
November 2011 Altera Corporation

WP-01170-1.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX wor
Office and in other countries. 
respective holders as described
products to current specificatio
products and services at any ti
of any information, product, o
advised to obtain the latest ver
for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com
System-Level Debugging and Monitoring
of FPGA Designs
White Paper
This white paper describes the latest state-of-the-art methods for debugging and 
monitoring large FPGA designs both during the simulation phase of development 
and after device configuration, and details the current practices that Altera has 
identified across a representative number of customer designs. In addition, the paper 
presents a platform that enables FPGA designers to easily add runtime visibility into 
their FPGA systems while ensuring the scalability needed in today’s increasingly 
large designs and compilation times.

Introduction
For the purposes of this paper, today’s FPGA designs can be divided into two 
different categories: those with embedded soft-core processors and those without. 
This division is useful when examining what debugging and monitoring 
infrastructure designers use in their FPGA systems. The techniques discussed here are 
used both to collect data needed for root-cause diagnosis of defects and to monitor the 
performance of a system under a real-world load.

Debugging Systems Without a Processor
For designs without soft-core processors, designers usually use embedded logic 
analyzers to gather runtime data from the design. Tools such as Altera’s SignalTap™ 
II embedded logic analyzer (available in Quartus® II design software) are useful for 
looking at a predetermined set of signals and examining their behavior in time. When 
the design is suspected of being defective, the designer chooses a new set of signals to 
investigate, recompiles the design, and then reconfigures the device. This process is 
then iterated until the defect is found and fixed. Often a designer will use SignalTap II 
to gather input vectors to use as stimulus in a simulation, in order to avoid the costly 
recompilation step.

In modular systems, it is usually only necessary to tap the module’s interface to 
identify the root cause of a defect, so in the above scenario, the designer typically ends 
up looking at module interfaces. However, as the number of modules increases, it 
becomes exponentially cumbersome to go through these iterations. In response, some 
designers decide to constantly tap all of their module interfaces. However, if they 
want access to all of the interfaces after deployment, this method can leave a vast 
amount of debug logic instantiated during deployment.
l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
ds and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark 
All other words and logos identified as trademarks or service marks are the property of their 

 at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor 
ns in accordance with Altera's standard warranty, but reserves the right to make changes to any 

me without notice. Altera assumes no responsibility or liability arising out of the application or use 
r service described herein except as expressly agreed to in writing by Altera. Altera customers are 
sion of device specifications before relying on any published information and before placing orders 

Feedback Subscribe

ISO 
9001:2008 
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01170
mailto:whitepapers@altera.com?subject=Feedback on WP-01170
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html


Page 2 Requirements for Debugging Today’s Systems
Debugging Systems with a Processor
When a design contains a soft-core processor, it is not unusual for the designer to 
reserve a percentage of its capabilities to run a debug and control loop. This loop 
usually listens for commands on one of the systems communication channels, such as 
a UART or a TCP/IP connection. Once a defect is suspected, the designer then 
connects to the debug and control loop through this channel and using a private 
command language, is able to poke around the system and observe as much as the 
command language allows.

In many cases, soft-core processors are added to a system explicitly to provide this 
type of service. Aside from the required sharing of resources this approach requires, 
using soft-core processors has two major drawbacks. First, it takes development time 
to create the debug and control loop and its command language. Second, the nature of 
the communication channel usually prevents this method from being used during the 
simulation phase. In addition, systems running the debug and control loop using the 
mission processor might be unable to reproduce the failure event once the debug loop 
starts using resources and interacting with the execution of the other processing tasks.

Requirements for Debugging Today’s Systems
Based on the above description and customer feedback, a modern system-level 
debugging tool must be able to do the following:

■ Minimize the number of hardware compilation steps needed

■ Be consistent and reusable during the simulation, lab test, and deployment phases

■ Use the existing system’s address space as an efficient means of accessing the 
design state

■ Use the minimum possible amount of resources

■ Provide a flexible scripting interface to access the available runtime information

■ Cause minimal disruption of the system transaction sequence

■ Have the flexibility to use already available communication mechanisms

More importantly, an effective debugging and monitoring tool should be able to help 
the designer answer more subtle questions such as:

■ Why is the system performance not matching the expected performance?

■ Where are the bottlenecks?

■ How much processing capacity is available given the current traffic?

The debug infrastructure should provide the means to answer these questions and 
others that may arise perhaps even after deployment, with minimal or no changes to 
the design.
November 2011 Altera Corporation System-Level Debugging and Monitoring of FPGA Designs



Altera’s Approach Page 3
Altera’s Approach
Altera addresses the designer’s debugging and monitoring needs using a system-
level approach with System Console. It is comprised of communication intellectual 
property (IP) that is instantiated inside a Qsys design and a software stack that runs 
on a host computer. The System Console architecture is divided in three layers, as 
shown in Figure 1.

Figure 1. System Console Architectural Layers

At the bottom of the architecture, closest to the hardware, is the data transport layer. 
Different hardware IP blocks can provide the service required by this layer, allowing 
for flexibility in the type of transport technology to use. Currently those choices are 
JTAG, PLI, and TCP/IP, with more to come.

The second layer, the presentation layer, is comprised of services that provide various 
application programming interfaces (APIs) to interact with the design. Some 
examples of APIs in this layer include the commands to issue memory-mapped 
transactions, interact with embedded processors, and send and receive bytes from a 
bytestream device. Since this layer depends on the definition of the layer below, all of 
the services on this layer are agnostic about the underlying transport protocol, 
allowing for flexibility and reuse as the design moves from simulation, to the lab, and 
later to deployment.

The third layer is the application layer, with its own set of APIs. These APIs help the 
designer bridge the world of signals and transactions to the realm of a full-fledged 
debugging and monitoring application. This layer includes the Dashboard API and 
the Monitor API. The Dashboard API allows the creation of GUI applications that 
range from the very simple, such as displaying the current value of an address 
location, to the truly complex, such as Altera’s External Memory Interface (EMIF) 
Toolkit. The Monitor API provides an efficient mean to create periodic access to a 
range of memory addresses.

f For more information about the EMIF, refer to the Documentation: External Memory 
Interface page of the Altera® website.

Application Layer

Presentation Layer

Transport Layer

Dashboard API, Monitor API, and
custom libraries written in Tcl

Master, bytestream, processor, and
other system-control services

JTAG, PLI, TCP/IP, and other protocols
November 2011 Altera CorporationSystem-Level Debugging and Monitoring of FPGA Designs

http://www.altera.com/literature/lit-external-memory-interface.jsp
http://www.altera.com/literature/lit-external-memory-interface.jsp


Page 4 Achieving the Ideal
Achieving the Ideal
As described previously, an ideal system-level debugging tool should be able to 
perform and fulfill various requirements. Altera’s System Console meets these 
requirements.

Minimize the Number of Hardware Compilation Steps Needed
For systems that contain an embedded soft-core processor, System Console can 
control processors already present in the system, provided that the processor has its 
debug core enabled. Once it has taken control of the processor, System Console can 
access any of the memory-mapped slaves that the processor can access. The system 
designer can also add a communication bridge, such as the JTAG-to-Avalon® interface 
master, to their design. This small piece of IP also provides System Console with 
access to the memory-mapped slaves that the master can access. Taking advantage of 
the existing memory-mapped interconnect, once the system includes a 
communication bridge, the designer does not need to recompile the hardware to 
access a new signal. As long as the state is visible through the slave’s address map, it 
is reachable with just one command.

Be Consistent and Reusable During the Simulation, Lab Test, and 
Deployment Phases

One of the available communication bridges used with System Console is the JTAG-
to-Avalon master, which can be used during simulation as well as during 
deployment. During simulation, the JTAG-to-Avalon master becomes a PLI-to-Avalon 
master and the very same commands used to interact with its JTAG counterpart can 
be issued to interact with the simulation. This mode allows troublesome transactions 
to be injected into the system and then the simulator’s high-visibility range can be 
used to identify the root cause of the problem. In addition, most of the scripts that the 
designer developed to interact with the design during the simulation phase can be 
reused during later stages because the commands remain the same in the simulation 
and hardware phases, increasing the consistency of the development flow.

Use the Existing System’s Address Space as an Efficient Means of 
Accessing the Design State and Use the Minimum Possible Amount of 
Resources

By taking advantage of the Qsys interconnect, System Console is able to control many 
different masters and thereby access the different slaves that make up a system and 
the systems’s address space. In addition, it can easily send and receive Avalon 
transactions using the standard interfaces available in the modules that constitute the 
system. These transactions lead to a natural manipulation of the design state, reusing 
the existing actors in the system.
November 2011 Altera Corporation System-Level Debugging and Monitoring of FPGA Designs



Sharing the Platform Page 5
Provide a Flexible Scripting Interface to Access the Available Runtime 
Information

All of the capabilities of System Console are presented as Tcl procedures, yielding an 
advanced programmable environment that allows for the development of solutions 
ranging from simple scripts to sophisticated GUI applications. System Console is 
architected so that the services available to the designer are independent and agnostic 
of the transport layer used to reach the device. This yields a Tcl API that remains 
constantly independent from the communication method, be it JTAG, PLI, TCP/IP, or 
any other.

Using this programmable environment, debug transcends from analysis of individual 
signals to a transactional interaction with the system. By building on top of 
transactions and Tcl, the designer can raise the level of abstraction and start thinking 
of debugging packet headers as they traverse a router or an image block as it is 
processed in a video pipeline.

Cause Minimal Disruption of System Transaction Sequence
In addition, System Console is fully integrated with the In-System Sources and Probes 
editor in the Quartus II software, which provides access to arbitrary signals across the 
whole system. These probes do not use any of the interconnect resources; instead, 
they create a low-bandwidth parallel network that provides access at a very 
reasonable resource cost. In fact, the main cost for using In-System Sources and Probes 
becomes the recompilation required once new signals are added. This cost must be 
weighed against the benefits of no disruption to the transaction flow.

f For more information about using the In-System Sources and Probes editor, refer to 
the System Debugging Tools Overview chapter in volume 3 of the Quartus II 
Handbook.

Have the Flexibility to Use Already Available Communication Mechanisms
As previously mentioned, System Console can take control of existing communication 
infrastructure, which provides a convenient way to gain visibility on legacy designs 
that were not designed with System Console in mind, but already contain 
communication IP. Typical examples of this flexibility is a Nios® II processor with its 
debug core enabled or In-System Sources and Probes.

Sharing the Platform
The System Console platform is accessible to any of the Quartus II development 
software users through the System Console Tcl API. Its capabilities include:

■ Controlling available Qsys interconnect masters

■ Controlling In-System Sources and Probes

■ Verifying the status of the reset and clock networks

■ Controlling Virtual JTAG megafunctions

■ Creating GUI dashboards to interact with the design
November 2011 Altera CorporationSystem-Level Debugging and Monitoring of FPGA Designs

http://www.altera.com/literature/hb/qts/qts_qii53027.pdf


Page 6 Sharing the Platform
Altera leverages the capabilities of the System Console platform when developing 
new debugging tools. The External Memory Interface Toolkit (Figure 2) is one 
example of a tool created using the System Console platform. This tool kit aids and 
provides detailed information about the calibration process of external memory 
interfaces.

Figure 2. External Memory Interface Toolkit

Some designers use the System Console Dashboard API to create detailed status 
dashboards for their designs. Figure 3 shows a status board for a packet processing 
application, displaying different statistics of interest in real time.
November 2011 Altera Corporation System-Level Debugging and Monitoring of FPGA Designs



Conclusion Page 7
Figure 3. Dashboard for a Packet Processing Application

Conclusion
This white paper explored the current state-of-the-art methods for debugging and 
monitoring large FPGA systems and presented a set of requirements needed to be met 
by the infrastructure tasked to provide system visibility. To meet these requirements, 
Altera created System Console, a platform that provides users with the flexibility, 
reusability, and efficiency required to solve today’s wide range of system debugging 
needs.

Further Information
■ System Console: Faster Board Bring-Up and On-Chip Debug:

www.altera.com/products/software/quartus-ii/subscription-
edition/qsys/systems/qts-systems-console.html

■ Analyzing and Debugging Designs with the System Console chapter of volume 3 
of the Quartus II Handbook:
www.altera.com/literature/hb/qts/qts_qii53028.pdf

■ Video: “Faster Board Bring-Up with System Console”:
www.altera.com/education/demonstrations/qsys/board-
bringup/System_Console_Board_bringup_Final.html

■ Video: “Building a Custom Verification GUI with System Console”:
www.altera.com/education/demonstrations/qsys/system-
console/System_Console3_final.html
November 2011 Altera CorporationSystem-Level Debugging and Monitoring of FPGA Designs



Page 8 Acknowledgements
■ Documentation: External Memory Interface:
www.altera.com/literature/lit-external-memory-interface.jsp

■ System Debugging Tools Overview chapter in volume 3 of the Quartus II 
Handbook:
www.altera.com/literature/hb/qts/qts_qii53027.pdf

Acknowledgements
■ Silvio Brugada, Sr. Software Engineer, System-Level Debug, Altera Corporation

Document Revision History
Table 1 shows the revision history for this document.

Table 1. Document Revision History

Date Version Changes

November 2011 1.0 Initial release.
November 2011 Altera Corporation System-Level Debugging and Monitoring of FPGA Designs


	System-Level Debugging and Monitoring of FPGA Designs
	Introduction
	Debugging Systems Without a Processor
	Debugging Systems with a Processor

	Requirements for Debugging Today’s Systems
	Altera’s Approach
	Achieving the Ideal
	Minimize the Number of Hardware Compilation Steps Needed
	Be Consistent and Reusable During the Simulation, Lab Test, and Deployment Phases
	Use the Existing System’s Address Space as an Efficient Means of Accessing the Design State and Use the Minimum Possible Amount of Resources
	Provide a Flexible Scripting Interface to Access the Available Runtime Information
	Cause Minimal Disruption of System Transaction Sequence
	Have the Flexibility to Use Already Available Communication Mechanisms

	Sharing the Platform
	Conclusion
	Further Information
	Acknowledgements
	Document Revision History


