

11th Generation Intel[®] Core[™] **Processor**

Specification Update

Supporting 11th Generation Intel[®] Core[™] Processor for S Processor Line Platforms, formerly known as Rocket Lake

Revision 012

April 2023

Document Number: 634808-012

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021-2023, Intel Corporation. All rights reserved.

Contents

Preface	5
Identification Information	7
Summary Tables of Changes	9
Errata Details	12
Specification Changes	21
Specification Clarification	22
Document-Only Change	23

Tables

	Table 1. Processor Lines	Component Identification	7
--	--------------------------	--------------------------	---

Figure

Revision History

Revision Number	Description	Revision Date
001	• Initial Release	March 2021
002	Added Erratum: <u>RKL019</u>	April 2021
003	Added Erratum: <u>RKL020</u>	May 2021
004	Added Erratum: <u>RKL021</u>	June 2021
005	Added Erratum: <u>RKL022</u>	August 2021
006	Added Errata: <u>RKL023</u> , <u>RKL024</u> , <u>RKL025</u>	October 2021
007	Added Erratum: <u>RKL026</u>	November 2021
008	Added Errata: <u>RKL027</u> , <u>RKL028</u> , <u>RKL029</u> , <u>RKL030</u> , <u>RKL031</u>	February 2022
009	Added Erratum: <u>RKL032</u>	May 2022
010	Added Erratum: <u>RKL033</u>	July 2022
011	Added Erratum: <u>RKL034</u>	September 2022
012	Added Erratum: <u>RKL036</u>	April 2023

Preface

This document is an update to the specifications contained in the documents listed in the following Affected Documents/Related Documents table. It is a compilation of device and document errata and specification clarifications and changes, and is intended for hardware system manufacturers and for software developers of applications, operating system, and tools.

Information types defined in the Nomenclature section of this document are consolidated into this updated document and are no longer published in other documents. This document may also contain information that has not been previously published.

Affected Documents

Document Title	Document Number
11^{th} Generation Intel [®] Core TM Processors Datasheet, Volume 1 of 2	<u>634648</u>
11 th Generation Intel [®] Core [™] Processors Datasheet, Volume 2 of 2	<u>636761</u>

Related Documents

Document Title	Document Number/Location
AP-485, Intel [®] Processor Identification and the CPUID Instruction	http://www.intel.com/desi gn/processor/applnots/24 1618.htm
Intel $^{\ensuremath{\mathbb{B}}}$ 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture	
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference Manual A-M	
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2B: Instruction Set Reference Manual N-Z	http://www.intel.com/prod ucts/processor/manuals/in
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide	<u>dex.htm</u>
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide	
Intel [®] 64 and IA-32 Intel [®] Architecture Optimization Reference Manual	
Intel [®] 64 and IA-32 Architectures Software Developer's Manual Documentation Changes	http://www.intel.com/cont ent/www/us/en/processor s/architectures-software- developer-manuals.html
Intel [®] Virtualization Technology Specification for Directed I/O Architecture Specification	<u>D51397-001</u>
ACPI Specifications	www.acpi.info

Nomenclature

Errata – These are design defects or errors. Errata may cause the processor's behavior to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present on all devices.

Specification Changes – These are modifications to the current published specifications. These changes is incorporated in the next release of the specifications.

Specification Clarifications – This describe a specification in greater detail or further highlight a specifications impact to a complex design situation. These clarifications is incorporated in the next release of the specifications.

Documentation Changes – This include typos, errors, or omissions from the current published specifications. These changes are incorporated in the next release of the specifications.

Note: Errata remain in the specification update throughout the product's lifecycle, or until a particular stepping is no longer commercially available. Under these circumstances, errata removed from the specification update are archived and available upon request. Specification changes, specification clarifications, and documentation changes are removed from the specification update, when the appropriate changes are made to the appropriate product specification or user documentation (datasheets, manuals, etc.).

Identification Information

Component Identification via Programming Interface

The processor stepping is identified by the following register contents:

Processor	CPUID	Reserved [31:28]	Extended Family [27:20]	Extended Model [19:16]	Reserved [15:14]	Processor Type [13:12]	Family Code [11:8]	Model Number [7:4]	Stepping ID [3:0]
S	A0671h	Reserved	0000b	1010b	Reserved	00b	0110b	0111b	0001b

Table 1. Processor Lines Component Identification

- The Extended Family, Bits [27:20] are used in conjunction with the Family Code, specified in Bits[11:8], to indicate whether the processor belongs to the Celeron[®], Pentium[®], or Intel[®] Core[™] processor family.
- 2. The Extended Model, Bits [19:16] in conjunction with the Model Number, specified in Bits [7:4], are used to identify the model of the processor within the processor's family.
- 3. The Family Code corresponds to Bits [11:8] of the EDX register after RESET, Bits [11:8] of the EAX register after the CPUID instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible through Boundary Scan.
- 4. The Model Number corresponds to Bits [7:4] of the EDX register after RESET, Bits [7:4] of the EAX register after the CPUID instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through Boundary Scan.
- 5. The Stepping ID in Bits [3:0] indicates the revision number of that model. Refer table above for the processor stepping ID number in the CPUID information.
- 6. When EAX is initialized to a value of '1', the CPUID instruction returns the Extended Family, Extended Model, Processor Type, Family Code, Model Number and Stepping ID value in the EAX register. The EDX processor signature value after reset is equivalent to the processor signature output value in the EAX register.

Cache and TLB descriptor parameters are provided in the EAX, EBX, ECX and EDX registers after the CPUID instruction is executed with a 2 in the EAX register.

Component Marking Information

Figure 1. S-Processor Line Multi-Chip Package LGA Top-Side Markings

Pin Count: 1200

Package Size: 37.5 mm x 37.5 mm

Production (SSPEC):

- FPO: FPOxxxxx
- {eX}
- SWIR1: Intel[®] logo

Note: "1" is used to extract the unit visual ID (2D ID).

Note: Processor list can be found at: <u>https://ark.intel.com/content/www/us/en/ark/products/codename/192985/rocket-lake.html</u>

Summary Tables of Changes

The following table indicates the Specification Changes, Errata, Specification Clarifications or Documentation Changes, which apply to the listed processor stepping. Intel intends to fix some of the errata in a future stepping of the component, and to account for the other outstanding issues through documentation or Specification Changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping	Description
(No mark) or (Blank Box)	This erratum is fixed in listed stepping or specification change does not apply to listed stepping.

Status	Description
Doc	Document change or update that is implemented.
Planned Fix	This erratum may be fixed in a future stepping of the product.
Fixed	This erratum has been previously fixed in Intel hardware, firmware, or software.
No Fix	There are no plans to fix this erratum.

Errata Summary Table

ID	Processor Line/Stepping	Title
	S	
RKL001	No Fix	Placing Page Table Information in the APIC-Access Page May Lead to Unexpected Page Faults While Performing Enclave Accesses
RKL002	Fixed	REP MOVSB Instruction To or From a Non-flat Segment May Cause Unpredictable System Behavior
RKL003	Fixed	Usage of Bit 55 of IA32 TSC DEADLINE MSR May Cause Spurious Timer Interrupt
RKL004	No Fix	Overflow Flag in IA32 MC0 STATUS MSR May be Incorrectly Set
RKL005	No Fix	Wrong Page Access Semantics May be Reported When Intel® SGX ENCLU[EMODPE] Instruction Generates Page Fault (#PF) Exception
RKL006	No Fix	VERR Instruction Inside VM-entry May Cause DR6 to Contain Incorrect Values
RKL007	No Fix	Processor May Hang if Warm Reset Triggers During BIOS Initialization

ID	Processor Line/Stepping	Title
	S	
RKL008	No Fix	IA32 RTIT STATUS.FilterEn Bit Might Reflect a Previous Value
RKL009	Fixed	Time Stamp Counters May Contain a Shifted Time Value
RKL010	No Fix	Incorrect ECC Reporting Following Entry to PKG-C7
RKL011	No Fix	PMU MSR UNC PERF FIXED CTR is Cleared after Pkg C7 or Deeper
RKL012	No Fix	Unable to Transmit Modified Compliance Test Pattern at 2.5 GT/S or 5.0 GT/s Link Speeds
RKL013	No Fix	PCIe Root Ports May Fail Tx Differential Return Loss Compliance Test
RKL014	No Fix	PEG10 PCIe Root Port May Report Incorrect Maximum Link Width
RKL015	Fixed	DMI Link Failure During L1 Exit
RKL016	Fixed	Processor Peg Ports 10, 11, or 12 PCIe Link May Hang During S0ix/S3/S4/S5 Cycles
RKL017	No Fix	PCIe Root Ports May Fail Tx Differential Return Loss
RKL018	Fixed	System May Hang if Booted with TXT Disabled
RKL019	No Fix	Single Core Configurations May Hang on S3/S4 Resume
RKL020	Fixed	DMI Link May Hang During Package C State Exits
RKL021	No Fix	System May Hang When Booting in Single Core Configuration
RKL022	No Fix	Processor May Generate Malformed TLP
RKL023	No Fix	PCIe Link May Fail to Train Upon Exit From L1.2
RKL024	No Fix	Setting MISC FEATURE CONTROL.DISABLE THREE STRIKE CNT Does Not Prevent The Three-strike Counter From Incrementing
RKL025	No Fix	Processor May Exceed Thermal Limits
RKL026	No Fix	Writing Non-Zero Values to Read Only Fields in IA32 THERM STATUS MSR May Cause a #GP
RKL027	No Fix	Intel [®] PT TIP.PGD May Not Have Target IP Payload
RKL028	No Fix	Intel® Processor Trace PSB+ Packets May Contain Unexpected Packets
RKL029	No Fix	Intel® PT Trace May Drop Second Byte of CYC Packet
RKL030	No Fix	VM Entry That Clears TraceEn May Generate a FUP
RKL031	Fixed	Platform May Not Resume From G3/S3/S4/S5
RKL032	No Fix	Mismatch on DR6 Value When Breakpoint Match is on Bitmap Address
RKL033	No Fix	Call Instruction Wrapping Around The 32-bit Address Boundary May Return to Incorrect Address
RKL034	Fixed	LFENCE Instruction May Not Prevent FSFP Forwarding
RKL035	N/A	N/A. Erratum has been removed.
RKL036	Fixed	Branch Predictor May Produce Incorrect Instruction Pointer

Specification Changes

No.	Specification Changes
	None for this revision of this specification update.

Specification Clarifications

No.	Specification Clarifications
	None for this revision of this specification update.

Documentation Changes

No.	Documentation Changes
	None for this revision of this specification update.

Errata Details

RKL001	Placing Page Table Information in the APIC-Access Page May Lead to Unexpected Page Faults While Performing Enclave Accesses
Problem	Guest-physical access using a guest-physical address that translates to an address on the APIC-access page (as identified by the APIC-access address field in the VMCS) should cause an APIC-access VM exit. This includes page table information accesses done as part of page translation (page walks). Due to this erratum placing page table information in the APIC-access page may result in a page fault instead of VM exit when the page translation is done as part of an enclave access.
Implication	Software that places page table information in the APIC access page may get page faults on executing enclave accesses, instead of exiting to the VMM (Virtual-Machine Monitor). Intel has not observed this erratum with any commercially available software.
Workaround	Software should not place page table information in the APIC access page.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL002	REP MOVSB Instruction To or From a Non-flat Segment May Cause Unpredictable System Behavior
Problem	Under complex microarchitectural conditions, using a REP MOVSB instruction in which at least one of the operands (destination or source) of the instruction is in a non-flat segment mode, might cause unpredictable system behavior.
Implication	Due to this erratum, unpredictable system behavior may occur. Intel has not observed this erratum with any commercially available software.
Workaround	It is possible for BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL003	Usage of Bit 55 of IA32_TSC_DEADLINE MSR May Cause Spurious Timer Interrupt
Problem	When using the APIC timer in Time Stamp Counter Deadline (TSC-deadline) mode, if the most significant set bit in the written value to the TSC-Deadline MSR is bit 55, the processor may generate a spurious timer interrupt.
Implication	When this erratum occurs, a spurious timer interrupt may occur causing unpredictable system behavior. Intel has not observed this erratum with any commercially available software.
Workaround	It is possible for BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL004	Overflow Flag in IA32_MC0_STATUS MSR May be Incorrectly Set
Problem	Under complex microarchitectural conditions, a single internal parity error seen in IA32_MC0_STATUS MSR (401h) with MCACOD (bits 15:0) value of 5h and MSCOD (bits 31:16) value of 7h, may set the overflow flag (bit 62) in the same MSR.
Implication	Due to this erratum, the IA32_MC0_STATUS overflow flag may be set after a single parity error. Intel has not observed this erratum with any commercially available software.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL005	Wrong Page Access Semantics May be Reported When Intel [®] SGX ENCLU[EMODPE] Instruction Generates Page Fault (#PF) Exception
Problem	When Intel [®] SGX extends an Enclave Page Cache (EPC) via the page permissions instruction (ENCLU[EMODPE]) and generates a Page Fault (#PF), even though the page permissions instruction access is a read access to the target page, the Page Fault Error Code (#PF's PFEC) will indicate that the fault occurred on a write (PFEC.W bit will be set) instead.
Implication	This erratum may impact debugging Intel [®] SGX enclaves software. Intel has not observed this erratum with any commercially available software.
Workaround	None identified.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL006	VERR Instruction Inside VM-entry May Cause DR6 to Contain Incorrect Values
Problem	Under complex microarchitectural conditions, a VERR instruction that follows a VM- entry with a guest-state area indicating MOV SS blocking (bit 1 in the Interruptibility state) and at least one of B3-B0 bits set (bits 3:0 in the pending debug exception) may lead to incorrect values in DR6.
Implication	Due to this erratum, DR6 may contain incorrect values. Intel has not observed this erratum with any commercially available software.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL007	Processor May Hang if Warm Reset Triggers During BIOS Initialization
Problem	Under complex micro-architectural conditions, when the processor receives a warm reset during BIOS initialization, the processor may hang with a machine check error reported in IA32_MCi_STATUS, with MCACOD (bits [15:0]) value of 0400H, and MSCOD (bits [31:16]) value of 0080H.
Implication	Due to this erratum, the processor may hang. Intel has only observed this erratum in a synthetic test environment.
Workaround	None identified.

-

Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .
RKL008	IA32_RTIT_STATUS.FilterEn Bit Might Reflect a Previous Value
Problem	Under complex microarchitectural conditions, reading the IA32_RTIT_STATUS.FilterEn bit (bit 0 in MSR 571h) after entering or exiting an RTIT region might reflect a previous value instead of the current one.
	Due to this erratum, IA32 RTIT STATUS. FilterEn bit might reflect a previous value.

Implication	Due to this erratum, IA32_RTIT_STATUS.FilterEn bit might reflect a previous value. This erratum has not been seen in any commercially available software.
Workaround	Software should perform an LFENCE instruction prior to reading the IA32_RTIT_STATUS MSR to avoid this issue.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL009	Time Stamp Counters May Contain a Shifted Time Value
Problem	Under complex microarchitectural conditions, the processor's RDTSC and RDTSCP instructions may report a shifted value. In these cases, the shift value will be larger than a minute.
Implication	Software may experience a non-monotonic time stamp counter, misalignment across threads, or a spurious timer interrupt.
Workaround	It is possible for BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL010	Incorrect ECC Reporting Following Entry to PKG-C7
Problem	The Correctable and Uncorrectable ECC error address reported in ECCERRLOG0/1 (MCHBAR Offset 4048h/404Ch) may be overwritten after a PKG-C7 event.
Implication	DDR Correctable and Uncorrectable ECC errors reported in ECCERRLOG0/1 (MCHBAR Offset 4048h/404Ch) may report an incorrect error address after resuming from PKG-C7.
Workaround	None Identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL011	PMU MSR_UNC_PERF_FIXED_CTR is Cleared After Pkg C7 or Deeper
Problem	The Performance Monitoring Unit Uncore Performance Fixed Counter (MSR_UNC_PERF_FIXED_CTR (MSR 395h)) is cleared after pkg C7 or deeper.
Implication	Due to this erratum, once the system enters pkg C7 or deeper the uncore fixed counter does not reflect the actual count.
Workaround	None Identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL012	Unable to Transmit Modified Compliance Test Pattern at 2.5 GT/S or 5.0 GT/s Link Speeds
Problem	The processor's PCIe port (Bus 0, Device 1, Function 0/1/2 or Bus 0, Device 6, Function 0) does not transmit the Modified Compliance Test Pattern when in either 2.5 GT/S or 5.0 GT/s link speeds.
Implication	Due to this erratum, PCIe compliance testing may fail at 2.5 GT/S or 5.0 GT/s link speeds when enabling the Modified Compliance Test Pattern.
Workaround	None Identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL013	PCIe Root Ports May Fail Tx Differential Return Loss Compliance Test
Problem	The processor's PCIe root ports may fail to meet the Tx Differential Return Loss Compliance Test's requirements as defined in PCIe Base Specification, version 4.0, section 9.3.6.
Implication	The processor may fail the Differential Return Loss compliance test. Intel has not observed this erratum to cause any functional failures.
Workaround	None identified
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL014	PEG10 PCIe Root Port May Report Incorrect Maximum Link Width
Problem	When the PEG10 root port (Bus 0, Device 1, Function 0) is bifurcated, the port will incorrectly report Maximum Link Width (MLW) in the Link Capabilities register (Bus 0, Device 1, Function 0, Offset 0Ch). The processor will always indicate the MLW of x16, rather than x8.
Implication	Due to this erratum, software may expect the link to support x16 link widths, which the port cannot do while bifurcated.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL015	DMI Link Failure During L1 Exit
Problem	During S3/S4/S5 and/or S0ix cycles, DMI may fail to exit L1 in the time required.
Implication	The system may hang with a machine check exception (MCACOD=2AH).
Workaround	It is possible for a BIOS code change to workaround this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL016	Processor Peg Ports 10,11, or 12 PCIe Link May Hang During S0ix/S3/S4/S5 Cycles
Problem	During S0ix and/or S3/S4/S5 when processor exits a Package C-state, the PCIe link may hang for Peg ports 10, 11, or 12.

Implication	Due to this erratum, the PCIe link may hang with a machine check error $(MCACOD=34H)$.
Workaround	It is possible for a BIOS code change to contain a workaround for this erratum.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL017	PCIe Root Ports May Fail Tx Differential Return Loss
Problem	The processor's PCIe root ports may not meet the Tx Differential Return Loss specification as defined in PCIe Base Specification, version 4.0, section 8.3.7 Tx and Rx Return Loss.
Implication	The processor may fail the Tx Differential Return Loss specification. Intel has not observed any functional failures due to this erratum.
Workaround	None identified.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL018	System May Hang if Booted with TXT Disabled
Problem	A system with TXT disabled may experience a hang during the boot process.
Implication	Due to this erratum, the system may hang during boot.
Workaround	It is possible for a BIOS code change to workaround this erratum.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL019	Single Core Configurations May Hang on S3/S4 Resume
Problem	When booting in a single core configuration, the system may hang when resuming from a S3/S4 or a warm reset.
Implication	Due to this erratum, the system may hang.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL020	DMI Link May Hang During Package C State Exits
Problem	When the processor exits Package C States, the DMI link may fail, showing RecoverySpeedReady (0x6C) in the DMI link status register (Base address 0xFEDA0000 Offset : 0x2328, bits [31:24] will be 0x6C), leading to an Internal Timer Error Machine Check (IA32_MCi_STATUS.MCACOD=400H; bits 15:0).
Implication	Due to this erratum, the DMI link may hang with a machine check error (MCACOD=400H).
Workaround	It may be possible for a BIOS code change to contain a workaround for this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL021	System May Hang When Booting in Single Core Configuration
Problem	When configured in single-core mode, the processor may issue non-posted transactions during BIOS boot that may not complete.
Implication	Due to this erratum, in single-core mode, the processor may hang during boot.
Workaround	None identified. Platforms can use multi-core configurations to work around this erratum.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL022	Processor May Generate Malformed TLP
Problem	If the processor root port receives an FetchAdd, Swap, or CAS TLP (an atomic operation) that is erroneous, it should generate a UR completion to the downstream requestor. If the TLP has an operand size greater than 4 bytes, the generated UR completion will report an operand size of 4 bytes, which will be interpreted as a malformed transaction.
Implication	When this erratum occurs, the processor may respond with a malformed transaction.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL023	PCIe Link May Fail to Train Upon Exit From L1.2
Problem	When the PCIe Link exits the L1.2 low-power link state, the link may fail to correctly train to L0.
Implication	Due to this erratum, a PCIe link may incur unexpected link recovery events or it may enter a Link_Down state.
Workaround	It may be possible for a BIOS code change to workaround this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL024	Setting MISC_FEATURE_CONTROL.DISABLE_THREE_STRIKE_CNT Does Not Prevent The Three-strike Counter From Incrementing
Problem	Setting MISC_FEATURE_CONTROL.DISABLE_THREE_STRIKE_CNT (bit 11 in MSR 1A4h) does not prevent the three-strike counter from incrementing as documented; instead, it only prevents the signaling of the three-strike event once the counter has expired.
Implication	Due to this erratum, software may be able to see the three-strike logged in the MC3_STATUS (MSR 40Dh, MCACOD = 400h [bits 15:0]) even when MISC_FEATURE_CONTROL.DISABLE_THREE_STRIKE_CNT is set.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL025	Processor May Exceed Thermal Limits
Problem	Under heavy workloads, the processor may not thermally throttle correctly due to temperature gradients between the thermal sensor and other circuits.
Implication	Due to this erratum, the system may hang or unpredictable system behavior may occur.
Workaround	It may be possible for BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL026	Writing Non-Zero Values to Read Only Fields in IA32_THERM_STATUS MSR May Cause a #GP
Problem	IA32_THERM_STATUS MSR (19CH) includes read-only (RO) fields as well as writable fields. Writing a non-zero value to any of the read-only fields may cause a #GP.
Implication	Due to this erratum, software that reads the IA32_THERM_STATUS MSR, modifies some of the writable fields, and attempts to write the MSR back may cause a #GP.
Workaround	Software should clear all read-only fields before writing to this MSR.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL027	Intel [®] PT TIP.PGD May Not Have Target IP Payload
Problem	When Intel [®] PT (Intel [®] Processor Trace) is enabled and a direct unconditional branch clears IA32_RTIT_STATUS.FilterEn (MSR 571H, bit 0), due to this erratum, the resulting TIP.PGD (Target IP Packet, Packet Generation Disable) may not have an IP payload with the target IP.
Implication	It may not be possible to tell which instruction in the flow caused the TIP.PGD using only the information in trace packets when this erratum occurs.
Workaround	The Intel [®] PT trace decoder can compare direct unconditional branch targets in the source with the FilterEn address range(s) to determine which branch cleared FilterEn.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL028	Intel® Processor Trace PSB+ Packets May Contain Unexpected Packets
Problem	Some Intel [®] Processor Trace packets should be issued only between TIP.PGE (Target IP Packet.Packet Generation Enable) and TIP.PGD (Target IP Packet.Packet Generation Disable) packets. Due to this erratum, when a TIP.PGE packet is generated it may be preceded by a PSB+ (Packet Stream Boundary) that incorrectly includes FUP (Flow Update Packet) and MODE.Exec packets.
Implication	Due to this erratum, FUP and MODE.Exec may be generated unexpectedly.
Workaround	Decoders should ignore FUP and MODE.Exec packets that are not between TIP.PGE and TIP.PGD packets.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL029	Intel [®] PT Trace May Drop Second Byte of CYC Packet
Problem	Due to a rare microarchitectural condition, the second byte of a 2-byte CYC (Cycle Count) packet may be dropped without an OVF (Overflow) packet.
Implication	A trace decoder may signal a decode error due to the lost trace byte.
Workaround	None identified. A mitigation is available for this erratum. If a decoder encounters a multi-byte CYC packet where the second byte has bit 0 (Ext) set to 1, it should assume that 4095 cycles have passed since the prior CYC packet, and it should ignore the first byte of the CYC and treat the second byte as the start of a new packet.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL030	VM Entry That Clears TraceEn May Generate a FUP
Problem	If VM entry clears Intel [®] PT (Intel [®] Processor Trace) IA32_RTIT_CTL.TraceEn (MSR 570H, bit 0) while PacketEn is 1 then a FUP (Flow Update Packet) will precede the TIP.PGD (Target IP Packet, Packet Generation Disable). VM entry can clear TraceEn if the VM-entry MSR-load area includes an entry for the IA32_RTIT_CTL MSR.
Implication	When this erratum occurs, an unexpected FUP may be generated that creates the appearance of an asynchronous event taking place immediately before or during the VM entry.
Workaround	The Intel PT trace decoder may opt to ignore any FUP whose IP matches that of a VM entry instruction.
Status	For the steppings affected, refer to the <u>Summary Table of Changes</u> .

RKL031	Platform May Not Resume From G3/S3/S4/S5
Problem	Transient noise on the CPU crystal clock differential signals (CPU_NSSC_DP and CPU_NSSC_ DN) when resuming from G3/S3/S4/S5 may prevent the platform from booting.
Implication	Due to this erratum, the platform may fail boot when resuming from G3/S3/S4/S5.
Workaround	It may be possible for BIOS code changes to workaround this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL032	Mismatch on DR6 Value When Breakpoint Match is on Bitmap Address
Problem	Under complex microarchitectural conditions, on systems with Control-flow Enforcement Technology (CET) enabled, hitting a predefined data breakpoint may not be reported in B0-B3 (bits 3:0) in the DR6 register if that breakpoint was set on the legacy code page bitmap.
Implication	Due to this erratum, software may not know which breakpoint triggered when setting breakpoints on the legacy code page bitmap.
Workaround	None identified.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL033	Call Instruction Wrapping Around The 32-bit Address Boundary May Return to Incorrect Address
Problem	In 32-bit mode, a call instruction wrapping around the 32-bit address should save a return address near the bottom of the address space (low address) around address zero. Under complex micro-architectural conditions, a return instruction following such a call may return to the next sequential address instead (high address).
Implication	Due to this erratum, In 32-bit mode a return following a call instruction that wraps around the 32-bit address boundary may return to the next sequential IP without wrapping around the address, possibly resulting in a #PF. Intel has not observed this behavior on any commercially available software.
Workaround	Software should not place call instructions in addresses that wrap around the 32-bit address space in 32-bit mode.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL034	LFENCE Instruction May Not Prevent FSFP Forwarding
Problem	When the Fast Store Forwarding Predictor (FSFP) is enabled, the LFENCE instruction may allow older stores to be predictively forwarded to younger loads.
Implication	Due to this erratum, software that relies on the LFENCE instruction to prevent FSFP forwarding may not behave as expected.
Workaround	It may be possible for BIOS to contain a workaround for this Erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

RKL035 N/A. Erratum has been removed.	
---------------------------------------	--

RKL036	Branch Predictor May Produce Incorrect Instruction Pointer
Problem	Under complex microarchitectural conditions, the branch predictor may produce an incorrect instruction pointer leading to unpredictable system behavior.
Implication	Due to this erratum, the system may exhibit unpredictable behavior.
Workaround	It may be possible for BIOS to contain a workaround for this erratum.
Status	For the steppings affected, refer to the Summary Table of Changes.

Specification Changes

None.

Specification Clarification

Specification Clarification

None.

Document-Only Change

None.