssl \
openssl-devel binutils bison flex network-scripts elfutils-libelf-devel

4. Compile and install the kernel.

a. cd to the kernel directory.

b. For operating systems based on older kernels (for example, RHEL 7.x is based
on the kernel 3.10.x series), it might be best to use a config file that is based
off of a closer kernel series (for example, from https://rpmfind.net/linux/RPM/
fedora/29/x86_64/k/kernel-4.18.16-300.fc29.x86_64.html or newer).

4.2

RADQ System Under Test (SUT) Installation—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 21

Did this document help answer your questions?

https://rpmfind.net/linux/RPM/fedora/29/x86_64/k/kernel-4.18.16-300.fc29.x86_64.html
https://rpmfind.net/linux/RPM/fedora/29/x86_64/k/kernel-4.18.16-300.fc29.x86_64.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Example:

rpm2cpio kernel-core-4.18.16-300.fc29.x86_64.rpm | cpio --extract \
--to-stdout ./lib/modules/4.18.16-300.fc29.x86_64/config > .config
make olddefconf

For operating systems based on later kernel versions (for example, RHEL 8.x),
using the inbox kernel .config as a starting point should be sufficient.

Example:

make olddefconfig

c. Ensure these lines are in the .config file (note the inbox ice driver should NOT
be built in the kernel, as the inbox driver can cause issues).

CONFIG_NET_SCH_MQPRIO=m
CONFIG_NET_ACT_MIRRED=m
CONFIG_NET_CLS_FLOWER=m
CONFIG_CGROUP_NET_PRIO=y
CONFIG_NET_RX_BUSY_POLL=y
CONFIG_SMP=y
CONFIG_ICE=n
CONFIG_NR_CPUS_DEFAULT=8192

NOTE

Additional config flags that might be required for specific applications:

CONFIG_BPF=y
CONFIG_EPOLL=y
CONFIG_NET_DEVLINK=y
CONFIG_XDP_SOCKETS=y

Use Cases:

• CONFIG_BPF is needed for applications that use the
SO_ATTACH_REUSEPORT_CBPF socket option (such as NGINX).

• CONFIG_EPOLL is needed for applications that use epoll based syscall
from user-space (example: using NGINX without ADQ and busy_poll, for
performance comparisons to ADQ).

• CONFIG_NET_DEVLINK is needed for devlink param commands to
configure per-TC inline flow director and independent poller

• CONFIG_XDP_SOCKETS is needed for AF_XDP.

NOTE

Note that sed can also be used to make these changes. For example:

sed -i -r 's/^(CONFIG_NR_CPUS=.*|# CONFIG_NR_CPUS is not set)/
CONFIG_NR_CPUS=8192/' .config sed -i -r 's/^(CONFIG_ICE=.*|# CONFIG_ICE
is not set)/CONFIG_ICE=n/' .config

R ADQ—ADQ System Under Test (SUT) Installation

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
22 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

d. Compile.

make -j"$(nproc)"
make -j"$(nproc)" modules
make -j"$(nproc)" modules_install
make -j"$(nproc)" install
make -j"$(nproc)" INSTALL_HDR_PATH=/usr/local headers_install

NOTE

$(nproc) = number of logical cores.

NOTE

CONFIG_NR_CPUS_DEFAULT might get set back to the default value of 64 on
4.x kernels after comping the kernel. On 5.x and later kernels, the value of
8192 should remain applied after the kernel is compiled.

5. Reboot to the new kernel.

Install ice Driver with ADQ Flags

The following variables are used in the examples in this section:

$driverver The ice driver version.

1. Download the ice and untar.

tar -xzvf ice-${driverver}.tar.gz
cd ice-${driverver}/src

2. Compile and install the ice driver.

make -j$(nproc) CFLAGS_EXTRA='-DADQ_PERF_COUNTERS' install

NOTE

To compile the ice driver on some kernel/arch combinations, you might need to
install a package with the development version of libelf (for example, libelf-dev,
libelf-devel, or elfutilsl-libelf-devel).

NOTE

The pkt_busy_poll counters are enabled by the –DADQ_PERF_COUNTERS CFLAG
during ice driver compile. If the counters are not listed in ethtool –S output,
verify that ice was built using the compile command in this step.

Example (RHEL):

yum install elfutils-libelf-devel

4.3

RADQ System Under Test (SUT) Installation—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 23

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

3. Load the ice driver.

modprobe ice

Install iproute2 (Update If Needed)

NOTE

iproute2-ss180813 or later is required. It is included in operating systems with
inbox base kernels 4.17.19 or newer. If the OS has an older inbox base kernel (even if
back-ported for ADQ support), an iproute2 update may be required:

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/

Note that this step is not required if the ADQ setup script is used to create an ADQ
setup.

1. Ensure that the necessary kernel modules are loaded.

modprobe sch_mqprio
modprobe act_mirred
modprobe cls_flower

2. Install iproute2.

clone the public iproute2:
git clone https://git.kernel.org/pub/scm/network/iproute2/iproute2.git
yum -y install libdb-devel
cd iproute2
./configure
make DESTDIR=/opt/iproute2 install

NOTE

If using RHEL 8.1 or later, iproute2 is already at required version for ADQ and can be
installed with the iproute-tc package rather than the above install procedure.

Example on RHEL 8.1:

 yum install -y iproute-tc

4.4

R ADQ—ADQ System Under Test (SUT) Installation

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
24 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Install cgroup Packages (If Needed)

This step is only needed if using Linux cgroups to align the TX traffic to the RX
filter(s), using net_prio ID. If using egress tc filter(s) with clsact and skbedit, instead
of cgroups, this step is not needed.

Install the libcgroup and libcgroup-tools packages on the system.

Example: RHEL 8.x and earlier:

yum install -y libcgroup libcgroup-tools

Example: RHEL 9.0 and later:

NOTE

The libcgroup and libcgroup-tools packages have been removed in RHEL 9.0
repository. We must manually download and install them using wget.

Wget https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/
x86_64/libcgroup-0.42.2-5.el9.x86_64.rpm

Wget https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/
x86_64/libcgroup-tools-0.42.2-5.el9.x86_64.rpm

NOTE

• RHEL 9.0 uses cgroup-v2 by default, which differs from RHEL 8.x using cgroup-v1.
ADQ technology supports both versions of cgroup .

4.5

RADQ System Under Test (SUT) Installation—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 25

Did this document help answer your questions?

https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/x86_64/libcgroup-0.42.2-5.el9.x86_64.rpm
https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/x86_64/libcgroup-0.42.2-5.el9.x86_64.rpm
https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/x86_64/libcgroup-tools-0.42.2-5.el9.x86_64.rpm
https://kojihub.stream.centos.org/kojifiles/packages/libcgroup/0.42.2/5.el9/x86_64/libcgroup-tools-0.42.2-5.el9.x86_64.rpm
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

5.0 General System Tuning

NOTE

These settings are not persistent between reboots.

NOTE

System tuning is subjective and dependent on many factors in your environment,
including platform specifications and software workload. These tunings have shown
improved performance of heavily loaded systems using ADQ with fast IO workloads,
but have only been tested on a limited number of system configurations and
hardware. Experimentation is recommended to find the best settings for a particular
workload.

1. Disable firewalls.

service firewalld stop; systemctl mask firewalld

2. Disable Security-Enhanced Linux (SELinux) (requires reboot to take affect).

Change SELINUX=enforcing to SELINUX=disabled in /etc/selinux/config.

3. Enable latency-performance tuned profile, if it makes sense for the application and
workload. Refer to https://github.com/redhat-performance/tuned/blob/master/
profiles/latency-performance/tuned.conf for a full list of what is expected to be
included in the profile.

NOTE

This performance mode (and the performance governor in the next step) limit the
CPU power management settings in the OS to provide more consistent results on a
highly loaded system with many application threads. If using fewer queues than
the total number of CPUs or on lightly loaded systems (for example netperf with
only a few processes), skipping this step might increase performance, since under
certain circumstances allowing Turbo mode on more cores can give a greater
benefit than the avoidance of CPU power management sleep states (C States).
Similar tuning choices should be made for CPU power management and Turbo
settings in the BIOS.

tuned-adm profile latency-performance

NOTE

The tuned-adm daemon is not installed by default in RHEL9.0 systems. Install it
with the command yum install tuned.

R ADQ—General System Tuning

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
26 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://github.com/redhat-performance/tuned/blob/master/profiles/latency-performance/tuned.conf
https://github.com/redhat-performance/tuned/blob/master/profiles/latency-performance/tuned.conf
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Check that settings are applied correctly:

cat /etc/tuned/active_profile

Output: latency-performance

cat /etc/tuned/profile_mode

Output: manual

NOTE

The default performance tuned setting is tuned-adm profile throughput-
performance, which works well with many applications and workloads. Test both
modes for optimal performance. Refer to https://github.com/redhat-performance/
tuned/blob/master/profiles/throughput-performance/tuned.conf for a full list of
what is expected to be included in the profile.

4. Set the CPU scaling governor to performance mode.

x86_energy_perf_policy performance

5. Increase the hard/soft nofile limits.

vi /etc/security/limits.conf
* hard nofile 16384
* soft nofile 16384

NOTE

Some OS distros do not allow a non-root user to set limits >64, even when listed
in /etc/security/limits.conf. A workaround is to set DefaultLimitMEMLOCK=
in /etc/systemd/system.conf and /etc/systemd/user.conf, where the limit is
defined in bytes.

Example:

The following output is on a system that has the default limit set to 1GB:

grep ^DefaultLimitMEMLOCK /etc/systemd/system.conf
DefaultLimitMEMLOCK=1073741824

grep ^DefaultLimitMEMLOCK /etc/systemd/user.conf
DefaultLimitMEMLOCK=1073741824

6. Stop the irqbalance service. (Needed for interface interrupt affinity settings.)

systemctl stop irqbalance

7. Stop LLDP agent (if installed and running).

systemctl stop lldpad.service
systemctl stop lldpad.socket

RGeneral System Tuning—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 27

Did this document help answer your questions?

https://github.com/redhat-performance/tuned/blob/master/profiles/throughput-performance/tuned.conf
https://github.com/redhat-performance/tuned/blob/master/profiles/throughput-performance/tuned.conf
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

8. Set system network polling parameters. For the application testing sections listed
in this document, follow the recommended parameters.

In general, whether to use busy_poll alone or busy_poll and busy_read
depends on the architecture of the application being used.

For a majority of applications, which use epoll_wait/epoll_pwait followed by read/
recv, it is recommended to set only net.core.busy_poll to the number of
microseconds to wait for packets on the device queue for socket polling.
Recommend 50K µs (50 ms) for a starting point to stay in poll mode as much as
possible. This gives time for up to thousands of connections to be formed before
timing out and dropping back to interrupt mode.

sysctl -w net.core.busy_poll=50000

Some applications, such as netperf, which uses select/poll followed by read/recv,
require net.core.busy_read to also be set along with net.core.busy_poll:

Example:

sysctl -w net.core.busy_poll=50000
sysctl -w net.core.busy_read=50000

NOTES

• If setting system-wide busy_read is not acceptable, busy_read can be set
per socket in the application using socket option SO_BUSY_LOOP.

• The system-wide busy_poll and busy_read settings are only required when
using application dependent polling mode; they are not required when using
independent pollers.

• When using the ADQ setup script to configure ADQ for application dependent
polling (ADQ1.0), global busy_poll and busy_read settings are not
required to be set manually. The script can handle these as well.

9. Configure OS tuning parameters to handle increased packet rate (note that some
of these parameters will increase memory usage on the system):

a. Increase the maximum number of connection requests queued for any
listening socket.

sysctl -w net.core.somaxconn=4096

b. Increase the maximum number of packets allowed to queue when a particular
interface receives packets faster than the kernel can process them.

sysctl -w net.core.netdev_max_backlog=8192

NOTE

Set netdev_max_backlog to 250000 to improve ADQ performance with
Apache Traffic Server (ATS).

R ADQ—General System Tuning

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
28 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

c. Increase the maximum length of the queue for incomplete TCP sockets (SYN
RECEIVED state).

sysctl -w net.ipv4.tcp_max_syn_backlog=16384

NOTE

Set tcp_max_syn_backlog to 250000 to improve ADQ performance with
ATS.

NOTE

Applications might have their own backlog settings that could need to be
adjusted. If backlog is set too low, performance can be impacted due to
uneven queue use.

NOTE

If the TCP backlog setting is too low, you might see dmesg logs such as: TCP:
request_sock_TCP: Possible SYN flooding.

d. Increase the Rx and Tx socket buffer maximum size (in bytes).

sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216

e. Adjust TCP memory usage auto-tuning for the stack (low, pressure, and max -
in pages).

sysctl -w net.ipv4.tcp_mem="764688 1019584 16777216"

f. Adjust TCP buffer auto-tuning for each connection (min, default, and max - in
bytes).

sysctl -w net.ipv4.tcp_rmem="8192 87380 16777216"
sysctl -w net.ipv4.tcp_wmem="8192 65536 16777216"

g. Apply immediately.

sysctl -w net.ipv4.route.flush=1

For convenience, the commands in this section (except for disabling SELinux, which
requires a reboot) are condensed below:

NOTE

When using independent pollers, global busy_poll and busy_read are not required,
these are only required for application dependent polling.

RGeneral System Tuning—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 29

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

For improved performance, the ATS-required backlog settings should be increased to
250000.

service firewalld stop; systemctl mask firewalld
tuned-adm profile latency-performance
cat /etc/tuned/active_profile
cat /etc/tuned/profile_mode
x86_energy_perf_policy performance
systemctl stop irqbalance
systemctl stop lldpad.service
systemctl stop lldpad.socket

Application dependent polling
sysctl -w net.core.busy_poll=50000
sysctl -w net.core.busy_read=50000

sysctl -w net.core.somaxconn=4096
sysctl -w net.core.netdev_max_backlog=8192
sysctl -w net.ipv4.tcp_max_syn_backlog=16384
sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216
sysctl -w net.ipv4.tcp_mem="764688 1019584 16777216"
sysctl -w net.ipv4.tcp_rmem="8192 87380 16777216"
sysctl -w net.ipv4.tcp_wmem="8192 65536 16777216"
sysctl -w net.ipv4.route.flush=1

R ADQ—General System Tuning

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
30 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

6.0 ADQ Setup Using ADQ Setup Script

There are two methods to configure ADQ:

• Method-1: Using ADQ setup script

• Method-2: Using manual ADQ configuration

This section is meant to be a generic walk-through of configuring ADQ with the ADQ
setup script. If testing one of the enabled applications, skip this section and instead
follow the instructions in the relevant testing application sections:

• Testing ADQ with Netperf

• Testing ADQ with Redis

• Testing ADQ with Memcached/rpc-perf

• Testing ADQ with NGINX

• Testing ADQ with AF_XDP

NOTE

This section contains the steps for configuring ADQ using setup script, for manual ADQ
configuration, see Appendix: ADQ Configuration Reference (Manual)

ADQ Setup Script Prerequisites

The ADQ setup script can be used to configure ADQ parameters such as traffic classes,
priority, filters, poller settings, and ethtool parameters through a python script.

The script is called adqsetup.py and it can be found in the scripts directory of the ice
driver version 1.9.7 tar file (or later). A major benefit of the script is that it can also
maintain persistent ADQ settings across system reboots.

Refer to the README file located in the scripts/adqsetup subdirectory of the ice driver
package for more information on the script's usage, support, and configuration
settings.

Dependencies: Python 2.7 or Python 3.5 (or later)

6.1

RADQ Setup Using ADQ Setup Script—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 31

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTES

1. If you get a /usr/bin/env: 'python': No such file or directory error when you run
the script, please install Python. If you have already installed Python, then try
whereis python and you should see a message like python: /usr/bin/
python2.7 /usr/bin/python3.6 /usr/bin/python3.6m /usr/bin/python3.9 on the first
line of the output.

Either run the version you wish to use manually: python3.6 adqsetup.py
help; or,

Create a python symbolic link on the path: ln -s /usr/bin/
python3.6 /usr/local/bin/python

2. When using the pollers feature, if your driver does not have independent poller
support (as in ice driver versions before 1.9.7) , you will see the following error:

** Setting independent poller **
devlink answers: Invalid argument

R ADQ—ADQ Setup Using ADQ Setup Script

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
32 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ADQ Setup Script Installation

NOTE

Before the script installation and ADQ system configuration, perform the general
system setup as in ADQ System Under Test (SUT) Installation and General System
Tuning.

The script can be installed in one of two ways:

• Using Python Package Index (pip):

python -m pip install adqsetup

• Including it with ice driver version 1.9.7 or later:

cd $pathtoicepackage
python scripts/adqsetup/adqsetup.py install

ADQ Setup Script Usage

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$pathtoicepackage The path to the ice driver package.

$port Destination port of traffic

$portrange Destination port range (ex: 11211-11218)

$addr Destination IP address of traffic

$remote_addr Source IP address of traffic

$remote_port Source port of traffic

$num_queues_tc0 The number of queues for default traffic class (default queues are 2)

$num_queues_tc1 The number of queues for application traffic class 1

$protocol IP Protocol of the traffic (tcp/udp)

$conf_file Config file name to apply the settings to create the ADQ setup(ex:
Memcached.cong, redis.conf and nginx.conf)

$driverpath Device driver path to .ko file (ex: src/ice.ko)

$file_name Creates a quick-config consisting of one application traffic class (it is a user
defined name ex: netperf, redis, nginx etc)

$poller_number The number of queue pairs per independent poller for a given TC (max value is
#queues in the TC).

$poller_timeout The timeout value for the independent pollers for a given TC (nonzero integer
value in jiffies, default value 10000).

$mask The bit mask used to select which queues to run the subcommand on (ex: for
ADQ queues 2-9 : 0x3fc (0011 1111 1100)).

$cpus Assigns pollers to specific CPU cores (ex: 4, 5, 6, 7)

6.2

6.3

RADQ Setup Using ADQ Setup Script—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 33

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

The script can be run in multiple ways:

1. Command line (V1.x only supports single TC configuration. V2.0 or later is
required to configure multiple TCs via command line.)

2. Configuration file (Single/Multiple TC configuration supported from V1.x and later)

3. JSON (Supported from version V2.x and later)

Using Command Line Parameters

• Create ADQ filters in exclusive mode for multithreaded applications (uses inline
flow director to distribute the connections to queues).

adqsetup --dev=$iface --priority=skbedit create [$file name] queues \
$num_queues_tc1 ports $port

• Create ADQ filters in shared mode for single threaded applications (creates perfect
filters using Ntuple rules to distribute connections to queues).

adqsetup --dev=$iface --priority=skbedit create [$file name] mode shared \
queues $num_queues_tc1 protocol $protocol addrs $addr ports $portrange

• Create ADQ setup with interrupt moderation rate values for Tx/RX.

adqsetup --dev=$iface --priority=skbedit --rxusecs=0 \
--txadapt=off --txusecs=500 create [$file name] mode shared queues \
$num_queues_tc1 ports $portrange

— To show all the per-queue coalesce settings:

ethtool --per-queue $iface --show-coalesce

— To show the queues of ADQ traffic class alone:

ethtool --per-queue $iface queue_mask $mask --show-coalesce

• Create an ADQ setup by using various device drivers in the syntax.

adqsetup --dev=$iface --priority=skbedit create [$file name] queues \
 $num_queues_tc1 protocol $protocol ports $port --driver $driverpath \
--reload

• Create ADQ setup using independent pollers configuration with default timeout.

adqsetup --dev=$iface --priority=skbedit create [$file name] queues \
 $num_queues_tc1 ports $port addrs $addr pollers $poller_number

• Create ADQ setup using independent pollers configuration with pollers timeout in
jiffies.

adqsetup --dev=$iface --priority=skbedit create [$file name] queues \
 $num_queues_tc1 ports $port addrs $addr pollers \ $poller_number \
pollers_timeout $poller_timeout

R ADQ—ADQ Setup Using ADQ Setup Script

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
34 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

• Create ADQ setup with independent pollers by pinning pollers to specific CPU
cores.

adqsetup --dev=$iface --priority=skbedit create [$file_name] mode shared
queues
$num_queues ports $portrange cpus $cpus pollers $poller_number

NOTES

1. Adaptive transmit and receive interrupt coalescing is enabled by default. Coalesce
settings must be turned off (-- txadapt=off -rxadapt=off) to set the Tx
interrupt moderation rate to a static value and turn off Rx interrupt moderation
(ex. -- txusec=500 --rxusec=0).

2. In ADQ setup script, the independent pollers argument (pollers) is not directly
related to qps_per_poller arguments passed to devlink. The script allows the user
to specify how many pollers a particular TC should have, rather than specifying
qps_per_poller (queue pairs per poller).

3. In the above examples, the driver is not reloaded, but can be reloaded by using
the --reload parameter while creating the ADQ setup.

4. To load/use a different device driver while creating the setup, the --driver
parameter may be used. Device driver path is the full path to the .ko file (ex:
ice-1.9.x/src/ice.ko). Interface must be set to come up automatically with
an ip address (via NetworkManager or other). adqsetup will wait up to three
seconds for this to occur before erroring out. Conversely, you can load the driver
and setup the interface manually before running the adqsetup.

NOTE

To load/use the various device drivers in adqsetup V1.x, use the --reload
parameter in conjunction with the --drivers parameter.

5. If the --priority=skbedit parameter is not specified in the command syntax,
a Cgroup must be created to align ingress and egress traffic. The performance of
the two methods (cgroup priority or TC filters with skbedit priority) may differ
slightly based on the application or workload.

6. The --debug parameter is optional, but it is useful for obtaining complete
configuration details.

7. adqsetup 1.x required updated versions of the tc, ethtool, and devlink
commands to be installed on the system. With adqsetup 2. x and onward, this
requirement has been removed.

8. Pinning pollers to specific CPU cores, as well as 256 queue pair support, were
added in adqsetup V2.x and later.

Using Configuration File

• Apply a configuration file to create ADQ setup.

adqsetup --dev=$iface apply $conf_file

RADQ Setup Using ADQ Setup Script—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 35

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

The adqsetup script can automatically generate an examples subdirectory
containing a set of example config files using the following command that can be
customized as needed.

adqsetup examples

• To apply a configuration file for persistent ADQ settings across system reboots,
use the following commands

adqsetup --dev=$iface persist $conf_file
systemctl enable --now adqsetup@$iface

— To reapply the settings without system reboot:

systemctl restart adqsetup@$iface

— To disable the persistence across system reboots:

systemctl disable adqsetup@$iface

Limitations

The ADQ setup script does not support the following configurations currently:

• ADQ configuration with VF

• VLAN

• IPv6

• GTP Filters

• VXLAN Filters

• Any D-MAC Filters

• Forward to Queue based filtering

• Rate limit option

R ADQ—ADQ Setup Using ADQ Setup Script

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
36 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

7.0 ADQ Configuration on SR-IOV Virtual Functions

Single Root I/O Virtualization (SR-IOV) is a specification that allows a single physical
PCIe device to present multiple separate PCIe devices in a virtual environment. The
Intel® Ethernet Adaptive Virtual Function (Intel® Ethernet AVF) iavf driver for Linux
can be configured with ADQ on Intel® Ethernet 800 Series Network Adapters to
provide ADQ performance enhancements in a virtual environment. In this section, the
iavf driver is referred to as VF for Virtual Function, and the ice driver is referred to as
PF for Physical Function.

NOTE

This document is not intended to be a complete SR-IOV configuration guide. Refer to
SR-IOV documentation, also ice and iavf driver README documents for more details
on usage.

NOTE

The ADQ setup script does not support configuring ADQ with the VF interface.

The following variables are used in the examples in this section:

$vfdriverver The iavf driver version.

$numvfs The number of VFs to spawn on the SUT.

$iface_pf The Physical Function (PF) interface name on the SUT.

$iface_vf The Virtual Function (VF) interface name on the SUT.

$ipaddr_pf The IP Address assigned to the PF interface on the SUT.

$ipaddr_vf The IP Address assigned to the VF interface on the SUT.

$ipaddrclient The IP Address assigned to the PF interface on the client where application is
being run.

$app_port The TCP port on the SUT where the application is being run.

General SUT Configuration for VFs

This section describes general System Under Test (SUT) configuration for either a bare
metal VF environment, or for running a VF inside a Virtual Machine (VM) on the SUT.

1. Enable virtualization in the BIOS on the SUT. The following BIOS settings must be
turned on to enable virtualization capability. These settings vary based on the
platform, however most Intel BIOS should have similar settings.

[BIOS::Advanced::Processor Configuration]
Intel(R) Virtualization Technology=Enabled

[BIOS::Advanced::Integrated IO Configuration]
Intel(R) VT for Directed I/O=Enabled

7.1

RADQ Configuration on SR-IOV Virtual Functions—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 37

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

[BIOS::Advanced::Integrated IO Configuration]
SR-IOV Support=Enabled

2. Perform general system OS install and setup. Complete the ADQ install and setup
in ADQ System Under Test (SUT) Installation and General System Tuning.

NOTE

Many settings in Section 5.0 do not persist between reboots and might need to be
reapplied.

NOTE

The OS install and setup steps on the SUT are only needed when spawning VFs on
the local host. If using VFs inside a Virtual Machine (VM), the OS is installed and
configured inside the VM's guest OS and this step can be skipped on the host OS.

3. Compile and install the iavf driver:

a. Download theiavf driver and untar:

tar -xzvf iavf-${vfdriverver}.tar.gz
cd iavf-${vfdriverver}/src

b. Compile and install the iavf driver:

make -j$(nproc) install

c. Load iavf driver:

modprobe iavf

NOTE

The iavf driver only needs to be compiled and installed on the SUT when spawning
VFs on the local host. If using a VM, iavf is compiled and installed on the VM's
guest OS and this step can be skipped on the host OS.

4. Enable Intel® IOMMU kernel boot parameters. To enable full virtualization in the
kernel, add intel_iommu=on and iommu=pt to the kernel boot parameters,
regenerate GRUB configuration, and reboot the host.

Use Linux admin tools such as grubby or grub2-editenv to set the kernel
parameters and reboot. For example:

grubby --args="intel_iommu=on iommu=pt" --update-kernel=DEFAULT
reboot

or

grub2-editenv - set "$(grub2-editenv - list | grep kernelopts) intel_iommu=on \
iommu=pt"
reboot

R ADQ—ADQ Configuration on SR-IOV Virtual Functions

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
38 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

If grubby and grub2-editenv are not available on your system, you can
alternatively append intel_iommu=on iommu=pt to GRUB_CMDLINE_LINUX line
in /etc/default/grub, followed by grub2-mkconfig -o /boot/grub2/
grub.cfg and reboot.

The iommu kernel parameters can be verified after reboot using cat /proc/
cmdline.

5. Depending on your VF environment, follow either SUT Configuration Bare Metal VF
or SUT Configuration VF Inside a VM.

SUT Configuration Bare Metal VF

This section describes the SUT configuration using ADQ with a bare metal VF,
spawning one or more VFs on the physical server itself, not from within a Virtual
Machine (VM).

1. Unload and reload the PF and VF drivers and bring up the PF interface.

rmmod iavf
sleep 1
rmmod ice
sleep 2
modprobe ice
sleep 2
modprobe iavf
sleep 2
ifup $iface_pf

2. Spawn VFs. Use the following command to create virtual function(s).

echo $numvfs > /sys/class/net/$iface_pf/device/sriov_numvfs
sleep 2

The following example creates 1 VF on the p1p2 PF network interface:

echo 1 > /sys/class/net/p1p2/device/sriov_numvfs

NOTE

Note:To find the maximum number of VFs supported by the PF network device:

cat /sys/class/net/$iface_pf/device/sriov_totalvfs

a. Verify the creation of the VF device(s) using the lspci utility. For example:

lspci | grep -i virtual
18:11.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual
Function (rev 01)

b. Verify the creation of the VF interface(s) using the ip addr command. The VF
interface is the PF interface name with a _0 or v0 suffix (_1, _2, and so on or
v1, v2, and so on for multiple VFs). The VF interface is represented by
$iface_vf in this section.

7.2

RADQ Configuration on SR-IOV Virtual Functions—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 39

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

For example, if the PF interface is p1p2, the VF spawned above would create VF
interface p1p2_0:

12: p1p2_0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000 link/ether 7a:79:3c:b0:8f:da brd ff:ff:ff:ff:ff:ff
inet 13.100.4.21/24 scope global p1p2_0 valid_lft forever preferred_lft
forever

3. Disable spoof checking and enable trust on each of the VF interfaces.

ip link set dev $iface_pf vf 0 spoofchk off
ip link set dev $iface_pf vf 0 trust on

Verify spoof checking and trust settings using ip link command:

11: p1p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT group default qlen 1000 link/ether 68:05:ca:a3:70:71 brd
ff:ff:ff:ff:ff:ff vf 0 MAC 7a:79:3c:b0:8f:da, spoof checking off, link-state
auto, trust on

12: p1p2_0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT group default qlen 1000 link/ether 7a:79:3c:b0:8f:da brd
ff:ff:ff:ff:ff:ff

NOTE

Trusted mode must be enabled for TC filters to be created in the hardware on the
NIC. If the iavf driver is used without trusted mode enabled, TC filters are added
to the software table but not offloaded to hardware, as documented in Fixed and
Known Issues - Read First.

4. Bring up the VF interface and assign an IP Address.

ip addr add $ipaddr_vf dev $iface_vf
ifup $iface_vf

Verify connectivity with link partner.

ping $ipaddrclient

NOTE

Some applications expect the IP Address of the VF interface to be on a separate
subnet than the PF interface. If ADQ application traffic configured for a VF interface is
directed to the PF interface, check the subnets.

R ADQ—ADQ Configuration on SR-IOV Virtual Functions

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
40 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

SUT Configuration VF Inside a VM

This section describes system configuration using ADQ with a VF that is spawned
inside a Virtual Machine (VM) on the SUT.

On the SUT Host OS

1. Unload the iavf (VF) and ice (PF) drivers.

rmmod iavf
sleep 1
rmmod ice
sleep 2

2. Reload the ice driver and bring up the PF interface.

modprobe ice
sleep 2
ifup $iface_pf

3. Spawn VFs. Use the following command to create virtual function(s):

echo $numvfs > /sys/class/net/$iface_pf/device/sriov_numvfs

The following example creates 1 VF on the p1p2 PF network interface:

echo 1 > /sys/class/net/p1p2/device/sriov_numvfs

NOTE

To find the maximum number of VFs the supported by the PF network device:

cat /sys/class/net/$iface_pf/device/sriov_totalvfs

a. Verify that the VF was created using lspci utility. For example:

lspci | grep -i virtual
18:11.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual
Function (rev 01)

b. Verify that the VF interface was created using the ip addr command. The VF
interface is the PF interface name with a _0 suffix (_1, _2, and so on for
multiple VFs). The VF interface is represented by $iface_vf in this section.

For example, if the PF interface is p1p2. the VF spawned above would create
VF interface p1p2_0:

12: p1p2_0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000 link/ether 7a:79:3c:b0:8f:da brd
ff:ff:ff:ff:ff:ff inet 13.100.4.21/24 scope global p1p2_0 valid_lft
forever preferred_lft forever

4. Disable spoof checking and enable trust on the VF interface.

ip link set dev $iface_pf vf 0 spoofchk off
ip link set dev $iface_pf vf 0 trust on

7.3

RADQ Configuration on SR-IOV Virtual Functions—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 41

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Verify spoof checking and trust settings using ip link command:

11: p1p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT group default qlen 1000 link/ether 68:05:ca:a3:70:71 brd
ff:ff:ff:ff:ff:ff vf 0 MAC 7a:79:3c:b0:8f:da, spoof checking off, link-state
auto, trust on

12: p1p2_0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT group default qlen 1000 link/ether 7a:79:3c:b0:8f:da brd
ff:ff:ff:ff:ff:ff

NOTE

Trusted mode must be enabled for TC filters to be created in the hardware on the
NIC. If the iavf driver is used without trusted mode enabled, TC filters are added
to the software table but not offloaded to hardware, as documented in Fixed and
Known Issues - Read First.

5. Install packages required for VM creation and VM management. Example, on
RHEL:

yum install qemu-kvm qemu-img libvirt virt-manager

6. Create a Virtual Machine (VM).

a. Create a VM using virt-manager Graphical User Interface (GUI) or qemu
Command Line Interface (CLI).

b. Select guest OS during VM creation for VM OS install.

c. Assign a VF interface to the VM using virt-manager or qemu.

NOTE

This document does not include details for creating a VM or assigning a VF to the
VM. Refer to SR-IOV documentation for instructions on creating VMs and assigning
VFs.

On the SUT Guest OS (inside VM)

1. Configure VM guest OS environment. Apply all system tunings to the VM from ADQ
System Under Test (SUT) Installation and General System Tuning. This include the
required kernel with ADQ flags, ice driver with ADQ flags, iproute2, cgroup
packages, and various system tunings.

NOTE

Many settings in General System Tuning do not persist between reboots and might
need to be reapplied.

2. Compile and install the iavf driver.

a. Download the iavf driver and untar:

tar -xzvf iavf-${vfdriverver}.tar.gz
cd iavf-${vfdriverver}/src

R ADQ—ADQ Configuration on SR-IOV Virtual Functions

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
42 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

b. Compile and install the iavf driver:

make -j$(nproc) install

c. Load iavf driver:

modprobe iavf
sleep 2

3. Bring up the VF interface inside the VM and assign an IP Address.

ip addr add $ipaddr_vf dev $iface_vf
ifup $iface_vf

Verify connectivity with link partner.

ping $ipaddrclient

ADQ VF Configuration

The instructions in this section show how to configure ADQ on the SUT using the VF
interface created in either SUT Configuration Bare Metal VF or SUT Configuration VF
Inside a VM. If using a VM, the ADQ configuration should be done inside the VM.

1. Enable channel-pkt-inspect-optimize on the VF interface(s):

ethtool --set-priv-flags $iface_vf channel-pkt-inspect-optimize on

2. Follow the instructions in ADQ Configuration on SUT, and also the tuning steps
listed in the applicable sections for netperf, Memcached, Redis, and NGINX for
application-specific system tuning for the VF interface.

When creating Traffic Classes (TCs), TC Filter(s), and issuing any ethtool
commands, replace $iface with $iface_vf, and $ipaddr with $ipaddr_vf to
use the VF interface and IP Address.

For example, when creating a TC for the VF, specify the $iface_vf interface.

ethtool -K $iface_vf hw-tc-offload on

${pathtotc}/tc qdisc add dev $iface_vf root mqprio num_tc 2 \ map 0 1 queues
$num_queues_tc0@0 $num_queues_tc1@$num_queues_tc0 hw 1 \ mode channel

NOTE

Due to timing issues, applying TC filters immediately after the tc qdisc add
command might result system reboot/crash. It is recommended to add two
seconds of sleep time after the tc qdisc add command before adding TC filters.

NOTE

The total number of queues in the Traffic Classes (combined) is limited to the total
number of queues in the VF. Refer to iavf documentation to determine total
number of queues available for the VF before creating TCs.

7.4

RADQ Configuration on SR-IOV Virtual Functions—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 43

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

The following example creates one TC filter on the VF interface under test:

${pathtotc}/tc qdisc add dev $iface_vf clsact

${pathtotc}/tc filter add dev $iface_vf protocol ip ingress\ prio 1 flower
dst_ip $ipaddr_vf/32 ip_proto tcp dst_port $app_port skip_sw hw_tc 1

3. Confirm TC configuration:

a. Check that TCs were created correctly.

${pathtotc}/tc qdisc show dev $iface_vf

b. Check TC filters.

${pathtotc}/tc filter show dev $iface_vf ingress

4. After the test finishes, remove the ADQ VF configuration following the steps in
Clear the ADQ Configuration.

To remove VF interfaces:

echo 0 > /sys/class/net/$iface_pf/device/sriov_numvfs

All other ADQ configuration follows section ADQ Configuration on SUT and the
application-specific sections that follow.

NOTE

For VF, use the set_irq_affinity and set_xps_rxqs scripts from the ice driver
package and specify the $iface_vf interface.

NOTE

Add at least 2 seconds of sleep time to restore all queues before reconfiguring the
ADQ VF traffic classes.

R ADQ—ADQ Configuration on SR-IOV Virtual Functions

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
44 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

8.0 Troubleshooting

1. During or after a test, check that pkt_busy_poll counters on the ADQ queues
for the interface are incrementing:

watch -d "ethtool -S ${iface} | grep poll | grep -v ': 0' | column

NOTE

The pkt_busy_poll counters are enabled by the -DADQ_PERF_COUNTERS
CFLAG during ice driver compile. If the counters are not listed in ethtool -S
output, verify ice was built using the compile command listed in Install ice Driver
with ADQ Flags.

a. If ADQ Rx queues are being used, but not Tx, check if the priority flags on the
server and client are set and using the same priority. Priority is first set by the
map parameter in the tc qdisc add command when creating TCs (example:
map 0 1 2 queues). Priority is next set by the prio parameter in the tc
filter add command (example: prio 1). Priority is also assigned to the
net_prio subsystem of the Control Group for applications that use cgroups
(example: cgset -r net_prio.ifpriomap="$iface $prio" $
{cgroup_name}). For applications using the SO_PRIORITY socket option,
priority is set by the application (check application command-line for option to
specify priority).

b. If ADQ Tx queues are being used, but not Rx, check that the TC filter on both
sides were applied properly.

c. If none of the ADQ queues are being used, check that the port value matches
in all of the commands on the client and server.

d. If pkt_not_busy_poll counters are incrementing on ADQ queues, check the
busy_poll and busy_read settings are applied correctly. For applications
that require a ntuple (perfect filter) rule for default traffic, verify configuration
of the default queue.

e. If ADQ application traffic is going to the default queues when using VF
interface(s), verify network subnets. Some applications require VF interfaces
to be configured on a separate subnet than the PF interfaces.

2. Check versions and settings:

ip addr show dev $iface | grep -i -e "mtu" -e "inet"
ethtool -i $iface | grep -e "driver" -e "^version" -e "firmware"
ethtool --show-channels $iface
ethtool --show-coalesce $iface
ethtool --show-priv-flags $iface
${pathtotc}/tc filter show dev $iface ingress
${pathtotc}/tc qdisc show dev $iface | grep -i -e "queue" -e "mode" -e "mqprio"
cat /proc/sys/net/core/busy_poll
cat /proc/sys/net/core/busy_read

RTroubleshooting—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 45

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

9.0 Testing ADQ with Netperf

Netperf is an easily available, widely-used open source benchmark that can showcase
the benefits of ADQ on latency, jitter, and transactions per second (tps) in a simple
request/response test (TCP_RR). TCP_RR is used due to its similarity to database
workloads common in datacenters and cloud environments.

netperf is usually tested with an identical server and client connected back-to-back or
through a switch. In this case, ADQ is configured on both on the server and on the
client, though the configuration is slightly different between the two.

NOTE

This document is not intended to be a complete netperf configuration guide. Refer to
netperf documentation for more details on usage.

There are two options to configure ADQ in both netperf server and client.

• Option 1: Using ADQ Setup Script

• Option 2: Using Linux Command Line (Manual Configuration)

Both configuration methods require the completion of the system setup steps in
Installation and Configuration – Both Systems prior to configuring the netperf server
and client for ADQ in netperf Server and netperf Client.

NOTE

This section contains the steps for configuring ADQ using the setup script. For manual
ADQ configuration, see Appendix: ADQ Configuration Reference (Manual)

Installation and Configuration – Both Systems

The following variable is used in the examples in this section:

$iface The interface in use (PF).

1. Perform general system setup.

Complete the ADQ installation and setup in ADQ System Under Test (SUT)
Installation and in General System Tuning on both the server and client systems.

NOTE

Many settings in General System Tuning and Adapter Preparation do not persist
between reboots and might have to be reapplied.

9.1

R ADQ—Testing ADQ with Netperf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
46 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Install netperf:

Method 1: Install netperf package from OS distribution.

If your OS distribution has a netperf binary rpm available, the package can be
installed using the package manager for the OS. Example on RHEL 8.x:

yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
yum install -y netperf

Method 2: Build and install netperf from source code.

NOTE

Depending on the distro being used, libmnl dependency might be required before
building netperf 2.7.0 or higher.

Download netperf (2.7.0 recommended): https://github.com/HewlettPackard/
netperf.git

a. Install and build according to standard netperf directions.

yum -y install automake texinfo
cd netperf
./autogen.sh
./configure
make && make install

NOTE

netperf does not compile cleanly on RHEL 9.0 with gcc version 11. This is due to
the default CFLAG changing from -fcommon to -fno-common in gcc 10. More
details on the flag change can be found here:https://gcc.gnu.org/gcc-10/

RTesting ADQ with Netperf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 47

Did this document help answer your questions?

https://github.com/HewlettPackard/netperf.git
https://github.com/HewlettPackard/netperf.git
https://gcc.gnu.org/gcc-10/porting_to.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

porting_to.html. To compile netperf on RHEL 9.0 with gcc 11, the -fcommon flag
can be used as a workaround. Replace the make && make install line above
with:

make CFLAGS=-fcommon && make install

netperf Server

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$ipaddrserver The IP Address of the netperf server interface under test.

$app_port The starting port of the netperf application.
Note: This should be available on both sever and client. Usually a high

number (>2000) is best, but check that it is available (for example:
sudo netstat -tulpn | grep LISTEN).

ADQ Setup Script Variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., netperf).

$portrange TCP ports to be configured by ADQ Setup Script.

$addr Destination IP address of traffic to be configured by ADQ Setup Script.

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp --busyread=$br create
$file_name mode shared \
queues $num_queues_tc1 ports $portrange addrs $addr

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, start the netperf server.

9.2

R ADQ—Testing ADQ with Netperf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
48 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://gcc.gnu.org/gcc-10/porting_to.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTES

a. The example command above creates both ingress (Rx) and egress (Tx)
filters, and Linux cgroups are not needed to be created and can be skipped
(cgroup is only needed if --priority=skbedit was NOT specified in
adqsetup command).

b. ADQ Setup script handles symmetric queues and affinity.

c. The setup script sets per-queue coalesce by default.

d. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

e. To configure independent pollers, add the --pollers=$pollers parameter
in the adqsetup command (and optionally --pollers_timeout), and
remove the flags to set global --busypoll=$bp --busyread=$br.

f. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

g. The --debug parameter is optional, but it is useful for obtaining complete
configuration details.

h. For more information on how to use the script, refer to ADQ Setup Using ADQ
Setup Script.

2. Start netperf server (netserver).

If egress TC filters(s) created with skbedit priority:

netserver -4 -L ${ipaddrserver} -Dd

NOTE

If cgroup priority is set for Application Network traffic (--priority=skbedit is
not specified in the command), see Set cgroup Priority for Application Network
Traffic (If Needed) for instructions on configuring cgroup and running tasks with
cgroup.

NOTE

Use netserver -h for parameter details.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

RTesting ADQ with Netperf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 49

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

netperf Client

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$ipaddrserver The IP Address of the netperf server interface under test.

$ipaddrclient The IP of the netperf client interface under test.

$app_port The starting port of the netperf application.
Note: This should be available on both sever and client. Usually a high

number (>2000) is best, but check that it is available (for example:
sudo netstat -tulpn | grep LISTEN).

$app_threads The number of netperf client instances to be run (must be less than or equal to
$num_queues_tc1).

$testtime The length of time for each test.

ADQ Setup Script variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., netperf).

$portrange TCP ports to be configured by ADQ Setup Script.

$addr Destination IP address of traffic to be configured by ADQ Setup Script.

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp --busyread=$br create
$file_name mode shared \
queues $num_queues_tc1 ports $portrange addrs $addr

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, start the netperf client.

9.3

R ADQ—Testing ADQ with Netperf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
50 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTES

a. The example command above creates both ingress (Rx) and egress (Tx)
filters, and Linux cgroups are not needed to be created and can be skipped
(cgroup is only needed if --priority=skbedit was NOT specified in
adqsetup command).

b. ADQ setup script handles symmetric queues and affinity.

c. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

d. To configure independent pollers, add the -pollers=$pollers parameter in
the adqsetup command (and optionally --pollers_timeout), and remove
the flags to set global --busypoll=$bp --busyread=$br.

e. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

f. The --debug parameter is optional, but it is useful for obtaining complete
stack trace.

g. For more information on how to use the script, refer to ADQ Setup Using ADQ
Setup Script.

2. Run traffic.

Start simultaneous netperf client instances.

Pinning the application to a CPU core on the local NUMA node provides more
consistent results for ADQ. The following example uses the netperf -T option to
select which core to use for each instance of the application.

numa=0 cpus_allowed=(`lscpu | grep node${numa} | cut -d: -f2 | sed -e 's/ //g' | sed -
e 's/,/ /g'`)
start_core=${cpus_allowed[$app_threads]} for ((i = 0; i < app_threads; i++)); do core=$
(($i * 2 + $start_core))
netperf -j -H $ipaddrserver -t \
TCP_RR -T $core -l ${testtime} -- -k \
THROUGHPUT,MIN_LATENCY,MAX_LATENCY,P50_LATENCY,P90_LATENCY,\
P99_LATENCY,STDDEV_LATENCY,MEAN_LATENCY -P $((app_port + i)),$((app_port + i)) & done

NOTE

Use netperf -h for parameter details. Reference here:

https://hewlettpackard.github.io/netperf/doc/netperf.html#TCP_005fRR

RTesting ADQ with Netperf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 51

Did this document help answer your questions?

https://hewlettpackard.github.io/netperf/doc/netperf.html#TCP_005fRR
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

3. Verify ADQ traffic is on the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that
only the ADQ queues are being used (have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) have
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

Example:

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Verify ADQ Application Traffic and Independent Pollers (If Applicable) for
example watch output.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps inClear the ADQ Configuration.

R ADQ—Testing ADQ with Netperf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
52 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

10.0 Testing ADQ with Redis

Redis is an open source in-memory data structure store. For this section, Redis is used
as an example of a real-world application with ADQ. ADQ enables Redis clusters to
support more users at a higher request rate with more scalability.

NOTE

This document is not intended to be a complete Redis configuration guide. Refer to
Redis documentation for more details on usage.

There are two options to configure ADQ in Redis server.

• Option 1: Using ADQ Setup Script

• Option 2: Using Linux Command Line (Manual Configuration)

Both configuration methods require the completion of the System Setup steps first.

NOTE

This section contains the steps for configuring ADQ using the setup script. For manual
ADQ configuration, see Appendix: ADQ Configuration Reference (Manual)

Redis Server Setup

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$ipaddr The IP Address of the Redis server interface under test.

$app_port The starting port of the application (for example, 7001).
Note: Port number greater than 5000 is best, but check that it is available

(for example: sudo netstat -tulpn | grep LISTEN)

$app_threads The number of Redis server instances to be run (must be less than or equal to
$num_queues_tc1).

$redispath The path to Redis install (for example, /opt/redis-4.0.11/bin).

$clients The array of hostnames or IPs of the physical Redis client systems (for example,
declare -a clients=("server1" "server2")).

$redisbench_keysize The Redis benchmark key size in bytes.

$redisbench_conn The number of connections per Redis benchmark thread.

continued...

10.1

RTesting ADQ with Redis—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 53

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ADQ Setup Script variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., redis).

$portrange TCP ports to be configured by ADQ Setup Script.

$addr Destination IP address of traffic to be configured by ADQ Setup Script.

System Setup

1. Perform general system setup.

Complete the ADQ install and setup in ADQ System Under Test (SUT) Installation
and General System Tuning on just the server under test system.

NOTE

Many settings in General System Tuning do not persist between reboots and might
have to be reapplied.

2. Perform Redis build:

a. Download the Redis release.

wget http://download.redis.io/releases/redis-4.0.11.tar.gz

b. Untar the package.

tar -xvzf redis-4.0.11.tar.gz

c. Install Redis.

cd redis-4.0.11
make PREFIX=/opt/redis-4.0.11 install

d. After this, the redis-server and redis-benchmark are found under /opt/
redis-4.0.11/bin.

3. Perform Redis-specific tuning.

Enable overcommit and disable transparent hugepages as per Redis
recommendations.

sysctl -w vm.overcommit_memory=1
echo never > /sys/kernel/mm/transparent_hugepage/enabled

R ADQ—Testing ADQ with Redis

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
54 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp --busyread=$br create
$file_name mode shared \
queues $num_queues_tc1 ports $portrange

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, start the Redis server.

NOTES

a. The example command above creates both ingress (Rx) and egress (Tx)
filters, and a Linux cgroups are not needed to be created and can be skipped
(cgroups are only needed if --priority=skbedit was NOT specified in
adqsetup command).

b. ADQ setup script handles symmetric queues and affinity.

c. The setup script sets per-queue coalesce by default.

d. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

e. To configure independent pollers, add the -pollers=$pollers parameter in
the adqsetup command (and optionally --pollers_timeout), and remove
the flags to set global --busypoll=$bp --busyread=$br.

f. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

g. The --debug parameter is optional, but it is useful for obtaining complete
stack trace.

h. For more information on how to use the script, refer ADQ Setup Using ADQ
Setup Script.

2. Start Redis clones and seed initial data.

Example:

server="${redispath}/redis-server --protected-mode no --loglevel warning \
--tcp-backlog 1023"
trafficgen="${redispath}/redis-benchmark"
ports=($(seq $app_port $((app_port + app_threads - 1))))
start clones in the background then seed database
(
for p in ${ports[@]:1}; do
 sleep 1
 $server --port $p --slaveof \ 127.0.0.1 $app_port &
done

sleep 1

#seed initial data
$trafficgen -q -t SET,GET -n 5000 -r 1000 -d 100 -c 1 -P 1 -p $app_port
echo "** Ready!"

RTesting ADQ with Redis—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 55

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

) &
start master server in the foreground and wait for benchmark to start
$server --port ${ports[0]}

NOTE

Pinning the application processes to CPU cores using numactl or similar might
provide more consistent results.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

Redis Clients (non-ADQ) Configuration

The following variables are used in the examples in this section:

$iface The interface in use.

$ipaddr The IP Address of the Redis server interface under test.

$app_port The starting port of the application (for example, 7001).
Note: Port number greater than 5000 is best, but check that it is available

(for example: sudo netstat -tulpn | grep LISTEN)

$app_threads The number of Redis server instances to be run (must be less than or equal to
$num_queues_tc1).

$pathtoicepackage The path to the ice driver package.

$redispath The path to Redis install (for example, /opt/redis-4.0.11/bin).

$clients The array of hostnames or IPs of the physical Redis client systems (for example,
declare -a clients=("server1" "server2")).

$redisbench_keysize The Redis benchmark key size in bytes.

$redisbench_conn The number of connections per Redis benchmark thread.

1. Perform Client configuration.

a. Enable throughput-performance tuned profile.

tuned-adm profile throughput-performance

NOTE

The tuned-adm daemon is not installed by default in RHEL 9.0 systems. Install
it with the command yum install tuned.

Check settings are applied correctly:

cat /etc/tuned/active_profile

10.2

R ADQ—Testing ADQ with Redis

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
56 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Output: throughput-performance

cat /etc/tuned/profile_mode

Output: manual
b. Stop the irqbalance service.

systemctl stop irqbalance

c. Run the set_irq_affinity script for all interfaces (included in the scripts folder
of the ice package).

${pathtoicepackage}/scripts/set_irq_affinity -X all $iface

d. Set interrupt moderation rate to a static value for Tx and turn off interrupt
moderation for Rx.

ethtool --coalesce $iface adaptive-rx off rx-usecs 0
ethtool --coalesce $iface adaptive-tx off tx-usecs 25

2. Perform Redis build.

a. Download the Redis release.

wget http://download.redis.io/releases/redis-4.0.11.tar.gz

b. Untar the package.

tar -xvzf redis-4.0.11.tar.gz

c. Apply redis-benchmark.patch for more detailed benchmark statistics and a
duration (-D) command flag.

NOTE

If you are viewing this document in HTML, click the Download PDF button to
download the zip package containing the redis-benchmark.patch patch.

cd redis-4.0.11/src
patch -p1 < redis-benchmark.patch

d. Install Redis.

cd redis-4.0.11
make PREFIX=/opt/redis-4.0.11 install

e. After this, the redis-server and redis-benchmark are found under /opt/
redis-4.0.11/bin.

3. Perform Redis benchmarking.

A typical test run would be one redis-benchmark instance per SUT queue/Redis
instance, distributing the benchmark instances evenly across all the client
systems. The request size (-d) can be scaled for testing as well as the connection
rate per benchmark instances (-c).

RTesting ADQ with Redis—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 57

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

For example, in the case of 90 queues and 10 client systems, there would be 90
instances of redis-server on the SUT listening on 90 different TCP ports, and 9
instances of redis-benchmark on each client, each connecting to a different port
on the SUT. If a total of 900 connections/users were desired, then each of the 10
client benchmark threads would have a connection rate of -c 10.

To run the automated benchmarking script below, the server that the script is run
on must have passwordless ssh access to all clients.

To set this up, run the following from the server that the script is going to be run
on:

ssh-keygen
for client in ${clients[@]}; do ssh-copy-id $client; done

NOTE

Refer to https://redis.io/topics/benchmarks for more detail on Redis
benchmarking.

Example:

trafficgen="${redispath}/redis-benchmark"
num_clients=${#clients[@]}
for ((i = 0; i < app_threads; i++)); do
 (ssh ${clients[$((i % num_clients))]} "$trafficgen -t GET -n 100000 -r
1000 \
-d $redisbench_keysize -c $redisbench_conn -P 1 -h $ipaddr -p $((app_port + \
i))") & done

NOTE

Pinning the application processes to CPU cores using numactl or similar might
provide more consistent results.

Parameter Definitions:

'-t {tests}',
'-c {threads}',
'-n {requests}',
'-r {keys}',
'-P {pipeline}',
'-d {size}',
'-h {server}',
'-p {port}'

R ADQ—Testing ADQ with Redis

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
58 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://redis.io/topics/benchmarks
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

4. Verify ADQ traffic is on the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that
only the ADQ queues are being used (have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) have
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Verify ADQ Application Traffic and Independent Pollers (If Applicable) for
example watch output.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

RTesting ADQ with Redis—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 59

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

11.0 Testing ADQ with Memcached/rpc-perf

Memcached is an in-memory key-value store for data. rpc-perf is a benchmark meant
to help measure the performance particularly throughput (request rate) and Latency
(percentile). For this section, Memcached is used as an example of a real-world
application with ADQ.

NOTE

This document is not intended to be a complete Memcached/rpc-perf configuration
guide. Refer to Memcached/rpc-perf documentation for more details on usage.

There are two options to configure ADQ in Memcached server.

• Option 1: Using ADQ Setup Script

• Option 2: Using Linux Command Line (Manual Configuration)

Both configuration methods require the completion of the System Setup first.

NOTE

This section contains the steps for configuring ADQ using the setup script. For manual
ADQ configuration, see Appendix: ADQ Configuration Reference (Manual)

Memcached Server Setup

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$num_queues_tc0 The number of queues for default traffic (for example, 2).

$num_queues_tc1 The number of queues for Memcached traffic class.

$ipaddr The IP Address of the interface under test.

$app_port The port of the Memcached Server (for example, 11211 for Memcached server)

$mem Memory block
“Use <num> MB memory max to use for object storage; the default is 64
megabytes.”
(https://linux.die.net/man/1/memcached)
So the total memory in megabytes used for storage.

$memcachedpath The path to Memcached install (for example, /opt/memcached-1.6.9-<REV>).

continued...

11.1

R ADQ—Testing ADQ with Memcached/rpc-perf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
60 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://linux.die.net/man/1/memcached
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

$libeventdevelpath The path to libevent-devl library (for example, /usr/lib64/).

ADQ Setup Script Variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., memcached).

$port TCP port to be configured by ADQ Setup Script.

$addr Destination IP address of traffic to be configured by ADQ Setup Script

System Setup

1. Perform general system OS install and setup.

Complete the ADQ install and setup in ADQ System Under Test (SUT) Installation
and General System Tuning on just the SUT system.

NOTE

Many settings in General System Tuning do not persist between reboots and might
need to be reapplied.

2. Install libevent-devel prerequisite package.

Example on RHEL 8.x:

yum install -y libevent-devel

NOTE

For RHEL 7.x, libevent-devel is not packaged with the OS iso, it is available in the
Server-optional package for the release.

3. Perform Memcached/rpc-perf build:

a. Download the latest Memcached release.

Example:

wget https://memcached.org/files/memcached-1.6.9.tar.gz

b. Untar the package.

tar -xvzf memcached-1.6.9.tar.gz

c. Install Memcached.

i =${memcachedpath}

./configure -prefix=${memcachedpath}\ --with-libevent=$
{libeventdevelpath} make install

After this, the Memcached server is found under ${memcachedpath}/bin.

RTesting ADQ with Memcached/rpc-perf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 61

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

d. Download the rpc-perf release.

cd /opt
git clone https://github.com/twitter/rpc-perf.git

e. Install rpc-perf.

yum install cargo
cd rpc-perf/
cargo build --release
cp ../target/release/rpc-perf /usr/local/bin
chmod +x /usr/local/bin/rpc-perf

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp --busyread=$br create
$file_name queues \
$num_queues_tc1 ports $app_port addrs $addr

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, start the Memcached server.

NOTES

a. The example command above creates both ingress (Rx) and egress (Tx)
filters, and Linux cgroups are not needed to be created and can be skipped
(cgroups are only needed if --priority=skbedit was NOT specified in
adqsetup command).

b. ADQ setup script handles symmetric queues and affinity.

c. The setup script sets per-queue coalesce by default.

d. The setup script sets per-TC inline flow director, for ice-1.8.x and later. For
earlier versions of the ice driver, the global channel-inline-flow-director flag is
used by default.

e. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

f. To configure independent pollers, add the -pollers=$pollers parameter in
the adqsetup command (and optionally --pollers_timeout), and remove
the flags to set global --busypoll=$bp --busyread=$br.

g. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

h. The --debug parameter is optional, but it is useful for obtaining complete
stack trace.

i. For more information on how to use the script, refer to ADQ Setup Using ADQ
Setup Script.

R ADQ—Testing ADQ with Memcached/rpc-perf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
62 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Seeding Memcached data prior to beginning benchmarking is best done with a
python library for Memcached called pymemcache. Download and install from:

https://github.com/pinterest/pymemcache

This requires pip, which can be available when installing Python 3 setup tools.

3. Start Memcached server and seed data to prepare database.

From the SUT, prepare the Memcached database for benchmarking by seeding the
database, using a Python script to generate large number of keys and values. For
simplicity, this example shows a single threaded pymemcache client, but this could
be expanded easily to multiple threads.

NOTE

The goal of seeding the database is just to write the key value pairs, so the
number of threads used in the seeding process does not matter.

For this example, key counts are 20000000, with key size of 8 bytes and value
size of 64 bytes. To ensure 100% hit-rate so that every request has a value
returned, each key has the format '00000001','00000002'...N. with N being the
total number of keys. Each key value is the random string of length valsize.

Example Memcached start script (calls pymemcache Python script):

simple_memcached_start.sh
iface="p1p2"
num_queues_tc1=32
ipaddr=" 13.100.2.22"
port=11211
mem=30000
keycount=20000000
keysize=8
valsize=64
server="${memcachedpath}/bin/memcached"

client="./singlethread_seed.py -s ${ipaddr} -p ${port} -c ${keycount} -k
${keysize} -v ${valsize}"

seed database in the background

(sleep 2; ${client}; echo "*** Done seeding, ready to start client side
benchmark!") &

start server in the foreground

${server} -u root -p ${port} -c 8192 --
napi-ids=${num_queues_tc1} -t ${num_queues_tc1} -m ${mem} --disable-evictions

NOTE

The --napi-ids option was added in Memcached version 1.6.9 to provide
another thread selection option in the dispatch_conn_new code path. The default
mechanism for thread selection is round-robin. The flag enables NAPI_ID based
thread selection that creates an association between socket(s) traffic that arrives
on a given NIC (hardware) queue and the Memcached thread that consumes this
traffic. This mapping between a Memcached thread and a HW NIC queue
streamlines the flow of data from the NIC to the application. In addition, an
optimal path with reduced context switches is possible, if epoll-based busy polling
(sysctl -w net.core.busy_poll = <non-zero value>) is also enabled.

RTesting ADQ with Memcached/rpc-perf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 63

Did this document help answer your questions?

https://github.com/pinterest/pymemcache
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Example Python3 pymemcache script:

singlethread_seed.py
#!/usr/bin/env python3
import os
import sys
import argparse
import random
import string
import psutil
from pymemcache.client import base

def set_key_range(ipaddr, port, keycount, keysize, valsize):
 client = base.PooledClient((ipaddr, port), connect_timeout=2)
 value = random_string(string_length=valsize)
 for i in range(1, keycount):
 key = str(i).zfill(keysize) #zero padding, '0000001'
 client.set(key, value)

def random_string(string_length=64):
 letters = string.ascii_lowercase
 return ''.join(random.choice(letters) for i in range(string_length))

def main(argv):
 parser = argparse.ArgumentParser()
 parser.add_argument('-s', '--server', type=str,
 default="13.100.2.22", help="Server hostname or IP Address")
 parser.add_argument('-p', '--port', type=int, default=11211,
 help="TCP port server is listening on. Default is 11211.")
 parser.add_argument('-k', '--keysize', type=int, default=8,
 help="The keysize in bytes.")
 parser.add_argument('-c', '--keycount', type=int, default=20000000,
 help="Number of keys to produce.")
 parser.add_argument('-v', '--valsize', type=int, default=64,
 help="The value size in bytes.")
 parser.add_argument('-t', '--processs', type=int, default=44,
 help="Number of parallel thread creating keys and values.")
 args = parser.parse_args()
 set_key_range(args.server, args.port, args.keycount, args.keysize,
args.valsize)

if __name__ == "__main__":
 main(sys.argv)

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

R ADQ—Testing ADQ with Memcached/rpc-perf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
64 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Memcached/rpc-perf Clients (non-ADQ) Configuration

The following variables are used in the examples in this section:

$ipaddr The IP Address of the interface under test.

$threads The number of connections per rpc-perf instance.

$duration Test time.

1. Perform general system OS install and setup.

Minimum required kernel for Memcached/rpc-perf (non-ADQ) clients is v4.19.18.

Complete Install OS and Update Kernel (If Needed). Update the Kernel on each of
the rpc-perf client systems, using kernel v4.19.18 or later.

2. Perform rpc-perf build:

a. Download the rpc-perf release on each client system.

git clone https://github.com/twitter/rpc-perf.git

b. Install rpc-perf on each client system.

cargo build --release
cp rpc-perf/target/release/rpc-perf /usr/local/bin
chmod +x /usr/local/bin/rpc-perf

3. Perform Memcached/rpc-perf benchmarking.

A test run would be one rpc-perf instance per physical client. The sum of the
connections that can be spawned for all clients/instances should be greater than
or equal to the total number of TC1 queues available at the SUT/Memcached
server.

For example, in the case of a Memcached server with 110 TC1 queues and 10
physical client systems, there would be 10 instances of rpc-perf (one running on
each physical client) and 11 threads for each instance.

Other parameters would include 8-byte key, 64-byte value, 100% read, and 20
million total keys.

We can start a rpc-perf instance on each client via a command line parameter.

Example:

rpc-perf --config rpc-perf-memcached.toml --endpoint $ipaddr:$port --interval
$duration --clients $threads

This needs to be concurrently started on all clients. We can also use the TOML file
to configure these values instead of command line.

Example TOML file rpc-perf-memcached.toml (replace <threads> with
the number of client threads per instance and <interval> with the length
of time of each test):

[general]
protocol = "memcache"
interval = <interval> # seconds
windows = 1 # run for 1 intervals
clients = <threads>
poolsize = 1 # each client has 1 connection per endpoint

11.2

RTesting ADQ with Memcached/rpc-perf—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 65

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

tcp_nodelay = false # do not enable tcp_nodelay
request_timeout = 1_000_000 # microseconds
connect_timeout = 1_000_000 # microseconds
[[keyspace]]
length = 8 # 8 byte keys
count = 20000000 # limit to 20M keys
weight = 1 # this keyspace has a weight of 1
commands = [# get:set ratio is 1
 {action = "get", weight = 0},
 {action = "set", weight = 1},
]
values = [# value length will always be 64 bytes
 {length = 64, weight = 1},
]

4. Verify that ADQ traffic is on the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that
only the ADQ queues are being used (have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) have
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Verify ADQ Application Traffic and Independent Pollers (If Applicable) for
example watch output.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

R ADQ—Testing ADQ with Memcached/rpc-perf

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
66 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

12.0 Testing ADQ with NGINX

NGINX is a commonly-used, high-performance web server. wrk is a benchmark meant
to help measure the performance of web servers, particularly throughput (request
rate) and latency (percentile). For this section, NGINX is used as an example of a real-
world application with ADQ.

NOTE

This document is not intended to be a complete NGINX/wrk configuration guide. Refer
to NGINX/wrk documentation for more details on usage.

Throughout this section, the steps that are required for ADQ only are highlighted with
an [ADQ only] flag. If benchmarking a baseline configuration, follow all other steps
and make sure those [ADQ only] steps are omitted/reverted.

There are two options to configure ADQ in NGINX server.

• Option 1: Using ADQ Setup Script

• Option 2: Using Linux Command Line (Manual Configuration)

Both configuration methods require the completion of the System Setup first.

NOTE

This section contains the steps for configuring ADQ using the setup script. For manual
ADQ configuration, see Appendix: ADQ Configuration Reference (Manual)

NGINX Server Setup

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$num_queues_tc0 The number of queues for default traffic (note that this should be a power of 2,
for example, 2).

$num_queues_tc1 The number of queues for application traffic class (this is the number of
application threads).

$ipaddr The IP Address of the interface under test.

$app_port The TCP port of the nginx application being run on the SUT (for example, 80 to
listen NGINX HTTP server).

continued...

12.1

RTesting ADQ with NGINX—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 67

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

$application The path to application install (for example, /opt/NGINX).

ADQ Setup Script Variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., nginx).

$port TCP port to be configured by ADQ Setup Script.

$addr Destination IP address of traffic to be configured by ADQ Setup Script

System Setup

1. Perform general system OS install and setup.

Complete the ADQ install and setup in ADQ System Under Test (SUT) Installation
and General System Tuning on just the SUT system.

NOTE

For best NGINX performance with ADQ, the following default ice driver settings
should be used on the NGINX Server:

ethtool --set-priv-flags $iface channel-pkt-inspect-optimize on
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop-cfg off
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop off

The above settings can also be set using an ADQ Setup script; for more
information, see Using ADQ Setup Script.

One change to the system tuning is required. Instead of tuned-adm profile
latency-performance, we recommend using the throughput-performance profile.

tuned-adm profile throughput-performance

NOTE

The tuned-adm daemon is not installed by default in RHEL9.0 systems. Install it
with the command yum install tuned.

Check that the settings are applied correctly:

cat /etc/tuned/active_profile

Output: throughput-performance

cat /etc/tuned/profile_mode

Output: manual

R ADQ—Testing ADQ with NGINX

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
68 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

Many settings in General System Tuning do not persist between reboots and might
need to be reapplied.

2. Perform NGINX build:

a. Install prerequisite NGINX package(s):

yum install -y pcre-devel

b. Download the latest echo-nginx-module. The echo module is a testing utility
that allows for multi-worker content access without file contention, improving
simulated benchmark performance. Under a real workload (not simulated for
benchmarking) this module would not be necessary for full ADQ performance
benefit.

Example:

git clone https://github.com/openresty/echo-nginx-module.git

c. Download the latest stable NGINX release.

Example:

wget http://nginx.org/download/nginx-1.16.1.tar.gz

d. Untar the package.

tar -xf nginx-1.16.1.tar.gz

e. [ADQ only] Apply the patch nginx_reuseport_bpf.patch.

NOTE

If you are viewing this document in HTML, click the Download PDF button to
download the zip package containing the nginx_reuseport_bpf patch.

cd nginx-${VER}
patch -p1 < <pathtopatch>/nginx_reuseport_bpf.patch

NOTE

This nginx_reuseport_bpf patch is required in an ADQ environment, but might
provide benefit even without other ADQ configuration (such as TCs and
cgroups). The nginx_reuseport_bpf patch establishes a 1:1 model of
application thread to hardware queue use in NGINX by adding the socket
option SO_ATTACH_REUSEPORT_CBPF to the application's listening socket
code. This socket option allows the application to attach a small classic Berkley
Packet Filter (cBPF) program to perform hardware NIC queue-aware load
balancing among the application threads.

RTesting ADQ with NGINX—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 69

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

f. Configure NGINX with applied patch.

make clean
./configure --prefix=$application --add-module=<pathtoecho-nginx>/echonginxmodule

g. Copy NGINX configuration into build so that it is deployed in the install.

cp -f nginx.conf conf/

NOTE

NGINX has its own set of configuration parameters to tune. Each application
deployment might be different according to its individual use case. For full
ADQ performance, the use epoll statement is required in the events {}
section. To enable the nginx_reuseport_pbf patch, listen $app_port
reuseport is required in the server {} section. An example nginx.conf file is
included below.

Example nginx.conf (note the $app_port variable needs to match with
the application $app_port in the rest of the section):

daemon off;
error_log stderr;

events {
 use epoll;
 worker_connections 1024;
}

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 open_file_cache max=1000 inactive=10m;

 keepalive_timeout 120;
 keepalive_requests 1000000;

 server {
 listen $app_port reuseport;
 server_name localhost;

 access_log off;

 location / {
 default_type text/html;
 echo "<html><body><h2>Test Server</h2></body></html>";
 }

 location /test256.dat {
 echo_duplicate 256 "*";
 }

 location /test512.dat {
 echo_duplicate 512 "*";
 }

 location /test1024.dat {
 echo_duplicate 1024 "*";
 }

R ADQ—Testing ADQ with NGINX

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
70 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

 location /test2048.dat {
 echo_duplicate 2048 "*";
 }

 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
 }
}

h. Install NGINX.

make install

After this, the NGINX server is found under $application/sbin.

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp create $file_name queues
$num_queues_tc1 ports \
$port addrs $addr

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, start the nginx server.

RTesting ADQ with NGINX—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 71

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTES

a. The example command above creates both ingress (Rx) and egress (Tx)
filters, and Linux cgroups are not needed to be created and can be skipped
(cgroups are only needed if --priority=skbedit was NOT specified in
adqsetup command).

b. ADQ Setup script handles symmetric queues and affinity.

c. The Setup script sets per-queue coalesce by default.

d. The Setup script sets per-TC inline flow director, for ice-1.8.x and later. For
earlier versions of the ice driver, the global channel-inline-flow-director flag is
used by default.

e. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

f. Set the ice driver settings to --optimize on --bpstop off --bpstop-
cfg off for better NGINX performance with ADQ.

g. To configure independent pollers, add the -pollers=$pollers parameter in
the adqsetup command (and optionally --pollers_timeout), and remove
the flags to set global --busypoll=$bp --busyread=$br.

h. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

i. The --debug parameter is optional, but it is useful for obtaining complete
stack trace.

j. For more information on how to use the script, refer to ADQ Setup Using ADQ
Setup Script.

R ADQ—Testing ADQ with NGINX

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
72 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Start NGINX either in the cgroup for ADQ, or without the cgroup if testing baseline
performance.

a. [ADQ only] Start NGINX in the cgroup with the same number of threads as
were configured for TC1.

Example:

server="${application}/sbin/nginx"
${server} -g "worker_processes ${num_queues_tc1};error_log stderr info;"

b. [Baseline] Start NGINX.

Example:

server="${application}/sbin/nginx"
${server} -g "worker_processes ${num_queues_tc1};error_log stderr info;"

3. [ADQ only] Troubleshooting — While test is running, verify that ADQ traffic is on
the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that
only the ADQ queues are being used (have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) have
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Verify ADQ Application Traffic and Independent Pollers (If Applicable) for
example watch output.

NOTE

Note:If the benefits of ADQ enabled vs. disabled are not as dramatic as expected
even though the queues appear to be well aligned, it is possible that the
performance is limited by the processing power of the client systems. If client CPU
shows greater than an average of 80% CPU utilization on the CPU cores in use, it
is probable that the client is becoming overloaded. To achieve maximum
performance benefits, try increasing the number of or processing power of the
client systems.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

RTesting ADQ with NGINX—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 73

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

wrk Clients Configuration

NOTE

ADQ is not required for the clients. The following example sets up clients without ADQ
for use in benchmarking the ADQ or non-ADQ NGINX SUT server performance using
the wrk benchmark.

The following variables are used in the examples in this section:

$iface The interface in use.

$duration Test time in format <value><unit> (example: 60s for 60 seconds, 3m for 3
minutes).

$client_num The total number of physical systems being used as clients.

$pathtoicepackage The path to the ice driver package.

$connection_scale The number of connections per client thread.

$num_queues_tc1 From the SUT, the number of queues for application traffic class on the SUT.

$ipaddr From the SUT, the IP Address of the application server's interface under test.

$app_port From the SUT, the TCP port of the nginx application being run on the SUT.

1. Perform wrk build:

a. Download wrk.

git clone --branch 4.1.0 https://github.com/wg/wrk.git wrk

b. Install wrk.

yum install -y openssl-devel
cd wrk
make
cp wrk /usr/local/bin

2. Perform Client configuration.

a. Enable throughput-performance tuned profile.

tuned-adm profile throughput-performance

NOTE

The tuned-adm daemon is not installed by default in RHEL9.0 systems. Install
it with the command yum install tuned.

Check settings are applied correctly:

cat /etc/tuned/active_profile

Output: throughput-performance

cat /etc/tuned/profile_mode

12.2

R ADQ—Testing ADQ with NGINX

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
74 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Output: manual
b. Stop the irqbalance service.

systemctl stop irqbalance

c. Run the set_irq_affinity script for all interfaces (included in the scripts folder
of the ice package).

${pathtoicepackage}/scripts/set_irq_affinity -x all $iface

d. Set limits file in /etc/security/limits.conf to include:

hard nofile 32768
soft nofile 32768

3. Perform wrk benchmarking.

A test run would be one wrk instance per physical client system, each with
multiple application threads. Due to the design of wrk itself, it is recommended to
keep the number of threads of the client benchmark per client system less than or
equal to the number of physical local CPU cores on the client systems. For more
predictable results, it is also recommended to run the client benchmark with the
total number of threads from all client systems equal to an even multiple of the
number of application threads on the SUT. This ensures an even distribution of
client load.

For example, in the case of an ADQ enabled NGINX server with 110 TC1 queues
and 10 physical client systems each with 24 physical CPU cores per socket, a
recommended configuration would be 10 instances of wrk (one running on each
physical client), each with 22 threads. The number of connections can then be
linearly scaled to increase the workload evenly across the SUT.

NOTE

Average latency is just a measure of how fast the SUT can respond.

If the SUT is not overloaded then it does not need ADQ to have a decent latency
number.

ADQ shows benefit when you scale up the system beyond what it would normally
be able to handle.

We can start a wrk instance on each client concurrently via a command line script
(example below) and then the results added together.

Example:

NOTE

$num_queues_tc1, $ipaddr, and $app_port are the same numbers used from
the SUT configuration

file="test${buffer_size}.dat" threads=$((2 * $num_queues_tc1 /
$client_num)) conns=$(($threads * $connection_scale))
numactl --cpunodebind=netdev:$iface --membind=netdev:$iface wrk --latency -t
${threads} -c ${conns} -d ${duration} "http://${ipaddr}:${app_port}/${file}"

RTesting ADQ with NGINX—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 75

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

13.0 Testing ADQ with AF_XDP

XDP (eXpress Data Path) is a framework that uses eBPF, an extended version of the
Berkley Packet Filter (BPF), to perform high-speed packet processing within the Linux
kernel. XDP applications can be attached directly to a network interface, to create
efficient packet processing directly from the network device, allowing the XDP
application to bypass the network stack in the kernel. AF_XDP is an extension to the
existing XDP support in the Linux kernel for XDP enabled network devices.

AF_XDP is an address family optimized for high performance, low latency, packet
processing with XDP. AF_XDP was introduced in the 4.18 kernel and is a new socket
type that permits raw packet data from the network adapter to be delivered straight to
user space from XDP without any copying, and at significantly higher speeds. AF_XDP
does not completely bypass the kernel but utilizes its functionality to create something
similar to DPDK or the AF_Packet. AF_Packet is a socket in the Linux kernel, which
allows applications to send and receive raw packets through the kernel.

AF_XDP uses Linux kernel drivers, it does not use any user-space drivers. This support
is available for customer experimentation and testing but has not been fully tested
with all possible AF_XDP workloads. For convenience, instructions for testing with
kernel sample application XDPSOCK are included in this section.

There are two options to configure ADQ in AF_XDP server.

• Option 1: Using ADQ Setup Script

• Option 2: Using Linux Command Line (Manual Configuration)

Both configuration methods require the completion of the System Setup first.

NOTE

This section contains the steps for configuring ADQ using the setup script. For manual
ADQ configuration, see Appendix: ADQ Configuration Reference (Manual)

R ADQ—Testing ADQ with AF_XDP

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
76 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

AF_XDP Server Configuration

NOTE

This section uses application dependent polling (ADQ1.0) for application and testing
and does not use an independent poller (ADQ2.0).

The following variables are used in the examples in this section:

$iface The interface in use (PF or VF)

$num_queues_tc0 The number of queues for default traffic (for example, 2).

$num_queues_tc1 The number of queues for application traffic (also maximum number of threads
to be run).

$ipaddr The IP Address of the server interface under test.

$app_port The starting port of the application (for example, 7000).
Note: Port number greater than 5000 is best, but check that it is available

(for example: sudo netstat -tulpn | grep LISTEN).

$dst_ip The destination IP Address created on each ADQ TC filter.

$baseaddr Holds the first 3 octants of IP Address.

$lsv Holds the 4th octant of IP Address.

$def_app_port The port for the default TC/queues.

$def_ipaddr The destination IP Address for the default queues.

$kernelpath The path to the installed kernel.

ADQ Setup Script Variables

$bp Global busy_poll value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$br Global busy_read value to be set by ADQ Setup Script (system-wide setting, not
to be used with independent poller).

$file_name Application name to be set and used by ADQ Setup Script (any descriptive string,
i.e., af_xdp).

$portrange TCP ports to be configured by ADQ Setup Script

$addr Destination IP address of traffic to be configured by ADQ Setup Script

System Setup

1. Perform the system OS install and setup.

a. Complete the OS install and kernel update inADQ System Under Test (SUT)
Installation on the server under the test system.

NOTE

For busy polling, kernel version v5.11.0 or later is required.

13.1

RTesting ADQ with AF_XDP—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 77

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

Ensure XDP socket flag is enabled in the kernel .config file in Step 4c in
Update Kernel (If Needed)

Add CONFIG_XDP_SOCKETS=y flag in the .config file.

If the kernel is compiled without CONFIG_XDP_SOCKETS=y, the following
error message is observed while running the XDPSOCK application: Address
family not supported by protocol.

NOTE

Disable Hyper threading in BIOS for better performance with AF_XDP.

b. Complete the ADQ setup in General System Tuning on the SUT system.

One change to the system tuning is recommended for improved performance
with ADQ. Set the following private flags on the interface under test:

ethtool --set-priv-flags $iface channel-pkt-inspect-optimize off
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop on
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop-cfg on

The above settings can also be set using an ADQ Setup script; for more
information, see Using ADQ Setup Script below.

2. Install prerequisites: Packages needed for LLVM and BPF samples: cmake,
libcap-devel.

yum install -y cmake libcap-devel

If libpcap-devel is not available in the OS distribution, download and install libpcap
and libpcap-devel:

wget http://mirror.centos.org/centos/8/BaseOS/x86_64/os/Packages/
libpcap-1.9.1-5.el8.x86_64.rpm
wget http://mirror.centos.org/centos/8/PowerTools/x86_64/os/Packages/libpcap-
devel-1.9.1-5.el8.x86_64.rpm
rpm -i libpcap-devel*

NOTE

If installing packages using the rpm command, and if libpcap is already installed
on the system, use rpm -U instead of rpm -i to upgrade the package. Version
numbers might differ depending on OS being used.

3. Install LLVM tool.

a. Download LLVM.

wget https://github.com/llvm/llvm-project/releases/download/
llvmorg-10.0.1/llvm-project-10.0.1.tar.xz

R ADQ—Testing ADQ with AF_XDP

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
78 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

b. Untar the package.

tar -xf llvm-project-10.0.1.tar.xz

c. Install LLVM.

cd to the directory "llvm-project-10.0.1" mkdir build;
cd build cmake -G "Unix Makefiles" -DLLVM_ENABLE_PROJECTS=clang ../llvm
make -j"$(nproc)" install

NOTE

$(nproc) = number of logical cores.

NOTE

LLVM requires a lot of disk space, be sure to have at least 65 GB of disk space
available before building and installing LLVM.

4. Build BPF Samples.

a. cd to the Linux kernel source (for example, /kernels/5.11.0/) and build tools.

cd $kernelpath
make -C tools clean

b. Build sample bpf:

make M=samples/bpf

or

cd $kernelpath/samples/bpf
make -j all

c. Verify that the xdpsock executable was created:

ls $kernelpath/samples/bpf | grep xdpsock
xdpsock
xdpsock_ctrl_proc
xdpsock_ctrl_proc.c
xdpsock_ctrl_proc.o
xdpsock.h
xdpsock_kern.c
xdpsock_kern.o
xdpsock_user.c
xdpsock_user.o

RTesting ADQ with AF_XDP—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 79

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Using ADQ Setup Script

The ADQ Setup script allows you to quickly and easily configure required ADQ
parameters such as traffic classes, priority, filters, and ethtool parameters etc.

1. To configure ADQ, run the following command:

adqsetup --dev=$iface –-priority=skbedit --busypoll=$bp --busyread=$br
create $file_name mode shared \
queues $num_queues_tc1 ports $portrange addrs $addr protocol udp

See Notes below for customizing the ADQ configuration. Once ADQ is configured
by adqsetup, launch the XDPSOCK application with multiple parallel sockets in
different modes l2fwd/TX-only/RX-drop.

NOTES

a. ADQ Setup script handles symmetric queues and affinity.

b. The Setup script sets per-queue coalesce by default.

c. Set the transmit and receive interrupt coalescing values to --rxadapt=off
--rxusecs=0 --txadapt=off --txusecs=500 for improved ADQ
performance.

d. Set the ice driver settings to --optimize off --bpstop on --bpstop-
cfg on for better performance with ADQ.

e. To configure independent pollers, add the -pollers=$pollers parameter in
the adqsetup command (and optionally --pollers_timeout), and remove
the flags to set global --busypoll=$bp --busyread=$br.

f. Use the cpu parameter in the command to bind the independent pollers to
specific CPU cores. Refer to ADQ Setup Using ADQ Setup Script for more
information on pinning pollers to specific CPU cores.

g. The --debug parameter is optional, but it is useful for obtaining complete
stack trace.

h. For more information on how to use the script, refer ADQ Setup Using ADQ
Setup Script.

2. Create and run a test script like the example below. The script opens multiple
parallel sockets in the background with the selected mode: l2fwd/TX-only/RX-
drop.

Example:

xdpsock.sh
mode=$1
if ["x${mode}" == "x"]
then
 echo -e "Enter mode in which the script should run: -l for L2FWD or -r
for RX-DROP or -t for TX-ONLY:"
 echo -e "Usage: ./xdpsock.sh -l or ./xdpsock.sh -r or ./xdpsock.sh -t"
 exit 1
fi
inst=${2:-<number_of_queues_to_test>}
iface=ens1f1
kernelpath=/kernels/5.11.0/
XDPSOCK="${kernelpath}/samples/bpf/xdpsock"
trap 'kill $(jobs -p)' EXIT
max=$((inst + 2))

R ADQ—Testing ADQ with AF_XDP

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
80 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

for ((i = 2; i < $max; i++))
do
 printf -v q "%d" $((i*1))
 taskset -c $i $XDPSOCK -i $iface ${mode} -q $i & #mode is -l for l2fwd, -
r for RX-DROP, -t for TX-ONLY
 sleep 0.1
done
while true
do
 sleep 1
done

3. Run the traffic from an external packet generator of choice. See Traffic Generator
Example Configuration (Non-ADQ) for details.

4. After the test finishes, kill the XDPSOCK process.

killall xdpsock

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

Traffic Generator Example Configuration (Non-ADQ)

To test AF_XDP functionality with ADQ, it is recommended to run multiple streams of
traffic to the ADQ-configured AF_XDP server. There are multiple ways to generate the
traffic, some are hardware based (IXIA, Spirent, etc.) and others are software only.

Traffic Pattern to Be Generated

To test AF_XDP as in the example given in Example: Running DPDK-pktgen Traffic, a
packet generator of choice can be used to generate test traffic to the ADQ server with
the following characteristics:

• UDP protocol to connect to AF_XDP sockets on the server.

• Destination port must match the $app_port number used in the ADQ
configuration on the AF_XDP server (TC filter and ntuple configuration commands
in AF_XDP Server Configuration).

• To use all ADQ queues on the AF_XDP server, the number of traffic streams (ports)
should be equal to or a multiple of the number of ADQ queues configured on the
AF_XDP server ($num_queues_tc1 in AF_XDP Server Configuration).

• Other variables, such as $packet_size, can be configured to test the desired
traffic pattern.

Example: Running DPDK-pktgen Traffic

This section provides an example for how to configure a standard server with a DPDK-
pktgen software packet generator to generate network traffic to exercise the AF_XDP
server configured in AF_XDP Server Configuration. Note that the server generating the
traffic does not have to be configured with ADQ.

13.2

13.2.1

13.2.2

RTesting ADQ with AF_XDP—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 81

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

This is not intended to be a complete DPDK-pktgen configuration guide. Refer to the
Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 21.08
Configuration Guide for more details on DPDK and pktgen installation, configuration,
and usage.

The following are the attributes used to generate the traffic:

$pci_id PCIe address of the interface in use.

$cores List of cores used to generate the traffic.

$mem_channels Number of memory channels.
Note: The -n 2 is a minimum required argument for DPDK (Range 2-4).

$socket_mem DPDK allocated memory from each CPU.

$log_level Set the specific log level (example: 1-8).

$protocol Traffic protocol (AF_XDP must use UDP).

$packet_size Size of the packet (example: 64-1518).

$src_mac Client interface MAC Address.

$dst_mac AF_XDP server interface MAC Address.

$src_ip IP Address configured on the client interface using pktgen set command.

$dst_ip IP Address of the AF_XDP server interface.

$src_port Port number configured on client interface using pktgen set command.

$dst_port Port number configured in the traffic class filters on the AF_XDP server.

$min_value Minimum range value configured using pktgen range command.

$max_value Maximum range value configured using pktgen range command.

$increment Increment value configured using pktgen range command.

$RTE_SDK Points to the DPDK installation directory.
Note: Refer to DPDK configuration guide for more details.

$pathtopktgen Path to pktgen application.
Note: Refer to DPDK configuration guide for more details.

$file_prefix Hugepage filename prefix.

$port_num Interface port number (example: port 0,1).

$rx_cores Cores to handle specific port's Rx.

$tx_cores Cores to handle specific port's Tx.

Notes: • $protocol must be set to UDP to connect to AF_XDP sockets on the server.
• For best performance, $cores should be set to CPU cores on the same (local) NUMA node as

the E810 network adapter. See Step are from NUMA node 0 inventory. The following
command can be used to list inventory of available NUMA nodes on the system, and the
respective CPU cores: numactl -hardware (or) lscpu | grep -i numa Example using five
interleaved CPU cores (2,4,6,8,10): Core 2 - Used for pktgen command line and displaying
the run time metrics. C 㱯捐㱯 below for more details.

• $dst_port must match the $app_port number used in the ADQ configuration on the AF_XDP
server (TC filter and ntuple configuration commands in AF_XDP Server Configuration).

• Other variables, such as $packet_size, can be configured to test the desired traffic pattern.

R ADQ—Testing ADQ with AF_XDP

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
82 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://cdrdv2.intel.com/v1/dl/getContent/655428
https://cdrdv2.intel.com/v1/dl/getContent/655428
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

To use all queues, the number of traffic streams (ports) should be equal to or a
multiple of the number of ADQ queues configured on the AF_XDP server
($num_queues_tc1 in AF_XDP Server Configuration).

1. pktgen configuration command.

cd $RTE_SDK
./$pathtopktgen/pktgen -l $cores -n $mem_channels --proc-type auto --log-
level $log_level --socket-mem=$socket_mem --file-prefix $file_prefix -a
$pci_id -- -N -P -T -m [$rx_cores:$tx_cores].$port_num

Following are the mandatory and optional command-line options:

Mandatory fields:

-l:
-n:
-m:
-N:
-P:
--file-prefix:

List of cores on which to run.
Number of memory channels (range is 2-4).
Matrix for mapping ports to logical cores.
Enable NUMA support.
Enable PROMISCUOUS mode on all ports.
Prefix for huge page filenames.

Optional fields:

-T:
--proc-type:
--log-level:
--socket-mem:

Enable the color output.
Type of the process (primary| secondary |auto).
Set specific log level.
Memory to allocate on specific sockets (comma separated values).

Example commands:

The following examples configure pktgen to use CPU cores specified by -l $cores,
where the first core is used for the pktgen command line, for timers and for
displaying the runtime metrics text on the terminal, and the remaining cores are
used for the generated UDP packet streams. $cores are CPU cores on the same
(local) NUMA node as the E810 network adapter. $rx_cores and $tx_cores are
used to map Rx and Tx traffic from Port 0 of the network adapter to the CPU cores
specified by -m.

NOTE

The PCIe device 12:00.0 that is used in pktgen is on NUMA node 0, so -l <CPUs>
are from NUMA node 0 inventory.

The following command can be used to list inventory of available NUMA nodes on
the system, and the respective CPU cores:

numactl -hardware (or) lscpu | grep -i numa

a. Example using five interleaved CPU cores (2,4,6,8,10):

• Core 2 - Used for pktgen command line and displaying the run time
metrics.

Cores 4,6 - RX traffic.

RTesting ADQ with AF_XDP—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 83

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Cores 8,10 - TX traffic.

./pktgen -l 2,4,6,8,10 -n 4 --proc-type auto --log-level 7 --socket-
mem=1024 --file-prefix pktgen1 -a 12:00.0 -- -N -P -T -m [4-6:8-10].0

b. Example using nine consecutive CPU cores (1-9):

• Core 1 - Used for pktgen command line and displaying the run time
metrics.

Cores 2-5 - RX traffic.

Cores 6-9 - TX traffic.

./pktgen -l 1-9 -n 4 --socket-mem=256,256 --file-
prefix=pktgen2 -a 12:00.0 -- -N -T -P -m "[2-5:6-9].0"

2. Pktgen commands to generate the traffic.

Pktgen:/> set $port_num proto $protocol
Pktgen:/> set $port_num size $packet_size
Pktgen:/> set $port_num src mac $src_mac
Pktgen:/> set $port_num dst mac $dst_mac
Pktgen:/> set $port_num src ip $src_ip/mask
Pktgen:/> set $port_num dst ip $dst_ip
pktgen:/> set $port_num dport $dst_port
Pktgen:/> set $port_num sport $src_port
Pktgen:/> enable $port_num range
Pktgen:/> range $port_num proto $protocol
Pktgen:/> range $port_num size $packet_size $min_value $max_value $increment
Pktgen:/> range $port_num src mac $src_mac $min_value $max_value $increment
Pktgen:/> range $port_num dst mac $dst_mac $min_value $max_value $increment
Pktgen:/> range $port_num dst ip $dst_ip $min_value $max_value $increment
Pktgen:/> range $port_num src ip $src_ip $min_value $max_value $increment
Pktgen:/> range $port_num dst port $dst_port $min_value $max_value $increment
Pktgen:/> range $port_num src port $src_port $min_value $max_value $increment
Pktgen:/> start $port_num #To start the traffic
Pktgen:/> stop $port_num #To stop the traffic
Pktgen:/> quit #To quit the application

Example commands:

The following commands configure 64-byte UDP packets from the pktgen host
(src) to the AF_XDP server (dst), generating 8 traffic streams across 8 application
ports. The destination port numbers (dport and dst port) must match the port
numbers used in the ADQ configuration steps on the AF_XDP server in AF_XDP
Server Configuration.

Must send UDP traffic to an AF_XDP socket.

Pktgen:/> set 0 proto udp
Pktgen:/> set 0 size 64
Pktgen:/> set 0 src mac b4:96:91:9c:f9:90
Pktgen:/> set 0 dst mac 40:a6:b7:19:08:d0

Tested with /16 network mask, other range of network masks could also be used
(Default is /32 for IPv4). Subnet mask not required on the destination IP address.

Pktgen:/> set 0 src ip 61.1.1.50/16
Pktgen:/> set 0 dst ip 61.1.1.100

R ADQ—Testing ADQ with AF_XDP

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
84 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Destination port number must match the starting $app_port number configured on
the ADQ AF_XDP server (AF_XDP Server Configuration).

pktgen:/> set 0 dport 5002
Pktgen:/> set 0 sport 3002
Pktgen:/> enable 0 range
Pktgen:/> range 0 proto udp
Pktgen:/> range 0 size 64 64 64 1
Pktgen:/> range 0 src mac b4:96:91:9c:f9:90 b4:96:91:9c:f9:90
b4:96:91:9c:f9:90 00:00:00:00:00:01
Pktgen:/> range 0 dst mac 40:a6:b7:19:08:d0 40:a6:b7:19:08:d0
40:a6:b7:19:08:d0 00:00:00:00:00:01
Pktgen:/> range 0 dst ip 61.1.1.100 61.1.1.100 61.1.1.100 0.0.0.1
Pktgen:/> range 0 src ip 61.1.1.50 61.1.1.50 61.1.1.50 0.0.0.1

Number of traffic streams (ports) should be equal to or a multiple of the number
of ADQ queues configured on the AF_XDP server ($num_queues_tc1 in AF_XDP
Server Configuration). $dst_port numbers must match the port numbers
configured on the ADQ server.

Pktgen:/> range 0 dst port 5002 5002 5009 1 #Ports used to add TC filters in
ADQ server
 Pktgen:/> range 0 src port 3002 3002 3009 1 #8 source ports
 Pktgen:/> start 0
 Pktgen:/> stop 0

3. Verify ADQ traffic is on the correct queues.

After traffic is started in the client machine, on the AF_XDP server start the
XDPSOCK application and watch ethtool statistics to check that only the ADQ
queues are being used. The pkt_busy_poll counter should have significantly higher
traffic. If instead, pkt_not_busy_poll show significantly higher traffic, or if traffic is
not confined to ADQ queues, re-check the configuration steps carefully and/or
make sure XDPSOCK is running on the AF_XDP server.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Verify ADQ Application Traffic and Independent Pollers (If Applicable) for
example ethtool watch output.

NOTE

The ADQ Setup script clears the existing configuration before proceeding with the new
ADQ configuration. To clear manually, follow the steps in Clear the ADQ Configuration.

RTesting ADQ with AF_XDP—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 85

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

14.0 Testing ADQ with Apache Traffic Server (ATS)

ATS is a fast, scalable, and extensible HTTP/1.1 and HTTP/2 compliant caching proxy
server. Vegeta is "a versatile HTTP load testing tool built out of a need to drill HTTP
services with a constant request rate"1. It helps measure the performance of web
servers, particularly throughput and latency (percentile). In this section, ATS is used
as an example of a real-world application with ADQ.

NOTE

This document is not intended to be a complete ATS/Vegeta configuration guide. Refer
to ATS/Vegeta documentation for more details on usage.

https://docs.trafficserver.apache.org/en/latest/

https://docs.trafficserver.apache.org/en/latest/getting-started/index.en.html

Throughout this section, the steps that are required for ADQ only are highlighted with
an [ADQ only] flag. If benchmarking a baseline configuration, follow all other steps
and make sure [ADQ only] steps are omitted/reverted.

ATS Server Setup

The following variables are used in the examples in this section:

$iface The PF interface in use.

$num_queues_tc0 The number of queues for default traffic.

$num_queues_tc1 The number of queues for application traffic class.

$ip_addr The IP Address of the interface under test.

$app_port The TCP port of the ATS application being run on the SUT(for example, 80,
8080, 8888; default port for http traffic is 80).

$cgroup_name The name for the application group.

$iface_bdf The network interface BDF notation (Bus:Device.Function) used by devlink.

$cpu_sockets The list of sockets on SUT (0, 1 for 2-socket system).

$tc1_qps_per_poller The number of queues per one poller thread.

$tc1_timeout_value The value of timeout in poller threads (nonzero integer value in jiffies, default
value 10000).

$pathtoicepackage The path to the ice driver package.

${pathtotc} The path to the TC command.

$core_number The specific core number.

continued...

14.1

1 From Vegeta readme on github: https://github.com/tsenart/vegeta#readme

R ADQ—Testing ADQ with Apache Traffic Server (ATS)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
86 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://docs.trafficserver.apache.org/en/latest/
https://docs.trafficserver.apache.org/en/latest/getting-started/index.en.html
https://github.com/tsenart/vegeta#readme
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

$pid The process identification number.

$prio The priority of flow-based traffic control group.

$core_range_0-
$core_range_1

The range of cpu cores assigned to cgroup.

NOTE

Use of independent poller feature in Apache Traffic Server is currently supported on PF
only (not supported on VF).

1. Perform general system OS install and setup.

a. Complete the ADQ install and setup in ADQ System Under Test (SUT)
Installation.

NOTE

SUT Linux kernel later than v5.12 is strongly recommended for optimal
performance, and ICE driver version 1.9.x is required for Independent Pollers
feature of ADQ 2.0.

NOTE

For best ATS performance with ADQ, the following default ice driver settings
should be used on the ATS Server:

• Turn off packet optimizer:

ethtool --set-priv-flags $iface channel-pkt-inspect-optimize off

• Enable hardware tc offload:

ethtool -K $iface hw-tc-offload on

And for the interface that is being used, set:

echo 1 > /sys/class/net/$iface/threaded

b. Enable threaded mode napi poll.

Two changes to the system tuning are required.

i. Enable latency-performance tuned profile.

tuned-adm profile latency-performance

NOTE

The tuned-adm daemon is not installed by default in RHEL9.0 systems.
Install it with the command yum install tuned.

RTesting ADQ with Apache Traffic Server (ATS)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 87

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Check that the settings are applied correctly:

cat /etc/tuned/active_profile

Output: latency-performance

cat /etc/tuned/profile_mode

Output: manual
ii. Set the CPU scaling governor to performance mode

x86_energy_perf_policy performance

Check that the settings are applied correctly:

cat /etc/tuned/active_profile

Output: latency-performance

cat /etc/tuned/profile_mode

Output: manual

cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Output: performance

NOTE

For each CPU thread on server.

For best performance with Apache Traffic Server, set
net.core.netdev_max_backlog and net.ipv4.tcp_max_syn_backlog as
follows:

sysctl -w net.core.netdev_max_backlog=250000
sysctl -w net.ipv4.tcp_max_syn_backlog=250000

Also set:

sysctl -w net.core.busy_poll=0

NOTE

Many settings in General System Tuning and those listed above do not persist
between reboots and might need to be reapplied.

R ADQ—Testing ADQ with Apache Traffic Server (ATS)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
88 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Perform ATS build.

a. Download the latest ATS version from one of the following locations:

• Download the latest ATS version from GitHub:

Example:

git clone https://github.com/apache/trafficserver

Or

• Download the latest stable ATS release from apache.org:

Example:

wget https://dlcdn.apache.org/trafficserver/trafficserver-9.1.2.tar.bz2

Untar the package

tar xf trafficserver-9.1.2.tar.bz2

b. Compile and install ATS.

cd trafficserver-${VER}

NOTE

$VER is the trafficserver version that was downloaded.

autoreconf-if
./configure
make
make install

c. Set the number of ATS threads to be equal to $num_queues_tc1 using
records.config.

The records.config file, by default located in /usr/local/etc/
trafficserver/, is a list of configurable variables used by the Traffic Server
software.

Field:

CONFIG proxy.config.exec_thread.autoconfig.scale FLOAT 1

Set the multiplier according to total number of cores vs number of ADQ
queues.

Example:

If the total number of cores is 144 and the number of queues
($num_queues_tc1) is 126, the multiplier would be 0.875 and the config
line would be:

CONFIG proxy.config.exec_thread.autoconfig.scale FLOAT 0.875

RTesting ADQ with Apache Traffic Server (ATS)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 89

Did this document help answer your questions?

HTTPS://DOCS.TRAFFICSERVER.APACHE.ORG/EN/LATEST/ADMIN-GUIDE/FILES/RECORDS.CONFIG.EN.HTML?HIGHLIGHT=RECORDS%20CONFIG#STD-CONFIGFILE-RECORDS.CONFIG
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

3. [ADQ only] Create Traffic Classes (TCs) on the interface under test. Note that
TC1 should have the same number of queues as the number of threads that will
be started by the ATS application.

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 2 map 0 1 queues
$num_queues_tc0@0 num_queues_tc1@$num_queues_tc0 hw 1 mode channel

${pathtotc}/tc qdisc add dev $iface clsact

NOTE

Due to timing issues, applying TC filters immediately after the tc qdisc add
command might result in the filters not being offloaded in hardware. An error in
dmesg is logged if the filter fails to add properly. It is recommended to wait five
seconds after tc qdisc add before adding TC filters.

sleep 5

4. [ADQ only] Create one TC filter on the interface under test.

 ${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower
dst_ip $ip_addr/32 ip_proto tcp dst_port $app_port skip_sw hw_tc 1

NOTE

The /32 in dst_ip $ip_addr/32 is not the subnet of the network being used,
but the subnet of the filter you are creating. In other words, /32 indicates a single
IP Address being filtered. It is recommended to use /32 when creating filters to
limit the addresses being filtered.

NOTE

ATS by default sets HTTP on port 8080, HTTPS on port 8443. It might be changed
in

 vi /usr/local/etc/trafficserver/records.config

5. [ADQ only] Confirm TC configuration:

a. Check TC filter.

${pathtotc}/tc filter show dev $iface ingress

b. Check that TCs were created correctly.

${pathtotc}/tc qdisc show dev $iface

6. For best performance with Apache Traffic Server set the interrupt moderation rate
to this static value for Tx and Rx.

ethtool --coalesce ${iface} adaptive-rx off rx-usecs 100
ethtool --coalesce ${iface} adaptive-tx off tx-usecs 100

R ADQ—Testing ADQ with Apache Traffic Server (ATS)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
90 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

7. Configure Independent pollers.

ice version 1.9.x (and later):

iface_bdf=$(ethtool -i ${iface} | grep bus-info | awk '{print $2}'
devlink dev param set pci/${iface_bdf} name tc1_qps_per_poller value
$tc1_qps_per_poller cmode runtime
devlink dev param set pci/${iface_bdf} name tc1_poller_timeout value
$tc1_timeout_value cmode runtime

NOTE

Kernel with devlink param support is required for ice-1.8.x and later. See Install
OS and Update Kernel (If Needed) to determine OS and kernel requirements.

NOTE

Valid devlink param flags include tc1_qps_per_poller and
tc1_poller_timeout through tc15_qps_per_poller and
tc15_poller_timeout, to configure pollers on up to 16 TCs (max #TCs).

8. Configure Flow Director.

devlink dev param set pci/${iface_bdf} name tc1_inline_fd value true cmode
runtime

9. Run the set_irq_affinity script for the interface under test.

${pathtoicepackage}/scripts/set_irq_affinity -X7 all $iface

10. Configure symmetric queues on the interface using the script included in the
scripts folder of the ice package.

${pathtoicepackage}/scripts/set_xps_rxqs $iface

11. [ADQ only]

NOTE

The system under test can be configured with a single NIC or multiple NICs;
choose the option based on the configuration.

a. Single NIC configuration

Configure specific cores as being responsible for dedicated poller threads to
optimize CPU usage and improve SUT stability. In case of 2-socket systems
and one NIC use cores on the CPU located on the same NUMA node as the
NIC.

#!/bin/bash
CHK () {
 "$@"
 if [$? -ne 0]; then
 echo "Error with ${1}, stopping now!" >&2
 exit 1
 fi
}

RTesting ADQ with Apache Traffic Server (ATS)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 91

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

pin_napi_threads () {
 num_threads=$(ps -aef |grep "\[napi\/" | wc -l)
 start_pid=$(ps -ae |grep napi |head -n 1 |cut -d ? -f 1)

 for ((i = 0; i < $num_threads; i++))
 do
 printf -v pid "%d" $((start_pid+i))
 printf -v cpu "%d" $((2*i+1))
 CHK taskset -p -c "${core_number}" $pid
 done
}

pin_napi_threads

NOTE

There is possibility to assign more than one cpu core for poller threads, it is
required to be equal to the no. of configured poller threads. Each core number
has to be separated by comma.

Example for 8 poller threads and therefore 8 cores:

CHK taskset -p -c "36,37,38,39,40,41,42,43" $pid

NOTE

In case of small object being transferred more poller threads usually yields
better performance (example: 1 poller thread per 8-16 queues for 10kB
objects), for larger objects (>1MB) a smaller number of poller threads (and
therefore dedicated cores) can be used.

b. Multiple NIC configuration

If your system under test has multiple NIC, ensure, that the system is
balanced (it has the same number of NICs per NUMA node). Queues should be
divided to equal no. per every NIC, and poller threads should be placed on
each NUMA node in equal number and assigned to their respective NICs
residing on the same NUMA node as the poller threads.

Example:

num_threads=$(ps -aef |grep "\[napi\/$iface1" | wc -l)
 start_pid=$(ps -ae |grep napi\/$iface1 |head -n 1 |cut -d ? -f 1)

 for ((i = 0; i < $num_threads; i++))
 do
 printf -v pid "%d" $((start_pid+i))
 printf -v cpu "%d" $((2*i+1))
 CHK taskset -p -c "${core_number}" $pid
 done

 num_threads=$(ps -aef |grep "\[napi\/$iface2" | wc -l)
 start_pid=$(ps -ae |grep napi\/$iface2 |head -n 1 |cut -d ? -f 1)

 for ((i = 0; i < $num_threads; i++))
 do
 printf -v pid "%d" $((start_pid+i))
 printf -v cpu "%d" $((2*i+1))
 CHK taskset -p -c "${core_number}" $pid
 done

R ADQ—Testing ADQ with Apache Traffic Server (ATS)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
92 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

12. [ADQ only] In this example, we are using cgroups for pinning Apache Traffic
Server threads and poller threads to specific cores. Other methods can be used to
achieve the same effect.

Create cgroup and map to interface under test. Set the priority for processes
belonging to the cgroup. The $prio value should map to the position of the
targeted TC in Step 3 to create traffic classes (TCs). See Create TCs for reference
on TC priority mapping

cgcreate -g cpuset,memory,net_prio:${cgroup_name}
cgset -r net_prio.ifpriomap="$iface $prio" ${cgroup_name}
cgset -r cpuset.mems="${cpu_sockets}" ${cgroup_name}
cgset -r cpuset.cpus="${core_range_0}-${core_range_1}" ${cgroup_name}

13. Start ATS either in the cgroup for ADQ or without the ADQ if testing baseline
performance.

a. [ADQ Only] Start ATS in the cgroup with the same number of threads that
were configured for TC1.

Example:

/usr/local/bin/trafficserver start
cgclassify -g cpuset,net_prio:ats $(ps -e | grep TS_MAIN | awk \ '{ print
$1 }')
cgclassify -g cpuset,net_prio:ats $(ps -e | grep ET_NET | awk \ '{ print
$1 }')

b. [Baseline] Start ATS.

Example:

/usr/local/bin/trafficserver start

14. [ADQ only] Verify cgroup configuration:

a. Show that the interface is mapped to the right interface.

cat /sys/fs/cgroup/net_prio/${cgroup_name}/net_prio.ifpriomap

b. Show the Process IDs being run in the cgroup and match them to the
application Process IDs.

cat /sys/fs/cgroup/net_prio/${cgroup_name}/tasks

15. [ADQ only] Troubleshooting: While test is running, verify that ADQ traffic is on
the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that only
the ADQ queues are being used (that is, have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) has
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

See Configure Intel® Ethernet Flow Director Settings for example watch output.

RTesting ADQ with Apache Traffic Server (ATS)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 93

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

If the benefits of ADQ enabled versus disabled are not as dramatic as expected
even though the queues appear to be well aligned, it is possible that the
performance is limited by the processing power of the client systems. If client CPU
shows greater than an average of 80% CPU utilization on the CPU cores in use, it
is probable that the client is becoming overloaded.

To achieve maximum performance benefits, try increasing the number of or the
processing power of the client systems.

After the test finishes, remove the cgroup.

jobs -p | xargs kill &> /dev/null cgdelete -g net_prio: ${cgroup_name}

After the test finishes, remove the ADQ configuration following steps in Clear the
ADQ Configuration.

Vegeta Clients Configuration

NOTE

ADQ is not required for the clients. The following example sets up clients without ADQ
for use in benchmarking the ADQ or non-ADQ SUT performance using the Vegeta
benchmark tool.

The following variables are used in the examples in this section:

$ipaddr From the server, the IP Address of the application server's interface under test.

$app_port From the server, the TCP port of the ATS application being run on the server.

$endpoint The object or page that is tested on ATS.

$PATH The ordered list of paths that Linux will search for executables when running a
command

$pathtovegeta The directory where Vegeta files are placed

1. Perform Vegeta build:

Example:

a. Download Vegeta.

wget https://github.com/tsenart/vegeta/releases/download/v12.8.4/
vegeta_12.8.4_linux_amd64.tar.gz

b. Untar Vegeta files.

tar xf vegeta_12.8.4_linux_amd64.tar.gz

c. Add Vegeta to environment variables

export PATH="${PATH}:${pathtovegeta}"

14.2

R ADQ—Testing ADQ with Apache Traffic Server (ATS)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
94 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Performance Vegeta benchmarking.

Vegeta is an open-source product used for benchmark HTTP/HTTPS. Tool has many
different parameters to modify. For example, it allows you to specify the frequency
of requests per second and connections that can be tested on the SUT.
Additionally, it can be easily automated using scripts.

Measurements given by Vegeta are by default time to last byte.

Vegeta allows to test out many objects test case using targets parameter.

NOTE

Average latency is a measure of how fast SUT can respond

NOTE

$ipaddr and $app_port are the same variables used in SUT configuration

Example of Vegeta usage:

echo GEThttp://${ipaddr}:${app_port}/${endpoint} | ./vegeta attack -rate
100/s \
-insecure -duration 300s -timeout 10s -output /root/results.bin -connections
100 -keepalive \
-max-body=0

sleep 300s

./vegeta report -type json -output /root/results.json /root/results.bin

RTesting ADQ with Apache Traffic Server (ATS)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 95

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

15.0 Testing ADQ with VirtIO

VirtIO is an abstraction layer over a host's devices for virtual machines. It is one of
I/O (block, NIC ,etc) virtualization techniques that are used to provide guests with
high performance network and many of the performance benefits.

VirtIO divided into three parts:

1. Frontend virtio drivers: Implemented in the guest operating system as a device
driver.

2. Backend virtio drivers: Implemented in the hypervisor, and accepts the I/O
requests from front-end drivers and perform corresponding I/O operations via a
PF.

3. Transport: Communication between front-end and back-end drivers is done
through a queue called virtqueue.

Virtio-net is a virtual ethernet card running in the guest kernel space.

The main building blocks in virtio are KVM, QEMU and libvirt.

1. KVM used QEMU for I/O hardware emulation. QEMU is a user-space emulator that
can emulate a variety of guest processors on host processors.

2. KVM is managed via the libvirt API and tools. libvirt tools include virsh,virt-install
and virt-clone.

3. KVM provides the ability for a portion of the physical CPU to be directly mapped to
the virtual CPU.

Installation and Configuration - Both Systems

The following variable is used in the examples in this section:

$iface The interface in use (PF).

$bridge_iface Bridge interface created on PF (ex: br0).

$bridge_ipadress IP address of the bridge interface.

$num_queues_tc0 The number of queues for default traffic class (usually 2 or more but needs to be
a power of 2 or it is not accepted).

$num_queues_tc1 The number of queues for application traffic class 1 (corresponds to the user
selected number of application threads for application 1). Note power of 2
restrictions below.

$dst_mac MAC address of the VM's virtio interface.

$ipaddress VM IP address (ex: virtio-net interface IP configured in VM).

$queue_id The specific rx queue number in hexadecimal (ex: 0x3 or 0xa or 0xb etc)

$Tx_queue_id The specific Tx queue number (ex: 3 or 4 or 5 etc)

$qps_per_poller The number of queue pairs per independent poller for a given TC (max value is
#queues in the TC)

continued...

15.1

R ADQ—Testing ADQ with VirtIO

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
96 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

$iface_bdf The network interface BDF notation (Bus:Device.Function) used by devlink (PF)

$poller_timeout The timeout value for the independent pollers for a given TC (nonzero integer
value in jiffies, default value 10000)

$pathtoicepackage The path to the ice driver package

1. Enable Virtualization in the BIOS. The following settings must be enabled in the
BIOS.

[BIOS::Advanced::Processor Configuration] Intel(R) Virtualization
Technology=Enabled
[BIOS::Advanced::Integrated IO Configuration] Intel(R) VT for Directed I/
O=Enabled
[BIOS::Advanced:: Processor Configuration] Intel(R) Hyper-Threading
Tech=Enabled

2. [Optional] Enable the following BIOS settings on both servers for better
performance with VirtIO.

Processor Settings ➤ Logical Processor ➤ Enabled

System Profile Settings ➤ System Profile ➤ Performance

3. Verify the CPU Virtualization extensions are available.

grep -E 'svm|vmx' /proc/cpuinfo

Where:

vmx: Entry indicating an Intel processor with the Intel VT extensions.

svm: Entry indicating an AMD processor with the AMD-V extensions.

4. Verify kvm and kvm_intel modules are loaded in the kernel, and if not load
manually.

lsmod | grep -i kvm

5. Install pre-requisites.

yum install -y libvirt
yum install -y bridge-utils

6. Enable and start the libvirtd service

systemctl enable libvirtd; systemctl start libvirtd

NOTE

These settings are not persistent across system reboots.

RTesting ADQ with VirtIO—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 97

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

7. Configure network settings.

NOTE

Remove the virtual bridge network interface virbr0, which is created by default.

ip link set virbr0 down
ip link delete dev virbr0

NOTE

You can use either the Linux bridge or the OVS bridge.

a. Network Settings Using Linux Bridge:

i. Create the Linux bridge.

NOTE

There are many methods to create bridge network using virsh, nmcli, or
editing network scrips etc. Here, we used IP commands to configure the
bridge.

NOTE

If the PF interface has an IP address, remove it.

ip link add name $bridge_iface type bridge
 ip link set $iface master $bridge_iface
 ip address add dev $bridge_iface $bridge_ipadress
 ip link set up $iface
 ip link set up $bridge_iface

ii. Check if the bridge interface is active.

virsh net-list --all

If $bridge_iface is not listed, the following commands create the bridge
and make it active.

a. cd /tmp/
b.vi bridge.xml
 <network>
 <name>$bridge_iface </name>
 <forward mode="bridge"/>
 <bridge name="$bridge_iface" />
 </network>
c. virsh net-define /tmp/bridge.xml
d. virsh net-start $bridge_iface
e. virsh net-autostart $bridge_iface
f. virsh net-list –all

R ADQ—Testing ADQ with VirtIO

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
98 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

b. Network Settings Using Open Vswitch (OVS):

i. Download and untar OVS source package.

mkdir /opt/ovs
wget -O /opt/ovs/ovs.tar.gz https://github.com/openvswitch/ovs/archive/
v2.12.0.tar.gz
cd /opt/ovs ; tar -xf ovs.tar.gz
cd ovs-2.12.0

ii. Start bootstraping OVS.

./boot.sh

iii. Configure Open Vswitch default database directory using options as shown
here.

./configure --prefix=/usr --localstatedir=/usr/local/var --
sysconfdir=/etc

NOTE

Open vSwitch installed with .rpm (e.g., through yum install or rpm -
ivh) and .deb (e.g., through apt-get install or dpkg -i) packages
and use these configure options.

iv. Install Open Vswitch.

make
 make install

v. Configure a database for ovsdb-server to use.

mkdir -p /usr/local/var/run/openvswitch
mkdir -p /usr/local/etc/openvswitch
/opt/ovs/ovs-2.12.0/ovsdb/ovsdb-tool create /etc/openvswitch/conf.db
\
 /usr/local/share/openvswitch/vswitch.ovsschema

vi. Configure ovsdb-server to use database created above, to listen on a Unix
domain socket, to connect to any managers specified in the database
itself, and to use the SSL configuration in the database.

ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \
 --remote=db:Open_vSwitch,Open_vSwitch,manager_options \
 --private-key=db:Open_vSwitch,SSL,private_key \
 --pidfile –detach

vii. Initialize the database using ovs-vsctl and start the Open Vswitch daemon.

/usr/bin/ovs-vsctl --no-wait init
/usr/bin/ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-
offload=true
/usr/bin/ovs-vsctl --no-wait set Open_vSwitch . other_config:tc-
policy=none
ovs-vswitchd --pidfile --detach --mlockall --log-file=/tmp/ovs-
vswitchd.log

RTesting ADQ with VirtIO—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 99

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

viii. Set up bridge network using ovs-ctl.

ovs-vsctl add-br $bridge_iface
ovs-vsctl add-port $bridge_iface $iface
ip addr add $bridge_ipadress dev $bridge_iface
ip link set $bridge_iface up

8. Configure VM using GUI or CLI.

NOTE

VMs can be configured using either the virt-manager (GUI) or the Virsh commands
(CLI).

VM-level System Tunings

a. Enable virtual-guest tuned profile.

This profile decreases virtual memory swappiness values and increases disk
readahead values.

tuned-adm profile virtual-guest

b. Set busy_read setting for virtual guests.

Recommended 100 µs for a starting point to stay in poll mode.

sysctl -w net.core.busy_read=100

c. Disable firewalls.

service firewalld stop; systemctl mask firewalld

d. Disable Security-Enhanced Linux (SELinux) (requires reboot to take affect).

Change SELINUX=enforcing to SELINUX=disabled in /etc/selinux/config

e. Stop the irqbalance service.

systemctl stop irqbalance

NOTE

When assigning the network to the VM, choose the network source as the
bridge interface created and virtio as the device model.

NOTE

Check that the host bridge network and the VM's virtio-net interface are on
the same subnet and ping each other to confirm connectivity between the host
and the VM.

R ADQ—Testing ADQ with VirtIO

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
100 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

9. Perform general system setup at host level.

Complete the ADQ installation and setup in ADQ System Under Test (SUT)
Installation and in General System Tuning on both the server and client systems

NOTE

Many settings in General System Tuning and Adapter Preparation do not persist
between reboots and might have to be reapplied.

NOTE

Recheck the bridge settings when unloading/loading the ICE driver.

NOTE

Virtio-net-based VMs do not require VF HW configuration, and ADQ acceleration is
possible with kthread-based independent polling, which is supported starting with
kernel 5.12 or higher. The global settings listed below should be disabled in
Independent poller-based ADQ.

sysctl -w net.core.busy_poll=0
sysctl -w net.core.busy_read=0
ethtool --set-priv-flags $iface channel-pkt-inspect-optimize off

10. Create Traffic classes on the PF interface (the interface which is participated in the
bridge configuration).

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 2 map 0 1 queues
$num_queues_tc0@0 $num_queues_tc1@$num_queues_tc0 hw 1 mode channel
${pathtotc}/tc qdisc add dev $iface clsact

NOTE

Due to timing issues, applying TC filters immediately after the tc qdisc add
command might result in the filters not being offloaded in hardware. An error in
dmesg is logged if the filter fails to add properly. It is recommended to wait five
seconds after tc qdisc add before adding TC filters.

Sleep 5

11. Create TC filters (Both ingress and egress) on the PF interface.

• Ingress Filters (one Filter Per VM):

${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1
flower dst_mac $dst_mac dst_ip $ipaddress/32 skip_sw classid
ffff:$queue_id

Whereas:

ffff:Qdisc ID(Fixed value, can get using the command : tc qdisc show dev
$iface clsact)

RTesting ADQ with VirtIO—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 101

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

• Egress Filters (one Filter per VM):

${pathtotc}/ tc filter add dev $iface egress prio 1 protocol
ip flower src_ip $ipaddress action skbedit priority 0x1 pipe
action skbedit queue_mapping $Tx_queue_id

Whereas:

src_IP: VM IP address

queue_mapping: Aligns TX with RX queue ID

NOTE

Cgroup is not supported in virtio. Instead, per-TC skbedit socket priority option
should be used for egress traffic.

12. Enabled Number of pollers, poller time out and threaded NAPI

iface_bdf=$(ethtool -i ${iface} | grep bus-info | awk '{print $2}')
devlink dev param set pci/$iface_bdf name tc1_qps_per_poller value
$qps_per_poller cmode runtime
devlink dev param set pci/$iface_bdf name tc1_poller_timeout value
$poller_timeout cmode runtime
echo 1 /sys/class/net/$iface/threaded

13. Set irq_affinity.

${pathtoicepackage} /set_irq_affinity -X all $iface
${pathtoicepackage} /scripts/set_xps_rxqs $iface

R ADQ—Testing ADQ with VirtIO

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
102 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Run the Traffic

NOTE

Any application can be used to generate traffic; in this case, Netperf is used.

1. Execute the Netperf TCP RR test between the servers' VMs. To configure and run
the Netperf , follow the steps in the subsections of Testing ADQ with Netperf.

2. Watch the busy_poll counters on the host machine.

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

3. Inspect the pollers on the host machine.

When ADQ application traffic is running with one or more independent pollers
configured, system monitoring tools such as top/htop will show kernel threads
running (with kernel version 5.12+). Refer to Verify ADQ Application Traffic and
Independent Pollers (If Applicable) for more information.

NOTE

Application traffic can be pinned either to the same CPU cores, or different cores,
than the independent poller threads. There may be slight performance
improvements using different CPU cores for the kernel pollers. However, if
reducing the total number of CPU cores used by ADQ is important, overlapping
application threads and independent poller threads is an option.

Known Issues

Egress traffic does not go from the last queue of the ADQ TC set; this is a kernel-
specific issue that has been addressed in the 5.19* kernel.

• Linux 5.18 or lower: Skbedit priority is in hex 0 based and queue_mapping is in
decimal 1 based.

• Linux 5.19 or later: Skbedit priority is in hex 0 based and queue_mapping is in
decimal 0 based.

15.2

RTesting ADQ with VirtIO—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 103

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Appendix A ADQ Configuration Reference (Manual)

ADQ Configuration on SUT

This section is meant to be a generic walk-through of configuring ADQ on a system. If
testing one of the enabled applications, skip this section and instead use the
instructions in the relevant testing application appendices:

• Testing ADQ with Netperf

• Testing ADQ with Redis

• Testing ADQ with Memcached/rpc-perf

• Testing ADQ with NGINX

• Testing ADQ with AF_XDP

• Testing ADQ with Apache Traffic Server (ATS)

• Testing ADQ with VirtIO

There are two methods to configure ADQ on the SUT:

• Method-1: Using Manual ADQ Configuration (Adapter Preparation through Clear
the ADQ Configuration)

• Method-2: Using ADQ Setup Script (ADQ Setup Using ADQ Setup Script)

Both methods require the completion of ADQ System Under Test (SUT) Installation
and General System Tuning.

NOTE

The settings listed in this section do not persist between reboots. The ADQ Setup
Script provides an option to make the configuration persistent across reboots using a
configuration file, see ADQ Setup Using ADQ Setup Script for more details.

Adapter Preparation

The following variable is used in the examples in this section:

$iface The interface in use (PF).

NOTE

$iface in this section refers to the Physical Function (PF) interface. If using VFs, the
commands in this section must be applied to the PF interface first, before spawning VF
interfaces (as explained in ADQ Configuration on SR-IOV Virtual Functions).

A.1

A.1.1

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
104 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

1. Reload the ice driver to remove any previous TC configuration.

rmmod ice
sleep 2
modprobe ice

2. Make sure the interface is up with an IP Address assigned (either through
configuration files or ifconfig/ip commands).

3. Enable hardware TC offload on the interface.

ethtool -K $iface hw-tc-offload on

NOTE

There is a known issue that allows ADQ configuration to be applied on a VF
interface when the hw-tc-offload flag is disabled (set to off) on the VF
interface. For details, see Fixed and Known Issues - Read First.

4. Disable LLDP on the interface. (This is the default setting and the following
command should not be necessary.)

ethtool --set-priv-flags $iface fw-lldp-agent off

5. Enable channel-pkt-inspect-optimize on the interface.

ethtool --set-priv-flags $iface channel-pkt-inspect-optimize on

NOTE

If the ADQ setup includes independent pollers, this flag must be set to off.

6. [Optional] Enable busy poll private flag(s) for large I/O block size.

The ice driver version 1.1.0 or later includes two private flags that optimize
performance of Rx packet processing during ADQ configuration with busy_poll.
These flags should be enabled for applications using large I/O block size.
Workloads that benefit from having these two flags turned on include AF_XDP and
NVMe/TCP using large block I/O.

The first flag is recommended for applications using 64K (or greater) I/O block
size:

ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop on

The second flag is recommended for applications using 128K (or greater) I/O block
size:

ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop-cfg on

NOTE

Both flags must be set to on for the second flag to be enabled.

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 105

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

If the ADQ setup includes independent pollers, both bp-stop flags must be set to
off.

7. Verify settings.

ethtool -k $iface | grep "hw-tc"
ethtool --show-priv-flags $iface

Example output (ice-1.8.x):

hw-tc-offload: on
Private flags for ens8f0:
link-down-on-close : off
fw-lldp-agent : off
channel-inline-fd-mark : off
channel-pkt-inspect-optimize : on
channel-pkt-clean-bp-stop : off
channel-pkt-clean-bp-stop-cfg: off
vf-true-promisc-support : off
mdd-auto-reset-vf : off
vf-vlan-pruning : off
legacy-rx : off
cgu_fast_lock : off
dpll_monitor : off
extts_filter : off

Example:

For convenience, the commands in this section are condensed below.

NOTE

Most workloads do not require the activation of two bp-stop flags, which are only
required for larger block I/O in ADQ1.0.

NOTE

If the ADQ setup includes independent pollers (ADQ2.0), two bp-stop flags must be
set to off.

#Variables
iface= #The interfact in use
#Settings
rmmod ice
sleep 2
modprobe ice
ethtool -K $iface hw-tc-offload on
ethtool --set-priv-flags $iface fw-lldp-agent off
ethtool --set-priv-flags $iface channel-pkt-inspect-optimize on
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop off
ethtool --set-priv-flags $iface channel-pkt-clean-bp-stop-cfg off
ethtool -k $iface | grep "hw-tc"
ethtool --show-priv-flags $iface

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
106 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

If the interface is not set to come back up automatically, it might be necessary to set
the interface up and reset the IP Address.

Configure ADQ Traffic Class (TC) on SUT

NOTE

Any ethtool coalesce or IRQ affinity settings have to be re-applied after all TC and TC
filter creation.

The following variables are used in the examples in Create TCs through Confirm TC
Configuration:

$iface The interface in use (PF or VF).

$ipaddr The IP Address of the interface.
For GTP protocol, it is inner destination IP.
For VXLAN, it is VXLAN interface IP.

$macaddr The MAC Address of the interface.

$app_port The listening port of the application (usually user-selected in the application
configuration).
For GTP protocol, it is inner destination L4 port.

$num_queues_tc0 The number of queues for default traffic class (usually 2 or more, but needs to
be a power of 2 or it is not accepted).

$num_queues_tc1 The number of queues for application traffic class 1 (corresponds to the user-
selected number of application threads for application 1). Note power of 2
restrictions below.

$num_queues_tc2 The number of queues for application traffic class 2 (corresponds to the user-
selected number of application threads for application 2). Note power of 2
restrictions below.

$tunnel_id GTP Tunnel key ID.
For VXLAN: Tunnel ID

$gtp_port GTP port (ex: GTP-U user data tunneling port 2152).

$ipv6addr The IPv6 address of the interface.

$queue_id The specific rx queue number in hexadecimal (ex: 0xa,0xb etc).

NOTE

If using VFs, $iface in this section refers to the Virtual Function (VF) interface

A.1.2

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 107

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Create TCs

The following example creates three TCs with a small number of queues for TC0
(default TC) and the remaining number of logical cores divided between TC1 and TC2
(application TC) queues. In general, two queues for TC0 and the remaining number of
cores for the application TCs are sufficient.

For best performance, the number of application worker threads/processes should
match with the number of queues configured for a given application-specific TC.

Traffic originating from an application with priority set to 1 is mapped to TC1, with
priority 2 mapped to TC2, etc. All default traffic is mapped to TC0.

NOTE

The allocation of bandwidth between TCs is not guaranteed to be proportional to the
number of queues assigned. By default, the bandwidth available is roughly evenly split
among all TCs. If a certain minimum bandwidth is required for a particular TC, it is
recommended to use rate limiting to set either maximum or minimum bandwidth
limits with the TC shaper bw_rlimit parameter.

Due to resource allocation rules, the following rules apply to the number of TC
queues:

• For TC0: The number of queues for the default traffic class ($num_queues_tc0)
must always be a power of two.

• For TC1 or higher:

— If all TCs are powers of two, they can be any number.

— If the number of queues for any TC (for TC1 or above) is not a power of two,
any subsequent TC must be either exactly that number or a power of two that
is less than that number.

• ice-1.8.x and earlier: The total number of queues from all TCs cannot be
greater than the max number of logical cores in the system.

• ice-1.9.x and later: The total number of queues from all TCs is increased to a
max number of 256 (the number of MSI-X interrupts per PF).

• The total number of TCs allowed 16.

Example:

If num_queues_TC0=2, num_queues_TC1=16, and num_queues_TC2=7, then
num_queues_TC3+ must be either exactly 7 or some power of 2 less than 7 (4,2,1).

Example:

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 3 map 0 1 2 queues \
$num_queues_tc0@0 $num_queues_tc1@$num_queues_tc0 $num_queues_tc2@$
((num_queues_tc0 \
+ num_queues_tc1)) hw 1 mode channel

A.1.2.1

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
108 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

For example, if there are 96 logical cores in a system, one possible configuration is
TC0 with 2 queues, TC1 with 32 queues and TC2 with 62 queues.

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 3 map 0 1 2 queues \
2@0 32@2 62@34 hw 1 mode channel

With ice driver version 1.9.7 and later, large TCs with up to 256 queues can be used.

Example:

To create 8 TCs with 256 queues spread across all of the TCs:

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
 2@0 4@2 8@6 16@14 32@30 64@62 128@126 2@254 hw 1 mode channel

NOTE

E810 network adapters with 1 and 2 ports support up to 256 queue pairs (256 MSI-X
interrupts) per-PF. The maximum number of queue pairs supported by 4 and 8 port
E810 adapters is limited by the number of system cores.

Parameter Definitions

• Map — Priority mapping for up to 16 priorities to TCs. For example, map 0 0 0 0 1
1 1 1 sets priorities 0-3 to use tc0 and 4-7 to use tc1).

• Queues — For each TC, <num queues>@<offset>. For example, queues 2@0
16@2 assigns 2 queues to tc0 at offset 0 and 16 queues to tc1 at offset 2. A
maximum total number of queues for all TCs is the number of cores.

• hw 1 mode channel — Channel with hardware set to 1 is a new hardware offload
mode in mqprio that makes full use of the mqprio options, the TCs, the queue
configurations, and the QoS parameters.

TC Filtering

NOTE

Due to timing issues, applying TC filters immediately after the tc qdisc add
command might result in the filters not being offloaded in hardware. An error in
dmesg is logged if the filter fails to add properly. It is recommended to wait five
seconds after tc qdisc add before adding TC filters.

sleep 5

Rx and Tx filtering for ADQ application traffic can be configured with the iproute2
utility. ADQ supports a wide variety of filter options and protocols, summarized here
with examples listed below in this section:

IPv4 Protocol

• src/dst IP + port (Rx and Tx)

• DMAC (destination MAC)

• Forward to a queue using classid

A.1.2.2

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 109

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

• GTP Protocol

• VLAN Protocol

• VXLAN Protocol

• 256 queue pairs (256 MSI-X interrupts) per-PF

IPv6 Protocol

• src/dst IP + port

Queues from TC1 are used as a destination for the ADQ filter, which is a combination
of the destination IP Address plus the destination port. This aligns both transmit and
receive traffic on queues belonging to TC1.

NOTE

The /32 in dst_ip $ipaddr/32 is not the subnet of the network being used, but the
subnet of the filter you are creating. In other words, /32 indicates a single IP Address
being filtered. It is recommended to use /32 when creating filters to limit the
addresses being filtered.

Example Using IP Protocol

Method 1: ingress filter for RX (requires a cgroup to align TX):

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower dst_ip \
$ipaddr/32 ip_proto tcp dst_port $app_port skip_sw hw_tc 1
${pathtotc}/tc filter show dev $iface ingress

Method 2: ingress/egress filters for RX/TX (cgroup not required):

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower dst_ip \
$ipaddr/32 ip_proto tcp dst_port $app_port skip_sw hw_tc 1
${pathtotc}/tc filter add dev $iface protocol ip egress prio 1 flower src_ip \
$ipaddr/32 ip_proto tcp src_port $app_port action skbedit priority 1
${pathtotc}/tc filter show dev $iface ingress
${pathtotc}/tc filter show dev $iface egress

Example Using DMAC (Destination MAC)

NOTES

• This feature is supported by ice driver versions 1.9.7 and later.

• In bridged networking setups, the DMAC of the incoming packets will be the
virtual interface's MAC, where PF will be added to OVS or bridge for external
connectivity to VMs/Containers.

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface ingress protocol ip prio 1 flower skip_sw \
 dst_mac $macaddr dst_ip $ipaddr/32 hw_tc 1
${pathtotc}/tc filter show dev $iface ingress

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
110 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Example of Forwarding to a Queue Using classid

NOTE

With ice driver version 1.9.7 and later, TC filtering can be used to directly forward
ingress traffic to a specific queue rather than just a qdisc queue set. Forwarding
packets to a specific device queue can be used as an alternative to ntuple perfect filter
rules which direct each application TCP/UDP port to a specific queue within the TC
range. See Configure Intel® Ethernet Flow Director Settings for more details.

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower dst_ip \
$ipaddr/32 ip_proto tcp dst_port $app_port skip_sw classid ffff:$queue_id

Where:

• $queue_id is a hexadecimal queue id starting with an initial value of 0x1

For example: 0xb is hexadecimal queue id and it corresponds to queue 10 [0xa
+ 0x1]

${pathtotc}/tc filter show dev $iface ingress

Example Using GTP Protocol

NOTES

1. The feature is supported by ice driver versions 1.7.x and later.

2. GTP filters require the Telecommunications DDP Package to be loaded on the PF
port before TC configuration begins. For details on DDP and how to load the
package, refer the Intel® Ethernet Controller E810 Dynamic Device Personalization
(DDP) Technology Guide.

The Device Dynamic Personalization (DDP) Telecommunication package can be
downloaded here:

https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-
Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip parent ffff: prio 1 flower dst_ip
$ipaddr/32 ip_proto udp dst_port $app_port enc_key_id $tunnel_id enc_dst_port
$gtp_port skip_sw hw_tc 1
${pathtotc}/tc filter show dev $iface ingress

Example Using VLAN Protocol

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface ingress protocol 802.1Q prio 1 flower vlan_id
$vlan_id vlan_ethtype $vlan_ethtype ip_proto tcp dst_ip $ipaddr/32 dst_port \
$app_port skip_sw hw_tc 1
${pathtotc}/tc filter show dev $iface ingress

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 111

Did this document help answer your questions?

https://cdrdv2.intel.com/v1/dl/getContent/617015
https://cdrdv2.intel.com/v1/dl/getContent/617015
https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package
https://downloadcenter.intel.com/download/29889/Intel-Ethernet-800-Series-Telecommunication-Comms-Dynamic-Device-Personalization-DDP-Package
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Example Using VXLAN Protocol

NOTE

The feature is supported by ice driver versions 1.6.x and later.

${pathtotc}/tc qdisc add dev $vxlan clsact
${pathtotc}/tc filter add dev $vxlan protocol ip ingress flower dst_ip \
$ipaddr/32 ip_proto $protocol dst_port $app_port enc_key_id $tunnel_id hw_tc 1
${pathtotc}/ tc filter show dev $vxlan protocol ip ingress

Example Using IPv6 Protocol

NOTE

This feature is supported by ice driver versions 1.7.x and later.

${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower dst_ip \
$ipv6addr ip_proto tcp dst_port $app_port skip_sw hw_tc 1
${pathtotc}/tc filter show dev $iface ingress

NOTE

Unlike IPv4 filters, dst ip $ipv6addr does not require netmask to be defined.

Parameter Definitions

• dst_ip – IP V4/V6 Address of DUT (in VXLAN filters, it is VXLAN interface IP).

• dst_mac – MAC Address of DUT.

• dst_port – Destination port.

• flower – Flow-based traffic control filter.

• ip_proto – IP protocol to use (TCP or UDP).

• prio – Priority.

• protocol – Encapsulation protocol (valid options are IP, and 802.1Q).

• skip_sw – Flag to add the rule only in hardware.

• hw_tc <tc > – Route incoming traffic flow to this hardware TC. The TC count
starts at 0. For example, hw_tc 1 indicates that the filter is on the second TC.

• vlan_id – VLAN ID.

• vlan_ethtype – Type of Ethernet (IPv4).

• enc_key_ID – GTP Tunnel Key ID (in VXLAN filters, it is network identifier).

• enc_dst_port – GTP port number.

• classid - Queue id specification

• ffff - qdisc ID (fixed value - tc qdisc show dev $iface ingress/clsact)

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
112 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

TC Filtering Requirements

Currently the resources of the Intel® Ethernet 800 Series Network Controllers support
a deterministic number of TC filter types per packet profile, determined by the size of
the fields used in the filter types.

For most implementations, filter requirements are not a restriction on implementation.

NOTE

Every filter automatically includes the destination MAC Address (3 words) even if is
not explicitly specified, which does count towards the total number of matched words
used by each recipe.

NOTE

Resources are per E810 device, not per port.

Resource
Type

Available per E810 Device
per Profile

Required Resources per Number of Matched Words in
Filter Type

Chain Depends on profile
(see table below)

• If (Number of matched words) <= 4:
0

• If (Number of matched words) > 4:
Floor[(Number of matched words - 1) / 4] + 1

Recipe 54 # chain resources + 1

Profiles

Packet processing profiles are defined by a set of protocols (for example, IPv4 outer IP
+ TCP port or IPv4 Outer IP, IP tunnel, IPV6 Inner IP). Each profile has a specific
number of chain resources available globally per device (see table). Rules can be
associated with more than one profile, but a rule must contain all the requested
protocols in the profile to be associated. Therefore, having more specific rules narrows
which profiles are associated. If any of the associated profiles do not have enough
chain resources, the entire rule cannot be added.

For example, if you create a rule that looks only at outer IPv4 source address, every
profile that has an outer IPV4 source field must contain enough chain resources, or
the rule is not added.

The E810 supports the following packet processing profiles, with chain resources per
profile per device in the following table.

No Tunnel
UDP Tunnel

(VXLAN), IPv4
Inner

IP Tunnel (GRE),
IPv4 inner

UDP Tunnel
(VXLAN), IPv6

Inner

IP Tunnel (GRE),
IPv6 Inner

IPv4 Outer
TCP
UDP
Other

26
26
28

TCP
UDP
Other

11
11
13

TCP
UDP
Other

11
11
13

TCP
UDP
Other

5
5
7

TCP
UDP
Other

5
5
7

IPv6 Outer
TCP
UDP
Other

14
14
16

TCP
UDP
Other

17
17
19

TCP
UDP
Other

17
17
19

TCP
UDP
Other

5
5
7

TCP
UDP
Other

5
5
7

A.1.2.2.1

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 113

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

TC Filter Resource Examples

A recipe is determined by the filter protocol fields, not the values of those fields.
Multiple filters can be created with the same recipe, just varying values of the
components.

Thus, multiple filters can be added on the same device that uses the same recipe (and
requires no additional recipe resources), either on the same interface or on different
interfaces on the device. Each filter uses the same fields for matching, but can have
different match values.

Example: IPv4 Profile

Recipes = 54

Chain resources for TCP profile = 26

• "${pathtotc}/tc filter add dev $iface protocol ip ingress prio
1 \ flower ip_proto tcp dst_port $app_port skip_sw hw_tc 1

Dest MAC TCP Dest Port

Dest MAC (3 Words) + TCP Port (1 word) = 4 words (1 standard recipe slot)

chain resources = 0

recipes = 1

Recipes remaining = 53

Chain resources = 26

• "${pathtotc}/tc filter add dev $iface protocol ip ingress prio
1 \ flower ip_proto tcp src_port $app_port skip_sw hw_tc 1

Dest MAC TCP Src Port

Dest MAC (3 Words) + TCP Port (1 word) = 4 words (1 standard recipe slot)

chain resources = 0

recipes = 1

Recipes remaining = 52

Chain resources = 26

• "${pathtotc}/tc filter add dev $iface protocol ip ingress prio
1 \ flower dst_ip $ipaddr/32 ip_proto tcp dst_port $app_port
skip_sw hw_tc 1

Dest MAC TCP Dest Port IPv4 Dest IP ...

Dest MAC (3 Words) + TCP Port (1 word) + IPv4 IP (2 words) = 6 words

chain resources = floor[(6-1)/4]+1= 2

recipes = 3

Recipes remaining = 49

Chain resources = 24

If you try to add another IPv4 profile filter recipe, such as:

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
114 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 \
flower src_ip $ipaddr/32 ip_proto tcp src_port $app_port skip_sw
hw_tc 1

Dest MAC TCP Src Port IPv4 Src IP ...

Dest MAC (3 Words) + TCP Port (1 word) + IPv4 IP (2 words) = 6 words

chain resources = floor[(6-1)/4]+1= 2

recipes = 3

Recipes remaining = 46

Chain resources remaining = 22

Result: As expected, there are enough resources for all desired filter combinations.

Confirm TC Configuration

1. Check TCs were created correctly.

${pathtotc}/tc qdisc show dev $iface

2. Check TC filters.

${pathtotc}/tc filter show dev $iface ingress
${pathtotc}/tc filter show dev $iface egress

NOTE

Egress filter(s) will only be listed if configured using clsact qdisc with egress tc filter(s)
in TC Filtering.

Independent Pollers (Optional)

This must be done after TC creation.

[Optional - For some use cases] - See feature description in Independent Pollers
Introduction.

Independent Pollers Introduction

ADQ 2.0 (ice driver version 1.9.x and later) adds the ability to support ADQ
acceleration without application changes, allowing for a broader set of use cases for
ADQ acceleration. With application dependent polling mode, a small code change in
any multi-threaded application is usually required to provide a hint to the application
for optimal application thread to NIC queue alignment. In addition to establishing the
application threads with queue connections, busy polling is also triggered and
managed by the application threads. ADQ 2.0 adds a feature referred to as
independent pollers. Independent pollers builds on standard NAPI polling methods
(kthread based NAPI polling) to allow selected ADQ queues to maintain polling for a
longer period of time using a configurable timeout value.

A.1.2.3

A.1.3

A.1.3.1

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 115

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Without the restriction for a 1:1 polling application thread to NIC queue alignment,
resource grouping/aggregation can be done to optimize number of polling CPU cores.
A single independent poller can poll multiple queues, and the ratio of the number of
pollers to number of queues is configurable based on the application workload.

Note that the latency/throughput performance for independent poller based ADQ 2.0
may be different than an application dependent polling approach (better in some
cases, worse in others). Application dependent polling is still supported for enabled
use cases and is not considered deprecated. ADQ 2.0 simply expands the capability
and flexibility of ADQ to enable many more environments/use cases.

This enhancement in ADQ 2.0 technology provides several benefits, including:

• ADQ acceleration without application changes

• ADQ acceleration of workloads running in containers/VMs

• Better system utilization through poller aggregation for some usages

• Per-TC value to configure poller timeout, rather than global busy_poll timeout

• Configurable number of RX/TX queue pairs per poller

Independent Poller Kernel Requirements:

• Linux kernel v5.6 or later for independent poller using ksoftirqd based polling

• Linux kernel v5.12 or later for independent poller using kthread based napi polling
(Recommended)

• See Install OS and Update Kernel (If Needed) to determine OS and kernel
requirements, and for a list of OS distributions with back-ported support for
devlink params and kthread based polling.

Per-TC Configurable Parameters:

• Number of pollers (or number of queue pairs per poller)

• Poller Timeout

Configure Independent Pollers

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$iface_bdf The network interface BDF notation (Bus:Device.Function) used by devlink (PF).

$queues The number of queues in the TC.

$qps_per_poller The number of queue pairs per independent poller for a given TC (max value is
#queues in the TC).

$poller_timeout The timeout value for the independent pollers for a given TC (nonzero integer
value in jiffies, default value 10000).

NOTE

Independent poller feature is currently supported on PF only (not supported on VF).

A.1.3.2

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
116 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

ADQ devlink parameters are only exposed when ADQ traffic class is configured via
mqprio in Create TCs.

NOTE

$poller_timeout is specified in jiffies, where the size of a jiffy is determined by the
kernel software clock as a measure of HZ. This differs from the global system settings
for sysctl.net.core.busy_poll and sysctl.net.core.busy_read, which controls the number
of microseconds to wait for packages on the device queue for socket selects
(busy_poll) and socket reads (busy_read). A more detailed description of jiffies can be
found in the Linux time(7) man page: https://man7.org/linux/man-pages/man7/
time.7.html.

Setting global sysctl.net.core.busy_poll and sysctl.net.core.busy_read
settings is NOT needed with ADQ independent poller configuration.

After creating TCs (in Create TCs):

1. Set the interface BDF, needed for devlink param commands.

iface_bdf=$(ethtool -i ${iface} | grep bus-info | awk '{print $2}')

2. Set the number of queue pairs per poller for the TC.

devlink dev param set pci/${iface_bdf} name tc1_qps_per_poller value \
 $qps_per_poller cmode runtime

NOTE

The example above is for TC1. Valid devlink param flags include
tc1_qps_per_poller through tc15_qps_per_poller, to configure
independent pollers on up to 16 TCs (max #TCs). If the TC does not exist, the
devlink command will return error:

devlink answers: Invalid argument

NOTE

The maximum allowed value for $qps_per_poller is the number of $queues in
the TC. If the $qps_per_poller value specified is greater than $queues, the
following error will be returned by the ice driver:

Error: ice: Value cannot be greater than number of queues in TC.
devlink answers: Invalid argument

3. Set the poller timeout value for the TC.

devlink dev param set pci/${iface_bdf} name tc1_poller_timeout value \
 $poller_timeout cmode runtime

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 117

Did this document help answer your questions?

HTTPS://MAN7.ORG/LINUX/MAN-PAGES/MAN7/TIME.7.HTML
HTTPS://MAN7.ORG/LINUX/MAN-PAGES/MAN7/TIME.7.HTML
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

The example above is for TC1. Valid devlink param flags include
tc1_poller_timeout through tc15_poller_timeout, to configure
independent poller timeout values on up to 16 TCs (max #TCs). If not specified,
the default $poller_timout is set to 10000 jiffies.

4. Enable threaded napi.

echo 1 > /sys/class/net/$iface/threaded

NOTE

Independent pollers work with both threaded napi as well as default napi that runs
in softirq context and triggers ksoftirqd threads.

5. Pin Independent Poller kthreads to specific CPU cores.

NOTE

Threaded napi must be enabled in order to pin application threads/pollers to
specific CPU cores.

a. Get the napi threads PIDs (order from highest to lowest).

ps -x | grep "$iface" | head -n -1 | tac | awk '{print $1}'

b. Affinitize all Poller threads to a specific CPU core (skipping the PIDs that are
for non-polled queues).

taskset -c 2 -p <pid of thread 2>
taskset -c 2 -p <pid of thread 3>
taskset -c 2 -p <pid of thread 4>
taskset -c 2 -p <pid of thread 5> etc

NOTE

Depending on the application workload, it is preferable to pin application
threads and pollers to different CPU cores. If the application is not overly busy,
running both types of threads on the same cores may yield better
performance results.

6. Verify independent pollers configuration.

To query all devlink parameters:

devlink dev param show

To query a specific devlink parameter for the pci device:

devlink dev param show pci/${iface_bdf} name tc1_qps_per_poller

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
118 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Example Configuration Using devlink Commands

To configure 4 queues of TC1 to be polled by each independent poller:

devlink dev param set pci/0000:3b:00.0 name tc1_qps_per_poller value 4 \
 cmode runtime

If TC1 has a total of 8 $queues, the above command will configure 2 independent
pollers, where each poller is used to poll 4 queues. If TC1 has a total of 16 $queues,
the above command will configure 4 independent pollers, each polling 4 queues.

To set the timeout value in jiffies for TC1 when no traffic is flowing (setting to 5000
jiffies in this example, default is 10000 jiffies):

devlink dev param set pci/0000:3b:00.0 name tc1_poller_timeout value 5000 \
 cmode runtime

NOTE

Clear the ADQ Configuration provides more information on clearing the ADQ
configuration.

Example Configuration Using ADQ Setup Script

NOTE

The ADQ Setup script uses the pollers parameter with a value that specifies the total
number of independent pollers to be configured for the TC. This differs from the
devlink param commands above, which use the number of RX/TX queue pairs per
poller. See ADQ Setup Using ADQ Setup Script for details on adqseup.

1. To configure TC1 with 8 queues using 2 independent pollers (4 queue pairs per
poller) with default poller timeout:

adqsetup --dev=ens8f0 create myapp queues 8 pollers 2 ports 7000

2. To configure TC1 with 16 queues using 4 independent pollers (4 queue pairs per
poller) with default poller timeout:

adqsetup --dev=ens8f0 create myapp queues 16 pollers 4 ports 7000

3. To configure TC1 with 16 queues using 8 independent pollers (2 queue pairs per
poller) with modified poller timeout of 5000 jiffies:

adqsetup --dev=ens8f0 create myapp queues 16 pollers 8 \
poller_timeout 5000 ports 7000

NOTE

The last example uses modified poller_timeout argument (using underscore
rather than hyphen). This is a known issue with adqsetup not recognizing
poller-timeout, fixed in adqsetup v1.2.3.

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 119

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

The adqsetup examples above specify only the device and port (required) and
parameters to configure independent pollers. Additional recommended
parameters, depending on the workload:

--priority=skbedit to configure clsact qdisc and create egress TC filters for
Tx traffic (instead of using Linux cgroups to align Tx packets to queues)

--rxadapt=off --rxusecs=0 --txadapt=off --txusecs=500 to set the
interrupt moderation rate to a static value for Tx and turn off interrupt moderation
for Rx. These values are recommended for most ADQ workloads. Setting rx-usecs
to a non-zero value, such as 50 or 100, might improve interrupt handling and ADQ
performance for certain applications and workloads. Experiment with rxusecs=0,
50, 100 to determine best ADQ performance.

NOTE

Global system settings for --busypoll, --busyread, --optimize, --bpstop,
and --bpstop-cfg are not used when pollers is specified. Independent pollers
use the $poller_timeout for the TC, rather than global sysctl settings.

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
120 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Apply Adapter Tuning

This must be done after TC creation.

The following variable is used in the examples in this section:

$iface The interface in use (PF or VF).

$mask The queue mask to configure per-queue coalesce.

1. Configure the adapter tuning parameters with ethtool (might vary per workload).

To configure coalesce on all queues:

ethtool --coalesce $iface adaptive-rx off rx-usecs 0
ethtool --coalesce $iface adaptive-tx off tx-usecs 500
ethtool --show-coalesce $iface

To configure per-queue coalesce:

ethtool --per-queue $iface queue_mask $mask -–coalesce \
 adaptive-rx off rx-usecs 0 adaptive-tx off tx-usecs 500
ethtool --per-queue $iface queue_mask $mask --show-coalesce

Example to configure coalesce settings on 8 queues of TC1, using queue_mask
0x3fc for queues 2-9 (0011 1111 1100):

ethtool --per-queue ens8f0 queue_mask 0x3fc –coalesce \
 adaptive-rx off rx-usecs 0 adaptive-tx off tx-usecs 500
ethtool --per-queue ens8f0 queue_mask 0x3fc --show-coalesce

NOTE

ethtool version 5.1 or later is required for per-queue coalesce support.

NOTE

Setting rx-usecs to a non-zero value, such as 50 or 100, might improve interrupt
handling and ADQ performance for certain applications and workloads. Experiment
with rx-usecs=0, 50, 100 to determine best ADQ performance.

NOTE

Coalesce settings must be re-applied after all TC and TC filter creation.

2. [Optional] Run the set_irq_affinity script for all interfaces (included in the
scripts folder of the ice package) to pin interface IRQs to CPU cores.

${pathtoicepackage}/scripts/set_irq_affinity -X all $iface

A.1.4

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 121

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

The command above sets IRQ affinity for all CPU cores in the system, on both
local and remote NUMA nodes (CPU sockets). For best performance with
applications using cores on one CPU, it is recommended to constrain the CPU cores
used to the local NUMA node of the Intel® Ethernet 800 Series network adapter
under test. To set IRQ affinity using only CPU cores on the local NUMA node:

${pathtoicepackage}/scripts/set_irq_affinity -X local $iface

NOTE

Affinity settings have to be re-applied after all TC and TC filter creation.

Configure Symmetric Queues

This must be done after TC creation.

Symmetric queuing method is used for aligning egress/ingress traffic on a pre-
configured Tx/Rx queue pair. XPS using receive queues map is used to select transmit
queue based on the receive queue(s) map configuration set by the administrator. A
1:1 mapping between receive queues and transmit queues enables sending packets on
the same queue associations for transmit and receive.

XPS is only available if the kconfig symbol CONFIG_XPS is enabled. As specified in
the kernel build section, the kernel needs to compiled with CONFIG_SMP=y for this.
For symmetric transmit queue selection based on receive queues map, xps_rxqs map
attribute for the transmit queue needs to be configured using the sysfs file entry.

The following variables are used in the examples in this section:

$iface The interface in use (PF or VF).

tx-${i} The transmit queue being configured.

$mask A bitmap of receive queues that might use the transmit queue.

Automatic configuration can be done easily using the script included in the scripts
folder of the ice driver package:

${pathtoicepackage}/scripts/set_xps_rxqs $iface

Or configuration can be done manually by echoing a CPU mask into the desired Tx
queue's xps_rxqs location:

echo ${mask} > /sys/class/net/${iface}/queues/tx-${i}/xps_rxqs

Example:

echo 10 > /sys/class/net/eth0/queues/tx-4/xps_rxqs

This enables egress traffic to be sent on transmit queue 4 when ingress traffic is
received on receive queue 4.

A.1.5

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
122 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

An additional requirement for symmetric queuing to work correctly with ADQ, is 1)
cgroup configuration, or 2) setsockopt with SO_PRIORITY. Both are outlined in Set
cgroup Priority for Application Network Traffic (If Needed). Failure to configure cgroup
or SO_PRIORITY will result in Tx traffic going to default TC queues.

Configure Intel® Ethernet Flow Director Settings

Linux traffic control filtering allows an application to be mapped to a set of specified
queues on an interface, using dedicated queue sets (also called traffic classes) for
application traffic with ADQ. Intel® Ethernet Flow Director allows for incoming
connections to be distributed and load balanced across these application queues,
within the queue set, in a more reliably defined way than the default RSS hash. This is
important to the inner workings of ADQ because it is recommended that no two
application threads are busy polling on the same queue.

There are two options for Intel® Ethernet Flow Director configuration in the ice driver:

• Option 1: channel inline or per-TC inline

• Option 2: ntuple

The following variables are used in the examples in this section:

$iface The interface in use (PF).

$iface_bdf The network interface BDF notation (Bus:Device.Function) used by devlink (PF).

$port The starting port of the application.

$queues The number of queues in the TC.

$tc1offset The offset for the application TC (for example, if TC0 has 2 queues, TC1 offset
would be 2).

NOTE

Commands in this section must be applied to the PF interface (not available on VF
interfaces).

Option 1: channel inline or per-TC inline

Intel® Ethernet Flow Director distributes connections to queues in a round-robin
fashion. This is recommended for ADQ-enabled, single-instance, multi-threaded
applications that manage their own worker thread load distribution (such as
Memcached).

ice version 1.7.x (and earlier):

channel inline: Intel® Ethernet Flow Director is configured using a global private flag
and gets applied to all TCs on the interface:

ethtool --set-priv-flags $iface channel-inline-flow-director on

A.1.6

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 123

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

ice version 1.8.x (and later):

per-TC inline: Intel® Ethernet Flow Director is configured using a per-TC
configuration and gets applied to only the queues within the TC specified for the
interface. A different devlink command is required for each TC. Example for tc1:

iface_bdf=$(ethtool -i ${iface} | grep bus-info | awk '{print $2}')
devlink dev param set pci/${iface_bdf} name tc1_inline_fd value true cmode runtime

NOTE

Kernel with devlink param support is required for ice-1.8.x and later. See Install OS
and Update Kernel (If Needed) to determine OS and kernel requirements.

NOTE

Valid devlink param flags include tc1_inline_fd through tc15_inline_fd, to
configure inline flow director on up to 16 TCs (max #TCs).

NOTE

XPS using receive queues map must be configured for per-TC inline flow director to
work correctly. See Configure Symmetric Queues to configure XPS.

Option 2: ntuple

Intel® Ethernet Flow Director assigns perfect filters to direct each application TCP port
to a specific queue within the application TC range. This is useful for applications (such
as Redis) where each instance of the application runs a single worker thread, and load
balancing is done either manually or through a separate load balancer application.

ethtool --features $iface ntuple on
for ((i=0; i < queues; i++)) do
 ethtool --config-ntuple $iface flow-type tcp4 dst-port $((port + i)) action \
 $(((i %queues) + tc1offset))
 sleep 0.5
done
#verify set correctly
ethtool --show-ntuple $iface

NOTE

If rmgr: Cannot insert Rx class rule: Invalid argument error message
appears, verify that no previous assignment is in place:

ethtool --show-ntuple $iface

Assignments as a whole can be deleted:

ethtool --features $iface ntuple off

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
124 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

Linux forward to queue using class ID is an alternative to ntuple filter rules using the
action forward to queue to forward packets to a specific device queue. Ntuple can set
the specific packet flow types (i.e., tcp4, udp4) and depends on the ethtool version,
RHEL 8.x, or upstream kernel to configure Ntuple flags, whereas forward to queues
can be set per-filter using the class ID parameter. See TC Filtering, Example of
Forwarding to a Queue Using classid as an alternative to ntuple filter rules in this
section.

Set cgroup Priority for Application Network Traffic (If Needed)

Linux Control Groups (cgroups) are used to steer outgoing (Tx) traffic to a set of
dedicated hardware queues on the NIC. If egress tc filter(s) were configured in TC
Filtering, Linux cgroups are not needed and this step can be skipped. If only ingress tc
filter(s) were created, follow the steps in this section to create a cgroup and set the
priority of network traffic to align TX packets to the Rx filter queues.

NOTE

The performance of the two methods (cgroup priority or TC filters with skbedit
priority) may differ slightly based on the application or workload.

The following variables are used in the examples this section:

$cgroup_name The name for the application cgroup.

$app_pid The process ID for the application.

$iface The network interface that the application uses (PF or VF).

$prio Defines the network priority for the applications belonging to cgroup $
{cgroup_name}.

--sticky An option before the command to keep any child processes in the same cgroup.

$command The task command with arguments to be executed in the cgroup.

1. Configure cgroup.

The Network Priority (net_prio) subsystem of the Control Groups (cgroups) Linux
kernel feature provides a way to set the priority of network traffic per each
network interface for applications within various cgroups. Typically, an application
sets the priority of its traffic via the SO_PRIORITY socket option. However, if
applications are not coded to set the priority value, the administrator can assign a
process to a specific cgroup which defines the priority of outgoing traffic on a
given network interface.

NOTE

Network Priority (net_prio) using cgroup configuration in this section, or the
SO_PRIORITY socket option in the application, must be configured for symmetric
queuing (Configure Symmetric Queues) to work correctly with ADQ. Failure to
configure either 1) Network Priority (net_prio) using cgroups, or 2) SO_PRIORITY
in the application, will result in Tx traffic going to the default TC queues.

A.1.7

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 125

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

There are two options for cgroup configuration: manually, or through the cgconfig
service tools.

Option 1: Manual cgroup Configuration

NOTE

RHEL9.0 does not include the net_prio module by default. A net_prio directory
must be created under /sys/fs/cgroup/ before mounting it. For example:

mkdir /sys/fs/cgroup/net_prio

This step is not required in RHEL8.X or earlier versions.

a. Mount the cgroup filesystem.

mount -t cgroup -o net_prio none /sys/fs/cgroup/net_prio

b. Create a new cgroup.

mkdir /sys/fs/cgroup/net_prio/${cgroup_name}

c. Assign the application process to cgroup.

echo $app_pid > /sys/fs/cgroup/net_prio/${cgroup_name}/tasks

NOTE

Before running this command, start the server application (for example, redis
server, netperf, etc.) and include the specific application PID as $app_pid.

d. Set priority to $prio for traffic originating from processes belonging to the
net_prio cgroup.

echo "$iface $prio" > /sys/fs/cgroup/net_prio/${cgroup_name}/ \
net_prio.ifpriomap

Example:

echo "eth0 1" > /sys/fs/cgroup/net_prio/foo/net_prio.ifpriomap

Option 2 (Recommended): cgroup Configuration Using CGConfig Service
Tools

a. Make a net_prio directory and mount it in the /sys/fs/cgroup directory.

mkdir /sys/fs/cgroup/net_prio
mount -t cgroup -o net_prio none /sys/fs/cgroup/net_prio

NOTE

This step is only applicable for RHEL9.0 and later operating systems because
the net_prio module is not available in the OS repository.

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
126 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

b. Create a new cgroup.

cgcreate -g net_prio:${cgroup_name}

c. Set the priority for processes belonging to the cgroup.

The $prio value should map to the position of the targeted TC defined in
Create TCs.

cgset -r net_prio.ifpriomap="$iface $prio" ${cgroup_name}

Example:

For example, in the following TC command, map 0 0 1 2 sets priority 0-1 to
use TC0, prio 2 to TC1, and prio 3 to TC2.

${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 3 map \
0 0 1 2 queues 2@0 40@2 54@42 hw 1 mode channel
cgcreate -g net_prio:app_tc1
cgset -r net_prio.ifpriomap="$iface 2" app_tc1

cgcreate -g net_prio:app_tc2
cgset -r net_prio.ifpriomap="$iface 3" app_tc2

2. Run the task in the given cgroup (for example, ${cgroup_name})

cgexec -g net_prio:${cgroup_name} --sticky $command

Example:

cgexec -g net_prio:${cgroup_name} --sticky netserver

3. Verify cgroup configuration:

a. Verify that the interface is mapped to the right interface:

cat /sys/fs/cgroup/net_prio/${cgroup_name}/net_prio.ifpriomap

b. Show the Process IDs being run in this cgroup and match them to the
application Process IDs:

cat /sys/fs/cgroup/net_prio/${cgroup_name}/tasks

Example:

For convenience, the commands in this section are condensed below with example
values. Variables must be changed to match each environment.

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 127

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

NOTE

ADQ configuration might be application-specific depending on whether the application
is single-threaded or multi-threaded. Different tunings or filtering methods might
apply. See specific application sections in this document for further reference.

#Variables:
#The interface in use.
iface=ens8f1
#The path to TC installation (default /usr/sbin).
pathtotc="/usr/sbin"
#The path to the ice driver package.
pathtoicepackage=/opt/ice-1.8.8
#The number of queues for default traffic (for example, 2).
num_queues_tc0=2
#The number of queues for application traffic class (also maximum number of
application threads to be run).
num_queues_tc1=8
#The IP Address of the interface under test on the SUT.
ipaddrserver=13.100.2.13
#The starting port of the application (any high numbered port).
app_port=6000
#Name of Linux cgroup.
cgroup_name=app_tc1
#Command to run inside cgroup on SUT.
command=servercmd

#Commands (using prio=1 for tc1):
${pathtotc}/tc qdisc add dev $iface root mqprio num_tc 2 map 0 1 queues \
$num_queues_tc0@0 $num_queues_tc1@$num_queues_tc0 hw 1 mode channel
sleep 5
${pathtotc}/tc qdisc add dev $iface clsact
${pathtotc}/tc filter add dev $iface protocol ip ingress prio 1 flower dst_ip \
${ipaddrserver}/32 ip_proto tcp dst_port $app_port skip_sw hw_tc 1
${pathtotc}/tc qdisc show dev $iface
${pathtotc}/tc filter show dev $iface ingress
ethtool --coalesce ${iface} adaptive-rx off rx-usecs 0
ethtool --coalesce ${iface} adaptive-tx off tx-usecs 500
ethtool --show-coalesce $iface
${pathtoicepackage}/scripts/set_irq_affinity -X all $iface
${pathtoicepackage}/scripts/set_xps_rxqs $iface

#ice version 1.7.X (and earlier):
ethtool --set-priv-flags $iface channel-inline-flow-director on

#ice version 1.8.X (and later):
iface_bdf=$(ethtool -i ${iface} | grep bus-info | awk '{print $2}')
devlink dev param set pci/${iface_bdf} name tc1_inline_fd value true cmode runtime

cgcreate -g net_prio:${cgroup_name}
cgset -r net_prio.ifpriomap="$iface 1" ${cgroup_name}
cgexec -g net_prio:${cgroup_name} --sticky $command
cat /sys/fs/cgroup/net_prio/${cgroup_name}/net_prio.ifpriomap
cat /sys/fs/cgroup/net_prio/${cgroup_name}/tasks

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
128 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

Verify ADQ Application Traffic and Independent Pollers (If
Applicable)

1. Verify that ADQ application traffic is on the correct queues.

While ADQ application traffic is running, watch ethtool statistics to check that
only the ADQ queues are being used (have significant traffic) with busy poll
(pkt_busy_poll) for ADQ traffic. If non busy poll (pkt_not_busy_poll) have
significant counts and/or if traffic is not confined to ADQ queues, recheck the
configuration steps carefully.

Example:

watch -d -n 0.5 "ethtool -S $iface | grep busy | column"

The above watch command displays pkt_busy_poll and pkt_not_busy_poll
counters for both Tx and Rx packets, refreshing the counters every half (0.5)
second. For a configuration with 2 traffic classes, where TC0 has 2 queues
configured for non-ADQ traffic and TC1 has 4 queues for ADQ traffic, the following
is example watch output on the ADQ server when an application benchmark is
initiated from client(s):

Every 0.5s: ethtool -S ens2f0 | grep busy | column
 tx_busy: 0 rx_0.pkt_busy_poll: 0
 tx_0.pkt_busy_poll: 0 rx_0.pkt_not_busy_poll: 7720
 tx_0.pkt_not_busy_poll: 529 rx_1.pkt_busy_poll: 0
 tx_1.pkt_busy_poll: 0 rx_1.pkt_not_busy_poll: 3615
 tx_1.pkt_not_busy_poll: 4649 rx_2.pkt_busy_poll: 104353
 tx_2.pkt_busy_poll: 108492 rx_2.pkt_not_busy_poll: 2692
 tx_2.pkt_not_busy_poll: 1539 rx_3.pkt_busy_poll: 104219
 tx_3.pkt_busy_poll: 108593 rx_3.pkt_not_busy_poll: 2829
 tx_3.pkt_not_busy_poll: 1214 rx_4.pkt_busy_poll: 104227
 tx_4.pkt_busy_poll: 108393 rx_4.pkt_not_busy_poll: 2879
 tx_4.pkt_not_busy_poll: 1481 rx_5.pkt_busy_poll: 103973
 tx_5.pkt_busy_poll: 108413 rx_5.pkt_not_busy_poll: 2922
 tx_5.pkt_not_busy_poll: 1518 rx_6.pkt_busy_poll: 104332

NOTES

• The pkt_busy_poll counters are enabled by the -DADQ_PERF_COUNTERS
CFLAG during ice driver compile. If the counters are not listed in ethtool -S
output, verify ice was built using the compile command listed in Step 1 of
Install ice Driver with ADQ Flags.

• The pkt_busy_poll counters are refreshed and incremented on the ADQ server
while application traffic is actively running on the client(s).

• If pkt_not_busy_poll counters are being incremented on ADQ queues, refer to
Troubleshooting for guidance.

A.1.8

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 129

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

2. Verify independent poller threads (if applicable).

When ADQ application traffic is running with one or more independent pollers
configured, system monitoring tools such as top/htop and ps will show N
ksoftirqd kernel threads running (with kernel version 5.12+), where N is the
number of kernel independent poller threads. For example, if TC1 is configured
with 8 queues and tc1_qps_per_poller is set to 4, there will be 2 ksoftirqd
poller threads in the top output, and htop output will show 2 CPU cores used
@100% by kernel poller threads.

Application traffic can be pinned either to the same CPU cores, or different cores,
than the independent poller threads. There may be slight performance
improvements using different CPU cores for the kernel pollers. However, if
reducing the total number of CPU cores used by ADQ is important, overlapping
application threads and independent poller threads is an option.

Clear the ADQ Configuration

To clear ADQ configuration after finishing testing, it is recommended to remove TC
filters first before removing the TCs. Note that if the TCs are removed first, any
existing TC filters will not function properly even if the TC is re-added. All TC filters
must be added after the TC creation step.

NOTE

Use $iface_vf to clear the VF ADQ configuration, and use $iface to clear the PF ADQ
configuration.

1. Remove ntuple rules (if applicable).

ethtool --features $iface ntuple off

2. Remove the cgroup (if applicable).

cgdelete -g net_prio:${cgroup_name}

3. Remove all Traffic Class (TC) filters on the interface under test. The following
example removes an ingress and egress filter with priority 1:

To remove PF-specific filters:

${pathtotc}/tc filter del dev $iface protocol ip ingress prio 1
${pathtotc}/tc filter del dev $iface protocol ip egress prio 1

To remove VXLAN-specific filters:

${pathtotc}/tc filter del dev $vxlan ingress

4. Remove all TCs on the interface under test.

${pathtotc}/tc qdisc del dev $iface clsact
${pathtotc}/tc qdisc del dev $iface root mqprio

A.1.9

R ADQ—ADQ Configuration Reference (Manual)

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
Configuration Guide March 2023
130 Doc. No.: 609008, Rev.: 2.8

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

5. To remove VF interfaces:

echo 0 > /sys/class/net/$iface_pf/device/sriov_numvfs

NOTE

This step is applicable when the system is configured with ADQ VF.

6. Disable pollers.

iface_bdf=$(ethtool -i $iface | grep bus-info | awk '{print $2}')
devlink dev param set pci/$face_bdf name num_qps_per_poller value 0 cmode
runtime

7. Turn off napi threading.

echo 0 > /sys/class/net/$iface/threaded

NOTE

Steps 6 and 7 are applicable when the ADQ setup is configured with independent
pollers (ADQ2.0) and kthread based napi polling.

8. Confirm configuration is cleared.

${pathtotc}/tc filter show dev $iface ingress
${pathtotc}/tc filter show dev $iface egress
${pathtotc}/tc qdisc show dev $iface

NOTE

It is recommended to remove ntuple rules, cgroup and TC filters first, before removing
the TCs.

An alternative is to reload the ice driver to remove any (and all) TC configurations,
system wide. Reloading the ice driver should only be done if there are no other E810
interfaces in use on the system, as this will disrupt all network traffic.

rmmod ice
sleep 2
modprobe ice

NOTE

Add at least 2 seconds of sleep time to restore all queues before reconfiguring the
ADQ traffic classes.

RADQ Configuration Reference (Manual)—ADQ

Intel® Ethernet Controller E810 Application Device Queues (ADQ)
March 2023 Configuration Guide
Doc. No.: 609008, Rev.: 2.8 131

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=609008&fid=1

	Contents
	Revision History
	1.0 Fixed and Known Issues - Read First
	1.1 Fixed Issues
	1.1.1 ADQ PF Issues
	1.1.2 ADQ Setup Script Issues
	1.1.3 ADQ VF Issues

	1.2 Known Issues
	1.2.1 ADQ PF Known Issues
	1.2.2 ADQ Setup Script Known Issues
	1.2.3 ADQ VF Known Issues

	2.0 Introduction
	2.1 ADQ Overview
	2.2 ADQ Reference

	3.0 ADQ Requirements
	3.1 Hardware Requirements
	3.2 Software Requirements

	4.0 ADQ System Under Test (SUT) Installation
	4.1 Install OS
	4.2 Update Kernel (If Needed)
	4.3 Install ice Driver with ADQ Flags
	4.4 Install iproute2 (Update If Needed)
	4.5 Install cgroup Packages (If Needed)

	5.0 General System Tuning
	6.0 ADQ Setup Using ADQ Setup Script
	6.1 ADQ Setup Script Prerequisites
	6.2 ADQ Setup Script Installation
	6.3 ADQ Setup Script Usage

	7.0 ADQ Configuration on SR-IOV Virtual Functions
	7.1 General SUT Configuration for VFs
	7.2 SUT Configuration Bare Metal VF
	7.3 SUT Configuration VF Inside a VM
	7.4 ADQ VF Configuration

	8.0 Troubleshooting
	9.0 Testing ADQ with Netperf
	9.1 Installation and Configuration – Both Systems
	9.2 netperf Server
	9.3 netperf Client

	10.0 Testing ADQ with Redis
	10.1 Redis Server Setup
	10.2 Redis Clients (non-ADQ) Configuration

	11.0 Testing ADQ with Memcached/rpc-perf
	11.1 Memcached Server Setup
	11.2 Memcached/rpc-perf Clients (non-ADQ) Configuration

	12.0 Testing ADQ with NGINX
	12.1 NGINX Server Setup
	12.2 wrk Clients Configuration

	13.0 Testing ADQ with AF_XDP
	13.1 AF_XDP Server Configuration
	13.2 Traffic Generator Example Configuration (Non-ADQ)
	13.2.1 Traffic Pattern to Be Generated
	13.2.2 Example: Running DPDK-pktgen Traffic

	14.0 Testing ADQ with Apache Traffic Server (ATS)
	14.1 ATS Server Setup
	14.2 Vegeta Clients Configuration

	15.0 Testing ADQ with VirtIO
	15.1 Installation and Configuration - Both Systems
	15.2 Run the Traffic

	Appendix A ADQ Configuration Reference (Manual)
	A.1 ADQ Configuration on SUT
	A.1.1 Adapter Preparation
	A.1.2 Configure ADQ Traffic Class (TC) on SUT
	A.1.2.1 Create TCs
	A.1.2.2 TC Filtering
	A.1.2.2.1 TC Filtering Requirements

	A.1.2.3 Confirm TC Configuration

	A.1.3 Independent Pollers (Optional)
	A.1.3.1 Independent Pollers Introduction
	A.1.3.2 Configure Independent Pollers

	A.1.4 Apply Adapter Tuning
	A.1.5 Configure Symmetric Queues
	A.1.6 Configure Intel® Ethernet Flow Director Settings
	A.1.7 Set cgroup Priority for Application Network Traffic (If Needed)
	A.1.8 Verify ADQ Application Traffic and Independent Pollers (If Applicable)
	A.1.9 Clear the ADQ Configuration

	Button2:
	Button1:

