
March 2016 Altera Corporation

WP-01262-1.0

© 2016 Altera. All rights reser
STRATIX words and logos are
All other words and logos ide
www.altera.com/legal.
101 Innovation Drive, San Jos
Accelerating Genomics Research with
OpenCL and FPGAs

Chris Rauer, Software Engineer, Altera, Now Part of Intel
Nicholas Finamore Jr., Sales and Marketing Associate, Altera, Now Part of Intel
White Paper
With the emergence of second-generation sequencing equipment, gene sequencing
costs have decreased rapidly, leading to a dramatic increase in the availability of
genome sequence data. Correlating the variations in genomes enables advances in a
wide range of medical research, including personalized care. Because each human
genome comprises over three billion base pairs, whole genomic sequencing requires
significant processing power, storage capacity, and network bandwidth. In particular,
variant calling is an extremely computationally intensive function. The Genome
Analysis Toolkit (GATK) is a software package developed at the Broad Institute to
analyze high-throughput sequencing data. This paper describes the acceleration of the
GATK’s Haplotype Caller algorithm using Altera®, now part of Intel, FPGAs
programmed with Altera’s SDK for OpenCL.

Introduction
Genomic variant discovery appears to be a straightforward problem: map reads to a
reference sequence and at every position, count the mismatches and construe the
genotype variants. However, multiple error sources in the sequence data make this
process much more complex. These errors include:

■ Amplification biases that occur during wet lab preparation

■ Machine errors during library sequencing

■ Software errors and mapping artifacts during read alignment

“A good variant calling workflow must involve data preparation methods that correct or
compensate for these various errors modes.” (1) Because of all these errors, variant
discovery becomes a computationally intensive undertaking. Modern variant caller
algorithms require up to several days of computation time using standard
microprocessors.

Heterogeneous Computing and the OpenCL Computing Language
In the high-performance computing field, heterogeneous computing systems are
emerging to solve a wide range of scientific computing challenges. A standard CPU
with an attached accelerator device, such as a graphic processor unit (GPU) or FPGA,
can accelerate a wide range of functions including data search, image processing,
financial, or seismic simulations. With these heterogeneous systems, programming
standards have emerged to allow easier adaptation of algorithms from standard
systems to accelerated heterogeneous systems.
ved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and
 trademarks of Altera and registered in the U.S. Patent and Trademark Office and in other countries.
ntified as trademarks or service marks are the property of their respective holders as described at

e, CA 95134 www.altera.com

ISO
9001:2008
Registered

https://www.intel.com/content/www/us/en/legal/trademarks.html
http://www.altera.com
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Page 2 Heterogeneous Computing and the OpenCL Computing Language
OpenCL is a framework for writing programs that execute across heterogeneous
platforms consisting of CPUs, GPUs, digital signal processors (DSPs), FPGAs, and
other multi-core processors. The OpenCL framework includes a language based on
standard ANSI C99 for programming these devices and application programming
interfaces (APIs) to control the platform and execute programs on the compute
devices. The Khronos Group (2), a non-profit organization, manages the standard. An
advantage of OpenCL is portability of programs from one vendor’s accelerator device
to another. Several vendors, including Altera, provide compilers for OpenCL. To
claim conformance to the OpenCL standard, the vendor’s compiler must accurately
compile and execute a suite of over 8,500 OpenCL programs. (8) Altera, Intel, AMD,
and Nvidia provide OpenCL conformant compilers.

FPGA Technology
FPGAs are reconfigurable integrated circuits consisting of programmable routing
networks linking together logic array blocks, embedded memory blocks, and DSP
blocks. In contrast, CPUs and GPUs contain fixed data paths and topologies that
process program instructions. FPGA resources can be configured and linked together
to create custom instruction pipelines through which data is processed. “Dynamically
creating custom pipelines to process each target application increases through put performance
and power efficiency by reducing the amount of superfluous functional units in silicon.” (3)
The FPGA architecture can be utilized to do a certain types of computing problems
very efficiently.

Programming with FPGAs
Traditionally, hardware developers have designed and verified digital circuits on
FPGAs at the register-transfer level (RTL) using hardware description languages
(HDLs) such as Verilog HDL and VHDL. While these traditional methods are effective
to ensure efficient use of the devices, they are impractical for implementing complex
algorithms such as gene sequencing. In early 2012, Altera introduced the Altera SDK
for OpenCL, a software development kit that allows use of the OpenCL programming
language to program Altera’s FPGA as computing accelerator devices. In late 2014
Xilinx Corporation, another leading FPGA vendor, announced they were also
developing a compiler for OpenCL. Altera’s SDK for OpenCL has been utilized for a
wide array of algorithms in a variety of computing fields.

Altera’s SDK for OpenCL
The Altera SDK for OpenCL uses the same programming model as other vendors’
compilers. Figure 1 illustrates the programming flow. The system requires an FPGA
based card designed for the OpenCL SDK, available from a variety of vendors. No
additional RTL level programming is required. FPGA programming is performed
purely with OpenCL.
March 2016 Altera Corporation Accelerating Genomics Research with OpenCL and FPGAs

Heterogeneous Computing and the OpenCL Computing Language Page 3
Figure 1. Altera SDK for OpenCL Use Model

The OpenCL program consists of a host program (intended to run on a standard CPU)
and the kernel code (intended to run on the accelerator, in this case the FPGA). Using
the standard IDE and GCC compiler, a programmer writes and compiles their host
code. Using OpenCL API they communicate with the OpenCL kernel. In a separate .cl
file, the programmer writes with OpenCL C following the appropriate optimization
guidelines for the FPGA. Using the Altera offline compiler, the OpenCL kernel file is
compiled and runs the Quartus® II or Quartus Prime software in the background to
produce an .aocx file. During runtime, the Altera offline compiled executable is
downloaded to the FPGA. All of the typical tools and processes that an FPGA
designer would typically deal with abstract away; all development happens in the
familiar software programmer’s environment. (4)

FPGA Devices Used
For the purposes of this experiment, the Haplotype Caller code is partitioned to run
on both the host and FPGA to optimize performance. The OpenCL complier was
initially targeted to build the code for an Altera Stratix® V FGPA and then re-targeted
at Altera’s more advanced Arria® 10 FPGA. The Stratix V FPGA is part of Altera’s
high-end family of devices and has been shipping in volume production since 2012.
The product line is built with a 28 nm silicon process technology from TSMC Corp.
Altera is also shipping Arria 10 devices using a more advanced 20 nm process
technology with more logic elements, DSP blocks, and memory. Additionally, Arria 10
FPGAs run at higher frequencies. Arria 10 FPGAs have advanced, hardened, floating-
point elements that make floating-point functions more efficient than when
implemented using standard logic. These features let us use more computational
blocks, leading to higher overall performance and significantly better performance
per watt for the Haplotype Caller algorithm.

Host
Accelerator

OpenCL Accelerator Code
__kernel void sum

{
 int gid = get_global_id(0);
 y[gid] = a[gid] + b[gid];
}

Verilog

Host Code
main() {
 read_data(…);
 manipulate(…);
 (…);
 clEnqueueNDRange(…,sum,…);
 (…);
 display_result(…);
}

EXE

Altera

Compiler

AOCX

Standard
gcc

Compiler
March 2016 Altera CorporationAccelerating Genomics Research with OpenCL and FPGAs

Page 4 Genome Analysis
Genome Analysis

Genome Variant Discovery
The process of identifying differences between DNA sequences is called variant
discovery. Identifying variation in DNA has become essential in a variety of medical
research and personalized medical care. Research projects that compare hundreds or
thousands of sequences are stifled by the amount of compute time and resource
required. Therefore, accelerating variant discovery has become a pursuit of many in
the medical and high-tech community.

Using a robust calling algorithm that compares sequences and leverages meta-
information (such as base qualities scores variant discovery) can be performed on the
appropriately processed data. To avoid missing any or limiting the proportion of false
positives in the call set, it is preferable to include as many potential variants as
possible. “Once a highly-sensitive call set has been generated, appropriate filters can be
applied to achieve the desired balance between sensitivity and specificity.” (5)

The Genome Analysis Tool Kit
The GATK is a software package developed at the Broad Institute to analyze high-
throughput sequencing data. The toolkit offers a wide variety of tools, with a primary
focus on variant discovery and genotyping as well as strong emphasis on data quality
assurance.

■ The GATK Haplotype Caller function is the variant discovery algorithm.

■ PairHMM is the main algorithm to compare sequences. It calls SNPs and indels
simultaneously via local re-assembly of haplotypes in an active region.

■ The Haplotype Caller defines ActiveRegions, determines haplotypes by re-
assembly of the ActiveRegion, determines likelihoods of the haplotypes given the
read data, and assigns sample genotypes. (5)

Using significant variation evidence, the areas to be further analyzed are identified
and known as the ActiveRegions. The program then creates a De Brujin-like graph to
reassemble the ActiveRegions and detect the possible haplotypes, which are then
realigned using the Smith-Waterman algorithm. Using the PairHMM algorithm, the
ActiveRegions are pairwise aligned against each haplotype to produce a matrix of
likelihoods of haplotypes based on the read data. This matrix is then relegated to
create the likelihoods of alleles for each potential variant site. (5)

PairHMM Algorithm Overview
Comparing two gene sequences is not as simple as comparing two regular strings
because each sequence can have insertions, deletions, and mutations. The hidden
Markov models in the PairHMM algorithm calculate the probability of a match with
these possible changes. Also, the exact alignment is not known, therefore, a
comparison must be done with each alignment.
March 2016 Altera Corporation Accelerating Genomics Research with OpenCL and FPGAs

Genome Analysis Page 5
The algorithm requires two gene sequences as input. The first is the read sequence,
which contains the gene string and some quality factors based on how it was read in.
The second sequence is the haplotype sequence, which is a gene string without any
additional data. The PairHMM hidden Markov model equation compares the
sequences and the result is passed to the next diagonal. The next diagonal compares
the same two sequences again with a different alignment. (The different alignment is
simply a shift in sequence by one for each diagonal.) Figure 2 shows two tiny
sequences and the iteration of diagonals with the shifting of the alignment.

Figure 2. Comparing Each Alignment of 2 Small Sequences

The hidden Markov comparison result is a single probability score, but it is very
computationally expensive because it uses floating-point math. For a sequence of
length n, the computation requirement is O(n2). Additionally, each calculation
depends on previous calculations from the previous row and diagonal. Figure 3
shows these dependencies. The probability at the end of each diagonal is summed to
give an overall score for all the alignments of each sequence. This score determines
how well the two sequences match with all alignments. Each box in Figure 3 shows
how the result of the PairHMM calculation for two sequence characters is used in
subsequent calculations. This structure is called a systolic array and can be easily
mapped to an FPGA fabric.

Figure 3. Using the PairHMM Calculation for 2 Sequence Characters

read: CAT
haplotype: ATG

D = 0
CAT
G

D = 1
CAT
TG

D = 2
CAT
ATG

D = 3
CAT
AT

D = 4
CAT
A

Read length

Haplotype length

Number of diagonals

Number of PairHMM calculations

3

3

3 + 3 - 1 = 5

5 x 3 - 15

r0d0 r1d0 r2d0

r0d1 r1d1 r2d1

r0d2 r1d2 r2d2
March 2016 Altera CorporationAccelerating Genomics Research with OpenCL and FPGAs

Page 6 Experiment
PairHMM FPGA Implementation
This algorithm can be optimized fairly well on a CPU using vector instructions. If the
sequences are small, the comparison can be entirely performed using the CPUs
internal level 1 cache memory. However, with larger sequences, the external memory
bandwidth of the CPU may limit performance. A CPU may have clock speed of over
1 GHz, but the calculation still must be broken up into separate instructions. These
algorithms also work extremely well on FPGAs. An FPGA typically has a lower clock
speed, but it can take advantage of pipelined parallelism. Therefore, the FPGA can do
hundreds of complex calculations in parallel and run one after the other each cycle
inside the pipeline. Altera’s OpenCL compiler analyzes the code and builds these
pipelines automatically. The FPGA’s lower clock speed typically enables applications
to run while consuming much less power.

Experiment
The GATK Haplotype Caller Algorithm was initially written in Java. The algorithm
was then converted to C++ by the Broad Institute. For our experiment, we ported the
PairHMM algorithm (that was originally written by the Broad Institute (5)) from C++
to OpenCL. OpenCL is a C based language, which made porting the algorithm fairly
straightforward. Additionally, the code was well optimized and required constant
values were already pre-calculated. We tested the code for functional correctness with
the emulator that is part of Altera’s SDK for OpenCL; we used the test cases that came
with the Broad Institute’s C++ source code.

We targeted the code to a Stratix V D8 device on a Bittware Corp. (an Altera partner)
board. (9) The compiler generated an .aocx file, which we loaded into the Stratix V
device. We then took runtime performance measurements. We used the same
methodology to run the algorithm on an Arria 10 device on an Altera development
board with ES2 silicon.

Choosing an Optimal Compute Grid Size
The FPGA accelerates this algorithm effectively because the algorithm can be mapped
to a 2-D systolic array. In Figure 3, the top computations feed the bottom
computations and the results trickle through the grid’s compute units. Sizing this grid
required experimentation. If the compute grid is too wide, the FPGAs M20k used
blocks increase because the accesses is wider with shallower depth. If the depth
needed is less than the physical depth of the M20k block, the block is underutilized.
Several variables are loaded from memory for each column, which greatly amplifies
the effect.

If the compute grid depth is too deep, too many haplotype characters are read from
DDR memory simultaneously, which exhausts the DDR memory bandwidth.
Additionally, adders are needed at the end of the row. As a result, increasing the
depth linearly increases the number of these adders.
March 2016 Altera Corporation Accelerating Genomics Research with OpenCL and FPGAs

Experiment Page 7
When the OpenCL compiler builds the functions for a Stratix V FPGA, it can fit 64
PairHMM processing elements in an 8 x 8 grid. This design is completely pipelined
and can perform 64 full PairHMM calculations per clock cycle. Figure 4 shows a
visual representation of a smaller 4 x 4 compute grid. When the same code is run
through the compiler and re-targeted to an Arria 10 device, it produces an 8 x 26 grid,
which is 3.25X larger than the Stratix V grid size. This difference is due to the Arria 10
device’s hardened floating-point capability, as well as additional logic, memory, and
switching fabric. The Arria 10 FPGA also runs at a somewhat higher frequency,
adding to the performance gains.

Figure 4. Visual Representation of OpenCL 4x4 PairHMM Algorithm Implementation

PE
r0d0

PE
r1d0

PE
r2d0

PE
r0d1

PE
r1d1

PE
r2d1

PE
r0d2

PE
r1d2

PE
r2d2

PE
r3d0

PE
r3d1

PE
r3d2

PE
r0d3

PE
r1d3

PE
r2d3

PE
r3d2

r-1d-1

r-1d0

r-1d1

r-1d2

Previous
Register

r-1d-2

r0d-1

r0d-2

r1d-1

r1d-2

r3d-1

r2d-2

r3d-1

r3d-2

r3d-1

r3d0

r3d1

r3d2

Next
Register

r3d-2

Input Channel

Result ChannelOutput Channel

Previous
Result
March 2016 Altera CorporationAccelerating Genomics Research with OpenCL and FPGAs

Page 8 Results
Results

FPGA Utilization
Table 1 shows the FPGA compilation results. As expected, the Arria 10 FPGA fit more
PairHMM algorithm computation blocks because of the hardened floating-point DSP.
The Arria 10 DSP utilization is almost 100%. For the Stratix V device, the compute size
is smaller because LEs and DSP blocks implement the floating-point functions. Also,
the design only used 20% of the available DSP blocks because so many LEs were
needed for floating-point operations. Using a larger FPGA would not have helped
because the D8 device has the most DSP blocks. The fMAX was not much better in the
Arria 10 device due to early silicon and timing models.

Performance
We compared the performance results to the initial Java-based runtime, the runtime
on a 3.2 Ghz Intel Xeon CPU using the optimized AVX assembly language code, and
the published results for the Nvidia K40 GPU. We used the 10 Second Java test for
comparison because it is the published runtime baseline comparison for different
technologies. We also ran the algorithm on larger data sets, however, there are no
published results to which we can compare our results.

Table 1. FPGA Compilation Results for PairHMM Algorithm

FPGA PairHMM Compute
Blocks fMAX Logic Utilization DSP Utilization

Stratix V D8 64 207 209k/262k (80%) 388/1,963 (20%)

Arria 10 ES2 1150 208 213 210k/427k (49%) 1,513/1,518 (100%)

Table 2. Performance Results Comparing Various Platforms to Original Java Code

Technology Hardware Runtime (ms) Improvement over
Baseline (X Fold)

Original Java version from
GATK (7) CPU running Java 10,800 1

Intel AVX (Single core) Intel Xeon 138 78

NVidia GPU (7) NVidia K40 70 154

Intel AVX 24 core (7) Intel Xeon 15 720

Altera OpenCL Stratix V D8 8.3 1,301

Altera OpenCL Arria 10 ES2 1150 2.8 3,857
March 2016 Altera Corporation Accelerating Genomics Research with OpenCL and FPGAs

Conclusion Page 9
Conclusion
The Altera SDK for OpenCL allowed us to implement and test the GATK PairHMM
algorithm effectively and easily. The Altera FPGA showed significant performance
acceleration relative to other technologies. By porting the PairHMM algorithm from a
Stratix V FPGA to the more advanced Arria 10 FPGA, we obtained a nearly 3X
performance improvement. This experiment shows great promise when performance
scaling these types of algorithms to future generations of FPGA technology.

Our recommendations for future work include:

■ Incorporating the accelerated algorithms into the complete GATK

■ Implementing compression algorithms in the FPGA to store and transport genome
data more effectively

■ Accelerating analysis engines, such as the GATK

■ Porting the design to Stratix 10 devices to obtain further performance
improvements

For additional performance improvements, we can further optimize the OpenCL
code. For instance, in the current design, the result adder chain in Figure 4 is not 100%
used every cycle. An improvement would be to multiplex one of the adders from the
hidden Markov calculation to share the hardware (an optimization called resource
folding). This improvement would free DSP resources that could be used to add more
computation units, thereby increasing performance.

Acknowledgments
We would like to thank Andrew Ling, the manager of the OpenCL compiler team in
Toronto, and his team for their support with understanding some of the inner
workings of the OpenCL compiler. We would also like to thank Mauricio Carneiro
and Eric Banks from the Broad Institute for providing initial code and supporting us.
We would also like to thank John Sotir and Richard Yang for making this project
possible.

References
1. Van der Auwera, Geraldine A., et al. From FastQ Data to High Confidence Variant

Calls: The Genome Analysis Toolkit Best Practices Pipeline
www.ncbi.nlm.nih.gov/pmc/articles/PMC4243306/

2. Altera SDK for OpenCL Programming Guide
documentation.altera.com/#/00015315-AA$NT00066862

3. Settle, Sean, High-performance Dynamic Programming on FPGAs with OpenCL, 2013.
ieee-hpec.org/2013/index_htm_files/29-High-performance-Settle-2876089.pdf

4. OpenCL Specification, Version 1.2, Khronos Group, 2012
www.khronos.org/registry/cl/specs/opencl-1.2.pdf

5. The GATK Guide Book, Version 3.4-46, Broad Institute, 2015.
www.broadinstitute.org/gatk/guide/version-history

6. Carneiro, Mauricio, PairHMM (GitHub repository)
github.com/MauricioCarneiro/PairHMM
March 2016 Altera CorporationAccelerating Genomics Research with OpenCL and FPGAs

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243306/
https://documentation.altera.com/#/00015315-AA$NT00066862
http://ieee-hpec.org/2013/index_htm_files/29-High-performance-Settle-2876089.pdf
https://www.broadinstitute.org/gatk/guide/version-history
https://github.com/MauricioCarneiro/PairHMM

Page 10 Document Revision History
7. Carneiro, Mauricio, Acceleration Variant Calling, Intel Genomic Sequencing Pipeline
Workshop, Mount Sinai, 2013.

8. Altera SDK for OpenCL is First in Industry to Achieve Khronos Conformance for
FPGAs, Altera Corporation, 2013.
https://www.khronos.org/news/permalink/altera-sdk-for-opencl-is-first-in-
industry-to-achieve-khronos-conformance-f

9. Bittware S5-PCIe-HQ board
https://www.bittware.com

Document Revision History
Table 3 shows the revision history for this document.

Table 3. Document Revision History

Date Version Changes

March 2016 1.0 Initial release.
March 2016 Altera Corporation Accelerating Genomics Research with OpenCL and FPGAs

https://www.khronos.org/news/permalink/altera-sdk-for-opencl-is-first-in-industry-to-achieve-khronos-conformance-f
https://www.bittware.com

	Accelerating Genomics Research with OpenCL and FPGAs
	Introduction
	Heterogeneous Computing and the OpenCL Computing Language
	FPGA Technology
	Programming with FPGAs
	Altera’s SDK for OpenCL
	FPGA Devices Used

	Genome Analysis
	Genome Variant Discovery
	The Genome Analysis Tool Kit
	PairHMM Algorithm Overview
	PairHMM FPGA Implementation

	Experiment
	Choosing an Optimal Compute Grid Size

	Results
	FPGA Utilization

	Performance
	Conclusion
	Acknowledgments
	References
	Document Revision History

