

Intel® Ethernet Network Adapter E810-XXVDA4T

User Guide

NEX Cloud Networking Group (NCNG)

October 2023

Revision History

Revision	Date	Comments
1.5	October 18, 2023	Updates include the following: Updated Section 2.1, "E810-XXVDA4T Features". Updated operating temperature in Table 2.1, "E810-XXVDA4T Features". Updated Section 3.1, "Software Support/Packages". Updated Section 3.2, "Building a linuxptp Project". Updated Section 4.4, "Channel 1 Configurations". Updated Section 4.5, "Channel 2 Configurations". Updated Section 4.6, "Recovered Clocks (G.8261 SyncE Support)". Updated Section 4.7, "External Timestamp Signals". Updated Section 4.9, "Reading Status of the DPLL". Updated Section 4.10, "DPLL Monitoring". Updated Section 4.11, "Advanced DPLL Configuration". Updated Section 4.12, "1PPS Signals from E810 Device to DPLL". Updated Section 4.13, "1PPS Signals from the DPLL to E810 Device". Updated Section 4.14, "GNSS Module Interface".
		 Updated Section 4.15, "GNSS Advanced Features". Updated Section 4.15.1, "Prerequisites and Steps to Fully Enable GNSS Features". Added Section 4.15.2, "GNSS Receiver Configuration Layers in the E810-XXVDA4T". Added Section 4.15.4, "Enabling and Disabling Additional Constellations". Updated Section 4.15.5, "Perform Survey-In for New Location Setup". Updated Section 4.15.6, "Check Survey-In Status". Added Section 4.15.7, "Saving Survey-In Position to FLASH". Added Section 4.15.8, "Simulate Antenna Removal". Updated Section 4.15.9, "Check GNSS Overall Configuration Performance". Updated Section 5.2.2, "Software Configuration". Updated Section 5.3.2, "Software Configuration". Updated Section 5.6.6, "Two E810-XXVDA4T Adapters with GNSS Connection Setup". Updated Section 5.9, "Example ts2phc Configuration File". Updated Section 6.2.1, "Leader Adapter". Updated Appendix A, "Debug Notes"
1.4	March 7, 2023	Updates include the following: • Updated Section 3.1, "Software Support/Packages". • Updated Section 4.2, "DPLL Priority". • Updated Section 4.6, "Recovered Clocks (G.8261 SyncE Support)". • Updated Section 4.7, "External Timestamp Signals". • Updated Section 4.9, "Reading Status of the DPLL". • Updated Section 4.10, "DPLL Monitoring". • Updated Section 4.11.1, "pin_cfg User Readable Format". • Updated Section 4.12, "1PPS Signals from E810 Device to DPLL". • Updated Section 4.13, "1PPS Signals from the DPLL to E810 Device". • Updated Section 4.14, "GNSS Module Interface". • Updated Section 4.15, "GNSS Advanced Features". • Updated Section 4.15.1, "Prerequisites and Steps to Fully Enable GNSS Features". • Updated Section 4.15.3, "Perform Antenna Status Check New Location Setup". • Updated Section 4.15.6, "Check Survey-In for New Location Setup". • Updated Section 4.15.9, "Check GNSS Overall Configuration Performance". • Updated Section 5.2.2, "Software Configuration". • Updated Section 5.5.2, "Software Configuration". • Updated Section 5.5.2, "Software Configuration". • Updated Section 5.6.5, "Two E810-XXVDA4T Adapter Configuration without GNSS and

Revision	Date	Comments
1.4 (Continued)	March 7, 2023	 Updated Section 5.8, "Example ts2phc Configuration File". Updated Section 5.9, "Example ptp4l Configuration File for BC". Updated Section 6.2.2, "Follower Adapter". Updated Appendix A, "Debug Notes"
1.3	December 15, 2022	Updates include the following: Updated GNSS interface naming to /dev/ttyGNSS_BBDD. Added Section 2.3, "Synchronization Signaling". Added Section 2.4, "Optional GNSS Module". Added Section 3.4, "Building a synce4l Tool". Updated Section 4.1, "Introduction". Added notes to Section 4.7, "External Timestamp Signals". Updated Section 4.9, "Reading Status of the DPLL". Updated Section 4.11.1, "pin_cfg User Readable Format". Updated Section 4.11.2, "dpll_ <x>_ref_pin/dpll_<x>_state Machine Readable Interface (X = 0 /1)". Updated Section 4.14, "GNSS Module Interface". Added Section 4.15, "GNSS Advanced Features". Updated Section 5.2.1, "External Connections". Updated Section 5.2.2, "Software Configuration". Updated Section 5.3.2, "Software Configuration". Updated Section 5.6.3, "SyncE Setup". Added Section 5.6.3, "ITU G.8264 ESMC Messaging Using synce4l". Added Section 5.6.4, "Two E810-XXVDA4T Adapter Configuration without GNSS". Added Section 5.6.6, "Two E810-XXVDA4T Adapters with GNSS Connection Setup". Added Section 5.6.6, "Two E810-XXVDA4T Adapters with GNSS Connection Setup". Added Section 5.6.1, "Example synce4l Configuration File for BC". Updated Section 6.2.1, "Leader Adapter". Updated Section 6.2.2, "Follower Adapter". Updated Appendix A, "Debug Notes"</x></x>
1.2	June 15, 2022	Updates include the following: • Updated Section 3.1, "Software Support/Packages". • Updated Section 5.9, "Example ptp4l Configuration File for BC".
1.1	March 25, 2022	 Updates include the following: Updated Section 3.1, "Software Support/Packages". Updated Section 4.9, "Reading Status of the DPLL". Added Section 4.11.1, "pin_cfg User Readable Format". Added Section 4.11.2, "dpll_<x>_ref_pin/dpll_<x>_state Machine Readable Interface (X = 0 /1)".</x></x> Updated Section 4.14, "GNSS Module Interface". Updated Section 5.2.2, "Software Configuration". Updated Section 5.3.2, "Software Configuration". Updated Appendix A, "Debug Notes".
1.0	February 18, 2022	Initial public release.

NOTE: This page intentionally left blank.

Contents

1.0	Intro	duction	7
1.1	Refe	erence Documents	7
2.0	E810-	-XXVDA4T Ethernet Network Adapter	9
2.1	E81	0-XXVDA4T Features	9
2.2	Arch	hitecture	11
2.3	Syn	chronization Signaling	13
2.4		ional GNSS Module	
3.0	Softw	are, Firmware, and Drivers	14
3.1	Soft	tware Support/Packages	14
3.2	Buil	ding a linuxptp Project	16
3.3	Rela	ated linuxptp Information	16
3.4	Buil	ding a synce4l Tool	17
4.0	Confi	guring the E810-XXVDA4T Using the Linux Kernel Interface	18
4.1	Intr	oduction	18
4.2	DPL	L Priority	19
4.3	Exte	ernal Connectors	20
4.4		nnel 1 Configurations	
4.5	Cha	nnel 2 Configurations	22
4.6	Rec	overed Clocks (G.8261 SyncE Support)	23
4.7		ernal Timestamp Signals	
4.8		odic Outputs from DPLL (SMA and U.FL Pins)	
4.9		ding Status of the DPLL	
4.10		L Monitoring	
4.1		anced DPLL Configuration	
	.11.1	pin_cfg User Readable Format	
	.11.2	$dpII_{X}=ref_pin/dpII$	
4.12		S Signals from E810 Device to DPLL	
4.13		S Signals from the DPLL to E810 Device	
4.14		SS Module Interface	
4.1		SS Advanced Features	
	.15.1	Prerequisites and Steps to Fully Enable GNSS Features	
	.15.2	GNSS Receiver Configuration Layers in the E810-XXVDA4T Perform Antenna Status Check New Location Setup	
	.15.3 .15.4	Enabling and Disabling Additional Constellations	
	.15.4	Perform Survey-In for New Location Setup	
	.15.6	Check Survey-In Status	
-	.15.7	Saving Survey-In Position to FLASH	
	.15.7	Simulate Antenna Removal	
-	.15.9	Check GNSS Overall Configuration Performance	
		guration Setup	
5.1		able All SMA and U.FL Connections	
5.2		Grand Leader (GM) with Optional GNSS Module	
	.2.1	External Connections	
_	.2.1	Software Configuration	
5.3		Grand Leader (GM) with External GNSS Clock	
	.3.1	External Connections	
	.3.2	Software Configuration	
5.4		ndary Clock Configuration	
	.4.1	External Connections	
_	.4.2	Boundary Clock Notes	
		·	

	5.4.3	Software Configuration	47
5.5	5 P	ort Configured as Follower	49
	5.5.1	External Connections	49
	5.5.2	Software Configuration	49
5.6	5 S	yncE Setup	51
	5.6.1	External Connections	51
	5.6.2	Physical Clock Recovery	51
	5.6.3	ITU G.8264 ESMC Messaging Using synce4l	52
	5.6.4	Two E810-XXVDA4T Adapter Configuration without GNSS	52
	5.6.5	Two E810-XXVDA4T Adapter Configuration without GNSS and with 1PPS	55
	5.6.6	Two E810-XXVDA4T Adapters with GNSS Connection Setup	58
5.7	7 O	P-RAN Configuration 1	61
	5.7.1	External Connections	61
	5.7.2	Software Configuration	61
5.8	3 E	xample ts2phc Configuration File	62
5.9) E	xample ptp4l Configuration File for BC	62
5.1	10 E	xample synce4l Configuration File for BC	64
6.0	Init	tial Test Setup	. 68
6.1	1 Т	est Diagram	68
6.2	2 S	oftware Configuration	68
	6.2.1	Leader Adapter	68
	6.2.2	Follower Adapter	69
	6.2.3	Test Results	70
App	endix	A Debug Notes	. 71
		B Glossary and Acronyms	
~PP		x = -0.000ary and rel 01171113 111111111111111111111111111111	

1.0 Introduction

Although IEEE 1588 Precision Time Protocol (PTP) support has been part of Intel's controller product line for generations. Intel only recently began developing PTP-optimized Ethernet Network Adapter products. The adoption of PTP in Ethernet connections is growing rapidly. Although the leader use case being considered is the build-out of 5G infrastructure, other applications that exist in datacenters, point of presence, financial, industrial, and energy sectors. These application areas can benefit from timing optimized, standard form factor, Ethernet adapters.

The Intel® Ethernet Network Adapter E810-XXVDA4T (E810-XXVDA4T), is based on the Intel® Ethernet Controller E810 (E810).

This document is structured as follows:

- Section 2.0, "E810-XXVDA4T Ethernet Network Adapter"
- Section 3.0, "Software, Firmware, and Drivers"
- Section 4.0, "Configuring the E810-XXVDA4T Using the Linux Kernel Interface"
- Section 5.0, "Configuration Setup"
- Section 6.0, "Initial Test Setup"
- Appendix A, "Debug Notes"
- Appendix B, "Glossary and Acronyms"

Note: In accordance with changes made in the IEEE 1588 Specification and where possible, the words Master and Slave have been replaced with Leader and Follower, respectively.

1.1 Reference Documents

Table 1 lists documents that can be found on the Intel Resource and Design Center (RDC) at:

https://www.intel.com/content/www/us/en/design/resource-design-center.html

Table 1. Reference Documents

Document Title	Document ID
Intel® Ethernet Controller E810 Datasheet	613875
Intel® Ethernet Controller E810 Specification Update	616943
Intel® Ethernet Controller E810 Feature Support Matrix	607252
Intel® Ethernet Network Adapter E810-XXVDA4T Overview Video	730682
Intel® Ethernet Network Adapter E810-XXVDA4T Product Brief	641626
Intel® Ethernet Network Adapter E810-XXVDA4T - 68808 - MDDS	727036
Intel® Ethernet Network Adapter E810-XXVDA4T Product Brief	641626

Other documents that might be of interest include the following:

- IEEE 1588-2008 (v2.0)
- IEEE 1588-2019 (v2.1)
- IEEE 802.3AS
- ITU-T G.8271
- ITU-T G.8273

- ITU-T G.8273.2
- ITU-T G.8275.1
- ITU-T G.8275.2

Note: Linux PTP project information can be found at:

http://linuxptp.sourceforge.net/

2.0 E810-XXVDA4T Ethernet Network Adapter

2.1 E810-XXVDA4T Features

Following are the features of the Intel[®] Ethernet Network Adapter E810-XXVDA4T:

- Based on Intel[®] Ethernet Controller E810 device using SFP28 form factor connections, as well as inheriting most of the features from the Intel[®] Ethernet Network Adapter E810-XXVDA4 (E810-XXVDA4).
- Software capability to configure the SMA signals via the standard Linux driver.
- Driver support for Linux PTP stack (**ptp4I**) to send synchronization messages and synchronize the host system clock to the adapter's PHC. This is present in all Intel network adapters.
- **ts2phc** utility for the Linux PTP stack optimized for synchronizing the PHC to a 1PPS input, rather than PTP messages.
- When combined with an external GNSS 1PPS input, the features of the adapter and Linux PTP stack
 provide the complete solution for a low cost PTP grand leader, while maintaining the ability to
 provide the host system's LAN connectivity.
- Exposed PTP timing signals on a front panel using SMA connectors. This enables timing signals to easily be connected by the end user after the adapter is installed in a system. Timing signals on the SMAs can be configured as inputs or outputs, typically configured for one pulse per second (1PPS) operation, but they will support a 10 MHz signal (with or without the embedded 1PPS eSync). The rising edge of the 1PPS signal is used to mark the start of a new second, Top of Second (ToS). A 1PPS input signal is typically sourced from a GNSS module, or might be connected to the 1PPS output of another adapter. Circuitry is provided on board for isolation, buffering, and level-shifting to adapt the controller's CMOS signals for out-of-system use. Refer to Section 2.3 for 1PPS and 10 MHz signaling electrical requirements.
- In addition to the dual SMA connectors, the E810-XXVDA4T also includes two U.FL connectors for 1PPS and/or 10 MHz; one is output only and the other is input only. This enables hardware-level traceability for connections to motherboards that do not have room for external SMA connectors.
- High accuracy reference clock. Intel adapters typically use on-board reference clocks with accuracy in the range of ±50 parts per million (ppm) as required to meet the Ethernet PHY requirements. Increased reference clock accuracy to ±2 parts per billion (ppb) can be achieved using an Oven-Controlled Crystal Oscillator (OCXO). This tighter accuracy enables the PTP Hardware Clock (PHC) inside the E810 to drift more slowly in the event the 1PPS source, or software adjustment via 1588 sync protocol, is lost. The ability to maintain time after the reference source is lost is known as holdover. This is estimated to extend holdover time to ~4 hours for ±1.5 μs.
- Add support for Synchronous Ethernet (SyncE) clock recovery (ITU G.8262).
- Add a high-quality DPLL to support multiple input clock functions and multiple output frequencies. The DPLL IC has separate integrated DPLL instances DPLL0 is used for generating high stability clock signal and DPLL1 used for driving the output signals.
- The timing information from the DPLL (that can arrive from the GNSS module, SMA connectors, E810 SDPs, or from the recovered SyncE signals) are routed to the E810 and can be used to synchronize the PHC (PTP hardware clocks). All E810 ports share only one physical PHC, and this is particularly useful in creating a Boundary Clock (BC) functionality like what is defined in ITU-T G.8273.2 (but without SyncE).
- Add mounting and connection provision for an optional GNSS module on board. When installed, the GNSS module provides the 1pps signal without the need for an external GNSS appliance. An I²C interface provides a way to access the serial port data on the GNSS, including configuration options.

Table 2 provides additional information on the E810-XXVDA4T:

Table 2. E810-XXVDA4T Product Information

Product Description1588 PTP/SyncE/GNSS 10/25GbE SFP28 PCIe adapterProduct CodesE810-XXVDA4TG1 (no GNSS) E810-XXV-DA4TGG1 (with GNSS)Host InterfacePCIe 3.0x16 or PCIe 4.0x8/x16 (x16 connector)Form FactorFull-height, half-length PCIe cardFront Panel Connectors4x SFP28, 2x SMA (1PPS/10 MHz)¹, 1x SMB (GNSS antenna)²Internal Connectors1x U.FL input + 1x U.FL output (1PPS/10 MHz); GNSS mezzanineOptional GNSS SKUSupports GPS, Galileo, GLONASS, BeiDou, QZSSSynchronous EthernetITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) supportOscillator1 ppb vs. temperature, 4 hours holdover (±1.5 μs under ±5 °C ΔT)Power23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic)Operating Temperature0-65 °C with required airflow (passive heat sink)EMIFCC Class AManageabilityNC-SI over MCTP (over PCIe/SMBus); EFI based iSCSI boot; EFI/legacy PXE boot support		
E810-XXV-DA4TGG1 (with GNSS)	Product Description	1588 PTP/SyncE/GNSS 10/25GbE SFP28 PCIe adapter
Form Factor Full-height, half-length PCIe card Front Panel Connectors 4x SFP28, 2x SMA (1PPS/10 MHz)¹, 1x SMB (GNSS antenna)² Internal Connectors 1x U.FL input + 1x U.FL output (1PPS/10 MHz); GNSS mezzanine Optional GNSS SKU Supports GPS, Galileo, GLONASS, BeiDou, QZSS Synchronous Ethernet ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 μs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Product Codes	
Front Panel Connectors 4x SFP28, 2x SMA (1PPS/10 MHz)¹, 1x SMB (GNSS antenna)² Internal Connectors 1x U.FL input + 1x U.FL output (1PPS/10 MHz); GNSS mezzanine Optional GNSS SKU Supports GPS, Galileo, GLONASS, BeiDou, QZSS Synchronous Ethernet ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 µs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Host Interface	PCIe 3.0x16 or PCIe 4.0x8/x16 (x16 connector)
Internal Connectors 1x U.FL input + 1x U.FL output (1PPS/10 MHz); GNSS mezzanine Optional GNSS SKU Supports GPS, Galileo, GLONASS, BeiDou, QZSS Synchronous Ethernet ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 µs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Form Factor	Full-height, half-length PCIe card
Optional GNSS SKU Supports GPS, Galileo, GLONASS, BeiDou, QZSS Synchronous Ethernet ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 µs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Front Panel Connectors	4x SFP28, 2x SMA (1PPS/10 MHz) ¹ , 1x SMB (GNSS antenna) ²
Synchronous Ethernet ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 μs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Internal Connectors	1x U.FL input + 1x U.FL output (1PPS/10 MHz); GNSS mezzanine
Oscillator 1 ppb vs. temperature, 4 hours holdover (±1.5 μs under ±5 °C ΔT) Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Optional GNSS SKU	Supports GPS, Galileo, GLONASS, BeiDou, QZSS
Power 23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic) Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Synchronous Ethernet	ITU-T G.8261, G.8262, G.8262.1, and G.8264 (ESMC) support
Operating Temperature 0-65 °C with required airflow (passive heat sink) EMI FCC Class A	Oscillator	1 ppb vs. temperature, 4 hours holdover ($\pm 1.5~\mu s$ under $\pm 5~^{\circ}C~\Delta T$)
EMI FCC Class A	Power	23 W typical, 34 W max power consumption (with Class 3 optics at 25G maximum traffic)
	Operating Temperature	0-65 °C with required airflow (passive heat sink)
Manageability NC-SI over MCTP (over PCIe/SMBus); EFI based iSCSI boot; EFI/legacy PXE boot support	EMI	FCC Class A
	Manageability	NC-SI over MCTP (over PCIe/SMBus); EFI based iSCSI boot; EFI/legacy PXE boot support

^{1.} Refer to Section 2.3 for 1PPS and 10 MHz signaling requirements. 2. Refer to Table 3 for GNSS antenna characteristics.

2.2 Architecture

The block diagram for the E810-XXVDA4T is shown in Figure 1. The E810-XXVDA4T provides two coaxial input/output SMA connectors, two U.FL connectors, and an optional GNSS input connector, as shown in Figure 2.

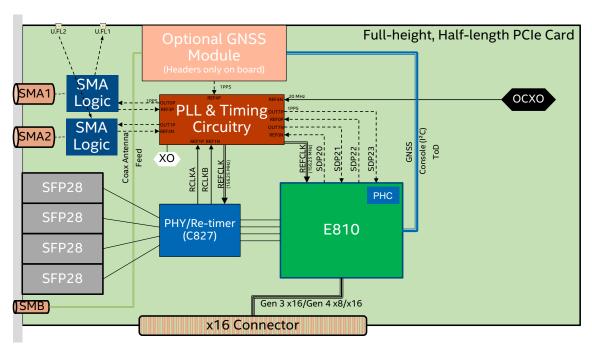


Figure 1. E810-XXVDA4T Block Diagram

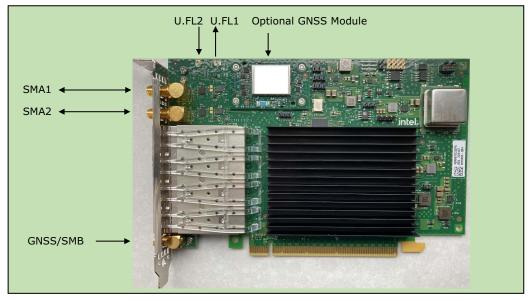


Figure 2. E810-XXVDA4T Connector Locations

The optional GNSS module has a connection to an external antenna via an SMB female connector at the bottom of the faceplate. A cable with an SMB male connector and the characteristics listed in Table 3 are required to use the GNSS.

Table 3. E810-XXVDA4T GNSS Antenna Characteristics

Characteristic	Min	Typical	Max
Characteristic impedance	-	50 Ω	-
DC operating voltage	2.9 V	3.3 V	3.6 V
Current consumption	=	-	30 mA
EMI immunity out-of-band	=	30 V/m	-
Out-of-band rejection	=	40 dB	-
Gain of active LNA at WPC SMB connector	17 dB	-	50 dB
Active antenna noise figure	=	< 4 dB	-
Axial ratio	-	-	2 dB
Phase center variation	=	< 10 mm over elevation/azimuth	-
Group delay variation in-band	-	10 ns max at each GNSS system bandwidth	-

The two SMA female connectors on the upper part of the faceplate are used for sending or receiving timing signals. Cables with SMA male connectors and the characteristics listed in Table 4 are required to use the SMA ports.

Table 4. E810-XXVDA4T Timing Propagation Cable Characteristics

Characteristic	Min	Typical	Max
Frequency range	DC	-	>100 MHz
VSWR	-	1.25:1	1.33:1
Velocity of propagation	-	69%	-
RF shielding	-110 dB	-	-
Capacitance	-	95 pF/m	-
Impedance, cable	-	50 Ω	-
Impedance, connector (SMA or u.FL)	-	50 Ω	-
Tested cable assembly length	-	-	3 m
SMA connector torque	-	0.9 Nm	-

The U.FL cables have similar requirements as the SMA cables, except there is no torque requirement, and the tested cable length is <1 meter.

2.3 Synchronization Signaling

The E810-XXVDA4T has two SMA connectors at the faceplate and two on-board U.FL connectors for 1588 high precision timing connectivity. Each SMA signal can be configured to be an input or an output.

The U.FL1 connector, associated with SMA1, can be output-only. The U.FL2 connector, associated with SMA2, can be input-only. Currently, 1PPS and 10 MHz signaling on both SMA and U.FL connectors is supported; additional signaling capabilities might be supported in future releases.

The 1PPS signaling is compliant with the ITU-T G.703 specification, but the 10 MHz signaling matches the 1PPS requirements rather than the ITU-T G.703 10 MHz requirements. For devices expecting ITU-T G.703 10 MHz requirements, DC blocks (for transmitted signaling from the E810-XXVDA4T) and bias tees (for signaling received by the E810-XXVDA4T Rx) must be used.

Table 5.E810-XXVDA4T Supported 1PPS Input Signal (50 Ω Single-Ended)

Input	Min	Max	Units		
VIH	1.65	5.5	V		
VIL	-0.3	0.8	V		
Rise Time		20	ns		
Duty Cycle	1	51	%		
Note: Assumes a 50 Ω termination. Parameters specified as measured at termination.					

2.4 Optional GNSS Module

The E810-XXVDA4TGG1 SKU includes a GNSS module installed as an add-in card, which provides the E810-XXVDA4T with timing synchronization from GNSS constellations. This module outputs a 1PPS signal. Hardware support for presence detection of the antenna and current-limit protection for the E810-XXVDA4T antenna input is included on this module.

3.0 Software, Firmware, and Drivers

3.1 Software Support/Packages

1. Check the related Feature Support Matrix before installation to ensure that the correct NVM and driver versions are supported.

E810 Technical Library:

https://www.intel.com/content/www/us/en/products/details/ethernet/800-controllers/e810-controllers/docs.html?s=Newest

Operating System Scope for E810 Timing-Enhanced Adapters:

The following table lists the operating system support for a given release starting with Release 26.8, which represents the first production release for E810-XXVDA4T.

	Software Release Version						
Operating System	26.8	27.1/ 27.2.1	27.5/ 27.6.1	27.7	28.0/28.1	28.2	
Linux RHEL 7.9	SNV	Х	SNV	SNV	SNV	SNV	
Linux RHEL 8.4	Х	Х	Х	Х	SNV	SNV	
Linux RHEL 8.5	Х	Х	Х	Х	Х	Х	
Linux RHEL 8.6/9			Х	Х	Х	Х	
Linux RHEL 8.7/9.1					Х	Х	
Linux RHEL 8.8/9.2						Х	
Linux SLES 12 SP5	Х	Х	SNV	SNV	SNV	SNV	
Linux SLES 15 SP3	Х	Х	Х	Х	Х	Х	
Linux SLES 15 SP4			Х	Х	Х	Х	
Linux SLES 15 SP5						Х	
Linux Stable Kernel version 3.x/ 4.x/5.x	SNV	SNV	SNV	SNV	SNV	SNV	
Linux Ubuntu 18.04 LTS	SNV	SNV	SNV	SNV	SNV	SNV	
Linux Ubuntu 20.04 LTS	SNV	Х	Х	Х	Х	Х	
Linux Ubuntu 22.04 LTS			SNV	SNV	SNV	Х	
UEFI 2.1/2.3/2.4/2.6/2.7/2.8		Х	Х	Х	Х	Х	
UEFI 2.9			Х	Х	Х	Х	
VMware ESXi 7.0		Х	Х	Х	Х	Х	
VMware ESXi 8.0					Х	Х	

Legend:

Х	Supported with Intel® NVM and software driver.
	Not supported with Intel® NVM and software driver.
SNV	Supported but Not Validated.
TBD	Available in a future release.

Refer to the *Intel*® *Ethernet Controller E810 Feature Support Matrix* for additional NVM and software driver details.:

https://cdrdv2.intel.com/v1/dl/getContent/607252

NVM Update Tool:

https://www.intel.com/content/www/us/en/download/19624/non-volatile-memory-nvm-update-utility-for-intel-ethernet-network-adapter-e810-series.html

Always choose the latest.

Note: To update the NVM, refer to the Intel[®] Ethernet NVM Update Tool Quick Usage Guide for Linux.

2. Download and install the complete driver package:

https://www.intel.com/content/www/us/en/download/15084/intel-ethernet-adapter-complete-driver-pack.html

Always choose the latest.

Or, download the Linux driver only:

https://sourceforge.net/projects/e1000/files/ice%20stable/

Note: For the newest features, always use the latest driver and NVM version. This document is based on driver version *ice-1.12.7* or newer.

Important: The latest ice-1.12.7 driver with the 4.31 NVM version has some limitations that will be addressed in later releases.

For details, see the Release Notes:

https://www.intel.com/content/www/us/en/download/19622/intel-ethernet-product-software-release-notes.html

3. Install the complete driver package with the following commands:

```
# cd ice-1.x.x/src
# make -j install
```

Now reboot the system, or if not possible:

```
# rmmod ice
```

You might need to remove additional drivers that are using the *ice* driver:

4. Update the NVM to the latest image:

```
# cd E810_NVMUpdatePackage_v4_30_Linux/Linux_x64/
#./nvmupdate64e -u -l -c nvmupdate.cfg
```


5. Power cycle the system and check correct driver and NVM version:

```
#ethtool -i ens801f0
driver: ice
version: 1.12.7
firmware-version: 4.31 0x8001af2a 1.3429.0
expansion-rom-version:
bus-info: 0000:84:00.0
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes
```

3.2 Building a linuxptp Project

1. Download the latest **linuxptp** release from SourceForge (v4.1 or later):

```
https://sourceforge.net/projects/linuxptp/files/latest/download
```

or use:

```
# git clone git://git.code.sf.net/p/linuxptp/code linuxptp-4.1
```

2. Extract the downloaded archive, if required:

```
# tar xzf linuxptp-4.1.tgz
```

3. Navigate to the *linuxptp-4.1* directory and compile the source code:

```
# cd linuxptp-4.1
# make
```

4. To install the program and related man pages into /usr/local, run make install with root privileges.

```
# make install
```

This enables you to run the tools from any directory.

5. For more details related to installing **linuxptp**, go to:

http://linuxptp.sourceforge.net/

3.3 Related linuxptp Information

Following are links to related information:

- https://github.com/richardcochran/linuxptp/blob/master/phc2sys.8
- https://github.com/richardcochran/linuxptp/blob/master/ptp4l.8
- https://github.com/richardcochran/linuxptp/blob/master/ts2phc.8
- https://www.mankier.com/8/ts2phc
- https://www.mankier.com/8/ptp4l
- https://www.mankier.com/8/phc2sys

3.4 Building a synce4l Tool

 $1. \ \, \text{Download the latest } \textbf{synce4I} \ \, \text{from: https://github.com/intel/synce4I}$

```
or use:
```

```
#git clone http://github.com/intel/synce4l synce4l
```

2. Navigate to the extracted directory and compile the source code:

```
# cd synce41
# make
```

3. To install the program and related man pages into /usr/local, run make install with root privileges.

```
# make install
```

This enables you to run the tools from any directory.

4. For more details related to installing **synce4I**, go to:

https://github.com/intel/synce4l

4.0 Configuring the E810-XXVDA4T Using the Linux Kernel Interface

Note: The way we communicate with the Linux kernel interface might change in a later revision of the driver.

4.1 Introduction

The Linux kernel provides the standard interface for controlling external synchronization pins. Older versions that do not have this feature are not supported. Only versions with the PTP pins interface implemented are supported.

The list of supported operating system can be found in the following document:

```
https://cdrdv2.intel.com/v1/dl/getContent/607252
```

To check if the kernel has the required PTP and pin interface, run the following command:

```
# cat /proc/kallsyms | grep ptp pin
```

After installing the latest E810 network driver, users are able to find the pin interface in the corresponding PTP device under **sysfs**. Users can find it by navigating through multiple paths, depending on the Linux distribution being used.

For a listing of all E810-XXVDA4T adapters, run the following:

```
# grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/" '{print $5}'
enp1s0f0
enp1s0f1
enp1s0f2
enp1s0f3
```

The example above shows one network device with four ports (f0-f3).

To run scripts in this section, set ETH to point to the first port of the adapter:

```
# export ETH=enp1s0f0
Or:
# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/" '{print $5}' | head -n 1`
```

Note: This alternate command can only be used if one WPC is running in your system. Otherwise, the script must be amended appropriately.

Some scripts also use the PCI_SLOT. Users can easily set it up by running the following:

```
# export PCI_SLOT=`grep PCI_SLOT_NAME /sys/class/net/$ETH/device/uevent | cut -c 15-`
```

In the following example, the driver exposes the ptp7 device:

```
#ls -R /sys/class/ptp/*/pins/
/sys/class/ptp/ptp7/pins/:
GNSS SMA1 SMA2 U.FL1 U.FL2
```


In the following example, the ens260f0 net interface exposes pins through the ptp7 interface:

```
#ls -R /sys/class/net/*/device/ptp/*/pins
/sys/class/net/ens260f0/device/ptp/ptp7/pins:
GNSS SMA1 SMA2 U.FL1 U.FL2
```

Users can also run **ethtool -T** <interface_name> to show the PTP clock number.

```
# ethtool -T <interface_name>
PTP Hardware Clock: 7
```

The E810 only has one hardware timer shared between all ports. As a result, users find the PTP clock number only on Port 0.

If users need to use bonding or DPDK, do not use Port 0, as this prevents the use of Linux PHC API for the device. A better solution is to use any other port for this functionality or to use a virtual function for DPDK.

4.2 **DPLL Priority**

The E810-XXVDA4T automatically switches reference inputs according to the default DPLL priority list, as shown in Table 6.

where:

Pin index = DPLL device physical pin index

EEC - DPLL0 = Ethernet equipment clock source from DPLL0 for frequency adjustments.,

glitchless.

PPS - DPLL1 = 1PPS generation from DPLL1 for phase adjustments. Glitches allowed. Slower

locking.

Note: The DPLL priority list can be changed. See Section 4.11, "Advanced DPLL Configuration".

Note: From firmware version 4.20 or newer, the DPLL priority list and the DPLL configuration parameters have been change to meet the ITU-T specs. The firmware will update the needed

parameters based on the incoming timing signals. SDP20 is expecting a 10 MHz signal.

Note: The input references are checked to ensure that they meet specified criteria before they are fed to the DPLL. Each reference has several monitoring circuits and the one of particular interest is called Precise Frequency Monitor (PFM). By default, input reference is measured in PFM for 10 seconds to avoid disqualifying a reference with jitter/wander, which is still acceptable by standards. This requirement originates from Telcordia GR-1244 standard. Though this requirement is not used in ITU specs, many telecom customers find this feature very useful. Only inputs that meet this 10 seconds of acceptable input are be seen as "valid". All others are be seen as "invalid".

Table 6. DPLL Priority List

Default Priority	Pin Index	EEC - DPLL0 (Frequency/Glitchless)	Frequency	PPS - DPLL1 (Phase/Glitch Allowed)	Frequency
0	6	1PPS from GNSS (GNSS-1PPS)	1PPS	1PPS from GNSS (GNSS-1PPS)	1PPS
2	5	1PPS from SMA2 (SMA2)	1PPS	1PPS from SMA2 (SMA2)	1PPS
3	4	1PPS from SMA1 (SMA1)	1PPS	1PPS from SMA1 (SMA1)	1PPS
4	1	Reserved		1PPS from E810 (CVL-SDP20)	10 MHz
5	0	Reserved		1PPS from E810 (CVL-SDP22)	1PPS
6		Reserved		Reserved	
7		Reserved		Reserved	
8	2	Recovered CLK1 (C827_0-RCLKA)	1.953125 MHz	Recovered CLK1 (C827_0-RCLKA)	1.953125 MHz
9	3	Recovered CLK2 (C827_0-RCLKB)	1.953125 MHz	Recovered CLK2 (C827_0-RCLKB)	1.953125 MHz
10		ОСХО	20.000 MHz	осхо	20.000 MHz

4.3 External Connectors

External connector configuration is available only on the port that owns the PTP timer. By default, it is Port 0.

The E810-XXVDA4T has four connectors for external 1PPS signals: SMA1, SMA2, U.FL1, and U.FL2

- SMA connectors are bidirectional and U.FL are unidirectional.
- U.FL1 is 1PPS output and U.FL2 is 1PPS input.
- SMA1 and U.FL1 connectors share channel one.
- SMA2 and U.FL2 connectors share channel two.

Example:

```
# export ETH=enp1s0f0
echo <function> <channel> > /sys/class/net/$ETH/device/ptp/*/pins/SMA1
(SMA2,U.FL1,U.FL2)
```

where:

function: 0 = Disabled

1 = Rx2 = Tx

channel: 1 = SMA1 or U.FL1

2 = SMA2 or U.FL2

4.4 Channel 1 Configurations

1. SMA1 as 1PPS input:

```
# echo 1 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
# dmesg
[792194.583302] ice 0000:03:00.0: SMA1 RX
[792194.583304] ice 0000:03:00.0: SMA2 < current_state> U.FL2 < current_state>
```

2. SMA1 as 1PPS output:

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
# dmesg
[792505.312096] ice 0000:03:00.0: SMA1 TX
[792505.312098] ice 0000:03:00.0: SMA2 <current state> U.FL2 <current state>
```

Note: Setting SMA1 as TX automatically enables U.FL1 as RX.

3. U.FL1 as 1PPS output:

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
# dmesg
[792745.238452] ice 0000:03:00.0: SMA1 RX + uFL1 TX
[792745.238453] ice 0000:03:00.0: SMA2 < current state> U.FL2 < current state>
```

Note: Setting U.FL1 as a TX automatically enables SMA1 as RX.

4. SMA1 as 1PPS input and U.FL1 as 1PPS output:

```
# echo 1 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 RX + uFL1 TX
[27158.812519] ice 0000:03:00.0: SMA2 < current state> U.FL2 < current state>
```

5. Disable SMA1:

```
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
# dmesg
[793017.697870] ice 0000:03:00.0: SMA1 + U.FL1 disabled
SMA2 <current state> U.FL2 <current state>
```

Note: Users must first disable U.FL1, as it shares the same channel number.

6. Disable U.FL1:

```
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
# dmesg
[793017.697870] ice 0000:03:00.0: SMA1 + U.FL1 disabled
[793017.812519] ice 0000:03:00.0: SMA2 < current state> U.FL2 < current state>
```

Note: Users must first disable SMA1, as it shares the same channel number.

Note: To compensate for path delay in the network, users can implement phase delay in Channel 1 using command (input pin 4 is SMA1. 7000 is equal to 7 ns):

```
# echo "in pin 4 phase delay 7000" > /sys/class/net/$ETH/device/pin cfg
```


4.5 Channel 2 Configurations

1. SMA2 as 1PPS input:

```
# echo 1 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812519] ice 0000:03:00.0: SMA2 RX
```

2. SMA2 as 1PPS output:

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812519] ice 0000:03:00.0: SMA2 TX
```

3. U.FL2 as 1PPS input:

```
# echo 1 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812519] ice 0000:03:00.0: SMA2 <current state> U.FL2 RX
```

4. SMA2 as 1PPS out and U.FL2 as 1PPS in:

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
# echo 1 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812519] ice 0000:03:00.0: SMA2 TX + U.FL2 RX
```

5. Disable SMA2:

```
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812512] ice 0000:03:00.0: SMA2 + U.FL2 disabled
```

Note: Users must first disable U.FL2, as it shares the same channel number.

6. Disable U.FL2:

```
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
# dmesg
[27158.812512] ice 0000:03:00.0: SMA1 <current_state> U.FL1 <current_state>
[27158.812512] ice 0000:03:00.0: SMA2 + U.FL2 disabled
```

Note: Users must first disable SMA2 as it shares the same channel number.

Note: To compensate for path delay in the network, users can implement phase delay in Channel 1 using command (input pin 4 is SMA1. 7000 is equal to 7 ns):

echo "in pin 4 phase delay 7000" > /sys/class/net/\$ETH/device/pin cfg

4.6 Recovered Clocks (G.8261 SyncE Support)

Recovered clocks can be configured using a special **sysfs** interface that is exposed by every port instance. Writing to a **sysfs** under a given port automatically enables a recovered clock from a given port that is valid for a current link speed.

A link speed change requires repeating the steps to enable the recovered clock.

If a port recovered clock is enabled and no higher-priority clock is enabled at the same time, the DPLL starts tuning its frequency to the recovered clock reference frequency enabling G.8261 functionality.

There are two recovered clock outputs from the C827 PHY. Only one pin can be assigned to one of the ports. Re-enabling the same pin on a different port automatically disables it for the previously-assigned port.

Note: In the current version, if you switch from a 1PPS clock to recovered clock (SyncE) you might experience up to 200 ns deviation in the 1PPS signal.

1. To enable a recovered clock for a given Ethernet device run the following:

```
# echo <ena> <pin> > /sys/class/net/$ETH/device/phy/synce
where:
ena: 0 = Disable the given recovered clock pin.
          1 = Enable the given recovered clock pin.
pin: 0 = Enable C827_0-RCLKA (higher priority pin).
          1 = Enable C827_0-RCLKB (lower priority pin).
```

For example, to enable the higher-priority recovered clock from Port 0 and a lower-priority recovered clock from Port 1, run the following:

```
# export ETH0=enp1s0f0
# export ETH1=enp1s0f1
# echo 1 0 > /sys/class/net/$ETH0/device/phy/synce
# dmesg
[27575.495705] ice 0000:03:00.0: Enabled recovered clock: pin C827_0-RCLKA
# echo 1 1 > /sys/class/net/$ETH1/device/phy/synce
# dmesg
[27575.495705] ice 0000:03:00.0: Enabled recovered clock: pin C827_0-RCLKB
```

Disable recovered clocks:

```
# echo 0 0 > /sys/class/net/$ETH0/device/phy/synce
# dmesg
[27730.341153] ice 0000:03:00.0: Disabled recovered clock: pin C827_0-RCLKA
# echo 0 1 > /sys/class/net/$ETH1/device/phy/synce
# dmesg
[27730.341153] ice 0000:03:00.0: Disabled recovered clock: pin C827_0-RCLKB
```

Check recovered clock status:

You can add the current status of the recovered clock to the dmesq:

```
#echo dump rclk_status > /sys/kernel/debug/ice/0000:03:00.0/command
# dmesg
[311274.298749] ice 0000:03:00.0: State for port 0, C827_0-RCLKA: Disabled
[311274.300060] ice 0000:03:00.0: State for port 0, C827_0-RCLKB: Disabled
```

Note: In secure boot case, check the *pin_cfg* file. For details, see Section 4.11.1.

4.7 External Timestamp Signals

The E810-XXVDA4T can use external 1PPS signals filtered out by the DPLL as its own time reference.

When the DPLL is synchronized to the GNSS module or an external 1PPS source, the **ts2phc** tool can be used to synchronize the time to the 1PPS signal. The configuration file needs to be edited before using the application. You must to remember to change <code>network_interface</code>, accordingly to his device's name.

Note: External Timestamp (extts) event support is only enabled on Port 0.

```
# export ETH=enp1s0f0
# export TS2PHC_CONFIG=/home/<USER>/linuxptp-3.1/configs/ts2phc-generic.cfg
# ts2phc -f $TS2PHC_CONFIG -s generic -m -c $ETH

# cat $TS2PHC_CONFIG
[global]
use_syslog 0
verbose 1
logging_level 7
ts2phc.pulsewidth 100000000
#For GNSS module
#ts2phc.nmea_serialport /dev/gnssX #/dev/gnssX, where X - GNSS device number
#leapfile /../<path_to_.list_leap_second_file>
[<network_interface>]
ts2phc.extts_polarity
rising
```

Note: The phc2sys tool should not be run at the same time as ts2phc using the generic source of ToD (-s generic). In the default configuration, ts2phc uses hardware-generated timestamps along with the system timer to create correction values. Running the tools in parallel can create a feedback that breaks time synchronization. The leapfile option is available but not necessary for the program to run. Also, the default .leap file is not compatible with ts2phc.

Note: You might want filter the 1PPS timestamps till the DPLL locked. See Section 4.12, "1PPS Signals from E810 Device to DPLL".

4.8 Periodic Outputs from DPLL (SMA and U.FL Pins)

The E810-XXVDA4T supports two periodic output channels (SMA1 or U.FL1 and SMA2). Channels can be enabled independently and output 1PPS generated by the embedded DPLL. 1PPS outputs are synchronized to the reference input driving the DPLL1. Users can read the current reference signal driving the 1PPS subsystem by running the following command:

```
# dmesg | grep <DPLL1> state changed" | grep locked | tail -1
[ 342.850270] ice 0000:01:00.0: DPLL1 state changed to: locked, pin GNSS-1PPS
```

The following configurations of 1PPS outputs are supported:

1. SMA1 as 1PPS output:

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
```

2. U.FL1 as 1PPS output:

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
```


3. SMA2 as 1PPS output:

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

Note: Configurations (1 and 3) or (2 and 3) can be enabled at the same time, but not (1, 2, and 3).

4.9 Reading Status of the DPLL

The E810-XXVDA4T driver exposes a simple **debugfs** interface that enables monitoring of the on-board DPLL device state.

Note: The main purpose of this interface is for *debug only*. The *debugfs* interface is not available when using Secure Boot option. All of the information is available using the *pin_cfg* or *dpll_<X>_ref_pin/dpll_<X>_state* option as detailed in Section 4.11, "Advanced DPLL Configuration".

Note: Because of a known limitation, the **Phase offset** field might show incorrect values. This will be fixed in the future releases.

```
# export ETH=enp1s0f0
# export PCI SLOT=`grep PCI SLOT NAME /sys/class/net/$ETH/device/uevent | cut -c 15-`
# cat /sys/kernel/debug/ice/0000:82:00.0/cgu
Found ZL80032 CGU
DPLL Config ver: 1.3.0.1
DPLL FW ver: 6201
CGU Input status:
                              | priority |
      input (idx) | state | EEC (0) | PPS (1) | eSync fail |
  ______
 CVL-SDP22 (0) | invalid | 255 | 5 | N/A
CVL-SDP20 (1) | invalid | 255 | 4 | N/A
C827_0-RCLKA (2) | invalid | 8 | 8 | N/A
C827_0-RCLKB (3) | invalid | 9 | 9 | N/A
SMA1 (4) | invalid | 3 | 3 | N/A
SMA2/U.FL2 (5) | invalid | 2 | 2 | N/A
GNSS-1PPS (6) | valid | 0 | 0 | N/A
                                                                              EEC DPLL:
   Current reference: GNSS-1PPS
    Status:
                           locked ho acq
PPS DPLL:
   Current reference: GNSS-1PPS
                          locked_ho_acq
    Status:
    Phase offset [ns]: -717
```

The first section of the log shows the status of CGU inputs (references), including its index number. Active references currently selected are listed in Section 4.2. EEC Ethernet equipment clock (DPLL0) skips the 1PPS signal received on the CVL-SDP20 pin.

The second section lists all internal DPLL units. ECC (DPLL0) driving the internal clocks and PPS (DPLL1) driving all 1PPS signals.

The E810-XXVDA4T supports embedded sync (eSync), including embedded pulse per second (ePPS),

The third section talks about the eSync, if it is enabled, as detailed in Section 4.11, "Advanced DPLL Configuration".

Lock times for each of the DPLLs are different and are subject to change and can take a long time to lock depending on their initial synchronization.

Status options: invalid, freerun, locked, locked_ho_acq (locked and holdover acquired), holdover, and uninitialized.

The Phase offset value helps to find out how well the PPS DPLL is synchronized (in 100 ns units)

Note: The DPLL firmware version should be 6201 for all production units. If you have a different version, please contact your Intel representative.

4.10 **DPLL Monitoring**

In the default configuration, the E810-XXVDA4T driver enables monitoring of the DPLL events and reports state changes in the default system $\log (\textit{dmesg})$ with the WARN level independently for each of the DPLL units.

DPLLs start in a holdover mode and enter an unlocked and locked state when a valid reference input is enabled. If the current input becomes invalid, DPLLs change state to holdover. When the reference reappears (or a different valid input is present), the DPLL state changes to the unlocked state and locks to a new signal.

```
# dmesg | grep "state changed"
[23.740121] ice 0000:01:00.0: <DPLLO> state changed to: holdover, pin CVL-SDP22
[23.740833] ice 0000:01:00.0: <DPLL1> state changed to: holdover, pin CVL-SDP22
#GNSS signal appeared
[57.857575] ice 0000:01:00.0: <DPLLO> state changed to: unlocked, pin GNSS-1PPS
[57.858088] ice 0000:01:00.0: <DPLL1> state changed to: unlocked, pin GNSS-1PPS
[119.810415] ice 0000:01:00.0: < DPLLO > state changed to: locked, pin GNSS-1PPS
[178.818056] ice 0000:01:00.0: < DPLL1> state changed to: locked, pin GNSS-1PPS
#GNSS signal lost:
[18.833552] ice 0000:01:00.0: <DPLLO> state changed to: holdover, pin GNSS-1PPS
[18.834065] ice 0000:01:00.0: <DPLL1> state changed to: holdover, pin GNSS-1PPS
#GNSS signal re-appeared:
[19.825608] ice 0000:01:00.0: <DPLLO> state changed to: unlocked, pin GNSS-1PPS
[19.826122] ice 0000:01:00.0: <DPLL1> state changed to: unlocked, pin GNSS-1PPS
[21.841638] ice 0000:01:00.0: <DPLLO> state changed to: locked, pin GNSS-1PPS
[21.850270] ice 0000:01:00.0: <DPLL1> state changed to: locked, pin GNSS-1PPS
```

DPLL monitoring can be enabled (on) or disabled (off) by using the **ethtool** command in the Linux kernel.

```
# export ETH=ens801f0
ethtool --show-priv-flags $ETH
Private flags for ens801f0:
link-down-on-close
                           : off
fw-lldp-agent
                           : off
channel-inline-flow-director : off
channel-inline-fd-mark : off
channel-pkt-inspect-optimize : on
channel-pkt-clean-bp-stop : off
channel-pkt-clean-bp-stop-cfg: off
vf-true-promisc-support : off
mdd-auto-reset-vf
                          : off
vf-vlan-prune-disable : off
```



```
legacy-rx : off
cgu_fast_lock: off
dpll_monitor : on
extts_filter : off
itu_g8262_filter_used:off
allow-no-fec-modules-in-auto : off
```

Enabling DPLL monitoring:

```
ethtool --set-priv-flags $ETH dpll monitor on
```

Disabling DPLL monitoring:

```
ethtool --set-priv-flags $ETH dpll monitor off
```

4.11 Advanced DPLL Configuration

4.11.1 pin_cfg User Readable Format

The DPLL on the E810-XXVDA4T offer some advanced configuration options. These options are not needed on regular applications and can cause problems. Please use these commands with extra care. The DPLL will go back to the default values after a power cycle of the adapter.

The E810-XXVDA4T supports embedded sync (eSync), including embedded pulse per second (ePPS), but not embedded pulse per two seconds (ePP2S).

Timing signals on the SMAs can be configured as inputs or outputs, typically configured for one pulse per second (1PPS) operation, but they will support a 10 MHz signal (with or without the embedded 1PPS eSync).

Note: Do not change any other output pin than 0 and 1.

The Ref-sync pair (e_ref_sync) feature uses two DPLL inputs, one is used as a reference clock (typically higher than 1 KHz) and a sync signal (1PPS). This feature allows a wider loop bandwidth resulting in much faster DPLL lock time and was also empirically found to be required to pass ITU-T certification. This Ref-sync_pair feature can be enabled on SMA or SDP (input pin 1 for SDP (pairing pin 0 & 1) and pin 5 for SMA (pairing pin 4 &5)

Note: In the *pin_cfg* the eSync/Ref-sync column 0: both eSync and e_ref_sync are disabled, 1: eSync is enabled, 2: Ref-sync_pair is enabled.

To check the DPLL pin configuration:

cat /sys/class/net/ens4f0/device/pin cfq

i	n							
	pin	enabled	state	freq	phase_delay	eSync/Ref-sync	DPLLO prio	DPLL1 prio
	0	1	invalid	1	0	0	255	5
	1	1	invalid	10000000	0	2	255	4
	2	1	invalid	1953125	0	0	8	8
	3	1	invalid	1953125	0	0	9	9
	4	1	invalid	1	7000	0	3	3
	5	1	invalid	1	7000	2	2	2
	6	1	valid	1	0	0	0	0


```
out
| pin| enabled| dpll|
                            freq| esync|
  0 |
        1 | 1 |
                            1 0 0
                                     0.1
   11
            11
                  1 |
                              1 |
   2|
            1 |
                  0| 156250000|
                                     0 |
                  0| 156250000|
                                     0 1
   3 I
            11
   4 |
            1 |
                  1 |
                              1 |
                                     01
   5|
            1|
                  1 |
                              1|
```

In the "in" table. the pin numbers are referred from the DPLL Priority See Section 4.2, "DPLL Priority". In the "out" table pin 0 is SMA1 pin 1 is SMA2, all the other values do not modify.

Changing the DPLL priority list:

where:

```
prio_value = Desired priority of configured pin [0-9]

dpll_index = Index of DPLL being configured [0:EEC (DPLL0), 1:PPS (DPLL1)]

pin_index = Index of pin being configured [0-6]
```

Note: A prio value 15 disables the input for synchronization.

Example:

```
Set priority 1 for pin 3 on DPLL 0:
```

```
# export ETH=enp1s0f0
# echo "prio 1 dpll 0 pin 3" > /sys/class/net/$ETH/device/pin cfg
```

"enable <0:disabled, 1:enabled>"]

Changing input/output pin configuration:

Note: The **eSync** setting has meaning only with the 10 MHz frequency, you need to have eSync to have the same setting in both ends of the SMA. eSync can be enabled only for the MA's (input pin 4 / 5 and output pin 0 /1)

"e ref sync <0:disabled, 1:eSync enabled 2:Ref Sync enabled>"

Example:

```
# export ETH=enp1s0f0
```

Set freq to 10 MHz on input pin 4: DPLL will lock only if 10 MHz signals arrive on SMA1 and it has been enabled for input.

```
# echo "in pin 4 freq 10000000" > /sys/class/net/$ETH/device/pin cfg
```

Set freq to 10 MHz on output pin 1: SMA2 will drive 10 MHz signal with embedded 1PPS if it has been enabled for output.

```
# echo "out pin 1 freq 10000000 eSync 1" > /sys/class/net/$ETH/device/pin cfg
```

Disable input pin 2: DPLL will ignore anything on pin 2.

```
# echo "in pin 2 enable 0" > /sys/class/net/$ETH/device/pin cfg
```

Set Ref-Sync pair on pin 0 & 1 (SDPs)

```
# echo "in pin 1 e ref sync 2" > /sys/class/net/$ETH/device/pin cfg
```

Set freq to 1 Hz (1PPS) on input pin 4: DPLL will lock only if 1 Hz signals arrive on SMA1 and it has been enabled for input with phase delay of 4 ns.

```
# echo "in pin 4 freq 1 phase delay 4000" > /sys/class/net/$ETH/device/pin cfg
```

4.11.2 dpll_ $\langle X \rangle$ _ref_pin/dpll_ $\langle X \rangle$ _state Machine Readable Interface (X = 0 / 1)

```
# export ETH=enp1s0f0
```

To find out which pin the DPLLO (EEC DPLL) is locked on, check the dpll 0 ref pin:

```
# cat /sys/class/net/$ETH/device/dpll 0 ref pin
```

To check the state of the DPLLO (EEC DPLL), check the dpll_0_state:

```
# cat /sys/class/net/$ETH/device/dpll_0_state
DPLL_UNKNOWN = -1,
DPLL_INVALID = 0,
DPLL_FREERUN = 1,
DPLL_LOCKED = 2,
DPLL_LOCKED_HO_ACQ = 3,
DPLL_HOLDOVER = 4
```

To find out which pin the DPLL1 (PPS DPLL) is locked on, check the dpll 1 ref pin:

```
# cat /sys/class/net/$ETH/device/dpll_1_ref_pin
```

To check the state of the DPLL1 (PPS DPLL), check the dpll_1_state:

```
# cat /sys/class/net/$ETH/device/dpll_1_state
```

The dpll 0 state interface used by synce4l as well.

Note: The user application can monitor the dpll_<X>_state and dpll_<X>_ref_pin to detect the DPLL status changes. These changes will be visible in the *dmesg* as well.

Note: The application can also check the DPLL name in the *dpll_<X>_name* file.

the driver:

4.12 1PPS Signals from E810 Device to DPLL

The E810-XXVDA4T implements two 1PPS signals coming out of the MAC (E810 device) to the DPLL. They serve as the frequency reference (CVL-SDP20) and as both phase and frequency reference (CVL-SDP22) signals.

To enable a periodic output, write five integers into the file: channel index, start time seconds, start time nanoseconds, period seconds, and period nanoseconds. To disable a periodic output, set all the seconds and nanoseconds values to zero.

Note: Because of a known driver limitation, before enabling the periodic outputs to the DPLL, make sure that your PHC is synchronized (wait for stable **ptp4I** connection with dual digit offset). If you need to do a jump on the PHC clock (like restarting **ptp4I**), you must to disable 1PPS and 10 MHz signal to DPLL. If the clock jumped, the periodic outputs to the DPLL might not ever show a "valid" state in the CGU Linux interface. To restore correct operation of DPLL, reload

```
# rmmod ice; modprobe ice
```

Note: From firmware version 4.20 and onward, Intel recommends to use a 10 MHz signal on SDP20.

1. To enable the frequency reference pin 10 MHz (CVL-SDP20):

```
# echo 1 0 0 0 100 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

2. To enable the phase and frequency reference pin (CVL-SDP22):

```
# echo 2 0 0 1 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

3. To disable the phase reference pin (CVL-SDP20):

```
# echo 1 0 0 0 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

4. To disable the phase and frequency reference pin (CVL-SDP22):

```
# echo 2 0 0 0 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

Note: Enabling the phase and frequency reference signal (CVL-SDP22) on the adapter without external reference (**ptp4I**) is not recommended and might cause a frequency drift.

4.13 1PPS Signals from the DPLL to E810 Device

The DPLL automatically delivers two 1PPS signals to the E810 device on pin 21 and 23. These signals can be used to synchronize the E810 to the DPLL phase with the ts2phc program. The E810 will capture the timestamp when the 1PPS signal arrives.

4.14 GNSS Module Interface

Intel recommends disabling UART1 and UART2 interfaces on the GNSS receiver. To do that, use:

1. Disable UART1 in RAM, and Flash:

```
# ubxtool -v 1 -w 1 -P 29.20 -z CFG-UART1-ENABLED,0,5
```

Or open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
```

echo -ne "\xb5\x62\x06\x8a\x09\x00\x00\x05\x00\x05\x00\x52\x10\x00\x05\x80" > /dev/gnssX //Terminal 2

2. Disable UART2 in RAM, and Flash:

```
# ubxtool -v 3 -w 1 -P 29.20 -z CFG-UART2-ENABLED,0,5
```

Or open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
# echo -ne "\xb5\x62\x06\x8a\x09\x00\x00\x05\x00\x05\x00\x53\x10\x00\x83"
> /dev/gnssX //Terminal 2
```

The E810-XXVDA4T driver implements GNSS interfaces for receiving NMEA messages from the optional GNSS module. The interface can be found in /dev/qnssX, where X is the GNSS interface.

If you have only one adapter installed, the GNSS interface number will always be /dev/gnss0.

To associate the GNSS interface number with the network interface name if you have multiple adapters in a system, use the following command:

```
# ls /sys/class/net/*/device/gnss/*
/sys/class/net/ens1f0/device/gnss/gnss1:
dev device power subsystem type uevent
/sys/class/net/ens2f0/device/gnss/gnss0:
dev device power subsystem type uevent

# cat /dev/gnss0
$GNRMC,182805.00,A,0.0,N,0.0,E,0.082,,050321,,,D,V*14
$GNVTG,,T,,M,0.082,N,0.152,K,D*34
$GNGGA,182805.00,0.0,N,0.0,E,2,12,0.57,11.1,M,32.7,M,,0000*7D
$GNGSA,A,3,18,20,26,23,16,29,07,15,27,10,,,1.07,0.57,0.90,1*09
$GNGSA,A,3,81,79,72,82,80,78,65,88,87,,,1.07,0.57,0.90,2*0C
$GNGSA,A,3,02,30,04,36,11,,,,,,1.07,0.57,0.90,3*0E
[...]
```

Note: If two applications, like **gpsd** and **ts2phc** need to be run at the same time, you might encounter issues regarding one application taking over the GNSS interface. A workaround would be to run **gpspipe** on local port, modify the config file of **ts2phc**, and use a local port to provide access to NMEA messages through TCP:

```
# socat EXEC:'gpspipe -r' TCP-LISTEN:2948,reuseaddr,fork
# cat configs/ts2phc-nmea.cfg
...
ts2phc.nmea_remote_host 127.0.0.1
ts2phc.nmea_remote_port 2948
```

ts2phc is now capable of using the local port 2948 to retrieve NMEA messages.

Note: Make sure that you are using /dev/gnssX in your .cfg file for **linuxptp** if using the **ts2phc** tool.

Note: The QS samples contain prototype firmware, which expired on December 26, 2021. Pre-production samples in use at that time stop (no longer sync/lock to GNSS) and output a text message stating that the firmware has expired. An update is required to resolve. See more details in the Dear Customer Letter.

Note: Intel recommends disabling UART1 and UART2 interfaces (see Appendix A).

4.15 GNSS Advanced Features

To achieve the best GM, additional configuration might be required, like survey-in, cable delay, antenna setting, and so on. This requires additional packages under Linux.

In addition to using the **cat** command, you can use 3rd party APIs to improve the position accuracy and timing accuracy, as well as optimize the overall performance of the GNSS module. One of the most popular GNSS Linux APIs is **qpsd**, which is Open Source and is support by community at:

https://gpsd.gitlab.io/gpsd/index.html

The **gpsd** API follows chip vendor original specifications and fully integrates into a rich GUI tool, **pygpsclient**. Furthermore, **gpsd** provides the command line tool **ubxtool**, which support all original configuration commands.

The optional GNSS module inside the E810-XXVDA4T uses u-Blox 9-series chip ZED-F9T-00B. Before you start yours first investigation, we suggest you study most popular questions at:

https://gpsd.io/faq.html#willitwork

4.15.1 Prerequisites and Steps to Fully Enable GNSS Features

Prerequisites:

- Python3.9+ and pip3 20.2+
- scons 4.2.0 or later

Note:

Ensure that these components are installed correctly before any other step. During the installation process, ensure that there are no hidden error messages. After the installation, check if scons is present.

```
(# scons -v)
```

Note:

Before installing **gpsd** on your system, ensure that all parts of any previous installation have been removed. Do not mix **gpsd** parts from different sources. The **gpsd** clients and the server must be of the same version.

Steps to prepare system and install gpsd:

Note: For additional information, refer to https://gpsd.io/installation.html.

- 1. If you cannot find the /dev/gnss0 file, ensure that you are using the E810-XXVDA4T with the optional GNSS installed and the latest driver and NVM (see Section 3.1).
- 2. If you receive any error message from the above two commands, follow the trouble shooting guide to solve OS and kernel dependencies:

https://qpsd.io/installation.html# check that your system configuration will allow qpsd to work

3. A minimum build of **gpsd** can run near bare metal; C runtime support is the only requirement. The test clients and various additional features have additional prerequisites found at:

https://gpsd.io/installation.html#_check_your_installation_prerequisites

Note: It is important to install system dependencies using your system package manager first, before installing SCons or Python dependencies.

Note: On some systems, GPSD might not work properly as a service out of the box. If that is the case, check that your *systemd* configuration files are set correctly.

4. You might need to add additional repositories to get dependencies, based on the distribution you are using. For example, for Red Hat 8 use commands:

```
# subscription-manager repos --enable codeready-builder-for-rhel-8-$(arch)-rpms
# sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-
8.noarch.rpm
```

5. Suggested dependencies to install. Some dependencies might not be needed if all features are not needed.

For Red Hat 8:

- # dnf -y install cairo-devel pkg-config python3-devel libffi-devel gobjectintrospection-devel cairo-gobject-devel gtk3-devel libtinfo.so.5 dbus libusb qt5qtnetworkauth llvm-toolset clang-analyzer libsmi* python3-pycodestyle python3flake8 python3-pyflakes cppcheck dia valgrind asciidoctor dbus gnuplot libusb
 ncurses pps-tools* qt-creator pygobject3* python3-pyserial python3-serial gtk3*
 python3-matplotlib python-matplotlib* libtinfo5 libcairo2 libcairo2-dev libeventdevel python39-devel qt5-qtnetworkauth llvm-toolset clang-analyzer libsmi*
 python3-pycodestyle python3-flake8 python3-pyflakes cppcheck dia valgrind
 asciidoctor dbus gnuplot libusb ncurses pps-tools* qt-creator pygobject3* gtk3*
 python3-matplotlib* libtinfo5 python-pyserial texlive-full python3-gps --skipbroken
- 6. Install Python 3.9. For now, Python older than 3.9, and newer than 3.9 (like 3.10.6) are not recommended due to incompatible libraries. Version 3.9.14 is best. Install Python with make altinstall. You can also try the Python virtual environment, if you are confident in what you are doing.
- 7. Suggested Python dependencies:
 - # python3.9 -m pip install pycairo pygobject matplotlib serial rouge coverage python-can pyserial gps wheel Pillow pygnssutils requests urllib3 idna charset-normalizer certify pyrtcm pynmeagps pyubx2
- 8. Setup your PYTHONPATH variable to /usr/local/lib/python3.9/site-packages (most common), or wherever you have your python libraries, and install **scons**:

```
# python setup.py install
```

9. Install qpsd:

```
# git clone https://gitlab.com/gpsd/gpsd.git
# cd gpsd
# scons -c && scons
# scons udev-install
(optionsl) # python3.9 -m pip install pygpsclient
```

- 10. Check **gpsd** version with # gpsd -V, and check **ubxtool** version with # ubxtool -V. If you receive an error, at this point the usual reason is incorrectly set PATH and PYTHONPATH variable make sure they are pointing to the correct directories.
- 11. (Optional) Configure the **qpsd** service daemon:
 - a. Edit /etc/sysconfig/gpsd (depends on the kernel) and add <code>OPTIONS="-G -n -p /dev/gnssX"</code> to include the GNSS interface.

12. (Optional) Restart the **gpsd** service daemon and check its status (/dev/gnss0 as an example).

Setup compliance verification:

Before starting the **gpsd** APIs, the Antenna setup and GNSS firmware must be done.

- Antenna compliance:
 - All the GNSS applications' performance is expected to get good quality of antenna signal so the software APIs can run on top of stable NMEA sentences.
 - Table 7 shows the Antenna frequency band for ZED-F9T-00B. You should follow the original vendor specification including supported band and circular polarization (the ZED-F9T-00B uses right-hand circular polarization or RHCP).

Table 7. Supported GNSS and Signals on ZED-F9T=00B

GPS / QZSS	GLONASS	Galileo	BeiDou	NavIC
L1C/A	L10F	E1-B/C (1575.420 MHz)	B1I (1561.098 MHz)	-
(1575.420 MHz)	(1602 MHz + k*562.5 kHz, k=-7,,6)		B1C (1575.420 MHz) ¹	
L2C (1227.600 MHz)	L20F (1246 MHz + k*437.5 kHz, k=-7,,6)	E5b (1207.140 MHz)	B2I (1207.140 MHz)	-

- 1. B1I and B1C not to be enabled concurrently.
 - Leverage GPSD APIs to improve the E810-XXVDA4T with the optional GNSS accuracy:
 - gpsctl
 - **gpsctl** can switch a dual-mode GPS between NMEA and vendor-binary modes. The **gpsctl** API needs the *gosd.socket* service daemon running. Following is a basic device identification example. You can use <code>gpsctl -help</code> to get all command details.
 - With proper GPSD installation, the **gpsctl** can export terminal interface, as follows:

```
# gpsctl /dev/gnns0
```

where /dev/gnss0 is identified as a u-Blox SW EXT CORE 1.00 (3fda8e), HW 00190000 at 9600 baud.

- ubxtool

ubxtool is an original vendor-supported tool that can make use of u-Blox vendor commands on support protocol version 29.20 to ZED-F9T-00B. If the 5G deploy environment does not allow you to use the Desktop environment, you can consider **ubxtool** as efficient CLI for local and remote access.

• The default setting of the E810-XXVDA4T configuration minimizes NMEA sentence message for better timing usage. Only "GNRMC" and "GNGGA" are needed for 5G timing usage. For better understanding of NMEA sentence focus and its purpose, refer to:

https://w3.cs.jmu.edu/bernstdh/web/common/help/nmea-sentences.php

• The ZED-F9T-00B module requires protocol 29.20, so it needs **ubxtool** v3.24+. Use the following command to double check the **ubxtool** you install:

```
# ubxtool -V
ubxtool: Version 3.25.1~dev
```

Get u-Blox protocol version for your GNSS device

```
# ubxtool -t -w 5 -v 1 -p MON-VER
ubxtool: poll MON-VER
sent:
1667189283.3474
UBX-MON-VER:
 Poll request
1667189285.2572
UBX-MON-VER:
  swVersion EXT CORE 1.00 (3fda8e)
  hwVersion 00190000
  extension ROM BASE 0x118B2060
  extension FWVER=TIM 2.20
  extension PROTVER=29.20
  extension MOD=ZED-F9T
  extension GPS; GLO; GAL; BDS
  extension SBAS; QZSS
  extension NAVIC
WARNING: protVer is 10.00, should be 29.20. Hint: use option "-P 29.20"
```

4.15.2 GNSS Receiver Configuration Layers in the E810-XXVDA4T

Once you confirm that **gpsd** is running, either in the foreground or as a service, **ubxtool** can be run. The **ubxtool** command is capable of using five different "layers" to read from and save configuration. These layers are:

- 0 RAM Responsible for reading configuration on the E810-XXVDA4T.
- 1 Battery Backed RAM (BBR) Responsible for saving single configuration items on the E810-XXVDA4T.
- 2 Flash Layer
- 5 RAM, and FLASH Responsible for saving configuration to two memory types with one command. Use this layer if you would like to write your configuration settings to RAM and FLASH at the same time.

• 7 - Default configuration

The E810-XXVDA4T uses Layer 0 (RAM) to read RAM configuration from the device, and Layer 1 (BBR) to save configuration to the RAM of the device. If layers are used incorrectly, the **ubxtool** command will fail with a UBX-ACK-NAK response. The E810-XXVDA4T also uses Layer 2 (FLASH), and Layer 7 (default configuration).

If you do not state the layer, the **-z** flag (change configuration item) writes to FLASH and RAM, while the **-g** flag reads from all the possible layers.

For more information about the use of **ubxtool**, and to get a list of possible configuration items, use the following command:

```
# ubxtool -h -v 3
```

4.15.3 Perform Antenna Status Check New Location Setup

The current active antenna status can be determined by polling the *UBX-MON-RF* message. If an antenna is connected, the initial state after power-up is "Active Antenna OK".

The antenna supervisor can be configured through the *CFG-HW-ANT_** configuration items. The current configuration of the active antenna supervisor can also be checked by polling the related *CFG-HW_ANT_** configuration items.

Antenna status (as reported in the *UBX-MON-RF* and *UBX-INF-NOTICE* messages) is not reported unless the antenna voltage control has been enabled. To enable it:

```
# ubxtool -v 1 -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
sent:
UBX-CFG-VALSET:
version 0 layer 0x7 transaction 0x0 reserved 0
layers (ram bbr flash) transaction (Transactionless)
   item CFG-HW-ANT_CFG_VOLTCTRL/0x10a3002e val 1

UBX-ACK-ACK:
   ACK to Class x06 (CFG) ID x8a (VALSET)
```

To check your antenna status:

```
# ubxtool -v 1 -P 29.20 -p MON-RF
ubxtool: poll MON-RF

sent:
UBX-MON-RF:
    Poll request

UBX-MON-RF:
version 0 nBlocks 2 reserved1 0 0
    blockId 0 flags x0 antStatus 2 antPower 1 postStatus 0 reserved2 0 0 0 0
    noisePerMS 71 agcCnt 5616 jamInd 18 ofsI 17 magI 147 ofsQ 2 magQ 139
    reserved3 0 0 0
    blockId 1 flags x0 antStatus 2 antPower 1 postStatus 0 reserved2 0 0 0 0
    noisePerMS 45 agcCnt 5265 jamInd 26 ofsI 12 magI 164 ofsQ 5 magQ 160
    reserved3 0 0 0
```

Status of the antenna supervisor state machine (0x00=INIT,0x01=DONTKNOW, 0x02=OK,0x03=SHORT,0x04=OPEN)

Current power status of antenna (0x00=OFF,0x01=ON,0x02=DONTKNOW)

4.15.4 Enabling and Disabling Additional Constellations

Before enabling survey-in functionality to achieve precise time information, it is beneficial to enable additional constellations. With more constellations enabled, the GNSS receiver can access more satellites, allowing better precision with good sky view. It is up to the user which constellations should be enabled. It is recommended to enable at least the GALILEO constellation for better timing capabilities.

To enable constellations in RAM, use the following commands (this will take a few minutes for the receiver to see constellations):

```
# ubxtool -P 29.20 -e BEIDOU,1 -w 2 - Chinese constellation
# ubxtool -P 29.20 -e GLONASS,1 -w 2 - Russian constellation
# ubxtool -P 29.20 -e GPS,1 -w 2 - American constellation
# ubxtool -P 29.20 -e SBAS,1 -w 2 - Regional Satellite-based Augmentation Systems
# ubxtool -P 29.20 -e GALILEO,1 -w 2 - European constellation
```

To disable GLONASS constellation in RAM, use the following command:

```
# ubxtool -P 29.20 -d GLONASS, 1 -w 2
```

To check enabled constellations in all layers, use the following command:

```
# ubxtool -v 1 -P 29.20 -g CFG-SIGNAL -v 1 -w 2
```

4.15.5 Perform Survey-In for New Location Setup

To achieve precise time information, the GNSS module needs to do a process "survey-in". This process can take up to 24 hours to achieve best precision. Depending on the antenna placement and view of the sky, you might not be able to achieve certain survey-in precision.

It is suggested to start with 50 m precision and 600-second survey in time.

Note: The 50 m precision and the 600 second survey in time is just an example (or a starting point). Most likely you will want to use better a precision value and a longer survey-in time for better accuracy. This depends on your location, sky view, signal quality, and your antenna.

```
# ubxtool -t -w 5 -P 29.20 -v 1 -e SURVEYIN,600,50000
ubxtool: enable SURVEYIN,600,50000

sent:
1667189015.3247
UBX-CFG-TMODE3:
  version 0 reserved1 0 flags x1
  ecefXOrLat 0 ecefYOrLon 0 ecefZOrAlt 0
  ecefXOrLatHP 0 ecefYOrLonHP 0 ecefZOrAltHP 0
  reserved2 0 fixedPosAcc 0 svinMinDur 600 svinAccLimit 50000
  reserved3 0 0
```


4.15.6 Check Survey-In Status

You can create a while-loop to track survey-in status before going to the next step. The following **ubxtool** command can be a major portion to get survey-in status/result (the last line, valid 1 active 0, indicates that survey-in is successful:

```
#ubxtool -t -w 5 -P 29.20 -v 1 -p TIM-SVIN
1669003112.3786
UBX-TIM-SVIN:
   dur 1378 meanX -303002288 meanY 492404391 meanZ 268440058 meanV 2024749696
   obs 1379 valid 1 active 0
```

After a successful procedure, this command will display XYZ coordinates, required later to save the current position to FLASH layer. Make sure to write down meanX, meanY, and meanZ coordinates in a text file.

4.15.7 Saving Survey-In Position to FLASH

Once the survey-in process is finished, and precise position is known to the receiver, ensure that the position is saved in the FLASH layer. This way, the found position of the receiver inside memory is kept between power-cycles of the adapter. First, check the position found by the survey-in procedure, then update the XYZ coordinates accordingly.

1. Update X coordinate in FLASH and RAM, using value from the first command:

```
# ubxtool -v 1 -P 29.20 -z CFG-TMODE-ECEF X, <value>, 5 -w 1
```

2. Update Y coordinate in FLASH and RAM, using value from the first command:

```
# ubxtool -v 1 -P 29.20 -z CFG-TMODE-ECEF Y, <value>, 5 -w 1
```

3. Update Z coordinate in FLASH and RAM, using value from the first command:

```
# ubxtool -v 1 -P 29.20 -z CFG-TMODE-ECEF Z, <value>, 5 -w 1
```

4. Set TMODE-MODE (0 - disabled, 1 - survey-in, 2 - fixed) to fixed in BBR and FLASH layers:

```
# ubxtool -v 1 -P 29.20 -z CFG-TMODE-MODE, 2, 5 -v 1 -w 1
```

5. Check, if TMODE-MODE, and coordinates were saved correctly to the FLASH:

```
# ubxtool -v 1 -P 29.20 -g CFG-TMODE-MODE,0 -v 1 -w 2
# ubxtool -v 1 -P 29.20 -g CFG-TMODE-ECEF_X,2 -v 1 -w 2
# ubxtool -v 1 -P 29.20 -g CFG-TMODE-ECEF_Y,2 -v 1 -w 2
# ubxtool -v 1 -P 29.20 -g CFG-TMODE-ECEF Z,2 -v 1 -w 2
```

4.15.8 Simulate Antenna Removal

Sometimes you may want to check the functionality and simulate what happens if the antenna is removed, with these commands you can check that without physically unplugging the antenna cable.

```
# ubxtool -P 29.20 -w 1 -v 3 -z CFG-NAVSPG-INFIL_NCNOTHRS,50,1
```

To restore it, use:

```
# ubxtool -P 29.20 -w 1 -v 3 -z CFG-NAVSPG-INFIL_NCNOTHRS,0,1
```


4.15.9 Check GNSS Overall Configuration Performance

You might want to check your antenna and GNSS receiver overall performance with the Time-to-First-Fix (TTFF) value.

After a power-down (warm starts, hot starts), the GNSS device triggers a next TTFF value based on antenna setting (or skyview, etc.). See the command line and TTFF value ttff 329907 in the following example. The unit of ttff is nanosecond (smaller number is better).

```
# ubxtool -t -w 3 -p NAV-STATUS -P 29.20
1668999366.1330
UBX-NAV-STATUS:
   iTOW 96984000 gpsFix 3 flags 0xdd fixStat 0x0 flags2 0x8
ttff 329907, msss 325236062
```

For more details how to configure the u-Blox ZED-F9T-00B module, refer to:

https://content.u-blox.com/sites/default/files/ZED-F9T_IntegrationManual_UBX-21040375.pdf?hash=undefined

Note: In some cases, when GNSS loses the antenna reference, the GNSS might output for couple of seconds the 1PPS signal and NMEA messages. To more rapidly disqualify the 1PPS and NMEA messages, increase the filtering of GNSS receiver with **ubxtool** command:

```
# ubxtool -P 29.20 -v 1 -w 1 -z CFG-NAVSPG-OUTFIL TACC, 10,5
```

Or open two terminals and run:

5.0 Configuration Setup

The E810-XXVDA4T provides two coaxial input-output SMA connectors, two unidirectional U.FL connectors and an optional GNSS input connector, as shown in the following two illustrations.

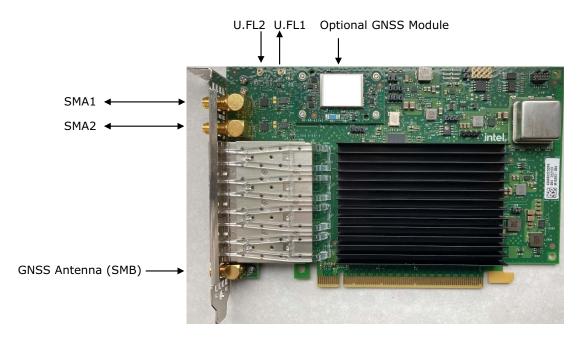


Figure 3. E810-XXVDA4T Connector Locations

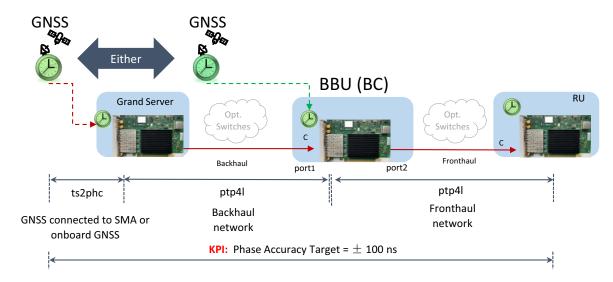


Figure 4. E810-XXVDA4T Connections

5.1 Disable All SMA and U.FL Connections

1. Set interface device:

```
\# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/" '{print $5}' | head -n 1`
```

2. Disable U.FL2:

```
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
```

3. Disable U.FL1:

```
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
```

4. Disable SMA2:

```
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

5. Disable SMA1:

```
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
```

6. All disabled:

```
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
# echo 0 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
# echo 0 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
```

7. Check with dmesg:

```
# dmesg
```

```
[793017.697870] ice 0000:84:00.0: SMA1 + U.FL1 disabled [793017.697871] ice 0000:84:00.0: SMA2 + U.FL2 disabled
```


5.2 PTP Grand Leader (GM) with Optional GNSS Module

This configuration is the highest-priority configuration and overrides any other if the GNSS is installed and operational.

5.2.1 External Connections

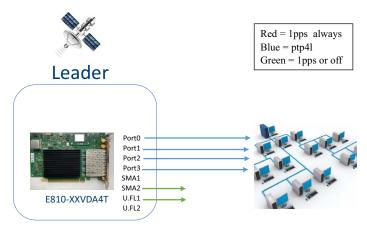


Figure 5. External Connections: PTP Grand Leader with Optional GNSS Module

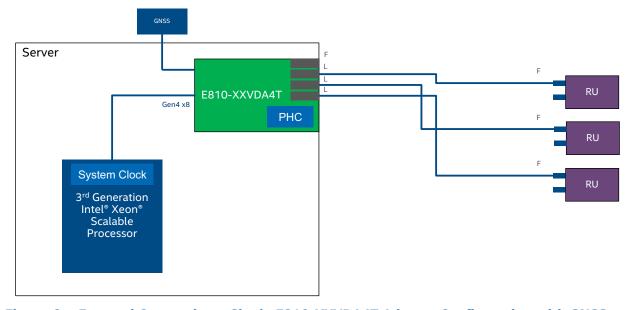


Figure 6. External Connections: Single E810-XXVDA4T Adapter Configuration with GNSS

5.2.2 Software Configuration

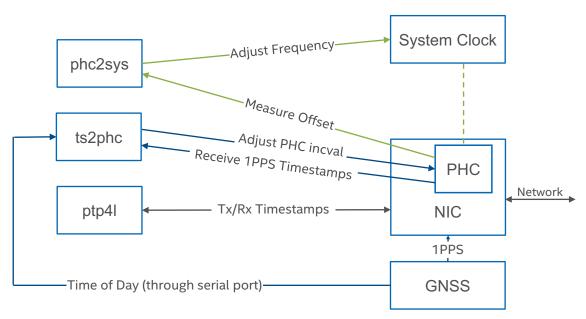


Figure 7. Linux Software Stack Overview: Single E810-XXVDA4T Adapter with GNSS Software Stack

Before proceeding, it is recommended to set all SDP pins and U.FL to off (see Section 4.0).

1. Set interface device:

```
# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print$5}' | head -n 1`
# export PCI_SLOT=`grep PCI_SLOT_NAME /sys/class/net/$ETH/device/uevent | cut -c
15-`
```

2. Make sure GNSS has an active connection: /dev/gnssX where X stands for the GNSS device number.

```
# cat /dev/gnssX
$GNRMC,182805.00,A,0.0,N,0.0,E,0.082,,050321,,,D,V*14
$GNVTG,,T,,M,0.082,N,0.152,K,D*34
$GNGGA,182805.00,0.0,N,0.0,E,2,12,0.57,11.1,M,32.7,M,,0000*7D
$GNGSA,A,3,18,20,26,23,16,29,07,15,27,10,,,1.07,0.57,0.90,1*09
$GNGSA,A,3,81,79,72,82,80,78,65,88,87,,,1.07,0.57,0.90,2*0C
$GNGSA,A,3,02,30,04,36,11,,,,,,1.07,0.57,0.90,3*0E
```

3. Run ts2phc:

```
# ./ts2phc -f configs/ts2phc-generic.cfg -s nmea -m
```

Note: You might want filter the 1PPS timestamps till the DPLL locked. See Section 4.13.

Note: See Section 5.8, "Example ts2phc Configuration File".

4. Run phc2sys:

```
# ./phc2sys -s $ETH -O -37 -m
```

The -0 -37 can be used to accommodate for leap seconds

Note: To update **linuxptp** version, use **git clone**:

```
git clone git://git.code.sf.net/p/linuxptp/code
```

To get an appropriate leapfile for RHEL-based Linux distributions:

https://github.com/eggert/tz/blob/main/leap-seconds.list

DO NOT use /usr/share/zoneinfo/leapseconds defined in the ts2phc.8 file.

5. Run **ptp4I**:

Running on Port 0 (1,2 and 3 as well if required):

```
# ./ptp41 -i $ETH -m
```

6. Run synce4l (optional):

```
#./synce4l -f configs/synce4l.cfg -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

Note: For GM mode, ensure that input_mode = external is used in the config file.

5.3 PTP Grand Leader (GM) with External GNSS Clock

5.3.1 External Connections

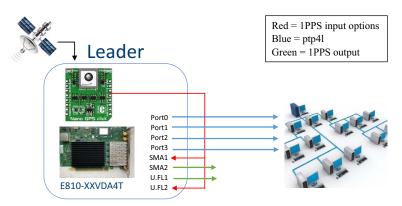


Figure 8. External Connections: PTP Grand Leader with External GNSS Clock

5.3.2 Software Configuration

Before proceeding, configure the GNSS to output a 1PPS signal and connect it to SMA1 (or to U.FL2). It is recommended to set all SDP pins and U.FL to off (see Section 4.0).

1. Set interface device:

```
# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print $5}' | head -n 1` #(port0)

# export ETH1=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print $5}' | head -n 2 | tail -n +2` #(port1)

# export ETH2=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print $5}' | head -n 3 | tail -n +3` #(port2)

# export ETH3=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print $5}' | head -n 4 | tail -n +4` #(port3)
```

2. SMA1 as input and SMA2 as output:

```
# echo 1 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

Or, U.FL2 as input and U.FL1 as output:

```
# echo 1 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL2
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
```

Note: If you have SMA1 connected to an external 1PPS source, you cannot use the U.FL configuration.

3. Verify that the outputs were set correctly:

```
#dmesg
[793494.341435] ice 0000:84:00.0: SMA1 RX
[793494.341437] ice 0000:84:00.0: SMA2 TX
[793506.667670] ice 0000:84:00.0: <DPLLO> state changed to: unlocked, pin SMA1
[793506.668178] ice 0000:84:00.0: <DPLL1> state changed to: unlocked, pin SMA1
[793518.699755] ice 0000:84:00.0: <DPLLO> state changed to: locked, pin SMA1
[793518.700264] ice 0000:84:00.0: <DPLL1> state changed to: locked, pin SMA1
```


Or:

```
#dmesg
[101056.462309] ice 0000:18:00.0: SMA1 RX + U.FL1 TX
[101056.462317] ice 0000:18:00.0: UFL2 RX
[101090.668497] driver cannot use function 1 on pin 0
```

4. Run ts2phc:

Running on Port 0:

```
# ./ts2phc -f configs/ts2phc-generic.cfg -s generic -m
```

Note: See Section 5.8, "Example ts2phc Configuration File".

Note: You might want filter the 1PPS timestamps till the DPLL locked. See Section 4.13.

5. Run **ptp4I**:

Running on Port 0 (1,2 and 3 as well if required):

```
# ./ptp41 -i $ETH -m
```

6. Run synce4I (optional):

```
#./synce4l -f configs/synce4l.cfg -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

Note: For GM mode, ensure that input_mode = external is used in the config file.

5.4 Boundary Clock Configuration

5.4.1 External Connections

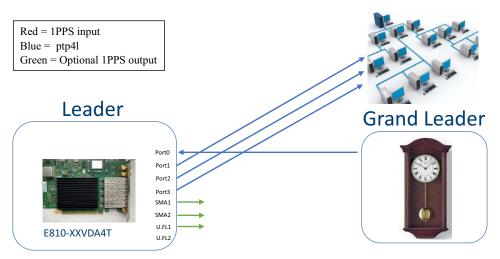


Figure 9. External Connections: Boundary Clock Configuration

5.4.2 Boundary Clock Notes

- For visibility, users might want to enable 1PPS on the SMA1.
- If users want to synchronize the DPLL to the E810 PHC, they must enable the appropriate SDP pin, as there are two DPLLs: DPLL0 drives the external clock source of the E810 controller, while DPLL1 drives the SMA outputs.
- If users want to synchronize DPLL1 to **ptp4I**, then they must use SDP20.
- SMA1 Tx and U.FL1 Tx is not a supported configuration on the E810-XXVDA4T.

5.4.3 Software Configuration

Before proceeding, it is recommended to set all SDP pins and U.FL to off (see Section 4.0).

1. Set interface device (only top command is essential):

2. Set periodic output on SDP20 to 10 MHz (to synchronize the DPLL1 to the E810 PHC synced by **ptp4I**):

```
# echo 1 0 0 0 100 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

and set SDP22 (to synchronize the DPLL1 to the E810 PHC synced by **ptp4I**):

```
# echo 2 0 0 1 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

646265-006

Note: DPLL only syncs to SDP20/SDP22 if it is the higher priority. Setting SDP20 is the preferred method for synchronizing 1PPS outputs.

3. Enable SMA1 output (for visibility):

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
```

Or:

• Enable U.FL1 output: (for visibility):

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
```

• Enable SMA2 output: (for visibility):

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

Note: If U.FL1 if set to Tx, then SMA1 is also set to Rx and cannot be changed. Make sure no 1PPS input is connected to SMA1 if using U.FL1 as Tx.

4. Verify if the outputs were set correctly:

```
#dmesg
[27526.767803] ice 0000:84:00.0: SMA1 TX
[27526.767804] ice 0000:84:00.0: SMA2 TX
[27526.852127] ice 0000:18:00.0: <DPLL1> state changed to: unlocked, pin CVL-SDP20
[30243.385109] ice 0000:18:00.0: <DPLL1> state changed to: locked, pin CVL-SDP20

Or:

#dmesg
[27611.114869] ice 0000:84:00.0: SMA1 RX + U.FL1 TX
[27611.114870] ice 0000:84:00.0: SMA2 TX
[27611.824727] ice 0000:18:00.0: <DPLL1> state changed to: unlocked, pin CVL-SDP20
[30243.385109] ice 0000:18:00.0: <DPLL1> state changed to: locked, pin CVL-SDP20
```

5. Run **ptp4I**:

```
# ./ptp4l -i $ETH -i $ETH1 -i $ETH2 -i $ETH2 -m -s
```

Note: For BC, it is recommended to use one **ptp4I** instance.

6. Run synce4I (optional):

```
#./synce4l -f configs/synce4l.cfg -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

5.5 Port Configured as Follower

The E810-XXVDA4T has one PHC that is shared across all the ports. As a result, only one PTP follower can be run as shown.

5.5.1 External Connections

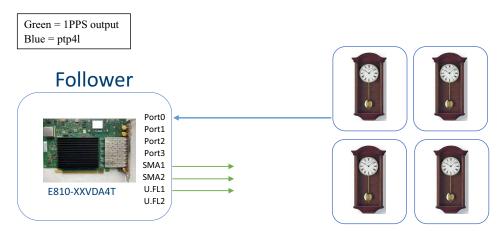


Figure 10. External Connections: Port Configured as Follower

5.5.2 Software Configuration

Before proceeding, it is recommended to set all SDP pins and U.FL to off (see Section 4.0).

1. Set interface device:

```
\# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/" '{print $5}' | head -n 1`
```

2. Set the periodic output on SDP20 to 10 MHz (to synchronize the DPLL1 to the E810 PHC synced by **ptp4I**):

```
# echo 1 0 0 0 100 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

and set SDP22 (to synchronize the DPLL1 to the E810 PHC synced by ptp4I):

```
# echo 2 0 0 1 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

Note: DPLL only syncs to SDP20/SDP22 if it is the higher priority. Setting SDP20 is the preferred method for synchronizing 1PPS outputs.

3. Enable SMA1 output: (for visibility):

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
```

Or:

• Enable U.FL1 output (for visibility):

```
# echo 2 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/U.FL1
```

• Enable SMA2 output (for visibility):

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```


Note: If U.FL1 if set to Tx then SMA1 is also set to Rx and cannot be changed. Make sure no 1PPS input is connected to SMA1 if using U.FL1 as Tx.

4. Verify if the outputs were set correctly:

```
#dmesq
 [ 827.397307] ice 0000:18:00.0: SMA1 TX
 [ 827.397315] ice 0000:18:00.0: SMA2 + U.FL2 disabled
 [ 837.852127] ice 0000:18:00.0: <DPLL1> state changed to: unlocked, pin CVL-SDP20
 [1243.385109] ice 0000:18:00.0: <DPLL1> state changed to: locked, pin CVL-SDP20
Or:
 #dmesg
 [ 7827.397307] ice 0000:18:00.0: SMA1 RX + U.FL1 TX
 [ 7827.397315] ice 0000:18:00.0: SMA2 + U.FL2 disabled
 [ 7837.852127] ice 0000:18:00.0: < DPLL1> state changed to: unlocked, pin CVL-SDP22
 [10243.385109] ice 0000:18:00.0: < DPLL1> state changed to: locked, pin CVL-SDP22
 #dmesg
 [ 827.397307] ice 0000:18:00.0: SMA1 + U.FL1 disabled
 [ 827.397315] ice 0000:18:00.0: SMA2 TX
 [ 837.852127] ice 0000:18:00.0: < DPLL1 > state changed to: unlocked, pin CVL-SDP20
 [1243.385109] ice 0000:18:00.0: <DPLL1> state changed to: locked, pin CVL-SDP20
```

Note: The first two lines of each *dmesg* changes depending on what outputs are enabled for visibility.

5. Run **ptp4I**:

```
./ptp41 -i $ETH -m -s
```


5.6 SyncE Setup

This configuration shows how to specifically setup SyncE. Note that users can use this SyncE configuration with tools such as **ptp4I** together for clock recovery. SyncE ITU G.811 and G8262 can assist with better frequency synchronization.

There are two main configuration options for SyncE:

- Only physical clock recovery (Section 5.6.2).
- With ITU G.8264 ESMC messaging using synce4l (Section 5.6.3).

5.6.1 External Connections

```
Green = 1PPS output
Blue = SyncE link
Yellow = Alternative SyncE link
```

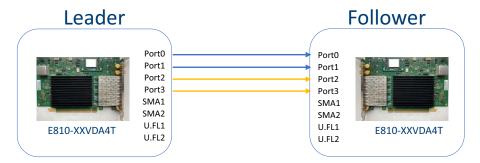


Figure 11. External Connections: SyncE Setup

5.6.2 Physical Clock Recovery

Before proceeding, it is recommended to set all SMA and U.FL connectors to off (see Section 4.0).

1. Set relevant interface device (only top command is essential):

2. To enable recovered clock from port0 on the highest priority clock run:

```
# echo 1 0 > /sys/class/net/$ETH/device/phy/synce
```

3. To enable recovered clock from port1 on the lowest priority clock run:

```
# echo 1 1 > /sys/class/net/$ETH1/device/phy/synce
```

Note: First integer represents enable (1) or disable (0), and the second represents the highest clock priority (0) and lowest clock priority (1).

4. Verify if the outputs were set correctly

```
#dmesg
[19707.757036] ice 0000:18:00.1: Enabled recovered clock: pin C827_0-RCLKB
[19718.804404] ice 0000:18:00.0: <DPLLO> state changed to: unlocked, pin C827_0-RCLKB
[19718.804920] ice 0000:18:00.0: <DPLL1> state changed to: unlocked, pin C827_0-RCLKB
[19719.511845] ice 0000:18:00.0: Enabled recovered clock: pin C827_0-RCLKA
[19789.633771] ice 0000:18:00.0: <DPLLO> state changed to: locked, pin C827_0-RCLKA
```

Note: Only enable SyncE on one adapter, either leader or follower is acceptable. If both are set, users might run into sync loop issues.

5.6.3 ITU G.8264 ESMC Messaging Using synce4l

The synce4l application is implementing the G.8264 ESMC protocol.

1. Run synce4I:

```
# ./synce4l -f configs/synce4l.cfg -l 7 -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

Note: For GM mode, ensure that input mode = external is used in the config file.

5.6.4 Two E810-XXVDA4T Adapter Configuration without GNSS

Figure 12 shows two E810-XXVDA4T adapters in a system with a cell site router.

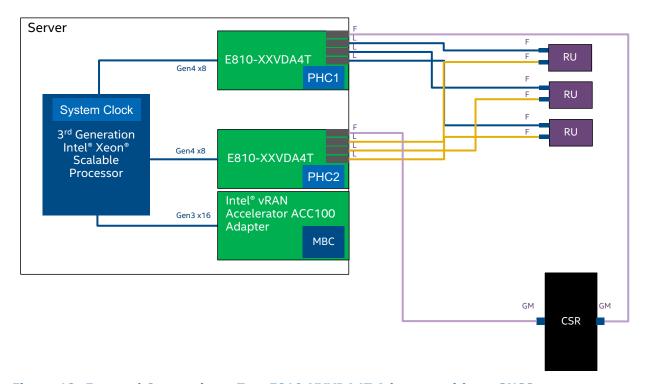


Figure 12. External Connections: Two E810-XXVDA4T Adapters without GNSS

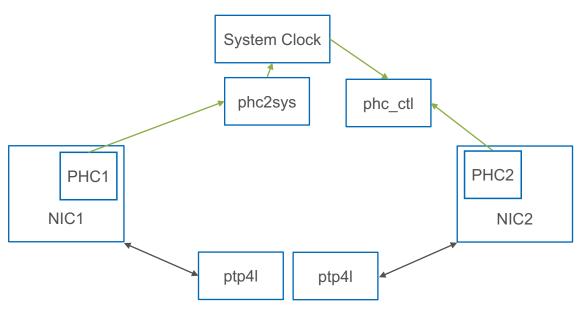


Figure 13. External Connections: Two E810-XXVDA4T Adapters without GNSS Linux Software Stack

Adapter 1 Linux software stack:

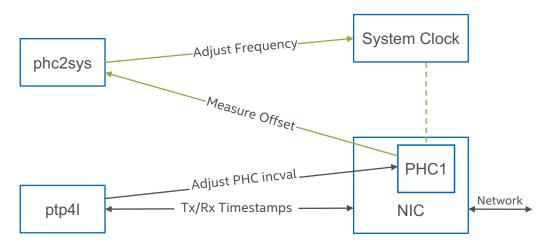


Figure 14. External Connections: Two E810-XXVDA4T Adapters without GNSS Adapter 1 Software Stack

Adapter 1 configuration:

1. Run one instance of **ptp4l** per E810-XXVDA4T:

```
# ptp4l -m -f config.cfg -i ens1f0 -i ens1f1 -i ens1f2 -i ens1f3
```

2. Run **phc2sys** to synchronize system time to the PHC time:

```
# phc2sys -s ens1f0 -c CLOCK REALTIME -w -m
```


Adapter 2 Linux software stack:

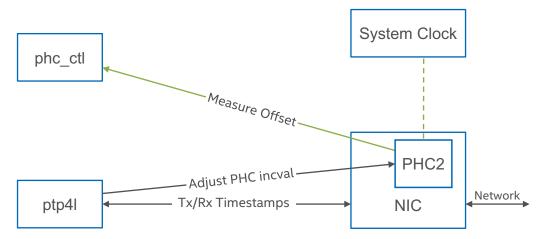


Figure 15. External Connections: Two E810-XXVDA4T Adapters without GNSS Adapter 2 Software Stack

Adapter 2 configuration:

1. Run one instance of **ptp4I** per E810-XXVDA4T:

```
# ptp4l -m -f config.cfg -i ens2f0 -i ens2f1 -i ens2f2 -i ens2f3
```

2. Monitor PHC time on adapter two vs. system time:

phc_ctl ens2f0 cmp

5.6.5 Two E810-XXVDA4T Adapter Configuration without GNSS and with 1PPS

Figure 16 shows two E810-XXVDA4T adapters in a system with a 1PPS connection between them.

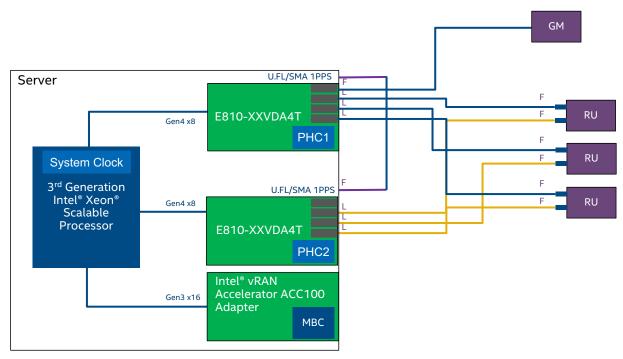


Figure 16. External Connections: Two E810-XXVDA4T Adapter Configuration (no GNSS)

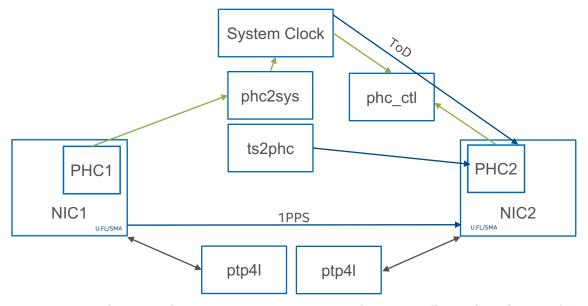


Figure 17. External Connections: Two E810-XXVDA4T Adapter Configuration Linux Software Stack (no GNSS)

Adapter 1 Linux software stack:

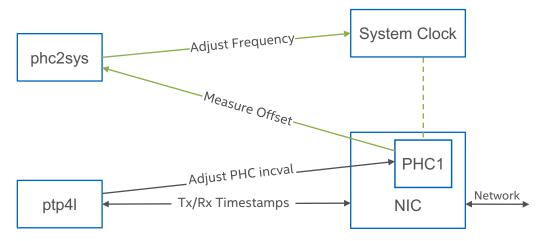


Figure 18. Linux Software Stack Overview: Adapter 1 (no GNSS)

Adapter 1 configuration:

1. Enable 1PPS output on U.FL1:

```
# echo 2 1 > /sys/class/net/ens1f0/device/ptp/ptp*/pins/U.FL1
or SMA 1:
```

echo 2 1 > /sys/class/net/\$ETH/device/ptp/ptp*/pins/SMA1

2. Enable SDP20/SDP22

Set periodic output on SDP20 to 10 MHz (to synchronize the DPLL1 to the E810 PHC synced by **ptp4!**):

```
# echo 1 0 0 0 100 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

and set SDP22 (to synchronize the DPLL1 to E810 PHC synced by **ptp4I**):

```
# echo 2 0 0 1 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

3. Run **ptp4I**:

```
# ptp4l -m -f config.cfg -i ens1f0 -i ens1f1 -i ens1f2 -i ens1f3
```

4. Run **phc2sys** to synchronize system time to the PHC time:

```
# phc2sys -c ens1f0 -s CLOCK REALTIME -w -m
```


Adapter 2 Linux software stack:

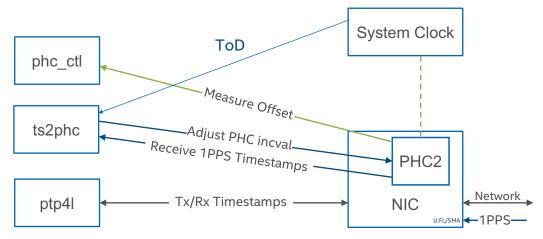


Figure 19. Linux Software Stack Overview: Adapter 2 (no GNSS)

Adapter 2 configuration:

- 1. Enable 1PPS input on U.FL2:
 - # echo 1 2 > /sys/class/net/ens2f0/device/ptp/ptp*/pins/U.FL2

or, enable 1PPS input on SMA2:

- # echo 1 2 > /sys/class/net/\$ETH/device/ptp/ptp*/pins/SMA2
- 2. Run **ts2phc** to get time from 1PPS over U.FL2 and ToD from system:

```
# ts2phc -f config.cfg -s generic -c ens2f0
```

3. Run **ptp4I**:

```
# ptp41 -m -f config.cfg -i ens2f0 -i ens2f1 -i ens2f2 -i ens2f3
```

4. Monitor PHC time on adapter 2 comparing to system time:

```
# phc ctl ens2f0 cmp
```

Notes:

- Only enable SDP20/SDP22 1PPS when PTP or SyncE is actively synced.
- Monitor/switch **phc2sys**, if one adapter loses sync in multi-adapter system.
- Use a different UDS socket when running multiple **ptp4I** instances.

5.6.6 Two E810-XXVDA4T Adapters with GNSS Connection Setup

Figure 20 shows two E810-XXVDA4T adapters in a system with a GNNS connection.

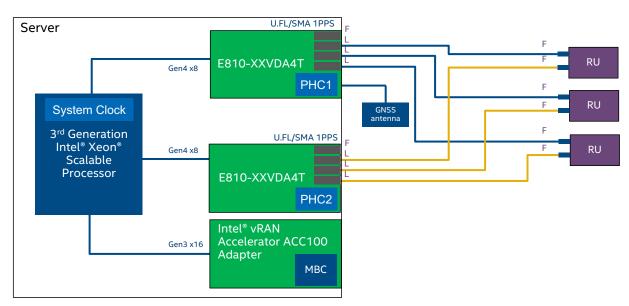


Figure 20. External Connections: Two E810-XXVDA4T Adapter Configuration (with GNSS)

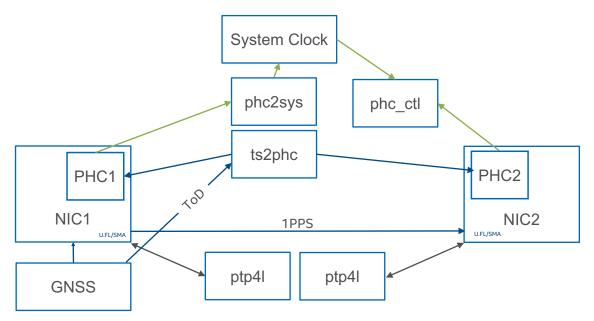


Figure 21. External Connections: Two E810-XXVDA4T Adapter Configuration Linux Software Stack (with GNSS)

Adapter 1 Linux software stack:

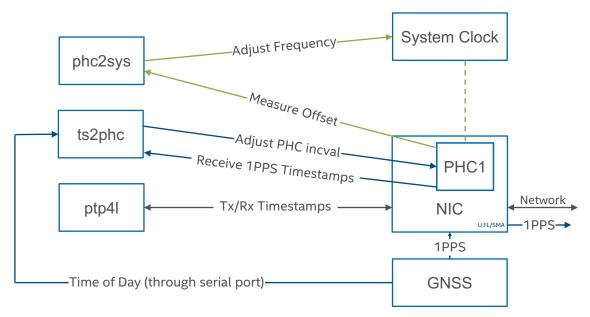


Figure 22. Linux Software Stack Overview: Adapter 1 (with GNSS)

Adapter 1 configuration:

1. Run **ts2phc** to get time from the GNSS:

```
# ts2phc -f config.cfg -s nmea -c ens1f0
```

You can also use NMEA to get time to both adapters:

```
# ts2phc -f config.cfg -s nmea -c ens1f0 -c ens2f0
```

2. Enable 1PPS out on U.FL1:

```
# echo 2 1 > /sys/class/net/ens1f0/device/ptp/ptp*/pins/U.FL1
```

3. Run **ptp4I**:

```
# ptp4l -m -f config.cfg -i ens1f0 -i ens1f1 -i ens1f2 -i ens1f3
```

4. Run **phc2sys** to synchronize system time to the PHC time:

```
# phc2sys -s ens1f0 -c CLOCK_REALTIME -w -m
```


Adapter 2 Linux software stack:

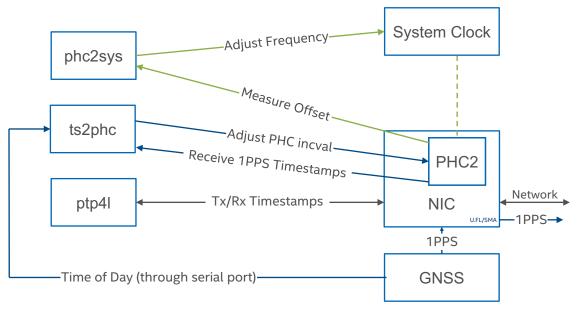


Figure 23. Linux Software Stack Overview: Adapter 2 (with GNSS)

Adapter 2 configuration:

- 1. Enable 1PPS in on U.FL2:
 - # echo 1 2 > /sys/class/net/ens2f0/device/ptp/ptp*/pins/U.FL2
- 2. Run **ts2phc** to get time from 1PPS over U.FL2 and ToD from system:
 - # ts2phc -f config.cfg -s generic -c ens2f0
- 3. Run **ptp4I**:
 - # ptp4l -m -f config.cfg -i ens2f0 -i ens2f1 -i ens2f2 -i ens2f3
- 4. Monitor PHC time on adapter 2 comparing to system time:
 - # phc ctl ens2f0 cmp

5.7 O-RAN Configuration 1

5.7.1 External Connections

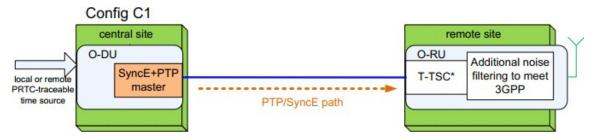


Figure 24. External Connections: O-RAN Configuration 1

Note: O-RAN Fronthaul Working Group Control, User and Synchronization Plane Specification, 2020.

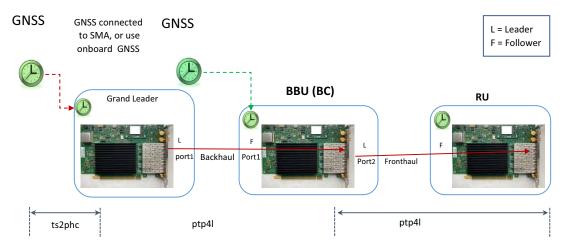


Figure 25. O-RAN Configuration 1 Connections

5.7.2 Software Configuration

- Grand leader adapter (see Section 5.2 and Section 5.3)
- BBU (BC) Adapter (see Section 5.4)
- RU Adapter (see Section 5.5)

5.8 **Example ts2phc Configuration File**

```
[global]
use syslog
                 0
verbose
logging_level
                7
ts2phc.pulsewidth 100000000
# For GNSS module
ts2phc.nmea_serialport /dev/gnss0 #/dev/gnssX, where X is GNSS device number.
leapfile /home/<USER>/linuxptp-4/leapseconds.list
[enp1s0f0(dev/ptp4)]
ts2phc.extts polarity rising
```

The **leapfile** option is available but not necessary for the program to run.

Example ptp4l Configuration File for BC 5.9

```
[global]
# Default Data Set
twoStepFlag
                       1
                      0
slaveOnly
priority1
                      129
priority2
                      255
domainNumber
                     24
utc offset
clockClass
clockAccuracy
                     0xFE
offsetScaledLogVariance 0xFFFF
free_running 0
freq est interval
dataset comparison G.8275.x
G.8275.portDS.localPriority 128
# Port Data Set
logAnnounceInterval
logSyncInterval -4
logMinDelayReqInterval -4
logMinPdelayReqInterval 0
announceReceiptTimeout 3
syncReceiptTimeout 3
syncReceiptTimeout
delayAsymmetry
fault_reset_interval 4
neighborPropDelayThresh 800
min neighbor prop delay -20000000
# Run time options
assume_two_step
                      1
logging level
path trace enabled
                      1
                      0
```

follow up info

62 646265-006

Intel® Ethernet Network Adapter E810-XXVDA4T User Guide


```
hybrid e2e
                                      0
net_sync_monitor
                                      Ω
 tx timestamp timeout
use syslog
 verbose
 summary interval
                                    1
 kernel leap
 check fup sync
                                     0
 # Servo options
pi_proportional_const 0.60
pi_integral_const 0.001
pi_proportional_scale 0.0
pi proportional exponent -0.3
pi proportional norm max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 0.00002
first_step_threshold 0.00002
#first_step_threshold 0.0
max_frequency 900000000
clock_servo pi
#clock_servo nullf
sanity_freq_limit 0200000000
#freq_est_interval 0
ntpshm_segment 0
pi_integral_scale 0.0
 ntpshm segment
 # Transport options
p2p_dst_mac
uds_address
ptp_dst_mac
#p2p_dst_mac
 # Default interface options
network transport
 delay mechanism
                                    e2e
                                   hardware
 time stamping
tsproc_mode raw
delay_filter moving_median
delay_filter_length 10
#tsproc_mode filter
#tsproc_mode filter
#delay_filter moving_average
#delay_filter_length 200
 egressLatency
 ingressLatency
 boundary clock jbod
                                    1
 #[ens801f0]
 #serverOnly
                                      1
```



```
#[ens801f1]
#serverOnly 1
```

5.10 Example synce4l Configuration File for BC

Note: For GM mode, ensure that input mode = external is used in the config file.

```
# Global section is for debuging mostly
[global]
# Runtime options
logging level
use syslog
Verbose
message tag
                [synce41]
# Device section
# Per-device configuration
# User defined name of a one logical device configured for SyncE in the system.
# All the ports configured after this section will be a part of this device
# (until next device section).
[<synce1>]
# Mode for synce4l operation.
# There are two currently supported modes:
# - line
# - external
# Input mode "line" mean the inputs recovered from the PHY's.
# The ports configured (in the port-sections [<dev name>], under the device
# section) will be monitored for the QL (Quality Level).
# QL is sent by the peer connected to the port and represents the Holdover
# performance of the peer.
# The best QL is selected and frequency recovered on that port shall be used
# to feed its frequency to all the other ports.
# The "external" input mode are either 1PPS from built-in GPS module or 1PPS
# from the on-board SMA connectors. Device must be pre-confiured to use this
# setting. # Before running the application, one of the external inputs shall be
# selected. This is done through the interface supplied by the adpater vendor.
# In this mode synce41 application is only responsible for sending
# the QL to the peers on all configured ports.
# The QL value that is sent equals configured "external input QL"
# (and "external input ext QL" in case of "extended tlv=1").
input mode line
                          //use this for SyncE follower
# input mode external //use this for SyncE leader
# These values are sent to the peers on configured ports ONLY when 'external'
# mode is enabled.
```



```
# Valid values are defined in Table 11-7 and Table 11-8 of recommendation
# ITU-T G.8264.
# They shall be configured appropriately so they are understood by the peer.
# external input QL corresponds to the SSM code column.
# external input ext QL corresponds to the Enhanced SSM code column
# (is used only if "extended tlv = 1")
external input QL
external input ext QL
                         255
# If extended TLV shall be supported on the device.
# 0 if no extended tlv shall be supported
# 1 if extended tlv shall be supported
# default: 0
# In case of 0:
       - the port will always TX the non-extended TLV, for RX only
         non-extended TLV will be processed for reference signal selection
# In case of 1:
        - If port is configured with external input=1, the TX will always use
         extended TLV (no RX is required in this case)
        - If port is configured with line or external input mode, the TX version
         of TLV will be propagated from the port that was chosen as  
          candidate for frequency synchronization
extended tlv
# Which network option shall be supported
# 1 or 2 as defined in T-REC-G.8264
# default: 1
# This is rather per-network option, all device in SyncE network
# shall have this configured for the same value
network option
                      1
# Seconds indicating minimum time to recover from the QL-failed state on the
# port.
# Range: 10-720
# Default: 300
# If valid QL was not received from one of the source ports within 5 seconds
# the port is no longer a valid source (marked as QL-failed)
# Valid QL must be received for more then "recover time" seconds on that port
# to use its PHY recovered signal again as a valid source
```



```
10
recover time
# Shell command to be executed in order to obtain current EEC status of a
# device.
                        cat /sys/class/net/enp1s0f0/device/dpl1_0_state
eec get state cmd
# EEC state values, must equal to values produced by stdout of
# "eec get state cmd" command
eec holdover value
eec locked ho value 3
eec locked value
eec freerun value 1
eec invalid value
# Port section(s)
# It starts per-port configuration.
# Each port (of the device) that is used for SyncE, shall have its own section.
[enp1s0f0]
# msec resolution of TX the QL from this port to the peer
\# [100-3000], default:1000 (1000 = 1 second is expected by the standard)
# As the standard expects 1 sec, it is not recommended to use different
# than a 1000.
tx_heartbeat_msec
                         1000
# recovered PHY signal can be lost at anytime, this is msec resolution of
# reading the socket, acting on signal lost shall be done just after
# [10-500], default:50
rx heartbeat msec
                         500
# Shell commands for enabling/disabling this port as main recovered clock on a
# device.
recover clock enable cmd echo 1 0 > /sys/class/net/enp1s0f0/device/phy/synce
recover clock disable cmd echo 0 0 > /sys/class/net/enp1s0f0/device/phy/synce
```

$Intel^{\otimes}$ Ethernet Network Adapter E810-XXVDA4T User Guide

6.0 Initial Test Setup

Two E810-XXVDA4T adapters on two systems with a Trimble GM200 used as a timeserver.

6.1 Test Diagram

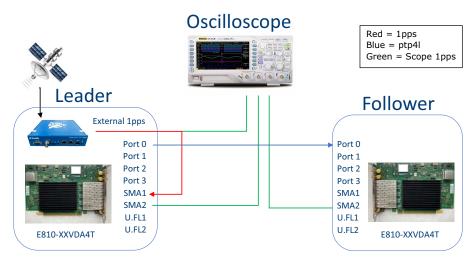


Figure 26. Test Setup

6.2 Software Configuration

Note: Before proceeding, configure a 1PPS signal on the grand leader output.

6.2.1 Leader Adapter

Before proceeding, configure the GNSS to the output 1PPS signal and connect it to the SMA1 connector (or to U.FL2). Set all SMA and U.FL connectors to off (see Section 4.0).

1. Set interface device:

```
\# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/" '{print $5}' | head -n 1`
```

2. SMA1 as input and SMA2 as output:

```
# echo 1 1 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA1
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

Note: As a side effect of having a very accurate DPLL, synchronization between the two E810-XXVDA4T adapters can take up to several hours to change to a locked state.

3. Run ts2phc:

Running on Port 0:

```
# ./ts2phc -f configs/ts2phc-generic.cfg -s generic -m
```

4. Run **ptp4I**:

```
# ifconfig $ETH 192.168.2.1
# ./ptp41 -i $ETH -m
```


5. Run synce4l (optional):

```
#./synce4l -f configs/synce4l.cfg -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

Note: For GM mode, ensure that input mode = external is used in the config file.

Note: As the default DPLL priority for 1PPS from the SMA is higher than the recover clock's

priority.

6.2.2 Follower Adapter

Before proceeding, configure the GNSS to the output 1PPS signal and connect it to the SMA1 connector (or to U.FL2). Set all SMA and U.FL connectors to off (see Section 4.0).

1. Set interface device:

```
# export ETH=`grep 000e /sys/class/net/*/device/subsystem_device | awk -F"/"
'{print $5}' | head -n 1
```

2. SMA2 as output:

```
# echo 2 2 > /sys/class/net/$ETH/device/ptp/ptp*/pins/SMA2
```

3. Set periodic output on SDP20 and SDP22 (To synchronize the DPLL1 to the E810 PHC synced by **ptp4I**):

```
# echo 1 0 0 0 100 > /sys/class/net/$ETH/device/ptp/ptp*/period
# echo 2 0 0 1 0 > /sys/class/net/$ETH/device/ptp/ptp*/period
```

Note: As a side effect of having a very accurate DPLL, synchronization between the two E810-XXVDA4T adapters can take up to several hours to change to a locked state.

4. Run **ptp4I**:

```
# ifconfig <network_interface_port0> 192.168.2.2
# ./ptp41 -i <network interface port0> -m -s
```

5. Run synce4l (optional):

```
#./synce4l -f configs/synce4l.cfg -m
```

Note: Refer to Section 5.10, "Example synce4l Configuration File for BC".

Note: For GM mode, ensure that input mode = external is used in the config file.

Note: As the default DPLL priority for 1PPS from the SMA is higher than the recover clock's

priority.

6.2.3 Test Results

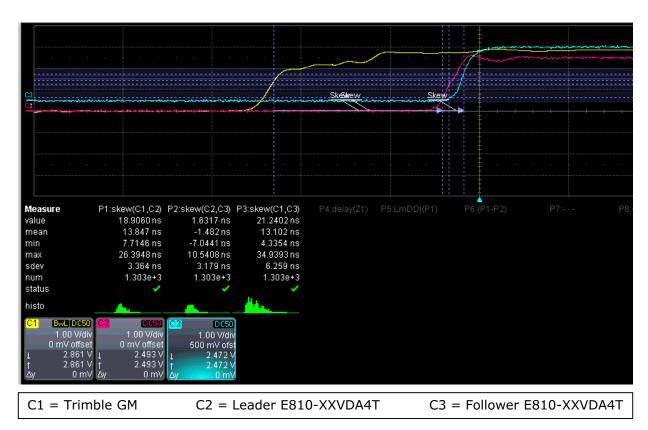


Figure 27. Test Results

Appendix A Debug Notes

- If you cannot find the SMA or ptpX files, you should check that:
 - You have the latest NVM.
 - You have the latest driver.
 - You ran make install.
 - Your kernel support sysfs interface (https://www.kernel.org/doc/html/latest/driver-api/pps.html). Otherwise, you should update your kernel to a newer one.
- It can take a couple of hours to synchronize the phase while the frequency is already locked. The DPLL status shows unlocked until both the frequency and phase are synchronized.
- When doing measurement, users need to take into consideration together the cable length that is connected the system, scope, and GM.
- Users also need to check equipment precision as some GMs can have >15 ns accuracy.
- If using newer Linux versions, use **systemd**, which has NTP and as a result sysclock based on NTP when using **phy2sys** commands to turn it off/on.

https://wiki.archlinux.org/index.php/systemd-timesyncd

- If users run into a "clock frequency higher than an expected" **ptp4l** error, they might be running **ptp4l** as follower and leader on the wrong system.
- If **ts2phc** shows SKIPS, it is likely that the extts polarity is set wrong in the *ts2phc* config file.
- If ts2phc reports:

```
# ts2phc[4980.802]: enp138s0f0 ignoring invalid master time stamp
```

The problem is that the system time and the GNSS time is too far away and the system time needs to be updated. Set initial system time via one-time update via NTP (using NIST server as an example):

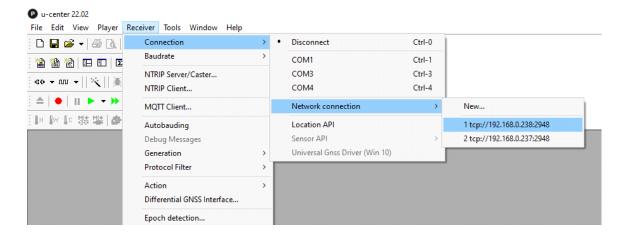
```
ntpd -g -q -x 132.163.97.5
```

• If *tx_timestamp* does not arrive within the specified time, *linuxptp* completely restarts synchronization. Try increasing *Tx_timestamping_timeout* to a larger number, like 10 or 100, but this depends entirely on hardware.

https://manpages.debian.org/unstable/linuxptp/ptp4l.8.en.html

• Linux kernels going to sleep, edit:

```
/etc/default/grub GRUB_CMDLINE_LINUX_DEFAULT="quiet splash nohz=off" "sudo update-
grub"
```


then restart.

To check the GNSS receiver performance you might want to use u-blox U-center tool. To enable
access, you can use the Netcat tool that listens on port 2948 for active connection from the
U-center:

```
# nc -nvlp 2948 > /dev/gnssX < /dev/gnssX</pre>
```

Connecting through TCP in the U-center software:

• If you receive the following using **ts2phc** with GNSS module:

```
nmea: unable to find utc time in leap second table

ts2phc[1539626.441]: ens785f0 extts index 0 at 1623669837.999999264 corr 0 src
1623669801.870596298 diff 36999999264

ts2phc[1539626.441]: ens785f0 ignoring invalid master time stamp
```

then you might be using **linuxptp**, Version 3.1, which is incompatible or your pts number in the config file is wrong. Also make sure you have an appropriate leap second file defined in the *.cfg* file (see Section 5.8).

- If you are experiencing problems where **ethtool** -T does not show Hardware Tx or Rx, you might need to reinsert the Intel *ice* driver with make install to include the DPK.
- Some improperly formatted messages, or tools can also "break" the functionality of GNSS module, making it impossible to send configuration changes to GNSS module. Some of these issues can be resolved by restarting the *ice* driver with the following command:

```
# rmmod ice; modprobe ice
```

• If for some reason you do not want to install **gpsd** on the system, Linux **echo** commands can be used. You must know the hex string sent by **ubxtool** beforehand, keep opened GNSS interface, and send the **echo** command in this format:

```
# cat /dev/gnssX
# echo -ne "<hex string>" > /dev/gnssX
```

Example - Open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
```

echo -ne "\xb5\x62\x06\x8a\x09\x00\x00\x02\x00\x05\x00\x52\x10\x00\x02\x68"
> /dev/gnssX //Terminal 2

- Intel recommends disabling UART1 and UART2 interfaces on the GNSS receiver. To do that, use:
 - 1. Disable UART1 in RAM, and Flash:

```
# ubxtool -v 1 -w 1 -P 29.20 -z CFG-UART1-ENABLED, 0, 5
```

Or open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
# echo -ne
"\xb5\x62\x06\x8a\x09\x00\x00\x05\x00\x00\x05\x00\x52\x10\x00\x05\x80" > /dev/
gnssX //Terminal 2
```

2. Disable UART2 in RAM, and Flash:

```
# ubxtool -v 3 -w 1 -P 29.20 -z CFG-UART2-ENABLED,0,5
```

Or open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
# echo -ne
"\xb5\x62\x06\x8a\x09\x00\x00\x05\x00\x00\x05\x00\x53\x10\x00\x06\x83" > /dev/
qnssX //Terminal 2
```

• In some cases, when GNSS loses the antenna reference, the GNSS might output for couple of seconds the 1PPS signal and NMEA messages. To more rapidly disqualify the 1PPS and NMEA messages, increase the filtering of GNSS receiver with **ubxtool** command:

```
# ubxtool -P 29.20 -v 1 -w 1 -z CFG-NAVSPG-OUTFIL TACC, 10,5
```

Or open two terminals and run:

```
# cat /dev/gnssX //Terminal 1
#echo -ne
"\xb5\x62\x06\x8a\x0a\x00\x00\x05\x00\x00\xb4\x00\x11\x30\x0a\x00\x9e\x1b" >
/dev/gnssX //Terminal2
```

• Because of a known driver limitation, before enabling the periodic outputs to the DPLL, make sure that your PHC is synchronized (wait for stable **ptp4I** connection with dual digit offset). If you need to do a jump on the PHC clock (like restarting **ptp4I**), you must to disable 1PPS and 10 MHz signal to DPLL. If the clock jumped, the periodic outputs to the DPLL might not ever show a "valid" state in the CGU Linux interface. To restore correct operation of DPLL, reload the driver:

```
# rmmod ice; modprobe ice
```


NOTE: This page intentionally left blank.

Appendix B Glossary and Acronyms

Table 8. Definition of Terms

Term	Definition
AAU	Active Antenna Unit
BBU	Baseband Unit
BC	Boundary Clock
ВМС	Best Main Clock
CN	Core Network
CPRI	Common Public Radio Interface
CU	Centralized Unit
DU	Distributed Unit
EEC	Ethernet Equipment Clock
еМВВ	Enhanced Mobile Broadband
EPC	Evolved Packet Core
Extts	External Timestamp
GMC	Grand Main Clock
GNSS	Global Navigation Satellite System (include GPS, Galileo, Glonass, Beidou, QZSS, and NavIC)
MIMO	Multiple-Input Multiple-Output
mMTC	Massive Machine Type Communication
ms	Milliseconds
NGCN	Next Generation Core Network
ns	Nanoseconds
NTP	Network Time Protocol
ОС	Ordinary Clock
осхо	Oven-Controlled Crystal Oscillator
OTII	Open Telecom IT Infrastructure
PDCP	Packet Data Convergence Protocol
PHC	PTP Hardware Clock
ppb	Parts Per Billion
ppm	Parts Per Million
PRC	Primary Reference Clock
PTP	Precision Time Protocol
ptp4l	PTP for Linux
RAN	Radio Access Network
RU	Radio Unit
S	Seconds
SSU	Synchronization Supply Unit
SyncE	Synchronous Ethernet
TC	Transparent Clock

646265-006

Table 8. Definition of Terms [continued]

Term	Definition
ToD	Time of Day
ToS	Top of Second
uRLLC	Ultra-Reliable and Low Latency Communications
μs	Microseconds

NOTE: This page intentionally left blank.

646265-006

LEGAL

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

This document (and any related software) is Intel copyrighted material, and your use is governed by the express license under which it is provided to you. Unless the license provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this document (and related materials) without Intel's prior written permission. This document (and related materials) is provided as is, with no express or implied warranties, other than those that are expressly stated in the license.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Copies of documents that are referenced in this document can be obtained by visiting the Intel Resource and Documentation Center. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

© 2022-2023 Intel Corporation.