
Abstract
The availability of devices incorporating hardened ARM* applications processors 
closely coupled to an on-chip FPGA fabric opens a world of possibilities to 
electronic system designers. However, these devices also introduce novel design, 
debug, and optimization challenges. New development methodologies are 
required to address software and hardware integration issues and system-level 
performance optimizations efficiently at a price affordable by small- and medium-
sized companies. This white paper outlines Intel's and ARM’s latest innovations 
in on-chip debug logic, FPGAs, and software debug and analysis tools aimed to 
address these challenges.

Introduction
Current tools deal well with software problems and FPGA problems, but do not 
offer much help for problems arising in systems that tightly integrate software and 
custom hardware—as will inevitably occur in devices that contain processors and 
FPGAs on a single die. These integration debug challenges can be addressed using 
EDA tools in register transfer level (RTL) simulation and emulation environments, 
but these solutions are often too complex, slow, and expensive for companies who 
are not developing their own silicon devices.

Intel and ARM have collaborated on the development of FPGAs and software 
debug tools in order to create new methodologies that leverage the on-chip debug 
logic and enhance software development capabilities for the new Intel® SoCs. This 
white paper uses examples based on the ARM Development Studio 5* (DS-5*) Intel 
SoC FPGA Edition software tool chain and Intel Signal Tap tools to illustrate debug 
solutions, although the technologies implemented are generic in nature.

Intel SoCs
Cyclone® V and Arria® V SoC families consolidate two discrete devices into one to 
reduce system power, cost, and board size while increasing performance. Every 
SoC contains an FPGA fabric that has been tightly integrated with a hard processor 
system (HPS). The HPS consists of a dual-core ARM Cortex*-A9 processor, 
peripherals, and memory controller (see Figure 1). Many modern systems 
incorporate discrete processors and FPGAs but the communication between 
them is limited to the existing processor external interfaces. Although there 
are usually several potential interfaces to choose from, none of them are ideal. 
Bandwidth is generally low, latencies are often high, and there is usually significant 
effort in writing driver software and/or FPGA interface logic to enable efficient 
communication. In addition to these difficulties, the interfaces can be proprietary 
or vary in specification from processor device to device, making it difficult to reuse 
the design even if the general system requirement is similar.
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The single-die integration of processor and FPGA fabric in Intel's SoCs enables implementation of high data bandwidth 
AMBA* connections between processor system, FPGA intellectual property (IP), and the memory system. No special software 
or interface logic is required—the registers of the FPGA IP are simply mapped directly into the processor memory space, 
making communication with software simple and direct. Having the two devices on the same chip also makes it possible to 
connect other interfaces and signals between the FPGA and processor, thereby delivering a much higher level of integration 
than is possible with discrete devices. For example, between the processor and FPGA there are 64 interrupt signals, a custom 
general- purpose I/O (GPIO) interface, signals enabling processor sleep, wake, and reset from the FPGA, and FPGA access 
to the ARM CoreSight* debug infrastructure implemented in the processor system. These features enable sophisticated 
processor or FPGA designs that previously were simply not possible. In addition, access to the CoreSight infrastructure 
delivers the ability to debug the system in ways that are not possible with discrete devices or other integrated processors or 
FPGAs.

Tools for Embedded Software Development and FPGA Analysis
Devices based on ARM processors normally have a JTAG or Serial-Wire Debug port for software debug. Embedded software 
debuggers can attach to this port using a hardware debug probe, stop the processor, and read and modify the status of the 
processor, memory, and peripherals that are connected to its AMBA buses. This debug connection is essential for early stages 
of development, including board bring-up, boot code, functional validation of peripherals, and development of kernel space 
code and drivers.

Many ARM processor-based devices incorporate a CoreSight Embedded Trace Macrocell* (ETM) and/or a Program Trace 
Macrocell (PTM) to deliver trace capability. These on-chip blocks non-intrusively monitor the instructions executed by the 
processor, compress the information, and send it to an on-chip memory buffer and/or an external trace port. When this trace 
information is loaded into the debugger, developers can view a history of all the instructions executed by the processor up to 
a certain point in time. This history enables debug of complex problems—the kind of bugs that only appear from time to time, 
and disappear the moment you instrument the code in an attempt to debug them.

FPGAs also have JTAG ports and can offer similar trace debug capabilities. Intel FPGAs use a system known as Signal Tap, 
which automatically adds and configures IP that monitors RTL signals inside the FPGA design. Once triggered, RTL signal 
trace data from before, after, or around the trigger event is stored in on-chip memory. This trigger event normally reflects a 

Figure 1. Intel SoC Block Diagram
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hardware error condition, and may be calculated as a combinatorial function of several signals in the RTL—such as when a 
hardware state machine enters a certain stage and the critical RTL signals are set to an illegal set of values, or when an input 
pin goes high or low.

Debugging Across Worlds
Finding out whether a complex problem is caused by a hardware or software bug is normally the first step towards a fix. The 
main methodologies for debugging across the hardware and software worlds consist of:

•	 Triggering on an error condition in the software, and analyzing the state of the hardware around that point in time

•	 Triggering on an error condition in the hardware, and exploring what the software was doing around that point in time

•	 Visualizing a history of software instructions and hardware RTL waveforms, and aligning them on events of interest in 
order to explore the relationship between the two

Each of these methodologies requires dedicated debug hardware on the boundary between the hardened processor system 
and the FPGA fabric. Intel SoCs include a comprehensive implementation of ARM CoreSight on-chip debug and trace logic, 
including a cross-trigger matrix that connects input and output triggers from all the processors and trace macrocells in the 
processor sub-system and hardware triggers to and from the FPGA fabric (see Figure 2). The cross-trigger matrix can be easily 
programmed from the DS-5 Debugger to configure which hardware blocks generate triggers and which components are 
affected by them, as shown in Figure 3. Any debug trigger event can be used to simultaneously trigger the software and FPGA 
debug systems regardless of where the trigger was generated.

Cortex*-A9

PTM

Cortex-A9

PTM

Cross-Trigger Matrix

FPGA Fabric

Figure 2. Cross-Trigger Matrix on an Intel SoC

Figure 3. Cross-Triggering from the Software World to the Hardware World
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Software developers normally know that something is wrong because an assertion failure occurs, or because the software 
enters an error handling function. If the processor just crashes, they might restart the system and step through the code until 
the crash occurs. Once that critical point or instruction in the software is located, they use DS-5 to configure the trace 
macrocell to generate a trigger on or before that instruction, and use Signal Tap to configure the FPGA to capture RTL signals 
around the same incoming trigger. The next time the software is executed and the processor reaches that critical instruction, 
the FPGA will capture waveforms of the selected RTL signals around that point in time.

Developers often decide to initially capture waveforms of the system bus from the processor to decode what memory-
mapped component was being accessed at the critical time. Once the faulty component has been identified, the same 
methodology can be used to analyze its internal hardware implementation.

Similarly, SignalT ap can be used to configure the FPGA to generate a trigger when a particular combination of RTL signals 
occurs, as shown in Figure 4. The DS-5 is then used to configure the cross-trigger matrix so that the FPGA trigger either stops 
the processor execution or starts the capture of the software instruction trace.

Exploring the Relationship Between Software and Hardware
Despite its powerful features, cross-triggering does not satisfy all the needs of developers working on software and hardware 
integration. Its main limitation is that it cannot be used as an exploratory tool. Cross-triggering requires the developer to 
define an error condition that is only useful for capturing relevant debug data rather than actually identifying the cause of a 
system-level problem.

Intel's SoCs implement a CoreSight System Trace Macrocell (STM) (Figure 5), which provides a more appropriate tool for 
initial exploration of the relationship between software and hardware. The STM enables both software and hardware 
instrumentation. The software is instrumented by “printing” character strings to the STM when there are events of interest. 
Similarly, the hardware is instrumented by routing signals of interest to the STM. Every time one of the STM-routed hardware 
signals changes or the software hits an interesting event, the STM generates and sends trace packets to the DS-5 Debugger.

Figure 4. Cross-Triggering from the Hardware World to the Software World
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This technology addresses a number of integration questions, including:

•	 Are the FPGA peripherals being turned off when they are not needed by the software?

•	 Does the driver for an FPGA-based peripheral correctly share access between two applications?

•	 How long does the software take to react to a peripheral interrupt or a change on an input pin of the FPGA?

•	 Is the data generated by the FPGA peripherals always received and understood correctly by the software, and is any data 
being lost?

The use of a STM to monitor hardware signals delivers the added advantage of being able to display all data sources in the 
single user interface provided by the DS-5 Debugger. This interface is more efficient than having to continuously switch 
between software and FPGA tools, especially when the developer is not an FPGA expert.

Finally, Intel SoCs implement on-chip CoreSight global timestamps, which provide a common time base distributed across all 
the trace macrocells in the hardware. These global timestamps enable the user to correlate instruction trace, software events, 
and hardware events over long periods of time. Global timestamps provide an alternative correlation mechanism to triggers 
that are more suitable for exploratory stages of development.

Reducing Software Development Costs
The goal of good development tools is not only to facilitate the debug of complex problems, but also to make development 
more efficient and, in general, reduce time to market. However, sometimes these tools have more to do with the convenience 
and usefulness of standard product features rather than the availability of specific powerful features.

One “convenience feature” available in most professional debuggers is the modification of the user interface to display the 
features of the specific device being debugged. This modification involves the ability to display device specific memory- 
mapped peripheral or module registers in groups with names, bitfields, and descriptions equivalent to those found in the 
device’s documentation and reference

software. For example, if you want to configure a UART with a certain baud rate, you would just go to the UART peripheral 
window, select CONTROL register, and select the correct baud rate from a drop-down menu. The software debugger would 
then automatically translate this request into a write access to the right memory address with the right data value. This ability 
is essential for effective hardware functional validation and driver development.

When developing on FPGAs, things are a bit more complicated. FPGA vendors like Intel normally provide a library of 
peripheral IP, such as encryption/decryption blocks, mathematical algorithm acceleration blocks, and peripheral interface 
controllers. It is up to the hardware developer to decide how many of these blocks are implemented in the FPGA and where 
they are located in the processor’s memory map. This means that it is not possible for the software debugger vendor to 
provide a pre-built peripheral register view.

The solution to this problem requires communication between the FPGA design tools and the software debugger. In 
particular, Intel's Platform Designer (formerly Qsys) and design flow is capable of generating and exporting peripheral register 
description files for the FPGA design. The DS-5 Debugger can automatically import these files and adapt the debugger display 
to include the FPGA-based peripheral registers and bitfields. If the FPGA hardware changes, the DS-5 Debugger imports the 
new register description files and its system view adapts seamlessly to the new memory map (Figure 6).
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Figure 6. Automatic Import and Display of Peripheral Registers on the DS-5 Debugger
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While a large part of the FPGA design often consists of IP blocks provided by the FPGA vendor, developers frequently design 
their own IP blocks with proprietary register interfaces. Developers can manually add their register interface to the DS-5 view. 
However, if a peripheral description file for the IP blocks is added to the Platform Designer (formerly Qsys) component then 
the Intel development flow will integrate the custom IP register map to the description files in the same way as with standard 
Intel components. This ability enables DS-5 to deliver a complete view of the SoC system memory-map automatically even if 
custom FPGA IP blocks are used.

System-Level Performance Analysis
Over time, product developers are placing greater emphasis on debugging performance issues in an effort to squeeze 
more functionality out of the same hardware, or to reduce power consumption. Performance and power analysis tools have 
therefore become a major area of focus for debug tool vendors.

One important reason to choose Intel SoCs is their ability to use FPGA hardware blocks to accelerate software functions. For 
example, fast Fourier transform (FFT) decoders, digital filters, and DES decryption algorithms implemented in the FPGA fabric 
can be used to free up the processor, which can then either perform another task in parallel or just go to sleep and save power 
consumption. For these reasons, it is essential that development tools provide visibility of the relative levels of utilization of 
the processors and FPGA IP blocks over time. This information can then be used by the designer to optimize the whole system, 
implement the right number and type of IP blocks on the FPGA, partition the software to make efficient use of them, and 
balance the load between software and hardware resources.

Although instruction trace is often used for optimizing software CODECs and other performance-critical software, it is not the 
right kind of analysis tool for understanding system-level performance bottlenecks. For ARM applications processors running 
complex Linux* or Andriod operating systems, analysis tools that rely on OS instrumentation and statistical sampling like the 
ARM DS-5 Streamline* performance analyzer are preferred.

The Streamline performance analyzer makes use of a Linux driver that runs on the target to sample information from the 
target at regular time intervals and every time that there is a task switch. The information captured is provided by software 
and hardware counters. The following types of events are supported:

•	 Operating system events—processor load, memory usage, and network load.

•	 Processor events—branch mispredictions, number of instruction interlocks, or level- 1 cache hits and misses.

•	 System events—level-2 cache misses. These counters are made available by the relevant system IP blocks as memory-
mapped registers, and enable the user to spot system-level bottlenecks.

•	 Software events— “printf-style” annotations in the applications, used to report events of interest that the user would like 
to correlate with performance counters.

When this information is displayed on a timeline (Figure 7), the interactions between software and hardware are easy for the 
developer to visualize and understand, enabling optimization of the target as a complete system.
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Figure 7. Timeline View in ARM DS-5 Streamline
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On fixed hardware targets, the information provided by Streamline can only be used to optimize the software. However, on 
an Intel SoC, it can be used to simultaneously optimize both hardware and software by choosing the right FPGA acceleration 
blocks and adapting the software to use those blocks efficiently. The only infrastructure required in the FPGA hardware is 
memory-mapped registers that count the level of utilization of each different IP block. Streamline can then be configured to 
access those new counters and display their value over time correlated with CPU activity and other system-level counters.

Users interested in power consumption can extend Streamline with an ARM Energy Probe or National Instruments* data 
acquisition hardware to monitor and visualize voltage and current consumption on a number of power rails on the target. 
On SoCs, these power rails would normally be the ones used to power the CPU subsystem, FPGA core, and FPGA I/Os, but 
you could also choose to monitor the main power supply of the board or even the whole product. Again, by visualizing the 
dependency of power consumption with software activity and system utilization, and being able to easily benchmark the 
energy consumption required to complete a task, developers can optimize the system for power consumption and battery life.

Conclusion
The new class of SoCs integrating ARM applications processors and Intel FPGA fabric opens a wealth of possibilities for faster, 
cheaper, and more energy-efficient electronic products. The innovation in the hardware has been matched by innovation in 
the FPGA tools, on-chip debug hardware, and software debug and analysis tools, so that development with these devices, and 
making the most of their features, is as easy and efficient as software development on fixed processor devices.
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