
Reference Number: 642245

Sapphire Rapids Uncore
Programming Guide
Reference Manual

June 2021

Revision 1.0

2 Reference Number: 642245, Revision: 1.0

Notice: This document contains information on products in the design phase of development. The information here is
subject to change without notice. Do not finalize a design with this information.
Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The
products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your
purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the
referenced web site and confirm whether referenced data are accurate.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
Copyright © 2021, Intel Corporation. All Rights Reserved.

http://www.intel.com/performance.
www.intel.com/design/literature.htm
https://www.intel.com/content/www/us/en/homepage.html

Reference Number: 642245, Revision: 1.0 3

Contents
Introduction...7

1.1 Section References ..7
1.2 Uncore PMON Overview..8

1.2.1 A Simple Hierarchy...8
1.2.2 Global PMON State ...9

1.3 Unit Level PMON State ... 10
1.4 Uncore PMON - Typical Counter Control Logic.. 15
1.5 Uncore PMON - Typical Counter Logic... 17
1.6 Sapphire Rapids Server Uncore PMON .. 18
1.7 Addressing Uncore PMON State ... 19

1.7.1 Uncore Performance Monitoring State in the MSR Space 19
1.8 Uncore Performance Monitoring State in the PCICFG Space 19
1.9 Introduction to Discovery - Self Describing HW.. 20

1.9.1 Global Discovery .. 21
1.9.2 Unit Discovery ... 23

1.10 Guidance for the SW.. 24
1.10.1 Guidance on Finding PMON Discovery and Reading It 24
1.10.2 Guidance on Finding the Package’s Bus Number for the Uncore PMON Registers in

PCICFG Space.. 26
1.10.3 Guidance on Resolving Addresses for Uncore PMON Registers in MMIO Space . 28
1.10.4 Setting up a Monitoring Session ... 30
1.10.5 Reading the Sample Interval.. 31
1.10.6 Enabling a New Sample Interval from Frozen Counters 32

2 Sapphire Rapids Uncore Performance Monitoring .. 33
2.1 Mesh Performance Monitoring ... 33

2.1.1 Mesh Performance Monitoring Events .. 34
2.2 CHA Performance Monitoring... 34

2.2.1 CHA Performance Monitoring Overview.. 35
2.2.2 Additional CHA Performance Monitoring... 35
2.2.3 CHA Performance Monitoring Events ... 37
2.2.4 CHA Box Performance Monitor Event List ... 38

2.3 IMC Performance Monitoring ... 38
2.3.1 Functional Overview ... 38
2.3.2 IMC Performance Monitoring Overview .. 38
2.3.3 Additional IMC Performance Monitoring ... 39
2.3.4 IMC Performance Monitoring Events.. 40

2.4 IIO Performance Monitoring .. 41
2.4.1 IIO Performance Monitoring Overview ... 41
2.4.2 Additional IIO Performance Monitoring .. 41
2.4.3 IIO Performance Monitoring Events... 42
2.4.4 IIO Box Performance Monitor Event List .. 43

2.5 IRP Performance Monitoring.. 43
2.5.1 IRP Performance Monitoring Overview... 43
2.5.2 IRP Performance Monitoring Events .. 43
2.5.3 IRP Box Performance Monitor Event List .. 43

2.6 Intel® UPI Link Layer Performance Monitoring .. 44
2.6.1 Intel® UPI Performance Monitoring Overview... 45
2.6.2 Additional Intel® UPI Performance Monitoring.. 45
2.6.3 Intel® UPI LL Performance Monitoring Events .. 46
2.6.4 Intel® LL Box Performance Monitor Event List.. 46

4 Reference Number: 642245, Revision: 1.0

2.7 M2M Performance Monitoring ..48
2.7.1 M2M Performance Monitoring Overview..48
2.7.2 M2M Box Performance Monitor Event List ...49

2.8 M2PCIe* Performance Monitoring...49
2.8.1 M2PCIe* Performance Monitoring Overview..49
2.8.2 M2PCIe* Performance Monitoring Events ...49
2.8.3 M2PCIe* Box Performance Monitor Event List ...49

2.9 M3 Intel® UPI Performance Monitoring ...50
2.9.1 M3 Intel® UPI Performance Monitoring Overview ..50
2.9.2 M3 Intel® UPI Performance Monitoring Events..50
2.9.3 M3 Intel® UPI Box Performance Monitor Event List50

2.10 PCU Performance Monitoring ...51
2.10.1 PCU Performance Monitoring Overview ..51
2.10.2 Additional PCU Performance Monitoring..52
2.10.3 PCU Box Performance Monitor Event List..52

2.11 MDF Performance Monitoring...53
2.11.1 MDF Performance Monitoring Overview ..53
2.11.2 MDF Box Performance Monitor Event List ...53

Figures
1-1 Uncore PMON Components and Hierarchy .. 8
1-2 PMON Global Control Register for Sapphire Rapids Server .. 9
1-3 PMON Global Status Register for Sapphire Rapids Server...10
1-4 PMON Blocks...11
1-5 PMON Unit Control Register for Sapphire Rapids Server - Common to All PMON Blocks 11
1-6 PMON Unit Status Register for Sapphire Rapids Server - Format Common to All PMON

Blocks ..12
1-7 PMON Counter Control Register for Sapphire Rapids Server - Fields Common to All PMON

Blocks ..13
1-8 PMON Counter Register for Sapphire Rapids Server - Common to All PMON Blocks......15
1-9 PerfMon* Counter Control Block Diagram..16
1-10 PerfMon* Counter Block Diagram...17
1-11 Discovery - An Overview...20
1-12 Discovery - Visual Guide for How the SW Strides the Page.......................................21
1-13 Discovery - Global State ...22
1-14 Discovery - Unit State ..23
2-1 Uncore PMON Components and Hierarchy ...33
2-2 CHA Counter Control Register for Sapphire Rapids Server..36
2-3 CHA PMON Filter Register..36
2-4 PMON Control Register for DCLK ..39
2-5 IIO Counter Control Register for Sapphire Rapids Server...41
2-6 PCU Counter Control Register for Sapphire Rapids..52

Tables
1-1 U_MSR_PMON_GLOBAL_CTL Register – Field Definitions .. 9
1-2 U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions10
1-3 PMON_UNIT_CTL Register – Field Definitions ...11
1-4 PMON_UNIT_STATUS Register – Field Definitions ...12
1-5 Baseline *_PMON_CTLx Register – Field Definitions ..13

Reference Number: 642245, Revision: 1.0 5

1-6 Baseline *_PMON_CTRx Register – Field Definitions ... 15
1-7 Per-Box Performance Monitoring Capabilities... 18
1-8 Global Performance Monitoring Registers (MSR) .. 19
1-9 Free-running IIO Bandwidth “In” Counters in MSR Space .. 19
1-10 Free-running IIO Bandwidth “Out” Counters in MSR Space...................................... 19
1-11 IMC Fixed Counters ... 19
1-12 IMC Free Running Counters .. 20
1-13 Global Discovery– Field Definitions... 22
1-14 Unit Discovery– Field Definitions.. 23
2-1 Cn_MSR_PMON_CTL{3-0} Register – Field Definitions.. 36
2-2 Cn_MSR_PMON_BOX_FILTER Register – Field Definitions.. 36
2-3 MC_CHy_PCI_PMON_FIXED_CTL Register – Field Definitions 39
2-4 MC_CHy_PCI_PMON_CTR{FIXED,3-0} Register – Field Definitions 39
2-5 MC_MMIO_PMON_FRCTR_DCLK Register – Field Definitions 40
2-6 MC_MMIO_PMON_FRCTR_WPQ_ACTIVE Register – Field Definitions 40
2-7 MC_MMIO_PMON_FRCTR_RPQ_ACTIVE Register – Field Definitions 40
2-8 IIOn_MSR_PMON_CTL{3-0} Register – Field Definitions ... 41
2-9 IIO_MSR_PMON_FRCTR_IOCLK Register – Field Definitions 42
2-10 IIO_MSR_PMON_FRCTR_BW_IN_P{0-7} Register – Field Definitions 42
2-11 UPI_RATE_STATUS Register – Field Definitions.. 45
2-12 U_Ly_PCI_PMON_LINK_IDLE Register – Field Definitions .. 45
2-13 U_Ly_PCI_PMON_LINK_LLR Register – Field Definitions .. 46
2-16 PCU_MSR_PMON_CTL{3-0} Difference from Baseline – Field Definitions 52
2-17 Additional PCU Performance Monitoring Registers (MSR)... 52
2-18 PCU_MSR_CORE_{C6,P6}_CTR Register – Field Definitions..................................... 52

6 Reference Number: 642245, Revision: 1.0

Revision History

Revision
Number Description Date

1.0 • Initial Release June 2021

Reference Number: 642245, Revision: 1.0 7

1 Introduction
“Uncore” roughly equates to logic outside the CPU cores but residing on the same die.
Traffic (for example, data reads) generated by threads executing on CPU cores or I/O
devices may be operated on by logic in the uncore. The logic is responsible for
managing coherency, managing access to the DIMMs, managing power distribution and
sleep states, and so on.

The uncore sub-system of the next generation Sapphire Rapids server is shown in
Figure 1-1. The uncore sub-system consists of a variety of components, many assigned
to the aforementioned responsibilities, ranging from the Caching/Home Agent (CHA) to
the Power Control Unit (PCU) and IMC, to name a few. Most of these components
provide similar performance monitoring capabilities.

Before going into the details of Sapphire Rapids server’s uncore PMON, the following
sections provide:

• A general overview of the uncore PMON operation and the state provided SW to
manage its operation.

• Functionality common to individual units with the common logic to support the
functionality.

• A summary of Sapphire Rapids server’s uncore PMON capabilities.

• An overview of all Sapphire Rapids server uncore PMON states.

• An introduction to a new discovery mechanism.

• Guidance to the SW, including how to manage a monitoring session, find the base
address to the page of discovery, and find the base addresses for the PMON
registers addressed in PCICFG or Memory-Mapped Input/Output (MMIO) space.

1.1 Section References
The following sections provide a breakdown of the performance monitoring capabilities
for each box:

• Section 2.1, Mesh Performance Monitoring

• Section 2.2, CHA Performance Monitoring

• Section 2.3, IMC Performance Monitoring

• Section 2.4, IIO Performance Monitoring

• Section 2.5, IRP Performance Monitoring

• Section 2.6, Intel® UPI Link Layer Performance Monitoring

• Section 2.7, M2M Performance Monitoring

• Section 2.8, M2PCIe* Performance Monitoring

• Section 2.9, M3 Intel® UPI Performance Monitoring

• Section 2.11, PCU Performance Monitoring

• Section 2.11, MDF Performance Monitoring

8 Reference Number: 642245, Revision: 1.0

1.2 Uncore PMON Overview

1.2.1 A Simple Hierarchy
The uncore PMON is managed through a very simple hierarchy. There are some number
of PMON units governed by a global control.

Each PMON block contains a set of counters (Ctrs) with paired control registers. Each
unit provides a set of events for the SW to select from. The SW can ask the HW to
collect an event by specifying what to count in a counter’s control register. Then, the
SW can periodically read the collected value from the paired counter.

Some units offer an expanded event set that require additional counter control bits.
(for example, CHA, IIO and Intel® Ultra Path Interconnect [Intel® UPI]).

Some units offer the ability to further refine, or “filter”, the monitored events through
additional counter control registers.

Note: The uncore PMONs represent a per-socket resource not meant to be affected by context switches and
thread migration performed by the OS. It is recommended that the monitoring software agent
establishes a fixed affinity binding to prevent event count cross-talk across the uncore PMON collected
from different sockets.

To manage the large number of counter registers distributed across so many units and
collect event data efficiently, each block has a modest amount of control and status
governed by a similar global control and status.

Figure 1-1. Uncore PMON Components and Hierarchy

Reference Number: 642245, Revision: 1.0 9

The SW can directly synchronize actions across counters (for example, to start, stop,
and reset counting) within each PMON block or across all PMON blocks through this
control state.

The SW can indirectly synchronize actions across counters (for example, stop counting)
in all the PMON blocks by telling the HW what to do when a counter overflows. After a
set number of events have been captured by pre-seeding the counter, the SW can set a
counter to overflow. For each counter, the SW can then choose whether to notify the
global PMON control that a counter has overflowed.

Upon receipt of an overflow, the global control will assert the global freeze signal. Once
the global freeze has been detected, each box will disable (or “freeze”) all of its
counters. In the process of generating a global freeze, the SW can configure the global
control to send a Performance Monitoring Interface (PMI) signal to the core executing
the monitoring software.

The following sections detail the basic control state provided to the SW to control
performance monitoring in the uncore.

1.2.2 Global PMON State

1.2.2.1 Global PMON, Global Control, and Status Registers
The following registers represent the state governing all Performance Monitor Units
(PMUs) in the uncore, both to exert global control and collect unit-level information.

U_MSR_PMON_GLOBAL_CTL contains bits that can stop (.frz_all) all the uncore
counters.

If an overflow is detected in any of the uncore’s PMON registers, it will be summarized
in one or more U_MSR_PMON_GLOBAL_STATUS registers. These registers accumulate
overflows sent to it from the uncore boxes with PMON blocks. To reset these overflow
bits, a user must set the corresponding bits in U_MSR_PMON_GLOBAL_STATUS to 1,
which will act to clear them.

Figure 1-2. PMON Global Control Register for Sapphire Rapids Server

Table 1-1. U_MSR_PMON_GLOBAL_CTL Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

rsv 60:1 RV 0 Reserved

frz_all 0 WO 0 Freeze all uncore PMONs

10 Reference Number: 642245, Revision: 1.0

The mapping of global status bits in the global status registers to PMON blocks will be
provided through the new PMON discovery mechanism. The first two status bits
correspond to the UCLK fixed register and the UBlock respectively. The rest of the
status bits correspond to overflows detected from the PMON Block’s identified through
discovery. The discovery for each PMON block will report its “Global Status Position”
(for example, which bit in the global status register records its overflows).

For instance, the SW may discover a PMON block of unit type equal to CHA, the unit ID
5 has a “Global Status Position” of 5.

1.3 Unit Level PMON State
Each PMON block in the uncore is composed of the following state:

• A unit control register to aid the SW sample collection

• Status registers to record when a counter within the block overflows

• A set of data registers

• A set of control registers, each paired to a data register, to allow the SW to specify
what event should be captured

Figure 1-3. PMON Global Status Register for Sapphire Rapids Server

Table 1-2. U_MSR_PMON_GLOBAL_STATUS Register – Field Definitions

Fields Bits Attributes HW Reset
Values Descriptions

rsv 63:MaxBlo
cks RV 0 Reserved

ov_pmonX MaxBlocks-
1:4 RW1C 0

Overflow detected in PMON register from
Block with “Global Status Position” of
“MaxBlocks-1” as reported through

global discovery

ov_pmonx-1:
ov_pmon04

MaxBlocks-
2:4 RW1C 0

Overflow detected in PMON registers
from the blocks with a “Global Status
Position” between MaxBlocks-1 and 3

ov_pmon03 3 RW1C 0 Overflow detected in PMON register from
block with “Global Status Position” of 3

ov_pmon02 2 RW1C 0 Overflow detected in PMON register from
block with “Global Status Position” of 2

ov_u 1 RW1C 0 Overflow detected in the UBox PMON
register

ov_uclk 0 RW1C 0
Overflow detected in the UBox fixed

Unified Memory Controller Clock (UCLK)
register

Reference Number: 642245, Revision: 1.0 11

• Additional micro-architectural specific state designed to enhance performance
monitoring collection within a block (for example, event or traffic filters).

• Some free running counters, although not subject to the PMON hierarchy, is
included in this document with the unit they are associated with.

Every PMON block in the system is governed by a modest amount of unit level control.
Each bit intended to assist the SW in more efficiently managing the PMON state within
the block. Reset bits help reduce the time the SW needs to setup a new sample.

Note: If the PMON registers within the unit are shared among different users, either those
users can leave this register untouched or they can agree on the user allowed to affect
the unit level control state.

Figure 1-4. PMON Blocks

Free Running
Counters

Unit Control/
Status Registers

Counter Control
Registers

PMON
Block

PMON
Block

Companion
State

Counter
Registers

uArch Regs – Filters,
Data Samples, etc

Figure 1-5. PMON Unit Control Register for Sapphire Rapids Server - Common to All PMON
Blocks

Table 1-3. PMON_UNIT_CTL Register – Field Definitions (Sheet 1 of 2)

Fields Bits Attributes HW Reset
Values Descriptions

rst_ctrs 9 WO 0
Reset counters

When set to 1, the counter registers will be
reset to 0

12 Reference Number: 642245, Revision: 1.0

If an overflow is detected from one of the unit’s PMON registers, the corresponding bit
in the PMON_UNIT_STATUS.ov field will be set. To reset these overflow bits, a user
must write a value of “1” to them (which will clear the bits). There are typically four
counters per PMON block. But that number may vary. As of Sapphire Rapids, the
number of paired counter and counter-control registers is reported through the unit
discovery associated with each PMON block. The unit status register will contain
“NumControlRegs” valid bits.

Note: Check Table 1-7 or the section detailing each unit’s functionality for the number
counters it supports.

1.3.0.1 Unit PMON state - Counter and Control Pairs
The following table defines the layout for the standard performance monitor control
registers. Their main task is to select the event to be monitored by their respective
data counter (.ev_sel, .umask). Additional control bits are provided to shape the
incoming events (for example, .invert, .edge_det, and .thresh) as well as provide
additional functionality for monitoring the software (.rst,.ov_en).

rst_ctrl 8 WO 0
Reset control

When set to 1, the counter control registers will
be reset to 0

rsv 7:1 RV 0 Reserved

frz 0 WO 0
Freeze

If set to 1, the counters in this box will be
frozen

Table 1-3. PMON_UNIT_CTL Register – Field Definitions (Sheet 2 of 2)

Fields Bits Attributes HW Reset
Values Descriptions

Figure 1-6. PMON Unit Status Register for Sapphire Rapids Server - Format Common to All
PMON Blocks

Ctr 3
Ctr 1
Ctr 2
Ctr 0

03

63

Table 1-4. PMON_UNIT_STATUS Register – Field Definitions

Fields Bits Attributes HW Reset
Values Descriptions

rsv 31:4 RV 0 Reserved

ov
NumCont
rolRegs-

1:0
RW1C 0

If an overflow is detected from the
corresponding PMON_CTR register, its overflow

bit will be set

Note: Write of “1” will clear the bit

Although 4 is very common, the number of
overflow bits can vary by the PMON block. The

number can be discovered in the
NumControlRegs field of the unit’s discovery

Reference Number: 642245, Revision: 1.0 13

Notes: Per unit considerations - See each unit section for more details on:

• Certain units may make use of additional bits in these counter control registers.

• The width of the thresh field is dependent on a unit’s “widest” event (for example, the event that can
increment the most per cycle, typically measuring per-cycle occupancy of a large queue).

• Several unit counter control registers are still 32b, some 64b. All are addressable as 64b registers.

The next section shows an overview of the counter control logic.

Figure 1-7. PMON Counter Control Register for Sapphire Rapids Server - Fields Common to
All PMON Blocks

Table 1-5. Baseline *_PMON_CTLx Register – Field Definitions (Sheet 1 of 2)

Fields Bits Attributes HW Reset
Values Descriptions

rsv 63:56 RV 0
Reserved

Only relevant to units that use 64b control
registers.

Extended umask 55:32 RW 0 Extension to umask. Adds additional filtering
capabilities to certain special events.

Thresh 31:24 RW 0

Threshold is used, along with the invert bit, to
compare against the counter’s incoming

increment value. For example, the value that will
be added to the counter.

For events that increment by more than 1 per
cycle, if the threshold is set to a value greater

than 1, the data register will accumulate
instances in which the event increment is greater

or equal to the threshold.

For example, if there is an event to accumulate
the occupancy of a 64-entry queue every cycle;
by setting the threshold value to 60, the data
register would count the number of cycles the
queue’s occupancy was greater or equal to 60.

14 Reference Number: 642245, Revision: 1.0

The default width for performance monitor data registers are 48b wide. A counter
overflow occurs when a carry out from bit 47 is detected. The SW can force all uncore
counting to freeze after N events by preloading a monitor with a count value of 248 - N
and setting the control register to send an overflow message to the UBox, see
Section 1.2.2. During the interval of time between the overflow and global disable, the
counter value will wrap and continue to collect events.

invert 23 RW 0

Invert comparison against the threshold.

0 - comparison will be “is the event increment
greater or equal to the threshold?”.

1 - comparison is inverted - “is the event
increment less than the threshold?”

For example, for a 64-entry queue, if the SW
wanted to know how many cycles the queue had

fewer than 4 entries, the SW has to set the
threshold to 4 and set the invert bit to 1.

Note: Invert is in series following .thresh, due
to this, the .thresh field must be set to a
non-0 value. For events that increment
by no more than 1 per cycle, set the
.thresh to 0x1.

Also, if the .edge_det is set to 1, the counter will
increment when a 1 to 0 transition (for example,

falling edge) is detected.

rsv 22:21 RV 0
Reserved

The SW must write to 0 else behavior is
undefined.

ov_en 20 RW 0

When this bit is set to 1 and the corresponding
counter overflows, an overflow message is sent

to the UBox’s global logic. The message identifies
the unit that sent it.

Once received, the global status register will
record the overflow in the corresponding

U_MSR_PMON_GLOBAL_STATUS bit.

rsv 19 RV 0 Reserved

edge_det 18 RW 0

When set to 1, rather than measuring the event
in each cycle that it is active, the corresponding
counter will increment when a 0 to 1 transition

(for example, rising edge) is detected.
When 0, the counter will increment in each cycle

that the event is asserted.

Note: .edge_det is in series following the
.thresh, due to this, the .thresh field
must be set to a non-0 value. For events
that increment by no more than 1 per
cycle, set the .thresh to 0x1.

rst 17 WO 0 When set to 1, the corresponding counter will be
cleared to 0.

rsv 16 RV 0
Reserved

The SW must write to 0, else the behavior is
undefined.

umask 15:8 RW 0 Select subevents to be counted within the
selected event.

ev_sel 7:0 RW 0 Select event to be counted.

Table 1-5. Baseline *_PMON_CTLx Register – Field Definitions (Sheet 2 of 2)

Fields Bits Attributes HW Reset
Values Descriptions

Reference Number: 642245, Revision: 1.0 15

To ensure accuracy, the SW has to stop the counter and check the overflow status
before reading its value. But, if accessible, the SW can continuously read the data
registers without disabling event collection.

1.3.0.2 Unit PMON Registers - On Overflow and the Consequences
(PMI and Freeze)
If an overflow is detected from a unit’s performance counter, the overflow bit is set at
the unit level (*_PMON_UNIT_STATUS.ov).

If the counter is enabled to communicate the overflow (*_PMON_CTL.ov_en is set to
1), an overflow message is sent to the UBox. When the UBox receives the overflow
signal, the *_PMON_GLOBAL_STATUS.ov_x bit is set, a global freeze signal is sent and
a PMI can be generated.

Note: The “x” represents the box generating the overflow, see Table 1-3.

Once a freeze has occurred, in order to see a new freeze, the overflow responsible for
the freeze must be cleared by setting the corresponding bit in the
*_PMON_UNIT_STATUS.ov and the U_MSR_PMON_GLOBAL_STATUs.ov_x to 1 (which
acts to clear the bits).

Assuming all counters have been locally enabled (the .en bit is set to 1 in every control
register meant to monitor events) and the overflow bits have been cleared, the unit is
prepared for a new sample interval. Once the global controls have been re-enabled
counting will resume, see Section 1.10.6.

1.4 Uncore PMON - Typical Counter Control
Logic
Following is a logic diagram for the standard Performance Monitor* (PerfMon*) counter
control. It illustrates how the event information is routed, selected, filtered (by other
bits in the control register), and sent to the paired data register for storage.

Note: The PCU uses an adaptation of this block, see Section 2.10.1 for more information. Also
note that only a subset of the available control bits is presented in the diagram.

Figure 1-8. PMON Counter Register for Sapphire Rapids Server - Common to All PMON
Blocks

counter data

47 063

Table 1-6. Baseline *_PMON_CTRx Register – Field Definitions

Fields Bits Attributes HW Reset
Values Descriptions

rsv 63:48 RV 0 Reserved

event_count 47:0 RW-V 0 48-bit performance event counter

16 Reference Number: 642245, Revision: 1.0

• Selecting what to monitor: The main task of a configuration register is to select
the event to be monitored by its respective data counter. Setting the .ev_sel and
.umask fields performs the event selection.

Note: Only the .ev_sel is pictured in the previous figure. The .umask field is generally used to
select subevents of the event. Once the proper subevent combination has been
selected, it is passed on to the per counter EventSel Multiplexer (MUX).

Additional control bits used to filter and create information related to the selected
Event:

• Applying a threshold to incoming events: .thresh - Since most counters can
increment by a value greater than 1, a threshold can be applied to generate an
event based on the outcome of the comparison. If the .thresh is set to a non-zero
value, that value is compared against the incoming count for that event in each
cycle. If the incoming count is greater or equal than the threshold value, then the
event count captured in the data register will be incremented by 1.
Using the threshold field to generate additional events can be particularly useful
when applied to a queue occupancy count. For example, if a queue is known to

Figure 1-9. PerfMon* Counter Control Block Diagram

Reference Number: 642245, Revision: 1.0 17

contain eight entries, it may be useful to know how often it contains six or more
entries (such as almost full) or when it contains 1 or more entries (for example,
“Not Empty”).
For Sapphire Rapids the .invert and the .edge_det bits follow the threshold
comparison in the sequence. If a user wishes to apply these bits to events that only
increment by 1 per cycle, the thresh must be set to 0x1.

• Inverting the threshold comparison: .invert - Changes the .thresh test
condition to “<”.

• Counting state transitions instead of per-cycle events: .edge_det - Rather
than accumulating the raw count each cycle (for events that can increment by 1 per
cycle), the register can capture transitions from no event to an event incoming (for
example the “Rising Edge”).

1.5 Uncore PMON - Typical Counter Logic
The following is a diagram of a standard PerfMon* counter. It illustrates the control
involved in managing the data register. The functionality includes how to start or stop
the register, reset it, indicate an overflow and capture the information sent from the
counter control block. The diagram contains bits from all levels in the counter control
hierarchy global, unit level as well as from the paired counter control register.

Details on how to perform counter management, including how to set up a monitoring
session and periodically sample the counters can be found in Section 1.10.4.

Figure 1-10. PerfMon* Counter Block Diagram

18 Reference Number: 642245, Revision: 1.0

• Telling the HW that the control register is set: the .en bit must be set to 1 to
enable counting. Once the counting has been enabled at all levels of the
performance monitoring hierarchy, the paired data register will begin to collect
events, see Section 1.10.4 for more information.

• Notification after X events: the .ov_en - Instead of manually stopping the
counters at intervals (often wall clock time) pre-determined by the software, the
hardware can be set to notify monitoring software when a set number of events has
occurred. The overflow enable bit is provided for just that purpose. See
Section 1.3.0.2 for more information on how to use this mechanism.

1.6 Sapphire Rapids Server Uncore PMON
The general performance monitoring capabilities of each box are outlined in the
following table.

The programming interface of the counter registers and control registers fall into three
address spaces:

• CHA, M2PCIe*, IIO, IIO Ring Port (IRP), PCU, PMON registers are accessed through
x86 RD/WRMSR instructions. See Table 1-9.

• IMC PMON registers are accessed through the MMIO address space. The M2M,
Intel® UPI, and the M3 Intel® UPI PMON registers are accessed through the PCI
device configuration space.

Irrespective of the address-space difference and with only minor exceptions, the bit-
granular layout of the control registers to program event code, unit mask (umask),
start or stop, and signal filtering via threshold or edge detect are the same.

Table 1-7. Per-Box Performance Monitoring Capabilities

Box Numbers Counters/
Box Packet Match or Mask Filters? Bit Widths

CHA 4 Y 48

IIO 4 (+1) per stack (+4 per
port)

N 48

IRP 2 N 48

IMC 4 N 48

Intel® UPI 4
(per link)

Y 48

M3 Intel® UPI 4
(per link)

N 48

M2M 4 Y 48

M2PCIe* 4 N 48

PCU 4 (+2) N 48

MDF 4 N 48

Reference Number: 642245, Revision: 1.0 19

1.7 Addressing Uncore PMON State
The following is a list of registers provided in Sapphire Rapids server uncore for
performance monitoring.

1.7.1 Uncore Performance Monitoring State in the MSR
Space
As mentioned previously, the PMON blocks in the uncore have some number of paired
counter or control (typically 4) registers, a unit status and unit control register. Many
units may offer extra PMON state such as event filters or fixed counters.

Find the CHA filter MSR for a single instance next.

There are a number of free-running counters in each IIO stack that collect counts for I/
O bandwidth for each port. The MSR addresses used to access that state are detailed in
the following tables.The addresses to the other free-running counters in other boxes
are calculated using a simple stride to the total number of boxes available.

Note: See each unit’s performance monitoring section for any related state not covered here.

1.8 Uncore Performance Monitoring State in the
PCICFG Space
As of Sapphire Rapids, there are a couple free-running counters and a fixed counter in
each Memory Controller (MC) to collect counts for read and write bandwidth.

Each such block will have a PCICFG B:D:F and a device ID. The registers are presented
as offsets to the PMON block’s base address.

Table 1-8. Global Performance Monitoring Registers (MSR)

MSR Addresses Descriptions

0x200E CHA Filter

Table 1-9. Free-running IIO Bandwidth “In” Counters in MSR Space

Port 7
BW In

Port 6
BW In

Port 5
BW In

Port 4
BW In

Port 3
BW In

Port 2
BW In

Port 1
BW In

Port 0
BW In

M2IOSF 0 0x3807 0x3806 0x3805 0x3804 0x3803 0x3802 0x3801 0x3800

Table 1-10. Free-running IIO Bandwidth “Out” Counters in MSR Space

Port 7
BW
Out

Port 6
BW In

Port 5
BW In

Port 4
BW In

Port 3
BW In

Port 2
BW In

Port 1
BW In

Port 0
BW In

M2IOSF 0 0x380F 0x380E 0x380D 0x380C 0x380B 0x380A 0x3809 0x3808

Table 1-11. IMC Fixed Counters

DCLK Ctr DCKL Ctr

0x22838 0x22854

20 Reference Number: 642245, Revision: 1.0

1.9 Introduction to Discovery - Self Describing
HW
In Sapphire Rapids the self-describing HW starts by reading through an MMIO page
worth of information, the SW can “discover” all the standard PMON registers in the
global block followed by all the standard PMON registers in each of the units.

The non-standard PMON registers will not be included. For example, free running
counters like the Mem/IIO BW counters, fixed counters like UCLK and Data Clock
(DCLK) and extra filtering and matching registers such as the ones in the CHA and
M2M. The SW tools that support these microarchitecture-specific extensions to the
standard monitoring capabilities, will have to hardcode access as they had before.

The discovery roughly follows the basic uncore PerfMon* composition as illustrated in
Figure 1-1.

The first step is for the SW to find the device header sponsoring the MMIO page worth
of the PMON discovery. To do this, the SW, while walking through the list of available
PCI headers, hast to look for either the PCI header labeled “PMON discovery” or the
Device Security Enhancements (DVSEC) substructure (for example, extended
capability) labeled “PMON discovery”. Once found, the SW can read the Base Address
Register (BAR) and page size to determine the bounds of the discovery information.

Table 1-12. IMC Free Running Counters

DCLK rpq_active_cycles wpq_active_cycles

0x22B0 0x2318 0x2320

Figure 1-11. Discovery - An Overview

Reference Number: 642245, Revision: 1.0 21

Note: An example code is provided in Section 1.10.1.

The following diagram illustrates the basic structure of PMON discovery within the page.
The SW has to first read the global discovery information from the offset 0x0, see
Figure 1-13.

In reading the global discovery, the SW can determine where the global control and
status registers are, how large each block of the unit discovery information is (block
stride), and the number of strides it will take to reach the end of the page (maximum
blocks).

1.9.1 Global Discovery
The global entries in the PMON discovery page are to inform the SW:

• How to address the global control (global control address).

• How to address the other registers that form the global block.

• What address space these registers are accessed through.

• How to read through the rest of the discovery page to find all the unit discoveries.

Figure 1-12. Discovery - Visual Guide for How the SW Strides the Page

Disc for Gbl
Domain

State

Disc for
PMON 1

Disc for
PMON 2

Disc for
PMON 3

Disc for
PMON 4

Disc for
PMON 5

Base + 0

Base + 1 * Block Stride

Base + 2 * Block Stride

Base + 3 * Block Stride

Base + 4 * Block Stride

Base + 5 * Block Stride

Base + 6 * Block Stride

Base + 7 * Block Stride

– Discovery for Global (for Domain) state at
BAR addr + 0

– PMON Discovery blocks placed at fixed
offsets.

– Offset must be power of 2.
– Offset must be >= largest PMON space in

Domain
– SW must stride through and read BAR’s

entire mem region.
– First QWORD @each stride will return 0 if

entry is invalid (useful for chops)

22 Reference Number: 642245, Revision: 1.0

The SW can then stride the rest of the MMIO page to identify each PMON block. Any
non-0 entry provides discovery information about a unit’s PMON block.

For i = 0; i <= MaxBlocks - 1; i += BlockStride; {

if page_of_discovery[i] != 0 process_unit_discovery()_

Figure 1-13. Discovery - Global State

Table 1-13. Global Discovery– Field Definitions

Fields Bits Descriptions

Global
node +0

Access type 63:61

The global state is accessed through:
00 - MSR space
01 - MMIO space

10 - PCICFG space

rsv 60:26 Reserved

Max blocks 25:16

The number of strides (0 for the global discovery node) the
SW will need to make through the address space to ensure
that all the unit discovery state from the domain has been

found.

Block stride 15:8

The length of each stride represents the amount of space
reserved for each block of discovery. From the base address,
the SW will need to stride through MaxBlocks-1 times from

the base address to identify all discovery state.

Type 7:0 Domain type

Global
node +1

Global control
address 63:0 Address to the global control register

Global
node +2

rsv 63:24 Reserved

Number block
status address
bits - counters

23:8

How many status bits are allocated to track overflows?
For cases there are more than 64 status bits, the SW should

divide this value by 64 to calculate the number of
contiguously addressed counter status registers.

Global Ctr status
address (offset) 7:0 8b offset from global control address to first counter status

register.

Reference Number: 642245, Revision: 1.0 23

1.9.2 Unit Discovery

Each of the blocks of the unit discovery information tells the SW:

• The address space these registers are accessed through.

• How to address the global control (unit control address).

• Given the unit control’s address, how to address the other standard registers in
each PMON block - Includes counter control or counter pairs, the unit control, and
the unit status registers.

• The “Unit ID” used to determine which of Sapphire Rapids event files is associated
with this PMON block.

Figure 1-14. Discovery - Unit State

Table 1-14. Unit Discovery– Field Definitions (Sheet 1 of 2)

Fields Bits Descriptions

Global
node
+0

Access type 63:61

The unit state is accessed through:
00 - MSR space
01 - MMIO space

10 - PCICFG space

rsv 60:40 Reserved

Unit status
address (offset) 39:32 8b offset from the unit control address to the first unit status

register.

Counter 0
address (offset) 31:24

8b offset from the unit control address to the first counter
register. Additional counters are contiguously spaced from

first.

Counter width 23:16 Number of bits in data register.

Counter control 0
address (offset) 15:8

8b offset from unit control address to the first counter control
register. Additional counter controls are contiguously spaced

from first.

Number control
registers 7:0 Number of counter control registers paired with data registers

in this unit.

Global
node
+1

Unit control
address 63:0 Address to this unit control register.

24 Reference Number: 642245, Revision: 1.0

1.10 Guidance for the SW

1.10.1 Guidance on Finding PMON Discovery and Reading
It
The following details the code to find the device sponsoring PMON discovery. It also
shows how to address the MMIO page worth of discovery, traverse through it and find
all the PMON registers.

/* Capability ID for discovery table device */
#define UNCORE_EXT_CAP_ID_DISCOVERY 0x23
/* DVSEC offset */
#define UNCORE_DISCOVERY_DVSEC_OFFSET 0x8
/* mask of DVSEC_ID */
#define UNCORE_DISCOVERY_DVSEC_ID_MASK 0xffff
/* PMON discovery entry type ID */
#define UNCORE_DISCOVERY_DVSEC_ID_PMON 0x1
/* mask of BIR */
#define UNCORE_DISCOVERY_DVSEC_BIR_MASK 0x7
/* discovery table size */
#define UNCORE_DISCOVERY_MAP_SIZE 0x80000

struct uncore_global_discovery {
union {

u64 table1;
struct {

u64 type : 8,
stride : 8,
max_units : 10,
__reserved_1 : 36,
access_type : 2;

};
};
union {

Global
node
+2

rsv 63:48 Reserved

Global status
position 47:32 16b field to tell the SW which bit in the global status belongs

to the PMON block.

Unit ID 31:16

Which number of this unit type?
For cases where there are more than one instance of a

particular unit, this identifies the specific PMON block for the
unit type.

For example, CHA #4 or IMC PMON block #2

Unit type 15:0

What kind of unit is the PMON block associated with?
Each unit of a unit type will offer the same event list. Each
unit of a unit type will offer the same uarch specific PMON

HW.

Table 1-14. Unit Discovery– Field Definitions (Sheet 2 of 2)

Fields Bits Descriptions

Reference Number: 642245, Revision: 1.0 25

u64 table2;
u64 global_ctl;

};
union {

u64 table3;
struct {
u64 status_offset : 8,

num_status : 16,
__reserved_2 : 40;

};
};

};

struct uncore_unit_discovery {
union {

u64 table1;
struct {
u64 num_regs : 8,

ctl_offset : 8,
bit_width : 8,
ctr_offset : 8,
status_offset : 8,
__reserved_1 : 22,
access_type : 2;

};
};
union {

u64 table2;
u64 box_ctl;

};
union {

u64 table3;
struct {

u64 box_type : 16,
box_id : 16,
__reserved_2 : 32;

};
};

};

/* Go through the entire PCI devices tree */
while ((dev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, dev)) !=
NULL) {

/* Walk the Extended Capability structures looking for a DVSEC
structure with unique capability ID 0x23 */

while ((dvsec = pci_find_next_ext_capability(dev, dvsec,
UNCORE_EXT_CAP_ID_DISCOVERY))) {

26 Reference Number: 642245, Revision: 1.0

/* read the DVSEC_ID (15:0) */
pci_read_config_dword(dev, dvsec +

UNCORE_DISCOVERY_DVSEC_OFFSET, &val);
entry_id = val & UNCORE_DISCOVERY_DVSEC_ID_MASK;

/* check if it is PMON discovery entry */
if (entry_id == UNCORE_DISCOVERY_DVSEC_ID_PMON) {

/* read BIR value (2:0) */
pci_read_config_dword(dev, dvsec +

UNCORE_DISCOVERY_DVSEC_OFFSET + 4, &bir);
bir = bir & UNCORE_DISCOVERY_DVSEC_BIR_MASK;

/* calculate the BAR offset of global discovery table
*/

bar_offset = 0x10 + (bir * 4);

/* read the BAR address of global discovery table */
pci_read_config_dword(dev, bar_offset, &pci_dword);

/* Map whole discovery table */
addr = pci_dword & ~(PAGE_SIZE - 1);
io_addr = ioremap(addr, UNCORE_DISCOVERY_MAP_SIZE);

/* Read Global Discovery table */
memcpy_fromio(&global, io_addr, sizeof(struct

uncore_global_discovery));

/* Read Unit Discovery table one by one */
for (i = 0; i < global.max_units; i++) {

memcpy_fromio(&unit, io_addr + (i + 1) *
(global.stride * 8), sizeof(struct uncore_unit_discovery));

/* parse the unit discovery table here*/
}

}
}

}

1.10.2 Guidance on Finding the Package’s Bus Number
for the Uncore PMON Registers in PCICFG Space
The PCI-based uncore units in Sapphire Rapids can be found using the bus, the device,
and the functions numbers. However, the “bus no” has to be found dynamically in each
package. The code is embedded next.

Reference Number: 642245, Revision: 1.0 27

First, for each package, it is necessary to read the node ID offset in the Ubox. That read
needs to match the Group Identifier (GID) offset of the Ubox in a specific pattern to get
the “bus no” for the package. This “bus no” can then be used with the given the
Device:Function (D:F) listed with each box’s counters that are accessed through the
PCICFG space.

ED: The one undefined piece in the following code is PCI_Read_Ulong, a function that
simply reads the value from the PCI address. This function, or the ones similar to it,
can be found in a more general PCI library (the composition of which is OS dependent).

Unfortunately, a link to a suitable version of the library was not readily available. The
following are reference links to a comparable open source version of the library.

https://github.com/opcm/pcm/blob/master/ pci.h and pci.cpp

#define DRV_IS_PCI_VENDOR_ID_INTEL 0x8086
#define VENDOR_ID_MASK 0x0000FFFF
#define DEVICE_ID_MASK 0xFFFF00000
#define DEVICE_ID_BITSHIFT 16

#define PCI_ENABLE 0x80000000
#define FORM_PCI_ADDR(bus,dev,fun,off) (((PCI_ENABLE)) | \

 ((bus & 0xFF) << 16)| \
 ((dev & 0x1F) << 11)| \
 ((fun & 0x07) << 8) | \
 ((off & 0xFF) << 0))

#define SPR_SERVER_SOCKETID_UBOX_DID 0x3250

//the below LNID and GID applies to Sapphire Rapids Server
#define UNC_SOCKETID_UBOX_LNID_OFFSET 0xC0
#define UNC_SOCKETID_UBOX_GID_OFFSET 0xD4

for (bus_no = 0; bus_no < 256; bus_no++) {
 for (device_no = 0; device_no < 32; device_no++) {
 for (function_no = 0; function_no < 8; function_no++) {

 // find bus, device, and function number for socket ID UBOX device
 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no, 0);
 value = PCI_Read_Ulong(pci_address);

 vendor_id = value & VENDOR_ID_MASK;
 device_id = (value & DEVICE_ID_MASK) >> DEVICE_ID_BITSHIFT;

 if (vendor_id != DRV_IS_PCI_VENDOR_ID_INTEL) {
 continue;
 }
 if (device_id == SPR_SERVER_SOCKETID_UBOX_DID) {
 // first get node id for the local socket

https://github.com/opcm/pcm/blob/master/ pci.h and pci.cpp

28 Reference Number: 642245, Revision: 1.0

 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no,
 UNC_SOCKETID_UBOX_LNID_OFFSET);
 gid = PCI_Read_Ulong(pci_address) & 0x00000007;

 // Get the node id mapping register:
 // Basic idea is to read the Node ID Mapping Register (below)
 // and match one of the nodes with gid that we read above
 // from the Node ID configuration register (above).
 // Every three bits in the Node ID Mapping Register maps to a
 // particular node (or package). Bits 2:0 maps to package 0,
 // bits 5:3 maps to package 1, and so on. Thus, we have to
 // parse every triplet of bits to find the match.

 pci_address = FORM_PCI_ADDR(bus_no, device_no, function_no,
 UNC_SOCKETID_UBOX_GID_OFFSET);
 mapping = PCI_Read_Ulong(pci_address);

for (i = 0; i < 8; i++){
 if (nodeid == ((mapping >> (3 * i)) & 0x7)) {

gid = i;
break;

 }
}

UNC_UBOX_package_to_bus_map[gid] = bus_no;
}

 }
 }

}

1.10.3 Guidance on Resolving Addresses for Uncore
PMON Registers in MMIO Space
The MMIO-based uncore units in Sapphire Rapids can be found by taking the Device ID
and looking up the BAR (base address offset) that governs that unit’s registers. For
Sapphire Rapids, the BAR lookup is a two-step process as outlined next.

Once the base address has been resolved, simply add the published offsets to reference
the PMON registers.

/* MMIO_BASE found at Bus U0, Device 0, Function 1, offset D0h. */
#define SPR_X_IMC_MMIO_BASE_OFFSET 0xd0
#define SPR_X_IMC_MMIO_BASE_MASK 0x1FFFFFFF
/* MEM0_BAR found at Bus U0, Device 0, Function 1, offset D8h. */
#define SPR_X_IMC_MMIO_MEM0_OFFSET 0xd8
#define SPR_X_IMC_MMIO_MEM_STRIDE 0xd04
#define SPR_X_IMC_MMIO_MEM_MASK 0x7FF
/*

Reference Number: 642245, Revision: 1.0 29

* Each IMC has two channels.
* The offset starts from 0x22800 with stride 0x8000
*/
#define SPR_IMC_MMIO_CHN_OFFSET 0x22800
#define SPR_IMC_MMIO_CHN_STRIDE 0x8000
/* IMC MMIO size*/
#define SPR_X_IMC_MMIO_SIZE 0x4000

/*
* pkg_id: Socket id
* imc_idx: The IMC index
* channel_idx: The channel index
*/
Void *map_imc_pmon(int pkg_id, int imc_idx, int channel_idx)
{

struct pci_dev *pdev = NULL;
resource_size_t addr;
u32 pci_dword;
void *io_addr;
int mem_offset;

/*
* Device ID of Bus U0, Device 0, Function 1 is 0x3251 */
* Get its pdev on the specific socket.

*/
while(1){

pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3251, pdev);
 if ((!pdev) || (pdev->bus ==
UNC_UBOX_package_to_bus_map[pkg_id]))
 break;

 }
if (!pdev)

return NULL;

/* read MEMn addr (51:23) from MMIO_BASE register */
pci_read_config_dword(pdev, SPR_IMC_MMIO_BASE_OFFSET, &pci_dword);
addr = (pci_dword & SPR_IMC_MMIO_BASE_MASK) << 23;

/* read MEMn addr (22:12) from MEMn_BAR register */
 mem_offset = SPR_IMC_MMIO_MEM0_OFFSET + mem_idx *

SPR_IMC_MMIO_MEM_STRIDE;
pci_read_config_dword(pdev, mem_offset, &pci_dword);
addr |= (pci_dword & SPR_IMC_MMIO_MEM_MASK) << 12;

/* IMC PMON registers start from PMONUNITCTRL */
addr += SPR_IMC_MMIO_CHN_OFFSET + channel_idx *

SPR_IMC_MMIO_CHN_STRIDE;

30 Reference Number: 642245, Revision: 1.0

/* map the IMC PMON registers */
io_addr = ioremap(addr, SPR_IMC_MMIO_SIZE);

return io_addr;

}

1.10.4 Setting up a Monitoring Session
On the HW reset, all the counters are disabled. The enabling is hierarchical, so the
following steps (which include programming the event control registers and enabling
the counters to begin collecting events) must be taken to set up a monitoring session.
Section 1.10.5 covers the steps to stop or re-start counter registers during a
monitoring session.

A bug with the .rst logic. was pointed out due to clock gating, some of the boxes
require that the counter level enable bits must be set before they can be reset. This
means all these steps have to change and there is almost no possibility of two software
entities using their own sampling intervals.

Global Settings in the UBox: (These are necessary for U-Box monitoring).

1. Freeze all the uncore counters by setting U_MSR_PMON_GLOBAL_CTL.frz_all to 1
OR if the box level freezes the control preferred:

2. Freeze the box counters while setting up the monitoring session. For example, set
Cn_MSR_PMON_BOX_CTL.frz to 1.

3. Select the event to monitor if the event control register has not been programmed:

a. Program the .ev_sel and .umask bits in the control register with the encoding
necessary to capture the requested event along with any signal conditioning bits
(.thresh/.edge_det/.invert) used to qualify the event.

Back to the box level:

4. Reset the counters in each box to ensure no stale values have been acquired from
previous sessions. Resetting the control registers, particularly those that will not be
used, is also recommended if for no other reason than to prevent errant overflows.
To reset both the counters and control registers write the following registers:

Note: This is based on the idea that .unfrz_all is set to 1 during chip the bring up such that
the UBox global control will no longer need to be touched and can be hidden from
customers.

a. For each CHAx, set Cn_MSR_PMON_UNIT_CTL[9:8] to 0x300
b. For each Modular Die Fabric (MDF)x, set Cn_MSR_PMON_UNIT_CTL[9:8] to

0x300
c. For each DRAM Channel, set MCn_CHy_PCI_PMON_UNIT_CTL[9:8] to 0x300
d. Set PCU_MSR_PMON_UNIT_CTL[9:8] to 0x300
e. For each Intel® UPI Link, set M3_Ly_PCI_PMON_UNIT_CTL[9:8] to 0x300
f. For each Intel® UPI Link, set UPI_Ly_PCI_PMON_UNIT_CTL[9:8] to 0x300
g. For each IIO stack, set M2n_PCI_PMON_UNIT_CTL[9:8] to 0x300
h. For each IIO stack, set IIOn_MSR_PMON_UNIT_CTL[9:8] to 0x300
i. For each IIO stack, set IRPn_MSR_PMON_UNIT_CTL[9:8] to 0x300

Reference Number: 642245, Revision: 1.0 31

5. Select how to gather data.

a. If polling: Skip to f.
b. If sampling: To set up a sample interval, the software can preprogram the data

register with a value of (2^[register bit width - up to 48] - sample interval
length). Doing so allows software, through use of the PMI mechanism, to be
notified when the number of events in the sample have been captured.
Capturing a performance monitoring sample every “X cycles” (the fixed counter
in the UBox counts uncore clock cycles) is a common use of this mechanism.
For example, to stop counting and receive notification when the 1,000,000th
data flit is transmitted from Intel® UPI on link 0.

— Set UPI_L0_PCI_PMON_CTR1 to (2^48- 1000)
— Set UPI_L0_PCI_PMON_CTL1.ev_sel to 0x2
— Set UPI_L0_PCI_PMON_CTL1.umask to 0xF
— Set U_MSR_PMON_GLOBAL_CTL.pmi_core_sel to which core the

monitoring thread is executing on
c. Enable counting at the global level by setting the

U_MSR_PMON_GLOBAL_CTL.frz bit to 0. OR
6. Enable counting at the box level by unfreezing the counters in each box. For

example, set Cn_MSR_PMON_BOX_CTL.frz to 0

And with that, the counting will begin.

1.10.5 Reading the Sample Interval
The software can poll the counters whenever it chooses, or wait to be notified that a
counter has overflowed (by receiving a PMI).

• Polling: Before reading, it is recommended that the software freezes the counters
at either the global level (U_MSR_PMON_GLOBAL_CTL.frz_all) or in each box with
active counters (by setting *_PMON_UNIT_CTL.frz to 1). After reading the event
counts from the counter registers, the monitoring agent can choose to reset the
event counts to avoid an event-count wrap-around; or resume the counter register
without resetting their values. The latter choice will require the monitoring agent to
check and adjust for potential wrap-around situations.

• Frozen counters: If the software sets the counters to freeze on overflow and
sends notification when it happens, the next question is: Who caused the freeze?

The overflow bits are stored hierarchically within the Sapphire Rapids uncore. First, the
software hast to read the U_MSR_PMON_GLOBAL_STATUS.ov_* bits to determine
which boxes sent an overflow. Then read that box *_PMON_GLOBAL_STATUS.ov field to
find the overflowing counter.

Note: More than one counter may overflow at any given time. Certain boxes may have more
than one PMON block (For example, the IMC has a PMON block in each channel). It may
be necessary to read all STATUS registers in the box to determine which counter
overflowed.

32 Reference Number: 642245, Revision: 1.0

1.10.6 Enabling a New Sample Interval from Frozen
Counters

• Clear all uncore counters: For each box in which counting occurred, set
*_PMON_BOX_CTL.rst_ctrs to 1. The global reset signal is broken and not to be
fixed.

• Clear all overflow bits: This includes clearing
U_MSR_PMON_GLOBAL_STATUS.ov_* as well as any *_BOX_STATUS registers that
have their overflow bits set.

— For example, if the counter 3 in Intel® UPI Link 1 overflowed, the software has
to set UPI_L1_PCI_PMON_BOX_STATUS.ov[3] to 1 to clear the overflow.

• Create the next sample: Reinitialize the sample by setting the monitoring data
register to (2^48 - sample_interval). Or set up a new sample interval as outlined in
Section 1.10.4.

• Re-enable counting: Set U_MSR_PMON_GLOBAL_CTL.frz_all to 0.

Reference Number: 642245, Revision: 1.0 33

2 Sapphire Rapids Uncore
Performance Monitoring

2.1 Mesh Performance Monitoring
For all the boxes that must communicate with the mesh, there are a common set of
events to capture various kinds of information about traffic flowing through their
connection to the mesh. The same encodings are used to request the mesh events in
each box.

This common mesh stop event list is available in the CHA, M2PCIe* and M3 Intel® UPI.

Note: The common mesh stop events for the M2M would have an additional bit enabled for its
programming. The event list is available in the M2M section.

Figure 2-1. Uncore PMON Components and Hierarchy

34 Reference Number: 642245, Revision: 1.0

2.1.1 Mesh Performance Monitoring Events
There are events to track information related to all traffic passing through each box
connection to the mesh.

• Credit tracking and stalls due to lack of credits

• Credits are required for each row (for example, transgress) destination through
either side of the mesh stop for each path (Address [AD] and Block [BL])

• Mesh stop events

• To track the ingress or egress traffic, mesh utilization (broken down by direction
and ring type), bypass statistics and more

• Bounce and starvation events

• Events to help recognize when the mesh is becoming or is saturated.

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.2 CHA Performance Monitoring
The Last Level Cache (LLC) coherence engine and CHA merges the caching agent and
Home Agent (HA) responsibilities of the chip into a single block. In its capacity as a
caching agent, the CHA manages the interface between the core, the IIO devices, and
the LLC. In its capacity, as a HA, the CHA manages the interface between the LLC and
the rest of the Intel® UPI coherent fabric as well as the on die memory controller.

All core and IIO DMA transactions that access the LLC are directed from their source to
a CHA via the mesh interconnect. The CHA is responsible for managing data delivery
from the LLC to the requester and maintaining coherence between the all the cores and
IIO devices within the socket that share the LLC. It is also responsible for generating
snoops and collecting snoop responses from the local cores when the MESIF protocol
requires it.

Similarly, all incoming traffic from remote sockets that maps to the socket’s local
memory are directed from the Intel® UPI links to a CHA via the mesh interconnect. The
CHA is responsible for managing the coherence across all sockets in the system for the
socket’s memory following the protocols defined in the Intel® UPI Specification. It
manages directory state for the local memory, conflicts, and memory ordering rules for
such requests.

In the process of maintaining the cache coherency within the socket, and across the
system in a multi-socket system, the CHA is the gate keeper for all Intel® UPI
messages that have addresses mapping to the socket’s memory, as well as the
originator of all Intel® UPI messages that originate from the cores within its socket
when attempts are made to access memory in another socket. It is responsible for
ensuring that all Intel® UPI messages that pass through the socket remain coherent.

The CHA can manage a large number of simultaneous requests in parallel, but in order
to maintain proper memory ordering it does ensure that whenever multiple incoming
requests to the same address are pending (whether they originated from a core or IIO
device within the socket or came in from another socket through one of the Intel® UPI
links) only one of those requests is being processed at a time.

Reference Number: 642245, Revision: 1.0 35

Since the LLC cache is not inclusive of the Intel® architecture cores internal caches, the
total cache capacity of the socket is much larger than the LLC capacity and each CHA is
responsible for monitoring a portion of that available Intel® architecture core cache
capacity for the purpose of maintaining coherence between the Intel® architecture core
caches and the rest of the Intel® UPI coherent fabric.

Every physical memory address in the system is uniquely associated with a single CHA
instance, via a proprietary hashing algorithm, that is designed to keep the distribution
of traffic across the CHA instances relatively uniform for a wide range of possible
address patterns. This enables the individual CHA instances to operate independently,
each managing its slice of the physical address space without any CHA in a given socket
ever needing to communicate with the other CHAs in that same socket.

2.2.1 CHA Performance Monitoring Overview
Each of the CHAs in the Sapphire Rapids uncore supports event monitoring through
four 48-bit wide counters (Cn_MSR_PMON_CTR{3:0}). With but a small number of
exceptions, each of these counters can be programmed (Cn_MSR_PMON_CTL{3:0})
for any available event.

Note: Occupancy events can only be measured in the counter 0.

2.2.1.1 Special Note on CHA Occupancy Events
Although only counter 0 supports occupancy events, it is possible to program counters
1 to 3 to monitor the same occupancy event by selecting the
“OCCUPANCY_COUNTER0” event code on counters 1 to 3.

This allows:

• The thresholding on all four counters: While no more than one queue can be
monitored at a time, it is possible to setup different queue occupancy thresholds on
each of the four counters. For example, if one wanted to monitor the Interrupt
Request (IRQ), one could setup thresholds of 1, 7, 14, and 18 to get a picture of
the time spent at different occupancies in the IRQ.

• Average latency and average occupancy: It can be useful to monitor the
average occupancy in a queue as well as the average number of items in the
queue. An option is to program the counter 0 to accumulate the occupancy, counter
1 with the queue’s allocations event, and counter 2 with the
OCCUPANCY_COUNTER0 event, and a threshold of 1. The latency can then be
calculated by counter 0, counter 1, and occupancy by counter 0, counter 2.

2.2.2 Additional CHA Performance Monitoring

2.2.2.1 CHA PMON Counter Control - Difference from the Baseline
The CHA performance monitoring control registers provide a small amount of additional
functionality. The following table defines those cases.

36 Reference Number: 642245, Revision: 1.0

2.2.2.2 CHA Filter Registers (Cn_MSR_PMON_BOX_FILTER0)
Any of the CHA events may be filtered by thread and core-ID. To do so, the control
register .tid_en bit must be set to 1 and the .tid field in the FILTER register filled out.
UPI_CREDITS may be filtered by link.

Figure 2-2. CHA Counter Control Register for Sapphire Rapids Server

Thresh Inv Fr_
ovf

ED Event Select

63 55 31 23 21 17 7

Extended UmaskRsv

0

RsvRsv Rsv

T
id

_en

UmaskRst

16

Table 2-1. Cn_MSR_PMON_CTL{3-0} Register – Field Definitions

Fields Bits Attributes HW Reset Values Description

tid_en 16 RW-V 0 TID filter enable

Figure 2-3. CHA PMON Filter Register

Table 2-2. Cn_MSR_PMON_BOX_FILTER Register – Field Definitions

Fields Bits Attributes HW Reset Values Description

rsv 31:1
0 RV 0

Reserved
The SW must set to 0, or else behavior is

undefined

tid 9:0 0 0

[9:3] Core-ID
[2:0] Thread 3-0

When the .tid_en is 0; the specified counter will
count all events.

To filter on a specific logical core, set the Core-
ID to the desired core number and set the TID

field to the desired thread.
To filter on a source or destination other than
an Intel® architecture core, set core-ID to one

of the following and set TID to 0

Reference Number: 642245, Revision: 1.0 37

2.2.3 CHA Performance Monitoring Events
The performance monitoring events within the CHA include all events internal to the
LLC and HA as well as the events which track mesh related activity at the CHA and the
core mesh stops, see Section 2.1.1 for the available mesh stop events.

The CHA performance monitoring events can be used to track the LLC access rates, the
LLC hit or miss rates, the LLC eviction and fill rates, the HA access rates, the HA
conflicts, and to detect evidence of back pressure on the internal CHA pipelines. In
addition, the CHA has performance monitoring events for tracking the MESIF state
transitions that occur as a result of data sharing across sockets in a multi-socket
system.

Every event in the CHA is from the point of view of the CHA and it is not associated with
any specific core since all cores in the socket send their LLC transactions to all CHAs in
the socket. However, the Sapphire Rapids CHA provides a thread identification field in
the Cn_MSR_PMON_BOX_FILTER register, which can be applied to the CHA events, to
obtain the interactions between specific cores and threads.

There are separate sets of counters for each CHA instance. For any event, to get an
aggregate count of that event for the entire LLC, the counts across the CHA instances
must be added together. The counts can be averaged across the CHA instances to get a
view of the typical count of an event from the perspective of the individual CHAs.
Individual per-CHA deviations from the average can be used to identify hot-spotting
across the CHAs or other evidences of non-uniformity in LLC behavior across the CHAs.
Such hot-spotting is rare, though a repetitive polling on a fixed physical address is one
obvious example of a case where an analysis of the deviations across the CHAs would
indicate hot-spotting.

2.2.3.1 Acronyms Frequently Used in CHA Events
The Rings:

• AD ring: The core R/W requests and Intel® UPI snoops. The AD ring carries Intel®
UPI requests and snoop responses from the C to Intel® UPI.

• Block or Data (BL) ring: The data is equal to 2 transfers for one cache line.

• Acknowledge (AK) ring: It acknowledges Intel® UPI to CHA and CHA to core. It
carries snoop responses from the core to the CHA.

• Invalidate (IV) ring: The CHA snoop requests of core caches.

2.2.3.2 Key Queues
• IRQ: Requests from Intel® architecture cores

• IPQ: Ingress Probe Queue on AD Ring. They are remote socket snoops sent from
Intel® UPI LL.

• ISMQ: Ingress Subsequent Messages (response queue). They are associated with
message responses to ingress requests (For example, data responses, Intel® UPI
completion messages, core snoop response messages and the “GO” reset queue).

• PRQ: Requests from the IIO.

• RRQ: Remote Request Queue. They are remote socket read requests, from Intel®

UPI to the local HA.

• WBQ: Writeback Queue. They are remote socket write requests, from UP to the
local HA.

38 Reference Number: 642245, Revision: 1.0

• TOR: Table Of Requests. They are the tracks pending CHA transactions.

• RxC (also known as Ingress [IGR]) /TxC (also known as Egress [EGR]):
They are the ingress requests from the cores (via Common Mesh Stop [CMS]), and
the egress requests headed for the mesh (via CMS) queues.

2.2.4 CHA Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the CHA box.

CLOCKTICKS

• Title:

• Category: Clocktick events

• Event Code: 0x1

• Maximum Increments per Cycle (Inc/Cyc): 1

• Register Restrictions: 0-3

• Definition:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.3 IMC Performance Monitoring
The Sapphire Rapids IMC provides the interface to the DRAM and communicates to the
rest of the uncore through the M2M block.

The memory controller also provides a variety of RAS features such as ECC, memory
access retry, memory scrubbing, thermal throttling, mirroring, and rank sparing.

2.3.1 Functional Overview
The memory controller communicates to the DRAM, translating R/W commands into
specific memory commands and schedules them with respect to memory timing. The
other main function of the memory controller is advanced ECC support.

2.3.2 IMC Performance Monitoring Overview
The IMC supports event monitoring through four 48-bit wide counters
(MC_CHy_PCI_PMON_CTR{3:0}) and one fixed counter
(MC_CHy_PCI_PMON_FIXED_CTR) for each DRAM channel (of which there are 2 in
Sapphire Rapids) the MC is attached to. Each of these counters can be programmed
(MC_CHy_PCI_PMON_CTL{3:0}) to capture any MC event.

Reference Number: 642245, Revision: 1.0 39

2.3.3 Additional IMC Performance Monitoring
Following is a counter that always tracks the number of DRAM clocks in the IMC. The
DCKL never changes frequency (on a given system), and therefore is a good measure
of wall clock (unlike the uncore clock, which can change frequency based on system
load).

.

There are a few free-running counters, providing information highly valuable to a wide
array of customers, in each IMC that collect counts for cumulative R/W bandwidth
across all channels.

“Free Running” counters cannot be changed by the SW operating in a normal
environment. The SW cannot write them, stop them, nor can it reset the values.

Note: The counting will be suspended when the MC is powered down.

Figure 2-4. PMON Control Register for DCLK

31 02022 ov_en

enable

reset

19

Table 2-3. MC_CHy_PCI_PMON_FIXED_CTL Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

ig 31:23 RV 0 Ignored

en 22 RW-V 0 Local counter enable

ig 21 RV 0 Ignored

ov_en 20 RW-V 0
When this bit is asserted and the

corresponding counter overflows, a PMI
exception is sent to the UBox.

rst 19 WO 0 When set to 1, the corresponding
counter will be cleared to 0.

ig 18:0 RV 0 Ignored

Table 2-4. MC_CHy_PCI_PMON_CTR{FIXED,3-0} Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

ig 63:48 RV 0 Ignored

event_count 47:0 RW-V 0 48-bit performance event counter

40 Reference Number: 642245, Revision: 1.0

DDR CYCLES: There is one register per stack to track the number of DDR cycles as
measured by the MC.

WPQ ACTIVE CYCLES: They count the number of cycles the WPQ was used over the
total number of DDR cycles.

RPQ ACTIVE CYCLES: They count the number of cycles the RPQ was utilized over the
total number of DDR cycles.

2.3.4 IMC Performance Monitoring Events
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the IMC Box.

CLOCKTICKS

• Title:

• Category: DCLK events

• Event Code: 0x1

• Maximum Inc/Cyc: 1

• Register Restrictions: 0-3

• Definition:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

Table 2-5. MC_MMIO_PMON_FRCTR_DCLK Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

ig 63:48 RV 0 Ignored

event_count 47:0 RO-V 0 48-bit running count of DDR clocks
captured in MC

Table 2-6. MC_MMIO_PMON_FRCTR_WPQ_ACTIVE Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

ig 63:48 RV 0 Ignored

event_count 47:0 RO-V 0 48-bit running count of data bytes
read from the attached DIMM

Table 2-7. MC_MMIO_PMON_FRCTR_RPQ_ACTIVE Register – Field Definitions

Fields Bits Attributes HW Reset Values Description

ig 63:48 RV 0 Ignored

event_count 47:0 RO-V 0 48-bit running count of data bytes read
from the attached DIMM

Reference Number: 642245, Revision: 1.0 41

2.4 IIO Performance Monitoring
The IIO stacks are responsible for managing the traffic between the PCI Express*
(PCIe*) domain and the mesh domain. The IIO PMON block is situated near the IIO
stacks traffic controller capturing the traffic controller as well as the PCIe* root port
information. The traffic controller is responsible for translating the traffic coming in
from the mesh (through M2IAL) and processed by the IRP into the PCIe* domain to the
I/O agents, such as CBDMA, DMA and PCIe*.

2.4.1 IIO Performance Monitoring Overview
Each IIO Box, which sits near the IIO stack’s traffic controller, supports event
monitoring through four 48b-wide counters (IIO{5-0}_MSR_PMON_CTR/CTL{3:0}).
Each of these counters can be programmed to count any IIO event.

2.4.2 Additional IIO Performance Monitoring

2.4.2.1 IIO PMON Counter Control - Difference from Baseline
IIO performance monitoring control registers provide a small amount of additional
functionality. The following table defines those cases.

Figure 2-5. IIO Counter Control Register for Sapphire Rapids Server

Thresh Inv Fr_
ovf

ED Event Select

63 51 35 23 21 17 7

Rsv

0

RsvRsv Rsv UmaskRstfc_mask ch_mask Rsv

48

Table 2-8. IIOn_MSR_PMON_CTL{3-0} Register – Field Definitions (Sheet 1 of 2)

Fields Bits Attributes HW Reset Values Descriptions

rsv 63:51 RV 0
Reserved

The SW must write to 0 else behavior is
undefined.

42 Reference Number: 642245, Revision: 1.0

There are a number of free-running counters, providing information highly valuable to a
wide array of customers, in each IIO Stack that collect counts for I/O bandwidth for
each port.

“Free Running” counters cannot be changed by SW operating in a normal environment.
The SW cannot write them, cannot stop them and cannot reset the values.

Note: Counting will be suspended when the IIO stack is powered down. There is one register
per stack to track the number of IIO cycles.

Inbound (PCIe* -> CPU) bandwidth: Counts DWs (4 bytes) of data, associated
with writes and completions, transmitted from the I/O stack to the traffic controller.

2.4.3 IIO Performance Monitoring Events
The I/O provides events to track information related to all the traffic passing through its
boundaries.

• Bandwidth consumed and transactions processed broken down by the transaction
type

• Per-port utilization

• Link power states

• Completion buffer tracking

fc_mask 50:48 RW-V 0

FC Mask - applicable to certain events (Filter
- fc)

0 - Posted requests
1 - Non-posted requests

2 - Completions

ch_mask 47:36 RW-V 0 Channel mask filter - applicable to certain
events (Filter - channel)

thresh 35:24 RW-V 0 Threshold used in counter comparison

Table 2-8. IIOn_MSR_PMON_CTL{3-0} Register – Field Definitions (Sheet 2 of 2)

Fields Bits Attributes HW Reset Values Descriptions

Table 2-9. IIO_MSR_PMON_FRCTR_IOCLK Register – Field Definitions

Fields Bits Attributes HW Reset
Values Descriptions

ig 63:48 RV 0 Ignored

event_count 47:0 RO-V 0 48-bit running count of I/O clocks

Table 2-10. IIO_MSR_PMON_FRCTR_BW_IN_P{0-7} Register – Field Definitions

Fields Bits Attributes HW Reset
Values Descriptions

ig 63:36 RV 0 Ignored

event_count 47:0 RO-V 0 48-bit running count of data bytes transmitted
from link for this port.

Reference Number: 642245, Revision: 1.0 43

2.4.4 IIO Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the IIO Box.

CLOCKTICKS

• Title:

• Category: CLOCK events

• Event Code: 0x1

• Maximum Inc/Cyc: 1

• Register Restrictions: 0-3

• Definition:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.5 IRP Performance Monitoring
The IRP is responsible for maintaining coherency for the IIO traffic targeting coherent
memory.

2.5.1 IRP Performance Monitoring Overview
Each IRP box supports event monitoring through two 48b-wide counters (IRP{5-
0}_MSR_PMON_CTR/CTL{1:0}). Each of these counters can be programmed to count
any IRP event.

2.5.2 IRP Performance Monitoring Events
The IRP provides events to track information related to all the traffic passing through
its boundaries.

• Write cache occupancy

• Ingress or egress traffic - by ring type

• Stalls awaiting credit

• Fire and Forget (FAF) queue

2.5.3 IRP Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the IRP Box.

CLOCKTICKS

• Title:

• Category: CLOCK events

• Event Code: 0x1

• Maximum Inc/Cyc: 1

• Register Restrictions: 0-1

44 Reference Number: 642245, Revision: 1.0

• Definition:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.6 Intel® UPI Link Layer Performance
Monitoring
Sapphire Rapids uses a coherent interconnect for scaling to multiple sockets known as
Intel® UPI. Intel® UPI technology provides a cache coherent socket to socket external
communication interface between processors. The processor implements up to four
Intel® UPI links depending on the specific product.

 Intel® UPI is also used as a coherent communication interface between processors and
the OEM Extensible Node Controllers* (XNC*).

There are up to three Intel® UPI agents, each with its own mesh stop. These links can
be connected to a single destination (such as in a Downstream Port [DP]), or it can be
connected to two separate destinations (4s Ring or DP) or multiple destinations.
Therefore, it will be necessary to count Intel® UPI statistics for each agent separately.

The Intel® UPI module supports one Intel® UPI link (per mesh stop) and it is comprised
of the following layers for each Intel® UPI link:

• Physical Layer (PHY): The Intel® UPI PHY is a hardware layer that lies between
the PHY above it, and the physical wires that connect to other devices. The PHY is
further sub-divided into the logical and electrical sub-blocks.

• Link Layer: The Intel® UPI link layer bi-directionally converts between protocol
layer messages and the link layer flits, it passes them through shared buffers, and
manages the flow control information per virtual channel. The link layer also
detects errors and retransmits the packets on errors.

• Routing Layer: The routing layer is distributed among all agents that sends Intel®
UPI messages on the mesh (Intel® UPI, CHA, PCIe*, IMC). The Intel® UPI module
provides a routing function that determines the correct mesh stop from which to
forward a given packet.

• Protocol Layer: The Intel® UPI module does not implement the protocol Layer. A
protocol agent is a proxy for some entity which injects, generates, or services
Intel® UPI transactions, such as memory requests, interrupts, and so on.

— The protocol layer is implemented in the following modules:
• CHA
• PCIe*
• CA (Ubox)

— A CA in the CHA generates both requests and services snoops. A HA in the CHA
services requests, generates snoops, and resolves conflicts. The CHA will
sometimes behave as CA, sometimes as a HA, and sometimes it will behave as
both at the same time. The PCIe* module handles most I/O proxy
responsibilities.

— The Ubox handles internal configuration space and some other interrupt and
messaging flows. A HA acts as a proxy for the DRAM, while the PCIe* and Ubox
handle all the non-DRAM (NCB and NCS) requests.

Reference Number: 642245, Revision: 1.0 45

The Intel® UPI Link Layer is responsible for packetizing requests from the caching
agent on the way out to the system interface. The Intel® UPI link layer processes
information at a flit granularity.

A single Intel® UPI flit can pack up to three mesh packets in three slots. The Intel® UPI
link layer has the ability to transmit up to three mesh packets per cycle in each
direction. . It is not possible to monitor Rx and Tx flit information at the same time on
the same counter.

Note: Flit slots are not symmetric in their ability to relay flit traffic. Any analysis of Intel® UPI
BW must keep this in mind.

2.6.1 Intel® UPI Performance Monitoring Overview
Each Intel® UPI link supports event monitoring through four 48b-wide counters
(U_Ly_PCI_PMON_CTR/CTL{3:0}). Each of these four counters can be programmed to
count any Intel® UPI event.

2.6.2 Additional Intel® UPI Performance Monitoring

2.6.2.1 Intel® UPI Extra Registers - Companions to PMON HW
Intel® UPI box includes three registers that provide performance monitoring related
information outside of the normal PMON infrastructure.

• A register that provides the current Intel® UPI transfer rate

• A 32b-free running counter that counts the number of cycles when the Rx side of
the link is idle. It includes null cycles and cycles where the link is in L1 (for example
powered down).

• A 32b-free running counter that counts the number of cycles where the Rx side of
the link is in LLR.

Table 2-11. UPI_RATE_STATUS Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

rsv 31:3 RV 0
Reserved

The SW must write to 0, else behavior is
undefined.

UPI_rate 2:0 RO-V 11b
Intel® UPI rate

This reflects the current Intel® UPI rate setting
into the PLL.

Table 2-12. U_Ly_PCI_PMON_LINK_IDLE Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

event_count 31:0 RW-V 0 32-bit performance event counter

46 Reference Number: 642245, Revision: 1.0

2.6.3 Intel® UPI LL Performance Monitoring Events
The Intel® UPI link layer provides events to gather information on topics such as:

• Tracking incoming (mesh bound) outgoing (system bound) transactions.

2.6.4 Intel® LL Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the IRP Box.

CLOCKTICKS

• Title:

• Category: CLOCK events

• Event Code: 0x1

• Maximum Inc/Cyc: 1

• Register Restrictions: 0-3

• Definition: Counts the number of clocks in the Intel® UPI LL.

RxL_FLITS

• Title:

• Category: Flit events

• Event Code: 0x3

• Maximum Inc/Cyc: 3

• Register Restrictions: 0-3

• Definition: Shows legal flit time (hides impact of L0p and L0c).

Table 2-13. U_Ly_PCI_PMON_LINK_LLR Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

event_count 31:0 RW-V 0 32-bit performance event counter

Table 2-14. Unit Masks for RxL_FLITS

Extensions umask [15:8] Descriptions

SLOT0 bxxxxxxx1
Slot 0

Count Slot 0 - Other mask bits determine types of headers to
count.

SLOT1 bxxxxxx1x
Slot 1

Count Slot 1 - Other mask bits determine types of headers to
count.

SLOT2 bxxxxx1xx
Slot 2

Count Slot 2 - Other mask bits determine types of headers to
count.

Reference Number: 642245, Revision: 1.0 47

TxL_FLITS

• Title:

• Category: Flit events

• Event Code: 0x2

• Maximum Inc/Cyc: 3

• Register Restrictions: 0-3

• Definition: Shows legal flit time (hides impact of L0p and L0c).

DATA bxxxx1xxx

Data
Count data flits (which consume all slots), but how much to

count is based on slot 0-2 mask, so count can be 0 to 3,
depending on which slots are enabled for counting.

ALL_DATA b00001111 All data

LLCRD bxxx1xxxx
LLCRD not empty

Enables counting of LLCRD (with non-zero payload). This only
applies to slot 2 since LLCRD is only allowed in slot 2.

NULL bxx1xxxxx

Slot NULL or LLCRD empty
LLCRD with all zeros is treated as NULL.

Slot 1 is not treated as NULL if slot 0 is a dual slot.
This can apply to slot 0, 1, or 2.

ALL_NULL b00100111 Null flits received from any slot.

LLCTRL bx1xxxxxx
LLCTRL

Equivalent to an idle packet
Enables counting of slot 0 LLCTRL messages.

IDLE b01000111 Idle

PROTHDR b1xxxxxxx
Protocol header

Enables count of protocol headers in slot 0, 1, 2 (depending on
slot umask bits)

NON_DATA b10010111 All non data

Table 2-14. Unit Masks for RxL_FLITS

Extensions umask [15:8] Descriptions

Table 2-15. Unit Masks for TxL_FLITS

Extensions umasks [15:8] Descriptions

SLOT0 bxxxxxxx1
Slot 0

Count Slot 0 - Other mask bits determine types of
headers to count.

SLOT1 bxxxxxx1x
Slot 1

Count Slot 1 - Other mask bits determine types of
headers to count.

SLOT2 bxxxxx1xx
Slot 2

Count Slot 2 - Other mask bits determine types of
headers to count.

DATA bxxxx1xxx

Data
Count data flits (which consume all slots), but how

much to count is based on slot 0-2 mask, so count can
be 0-3 depending on which slots are enabled for

counting.

ALL_DATA b00001111 All data

48 Reference Number: 642245, Revision: 1.0

Note: The event list available under NDA will become public and available for download closer to the product
launch.

2.7 M2M Performance Monitoring
The M2M blocks manage the interface between the mesh (operating on both the mesh
and the SMI3 protocol) and the memory controllers. The M2M acts as intermediary
between the local CHA issuing memory transactions to its attached memory controller.
Commands from the M2M to the MC are serialized by a scheduler and only one can
cross the interface at a time.

2.7.1 M2M Performance Monitoring Overview
Each M2M box supports event monitoring through four 48b-wide counters
(M2Mn_PCI_PMON_CTR/CTL{3:0}). Each of these four counters can be programmed to
count almost any M2M event.

The M2M PMON also includes mask and match registers that allow a user to match
packets of traffic heading to the DRAM or heading to the mesh, according to various
standard packet fields such as message class, opcode, and so on.

2.7.2 M2M Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the M2M Box.

CLOCKTICKS

• Title:

• Category: Clockticks events

LLCRD bxxx1xxxx

LLCRD Not empty
Enables counting of LLCRD (with non-zero payload)

This only applies to slot 2 since LLCRD is only allowed
in slot 2

NULL bxx1xxxxx

Slot NULL or LLCRD empty
LLCRD with all zeros is treated as NULL. Slot 1 is not
treated as NULL if slot 0 is a dual slot. This can apply

to slot 0, 1, or 2.

ALL_NULL b00100111 Idle

LLCTRL bx1xxxxxx
LLCTRL

Equivalent to an idle packet
Enables counting of slot 0 LLCTRL messages.

IDLE b01000111

PROTHDR b1xxxxxxx
Protocol header

Enables count of protocol headers in slot 0,1,2
(depending on slot umask bits)

NON_DATA b10010111 Null flits transmitted to any slot

Table 2-15. Unit Masks for TxL_FLITS

Extensions umasks [15:8] Descriptions

Reference Number: 642245, Revision: 1.0 49

• Event Code: 0x01

• Maximum Inc/Cyc: 1

• Register Restrictions:

• Definition: Shows legal flit time (hides impact of L0p and L0c).

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.8 M2PCIe* Performance Monitoring
M2PCIe* blocks manage the interface between the mesh and each IIO stack.

2.8.1 M2PCIe* Performance Monitoring Overview
Each M2PCIe* box supports event monitoring through four 48b-wide counters
(M2n_M2PCIe*_PMON_CTR/CTL{3:0}). Each of these four counters can be
programmed to count almost any M2PCIe* event.

The M2PCIe* counters can increment by a maximum of 5b per cycle. Only the counter
0 can be used for tracking occupancy events.

2.8.2 M2PCIe* Performance Monitoring Events
They are mesh stop events to track the ingress or egress traffic and mesh utilization
(they are broken down by direction and ring type).

2.8.3 M2PCIe* Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the M2PCIe* Box.

CLOCKTICKS

• Title:

• Category: Clockticks events

• Event Code: 0x01

• Maximum Inc/Cyc: 1

• Register Restrictions:

• Definition:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.9 M3 Intel® UPI Performance Monitoring
M3 Intel® UPI is the interface between the mesh and the Intel® UPI link layer. It is
responsible for translating between the mesh protocol packets and the flits that are
used for transmitting data across the Intel® UPI interface. It performs credit checking
between the local Intel® UPI LL, the remote Intel® UPI LL and other agents on the local
mesh.

50 Reference Number: 642245, Revision: 1.0

The M3 Intel® UPI agent provides several functions:

• Interface between the mesh and Intel® UPI:

— One of the primary attributes of the mesh is its ability to convey Intel® UPI
semantics with no translation. For example, this architecture enables initiators
to communicate with a local HA in exactly the same way as a remote HA on
another 3rd Gen Intel® Xeon® Scalable Processor, previously codenamed Ice
Lake socket. With this philosophy, the M3 Intel® UPI block is lean and does very
little with regards to the Intel® UPI protocol aside from mirroring the request
between the mesh and the Intel® UPI interface.

• Intel® UPI routing:

— In order to optimize layout and latency, both full width Intel® UPI interfaces
share the same mesh stop. Therefore, an Intel® UPI packet might be received
on one interface and simply forwarded along on the other Intel® UPI interface.
The M3 Intel® UPI has sufficient routing logic to determine if a request, snoop
or response, is targeting the local socket or if it should be forwarded along to
the other interface. This routing remains isolated to M3 Intel® UPI and does not
impede traffic on the mesh.

• Intel® UPI home snoop protocol (with early snoop optimizations for DP):

— The M3 Intel® UPI agent implements a latency-reducing optimization for dual
sockets which issues snoops within the socket for incoming requests, as well as
a latency-reducing optimization to return data satisfying Direct2Core (D2C)
requests.

2.9.1 M3 Intel® UPI Performance Monitoring Overview
Each M3 Intel® UPI link supports event monitoring through three 48b-wide counters
(M3_Ly_PCI_PMON_CTR/CTL{2:0}). Each of these three counters can be programmed
to count almost any M3 Intel® UPI event. Only the counter 0 can be used for tracking
occupancy events. Only the counter 2 can be used to count mesh events.

2.9.2 M3 Intel® UPI Performance Monitoring Events
They are mesh stop events to track the ingress or egress traffic and mesh utilization
statistics (they are broken down by direction and ring type).

2.9.3 M3 Intel® UPI Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the M3 Intel® UPI box.

CLOCKTICKS

• Title:

• Category: Clockticks events

• Event Code: 0x01

• Maximum Inc/Cyc: 1

• Register Restrictions:

• Definition:

Reference Number: 642245, Revision: 1.0 51

Note: The event list available under NDA will become public and available for download closer
to the product launch.

2.10 PCU Performance Monitoring
The PCU is the primary power controller for the Sapphire Rapids die, it is responsible
for distributing power to core or uncore components and the thermal management. It
runs in the firmware on an internal micro-controller and coordinates the socket power
states.

The PCU algorithmically governs the P-state of the processor, the CPU Power State (C-
state) of the core and the package C-state of the socket. It enables the core to go to a
higher performance state “turbo mode” when the proper set of conditions are met.
Conversely, the PCU throttles the processor to a lower performance state when a
thermal violation occurs.

Through specific events, the OS and the PCU will either promote or demote the C-State
of each core by altering the voltage and frequency. The System Power State (S-state)
of all the sockets in the system is managed by the server legacy bridge in coordination
with all socket PCUs.

The PCU communicates to all the other units through multiple PMLink interfaces on-die
and message channel to access their registers. The OS and the BIOS communicate to
the PCU through standardized MSR registers and ACPI.

Note: The power management is not completely centralized. Many units employ their own
power saving features. Events that provide information about those features are
captured in the PMON blocks of those units. For example, Intel® UPI link power saving
states and memory CKE statistics are captured in the Intel® UPI PerfMon* and IMC
PerfMon* respectively.

2.10.1 PCU Performance Monitoring Overview
The uncore PCU supports event monitoring through four 48-bit wide counters
(PCU_MSR_PMON_CTR{3:0}). Each of these counters can be programmed
(PCU_MSR_PMON_CTL{3:0}) to monitor any PCU event. The PCU counters can
increment by a maximum of 5b per cycle.

Four extra 64-bit counters are provided by the PCU to track the P and C-State
residence. Although documented in this manual for reference, these counters exist
outside of the PMON infrastructure.

2.10.2 Additional PCU Performance Monitoring

2.10.2.1 PCU PMON Counter Control - Difference from Baseline
The following table defines the difference in the layout of the PCU performance monitor
control registers from the baseline presented all across the previous chapter.

52 Reference Number: 642245, Revision: 1.0

Note: Address to the PCU specific filtering register can be found in Chapter 1. But there are some additional
pieces of state of relevance to performance monitoring uses.

The PCU includes an extra MSR that tracks the number of reference cycles a core (any
core) is in, C6 state. And the PCU also includes an extra MSR that tracks the number of
reference cycles the package is in the C6 state. As mentioned before, these counters
are not part of the PMON infrastructure so they cannot be frozen or reset, or otherwise
controlled by the PCU PMON control registers.

Note: To be clear, these counters track the number of cycles the core is in (C6 state). It does
not track the total number of cores in the C6 state in any cycle. For that, the user can
see the regular PCU event list.

2.10.3 PCU Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the PCU Box.

CLOCKTICKS

• Title:

• Category: Clockticks events

• Event Code: 0x01

• Maximum Inc/Cyc: 1

• Register Restrictions:

Figure 2-6. PCU Counter Control Register for Sapphire Rapids

Thresh Inv Fr_
ovf

ED Event Select

31 23 21 17 7

RsvRsv Rsv UmaskRst Rsv

Table 2-17. Additional PCU Performance Monitoring Registers (MSR)

MSR Names
Fixed (Non-PMON) Counters Sizes (Bits) Descriptions

PCU_MSR_CORE_P6_CTR 64 Fixed P-State residency counter

PCU_MSR_CORE_C6_CTR 64 Fixed C-State residency counter

Table 2-18. PCU_MSR_CORE_{C6,P6}_CTR Register – Field Definitions

Fields Bits Attributes HW Reset Values Descriptions

event_count 63:0 RW-V 0 64-bit performance event counter

Reference Number: 642245, Revision: 1.0 53

The event list available under NDA will become public and available for download closer
to the product launch.

2.11 MDF Performance Monitoring
The MDF subsystem is a new IP built to support the new Intel® Xeon® architecture that
bridges multiple dies with a embedded bridge system.

The MDF layers mesh protocol over the Embedded Multi-die Interconnect Bridge
(EMIB).

Note: The EMIB is the physical layer and the MDF is the logical layer.

The MDF only exists in a subset of Sapphire Rapids SKUs.

2.11.1 MDF Performance Monitoring Overview
Each MDF box supports event monitoring through four 48b-wide counters
(MDF_PMON_CTR/CTL{3:0}).

2.11.2 MDF Box Performance Monitor Event List
This section enumerates Intel® Xeon® Processors and Sapphire Rapids performance
monitoring events for the MDF box.

CLOCKTICKS

• Title:

• Category: Clockticks events

• Event Code: 0x01

• Maximum Inc/Cyc: 1

• Register Restrictions:

Note: The event list available under NDA will become public and available for download closer
to the product launch.

	1 Introduction
	1.1 Section References
	1.2 Uncore PMON Overview
	1.2.1 A Simple Hierarchy
	1.2.2 Global PMON State

	1.3 Unit Level PMON State
	1.4 Uncore PMON - Typical Counter Control Logic
	1.5 Uncore PMON - Typical Counter Logic
	1.6 Sapphire Rapids Server Uncore PMON
	1.7 Addressing Uncore PMON State
	1.7.1 Uncore Performance Monitoring State in the MSR Space

	1.8 Uncore Performance Monitoring State in the PCICFG Space
	1.9 Introduction to Discovery - Self Describing HW
	1.9.1 Global Discovery
	1.9.2 Unit Discovery

	1.10 Guidance for the SW
	1.10.1 Guidance on Finding PMON Discovery and Reading It
	1.10.2 Guidance on Finding the Package’s Bus Number for the Uncore PMON Registers in PCICFG Space
	1.10.3 Guidance on Resolving Addresses for Uncore PMON Registers in MMIO Space
	1.10.4 Setting up a Monitoring Session
	1.10.5 Reading the Sample Interval
	1.10.6 Enabling a New Sample Interval from Frozen Counters

	2 Sapphire Rapids Uncore Performance Monitoring
	2.1 Mesh Performance Monitoring
	2.1.1 Mesh Performance Monitoring Events

	2.2 CHA Performance Monitoring
	2.2.1 CHA Performance Monitoring Overview
	2.2.2 Additional CHA Performance Monitoring
	2.2.3 CHA Performance Monitoring Events
	2.2.4 CHA Box Performance Monitor Event List

	2.3 IMC Performance Monitoring
	2.3.1 Functional Overview
	2.3.2 IMC Performance Monitoring Overview
	2.3.3 Additional IMC Performance Monitoring
	2.3.4 IMC Performance Monitoring Events

	2.4 IIO Performance Monitoring
	2.4.1 IIO Performance Monitoring Overview
	2.4.2 Additional IIO Performance Monitoring
	2.4.3 IIO Performance Monitoring Events
	2.4.4 IIO Box Performance Monitor Event List

	2.5 IRP Performance Monitoring
	2.5.1 IRP Performance Monitoring Overview
	2.5.2 IRP Performance Monitoring Events
	2.5.3 IRP Box Performance Monitor Event List

	2.6 Intel® UPI Link Layer Performance Monitoring
	2.6.1 Intel® UPI Performance Monitoring Overview
	2.6.2 Additional Intel® UPI Performance Monitoring
	2.6.3 Intel® UPI LL Performance Monitoring Events
	2.6.4 Intel® LL Box Performance Monitor Event List

	2.7 M2M Performance Monitoring
	2.7.1 M2M Performance Monitoring Overview
	2.7.2 M2M Box Performance Monitor Event List

	2.8 M2PCIe* Performance Monitoring
	2.8.1 M2PCIe* Performance Monitoring Overview
	2.8.2 M2PCIe* Performance Monitoring Events
	2.8.3 M2PCIe* Box Performance Monitor Event List

	2.9 M3 Intel® UPI Performance Monitoring
	2.9.1 M3 Intel® UPI Performance Monitoring Overview
	2.9.2 M3 Intel® UPI Performance Monitoring Events
	2.9.3 M3 Intel® UPI Box Performance Monitor Event List

	2.10 PCU Performance Monitoring
	2.10.1 PCU Performance Monitoring Overview
	2.10.2 Additional PCU Performance Monitoring
	2.10.3 PCU Box Performance Monitor Event List

	2.11 MDF Performance Monitoring
	2.11.1 MDF Performance Monitoring Overview
	2.11.2 MDF Box Performance Monitor Event List

