
Reference Number: 644200

Streaming Fabric Interface
(SFI)
Specification

July 2022

Revision 1.0

2 Reference Number: 644200, Revision: 1.0

Intel Corporation and its subsidiaries (collectively, “Intel”) would like to receive input, comments, suggestions, and other feedback
(collectively, “Feedback”) on this specification. To be considered for incorporation into the specification, Feedback must be
submitted by e-mail to: fabricspecification@intel.com. To the extent that You provide Intel with Feedback, You grant to Intel a
worldwide, non exclusive, perpetual, irrevocable, royalty-free, fully paid, transferable license, with the right to sub-license, under
Your Intellectual Property Rights, to make, use, sell, offer for sale, import, disclose, reproduce, make derivative works, distribute,
or otherwise exploit Your Feedback without any accounting. As used in this paragraph, “Intellectual Property Rights” means, all
worldwide copyrights, patents, trade secrets, and any other intellectual or industrial property rights, but excluding any trademarks
or similar rights. By submitting Feedback, you represent that you are authorized to submit Feedback on behalf of your employer, if
any, and that the Feedback is not confidential .Intel does not control or audit third-party data. You should review this content,
consult other sources, and confirm whether referenced data are accurate.
Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The
products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your
purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.
Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances
and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs
or cost reduction.
Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you
for informational purposes. Any differences in your system hardware, software or configuration may affect your actual
performance.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the
referenced web site and confirm whether referenced data are accurate.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2022, Intel Corporation. All Rights Reserved.

http://www.intel.com/performance.
www.intel.com/design/literature.htm

Reference Number: 644200, Revision: 1.0 3

Contents
1 Introduction ..5

2 Overview ...7

3 SFI Interface ...9

4 SFI Physical Channel Description... 11

5 Connect and Disconnect .. 30

6 Mode Configuration ... 36

Figures
2-1 Example Topology and Interface Instantiations..7
3-1 SFI Physical Channels Showing the HDR and DATA Channels................................... 10
4-1 Format for hdr_info_byte ... 13
4-2 Example of Header Transfers .. 15
4-3 Example 1: Two 64-bit Memory Write Headers in one Clock Cycle 15
4-4 Example 2: Two 32-bit Memory Read Headers in One Clock Cycle 16
4-5 Example 3: Header Transfer when Header Size Exceeds 6 DWORDs 16
4-6 Vendor Defined Prefix Used to Send BCM Field .. 17
4-7 Format for data_info_byte .. 20
4-8 Example Data Transfer... 21
4-9 Example of Data Interleaving.. 21
4-10 Example Signal Transitions on HDR Channel for Clock Gating Entry and Exit.............. 23
4-11 Example Flow for Shared Credit Allocation and De-Allocation................................... 29
5-1 Initialization State Machine... 31
5-2 Reset to Connected Timing Diagram .. 33
5-3 Connect to Disconnect to Connected Flow ... 35
5-4 Deny for Disconnect (Disconnect NAck) .. 35

Tables
1-1 Terms and Definitions ..5
1-2 Reference Documents ..6
4-1 Signals of the Global Layer ... 11
4-2 Fields of the HDR Layer.. 12
4-3 Fields of DATA Layer.. 17
4-4 Shared Pool to SFI VC and FC Mapping... 24
5-1 Initialization State Actions .. 31
5-2 Reset Time Marker Description .. 33
6-1 Parameters Supported ... 36
6-2 Example Parameter Assignments for PCIe* 6.0 ... 37

4 Reference Number: 644200, Revision: 1.0

Revision History

Revision
Number Description Date

1.0
• Examples and clarifications on packet formats, data interleaving and shared credits
• Addition of data parity, viral and fatal signals
• Updates and additions to Parameters

July 2022

0.9

• Update data_ecrc to data_trailer and allow the different PCIe* trailer sizes
• Add data_suffix to support future PCIe* placeholders of suffix
• End Bad (EDB) support
• Implementation notes and clarifications on parameters

August 2021

0.7 • Initial Release March 2020

Reference Number: 644200, Revision: 1.0 5

1 Introduction

1.1 Terminology
Table 1-1. Terms and Definitions

Title Definition

Ack Acknowledge

Agent Agent refers to the System on Chip (SoC) IP that connects to the fabric

ECRC End-to-End Cyclic Redundancy Check. Defined in the PCI Express* (PCIe*) Base
Specification

endpoint As defined in the PCI Express* (PCIe*) Base Specification

FC Flow Control

FC ID Flow Control Identifier

HDR Header

packet
header

Protocol packet that is sent on the HDR channel. Used interchangeably with
“protocol header”

IDE Integrity and Data Encryption

LSB Least Significant Bit

MAC Message Authentication Code

MSB Most Significant Bit

NAck Negatively Acknowledge

NP Non-Posted

PCIe* Peripheral Component Interconnect Express*

REQ Request

Root
Complex As defined in the PCI Express* (PCIe*) Base Specification

Root Port As defined in the PCI Express* (PCIe*) Base Specification

RSP Response

RTL Register-Transfer Level. A design abstraction which models synchronous digital
circuits

RX Receiver

SFI Streaming Fabric Interface

TLP Transaction Layer Packet. As defined in the PCI Express (PCIe*) Base Specification

TX Transmitter

VC Virtual Channel

VC ID Virtual Channel Identifier

VN Virtual Network

6 Reference Number: 644200, Revision: 1.0

1.2 Reference Documents
Table 1-2. Reference Documents

Document Document Location

PCI Express* (PCIe*) Base Specification https://pcisig.com

https://pcisig.com/

Reference Number: 644200, Revision: 1.0 7

2 Overview
This specification describes the Streaming Fabric Interface (SFI) specification, which
has been developed to map Load and Store protocols (such as PCIe*) between an
agent and a fabric. The primary motivation is to provide a scalable streaming interface
that can sustain the high bandwidth requirements of Load and Store protocols, such as
PCIe*. The goal is to enable ease of implementation on both the transmit and receive
side when transmitting such high data rates. Certain rules, when enforced, greatly
simplify storage overhead in the context of read or write ports on the RX.

The SFI is applicable both in the context of a Host CPU (root complex) or in the context
of a device endpoint. In both cases, the SFI serves to carry protocol layer (transaction
layer) specific information between different processing entities. As an example on the
device side, the SFI can be used to interface between the PCIe* controller and the
application layer. Similarly, on the host side, the SFI can be used to interface between
the PCIe* root port and the CPU fabric. The SFI can be parametrized to be wide enough
and carry multiple packets in a single transfer. Data transfer is unidirectional, so the
expectation is to have a pair of SFI instances between communicating blocks. Most of
the description in this specification only references a TX and RX pair.

Different configurations can be enabled using the SFI as the intermediate interface. The
SFI makes no assumptions around protocol and application specific responsibilities
between the TX and the RX. It simply provides a mechanism and rules for high
bandwidth packet transfer. Figure 2-1 shows an example interface instantiation in a
PCIe* device.

Figure 2-1. Example Topology and Interface Instantiations

PCIe Controller

Application Layer

SF
I SFI

PCIe Link

Rx Queues

Rx Queues

8 Reference Number: 644200, Revision: 1.0

The SFI does not contain any new protocol definition. In fact, SFI semantics can be
used to support different protocols as long as they can be mapped to the Flow Control
(FC) and Virtual Channel (VC) semantics that SFI provides. For PCIe* protocol, the
Header (HDR) formats follow the description outlined in the PCI Express* (PCIe*) Base
Specification 6.0 for FLIT mode headers.

The SFI supports advertisement of zero or more shared credit pools for the RX queues.
The specification describes two different ways in which shared credits can be advertised
or implemented.

Reference Number: 644200, Revision: 1.0 9

3 SFI Interface

3.1 SFI Physical Channels
For each instance, besides certain global signals, the SFI defines two physical channels
from TX to RX. The HDR and DATA channels carry packet transfers from TX to RX.
Credit returns for each of the physical channels are from RX to TX and are considered
part of that physical channel description. Figure 3-1 shows the different physical
channels of the SFI.

Global Layer carries signals that apply across all physical channels. It carries the
signals that are also used for initialization and shutdown of the interface. See Section 5
for initialization and shutdown flow.

Each of the HDR and DATA channels can carry multiple packets on the same cycle of
transfer. Since most Load and Store protocols rely on ordering semantics, SFI assumes
implicit ordering when multiple packets are sent on the same cycle. Packets are
ordered from the least significant position to the most significant position. For example,
if the Transaction Layer Packet (TLP) 0 begins from byte 0 of the header and TLP 1
begins from byte 16 of the header, then the RX must consider TLP 1 ordered behind TLP
0 whenever ordering rules apply. For transfers across different clock cycles, the
ordering rules of the relevant protocol are followed (as an example, the SFI carries over
all of the PCIe* ordering rules when used for PCIe*).

The VC assignment and decoding is implementation-specific but must be consistent
between TX and RX to satisfy all the system level and protocol requirements. For
example, in cases of link subdivision, it is permitted for the different ports from the
controller perspective to map to different VCs on the SFI.

Multiple SFI interface instances could be needed to service a protocol (for example, a
request going on one instance and the corresponding response coming back on a
different instance).

Depending on the parameters used to configure the interface, each of the physical
channels carries metadata to convey information about the position of different packets
within a single transfer. This will be covered in more detail in a subsequent section.

Packet headers with data associated with them send the packet header on the HDR
channel and the data on the DATA channel. It is assumed that the RX keeps track of the
associated data length for each received header and only processing the relevant data
sizefor that header The data size is sent with the packet header information. As an
example in PCIe*, the length field in the TLP header indicates how many four-byte
(DWORD) chunks of data are associated with that header.

10 Reference Number: 644200, Revision: 1.0

Figure 3-1. SFI Physical Channels Showing the HDR and DATA Channels

3.2 SFI Protocols Supported
The protocols are not defined as part of the SFI, but are defined in other documents.
The present specification uses an example of PCIe* to illustrate recommended
parameters and applications, but other streaming protocols can use similar semantics.

Reference Number: 644200, Revision: 1.0 11

4 SFI Physical Channel
Description

4.1 Global Layer
Global Layer carries signals that apply across all physical channels. It carries the
signals that are also used for initialization and shutdown of the interface. See Section 5
for initialization and shutdown flows.

Table 4-1. Signals of the Global Layer
Signal Class Signal Name Width Direction Description

Init

txcon_req 1 bit TX RX
Connection request from TX
(0 1 connection request,
1 0 disconnection request)

rxcon_ack 1 bit RX TX
Connection acknowledge from RX
(0 1 connection acknowledge,
1 0 disconnection acknowledge)

rxdiscon_nack 1 bit RX TX Disconnection Negatively Acknowledge (NAck)
from RX

rx_empty 1 bit RX TX RX queues are empty for all channels, and all
credits have been returned

RAS

tx_viral 1 bit TX RX
Optional signal to indicate viral status from TX to
RX. It is a level signal, once asserted it remains
asserted until error handling is complete.

tx_fatal 1 bit TX RX
Optional signal to indicate fatal status from TX to
RX. It is a level signal, once asserted it remains
asserted until error handling is complete.

Vendor Defined

tx_vendor_field VT bits TX RX

Optional signal to send static or global vendor-
defined information from TX to RX.
For PCIe* protocol, it is permitted to carry
additional global information for power or
performance optimizations (for example, Link
speed, width), but the SFI interface
interoperability must not depend on these
signals.

rx_vendor_field VR bits RX TX

Optional signal to send static or global vendor-
defined information from RX to TX.
For PCIe* protocol, it is permitted to carry
additional global information for power or
performance optimizations (for example, Link
speed, width), but the SFI interface
interoperability must not depend on these
signals.

12 Reference Number: 644200, Revision: 1.0

4.2 HDR Layer
The HDR Layer carries requests from TX to RX. The address and the protocol level
command information are encapsulated in the header field.

Table 4-2. Fields of the HDR Layer
Signal Class Signal Name Width Direction Description

VALID

hdr_valid M bits TX RX

Indicates the start of a new packet on the
corresponding header byte. It is required to
have a fixed association between the
individual bits of hdr_valid and the bytes of
header.

hdr_block 1 bit RX TX

This is an optional signal. It is an indication
from RX to TX for a temporary stall to
header transfers.
See Section 4.4.1 for rules related to this
signal.
Applications of temporary stalling include
dynamic clock gating and/or temporary
stalls due to clock crossing FIFOs.

hdr_early_valid 1 bit TX RX

This is an optional signal. It is an early valid
indication from TX to RX indicating that TX
has packets to send on the HDR channel.
See Section 4.4.1 for rules related to this
signal.
In conjunction with the hdr_block signal, it
is used to enable dynamic clock gating for
RX.

HDR

header H bytes TX RX

Header information. It can contain multiple
packets transferred in the same cycle. FC
and VC information is additionally embedded
in hdr_info_bytes. H must be a multiple of
M, and hdr_valid[i] corresponds to
header byte (i×H/M).

hdr_info_bytes 2×M bytes TX RX

Indicates packet headersize, flow control,
VC, and parity information. Information is
valid whenever the corresponding
hdr_valid is asserted.

CREDIT

hdr_crd_rtn_valid 1 bit RX TX Credit return valid.

hdr_crd_rtn_ded 1 bit RX TX

Indicates the credit returns are to the
dedicated pool of credits. If this is 0 on a
valid credit return, the credits should be
returned to the corresponding shared pool
of credits. It must be set to 0 if
hdr_crd_rtn_vc_id is 5’d30 or 5’d31. Refer
to Section 4.5.1 for details.

hdr_crd_rtn_fc_id 2 bits RX TX Identifies the flow control class for this
credit return.

hdr_crd_rtn_vc_id 5 bits RX TX Identifies the VC for this credit return.

hdr_crd_rtn_value NHCRD bits RX TX Indicates how many credits are returned in
this cycle

hdr_crd_rtn_block 1 bit TX RX

This is an optional signal. It is an indication
from TX to RX for a temporary stall to credit
returns.
See Section 4.4.1 for rules related to this
signal.
Applications of temporary stalls include
dynamic clock gating and/or stalls due to
clock crossing FIFOs.

Reference Number: 644200, Revision: 1.0 13

The width of header field “H” is a predetermined parameter based on the peak
sustained bandwidth requirements. Rules for the HDR channel are outlined as follows:

1. A packet header must begin and end on the same cycle of transfer. Multiple packet
headers can be sent on the same cycle.

2. The first packet header on a valid header transfer must start on byte 0 of the
header field. Subsequent packets, if available for transfer in the same clock cycle,
must begin at the next available header start location (i.e. if the prior packet
header was at byte location “i×H/M”, and had less than or equal to H/M bytes, the
next packet header must start at “(i+1)×H/M” if being sent on the same clock
cycle. If prior packet header took more than H/M bytes, then the next packet
header must begin at the next available multiple of H/M byte, if being sent on the
same clock cycle).

3. When hdr_valid corresponding to a header byte is asserted, the
hdr_info_bytes field describes key attributes that can be used by the RX to
decode the packet header. These are shown in Figure 4-1 (least significant byte is
shown to the right).
a. P is the Parity bit. Support for parity bit is optional. When supported, it is the

XOR of all bits of a packet header and the non-parity bits of the corresponding
hdr_info_bytes. Parity errors on the HDR channel are fatal to interface
operation and must be reported as fatal errors. When not supported, it must be
reserved; TX must drive 0, and RX must not check parity.

b. D indicates the packet header has corresponding data associated with it.
c. S indicates that the corresponding packet header used as a shared credit. If

this packet header had data associated with it, then the data must also
consume credits from the shared pool.

d. Virtual Channel Identifier (VC ID) is the virtual channel identifier for the packet
header - it can be in the range of 0 to 29 (VC ID 30 and 31 are reserved for
advertising shared credits and not for use as VCs).

e. Flow Control Identifier (FC ID) is the flow control identifier for the packet
header. For PCIe*, three FC IDs are possible - 2’b00 for Posted, 2’b01 for Non-
Posted, and 2’b10 for Completions.

f. All Reserved bits must be driven to 0 by TX and ignored by RX. Switches and
fabric routers must propagate the reserved bits as-is without any modifications.

4. The HDR SIZE is specified in HGRAN granularity (in other words, the packet header
formats must be defined in the granularity determined by the design parameter
HGRAN. Typically this parameter is set to four bytes in the context of PCIe*
protocol, and hence, HDR SIZE would indicate the packet header size in the
number of DWORDs). The hdr_info_bytes bytes are not included in the HDR
SIZE computation.

Figure 4-1. Format for hdr_info_byte

VC ID FC ID

7 6 5 4 3 2 1 0

+0

HDR SIZE

7 6 5 4 3 2 1 0

+1

P D RS

Reserved

Header used Shared Credit

Header has associated Data

Header Parity

14 Reference Number: 644200, Revision: 1.0

5. There must be a predetermined number of maximum packet headers that can be
transmitted in one cycle, which are determined by the headerfield width (H) and
the maximum packet header size. The header field width (H) must be chosen so
as to allow the common case usage to sustain maximum throughput. Assume the
common case application packet header size is 16 bytes (maps to four DWORD
headers in PCIe*), and that we want to sustain two packet headers per cycle.
Hence, H = 2×(16) = 32 bytes. M must be 2 with hdr_valid[0] corresponding to
header byte 0, and hdr_valid[1] corresponding to byte 16. If occasionally the
packet header size is more than 16 bytes (as an example, if PCIe* TLP Prefix was
used), then only one packet header can be transferred in that cycle, and
hdr_valid[1] must not assert. For interoperability reasons, all TXs must support
a configuration mode where they transfer only one packet header per cycle.

6. There must be a predetermined number of maximum FC and VC ID combinations
allowed at a given transfer cycle. Both TX and RX must be aware of this at design
compile time. A maximum of two implies that all the packet headers transferred on
a given cycle can belong to two different FC within the same VC or the same FC for
two different VC or all packet headers belong to the same FC and VC. This rule
helps minimize the write ports in the storage of RX when buffers are shared
between FC and VC. For interoperability reasons, all TXs must support a
configuration mode where they transfer only one FC and VC combination per cycle.

7. If a packet header has data associated with it, the packet header is sent on the
HDR channel and the associated data is sent on the DATA channel.

a. TX must check for available credits for both header and DATA before scheduling
either of the header or data transfers.

8. The credit granularity for packet headers is the maximum supported packet header
size as well as any potential data_trailers or data_suffix. For example, if the
maximum packet header size supported is 20 bytes, then 1 credit corresponds to
20 bytes worth of storage at the RX. Even if only a 16-byte packet header is sent, 1
credit is consumed corresponding to the full 20 bytes. For PCIe*, data_trailer
bit is asserted to indicate the presence of PCIe* defined TLP trailer DW following
the data payload. A couple of examples of this are mentioned next. For PCIe*,
data_suffix bit is asserted to indicate the presence of TLP suffix following the
data payload or trailer DWs.The space for trailer and suffix is accounted for as part
of packet header credits.

a. When End-to-End Cyclic Redundancy Check (ECRC) is supported, even though
the ECRC bytes are sent on the DATA channel, the storage space for ECRC is
included as part of the packet header credit consumed (similar to TLP digest in
PCIe* protocol).

b. If Integrity and Data Encryption (IDE) TLPs need to be sent across the
interface, IDE prefixes are sent on the HDR channel, and the Message
Authentication Code (MAC) bytes are sent on the DATA channel. The storage
space for MAC and prefixes are included as part of the packet header credit
(similar to PCIe* protocol rules).

4.2.1 Example Header Transfer
The waveform shown in Figure 4-2 demonstrates packet header transfers. Clock cycles
1 and 2 transfer two packet headers of size 4 (HDR_SIZE = 4) each, while clock cycle
4 transfers one packet header of size 5. In this example, hdr_valid[0] is always
associated with header byte [0] and hdr_valid[1] is always associated with HDR
byte[16].

Reference Number: 644200, Revision: 1.0 15

Figure 4-2. Example of Header Transfers

4.2.2 PCIe* and CXL.io* Packet Format Examples
As mentioned previously, PCIe* Flit Mode packet formats and byte assignments are
followed for PCIe* protocol. Similarly, CXL.io* 256B Flit Mode packet formats and byte
assignments are followed for CXL.io* protocol. This section presents examples and any
additional rules associated with these formats when transporting over SFI. See the PCI
Express* (PCIe*) Base Specification and CXL* Base Specification for the definitions of
the individual fields within the headers.

The SFI parameter setting example in Table 6-2 is optimized for memory transactions
using 6 DWORD PCIe* protocol headers (4 DWORDs base, 1 DW OHC-A, 1 DW of OHC-
B). Figure 4-3 shows an example of header transfers using these parameter settings.
In this example, the SFI transmitter can fit two 64-bit memory write PCIe* protocol
headers with no prefixes and with OHC-A1 and OHC-B into a single SFI header. Because
the protocol headers are the optimal size for this configuration, both TLP0 and TLP1
naturally align. hdr_valid[1:0] = 11b for Example 1.

However, it is possible that not every protocol header will be sized the same as the
ideal utilization scenario in the context of the chosen parameter settings. In the
example in Figure 4-4, the SFI transmitter is sending two 32-bit memory read PCIe*
protocol headers with no prefixes and no OHC. Because the size of each protocol
header is smaller than 6 DWORDs, the SFI transmitter must ensure that any
subsequent protocol headers be placed at the interface on increments of 6 DWORDs.
Any leftover SFI header space from the previous protocol headers ending location must
be treated as reserved (driven to 0 by the transmitter and ignored by the receiver).
hdr_valid[1:0] = 11b for Example 2.

0 1 2 3 4 5

clk

hdr_valid[0]

hdr_info_bytes[1:0][7:0] TLP0 Info Bytes[1:0] TLP2 Info Bytes[1:0] TLP4 Info Bytes[1:0]

header[15:0][7:0] TLP0 Hdr Bytes[15:0] TLP2 Hdr Bytes[15:0] TLP4 Hdr Bytes[15:0]

hdr_valid[1]

hdr_info_bytes[3:2][7:0] TLP1 Info Bytes[1:0] TLP3 Info Bytes[1:0]

header[31:16][7:0] TLP1 Hdr Bytes[15:0] TLP3 Hdr Bytes[15:0] {96'b0,TLP4 Hdr Bytes[19:16]}

Figure 4-3. Example 1: Two 64-bit Memory Write Headers in one Clock Cycle

16 Reference Number: 644200, Revision: 1.0

On the other hand, if a protocol header size exceeds 6 DWORDs for this set of
parameters, the SFI transmitter must ensure that it does not insert another protocol
header in the same clock cycle. In Figure 4-5, the transmitter is sending a 64-bit
memory write with a local vendor defined prefix and OHC-A1 and OHC-B for a total size
of 7 DWORDs. Since this exceeds the 6 DWORD boundary, the SFI transmitter must
only send one protocol header at that clock cycle. hdr_valid[1:0] = 01b for
Example 3.

4.2.3 Additional Considerations
• The Byte Count Modified field does not have an allocated space in the PCIe* Flit

Mode header formats. If this field is required, it must be sent over SFI using a
Vendor defined local TLP prefix as shown in Figure 4-6. If this field is required, the
parameter BCM_EN must be set to 1b, and all completion headers must carry this
prefix. Additionally, this prefix must be the first DWORD for completion headers
(i.e., other vendor defined prefixes and base header should come after this prefix).

Figure 4-4. Example 2: Two 32-bit Memory Read Headers in One Clock Cycle

Figure 4-5. Example 3: Header Transfer when Header Size Exceeds 6 DWORDs

Reference Number: 644200, Revision: 1.0 17

• The “TLP Uses Dedicated Credits” field in Flit Mode local TLP Prefix from PCI
Express* (PCIe*) Base Specification is not relevant for SFI, since shared vs
dedicated credits is indicated via the “S” bit in hdr_info_bytes. Receivers must
ignore this field if Flit Mode local TLP Prefix is present in the header. If
FLIT_MODE_PREFIX_EN is 0, Transmitters must never send Flit Mode TLP prefix
over SFI.

Note: Currently, Flit Mode TLP prefix is only used to indicate dedicated credits over PCIe*/
CXL.io* links and it is strongly recommended to set FLIT_MODE_PREFIX_EN=0. If
PCIe* or CXL.io* add additional fields to Flit Mode TLP prefix, then it is permitted to set
FLIT_MODE_PREFIX_EN to 1, but receivers must still ignore the “TLP Uses Dedicated
Credits” field in that prefix and use the “S” bit in hdr_info_bytes to determine if the
header used shared vs dedicated credits.

• Even when the PCIe* or CXL.io* Link itself trains to non-Flit mode configuration,
the header formats on SFI follow the Flit Mode formats. It is the responsibility of
the Transaction Layer to perform the necessary conversions before transmitting
TLPs over the PCIe* or CXL.io* Link. See the PCI Express* (PCIe*) Base
Specification for information related to how the field mappings change between Flit
mode and non-Flit mode formats for PCIe*.

4.3 Data Layer
The DATA physical channel carries data for all requests that have data associated with
it. The timing requirement between the HDR channel and the associated data coming
on the DATA channel is determined by the parameters described in Section 6. It is
required for TX to check both HDR channel and DATA channel credits before scheduling
either the HDR or DATA on their respective channels.

Figure 4-6. Vendor Defined Prefix Used to Send BCM Field

Table 4-3. Fields of DATA Layer (Sheet 1 of 3)

Signal
Class Signal Name Width Direction Description

VALID

data_valid 1 bit TX RX

Indicates that data corresponding to at least one packet is sent
on the DATA signal class fields when asserted. If data
associated with multiple packets are sent, they are
disambiguated by the using the fields in the class

data_block 1 bit RX TX

This is an optional signal. It is an indication from RX to TX for a
temporary stall to data transfers.
See Section 4.4.1 for rules related to this signal.
Applications include dynamic clock gating and/or temporary
stalls due to clock crossing FIFOs in RX.

data_early_valid 1 bit TX RX

This is an optional signal. It is an early valid indication from TX
to RX indicating that TX has packets to send on the DATA
channel.
See Section 4.4.1 for rules related to this signal.
In conjunction with the data_block signal, it is used to enable
dynamic clock gating for RX.

18 Reference Number: 644200, Revision: 1.0

DATA

data D bytes TX RX
Carries the raw data for associated packets. The raw data must
be in 4-byte granularity. When DATA layer is present, D must
be greater than or equal to 4.

data_parity D/8 bits TX RX

If DATA_PARITY_EN = 1, this signal is used to transfer data
parity over the interface. Data parity for data transferred over
a given clock cycle. It is computed for even parity of 1 parity
bit over every 8B of data.
If data_valid = 1b, data_parity[n] is the XOR of all bits of
data bytes [8×(n+1)-1: 8×n]; where “n = 0,1...D/8”. If
8×(n+1) > D, then data is 0 padded in the MSB for the
purpose of parity computation. data_parity is computed
regardless of data_start or data_end values.
At least one bit of data_parity must always exist if
DATA_PARITY_EN = 1. If D <= 8, only one bit of data_parity
is present.
Parity error handling/escalation is implementation/SoC specific.
For example, it could be mapped to a fatal error, or RX could
poison the protocol packets for the corresponding data which
had a parity error. When not supported, it must be reserved;
i.e., TX must drive 0, and RX must not check parity.

data_start DS bits TX RX

Indicates the start of a new data packet on the corresponding
data byte. It is required to have a fixed association between
the individual bits of data_start and the bytes of data. The
parameter DS is determined by the maximum number of
separate packets that need to be sustained per cycle. D must
be a multiple of DS, and data_start[i] corresponds to data
byte (i×D/DS).

data_info_byte DS×8 bits TX RX

For every data_start bit, there is a data_info_byte, which
indicates the FC ID and the VC ID of the associated data
packet. RX must not assume data_info_byte is valid if the
corresponding data_start is not asserted.

data_end D/4 bits TX RX

Indicates the end of a new data packet on the corresponding
data 4-byte chunk. It is required to have a fixed association
between the individual bits of data_end and the bytes of data.
Thus, data_end[i] corresponds to data bytes [(4×(i+1)-
1):4×i].

data_poison D/4 bits TX RX
Indicates one or more bytes of the associated data packet is
poisoned. RX must treat the entire protocol packet payload
corresponding to this data as poisoned.

data_edb D/4 bits TX RX

Indicates the packet associated with this data is bad and must
be dumped by the RX. TX must have consumed the
corresponding credits (both header and data credits), and
hence, RX must return the corresponding credits after dumping
the packet. This signal can be used to enable cut-through
routing in switches and fabric as long as the final RX can
guarantee dumping the packet before the commit point.

data_trailer D/4 bits TX RX

This is optional, only required if TLP trailers are supported. It
should be asserted when the corresponding data bytes carry
the TLP trailer DWORDs (for example ECRC or IDE MAC, and so
on.). See the PCI Express* (PCIe*) Base Specification for
details on TLP trailer definitions and support.

data_suffix D/4 bits TX RX

This is optional, only required if TLP suffixes are supported.
When asserted, it indicates that the corresponding DWORD of
data is a TLP suffix. See the PCI Express* (PCIe*) Base
Specification for details on TLP suffix definitions and support.

data_aux_parity 1 bit TX RX

Optional signal. Whenever data_valid is 1b, data_aux_parity
is the XOR of all the signals in DATA signal class, with the
exception of data and data_parity signals. Parity errors on
the data_aux_parity are fatal to interface operation and must
be reported as fatal errors. When not supported, it must be
reserved; i.e., TX must drive 0, and RX must not check parity.

Table 4-3. Fields of DATA Layer (Sheet 2 of 3)

Signal
Class Signal Name Width Direction Description

Reference Number: 644200, Revision: 1.0 19

Rules for the DATA channel are outlined as follows:

1. The Data is always transferred in 4-byte granularity. The end positions of data are
hence determined in 4-byte chunks. Thus, if D = 64 (raw data is 64B), D/4 = 16,
with data_end[0] corresponding to data bytes[3:0], data_end[1] corresponding
to data bytes[7:4], and so on. data_end is used by RX to determine when a
payload for a packet has finished transfer across SFI.

2. It is not required to have the same 4-byte granularity for data_start. An
implementation limits the maximum number of starts in a cycle. For example,
consider a 64-byte raw data bus (D = 64), and implementations want to limit the
maximum number of starts in a cycle to 2. This means that DS = 2, and
data_start[0] corresponds to data byte[0] and data_start[1] corresponds to
data byte[32]. For interoperability reasons, all transmitters must have a
configuration modewhere they only send bytes from at the most one data packet
per cycle. When DS > 1, it is not required for transmitter to always start the first
data packet at data_start[0] (since the receiver has to deal with data byte
shifting to write into its storage buffers anyway, this allows the TX to streamline
data relative to its storage buffer organization when applicable). RX must not
consume unused data bytes at a given clock edge (with the exception of
data_parity computation).

3. Every data_start bit has an associated data_info_byte with it that indicates
the FC ID and VC ID of the corresponding packet. The format of data_info_byte
is shown in Figure 4-7. FC ID and VC ID encodings are the same as those on the
HDR channel.

CREDIT

data_crd_rtn_valid 1 bit RX TX Credit return valid.

data_crd_rtn_ded 1 bit RX TX

Indicates the credit returns are to the dedicated pool of credits.
If this is 0 on a valid credit return, the credits should be
returned to the corresponding shared pool of credits. It must
be set to 0 if data_crd_rtn_vc_id is 5’d30 or 5’d31.

data_crd_rtn_fc_id 2 bits RX TX
Identifies the flow control class for which data credits are being
returned. For shared pool credit returns, it indicates the flow
control of the transaction deallocated from RX buffers.

data_crd_rtn_vc_id 5 bits RX TX
Identifies the VC for which data credits are being returned. For
shared pool credit returns, it indicates the VC of the transaction
deallocated from RX buffers.

data_crd_rtn_value NDCRD bits RX TX Indicates how many credits are being returned. Each credit
corresponds to the chosen data granularity of storage in RX.

data_crd_rtn_block 1 bit TX RX

This is an optional signal. It is an indication from TX to RX for a
temporary stall to credit returns.
See Section 4.4.1 for rules related to this signal.
Applications include dynamic clock gating and/or stalls due to
clock crossing FIFOs.

Table 4-3. Fields of DATA Layer (Sheet 3 of 3)

Signal
Class Signal Name Width Direction Description

20 Reference Number: 644200, Revision: 1.0

Figure 4-7. Format for data_info_byte

4. Unlike the HDR channel, data chunks from the same packet can be transferred over
multiple cycles. For example, the raw data bus could be 64B, and a 128B data
packet could be transferred over two clock cycles.

5. It is required for TX to maintain the same relative ordering of data packets as the
associated headers for a given FC and VC combination.

6. RXs can optionally support data interleaving across different FC and VC
combinations over different clock cycles. data_start must assert every time
whenever the data stream interleaves different FC or VC; RX will use the
data_info_byte along with data_start to assign the data stream to the
appropriate VC/FC.This allows for low overhead time division multiplexed data path
switching between two TXs that want to send packets to a common RX (with
mutually exclusive VCs). This is the only time when multiple data_starts are
permitted before a data_end. However, interleaving or bubbles in between a data
transfer are not allowed at a given clock edge (i.e., it is not permitted to have
multiple data_starts before a data_end on the same clock cycle for a given FC/
VC).

7. The data credit granularity must be predetermined at design compile time between
the TX and RX. The granularity must be a multiple of 4 bytes (DWORD). For
example, if the credit granularity is chosen to be 16 bytes, then even a 4-byte data
packet transferred uses one 16-byte worth of credit.

4.3.1 Example Data Transfer
Figure 4-8 shows two examples of data transfer for a 64-bit data bus, and DS = 1. For
Pkt0, it has four DWORDs of payload with no ECRC. For Packet 1, it has two DWORDs of
payload and one DWORD of ECRC. In this example, TX chooses to drive DINFO along
with valid data always.

FC ID

7 6 5 4 3 2 1 0

VC ID S

Data used Shared Credit

Reference Number: 644200, Revision: 1.0 21

Figure 4-8. Example Data Transfer

shows an example of data interleaving. The different colors belong to different FC, VC
which are interleaved on the same data bus. In this example, TX chooses to only drive
DINFO with corresponding data_start.

4.4 Clocks and Resets
It is not required for TX or RX to coordinate reset. The initialization flow defines a
separate handshake to ensure TX and RX exchange information about interface reset
and flow control before traffic can begin. Power gating optimizations can be
implemented by moving to a disconnected state.

SFI is a synchronous interface—both sides of the interface must run on the same clock.
RXs of signals are permitted to instantiate clock crossing FIFOs internally, but must do
so in a way that the rules of interface operation are not violated. SFI provisions for
temporary stalling of packet transfers to enable dynamic clock gating and/or clock
crossing related stalls.

4.4.1 Block and Early_valid rules
It is strongly recommended that *_block and *_early_valid signals be supported by
implementations to ensure wider interoperability. The following rules apply when the
early_valid and block signals are implemented.

1. Once hdr_block is asserted, the compile time parameter TBN determines the
number of clock cycles after which TX must guarantee a stall (in other words, no
more assertion of hdr_valid).

0 1 2 3 4 5 6

clk

data_valid

data_start

data_end[0]

data_trailer[0]

data_info_bytes[0][7:0] DINFO 0 DINFO 0 DINFO 1 DINFO 1

data[31:0] Pkt0 DW0 Pkt0 DW2 Pkt1 DW0 Pkt1 ECRC

data_end[1]

data_trailer[1]

data_info_bytes[1][7:0] DINFO 0 DINFO 0 DINFO 1

data[63:32] Pkt0 DW1 Pkt0 DW3 Pkt1 DW1

Figure 4-9. Example of Data Interleaving

22 Reference Number: 644200, Revision: 1.0

2. Once hdr_block deasserts, TX is permitted to begin header transfer from the
next clock cycle.

3. Once data_block is asserted, the compile-time parameter TBN determines the
number of clock cycles after which TX must guarantee a stall (in other words, no
more assertion of data_valid).

4. Once data_block deasserts, TX is permitted to begin data transfer from the next
clock cycle.

5. Once hdr_crd_rtn_block is asserted, the compile time parameter RBN
determines the number of clock cycles after which RX must guarantee a stall (in
other words, no more assertion of hdr_crd_rtn_valid).

6. Once hdr_crd_rtn_block deasserts, RX is permitted to begin header credit
returns from the next clock cycle.

7. Once data_crd_rtn_block is asserted, the compile-time parameter RBN
determines the number of clock cycles after which RX must guarantee a stall (in
other words, no more assertion of data_crd_rtn_valid).

8. Once data_crd_rtn_block deasserts, RX is permitted to begin data credit
returns from the next clock cycle.

9. TX must assert hdr_early_valid at least one cycle before hdr_valid. TX is
permitted to keep hdr_early_valid asserted even if it has no immediate packets
to transfer, if it wants to keep RX clocks running to achieve the best latency for
imminent packet transfers.

10. TX must assert hdr_early_valid if it has packets to send, even if hdr_block
signal is asserted. If hdr_block is asserted, TX must keep hdr_early_valid
asserted until hdr_block deasserts and TX has transferred the packets. It is
possible that hdr_block asserts and deasserts several times while packets are
being transferred (for example, in cases of clock crossing related rate
mismatches); TX must follow the rules related to hdr_block at all times.

11. TX must assert data_early_valid at least once cycle before data_valid. TX is
permitted to keep data_early_valid asserted even if it has no immediate
packets to transfer if it wants to keep RX clocks running to achieve the best latency
for imminent packet transfers.

12. TX must assert data_early_valid if it has packets to send, even if data_block
signal is asserted. If data_block is asserted, TX must keep data_early_valid
asserted until data_block deasserts and TX has transferred the packets. It is
possible that data_block asserts and deasserts several times while packets are
being transferred (for example, in cases of clock crossing related rate
mismatches); TX must follow the rules related to data_block at all times.

4.4.2 Dynamic Clock Gating
If dynamic clock gating is desired, implementations must support all of the *block and
*early_valid signals.

From the SFI perspective, RX is permitted to transition to a clock gated state if the
corresponding interface is in Disconnect state or all of the following conditions are true:

• The interface is in a Connected state, with no pending request from TX to
Disconnect that RX has not responded to.

• hdr_early_valid and data_early_valid are deasserted from TX.

• No packet transfers are in flight (hdr_valid and data_valid are deasserted).

Reference Number: 644200, Revision: 1.0 23

• RX has returned the minimum header and data credits required for a packet
transfer on any of the supported VC and FC. The minimum credits are defined by
the underlying protocol. For example, for PCIe* data credits on posteds, RX should
have returned MPS worth data credits on all supported VCs.

RX must take into account any internal requirements for clock gating in addition to the
SFI requirements before transitioning to a clock gated state. These internal
requirements are implementation-specific and outside the scope of this specification.

Once the requirements are met, RX transitions to a clock gated state TBN cycles after
asserting the hdr_block and data_block signals (if no packet transfers are received
during that time, if packet transfers are received during this time, RX must abort the
transition to a clock gated state and it is permitted to re-attempt at a later point if all
the requirements for entry are met.)

Once in a clock gated state, RX must treat any transition on hdr_early_valid,
data_early_valid, or txcon_req as an asynchronous trigger to exit the clock
gated state. Once it has exited the clock gated state, it must revert to the regular
protocol of accepting packets from TX. Figure 4-10 shows an example of entry and exit
flow for the HDR channel. Similar handshakes would occur on the DATA channel as well.

Figure 4-10. Example Signal Transitions on HDR Channel for Clock Gating Entry and Exit

From SFI perspective, TX is permitted to transition to a clock gated state if the
corresponding interface is in Disconnect state or all of the following conditions are true:

• The interface is in a Connected state, with no pending request from TX to
Disconnect that RX has not responded to.

• TX has no packet transfers pending.

• TX has accumulated the minimum header and data credits required for a packet
transfer on any supported VC and FC. The underlying protocol defines the minimum
credits.

TX must take into account any internal requirements for clock gating in addition to the
SFI requirements before transitioning to clock gated state. These internal requirements
are implementation specific and outside the scope of this specification.

Once the requirements are met, TX transitions to a clock gated state RBN cycles after
asserting the hdr_crd_rtn_block and data_crd_rtn_block signals.

Exiting from a clock gated state for a TX is implementation-specific and outside the
scope of this specification.

Note: Implementation modules can have multiple SFI interfaces connected to them, where
they may be RX or TX for different interfaces. Coarse level clock gating (shutting off
global clock for example) for a module, should consider the corresponding RX or TX
requirements of all SFI interfaces instantiated on that module.

0 1 2 3 4 5 6 7 8 9 10 11

clk

hdr_early_valid

hdr_valid

{hdr_info_bytes,header} HDR0 HDR1 HDR2

hdr_block

24 Reference Number: 644200, Revision: 1.0

4.5 Channel Flow Control
Each VC and FC must use credits on TX for sending any message and collect credit
returns from the RX. The source should consume the full credits required for a message
to complete. As mentioned earlier, TX must check for both HDR channel and DATA
channel credits before sending either of them to the RX.

Each physical channel has dedicated credit return wires. During operation, the RX
returns credits during initialization and whenever it has processed the message (in
other words, guaranteed a buffer position for the next transaction).

To allow for batch processing at the RX, it is recommended to set the shared credit
block size corresponding to the batch processing size at the RX. If credit sharing is
enabled, shared credits must be allocated to an FC and VC in block granularity. For
example, if SH_DATA_CRD_BLK_SZ = 4, if acquiring shared credits for a given FC and
VC, it must be done in blocks of 4.

RX can advertise infinite credits by setting the *crd_rtn_value = 0 for the
corresponding VC and FC credit return. Typically, this is done after initialization if the
RX can guarantee a spot to sink traffic from a given VC and FC (for example, if
completions were preallocated). Once infinite credits are advertised for a VC and FC,
there should be no credit returns for that VC and FC until the next disconnect or
connect flow.

4.5.1 Sharing Credits
The SFI allows two schemes for supporting sharing of buffers between different FC and
VC IDs. In both schemes, it is required for the RX to advertise the minimum number of
dedicated resources needed for a forward progress guarantee. For large packet
transfers, this means that the maximum payload size must be considered for dedicated
credit advertisement. If SHARED_CRD_EN=1, it implies Type 1 scheme is used. For
Type 2, from TX perspective, it looks the same as if shared crediting is disabled since
the RX internally manages the shared resources. SHARED_CRD_EN=0 is used for both
the dedicated and Type 2 shared crediting schemes.

4.5.1.1 Type 1: TX-Managed
In this scheme, the TX is responsible for managing shared buffers in the RX. RX
advertises shared credits using SFI VC ID 30 and/or 31. Since up to 4 FC ID encodings
are possible for each SFI VC, a total maximum of 8 shared pools can be supported as
shown in Table 4-4.

Table 4-4. Shared Pool to SFI VC and FC Mapping
Shared Pool SFI FC ID SFI VC ID

0 0

30
1 1

2 2

3 3

4 0

31
5 1

6 2

7 3

Reference Number: 644200, Revision: 1.0 25

Note: RX is permitted to only advertise credits for a subset of these. See Table 6-1 for
parameters that determine the mapping.

It is permitted for RX to support fewer shared credit pools. Transactions on a given VC
and FC can only use credits from one shared pool. When shared crediting using the
Type 1 scheme is enabled, every SFI instance (a TX and RX pair) must define a
mapping from each SFI VC and FC sharing credits to a shared pool of credits at design
time. It is also permitted for an SFI VC and FC not to be mapped to any shared pool, in
which case it is only going to use dedicated credits for that VC and FC.

Rules for TX:

• It must maintain a credit counter for dedicated credits for every VC and FC
supported (VCi_FCj_DED_CNTR_HDR, VCi_FCj_DED_CNTR_DAT for VC "i" and FC
"j"). Separate counters are maintained for header and data. The width of these
counters must be sufficient to hold all the dedicated credits that can be advertised
by the RX for the corresponding SFI VC and FC.

• It must maintain a credit counter for shared credits corresponding to the number of
shared pools determined at design time (SHRD_POOLx_CNTR_HDR,
SHRD_POOLx_CNTR_DAT for shared pool "x"). Separate counters are maintained
for header and data. The width of these counters must be sufficient to hold all the
shared credits that can be advertised by the RX for the corresponding shared pool.
These counters track the shared pool credits available, and different VC and FC that
share these credits have to arbitrate for these credits.

• It must maintain a counter for the number of consumed shared credits for every
VC and FC sharing credits (VCi_FCj_SHRD_USED_HDR, VCi_FCj_SHRD_USED_DAT
for VC "i" and FC "j"). Separate counters are maintained for header and data. The
width of these counters must be sufficient to hold the maximum shared credits that
can be used by a given SFI VC and FC. These set of counters effectively track the
occupancy in the RX shared buffer for the corresponding VC and FC.

• It must maintain a counter for the number of shared credits acquired for every VC
and FC sharing credits (VCi_FCj_SHRD_ALLOC_HDR, VCi_FCj_SHRD_ALLOC_DAT
for VC "i" and FC "j"). Separate counters are maintained for header and data. The
width of these counters must be sufficient to hold the maximum shared credits that
can be acquired by a given SFI VC and FC. These are only incremented or
decremented in block sizes and track how many shared credits have been allocated
for a particular VC and FC, but not necessarily used to send traffic yet.

Note: By requiring both the Transmitter and Receiver to explicitly recognize credit blocks, the
Receiver’s buffer management logic is considerably simplified, while maintaining the
efficient use of Receiver resources. Shared resource tracking at the receiver typically
requires linked-list structures, and by organizing them in blocks, it gives a much easier
way to scale bandwidth to process multiple TLPs per cycle per VC/FC. In addition, the
linked-list management logic can be implemented at a block level - reducing the
storage requirements of the linked-list (for example, for 1024 entries with a block size
of 4, only 256 block pointers are needed from the point of view of linked-list tracking, a
4x reduction).

• It must instantiate a configuration register (VCi_FCj_MAX_HDR,
VCi_FCj_MAX_DAT) for every SFI VC and FC mapped to a shared pool of credits.
Separate registers are needed for header and data. The value programmed in this
register determines the maximum outstanding shared credits acquired by the
corresponding SFI VC and FC. Software can use this mechanism to limit the
maximum occupancy of the shared pool by a given SFI VC/FC for Quality of Service
(QoS) guarantees.

26 Reference Number: 644200, Revision: 1.0

• If an SFI VC and FC are mapped to a shared pool, TX must first check for shared
credit availability. Any given transaction will need one header credit and "y" data
credits (where the number of data DWORDs associated with the transaction is
greater than (y-1)*DATA_CRED_GRAN, but less than y*DATA_CRED_GRAN). "y"
will be 0 for transactions that do not have data associated with them. Shared
credits are available and used in one of the following two scenarios:

a. Case 1: Credits acquired, but not used yet.

(VCi_FCj_SHRD_ALLOC_HDR - VCi_FCj_SHRD_USED_HDR) >= 1, AND

(VCi_FCj_SHRD_ALLOC_DAT - VCi_FCj_SHRD_USED_DAT) >= y, AND

VCi_FCj_SHRD_USED_HDR + 1 <= VCi_FCj_MAX_HDR, AND

VCi_FCj_SHRD_USED_DAT + y <= VCi_FCj_MAX_DAT.

TX can schedule the transaction after incrementing VCi_FCj_SHRD_USED_DAT by "y"
and VCi_FCj_SHRD_USED_HDR by 1.

b. Case 2: Acquiring credits from Shared Pool "x" for VC "i" and FC "j"
In this case, the transmitter is arbitrating for acquiring a block of shared
credits. If (VCi_FCj_SHRD_ALLOC_DAT - VCi_FCj_SHRD_USED_DAT) is less
than “y”, TX would need to acquire data shared credits. If
(VCi_FCj_SHRD_ALLOC_HDR - VCi_FCj_SHRD_USED_HDR) is less than “1” TX
would need to acquire header shared credits. Thus, TX might attempt to
acquire data shared credits, or header shared credits, or both header and data
shared credits.
For acquiring header shared credits:

(VCi_FCj_SHRD_ALLOC_HDR - VCi_FCj_SHRD_USED_HDR) < 1, AND

VCi_FCj_SHRD_USED_HDR + 1 <= VCi_FCj_MAX_HDR, AND

SHRD_POOLx_CNTR_HDR >= SH_HDR_CRD_BLK_SZ, AND

VC "i" and FC "j" can arbitrate for shared credits, once it wins arbitration, TX can
schedule transaction after the following actions:

a. Increment VCi_FCj_SHRD_USED_HDR by 1
b. Increment VCi_FCj_SHRD_ALLOC_HDR by SH_HDR_CRD_BLK_SZ
c. Decrement SHRD_POOLx_CNTR_HDR by SH_HDR_CRD_BLK_SZ

For acquiring data shared credits:

(VCi_FCj_SHRD_ALLOC_DAT - VCi_FCj_SHRD_USED_DAT) < y, AND

VCi_FCj_SHRD_USED_DAT + y <= VCi_FCj_MAX_DAT, AND

SHRD_POOLx_CNTR_DAT >= (ceiling(y/SH_DATA_CRD_BLK_SZ)×
SH_DATA_CRD_BLK_SZ).

VC "i" and FC "j" can arbitrate for shared credits, once it wins arbitration, TX can
schedule transaction after the following actions:

a. increment VCi_FCj_SHRD_USED_DAT by "y"
b. increment VCi_FCj_SHRD_ALLOC_DAT by (ceiling(y/SH_DATA_CRD_BLK_SZ

)×SH_DATA_CRD_BLK_SZ)
c. decrement SHRD_POOLx_CNTR_DAT by (ceiling(y/

SH_DATA_CRD_BLK_SZ)×SH_DATA_CRD_BLK_SZ)

Reference Number: 644200, Revision: 1.0 27

Arbitration scheme for shared credits is implementation-specific, but TX must ensure
fairness.

• When the TX consumes the shared pool credit for a transaction, it must do so for
both header and data credits, and it indicates this on the "S" bit in the metadata for
both header and data channels (by setting it to 1b)

• If TX is not able to use shared credits for a sustained time period (this mechanism
is implementation-specific), it must use dedicated credits under the following
conditions:

VCi_FCj_DED_CNTR_HDR >= 1, AND

VCi_FCj_DED_CNTR_DAT >= y

TX can schedule the transaction after decrementing VCi_FCj_DED_CNTR_HDR by 1 and
VCi_FCj_DED_CNTR_DAT by "y".

• When TX consumes a dedicated pool credit, it must do so for both header and data
credits, and it indicates this to the RX by setting the "S" bit to 0 in the metadata for
both header and data channels.

• The following rules apply for credit returns after a successful connection:

a. If hdr_crd_rtn_valid = 1 and hdr_crd_rtn_vc_id = 5’d30 or 5’d31,
TX must increment the corresponding SHRD_POOLx_CNTR_HDR ("x" is
determined from the mapping given in Table 4-4) by hdr_crd_rtn_value.

b. else, if hdr_crd_rtn_valid = 1, hdr_crd_rtn_ded = 1,
hdr_crd_rtn_vc_id = i, and hdr_crd_rtn_fc_id = j, TX must
increment the corresponding VCi_FCj_DED_CNTR_HDR counter by
hdr_crd_rtn_value.

c. else, if hdr_crd_rtn_valid = 1, hdr_crd_rtn_ded = 0,
hdr_crd_rtn_vc_id = i, and hdr_crd_rtn_fc_id = j, TX must
increment the corresponding SHRD_POOLx_CNTR_HDR ("x" is determined
based on which shared pool VC "i" and FC "j" are mapped to) by
hdr_crd_rtn_value. It must also decrement VCi_FCj_SHRD_USED_HDR and
VCi_FCj_SHRD_ALLOC_HDR by hdr_crd_rtn_value.

d. If data_crd_rtn_valid = 1 and data_crd_rtn_vc_id = 5’d30 or
5’d31, TX must increment the corresponding SHRD_POOLx_CNTR_DAT ("x" is
determined from the mapping given in Table 4-4) by data_crd_rtn_value.

e. else, if data_crd_rtn_valid = 1, data_crd_rtn_ded = 1,
data_crd_rtn_vc_id = i, and data_crd_rtn_fc_id = j, TX must
increment the corresponding VCi_FCj_DED_CNTR_DAT counter by
data_crd_rtn_value.

f. else, if data_crd_rtn_valid = 1, data_crd_rtn_ded = 0,
data_crd_rtn_vc_id = i, and data_crd_rtn_fc_id = j, TX must
increment the corresponding SHRD_POOLx_CNTR_DAT ("x" is determined
based on which shared pool VC "i" and FC "j" are mapped to) by
data_crd_rtn_value. It must also decrement VCi_FCj_SHRD_USED_DAT
and VCi_FCj_SHRD_ALLOC_DAT by data_crd_rtn_value.

• After disconnect/reset, TX must assign all the counters (*CNTR*, *ALLOC*,
USED) to 0 before initiating a connect by asserting txcon_req.

Rules for the RX:

• As part of any connection flow, RX must advertise appropriately dedicated and
shared pool credits. Credits are advertised as credit returns after rxcon_ack is
asserted.

a. Dedicated credits for a VC/FC are advertised by setting *_crd_rtn_ded = 1
for corresponding header or data credit returns. At least one dedicated header
credit must be advertised for every supported SFI VC/FC (with the exception of

28 Reference Number: 644200, Revision: 1.0

all FCs for VC 5’d30 and 5’d31, since these are only used to advertise shared
credits). At least maximum payload size worth of data credits must be
advertised for every supported SFI VC or FC. The maximum payload size per SFI
VC/FC is a design-time determination and must adhere to the underlying
protocol requirements.

b. Shared credits for a pool are advertised by returning credits on the
corresponding shared pool VC (in other words, VC ID 5’d30 or 5’d31) for both
header and data. *_crd_rtn_ded = 0 for these credit returns. This is
required at every connect flow since there are no transactions in the RX buffer.
RX must advertise sufficient shared credits to meet a given SFI instance's
performance goals for the worst-case credit loop delays and QoS requirements
across different SFI VCs.

• During a connected state, while traffic is flowing from TX to RX, credits are
returned as transactions are deallocated from the RX buffers of RX. RX tracks the
"S" bit from the metadata of a transaction to know whether to return a shared
credit or dedicated credit for that transaction. Shared credits must only be returned
when the corresponding block of entries has de-allocated (i.e., TX must have used
the credits from a block, and the entire block must have de-allocated at RX).
Header credits can be returned when the corresponding header block deallocates, it
does not have to wait for the corresponding data to deallocate. Data credits can be
returned when the corresponding data block bytes deallocate, it does not have to
wait for the corresponding header to deallocate. RX must take DATA_CRED_GRAN
into account for returning data credits. In other words, it must return one credit for
every 4*DATA_CRED_GRAN bytes of data. RX is allowed to accumulate multiple
credit returns to use the credit return bus efficiently.

a. Dedicated credits are returned for a VC/FC by setting *_crd_rtn_ded = 1 for
the credit returns corresponding to that VC/FC.

b. Shared credits are returned by setting *_crd_rtn_ded = 0 for the credit
returns. The VC ID and FC ID is set corresponding to the VC ID and FC ID of
the block that deallocated from the RX buffers. (Besides the initial
advertisement of shared credits, shared credit returns do not carry the VC ID of
5’d30 or 5’d31, but rather they carry the VC/FC ID of the transaction being
deallocated from the RX buffers, this allows TX to manage the occupancy of
shared buffers per VC/FC sharing the buffer and guarantee bandwidth QoS).

This is an example mapping of two shared credit pools advertised by an RX for PCIe*
usage that support two VCs on the link:

• SFI VC encoding 5'd0: maps to PCIe* advertised VC0 on the link

• SFI VC encoding 5'd1: maps to PCIe* advertised VC1 on the link

• FC encoding 5'd0: Posted (P)

• FC encoding 5'd1: Non-Posted (NP)

• FC encoding 5'd2: Completions (C)

• VC encoding 5'd30, FC encoding 4'd0: Shared credit pool 1, all VCs, P or C can use
this

• VC encoding 5'd30, FC encoding 4'd1: Shared credit pool 2, all VCs, NP can use this

4.5.1.1.1 Type 1 Shared Credit Example
Figure 4-11 gives a simple example of how shared credits are used by the transmitter,
and released by the receiver for header transfer across SFI. The transmitter gating
function around *MAX_HDR is not shown for this example.

Reference Number: 644200, Revision: 1.0 29

4.5.1.2 Type 2: RX-Managed
In this scheme, the RX is responsible for managing shared buffers. Only the dedicated
credits are advertised to the TX. Typically, the advertised dedicated credits cover the
point-to-point credit loop across the SFI, and the shared credits are used to cover the
larger credit loops (for example the CPU fabric or Application Layer latencies). After a
particular FC/VC ID transaction is received and shared credits are available, a credit
can be returned for that FC/VC ID (without waiting for the transaction to deallocate
from the RX queue). This implicitly gives a shared buffer spot for that FC/VC ID.
Internally, the RX must track the credits returned to TX per FC/VC and the credits
currently consumed by TX. With this tracking, RX can ensure the maximum number of
buffers used per FC/VC. RX must guarantee the required dedicated resources for
forward progress guarantee.

4.5.2 Flow Control Error Handling
Error handling for illegal flow control cases results in undefined behavior. It is
recommended that agents and fabric check for illegal cases to trigger assertions in
Register-Transfer Level (RTL) and also log or signal fatal errors to allow for post-silicon
debug. It is expected that HDR and DATA streams are always consistent with each
other, meaning that if TX must send the DATA in the same order, it is sending the
corresponding headers and vice versa. It is strongly recommended for RX to flag fatal
errors for violations.

Figure 4-11. Example Flow for Shared Credit Allocation and De-Allocation

SFI RXSFI TX

HDR

Legend

CRDT

SHRD_POOL0_CNTR_HDR = 0
VC0_FC0_SHRD_ALLOC_HDR = 0
VC0_FC0_SHRD_USED_HDR = 0
VC1_FC0_SHRD_ALLOC_HDR = 0
VC1_FC0_SHRD_USED_HDR = 0

SHRD_POOL0_CNTR_HDR = 8
VC0_FC0_SHRD_ALLOC_HDR = 0
VC0_FC0_SHRD_USED_HDR = 0
VC1_FC0_SHRD_ALLOC_HDR = 0
VC1_FC0_SHRD_USED_HDR = 0

1. At initialization, RX advertises 8 shared header credits

2. TX queues up headers from multiple VCs mapped to same pool to be forwarded to RX

3. TX reserves SH_HDR_CRD_BLK_SZ=4 shared credits from pool 0 for VC0 and uses them
to send M=2 headers at a time. RX allocates to Block 0

SHRD_POOL0_CNTR_HDR = 4
VC0_FC0_SHRD_ALLOC_HDR = 4
VC0_FC0_SHRD_USED_HDR = 2
VC1_FC0_SHRD_ALLOC_HDR = 0
VC1_FC0_SHRD_USED_HDR = 0

4. TX needs to reserve another block‐size of credits from pool 0 for VC1 headers and uses
them to send M=2 headers at a time. RX allocates to new block

SHRD_POOL0_CNTR_HDR = 0
VC0_FC0_SHRD_ALLOC_HDR = 4
VC0_FC0_SHRD_USED_HDR = 2
VC1_FC0_SHRD_ALLOC_HDR = 4
VC1_FC0_SHRD_USED_HDR = 2

5. TX sends more VC0 headers with already allocated credits

6. TX sends more VC1 headers with already allocated credits

SHRD_POOL0_CNTR_HDR = 0
VC0_FC0_SHRD_ALLOC_HDR = 4
VC0_FC0_SHRD_USED_HDR = 4
VC1_FC0_SHRD_ALLOC_HDR = 4
VC1_FC0_SHRD_USED_HDR = 2

SHRD_POOL0_CNTR_HDR = 0
VC0_FC0_SHRD_ALLOC_HDR = 4
VC0_FC0_SHRD_USED_HDR = 4
VC1_FC0_SHRD_ALLOC_HDR = 4
VC1_FC0_SHRD_USED_HDR = 4

7. RX deallocates a block of VC0 headers SH_HDR_CRD_BLK_SZ=4 and can now return
credits to the shared pool

8. RX deallocates a block of VC1 headers SH_HDR_CRD_BLK_SZ=4 and can now return
credits to the shared pool

SHRD_POOL0_CNTR_HDR = 4
VC0_FC0_SHRD_ALLOC_HDR = 0
VC0_FC0_SHRD_USED_HDR = 0
VC1_FC0_SHRD_ALLOC_HDR = 4
VC1_FC0_SHRD_USED_HDR = 4

SHRD_POOL0_CNTR_HDR = 8
VC0_FC0_SHRD_ALLOC_HDR = 0
VC0_FC0_SHRD_USED_HDR = 0
VC1_FC0_SHRD_ALLOC_HDR = 0
VC1_FC0_SHRD_USED_HDR = 0

30 Reference Number: 644200, Revision: 1.0

5 Connect and Disconnect
This section describes the connect, and the disconnect flows for SFI. Flows are invoked
during boot or reset and when going into a low power mode.

Connect Flow

SFI defines an initialization phase where information about credit availability in the RX
is communicated to the TX after a connection is established. It is permitted for Reset to
independently de-assert between the TX and RX sides of SFI. For independent reset,
the initialization signals are driven to the disconnected condition when in reset, and no
traffic is sent until initialization reaches the connected state.

Disconnect Flow

Agents optionally support the disconnect flow with the following primary usage models:
reconfiguring credits and power saving. Without this flow, all SFI credits must be
configured to a final value before the first connection can proceed. It is recommended
that the Disconnect flow is co-ordinated through higher-level SoC or firmware
involvement to facilitate optimal usage and avoid race conditions. As an example, one
implementation could involve an SoC aggregator collect sideband idle indications from
TX and RX before triggering TX to initiate the disconnect flow for power gating.

One end of SFI (after coming out of reset) does not have implicit requirements for
when the other end should come out of reset. An explicit handshake mechanism during
initialization ensures that both endpoints (and all pipeline stages between them) are
out of reset before any credits or transactions being sent on SFI.

After connection, RX sends credits for dedicated VC buffers and shared buffers.

5.1 Initialization States
Initialization states are defined based on the following three wires:

• txcon_req

• rxcon_ack

• rxdiscon_nack

The state is used to determine actions necessary on the RX and TX of the SFI as
defined in Table 5-1. The basic state transitions are shown in Figure 5-1 and detailed
rules for connect and disconnect flows are captured in subsequent sections.

Reference Number: 644200, Revision: 1.0 31

Table 5-1. Initialization State Actions

Figure 5-1. Initialization State Machine

5.2 Signaling Rules
1. txcon_req signal use:

0 to 1  Connection request
1 to 0  Disconnection request

2. Credit return behaves similarly during the first initialization of credits as it does
during the runtime return of credits.

3. The rx_empty signal indicates all channel credits returned from the RX and all RX
queues are empty. This does not account for messages in flight or in intermediate
buffers such as clock crossing queues.

txcon_req rxcon_ack rxdiscon_nack State TX Actions RX Actions

1 0 0 Connection request
(connecting)

Sink credits
Do not send packets

Do not send credits
Do not sink packets

1 1 0/1 Connected Sink credits
Send packets

Send credits
Sink packets

0 1 0 Disconnection request
(disconnecting)

Sink credits
Do not send packets

0 1 1
Deny (disconnect
rejected) and must go
back to connected

0 0 0 Disconnected Drop credits
Do not send packets

Do not send credits
Do not sink packets

1/0 0 1 Illegal states n/a n/a

Disconnected Connected Deny

rxcon_ack
= 1

DisconnectingConnectedConnecting

RESET

txcon_req = 1
rxcon_ack = 0

rxdiscon_nack = 0

txcon_req = 1
rxcon_ack = 1

rxdiscon_nack = 0

txcon_req = 0
rxcon_ack = 1

rxdiscon_nack = 0

txcon_req = 0
rxcon_ack = 0

rxdiscon_nack = 0

txcon_req = 1
rxcon_ack = 1

rxdiscon_nack = 1

txcon_req = 0
rxcon_ack = 1

rxdiscon_nack = 1

txcon_req
= 1

txcon_req
= 0

rxdiscon_nack
= 1

rxdiscon_nack
= 0

rxcon_ack
= 0

32 Reference Number: 644200, Revision: 1.0

a. During initialization, if Disconnect is not supported, TX is permitted to send
messages as soon as any credits are available and not depend on rx_empty
assertion. if Disconnect is supported and TX_CRD_REG=0, TX must stall the
sending of any packets after connect until rx_empty is asserted. It must use
the credits received as an indication of the total credits a RX has advertised.

Note: 3 (a) implies a timing relationship between rx_empty and the credit return signals.
Specifically, the assumption is that implementations guarantee rx_empty cannot race
ahead of credit return signals. This is trivial in designs that do not support clock
crossings or dynamic clock gating. When clock crossings or dynamic clock gating is
supported (i.e., scenarios where *crd_rtn_block can assert), it is required that TX
implementations expose configuration registers that can be programmed and/or reset
to indicate the maximum credits RX can advertise (this avoids several race conditions
related to in flight credit returns, idle determination and disconnect flow). TX_CRD_REG
is the parameter that indicates support for this. These configuration registers (also
referred to as credit registers) are programmed through implementation-specific
sideband mechanisms. Suppose credit reconfiguration post reset is not required. In
that case, it is permitted to set the reset defaults of these registers to be the maximum
credits RX will advertise, and no further programming is required. However, if relying
on software or firmware programming, TX must expose a ProgrammingDone bit with
default value 0, and wait for software or firmware to write 1 to it before consuming the
values in the credit registers.
4. TX is permitted to send packets when it receives enough credits from the RX. It

must make sure there are sufficient HDR and Data credits for a given packet before
it transmits on either channel.

5. Connection Ack always follows connection Req.

a. Req is signaled by txcon_req transitioning from 0  1. This transition is
indication the TX is ready to receive credits and is in normal operation.

b. Ack is signaled with rxcon_ack transitioning from 0  1. Ack might be stalled
until RX is ready to complete.

6. Disconnect Ack or NAck follows Disconnect Req.

a. Disconnect Req is signaled by a txcon_req transition from 1  0.
b. Disconnect Ack is signaled by a rxcon_ack transition from 1  0.
c. Disconnect NAck is signaled by a rxdiscon_nack transition from 0  1.
d. RX must select Ack versus NAck for each disconnect request. The response

time is implementation-specific, but must not cause system level timeouts, and
so on.

5.3 Reset and Connect Flow
Figure 5-2 shows the initialization flow, and the accompanying text focuses only on the
initialization description. An interface is considered IDLE if either of the following
conditions is true:

1. The Interface is in a Disconnect state with no outstanding connection request from
TX. Credit avail counters of TX are 0. This is the same as Reset state.

2. The Interface is in a Connected state, and there are no outstanding transactions
from TX. Credit avail counters would have the maximum advertised credits from
RX.

Steps for connection:

1. After TX is out of reset, it asserts txcon_req to RX.
2. After RX is out of reset, it waits for txcon_req from TX.

Reference Number: 644200, Revision: 1.0 33

3. After RX receives txcon_req, it asserts rxcon_ack to TX. rxcon_ack must
assert at least one cycle after txcon_req asserts.

4. After RX asserts rxcon_ack to TX, it can immediately start returning credits.

5. After the minimum credits are received to send packets, TX can start sending
packets (provided conditions outlined in rule 3 [a] of Section 5.2 are met).

Table 5-2 lists each major time marker from Figure 5-2.

Figure 5-2. Reset to Connected Timing Diagram

5.4 Disconnect and Reconnect Flow
As mentioned previously, it is recommended that implementations coordinate idle
conditions through higher level SoC or firmware assistance for triggering a disconnect
flow. This helps simplify hardware implementations. In addition, TX must ensure it has
received all the expected credits from RX and have no transactions in flight before
initiating a Disconnect flow. If TX_CRD_REG is 1, TX knows the maximum expected

Table 5-2. Reset Time Marker Description

Time Marker Description

X1 TX and RX are in reset.

X2 RX reset might de-assert.

X3 TX reset de-asserts, allowing it to start initialization.

X4

TX asserts txcon_req. This can be an arbitrary number of cycles after reset. Until the
connection is complete, this signal must remain asserted and can only de-assert as part of
the disconnect flow.
After asserting txcon_req, the TX must be able to accept credit returns because credit
returns might be observed before observation of rxcon_ack due to intermediate pipeline
stage differences.

X5
rxcon_ack asserts after both RX reset de-asserts and txcon_req asserts. A fixed number
of cycles is not required between X4 and X5 rxcon_ack can only de-assert as part of the
disconnect flow.

X5
RX can start returning credits simultaneously with the assertion of rxcon_ack. There are
no strict expectations on flight time or observation of when TX observes the Ack relative to
the credits.

Disconnected Connecting Connected

CHAN_*CRD*

Link State

No credit returns

Rx_reset

rxdiscon_nack

rxcon_ack

Tx_reset

txcon_req

CHAN Credit Returns

x1 x2 x3 x4 x5 x6 x7

34 Reference Number: 644200, Revision: 1.0

credit returns from RX via the credit registers. If TX_CRD_REG is 0, implementations
guarantee the timing relationships between rx_empty and credit return signals as
outlined in Section 5.2 rule 3 (a).

The following steps refer to Figure 5-3 and reference the timestamps in that diagram.

1. TX de-asserts txcon_req to disconnect at time x3.
a. rxdiscon_nack must be de-asserted before txcon_req de-assertion.
b. TX must not be sending messages on any channel.

2. RX must decide to acknowledge (Ack) or negatively acknowledge (NAck or reject)
the disconnect.

a. To Ack, RX de-asserts rxcon_ack after ensuring all pipelines are empty at time
x4 in Figure 5-3, which marks the entry into a disconnected state. Optionally, it
can also ensure that all credits have been returned.

b. To NAck, the RX asserts the rxdiscon_nack at time x4 in Figure 5-4. It might
choose to do this if it is unable to drain its pipelines without risking deadlock.

• After NAck, the txcon_req must re-assert as shown at time x5 in
Figure 5-4.

• After that is observed, the rxdiscon_nack can de-assert at time x6 in
Figure 5-4.

3. The Reconnect flow is the same as the Reset flow with the following exceptions:

a. To start a new credit initialization, RX must reset its credit counters to reset
values.

b. TX resets its credit_avail counters to zero before asserting txcon_req. If
TX_CRD_REG = 1, TX must reset the credit registers and if applicable, the
ProgrammingDone bit must be reset to 0 as well.

Note: The connect and disconnect flows are expected to complete within a few microseconds
after initiation, but no timeout is explicitly defined. To meet this expectation for
disconnect, the RX should reply Ack or NAck within this time window. The Agent, Fabric,
or SoC can define a timeout requirement to ensure this.

Reference Number: 644200, Revision: 1.0 35

Figure 5-3. Connect to Disconnect to Connected Flow

Figure 5-4. Deny for Disconnect (Disconnect NAck)

5.5 Surprise Reset
A surprise reset occurs when the TX or RX resets while SFI is connected. The
recommended flow is to use disconnect before reset. This section captures the
expected behavior if a surprise reset occurs.

There are two cases to consider for a surprise reset:

1. rxcon_ack 1  0 occurs because of a surprise reset on the RX side of the link
while TX txcon_req is 1:
TX forces itself to a disconnected state and re-starts initialization.
a. If this happens when TX is in an idle state, it can recover without loss of

messages.

2. txcon_req1  0 occurs because of a surprise reset on the TX side of the link
while rxcon_ack is 1:

Follow the regular disconnect flow.
a. If this happens when RX is in an idle state, disconnect should receive Ack and

cleanly reach a disconnected state-provided TX stays in reset.
b. If the disconnect is Denied (NAck) by RX, it results in a fatal or illegal link state

that does not recover.
For both cases, if traffic is active (in other words, not idle), a loss of protocol messages
can result and will likely be fatal to continue regular operation

Disconnecting Connected

x1 x2 x3 x4 x5

Link State Connected

rxcon_ack

Disconnected Connecting

x6 x7 x7+1 x7+2

rxdiscon_nack

txcon_req

CHAN_*crd* Credits Dropped CHAN Credit Return Re-initCHAN Credit Returns

Disconnecting Connected

x1 x2 x3 x4 x5

Link State Connected

txcon_req

x6 x6+1 x6+2

CHAN_*crd*

rxdiscon_nack

rxcon_ack

Deny

CHAN Credit Returns

36 Reference Number: 644200, Revision: 1.0

6 Mode Configuration
For a given SoC use case, SFI expects the configuration of an interface to be static. The
exact solution for defining the configuration can be done in different ways and is not
mandated by SFI. One way to configure the interface is through static RTL parameters.

Table 6-1. Parameters Supported
Parameter Description

VT Width of tx_vendor_field.

VR Width of rx_vendor_field.

VIRAL_EN This is either 0 or 1. Indicates the viral signal is supported on the global channel.

FATAL_EN This is either 0 or 1. Indicates the fatal signal is supported on the global channel.

BLOCK_EARLY_VLD_EN This is either 0 or 1. Indicates all the *_block and *_early_valid signals are supported.

M Maximum number of headers that can be transmitted on a given cycle.

MAX_HDR_WIDTH Maximum size of 1 header in bytes. One header credit corresponds to MAX_HDR_WIDTH bytes of
storage. A minimum and maximum of one credit is used per header transfer.

H Total width of header in bytes. If the interface is optimizing throughput for a header size of HX (can
be less than MAX_HDR_WIDTH), this is HX*M.

NHCRD Width (number of bits) of credit return value signal on HDR channel.

HGRAN Design parameter for granularity of HDR SIZE field in hdr_info_bytes. Typically, this is set to four
bytes (DWORD).

HPARITY This is either 0 or 1. When set to 1, it indicates header parity is supported. When set to 0, it
indicates header parity is not supported.

HDR_MAX_FC_VC
Maximum number of FC and VC ID combinations that can be received in one cycle on the HDR Layer.
It is recommended that this should be 1 or 2.
All TX must support setting this to 1 for interoperability reasons.

MAX_CRD_CNT_WIDTH Determines the width in number of bits for all the credit counters.

SHARED_CRD_EN This is either 0 or 1. When set to 1, it implies Type 1 shared crediting is used.

NUM_SHARED_POOLS
Number of shared pools for Type 1 shared crediting, must be a number greater than or equal to 0
and less than or equal to 8. If SHARED_CRD_EN = 1, this must be greater than or equal to 1. If
PCIE_SHARED_SELECT is 0, IP data sheet must provide shared pool to FC/VC mapping.

PCIE_SHARED_SELECT

This is either 0 or 1. If it is 1, PCIe* shared pool allocation is used; i.e.
SHARED_CRD_EN = 1,
NUM_SHARED_POOLS = 2 if PCIE_MERGED_SELECT = 1; shared pool 0 is for Posteds and
Completions, shared pool 1 is for Non-Posteds.
else NUM_SHARED_POOLS=3 if PCIE_MERGED_SELECT = 0; shared pool 0 is for Posteds, shared
pool 1 is for Non-Posteds, shared pool 2 is for Completions.

PCIE_MERGED_SELECT This is either 0 or 1. If 1, Posteds and Completions share the same shared pool. If 0, Posteds and
completions have separate shared pools of credits.

SH_HDR_CRD_BLK_SZ Indicates the block size for shared header credit returns from the RX. It must be set to 1 or more.
It is strongly recommended for TX to provide a configuration register for this parameter.

DATA_MAX_FC_VC
Maximum number of FC and VC ID combinations that can be received in one cycle on the DATA
Layer. It is recommended that this be 1 or 2.
All TX must support setting this to 1 for interoperability reasons.

D Total width of the data signal in bytes. This must be a multiple of 4.

DS Maximum number of independent data packets that can be sent in one cycle.
All TX must support setting this to 1 for interoperability reasons.

NDCRD Width (number of bits) of credit return value signal on DATA channel.

DATA_PARITY_EN This is either 0 or 1. If set to 1, data_parity signal is instantiated, and used to transfer data parity
across the interface.

Reference Number: 644200, Revision: 1.0 37

6.1 Implementation Example
Table 6-2 gives an example set of key parameter values that can be used for PCIe* 6.0
implementation that is optimized for 16B payload memory transactions. The values are
for an operating frequency of 2GHz for the interface. See the PCI Express* (PCIe*)
Base Specification 6.0 for details of TLP formats.

Table 6-2. Example Parameter Assignments for PCIe* 6.0

DATA_AUX_PARITY_EN This is either 0 or 1. If set to 1, data_aux_parity signal is instantiated, and used to transfer data
parity across the interface.

DATA_PASS_HDR

This is either 0 or 1. If set to 1, TX can allow Data to race ahead of the corresponding header. If set
to 0, TX will always send header before the corresponding Data.
All TX must support setting this to 0 for interoperability reasons.
It is strongly recommended that this parameter be set to 0, so that the RX data tracking is
simplified.

HDR_DATA_SEP

This is applicable when DATA_PASS_HDR = 0. If set to 1, data for a corresponding header is 1 cycle
behind the header. If set to 0, data can be 1 or more cycles behind the corresponding header.
All TX must support setting this to 1 for interoperability reasons. Setting this greater than 1 is
permitted, and it indicates a fixed delay of those many clock cycles.

DATA_INTERLEAVE This is either 0 or 1. When advertised as 1 by a RX, it indicates that the RX is capable of dealing with
data interleaving across different FC and VC over different clock cycles.

ECRC_SUPPORT This is either 0 or 1. When set to 1, it indicates ECRC is supported. When set to 0, it indicates ECRC
is not supported.

IDE_SUPPORT

This is either 0 or 1. When set to 1, it indicates that IDE TLPs are permitted to be sent across the
interface. The formats of the prefixes and MAC follow the flit mode definitions given in PCI Express*
(PCIe*) Base Specification 6.0. Implementations must also follow all the routing or ordering rules
outlined in the specification.

DATA_CRD_GRAN Credit granularity for data credits in DWORDs. Typically set to 4 DWORD (or 16 Bytes) to match
PCIe*, in other words, each credit accounts for 16 bytes of storage in the RX.

SH_DATA_CRD_BLK_SZ Indicates the block size for shared data credit returns from the RX. It must be set to 1 or more.
It is strongly recommended for TX to provide a configuration register for this parameter.

TBN

See Section 4.4.1.
0x0 – No Blocking
0x1 – Blocking is enabled with a response time of 1 cycle
0x2 – Blocking is enabled with a response time of 2 cycles
0x3 – Blocking is enabled with a response time of 3 cycles

RBN

See Section 4.4.1.
0x0 – No Blocking
0x1 – Blocking is enabled with a response time of 1 cycle
0x2 – Blocking is enabled with a response time of 2 cycles
0x3 – Blocking is enabled with a response time of 3 cycles

TX_CRD_REG If 1, Tx exposes configuration registers that can be programmed or reset to values that indicate the
maximum credits advertised by Rx for each credit pool.

BCM_EN If 1, the vendor defined prefix shown in Figure 4-6 is the first DWORD for all completion headers
sent over SFI.

FLIT_MODE_PREFIX_EN If 0, transmitters must never send Flit Mode TLP prefix over SFI. See Section 4.2.3.

Parameter Description

Parameter Description

M = 2 At 2 GHz, a throughput of two headers per cycle would be optimized for 16B
payloads.

H = 48
Optimized for 6DW header- 4DW of base, 1DW of OHC-A (that carries PASID and
BE), 1DW of OHC-B (TLP hints PH/ST). If ECRC support is desired, then this
should be 8DW per header, or H=64.

38 Reference Number: 644200, Revision: 1.0

HGRAN=4 Design parameter for granularity of HDR SIZE field in hdr_info_bytes. Typically
this is set to four bytes (DWORD).

HPARITY=1 When set to 1, it indicates HDR parity is supported.

HDR_MAX_FC_VC=1 Maximum number of FC and VC ID combinations that can be received in one
cycle on the HDR layer.

SH_HDR_CRD_BLK_SZ Implementation-specific, based on what block size optimizes RX storage
structures.

DATA_MAX_FC_VC=1 Maximum number of FC and VC ID combinations that can be received in one
cycle on the DATA layer.

D=64 Total width of the data signal in bytes. 64 B can hit 128 GB/s for larger payloads
at 2 GHz.

DS=2
Maximum number of independent data packets that can be sent in one cycle.
Allow sending two independent smaller payload packets, for example, two 16B
payloads in one cycle.

DATA_PASS_HDR=0
If set to 0, TX will always send HDR before the corresponding Data.
It is strongly recommended that this parameter be set to 0, so that the RX data
tracking is simplified.

HDR_DATA_SEP=0 If set to 0, data can be 1 or more cycles behind the corresponding header.

DATA_INTERLEAVE=1 When advertised as 1 by a RX, it indicates that the RX is capable of dealing with
data interleaving across different FC and VC over different clock cycles.

DATA_CRD_GRAN=4 Credit granularity for data credits is set to 4DW.

SH_DATA_CRD_BLK_SZ Implementation-specific, based on what block size optimizes RX storage
structures.

Parameter Description

	1 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2 Overview
	3 SFI Interface
	3.1 SFI Physical Channels
	3.2 SFI Protocols Supported

	4 SFI Physical Channel Description
	4.1 Global Layer
	4.2 HDR Layer
	4.2.1 Example Header Transfer
	4.2.2 PCIe* and CXL.io* Packet Format Examples
	4.2.3 Additional Considerations

	4.3 Data Layer
	4.3.1 Example Data Transfer

	4.4 Clocks and Resets
	4.4.1 Block and Early_valid rules
	4.4.2 Dynamic Clock Gating

	4.5 Channel Flow Control
	4.5.1 Sharing Credits
	4.5.2 Flow Control Error Handling

	5 Connect and Disconnect
	5.1 Initialization States
	5.2 Signaling Rules
	5.3 Reset and Connect Flow
	5.4 Disconnect and Reconnect Flow
	5.5 Surprise Reset

	6 Mode Configuration
	6.1 Implementation Example

