
Abstract
This document describes the advantages of network on a chip (NoC) architecture
in Intel® FPGA system design. NoC architectures apply networking techniques
and technology to communications subsystems in system on a chip designs. NoC
interconnect architectures have significant advantages over traditional, non-NoC
interconnects, such as support for independent layer design and optimization.
The Platform Designer (formerly Qsys) system integration tool, included with
the Intel Quartus® Prime software, generates a flexible FPGA-optimized NoC
implementation automatically, based on the requirements of the application. The
Platform Designer interconnect also provides a higher operating frequency for
comparable latency and resource characteristics, with up to a 2X improvement in
fMAX compared to traditional interconnects.†

Introduction
As FPGA device density increases to more than a million logic elements (LEs),
design teams require larger and more complex systems, with increasing
performance requirements, in less time. Designers can use system-level design
tools to quickly design high-performance systems with a minimum of effort.

The Platform Designer uses a NoC architecture to implement system transactions.
The Platform Designer interconnect includes features that support high-
performance operation on FPGAs, including a flexible network interconnect that
implements only the minimum resources required for a given application, a packet
format that varies depending on the system being supported, and a network
topology that separates command and response networks for higher concurrency
and lower resource utilization.

This white paper explains the Platform Designer network implementation,
discusses its benefits, and compares the performance results between traditional
and the Platform Designer interconnect systems. These results show that the NoC
implementation provides higher frequency performance with the same latency
characteristics, and can provide up to twice the frequency when pipelining options
are enabled. †

Understanding NoC Interconnect
The NoC interconnect breaks the problem of communication between entities into
smaller problems, such as how to transport transactions between nodes in the
system, and how to encapsulate transactions into packets for transport. The NoC
interconnect is different from traditional interconnects in one simple, but powerful
way. Instead of treating the interconnect as a monolithic component of the system,
the NoC approach treats the interconnect as a protocol stack, where different
layers implement different functions of the interconnect. The power of traditional

Authors
Kent Orthner

Senior Manager, Software and IP
Intel® Corporation

Applying the Benefits of Network on
a Chip Architecture to FPGA System
Design

Intel® FPGA

Table of Contents
Abstract . . 1
Introduction . . 1
Understanding NoC Interconnect. . 1
Benefits of NoC Architecture. 2
	 Implement and Optimize Layers. 2

	 Simplify Customization per Application . . 2

	 Use Multiple Topologies and Options. 3

	 Simplify Feature Development. 3

	 Interface Interoperability. 3

	 Scalability. . 3

NoC System Design with Platform
Designer (formerly Qsys). 3
Platform Designer NoC Interconnect
Optimized for FPGAs 4
	 Minimum, Flexible Implementation. 4

	 Parameterizable Packet Format Reduces . . 	
	 Adaptation. . 4

	 Low-Latency Interconnect 4

	 Separate Command and Response
	 Networks . . 4

Optimized Command and Response
Networks. . 5
Performance Examples. 7
	 16-Master/16-Slave System. 7

	 4-Master/16-Slave Burst- and
	 Width-Adaptation System 7

Conclusion. . 9
Where to Get More Information . . . 9

white paper

2

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

protocol stacks, such as TCP-over-IP-over-Ethernet, is that the information at each layer is encapsulated by the layer below
it. The power of the Platform Designer NoC implementation comes from the same source, the encapsulation of information at
each layer of the protocol stack.

Figure 1 shows the basic topology of an NoC system. Each endpoint interface in the network, master or slave, is connected to
a network interface (NI) component. The network interface captures the transaction or response using the transaction layer
protocol, and delivers it to the network as a packet of the appropriate format. The packet network delivers packets to the
appropriate packet endpoints, which then pass them to other network interfaces. The network interfaces then terminate the
packet and deliver the command or response to the master or slave using the transaction layer protocol.

In this system, a component such as a processor communicates with a component such as a memory controller. Each of these
components uses the services of the network interfaces to communicate with one another via a transaction interface, such
as Intel's Avalon® Memory-Mapped (Avalon-MM) interface or Advanced eXtensible Interface (AXI). The network interfaces
communicate with one another to provide transaction layer services by relying on the services of the command and response
networks, which provide transport services. Each component at the transport layer (within the command and response
networks) recognizes the transport layer protocol, but does not need to recognize the particulars of the transactions in each
packet.

Benefits of NoC Architecture
Decoupling the layers of the protocol stack has the following benefits over a traditional approach, such as advanced high-
performance bus (AHB) or CoreConnect:

•	 Independent implementation and optimization of layers

•	 Simplified customization per application

•	 Supports multiple topologies and options for different parts of the network

•	 Simplified feature development, interface interoperability, and scalability

Implement and Optimize Layers

A common approach to complex engineering challenges is to divide the design problem into smaller problems with well-
defined interactions. With NoC interconnect, the design problem is no longer “How do I best design a flexible interconnect
for a complex system?” but instead consists of the easier questions: “How do I best map transactions to packets?” and “How
do I best transport packets?” Keeping the layers separate also allows you to optimize the implementation of each layer
independently, resulting in better performance at that layer without having to redesign other layers. For example, designers
can consider and implement a number of different transport layer topologies and implementations without having to change
anything at the transaction layer.

Simplify Customization per Application

At the transport layer, commands and responses are simply packets carried by the network, and anything done at the network
layer must only support the transport of these packets. This simplifies the customization of the interconnect for a given
application compared to a traditional interconnect. For example, if the designer determines that the system needs pipelining

Figure 1. NoC System Basic Topology

3

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

or clock crossing between a set of masters and a set of slaves, the designer can add the needed components as long as
they safely transport packets. The clock crossing and pipelining decisions do not need to consider the transaction layer
responsibilities, such as the different transaction types, response types, and burst types.

Use Multiple Topologies and Options

NoC interconnect supports use of different optimizations and topologies for different parts of the network. For example, a
design may have a set of high-frequency, high- throughput components, such as processors, PCI Express* interfaces, a DMA
controller, and memory; and a second set of low-throughput peripherals such as timers, UARTs, flash memory controllers, and
I2C interfaces. Such as system can be divided at the transport layer. The designer can place the high-performance components
on a wide, high-frequency packet network; while the peripherals are on a less-expensive mesh network, with only a packet
bridge between the two networks.

Simplify Feature Development

Interconnects must be versatile enough to support emerging new features, such as new transaction types or burst modes.
If the interconnect is divided into different layers, then the addition of new features requires changes only to the layer that
supports the feature. To support new burst modes, for example, only the network interface components require modification.
Likewise, if a new network topology or transport technology yields higher performance, it can be substituted for the original
network without requiring redesign of the entire network.

Interface Interoperability

Different intellectual property (IP) cores support different interface types, such as AMBA* AXI*, AHB*, and APB* interfaces; as
well as OCP interfaces, Wishbone interfaces, and Avalon-MM interfaces. Supporting a new interface requires implementing
only the network interface to encapsulate transactions to or from interfaces of that type using the selected packet format.
With this architecture, a bridge component is not needed, saving logic and latency.

Scalability

Systems with hundreds of masters and slaves are not uncommon, and traditional interconnects struggle to meet the
required performance. Interconnects designed for dozens of masters and slaves cannot easily scale to support hundreds of
components required by systems today. With NoC interconnect, it is relatively easy to divide the network into subnetworks,
with bridges, pipeline stages, and clock-crossing logic throughout the network as required. Therefore, a multi-hop network
could easily support thousands of nodes, and could even provide for a transport network spanning multiple FPGAs.

NoC System Design with Platform Designer (formerly Qsys)
The Platform Designer is a powerful system integration tool included as part of Intel Quartus Prime software. The Platform
Designer simplifies FPGA system design, allowing designers to create a high-performance system easily, without extensive
knowledge of on-chip interconnects or networks. The Platform Designer includes an extensive IP library from which designers
can build and implement a system on a chip (SoC) in much less time than using traditional, manual integration methods. Using
traditional design methods, designers write HDL modules to connect components of the system. Using the Platform Designer,
designers instantiate and parameterize system components using a GUI or a scripted system description. The Platform
Designer then generates the components and interconnect at the press of a button. Figure 2 shows a system example created
in the Platform Designer.

Figure 2. Example System Components Displayed in the Platform Designer (formerly Qsys)

4

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

In the Platform Designer, the system designer uses the GUI to add the desired IP components to the system, parameterize
each component, and specify interface-level connections between system components. The Platform Designer connects
individual signals within connected interfaces automatically. The Platform Designer generates the system implementation as
RTL, and manages system interconnect issues such as clock domain crossing, interface width adaptation, and burst
adaptation.

The Platform Designer supports a number of different interface types, such as transaction (read and write) interfaces,
streaming (packets or non-packet) interfaces, interrupts, and resets. The Platform Designer transaction interconnect is based
on a NoC implementation that is designed specifically for FPGAs. The Platform Designer interconnect minimizes the use of
FPGA resources, while at the same time supporting high-performance systems with high frequency and throughput
requirements.

Platform Designer NoC Interconnect Optimized for FPGAs
The Platform Designer NoC interconnect has features that make it particularly well-suited to FPGAs and the systems that use
them, including the minimum flexible implementation, parameterizable packet format designed to reduce adaptation, low-
latency interconnect, and separate command and response networks.

Minimum, Flexible Implementation

The Platform Designer interconnect is not just aimed at large high-performance systems with multi-gigabit datapaths and
complex bursting, it is also intended for small systems of only a few components. To support such a wide variety of systems,
The Platform Designer implements only the minimum interconnect required to meet the performance requirements for a
given application.

The Platform Designer begins by dividing the system into multiple interconnect domains. Two interfaces are in different
interconnect domains if there are no connections in the system that require the system algorithm to consider them together.
For example, if one master connects to two slaves, those slaves are in the same interconnect domain. For each domain,
the Platform Designer considers all the master and slave widths, and sets the network data width to be the minimum that
supports full throughput for the highest throughput connection in the system, based on the clock rates of the interfaces in the
domain.

In addition, the Platform Designer adds only the interconnect components that are required for the application. For example,
if there is a master in the system that is only connected to one slave, then the address decoder component is omitted. If there
is a slave that is only connected to one master, then the arbiter component is omitted. If a certain type of burst adaptation is
not required by that application, then support for that burst adaptation is omitted.

Parameterizable Packet Format Reduces Adaptation

In addition to minimizing interconnect resource use, the Platform Designer determines the packet format that minimizes logic
use and adaptation. For example, the address and burstcount fields in the packet are the minimum width required to support
the system. The address and other fields within the packet are driven to useful and accurate values in all cycles of the packet,
so the adaptation components do not have to maintain any state about the packet, and even allow the adapter to be omitted
altogether in some cases.

Low-Latency Interconnect

Designers commonly associate packets with serialization, thinking that with a packet- based approach, only a portion of
the entire transaction is carried in each cycle. Many NoC implementations use this approach. Such NoC implementations
have a network latency on the order of 12 to 15 clock cycles, making them inappropriate for the interconnect between a
microcontroller and its local memory, for example. To overcome latency issues, the components in the Platform Designer
interconnect all have combinational datapaths. The packet format is wide enough to contain a complete transaction in a single
clock cycle, so that the entire interconnect can support writes with 0 cycles of latency and reads with round-trip latency of 1
cycle. These wide connections are well supported by today’s FPGAs. The system designer can change pipelining options to
increase frequency at the expense of latency.

Separate Command and Response Networks

For each transaction domain, the Platform Designer instantiates two independent packet networks, one for command traffic
and one for response traffic, instead of a single network that supports both. This increases concurrency, since command traffic
and response traffic do not compete for resources like links between network nodes. The Platform Designer also allows the
two networks to be optimized independently, such that even the network topology and the packet format in the two networks
can be different.

5

Optimized Command and Response Networks
The following steps, describing a read command issued from a master to its intended slave and the response as it returns to
the master, provide and overview of the command and response networks in the NoC interconnect shown in Figure 3.

1.	 When a master issues a command, the first interconnect component that receives the transaction is the translator, as
shown in Figure 4. The translator handles much of the variability of the transaction protocol specification, such as active
high versus active low signal options and optional read pipelining.

2.	 The agent is the next block to receive the command. The agent encapsulates the transaction into a command packet, and
sends the packet to the command network using the transport layer. The agent also accepts and forwards to the master
the response packets from the response network.

3.	 The router determines the address field within the packet format and the slave ID that the packet goes to, as well as the
routing information for the next hop.

4.	 The limiter tracks outstanding transactions to different masters, and prevents commands resulting in an out-of-order or
simultaneously-arriving read response.

5.	 Next, the component is injected into the packet network. The Platform Designer NoC network supports maximum
concurrency, allowing all masters and slaves to communicate on any given clock cycle, as long as no two masters attempt
to access the same slave, as shown in Figure 5.

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Figure 3. Platform Designer (formerly Qsys) NoC Interconnect Topology

Slave Response Connectivity

Master Command Connectivity

Command
Network

Transport Layer

Transaction Layer

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Response
Network

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Interface

Master Network Interface

Translator Agent

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Figure 4. Master Network Interface

6

Note that the NoC architecture allows replacement of the packet network with any other compatible network implementation.

6.	 The demultiplexer is the first component that the packet encounters within the transport layer network. The
demultiplexer sends the packet towards the next slave.

7.	 The packet arrives at the splitter component (represented by the black dot), which then essentially copies the packet to
the input of the arbiter, and to the input to the multiplexer.

8.	 System designers that require application-specific arbitration, other than the weighted round robin arbitration that the
Platform Designer provides by default, can replace the Platform Designer arbiter with one of their own. To support this,
the Platform Designer arbiter footprint accepts the entire packet, so that alternate arbiter implementations can use
detailed transaction information to make their arbitration decision, including data- dependant arbitration.

9.	 The decision from the arbiter is sent to the multiplexer, which forwards the selected packet to the slave’s network
interface, as shown in Figure 6.

10.	 Within the slave’s network interface, the packet enters the slave agent component, which terminates the packet, and
forwards the transaction contained therein to the slave translator. Simultaneously, the slave agent component pushes
transaction information into the slave agent FIFO buffer for transactions requiring a response, such as reads and non-
posted writes. The slave translator fills the same role as the master translator, accounting for all the possible variance in
the interface specification. If the slave is busy and cannot accept more transactions, then the command is backpressured
at the entrance of the agent.

11.	 When the slave responds to the read transaction, the translator forwards the response to the slave agent. The slave agent
pops transaction information from the slave agent FIFO buffer, such as the originating master ID, and merges that with
the transaction response to create a response packet. The read data FIFO is present to store the response in case the
response network is temporarily unable to accept the response.

12.	 The slave router then examines the packet to determine the master ID, and assigns the local routing information.

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Figure 5. Maximum Concurrency Packet Network

Packet Network

Arbiter

Arbiter

Slave
Interface

Slave Network Interface

Agent Translator
waitrequest

over�ow error

command

response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Figure 6. Slave Network Interfaces

7

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

13.	 The response is the same as the command, but in reverse. The response packet travels through a demultiplexer, hits
an arbiter, and once selected, is forwarded through the multiplexer back to the limiter. The limiter then records that the
response is received, and then sends it back to the master agent and eventually to the master in the form of a transaction
response.

In addition to the components described, the Platform Designer adds burst adapters and width adapters as needed. These are
both packet components that examine the packet at the data in some of the fields to make appropriate adaptation decisions.
The Platform Designer can also add pipelining stages to help meet timing, and automatically adds handshaking or dual- clock
FIFO components when masters and slaves are on different clock domains.

Performance Examples
The following examples compare the performance of two different systems: a 16- master/16-slave system, and a
4-master/16-slave burst- and width-adaptation system. This comparison illustrates how the frequency, latency, and resource
use of the Platform Designer NoC interconnect compares to a traditional interconnect implementation. In these examples
all systems are implemented on Stratix® IV devices, using the C2 speed grade. The Platform Designer NoC interconnect
system performance is compared to the traditional Avalon-MM interconnect generated for the same systems by the previous
generation SOPC Builder tool.

16-Master/16-Slave System

The 16-master/16-slave system is fully connected with a total of 256 connections. The simple master and slave IP
components exist only to test the characteristics of the interconnect, meaning that the system is representative of a
completely homogenous system, and not a typical embedded system. Table 1, Figure 7, and Figure 8 show the frequency and
resource utilization results of the traditional interconnect and different latency options of the NoC implementation.

NTERCONNECT IMPLEMENTATION FMAX MHZ RESOURCE USAGE (ALMS)

Traditional interconnect 131 12766

Platform Designer NoC, fully combinational 161 (+23%) 13999 (+10%)

Platform Designer NoC, 1 cycle network latency 225 (+71%) 11260 (-12%)

Platform Designer NoC, 2 cycle network latency 243 (+85%) 12761 (+0%)

Platform Designer NoC, 3 cycle network latency 254 (+93%) 14206 (+11%)

Platform Designer NoC, 4 cycle network latency 314 (+138%) 26782 (+110%)

Table 1. 16-Master/16-Slave System: Performance Results (% relative to tradition interconnect)

Figure 7. 16-Master/16-Slave System: NoC Frequency Compared to Traditional Interconnect (MHz)

8

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

4-Master/16-Slave Burst- and Width-Adaptation System

The 4-master/16-slave burst- and width-adaptation system includes characteristics of typical heterogeneous systems,
including masters and slaves of different widths and differences in burst support, requiring burst adaptation in the
interconnect. Table 2, Figure 9, and Figure 10 show the frequency and resource utilization results of the traditional
interconnect and different latency options of the NoC implementation.

NTERCONNECT IMPLEMENTATION FMAX MHZ RESOURCE USAGE (ALMS)

Traditional interconnect 123 11658

Platform Designer NoC, fully combinational 125 (+2%) 9655 (-17%)

Platform Designer NoC, 1 cycle network latency 150 (+22%) 9423 (-19%)

Platform Designer NoC, 2 cycle network latency 164 (+33%) 9847 (-16%)

Platform Designer NoC, 3 cycle network latency 154 (+25%) 13156 (+13%)

Platform Designer NoC, 4 cycle network latency 171 (+39%) 16925 (+45%)

Figure 8. 16-Master/16-Slave System: NoC Resource Utilization Compared to Traditional Interconnect (ALUTs)

Table 2. 4-Master/16-Slave System: Performance Results (% relative to tradition interconnect)

Figure 9. 4-Master/16-Slave System: Frequency Compared to Traditional Interconnect (MHz)

9

White Paper | Applying the Benefits of Network on a Chip Architecture to FPGA System Design

† 		Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, the Intel. Experience What’s Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Intel Atom, Intel
Core, Intel Xeon, MAX, Nios, Quartus and Stratix are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products
and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services. *Other marks and brands may be claimed as the property of others.

WP-01149-1.2

Conclusion
NoC interconnect architectures provide a number of significant advantages over traditional, non-NoC interconnects, which
allow for independent design and optimization of the transaction and transport protocol layers. The Platform Designer
generates an exceedingly flexible FPGA-optimized NoC implementation, based on the requirements of the application. The
Platform Designer NoC interconnect provides a higher operating frequency for the same latency and resource characteristics,
with up to a 2X improvement in fMAX compared to traditional interconnects.†

Where to Get More Information
•	 Platform Designer (formerly Qsys):

www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html

•	 Platform Designer (formerly Qsys) Tool Support: www.altera.com/support/support-resources/design-software/qsys.html

•	 AN632: SOPC Builder to Qsys Migration Guidelines: www.altera.com/literature/an/an632.pdf

Figure 10. 4-Master/16-Slave System: Resource Utilization Compared to Traditional Interconnect (ALUTs)

https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
https://www.altera.com/support/support-resources/design-software/qsys.html
https://www.altera.com/support/support-resources/design-software/qsys.html
http://www.altera.com/literature/an/an632.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_qsys_intro.pdf

