
May 2011 Altera Corporation

WP-01132-1.1

© 2011 Altera Corporation. A
QUARTUS and STRATIX are
All other trademarks and ser
www.altera.com/common/leg
accordance with Altera’s stan
without notice. Altera assume
service described herein exce
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
FPGA Configuration via Protocol
White Paper
Altera’s new device configuration mode—configuration via protocol (CvP)—can be
used with PCI Express® to configure the core fabric of Altera’s 28-nm Arria® V,
Cyclone® V, and Stratix® V FPGAs. CvP can reduce product cost and board size,
while simplifying the software usage model, and providing robust in-field system
upgrade capability. In addition, the autonomous, embedded PCIe IP core helps
ensurethatdesignsmeetPCIepower-uptimerequirements, irrespectiveof theFPGA
core fabric configuration time, guaranteeing a wide range of interoperability with
various PCIe-based computer platforms.

Introduction
PCIe technology has replaced PCI as the standard control plane interface between
processors and the devices that they monitor. Since its introduction in 2005, FPGA
designers have made PCIe one of the most widely used interfaces between FPGAs
and processors. Today’s FPGAs include embedded PCIe cores that serve as endpoints
or root ports.

Until recently the embedded PCIe core could not begin link training and bus
enumeration until the FPGA was fully configured. As FPGA configuration times
increase with rising device densities, it's becoming difficult to fully configure the
FPGAs within the initialization time required by the PCIe specification.

With the announcement of its 28-nm device portfolio, Altera solves this problem by
allowing configuration of the PCIe hard IP separate from the FPGA core logic. This
technology also allows designers to configure the core fabric of Altera Arria V,
Cyclone V, and Stratix V FPGAs via PCIe. The new CvP device programming method
can reduce product cost and board size, while simplifying the software usage model,
and providing robust in-field system upgrade capability, as described below:

■ Lower system cost—CvP can eliminate one or more parallel flash devices and
possibly an external programming controller device. In addition, CvP allows
designers to store FPGA programming files in a CPU memory system attached to
the FPGA via a PCIe link. Using this technique, only the FPGA I/O programming
and PCIe core parameters are stored in the flash device, requiring a smaller and
cheaper flash device.

■ ReducedFPGAresources—Stratixseriesdevicestypicallyrequirewide,data-path
flash devices to store the FPGA programming file. In contrast, EPCS and EPCQ
devices supported by CvP require fewer dedicated pins.

■ Power savings—Low-power, temporary FPGA images can be loaded via software
control based on the user application profile. This feature is useful in battery
powered computers.
Subscribe

ll rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
vice marks are the property of their respective holders as described at
al.html. Altera warrants performance of its semiconductor products to current specifications in
dard warranty, but reserves the right to make changes to any products and services at any time
s no responsibility or liability arising out of the application or use of any information, product, or
pt as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

Feedback

http://www.altera.com/common/legal.html
http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01132
mailto:whitepapers@altera.com?subject=Feedback on WP-01132

Page 2 Autonomous PCIe Hard IP
Figure 1 provides a simplified representation of the PCIe power-up timing sequence
as described in the the PCI Express Base Specification 1.0a or 1.1 for Gen1 and PCI Express
Base Specification 2.0 for Gen2. The minimum time allocated to device initialization and
device training is 200 ms (equivalent to the difference between point 5 and point 1 in
Figure 1). The minimum amount of time allocated to device initialization is depicted
by the time difference between point 3 and point 2 in Figure 1, or about 95 ms.

Since FPGA devices pack more logic at smaller geometries, more time is required to
program large FPGA core fabric with application-specific content. The total
configuration time can exceed 95 ms in large devices. When an endpoint device does
not reach L0 within the time allocated to it by the PCIe specifications, the endpoint
may not respond to the software configuration access transactions (point 5), and the
host CPU may fail to recognize this endpoint. In that case, the host CPU may ignore
the endpoint and the system operates without it.

Autonomous PCIe Hard IP
In order to circumvent this failure discovery mechanism, Altera’s 28-nm FPGAs
support operation of embedded PCIe cores, prior to fully configuring the FPGA core
fabric. The 28-nm FPGA-embedded PCIe core always meets the PCIe power-up
timing requirements by initializing the embedded PCIe cores and the device I/O ring
in less than 95 ms. This separately configurable embedded PCIe IP core is referred to
as “autonomous.”

The following sequence defines the CvP initialization period for PCIe:

1. The embedded PCIe core is held in reset by PERST#, and is released shortly before
point 3 to start PCIe link discovery and training.

2. The rest of the FPGA core fabric begins programming after the PCIe link
completes the training phase and reaches the L0 state.

Figure 1. PCIe Power-Up Timing Waveform

1. Power Stable

 >= 100 ms

2. Plug-In Card Voltage
 Regulators Ramped Up

5. Link Must Accept First
 Configuration Access

<= 20 ms

4. Link LTSSM Must
 Enter Detect State

~10 ms
Minimum Device
Initialization Time

<= 5 ms

PERST#

3. Link
 Detection

PCIe Link State Inactive Training Active (L0)

>= 100 ms

3.3 / 12 Volts
FGPA Configuration via Protocol May 2011 Altera Corporation

http://www.pcisig.com/
http://www.pcisig.com/
http://www.pcisig.com/

FPGA Core Fabric Programming Across the PCIe Bus Page 3
3. After the embedded PCIe endpoint core reaches the L0 state, the host operating
system (OS) starts accessing the PCIe core’s configuration space registers (CSR) to
perform configuration write access cycles that are part of the system initialization
and discovery process (point 5).

4. In case the FPGA core fabric is not fully programmed with the designer’s
application content (in other words, it has not yet reached “user mode”), the
autonomous PCIe core responds with configuration retry status (CRS)
transactions until the FPGA core fabric is fully loaded.

5. The OS correctly identifies this endpoint and attempts to poll it again until it
becomes fully functional.

6. The endpoint is allowed to respond with CRS for one second before the OS
determines that the endpoint is faulty. In other words, the time allocated for the
FPGA core fabric programming cannot exceed one second in this device
initialization mode.

FPGA Core Fabric Programming Across the PCIe Bus
The following section provides details about the use of CvP with PCIe. Designers can
use CvP to load the initial FPGA core fabric image via PCIe, and then later modify
that core fabric image during run-time to meet application needs. After the PCIe IP
core periphery is programmed, the link trains to the corresponding PCIe operating
mode.

After the PCIe link finishes training and reaches the L0 state, the host CPU can
program the FPGA core fabric image via PCIe.

1 Only one of the embedded PCIe cores in each 28-nm FPGA is capable of performing
CvP, and only when used as an endpoint.

During the FPGA core fabric configuration via PCIe, all non-serializer/deserializer
(SERDES) I/O pins are held high by internal weak pull-up resistors. All other high-
speed SERDES pins are essentiallyheld in reset duringCvP core fabric imageloading.
These I/O assignments are designed to freeze I/O operations while the FPGA core
fabric configuration is updated. When CvP is enabled, the autonomous PCIe core
does not respond with CRS transactions, but rather accepts and responds to PCIe
configuration and data transactions in order to perform the FPGA core fabric
configuration.

Table 1. 28-nm FPGA Configuration Modes

Mode Status Data Widths (bits)

Active serial (AS) Existing 1

Active quad (AQ) New 4

Passive Serial (PS) Existing 1

8-bit fast passive parallel (FPP) using flash loader Existing 8

4-, 16-, or 32-bit FPP using flash loader New 4, 16, 32(1)

JTAG-based Existing Dedicated JTAG port

CvP using PCIe New 1, 2, 4, 8(2)
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 4 FPGA Core Fabric Programming Across the PCIe Bus
Notes:
(1) Stratix V devices only.
(2) Number of lanes in the PCIe link (Gen1 x1, x2, x4, or x8; Gen2 x1, x2, x4, or x8;)

Figure 2 provides a high-level representation of the Stratix V configuration modes
and flash programming methods. To simplify the diagram, all flash modes are
combined in the block diagram.

Notes:
(1) Four possible FPGA configuration modes: (a) Active serial (x1, x4). (b) Passive serial/parallel (x1, x4, x8, x32)

using an Altera MAX® CPLD or other logic to read from flash memory and configure the FPGA. (c) JTAG
configuration for debug purposes (no need for external flash memory to configure the FPGA). (d) CvP of the
FPGA core fabric only. The PCIe hard IP (HIP) and I/O ring are first configured through another method.

(2) Altera EPCS (serial) or EPCQ (quad) can be directly programmed via the download cable.
(3) In cases where a MAX CPLD is used to program the flash memory, the MAX CPLD reads from the flash

memory and configures the FPGA.

When using CvP with PCIe, the various PCIe IP core parameters, as well as the
functionality of the respective high-speed transceivers (SERDES), are initially
programmed through one of the existing device initialization modes shown in
Table 1.Lower-costproductionsolutionsarepossible(butnotmandated) throughthe
use of an Altera serial- or quad-flash device that stores only the initialization bits
associated with the I/O ring and the PCIe hard IP. Table 2 shows how two bits loaded
via one of the device configuration modes (listed in Table 1) determine CvP
functionality. The bits are cvp_enabled and full_chip_initialization.

Figure 2. Device Configuration and Flash Programming Modes

Parallel
Program/Read

Host
CPU

Download Cable

d. CvP

USB Port

PCIe Port

Direct EPCS or
EPCQ Flash

Programming

a. AS, AP Device
 Configuration

Flash Loader
and Parallel

Flash Programming

b. Passive Serial/
 Quad/Parallel
 Configuration

c. JTAG
 Configuration

Serial,
Quad,

or Parallel
Flash

Max
CPLD

(Parallel
Flash

Loader)

FPGA
Core Fabric

PCIe
HIP

Table 2. CvP Operating Modes

CvP Mode
Number

CvP Mode Bits

FPGA Configuration Method
CvP Enabled Full Chip

initialization

1 0 1 CvP is off. Full chip initialization through a standard configuration
mode. CvP can not be used to update the FPGA core fabric image.
FGPA Configuration via Protocol May 2011 Altera Corporation

FPGA Core Fabric Programming Across the PCIe Bus Page 5
Figure 3 depicts a possible CvP operating mode with a low-cost Altera flash device,
and illustrates Mode 2 of Table 2.

Regardlessof thebit settings, theembeddedPCIecore isalwaysautonomous. Inother
words, it wakes up and starts link training before the FPGA core fabric is configured.
Whencvp_enabled is on, CvP is enabled after the embedded PCIe core reaches the L0
state. The host CPU then can configure the FPGA core fabric image when instructed
by the software application. Figure 4 depicts Mode 3 in Table 2.

2 1 0

CvP is on. Only PCIe hard IP, FPGA I/Os, and transceivers are
initialized through a standard configuration mode. CvP initially
configures the FPGA core fabric. CvP may also be used to update the
FPGA core fabric image.

3 1 1 CvP is on. Full chip initialization through a standard configuration
mode. CvP can be used to update the FPGA core fabric image.

Table 2. CvP Operating Modes

CvP Mode
Number

CvP Mode Bits

FPGA Configuration Method
CvP Enabled Full Chip

initialization

Figure 3. Autonomous PCIe Hard IP Core and CvP with an Altera Flash Device

Figure 4. CvP Mode with an Altera Flash Loader

PCIe Link:

Altera EPCS
or EPCQ

Flash Device

Step 1: Program PCIe IPs +
Device I/O Pins

Step 2: Program the
FPGA Fabric

Fabric Image
Initially Programmed
and Can Be Updated

via PCIe Link

Host
CPU

x1, x2, x4, or x8
PCIe

Endpoint
Hard IP

PCIe Link

Parallel or
Serial

Flash Loader

Step 1: Program the Whole Chip
(PCIe Core, I/O Ring,
Initial Fabric Image)

Step 2: Update the FPGA
Core Fabric Image via
CvP with PCIe

Core Fabric Image
Updated via
PCIe Link

Host
CPU

x1, x2, x4, or x8
PCIe

Endpoint
Hard IP
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 6 FPGA Core Fabric Programming Across the PCIe Bus
The PCIe endpoint link operating mode used for device programming is the same
mode used by the FPGA target application after CvP is complete. For example,
designers can program a CvP PCIe core to operate in Gen1 x4 mode. In that case, the
core fabric image is loaded through a Gen1 x4 link. The user application logic that
subsequently operates in the FPGA after CvP also uses a Gen1 x4 link. The I/O ring
configuration (including SERDES) and the embedded PCIe CSRs content remain
unchanged during and after the CvP FPGA image updates. Designs modified to
replace the initial core fabric image must maintain the same I/O and PCIe core
parameters and functionality used in the initial design image.

The CvP topology is not limited to the basic operating modes depicted in Figure 3 and
Figure 4. Figure 5 describes a mixed FPGA programming mode that is also feasible in
Stratix V FPGAs. FPGA #1 is programmed via CvP. The embedded PCIe endpoint
core and the I/O ring of FPGA #1 are programmed via an Altera serial configuration
device (EPCS) or quad configuration device (EPCQ). The FPGA core fabric is
programmedviaCvP,similar toFigure 3.SubsequentFPGAdevicesareprogrammed
through the fast passive parallel mode, described in Table 1. A user-designed IP core
in FPGA #1 controls the programming of the other cascaded FPGAs (FPGA #2 – FPGA
#N).

Figure 5. Mixed-Mode CvP Programming

Root Complex

Root Port

CPU

Memory

FPGA #1

Endpoint

FPGA #2

FPGA #N

Parallel Bus Altera EPCS or
EPCQ Flash

PCIe Link
with CvP
FGPA Configuration via Protocol May 2011 Altera Corporation

FPGA Core Fabric Programming Across the PCIe Bus Page 7
Another possible CvP topology is shown in Figure 6. Multiple FPGAs are
programmed via CvP. All FPGAs interface with the root port behind a PCIe switch,
thereby using the PCIe topology to program all the FPGA devices that are attached to
the switch.

CvP support is also feasible in other PCIe topologies, such as the daisy-chain FPGA
topology shown in Figure 7. In this mode, all embedded PCIe cores in the FPGAs are
initially programmed by their respective Altera EPCS or EPCQ device. The FPGA
core fabrics of the daisy-chained devices are programmed via CvP, and all endpoints
and root ports come up in parallel. Each FPGA (except FPGA #N) has a designer-
developed IP core in its core fabric that controls the programming of the next FPGA.

Figure 6. CvP with PCIe Switch

Figure 7. Daisy-Chain Format FPGA Programming with CvP

FPGA #(N-1)

Altera EPCS
or EPCQ #(N-1)

Altera EPCS
or EPCQ #1

Altera EPCS
or EPCQ #N

PCIe Switch

CPU

PCIe Link N-1
with CvP

PCIe Link N
with CvP

PCIe Link 1
with CvP

Root Complex

Root Port
Memory

Endpoint
FPGA #N

Endpoint

FPGA #1

Endpoint

CPU

PCIe Link 1
with CvP

Root Complex

Root Port
Memory

FPGA #1

Endpoint

Root Port

PCIe Link 2
with CvP

PCIe Link N
with CvP

FPGA #2

Endpoint

Root Port

FPGA #N

Endpoint

Altera EPCS
or EPCQ #1

Altera EPCS
or EPCQ #2

Altera EPCS
or EPCQ #N
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 8 CvP Benefits
1 The FPGA designs shown in Figure 5, Figure 6, and Figure 7 may have different user
application content, and hence different configuration file images. In all cases, the
programming files are initially retrieved from the host CPU memory or its file system.

CvP Benefits
Programming the FPGA core fabric via PCIe leverages the capabilities of the
autonomous PCIe core. Combined together, these features can deliver any or all of the
following key benefits to 28-nm designers:

■ Lower system cost—CvP can eliminate one or more parallel flash devices and
possibly an external programming controller device. In addition, CvP allows
designers to store FPGA programming files in a CPU memory system attached to
the FPGA via a PCIe link. Using this technique, only the FPGA I/O programming
and PCIe core parameters are stored in the flash device, requiring a smaller and
cheaper flash device.

■ Smaller board space—Parallel flash devices can be replaced by a single Altera
EPCS or EPCQ flash device.

■ Reduction of dedicated FPGA configuration pins—Stratix series devices typically
require wide, data-path flash devices to store the FPGA programming file. In
contrast, EPCS and EPCQ devices require fewer dedicated pins.

■ No host-CPU downtime during core fabric updates—No need for a host-CPU stall
or reboot following core fabric image updates when the FPGA operates in user
mode. CvP is just another software application that the CPU can execute.

■ Userapplicationimageprotection—Corefabricimagecopiesareaccessibleonlyto
the host CPU and can be encrypted and/or compressed.

■ Simple user software model—This model uses the PCIe protocol and the user
application PCIe topology to initialize single or multiple FPGAs.

■ Power saving—Low-power, temporary images can be loaded via software control
based on the user application profile. This feature can be useful in portable
computers that are battery powered.

CvP Operation
Figure 8 provides an overview of the main building blocks that support CvP and
related interfaces in Altera 28-nm FPGAs.
FGPA Configuration via Protocol May 2011 Altera Corporation

CvP Operation Page 9
CvP operation includes the following sequence:

1. I/O pin configurations, including transceiver-block electrical and logical
parameters and the embedded PCIe core functionality, are programmed by the
FPGA control block.

2. The FPGA control block reads programming data from the serial, quad, or parallel
flash devices.

3. The FPGA core fabric is programmed through CvP.

4. The embedded PCIe endpoint buffers the data and sends it to the control block to
program the FPGA core fabric.

5. The host CPU views the CvP system as a collection of PCIe CSRs and data
registers.

6. The host CPU transmits FPGA core fabric programming data to the embedded
PCIe endpoint and the PCIe device passes these data onto the control block, which
in turn programs the FPGA core fabric.

7. CvP software monitors the CvP status register to determine if the control block
detects any errors, and reacts accordingly.

8. After CvP completion, the PCIe core switches to the functionality assigned by the
application logic in the FPGA. As the FPGA operates in user mode, the host CPU
software can switch the PCIe core back to the CvP mode via CSR write
transactions.

Figure 8. CvP Main Building Blocks and Interfaces in a 28-nm FPGA

Stratix V FPGA

Embedded PCIe Core Transaction
Layer with CvP Capability

RX
Buffer

Embedded
PCIe Core

Lower
Layers

Programming
Control

Programming
Data

Programming
Status

FPGA Core
Fabric

Fabric
Programming

PCIe Link
with CvP

DEMUX

Configuration
Space Register

CvP Control, Status,
and Data Registers

User
Application

MUX

FPGA
Control
Block
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 10 Software Support
In PCIe terms, CvP support is a Vendor-Specific Extended Capability (VSEC). New
Altera-added registers reside in the CSR. CvP writes in these registers and poll status
bits to communicate with the FPGA control block. The new set of VSEC registers
includes:

■ VSEC capability header.

■ VSEC length, revision, and ID.

■ 16-bit CvP status register—The host CPU monitors this register to know when to
start/stop sending data, or when there has been a programming error that should
be treated as an uncorrectable error. There are also bits to reflect whether
Encryption (AES) and/or Compression (DC) are enabled.

■ 32-bit CvP control register—This register provides mode and programming
control. The host CPU software driver can set these bits to initiate CvP events.

■ 32-bit CvP data register—This register holds the programming data coming from
the embedded PCIe core receiver buffer before sending it on the control block.

■ 32-bit JTAG Silicon ID—This read-only register returns the FPGA Silicon ID,
which can be used by an Altera programming software to make sure it is using the
correct programming file.

■ 16-bit user device/board type ID—Provides a user-settable value to distinguish
between the different FPGAs that need to be programmed in the PCIe topologies,
such as those shown in Figure 5, Figure 6, and Figure 7.

The host CPU programs the core fabric image using the PCIe technology’s standard
32-bit memory-mapped I/O (MMIO) or configuration write transactions. As
mentioned in a previous section, the I/O ring configuration (including SERDES) and
theembeddedPCIeCSRcontentremainunchangedduringandaftertheFPGAimage
updates. During CvP events, all PCIe base address registers (BARs) are intercepted by
the CvP. In normal operating mode, all BARs are available for application use.

1 PCIe core cold-reset events bring down the PCIe link, but they do not start CvP
image-loading events and they do not alter the FPGA core fabric image.

Software Support
The CvP functionality is supported by Altera’s Quartus® II development software, by
the CvP design flow, and by design examples that demonstrate CvP operation.

Quartus II Software Support
The Quartus II software provides CvP support across all supported platforms and
operating systems. The Quartus II software generates the respective programming
files required to initialize the embedded PCIe cores or program the external flash
devices for the CvP system initialization of the FPGAs that reside in the designer’s
PCIe topology. The content of the files varies based on the CvP operating modes , as
illustrated in Table 2. The Quartus II software also generates one or more separate
FPGA core fabric programming files for each FPGA that participates in the PCIe CvP
hierarchy.
FGPA Configuration via Protocol May 2011 Altera Corporation

Software Support Page 11
For example, if a a designer uses CvP to configure four FPGAs populated below a
PCIe switch, similar to the topology depicted in Figure 6, the Quartus II software
generates two types of configuration files: raw binary files and FPGA core images.

Four raw binary files are created to program the four EPCS or EPCQ devices of this
topology. Each file contains the programming information necessary to configure the
embedded PCIe hard IP and I/O rings of its respective FPGA. The EPCS or EPCQ
devices are programmed via one of the regular FPGA programming methods.

The Quartus II software also creates one or more FPGA fabric core images per device,
depending on the number of different user application variants per FPGA. In total,
there are at least four such files (one per FPGA). In theory, there is no upper limit to
the number of FPGA core images per device. The FPGA core image files can use raw
binary, encrypted, or compressed format. One of the images (called ‘initial’ image) is
used to initialize the FPGA upon power-up. The initial image can be loaded via CvP
or through one of the other FPGA core fabric programming methods depicted in
Table 1. All other FPGA core images can be used to update the FPGA core fabric
through CvP. Each of the FPGAs in the PCIe topology has a unique 16-bit user
device/board type ID value to help direct the host CPU to program the right device
through CvP.

CvP Design Flow Support
Designers who want to update the FPGA content through CvP must ensure that the
I/O ring and embedded PCIe core parameters and functionality remain unchanged.
The FPGA image content update through CvP can be viewed as a simple partial
reconfiguration with two partitioned regions, where one region (the embedded PCIe
hard IP and the I/O ring) remains unchanged, while the other region (FPGA core
fabric) can be updated multiple times. This process entails ensuring that the
embedded PCIe parameters remain fixed (including the PCIe hard IP that are not
used for CvP), as well as maintaining the same I/O functionality.

Some timing and clocking constraints are introduced in the multiple designs that
target a single FPGA to ensure migration from the initial design to the other designs.
Additionally, in multi-PCIe core applications, only the CvP-capable PCIe core is
guaranteed to remain operational during and after the CvP core fabric image update
events.

By combining partial reconfiguration with CvP, designers can keep all other PCIe
links operational during and after CvP partial core fabric image update events. Partial
reconfiguration via CvP is feasible in Altera FPGAs, but it is outside the scope of this
white paper.

Altera recommends a design flow that logically locks the I/O ring and the embedded
PCIe hard IP cores, and allows designers to attach them to one or multiple FPGA core
fabric design images subsequently loaded via the CvP. Figure 9 depicts the partition
between the various building blocks, which are configured just once following device
power-up (I/O ring including SERDES and PCIe cores), and the FPGA core fabric,
which may be updated by CvP as many times as required based on the user
application code that runs on the host CPU.
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 12 Conclusion
Design Example Support
The ultimate goal of CvP designers is to initialize and periodically update the FPGA
core fabric image in the target systems. From an embedded system designer’s
viewpoint, CvP is a software application that runs on top of a PCIe device driver that
accesses CvP-capable endpoints in their native OS environment.

Altera provides a clear-text C application program design example that targets PCIe
development boards under Windows 7 and Linux. The C program initializes the
FPGA core fabric through CvP. Designers can use this C program as a starting point
for their own code development.

The C program demonstrates the steps needed to implement the CvP algorithm. The
C program design example is applicable in both CvP operating modes (Table 2,
Modes 2 and 3), and can be used as a software design example for FPGA core fabric
image initialization as well as subsequent core fabric image updates.

Conclusion
The28-nmdeviceportfolio’sautonomousembeddedPCIecoreensuresdesignersthat
their FPGA meets the power-up time requirements of the PCIe Base, as well as the
PCIe CEM specifications irrespective of the FPGA core fabric size and link-operating
mode. This feature guarantees wide-range interoperability with various PCIe-based
computer platforms.

Altera’s 28-nm FPGA portfolio includes the major CvP feature enhancement that
benefits most PCIe-based customer applications. CvP can reduce the product cost,
lower the board size, simplify the software usage model, and provide a robust in-field
system upgrade capability. CvP enables designers to initialize the FPGA core fabric
image and later update it in run time as many times as needed by their applications.

Further Information
■ PCIe Base Specification and PCIe Card Electromechanical Specification:

www.pcisig.com/specifications/pciexpress/base

■ “PCI Express bridging options enable FPGA-based configurable computing,”
Programmable Logic Designline, Mike Alford, Gennum Corp., September 8, 2008:
www.pldesignline.com/howto/210300269

Figure 9. FPGA Design Partitioning with CvP

FPGA Core Fabric:
Configuration Can Be

Initialized and
Modified by CvP

I/O Ring (SERDES and Non-SERDES I/Os)

CvP Link
Non-CvP
PCIe HIP

CvP-
Capable
PCIe HIP

PCIe
SERDES

PCIe
SERDES

Host
CPU
FGPA Configuration via Protocol May 2011 Altera Corporation

Acknowledgements Page 13
■ Stratix V FPGAs: Built for Bandwidth:
www.altera.com/products/devices/stratix-fpgas/stratix-v/stxv-index.jsp

■ Literature: Stratix V Devices:
www.altera.com/literature/lit-stratix-v.jsp

Acknowledgements
■ Arye Ziklik, Senior Manager, Product Planning, Altera Corporation

■ Mario Khalaf, Principal Investigator, Office of the CTO, Altera Corporation
May 2011 Altera Corporation FGPA Configuration via Protocol

Page 14 Acknowledgements
FGPA Configuration via Protocol May 2011 Altera Corporation

	FPGA Configuration via Protocol
	Introduction
	Autonomous PCIe Hard IP
	FPGA Core Fabric Programming Across the PCIe Bus
	CvP Benefits
	CvP Operation
	Software Support
	Quartus II Software Support
	CvP Design Flow Support
	Design Example Support

	Conclusion
	Further Information
	Acknowledgements

