
March 2013 Altera Corporation

WP-01190-1.1

© 2013 Altera Corporation. Al
QUARTUS and STRATIX wor
Office and in other countries. 
respective holders as described
products to current specificatio
products and services at any ti
of any information, product, o
advised to obtain the latest ver
for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Real-Time Challenges
and Opportunities in SoCs
White Paper
Advanced process technology and system-integration provide the driving forces 
behind silicon convergence. FPGAs speed along this trajectory, having already 
integrated SRAM memories, digital signal processing (DSP) and multiplier blocks, 
serial transceivers, memory controllers, and advanced I/O functions. The latest 
advancement in programmable technology is the SoC, which integrates an Altera® 
FPGA with an ARM® applications processor, plus a rich peripheral processor 
subsystem. The convergence of these technologies provides new challenges and 
opportunities for real-time embedded system design.

Introduction
This white paper explores an advanced motor drive or inverter application to 
illustrate how silicon convergence affects real-time design. Before the advent of 
highly-integrated solutions, each of the four major functions in the drive, shown in 
Figure 1, employed its own processor or DSP block, each with its own instruction set 
and development environment. For example, the motor control may employ a simple 
32 bit processor. The networking interface may enlist its own 32 bit processor. Above 
all, safety features have top priority to ensure that system does not cause injury to 
itself or its operators.

Thanks to silicon convergence, all these motor drive functions now combine into a 
single, cost-effective, programmable SoC. As with most advanced real-time systems, 
this system:

■ Gathers signals from each of the four major functions.

■ Processes these signals to extract relevant data.

■ Applies computationally intensive analyses to make data-driven decisions.

■ Acts to implement the decisions, all subject to maximum-latency requirements.

Figure 1. The Four Basic Functions of a Motor Drive/Inverter

Driver/Inverter

Motor Control Safety

Networking Encoder
l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
ds and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark 
All other words and logos identified as trademarks or service marks are the property of their 

 at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor 
ns in accordance with Altera's standard warranty, but reserves the right to make changes to any 

me without notice. Altera assumes no responsibility or liability arising out of the application or use 
r service described herein except as expressly agreed to in writing by Altera. Altera customers are 
sion of device specifications before relying on any published information and before placing orders 

Feedback Subscribe

ISO 
9001:2008 
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01190
mailto:whitepapers@altera.com?subject=Feedback on WP-01190
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html


Page 2 Challenge—Doing Ever More in Less Time
This same real-time processing model appears in other diverse applications such as 
automotive driver assistance, real-time financial trading, and guidance systems.

Challenge—Doing Ever More in Less Time
System responsiveness is a driving force in real-time applications. How quickly and 
consistently can a system respond to real-time events? Can the system perform its 
necessary tasks within a specific, bounded time, every time? Embedded engineers 
continually seek to perform ever more sophisticated functions and calculations but in 
less total time. 

Initially, the embedded hardware performed simple proportional-integral-derivative 
(PID) motor control. Over time, motor control became more sophisticated to include 
model-based motor control solutions, as shown in Figure 2. Motion-adaptive motor 
control allows the system to intelligently adapt to changing systems conditions and 
retune control parameters based on sensor feedback. Lastly, in a factory automation 
environment, multiple motors communicate to coordinate their response and 
complex movements. For example, a safety-related exception may trigger a shut-
down sequence that requires coordinated movements of a variety of equipment to 
protect both the operator and downstream machinery to minimize system downtime. 
Naturally, all of this sophisticated computing happens in ever-decreasing amounts of 
time.

As the algorithms grow in sophistication, they also require more computations, larger 
data sets, and more DSP power. The location of stored data and the communication 
bandwidth to that data has major implications and directly affects system 
responsiveness.

Figure 2. Embedded Applications Asked to Do Ever More in Less Time

Functional
Safety
(Hard

Real-Time)

Simple PID
Motor

Control

Model-
Based
Motor

Control

Motion-
Adaptive

Motor
Control

Processing
DSP Performance
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Challenge—Scheduling Conflicts Page 3
Challenge—Scheduling Conflicts
Scheduling conflicts are another inevitable challenge in real-time system design. In 
traditional design approaches, each of the four major motor drive functions shown in 
Figure 3 has its own dedicated processor and each essentially operates independently. 
In a converged solution, these four functional groups are combined into a single 
system but each still operates asynchronously. Potential scheduling conflicts occur 
because all of the interrupts are routed to a single device. If not handled properly, the 
random and asynchronous nature of the interrupts potentially causes scheduling 
clashes within the application program, resulting in decreased responsiveness. 
Managing jitter and ensuring more-deterministic behavior are key factors to avoid 
schedule conflicts.

If the entire motor drive application is integrated within a single processor, the 
majority of its computing time is spent performing the current control loop, shown in 
purple in Figure 3. Meanwhile, as the system performs its various other motor control 
and networking functions, a safety event may be triggered within the system. The 
system must detect the fault condition, diagnose it, respond immediately to take the 
appropriate safety action, and shut down gracefully because safety has the highest 
overall priority. How fast the system can actually respond is key.

Measuring System Responsiveness
How is real-time responsiveness measured? Responsiveness consists of two elements:

■ Interrupt latency—Once an event happens, how quickly can the system recognize 
it? For processor- or DSP-based applications, the interrupt latency (I) is the period 
from the moment an interrupt is asserted to the instant that the processor 
completes its currently executing machine instruction and branches to the first line 
of the interrupt service routine (ISR).

■ Execution time—After the event is recognized, how quickly can the system process 
it? For processor- or DSP-based applications, execution time (E) is the amount of 
time required for the processor to complete all the instructions within a particular 
ISR and then return to normal operation.

Figure 3. Motor Drive Application

Current/
Voltage Control

Position/
Velocity Control

Networking

Safety

10 μs ~2 μs
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs

http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/an/AN595.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/an/AN595.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/education/webcasts/all/wc-2010-floating-point.html
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/education/webcasts/all/wc-2010-floating-point.html
http://marketing/cm/marcom/White Papers/White Papers - In Process/WP-Real-Time-Challenges-and-Opportunities-in-SoC-FPGAs/1-0/Source/www.altera.com/education/webcasts/all/wc-2010-floating-point.html


Page 4 Real-Time Processors and Tools
The total response time adds the interrupt latency to the interrupt execution time 
(I + E), as illustrated in Figure 4.

Real-Time Processors and Tools
Altera’s programmable technologies provide unique capabilities to speed algorithms 
and opportunities that improve a system’s real-time response. Time-critical 
algorithms can be efficiently partitioned between highly parallel hardware solutions 
implemented on programmable logic elements (LEs), DSP blocks, or software 
solutions executed on one or more hard or soft processors 

Altera’s real-time processors and tools, summarized in Table 1, enable embedded 
system designers to explore hardware/software tradeoffs and to develop new 
solutions that meet demanding real-time performance challenges. The solution to 
meet real-time challenges lies within the careful partitioning of real-time algorithms 
between hardware and software implementations across Altera’s real-time processors 
and tools, which comprise:

■ Hard processors (ARM Cortex™-A9 processors)

■ Soft real-time processors (Nios® II processors)

■ DSP blocks (variable-precision hardware multipliers and accumulators)

■ State machines (custom hardware using LEs within core fabric)

Figure 4. Interrupt Latency and Process Execution Time

Interrupt
Occurs

Interrupt Is Recognized
and Execution Begins

Interrupt Process
Returns

Time

I
(Interrupt Latency)

E
(Interrupt Process Execution Time)

Table 1. Altera Real-Time Tools Components

Solution Interrupt Latency Execution Speed Data Sets Derterminism Design 
Method

ARM Cortex-A9 
Processor Moderate High Very large Moderate C

Nios II Soft Processor
Low

(vectored interrupt 
controller)

Moderate Large High C

DSP Builder + 
Intellectual Property (IP) Low High to 

very high Limited Very high
(no jitter)

MATLAB/ 
Simulink

Hardware-Based State 
Machines Very low Extremely high Small Very high

(no jitter)
FPGA design, 

HDL tools
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Real-Time Processors and Tools Page 5
Altera’s ARM Cortex-A9-based hard processor subsystem (HPS) potentially improves 
real-time performance in systems where execution speed or throughput dominates 
the real-time response time. Exploiting asymmetric multiprocessing (AMP) 
techniques, one Cortex-A9 processor typically executes the operating system and 
main application program while the second Cortex-A9 processor is dedicated to the 
time-critical, real-time function.

Altera’s Nios II soft processor utilizes the resources of the FPGA. The maximum clock 
frequency for Nios II processors is constrained by the core fabric performance of a 
given FPGA. For example, in Cyclone® V devices, 100 – 150 MHz Nios II processor 
clock rates are common. The Nios II processor offers some distinct advantages for 
real-time processing, including:

■ Low interrupt latency thanks to a vectored interrupt controller.

■ The number of possible Nios II processors in an application is limited only by the
size of the FPGA fabric.

■ A single highly time-critical function can be dedicated to a single Nios II processor,
guaranteeing highly deterministic interrupt response times and freeing the ARM
Cortex-A9 processor for other functions.

■ Nios II processor has the ability to use on-chip memory as tightly coupled
memory, which is useful to store critical real-time algorithms.

■ Nios II processors have custom instruction interfaces that allow FPGA hardware-
based accelerators to implement a real-time function and return the result directly
to the processor pipeline.

Altera’s variable-precision DSP architecture provides the most powerful real-time 
performance in systems where matrix manipulations, filters, transforms, and DSP 
operations dominate the real-time response time. The highly parallel nature of the 
FPGA’s programmable architecture plus an abundance of variable-precision DSP 
blocks coupled with block SRAMs delivers extreme performance for many 
applications. For example, Altera’s Stratix® series FPGAs offer over 1 teraFLOPS 
(TFLOPS) of floating-point DSP performance, which greatly exceeds the performance 
of any ARM-based processor and only rivaled by high-end GPUs. 

1 See the “Achieving 1 TFLOPS Performance with 28 nm FPGAs” webcast for 
additional information. 

Altera’s DSP Builder design software, a plug-in to the popular MATLAB/Simulink 
software, empowers designers to use model-based entry methods to generate RTL 
automatically and to evaluate tradeoffs between fixed-point and floating-point 
performance and dynamic range. Similarly, designers can unroll loops for maximum 
performance or fold them, allowing logic reuse that conserves FPGA resources.

Finally, for ultimate performance and determinism, the FPGA core fabric and 
adaptive logic modules (ALMs) provide fast, efficient hardware-based state machines. 
Via custom-crafted designs in VHDL or Verilog HDL, the FPGA can deliver 
unparalleled response times for specific applications and for applications with 
smaller data sets. However, the design engineer requires knowledge of HDL and the 
design constraints for timing closure.
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs

https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/fpga-quick-video-index.html


Page 6 Benchmark Example—FOC
Benchmark Example—FOC
The performance gains achieved from hardware/software tradeoffs are entirely 
application dependent and nothing highlights these effects better than a real-world 
benchmark example. This motor-control benchmark example uses field-oriented 
control (FOC), shown in Figure 5, where the algorithm consists of two types of control 
loops. The outer control loops measure the position and velocity of the motor and 
requires low processing rates, making it ideal for traditional processor-based 
solutions.

In contrast, the inner control loop is far more computationally complex and 
demanding. Relying on current feedback measurements from the motor, the inner 
control loop calculates torque and flux using Park and Clarke data transforms and 
their inverse operations. The resulting torque and flux calculations ultimately 
produce a space-vector modulation (SVM) value that drives the motor. The inner loop 
operations require much higher processing rates and are computationally complex.

This benchmark example is implemented using the following hardware versus 
software solutions available in an SoC:

■ Implement the FOC benchmark solely using the ARM Cortex-A9 processor using 
C code.

■ Implement the FOC benchmark solely using a Nios II soft processor using C code.

■ Apply hardware acceleration techniques that leverage FPGA-based Nios II 
processing and DSP Builder.

■ Explore fixed-point vs. floating-point solutions.

■ Explore solutions with unrolled and folded critical loops.

Finally, the resulting solutions are compared and contrasted for their real-time 
response and deterministic behavior.

Figure 5. FOC Benchmark

Ia

Ib

Position

Speed
Position Feedback

Current
Feedback

Inverse
Park

Transform

Park
Transform

Clarke
Transform

Inverse
Clarke

Transform

ADC
Interface

Encoder
Interface

Pulse
Width

Modulation
Inverter

ADC

Position
Sensor

(Encoder)

Motor

Vq

Vd

Iq

Id

Position
Request

Inner Control Loop

Va
Vb
Vc

Outer Control Loop

SVM

Speed PI
Control

Position
PI Control Torque

PI Control

Flux PI
Control

Interface IP
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 1—ARM Cortex-A9 Processor Only Page 7
Solution 1—ARM Cortex-A9 Processor Only
In this implementation, the entire FOC motor control benchmark code is written in C 
and implemented exclusively on the SoC’s ARM Cortex-A9 MPCore™ processor. The 
design is a “bare metal” solution without an operating system, which avoids the 
potential additional ambiguities introduced by an operating system.

Cortex-A9 Interrupt Response Characteristics
The main factors that affect the Cortex-A9 processor’s response time are interrupts. 
As shown in Figure 4, the Cortex-A9 processor within an SoC accepts interrupts from 
ARM’s Generic Interrupt Controller (GIC). Interrupts are steered to one or both of the 
CPUs. The GIC is designed primarily for ARM’s application-class processors. ARM’s 
real-time processors, the Cortex-R and Cortex-M families, employ a vectored 
interrupt controller that provides lower interrupt latency.

An interrupt event can happen at any time. However, the ARM CPU will not 
recognize the interrupt event until the currently executing machine instruction 
completes, as shown in Figure 7. At 800 MHz, each instruction generally finishes 
quickly but the biggest variance is the access time to the data the CPU is currently 
processing. For example, accesses to processor registers are the fastest, followed by 
access to the L1 cache. Similarly, access to the L2 cache access is slower, and slowest is 
the access to external memory that happens just as the DDR memory controller begins 
a refresh cycle. Once the interrupt is recognized, the Cortex-A9 processor speeds 
through the ISR at 800 MHz.

Figure 6. Dual-Core Cortex-A9 MPCore Processor on a SoC

Generic Interrupt Controller

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

512 KB L2 Unified Cache with ECC

DDR Memory Controller (with ECC Support)
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 8 Solution 1—ARM Cortex-A9 Processor Only
Imagine if a safety-critical interrupt event arrives just as the background application 
code decides to blink a non-critical status LED, whose state variable is stored in 
external DDR memory that just happens to be in the middle of its refresh cycle. The 
high-priority interrupt must wait until the CPU finishes the current instruction—
blinking a non-critical LED! How can a designer avoid such situations?

The worst-case interrupt latency depends on the worst-case data access type. 
Constraining the data access types will reduce the interrupt latency. There are two 
CPUs in the SoC’s dual-core processor. Using AMP techniques, dedicate one 
processor to fast interrupt response for time-critical, real-time functions while using 
the remaining processor for the operating system, application program, and 
communication.

The following three examples demonstrate how the interrupt response time is affected 
by constraining the background code and the ISR to fast memory. Of course, for 
ultimate performance, the background code should be a while(1) loop.

All of these examples use the FOC benchmark as their critical code. All 
implementations are “bare-metal” solutions to eliminate the additional uncertainty 
imposed by an operating system. While the selected FOC benchmark code was run as 
bare-metal code in AMP mode for this case study, a popular use of the dual-core ARM 
Cortex-A9 processor is as a single execution engine (in symmetric multiprocessing 
(SMP) mode) with an RTOS or a high-level OS, such as Linux, for process handling.

Figure 7. Interrupt Latency Depends on Data Access of Current Instruction

Processor
Register

L1 Data
Cache

L2 Unified Cache

DDR Memory Controller

DDR Memory ControllerRefresh
Cycle

Complete Current Instruction Execute ISR

ISR

Recognize Interrupt Event 
and Branch to ISR

Interrupt Event Not Recognized Until
Current Instruction Completes. Maximum 
Interrupt Latency Depends on Current 
Instruction and Data Access Type.
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 1—ARM Cortex-A9 Processor Only Page 9
The Best Case Scenario—Critical Code and Background Code Constrained 
to <32 KB

The best possible interrupt response on the dual-core ARM Cortex-A9 processor 
happens by dedicating one of the two CPUs to handling the critical interrupt, as 
shown in Figure 8. The background code and critical code must be constrained to 
32 KB or less so that it fits entirely within the CPU’s L1 instruction cache and all data 
structures must be allocated to registers or to the CPU’s L1 data cache.

Table 2 shows the results of the FOC benchmark test when the code executes directly 
from the L1 cache. The average is the result of 1,024 individual runs of the interrupt 
routine. The jitter is the difference between the fastest and slowest responses. With 
this partitioning, the interrupt response time is less than 1 µs, as shown in Table 2 and 
Figure 9, which is amazingly good for an application processor without a vectored 
interrupt controller. The primary reason for the exceptional performance is the 
Cortex-A9 processor, as the SoC speeds through the ISR at 800 MHz.

Figure 8. Best ARM Cortex-A9 Interrupt Response: Critical and Background Code <32 KB

High-Priority Interrupt

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

Table 2. ARM Cortex-A9 Interrupt Response Time (Code <32 KB)

Minimum Average Maximum Jitter

Interrupt Latency, I (µs) 0.16 0.170 0.19 0.03

FOC Benchmark Code, E (µs) 0.70 0.705 0.73 0.03

Total ISR Execution Time, I+E (µs) 0.86 0.875 0.92 0.06
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 10 Solution 1—ARM Cortex-A9 Processor Only
The ARM Cortex-AP interrupt response time is quite consistent, with little jitter or 
variation between the minimum and maximum times—just 0.06 µs or 60 ns! Although 
this special case technique provides excellent interrupt response times, it may not be 
applicable for all applications. After all, there is only one additional ARM Cortex-A9 
processor available in the SoC and the interrupt routines must all fit entirely within 
32 KB. Unlike the FPGA-based solutions described later, this technique can be used 
just once in a design without incurring slower performance. Adding other ISRs will 
likely push the code beyond the 32 KB limit, slowing the overall response.

Figure 9. ARM Cortex-A9 Interrupt Response Time (Code <32 KB)

2.5

2.0

1.5

1.0

0.5

0.0

0.86

0.16

0.70

0.875

0.17

0.71

0.19

0.73

MaximumAverageMinimum

0.92
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 1—ARM Cortex-A9 Processor Only Page 11
Critical Code and Background Code <256 KB
While the FOC benchmark code used in this article fits nicely within a 32 KB limit, not 
all interrupt routines are so fortunate. The next performance boundary ensures that 
the code and data fit within 256 KB of the L2 cache, as shown in Figure 10. The SoC 
allows code and data to be locked in the cache, guaranteeing fast access for critical 
routines.

In this evaluation, the L1 caches were flushed to emulate eviction that occurs when a 
large background task (>32 KB) is running. After an interrupt event happens, the 
background task may need to access data held in the L2 cache to complete its current 
machine instruction before the CPU recognizes the interrupt. Consequently, there is 
up to nearly an 8X increase in interrupt latency (I) as shown in Table 3 and Figure 11—
from a best case of 0.165 µs to a worst case of 1.30 µs.

Figure 10. Critical and Background Code <256 KB

High-Priority Interrupt

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

256 KB L2 Unified
Cache with ECC

Table 3. ARM Cortex-A9 Interrupt Response Time (Code <256 KB)

Minimum Average Maximum Jitter

Interrupt Latency, I (µs) 0.165 0.86 1.30 1.135

FOC Benchmark Code, E (µs) 0.700 0.71 0.79 0.090

Total ISR Execution Time, I+E (µs) 0.865 1.57 2.09 1.225
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 12 Solution 1—ARM Cortex-A9 Processor Only
Comparing Table 2 and Table 3, the ISR requires slightly more time under these 
conditions because of slower access to L2 cache for some operations. In the previous 
example, where the entire code and data fit within 32 KB, the total response time was 
less because the interrupt handler fit entirely in the L1 cache. 

It is evident from Figure 11 that there is far more jitter or variation in the interrupt 
response compared to the best-case scenario—up to 1.215 µs in jitter. However, the 
total worst-case interrupt response remains a very respectable 2.09 µs.

Figure 11. Interrupt Response: Critical and Background Code <256 KB

2.5

2.0

1.5

1.0

0.5

0.0

0.865

0.165

0.700

1.57

0.86

0.71

1.30

0.79

MaximumAverageMinimum

2.09
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 1—ARM Cortex-A9 Processor Only Page 13
Critical Code and Data <256 KB, Background Code >256 KB
This last example assumes that the background code and data are too large to fit 
within the L2 cache and require access to external DDR memory, as shown in 
Figure 12. The critical interrupt handler code remains less than 256 KB and is locked 
in the L2 cache. The L1 and L2 caches accelerate data accesses to external DDR 
memory. However, in the worst case, some accesses will be delayed while the DDR 
memory controller is performing a refresh cycle. A DDR memory refresh operation 
adds another 200 ns to the total access time.

Because the critical code is less than 256 KB and is held in the L2 cache, the FOC 
benchmark code still executes quickly. The entire interrupt response, even with a 
background task that accesses external memory, remains a respectable 2.29 µs, as 
shown in Table 4.

Figure 12. Critical and Data <256 KB, Background Code >256 KB

High-Priority Interrupt

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

IEEE 745 Floating-Point
Support (VFPU)

NEON DSP/Media
Processing Engine

800 MHz
ARM Cortex-A9

32 bit Dual-Issue
Superscalar RISC CPU

32 KB
Data

L1 Cache

32 KB
Instruction
L1 Cache

256 KB L2 Unified
Cache with ECC

DDR Memory Controller (up to 4 GB)
with ECC Support

Table 4. ARM Cortex-A9 Interrupt Response Time (Critical and Data <256 KB, Background Code >256 KB)

Minimum Average Maximum Jitter

Interrupt Latency, I (µs) 0.41 0.89 1.50 1.09

FOC Benchmark Code, E (µs) 0.70 0.71 0.79 0.09

Total ISR Execution Time, I+E (µs) 1.11 1.60 2.29 1.18
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 14 Solution 1—ARM Cortex-A9 Processor Only
As shown in Figure 13, the possible refresh delay increases the maximum interrupt 
response time but actually slightly decreases the total jitter compared to the previous 
scenario. 

Summary of ARM Cortex-A9 Results
Examining the results of the Cortex-A9 benchmark implementations, a few key points 
stand out:

■ Interrupt latency is directly affected by the location of data accesses by the 
background task.

■ For best performance, dedicate one of the two Cortex-A9 processors to exclusively 
handling critical interrupt routines.

■ Ensure that only critical loops are executed on the Cortex-A9 processor dedicated 
to critical routines. Other background tasks affect the interrupt latency to handle 
the critical routine.

■ Interrupt execution time (E) is dominated by the code location and processor clock 
frequency.

■ For best determinism, keep the critical routine to <32K and keep it in the L1 cache.

■ For the best compromise between code size and performance, keep the critical 
routine to <256 KB and lock it in the L2 cache.

Figure 13. Interrupt Response: Critical and Data <256 KB, Background Code >256 KB

2.5

2.0

1.5

1.0

0.5

0.0

1.11

0.41

0.70

1.60

0.89

0.71

1.50

0.79

MaximumAverageMinimum

2.29
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 2—Stand-Alone Nios II Processor Running FOC Algorithm Page 15
Solution 2—Stand-Alone Nios II Processor Running FOC Algorithm 
Each SoC has a maximum of two ARM Cortex-A9 processors. Even when one is 
dedicated to critical routines, the application might require multiple, simultaneous, 
time-critical operations. A relatively simple method to offload the critical function 
while maintaining full C code compatibility is to use a Nios II soft processor.

For the best real-time response, the critical code executes from a tightly-coupled block 
RAM memory in the FPGA fabric, as shown in Figure 14. Similarly, the vectored 
interrupt controller soft IP should be used for the lowest interrupt latency (I). Because 
the Nios II processor is built from FPGA fabric, the maximum performance is 
governed by the maximum performance of the underlying FPGA architecture—a 
Cyclone V or Arria® V device. For this benchmark example, the Nios II processor ran 
at a conservative 100 MHz, although 150 MHz performance is readily achievable in 
Cyclone V FPGAs.

In this implementation, the FOC benchmark used fixed-point arithmetic. Because the 
Nios II soft processor is dedicated to exclusively handling the FOC benchmark, the 
Nios II processor is not burdened by any background tasks. Consquently, the Nios II 
solution provides nearly absolute determinism with little or no jitter (Table 5), even 
across thousands of test runs.

As shown in Figure 15, although the 100 MHz Nios II soft processor solution does not 
deliver the blazing-fast execution time of the 800 MHz ARM Cortex-A9 processor, it 
does furnish results that compare favorably to a popular 180 MHz ARM Cortex-R4F 
processor, specifically designed for good real-time performance. Like the Nios II 
solution, the Cortex-R4F has a vectored interrupt controller to reduce interrupt 
latency. Regardless, the Nios II soft processor solution completes its interrupt 

Figure 14. Nios II Soft Processor Configured for Best Real-Time Response (No DSP Builder 
Acceleration)

Vector Interrupt
Controller IP

Nios II
Soft Processor

Critical Code
Stored in 

Tightly-Coupled
Block RAM

Table 5. Nios II Soft Processor Interrupt Response Time, No Acceleration

Minimum Average Maximum Jitter

Interrupt Latency, I (µs) 0.93 0.93 0.93 0

FOC Benchmark Code, E (µs) 4.50 4.50 4.50 0

Total ISR Execution Time, I+E (µs) 5.43 5.43 5.43 0
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 16 Solution 2—Stand-Alone Nios II Processor Running FOC Algorithm 
response in well under 10 µs—the measure of “goodness” for this high-performance 
motor control application example. The Nios II FOC execution time can be further 
reduced by using custom instructions to offload the processor. For example, a 
trigonometric custom instruction can take 3 µs off of the 4.5 µs while still maintaining 
zero jitter.

Thanks to its vectored interrupt controller, the Nios II interrupt latency is faster than 
the other solutions except for the best-case scenario with a dedicated Cortex-A9 
processor with less than 32 KB of critical code. Generally, the Nios II solution 
responds quickly, especially when the most timing-critical operations are packed into 
the earlier instructions within the ISR.

Figure 15. Interrupt Response: Nios II Solution Without Acceleration Compared to Cortex-A9 MPCore and Cortex-R4F 
Processors

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.92

0.19

0.73

2.09

1.30

0.79

1.50

0.79

ARM Cortex-A9
at 800 MHz < 256 KB

Background
> 256 KB (Max)

ARM Cortex-A9
at 800 MHz

< 256 KB (Max)

ARM Cortex-A9
at 800 MHz

< 32 KB (Max)

2.29

1.04

3.84

0.93

4.50

5.43

4.88

Popular ARM
Cortex-R4F

at 180 MHz (Max)

Nios II at 100 MHz,
Vectored Interrupt

Controller, No
Acceleration
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 3—FOC Algorithm Partitioned Between Hardware and Software Page 17
Solution 3—FOC Algorithm Partitioned Between Hardware and 
Software

In Solution 2, the entire FOC benchmark was executed as software on a Nios II soft 
processor, including the inner control loops. Can the FPGA logic inside an SoC 
accelerate the overall application? In these next few examples, the outer control loops 
of the FOC benchmark that monitor position and velocity execute in software on the 
Nios II soft processor, as shown in Figure 16. However, the performance-critical inner 
control loop functions execute using FPGA hardware accelerators created using DSP 
Builder, part of the Altera real-time design tools. These accelerated functions include 
the Park and Clarke transforms and their inverse operations plus the SVM function.

Figure 16. FOC Benchmark Using Hardware and Software Partitioning

Ia

Ib

Position

Speed
Position Feedback

Current
Feedback

Inverse
Park

Transform

Park
Transform

Clarke
Transform

Inverse
Clarke

Transform

ADC
Interface

Encoder
Interface

Pulse
Width

Modulation
Inverter

ADC

Position
Sensor

(Encoder)

Motor

Vq

Vd

Iq

Id

Position
Request

Inner Control Loop

Va
Vb
Vc

Outer Control Loop

SVM

Speed PI
Control

Position
PI Control Torque

PI Control

Flux PI
Control

Interface IPFPGA

Nios II Software

DSP Builder
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 18 Solution 3—FOC Algorithm Partitioned Between Hardware and Software
Figure 17 shows the general block diagram for each of the following solutions. The 
Nios II soft processor handles the outer loops and controls data flow to and from the 
FPGA-based hardware accelerators. The inner loops are offloaded to FPGA-based 
hardware accelerators crafted with DSP Builder. The Nios II soft processor sends data 
and commands to the hardware accelerators over an Avalon® Memory-Mapped 
(Avalon-MM) interconnect bus.

The Avalon-MM interconnect incurs additional latency—the number of clock cycles 
required for data to traverse the interconnect logic from the Nios II soft processor to 
the accelerated function built with DSP Builder. The additional latency also increases 
the total interrupt latency (I). It is also possible to pipeline the hardware accelerator 
across multiple axes, as the total latency for 1, 2, 4, or even 16 axes of FOC control does 
not scale linearly and new axis results per clock cycle are obtained after the initial 
latency has been paid. In a processor-only implementation, the increase is linear as the 
number of axes increases.

FPGA-based hardware accelerators encourage a variety of implementation styles. For 
example, via DSP Builder, a design engineer can choose between solutions that offer 
the best hardware efficiency, the lowest latency, or the maximum performance. DSP 
Builder supports both fixed-point or floating-point solutions. Floating-point 
calculations incur additional clock cycles but also provide much wider dynamic 
range, while fixed-point calculations are faster and require fewer resources.

DSP Builder also empowers the designer to trade off the FPGA resources consumed 
by a particular function against additional latency incurred by logic reuse taking 
advantage of the relatively high FPGA clock frequency relative to the required 
throughput. Critical loops can be unrolled or unfolded for maximum performance, 
but at the cost of extra resources. Folding the critical loops conserves FPGA resources, 
but at the cost of additional clock cycles. Folding provides up to a 10X resource 
savings.

Figure 17. Nios II Solution with DSP Builder Hardware Accelerators

Vector Interrupt
Controller IP

Nios II
Soft Processor

Critical Code
Stored in 

Tightly-Coupled
Block RAM

Avalon-MM
Interconnect

DSP Builder
Hardware

Accelerator
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Solution 3—FOC Algorithm Partitioned Between Hardware and Software Page 19
Table 6 and Figure 18 show the performance advantages of the various hardware 
acceleration solutions. All the examples leverage the same Nios II soft processor core 
with the vectored interrupt controller. The baseline comparison is the software-only 
Nios II solution without any DSP Builder acceleration.

The DSP Builder hardware accelerators slow the interrupt latency (I) due to the 
additional inherent latency of the Avalon-MM interconnect. However, the accelerators 
greatly improve overall performance, reducing the execution time (E) and resulting in 
faster overall interrupt response time (I + E). Even the single-precision floating-point 
implementations are faster than the software-only Nios II fixed-point solution. Faster 
yet is the 16 bit fixed-point solution. Unfolded or unrolled loops offer the best overall 
performance, but at the cost of additional FPGA resources.

The FOC algorithm used in these benchmark examples does not particularly exploit 
the inherent parallelism of the FPGA architecture. Other algorithms may enjoy even 
greater hardware acceleration over traditional software-only implementations.

Table 6. Nios II Solution with Hardware Acceleration (Fixed-Point, Floating-Point, Folded, Unfolded)

Clock Rate 100 MHz

Hardware Acceleration DSP Builder None

Data Type 16 bit fixed-point Single-precision, floating-point Fixed-point

Folding Unfolded Folded Unfolded Folded None

Interrupt Latency, I (µs) 1.68 0.93

FOC Benchmark Code, E (µs) 0.22 0.88 1.00 1.73 4.50

Total ISR Execution Time, I + E (µs) 1.90 2.56 2.68 3.41 5.43

Figure 18. Interrupt Response—Nios II Solution with Hardware Acceleration (Fixed-Point, Floating-Point, Folded, 
Unfolded)

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1.90

1.68

0.22

2.56

1.68

0.88

1.68

1.00

Nios II + DSP Builder
Floating-Point

(Single-Precision)
Unfolded at 100 MHz

Nios II + DSP Builder
16 Bit Fixed-Point
Folded at 100 MHz

Nios II + DSP Builder
16 Bit Fixed-Point

Unfolded at 100 MHz

2.68

1.68

1.73

0.93

4.50

5.43

3.41

Nios II + DSP Builder
Floating-Point

(Single-Precision)
Folded at 100 MHz

Nios II Only
Software

Fixed-Point
at 100 MHz
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 20 Surveying the Results
The DSP Builder solutions have distinct advantages. First and foremost, they deliver 
solutions with nearly absolute determinism. There is little to no variation in the 
interrupt response time, which means that there is also little or no jitter, even across 
thousands of runs. DSP Builder’s floating-point capabilities provide a much greater 
dynamic range and finer precision with a modest increase in latency and a modest 
decrease in throughput.

Surveying the Results
Figure 19 reveals the range of hardware and software solutions investigated for this 
benchmark example. All of the solutions were completed in less than the 10 µs 
required for this advanced motor control design. The highly constrained, dedicated 
800 MHz ARM Cortex-A9 solution demonstrated the fastest possible interrupt 
response but the critical code must strictly fit within 32 KB and execute entirely from 
the L1 cache. It is the only solution that was complete in less than 1 µs. However, this 
special case solution can only be used under highly constrained conditions.

The other solutions also provide good results. The 100 MHz Nios II solution using a 
16 bit fixed-point, unfolded DSP Builder accelerator was complete in just less than 
2 µs. All the solutions were complete in under 6 µs.

Deterministic interrupt behavior is another important metric for real-time 
applications, especially for complex systems with tightly coordinated movements. 
Figure 20 presents the maximum interrupt response jitter for the solutions 
investigated—the total difference between the maximum and minimum response 
times. The solutions based on the Nios II processor, with or without hardware 

Figure 19. Interrupt Response Times for Solutions Investigated

6

5

4

3

2

1

0 0.19

0.73
1.68

0.22

1.30

0.79

ARM Cortex-A9
at 800 MHz

< 32 KB (Max)

2.09

1.50

0.79

2.29

1.68

0.88

2.56

1.68

1.00

2.68

1.68

1.73

3.41

1.04

3.84

4.88

0.93

4.50

5.43

1.90

0.92

Nios II +
DSP Builder

16 Bit
Fixed-Point
Unfolded

at 100 MHz

ARM Cortex-A9
at 800 MHz

< 256 KB (Max)

ARM Cortex-A9
at 800 MHz
< 256 KB 

Background
> 256 KB (Max)

Nios II +
DSP Builder

16 Bit
Fixed-Point

Folded
at 100 MHz

Nios II +
DSP Builder

Floating-Point
(Single-Precision)

Unfolded
at 100 MHz

Nios II +
DSP Builder

Floating-Point
(Single-Precision)

Folded
at 100 MHz

Popular
ARM Cortex-R4F
at 180 MHz (Max)

Nios II Only
Software

Fixed-Point
at 100 MHz
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs



Conclusion Page 21
acceleration, provide the most consistent response times with the lowest jitter. The 
closest application processor solution is the highly constrained special case where one 
of the Cortex-A9 processors is dedicated to fast interrupt response and the entire ISR 
fits within the 32 KB of the L1 cache. In more typical usage, the ARM-based solutions 
have >1 µs of interrupt jitter.

Conclusion
Altera’s programmable technology-based SoCs offer a high-performance, 
deterministic, and versatile platform for the most stringent real-time applications. 
With Altera’s SoCs, processors, and tools, designers have the capability to partition 
real-time algorithms between hardware (LEs and DSP blocks) and software (ARM 
Cortex-A9 or Nios II processors) to best fit the target application’s performance, 
power, cost, and jitter requirements. The convergence of these technologies provides 
new opportunities for real-time embedded system design, such as the following 
benefits:

■ SoCs offer highly integrated platforms that combine ARM applications processors, 
FPGA fabric, serial transceivers, embedded block RAM memory, and DSP blocks.

■ The flexible SoC architecture enables partitioning of real-time algorithms between 
various hardware and software solutions that best fit the target application’s 
performance, power, cost, and jitter requirements.

■ The dual-core ARM Cortex-A9 MPCore processor in SoCs is built for fast 
execution time and maximum data throughput. The processor provides excellent 
real-time performance for functions that are dominated by execution time versus 
interrupt latency. Locking the L2 cache and avoiding non-critical background tasks 
yields optimum results.

■ Highly versatile Nios II soft processors can be dedicated to critical real-time 
functions and provide deterministic interrupt response with minimum jitter.

Figure 20. Interrupt Response Jitter for Solutions Investigated

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.060

1.225
1.280

Nios II +
DSP Builder

16 Bit
Fixed-Point

Unfolded
at 100 MHz

Nios II +
DSP Builder

16 Bit
Fixed-Point

Folded
at 100 MHz

Nios II +
DSP Builder

Floating-Point
(Single-Precision)

Unfolded
at 100 MHz

Nios II +
DSP Builder

Floating-Point
(Single-Precision)

Folded
at 100 MHz

Popular
ARM Cortex-R4F
at 180 MHz (Max)

Nios II Only
Software

Fixed-Point
at 100 MHz

1.180

Less Deterministic

More Deterministic

ARM Cortex-A9
at 800 MHz

< 32 KB (Max)

ARM Cortex-A9
at 800 MHz

< 256 KB (Max)

ARM Cortex-A9
at 800 MHz
< 256 KB 

Background
> 256 KB (Max)
March 2013 Altera CorporationReal-Time Challenges and Opportunities in SoCs



Page 22 Further Information
■ DSP Builder allows design engineers to use model-based flows to create hardware
accelerators for computationally intensive, DSP-oriented, real-time functions that
also provide highly deterministic performance.

■ DSP Builder provides the ability to fold or reuse FPGA resources. This feature
potentially offers drastic reductions in resource requirements but with a modest
decrease in overall performance.

Further Information
■ SoC Overview:

www.intel.com/content/www/us/en/products/programmable/ecosystems-fpga-soc-
devices.html

■ AN 595: Vectored Interrupt Controller Usage and Applications:
www.intel.com/content/www/us/en/docs/programmable/683130/22-3/vectored-
interrupt-controller-core.html

■ Nios II Custom Instruction User Guide:
www.intel.com/content/dam/support/jp/ja/programmable/support-resources/bulk-
container/pdfs/literature/ug/ug-nios2-custom-instruction.pdf

■ Using Tightly Coupled Memory with the Nios II Processor Tutorial:
www.intel.com/content/www/us/en/docs/programmable/683689/current/using-
tightly-coupled-memory-with-the.html

■ Webcast: Achieving 1-TFLOPS Performance with 28 nm FPGAs:
www.intel.com/content/www/us/en/support/programmable/support-resources/
fpga-training/fpga-quick-video-index.html

Acknowledgements
■ Nirmal Kari, Product Marketing Manager, Embedded Products, Altera

Corporation

Document Revision History
Table 7 shows the revision history for this document.

Table 7. Document Revision History

Date Version Changes

March 2013 1.1 Minor text edits.

January 2013 1.0 Initial release.
March 2013 Altera Corporation Real-Time Challenges and Opportunities in SoCs

http://www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html
http://www.altera.com/literature/an/AN595.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/fpga-quick-video-index.html
www.intel.com/content/www/us/en/docs/programmable/683689/current/using-tightly-coupled-memory-with-the.html
www.intel.com/content/dam/support/jp/ja/programmable/support-resources/bulk-container/pdfs/literature/ug/ug-nios2-custom-instruction.pdf
www.intel.com/content/www/us/en/docs/programmable/683130/22-3/vectored-interrupt-controller-core.html
www.intel.com/content/www/us/en/products/programmable/ecosystems-fpga-soc-devices.html

	Real-Time Challenges and Opportunities in SoCs
	Introduction
	Challenge—Doing Ever More in Less Time
	Challenge—Scheduling Conflicts
	Measuring System Responsiveness
	Real-Time Processors and Tools
	Benchmark Example—FOC
	Solution 1—ARM Cortex-A9 Processor Only
	Cortex-A9 Interrupt Response Characteristics
	The Best Case Scenario—Critical Code and Background Code Constrained to <32 KB
	Critical Code and Background Code <256 KB
	Critical Code and Data <256 KB, Background Code >256 KB
	Summary of ARM Cortex-A9 Results

	Solution 2—Stand-Alone Nios II Processor Running FOC Algorithm
	Solution 3—FOC Algorithm Partitioned Between Hardware and Software
	Surveying the Results
	Conclusion
	Further Information
	Acknowledgements
	Document Revision History




