
Mentor Verification IP Altera Edition 
AMBA AXI4-Stream User Guide

Software Version 10.4c 

January 2016

© 2012-2016 Mentor Graphics Corporation
All rights reserved. 

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.



This document is for information and instruction purposes. Mentor Graphics reserves the right to make 
changes in specifications and other information contained in this publication without prior notice, and the 
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been 
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in 
written agreements between Mentor Graphics and its customers. No representation or other affirmation 
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor 
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR 
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) 
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, 
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at 
private expense and are commercial computer software and commercial computer software 
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to 
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S. 
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in 
the license agreement provided with the software, except for provisions which are contrary to applicable 
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of 
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior 
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to 
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’ 
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of 
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210

Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form


Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 3
January 2016

Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
About This User Guide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AMBA AXI4-Stream Protocol Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Mentor VIP AE License Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Supported Simulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Simulator GCC Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 1
Mentor VIP Altera Edition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Advantages of Using BFMs and Monitors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Implementation of BFMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
What Is a Transaction?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
AXI4-Stream Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Master BFM and Slave BFM Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2
SystemVerilog API Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Creating Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Transaction Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
create_*_transaction(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Executing Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
execute_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Waiting Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
get_packet(), get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Access Transaction Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
set*() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
get*() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Operational Transaction Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Operation Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Handshake Delay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Transfer Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Transaction Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3
SystemVerilog Master BFM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Master BFM Protocol Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Master Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Master BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Table of Contents

4
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

Master Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SystemVerilog Master API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
create_master_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
execute_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
execute_transfer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
get_stream_ready() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 4
SystemVerilog Slave BFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Slave BFM Protocol Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Slave Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Slave BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Slave Assertions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SystemVerilog Slave API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
create_slave_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
execute_stream_ready()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5
SystemVerilog Monitor BFM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Inline Monitor Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Monitor BFM Protocol Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Monitor Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Monitor BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Monitor Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
SystemVerilog Monitor API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
create_monitor_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
get_packet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
get_stream_ready() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 6
SystemVerilog Tutorials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Verifying a Slave DUT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Master BFM Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Verifying a Master DUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Slave BFM Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Table of Contents

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 5
January 2016

Chapter 7
VHDL API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Creating Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Transaction Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
create*_transaction(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Executing Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
execute_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Waiting Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
get_packet(), get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Access Transaction Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
set*() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
get*() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Operational Transaction Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Operation Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Handshake Delay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Transfer Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Transaction Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 8
VHDL Master BFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Overloaded Procedure Common Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Master BFM Protocol Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Master Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Master BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Master Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
VHDL Master BFM API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
create_master_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
set_data(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
get_data()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
set_byte_type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
get_byte_type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
set_id()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
get_id() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
set_dest() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
get_dest()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
set_user_data()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
get_user_data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
set_valid_delay(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
get_valid_delay()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
set_ready_delay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
get_ready_delay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
set_operation_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Table of Contents

6
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

get_operation_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
set_transfer_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
get_transfer_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
set_transaction_done()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
get_transaction_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
execute_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
execute_transfer() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
get_stream_ready() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
print()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
destruct_transaction() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 9
VHDL Slave BFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Slave BFM Protocol Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Slave Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Slave BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Slave Assertions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
VHDL Slave BFM API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
create_slave_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
set_data(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
get_data()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
set_byte_type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
get_byte_type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
set_id()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
get_id() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
set_dest() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
get_dest()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
set_user_data()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
get_user_data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
set_valid_delay(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
get_valid_delay()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
set_ready_delay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
get_ready_delay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
set_operation_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
get_operation_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
set_transfer_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
get_transfer_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
set_transaction_done()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
get_transaction_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
get_packet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
execute_stream_ready()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
print()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
destruct_transaction() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



Table of Contents

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 7
January 2016

Chapter 10
VHDL Monitor BFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Inline Monitor Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Monitor BFM Protocol Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Monitor Timing and Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Monitor BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Monitor Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
VHDL Monitor BFM API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

set_config() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
get_config(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
create_monitor_transaction()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
get_data()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
get_byte_type() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
get_id() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
get_dest()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
get_user_data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
get_valid_delay()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
get_ready_delay() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
get_operation_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
get_transfer_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
get_transaction_done() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
get_packet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
get_transfer(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
print()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
destruct_transaction() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
wait_on() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Chapter 11
VHDL Tutorials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Verifying a Slave DUT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Master BFM Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Verifying a Master DUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Slave BFM Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Chapter 12
Getting Started with Qsys and the BFMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Setting Up a Simulation from a UNIX Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Setting Up Simulation from the Windows GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Running the Qsys Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Running a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 13
Assertions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Appendix A
SystemVerilog Master and Slave Test Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

SystemVerilog Master Test Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
SystemVerilog Slave Test Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Table of Contents

8
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

Appendix B
VHDL Master and Slave Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

VHDL Master BFM Code Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
VHDL Slave BFM Code Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Third-party Software for Mentor Verification IP Altera Edition

End-User License Agreement



9
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

List of Examples

Example 2-1. BFM Test Program Set Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Example 2-2. BFM Test Program Get Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Example 2-3. Transaction Record Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Example 2-4. Master BFM Test Program Transaction Creation . . . . . . . . . . . . . . . . . . . . . . 24
Example 2-5. Slave BFM Test Program Transaction Creation . . . . . . . . . . . . . . . . . . . . . . . 24
Example 2-6. Master Test Program Transaction Execution  . . . . . . . . . . . . . . . . . . . . . . . . . 24
Example 2-7. Test Program Wait for Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Example 2-8. Slave Test Program get_transfer() Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Example 2-9. Master Test Program set_byte_type() Task. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Example 2-10. Slave Test Program get_byte_type() Task  . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Example 2-11. Master Test Program operation_mode() Task. . . . . . . . . . . . . . . . . . . . . . . . 27
Example 2-12. Slave Test Program ready_delay() Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Example 3-1. Master BFM Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Example 3-2. Master BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Example 3-3. Master BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . . . 32
Example 4-1. Slave BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Example 4-2. Slave BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Example 4-3. Slave BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . . . . 44
Example 5-1. Monitor BFM Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Example 5-2. Monitor BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Example 5-3. Monitor BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . . 57
Example 6-1. Definition and Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Example 6-2. Master Transaction Creation and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Example 6-3. Master Transfer Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Example 6-4. m_insert_wait  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Example 6-5. ready_delay(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Example 6-6. Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Example 6-7. Transfer Receiving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Example 7-1. BFM Test Program Set Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Example 7-2. BFM Test Program Get Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Example 7-3. Transaction Record Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Example 7-4. Master BFM Test Program Transaction Creation . . . . . . . . . . . . . . . . . . . . . . 79
Example 7-5. Slave BFM Test Program Transaction Creation . . . . . . . . . . . . . . . . . . . . . . . 79
Example 7-6. Master Test Program Transaction Execution  . . . . . . . . . . . . . . . . . . . . . . . . . 79
Example 7-7. Test Program Wait for Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Example 7-8. Slave Test Program get_packet() Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Example 7-9. Master Test Program set_byte_type() Procedure  . . . . . . . . . . . . . . . . . . . . . . 81
Example 7-10. Slave Test Program get_byte_type() Procedure . . . . . . . . . . . . . . . . . . . . . . 81
Example 7-11. Master Test Program set_operation_mode() Procedure . . . . . . . . . . . . . . . . 82
Example 7-12. Slave Test Program ready_delay() Procedure . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Examples

10
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

Example 8-1. Master BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Example 8-2. Master BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . . . 88
Example 9-1. Slave BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Example 9-2. Slave BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . . . . 124
Example 10-1. Monitor BFM Disable All Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Example 10-2. Monitor BFM Individual Assertion Enable/Disable . . . . . . . . . . . . . . . . . . . 158
Example 11-1. Definition and Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Example 11-2. Master Transaction Creation and Execution . . . . . . . . . . . . . . . . . . . . . . . . . 181
Example 11-3. Master Transfer Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Example 11-4. m_insert_wait  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Example 11-5. ready_delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Example 11-6. Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Example 11-7. Transfer Receiving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 11
January 2016

List of Figures

Figure 1-1. Master BFM Test Program Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 1-2. Slave BFM Test Program Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2-1. SystemVerilog BFM Internal Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5-1. Inline Monitor Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 6-1. Slave DUT Top-Level Test Bench Environment . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 6-2. Master DUT Top-Level Test Bench Environment . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 7-1. VHDL BFM Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 10-1. Inline Monitor Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 11-1. Slave DUT Top-Level Test Bench Environment . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 11-2. Master DUT Top-Level Test Bench Environment . . . . . . . . . . . . . . . . . . . . . . 183
Figure 12-1. Copy qsys-examples from the Installation Folder. . . . . . . . . . . . . . . . . . . . . . . 189
Figure 12-2. Paste qsys-examples from Installation to Work Folder  . . . . . . . . . . . . . . . . . . 190
Figure 12-3. Select Qsys from the Quartus II Software Top-Level Menu  . . . . . . . . . . . . . . 191
Figure 12-4. Open the ex1_back_to_back_sv.qsys Example . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 12-5. Quartus II Software Displays the Connectivity of the Example . . . . . . . . . . . . 192
Figure 12-6. Qsys Generation Window Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 12-7. Select the Work Directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



12
January 2016

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c

List of Tables

Table 1. Simulator GCC Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2-1. Transaction Record Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3-1. Master BFM Signal Width Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 3-2. Master BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 4-1. Slave BFM Signal Width Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 4-2. Slave BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 5-1. Monitor BFM Signal Width Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 5-2. Monitor BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 7-1. Transaction Record Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 8-1. Master BFM Signal Width Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 8-2. Master BFM Configuration   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 9-1. Slave BFM Signal Width Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 9-2. Slave BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 10-1. Monitor BFM Signal Width Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 10-2. Monitor BFM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 12-1. SystemVerilog README Files and Script Names for all Simulators  . . . . . . . 194
Table 13-1. AXI4-Stream Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 13
January 2016

Preface

About This User Guide
This user guide describes the application interface (API) of the Mentor® Verification IP (VIP) 
Altera® Edition (AE) and how it conforms to the AMBA® 4 AXI4-Stream Protocol 
Specification, Version 1.0, Issue A (ARM IHI 0051A). 

AMBA AXI4-Stream Protocol Specification
The Mentor VIP AE conforms to the AMBA 4 AXI4-Stream Protocol Specification, Version 1.0, 
Issue A (ARM IHI 0051A). This user guide refers to this specification as the “AMBA 
AXI4-Stream Protocol Specification.” 

Mentor VIP AE License Requirements
Note
A license is required to access the Mentor Graphics VIP AE bus functional models and 
inline monitor.

• To access the Mentor Graphics VIP AE and upgrade to the Quartus II Subscription 
Edition software, Version 15.1, from a previous version, you must regenerate your 
license file.

• To access the Mentor VIP AE with the Quartus II Web Edition software, you must 
upgrade to Version 15.1 and purchase a Mentor VIP AE seat license by contacting your 
Altera sales representative.

You can generate and manage license files for Altera software and IP products by visiting the 
Self-Service Licensing Center of the Altera website.

Supported Simulators
Mentor VIP AE supports the following simulators: 

• Mentor Graphics Questa SIM and ModelSim 10.4d

• Synopsys® VCS® and VCS-MX 2015.09 on Linux

• Cadence® Incisive® Enterprise Simulator (IES) 15.10.010 on Linux



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c14

Preface
Simulator GCC Requirements

January 2016

Simulator GCC Requirements
Mentor VIP requires that the installation directory of the simulator includes the GCC libraries 
shown in Table 1. If the installation of the GCC libraries was an optional part of the simulator’s 
installation and the Mentor VIP does not find these libraries, an error message similar to the 
following appears:

ModelSim / Questa SIM
# ** Error: (vsim-8388) Could not find the MVC shared library : GCC not 
found in installation directory (/home/user/altera2/14.0/modelsim_ase) for 
platform "linux".  Please install GCC version "gcc-4.7.4-linux"

Table 1. Simulator GCC Requirements

Simulator Version GCC Version(s) Search Path

Mentor Questa SIM

10.4d 4.7.4 (Linux 32 bit) <install dir>/gcc-4.7.4-linux

4.7.4 (Linux 64 bit) <install dir>/gcc-4.7.4-linux_x86_64

4.2.1 (Windows 32 bit) <install dir>/gcc-4.2.1-mingw32vc9

Mentor ModelSim

10.4d 4.7.4 (Linux 32 bit) <install dir>/gcc-4.7.4-linux

4.7.4 (Linux 64 bit) <install dir>/gcc-4.7.4-linux_x86_64

4.2.1 (Windows 32 bit) <install dir>/gcc-4.2.1-mingw32vc9

Synopsys VCS/VCS-MX

2014.03-SP1 4.7.2 (Linux 32 bit) $VCS_HOME/gnu/linux/4.7.2_32-shared

or 2014.12 $VCS_HOME/gnu/4.7.2_32-shared

4.7.2 (Linux 64 bit) $VCS_HOME/gnu/linux/4.7.2_64-shared

$VCS_HOME/gnu/4.7.2_64-shared

Note:  If you set the environment variable VG_GNU_PACKAGE, then it is used instead of the 
VCS_HOME environment variable.

Cadence Incisive

13.20.002
or 14.10.014

4.4 (Linux 32/64 bit) <install dir>/tools/cdsgcc/gcc/4.4

Note:  Use the cds_tools.sh executable to find the Incisive installation. Ensure $PATH includes the 
installation path and <install dir>/tools/cdsgcc/gcc/4.4/install/bin. Also, ensure the 
LD_LIBRARY_PATH includes <install dir>/tools/cdsgcc/gcc/4.4/install/lib.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 15
January 2016

Chapter 1
Mentor VIP Altera Edition

The Mentor VIP AE provides bus functional models (BFMs) to simulate the behavior and to 
facilitate the verification of the IP. The Mentor VIP AE includes the following interfaces:

• AXI3 with master, slave, and inline monitor BFMs

• AXI4 with master, slave, and inline monitor BFMs

• AXI4-Lite with master, slave, and inline monitor BFMs

• AXI4-Stream with master, slave, and inline monitor BFMs

This user guide covers the AXI4-Stream BFMs only. Refer to the Mentor Verification IP Altera 
Edition AXI3/AXI4 User Guide for details of the AXI3 and AXI4 BFMs, and the Mentor 
Verification IP Altera Edition AXI4-Lite User Guide for details of the AXI4-Lite BFMs.

Advantages of Using BFMs and Monitors
Using the Mentor VIP AE has the following advantages:

• Accelerates the verification process by providing key verification test bench 
components

• Provides BFM components that implement the AMBA 4 AXI4-Stream Protocol 
Specification, which serves as a reference for the protocol

• Provides a full suite of configurable assertion checking within each BFM

Implementation of BFMs
The Mentor VIP AE BFMs, master, slave, and inline monitor components are implemented in 
SystemVerilog. Also included are wrapper components so that you can use the BFMs in VHDL 
verification environments with simulators that support mixed-language simulation. 

The Mentor VIP AE provides a set of APIs for each BFM that you can use to construct, 
instantiate, control, and query signals in all BFM components. Your test programs must use 
only these public access methods and events to communicate with each BFM. To ensure 
support in current and future releases, your test programs must use the standard set of APIs to 
interface with the BFMs. Nonstandard APIs and user-generated interfaces may not be supported 
in future releases. 



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c16

Mentor VIP Altera Edition
What Is a Transaction?

January 2016

The test program drives the stimulus to the DUT and determines whether the behavior of the 
DUT is correct by analyzing the responses. The BFMs translate the test program stimuli 
(transactions), creating the signaling for the AMBA 4 AXI4-Stream Protocol Specification. The 
BFMs also check for protocol compliance by firing an assertion when a protocol error is 
observed.

What Is a Transaction?
A transaction for Mentor VIP AE represents an instance of information that is transferred 
between a master and a slave peripheral, and that it adheres to the protocol used to transfer the 
information. For example, a master transaction can communicate a data stream packet 
consisting of a number of transfers to a slave DUT. A subsequent data stream packet requires a 
new and unique transaction.

Each transaction has a dynamic Transaction Record that exists for the life of the transaction. 
The life of a transaction record starts when it is created, and ends when the transaction 
completes. The transaction record is automatically discarded when the transaction ends. 

When created, a transaction contains transaction fields that you set to define two transaction 
aspects: 

• Protocol fields are transferred over the protocol signals 

• Operation fields determine how the information is transferred, and when the transaction 
is complete 

For example, a master transaction record holds a byte definition in the byte_type protocol field, 
the value of this field is transferred over the TKEEP and TSTRB protocol signals. A master 
transaction also has a transaction_done operation field that indicates when the transaction is 
complete; this operation field is not transferred over the protocol signals. These two types of 
transaction fields, protocol and operation, establish a dynamic record during the life of the 
transaction.

In addition to transaction fields, you specify arguments to tasks, functions, and procedures that 
permit you to create, set, and get the dynamic transaction record during the lifetime of a 
transaction. Each BFM has an API that controls how you access the transaction record. How 
you access the record also depends on the source code language, whether it is VHDL or 
SystemVerilog. Methods for accessing transactions based on the language you use are 
explained in detail in the relevant chapters of this user guide.



Mentor VIP Altera Edition
AXI4-Stream Transactions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 17
January 2016

AXI4-Stream Transactions
A complete transaction communicates information between a master and a slave. Transaction 
fields, described in the previous section, What Is a Transaction?, determine what is transferred 
and how information is transferred. During the lifetime of a transaction, the roles of the master 
and slave ensure that a transaction completes successfully, and that transferred information 
adheres to the protocol specification. Information flows from the master to the slave during a 
transaction, with the master initiating the transaction.

The AXI4-Stream protocol has a single channel to transfer protocol information. It has a pair of 
handshake signals, TVALID and TREADY, that indicate valid information on the channel, and 
the acceptance of the information from the channel.

Master BFM and Slave BFM Roles
Note
The following description of a master transaction references SystemVerilog BFM API 
tasks. There are equivalent VHDL BFM API procedures that perform the same 
functionality.

For a master transaction, the master calls the create_master_transaction() task to define the 
information to be transferred, and then calls the execute_transaction() task to initiate the 
communication of information, as shown in Figure 1-1.

Figure 1-1. Master BFM Test Program Role

The execute_transaction() task results in the master calling the execute_transfer() task a 
multiple number of times, equal to the number of transfers in the transaction.

The slave also creates a transaction by calling the create_slave_transaction() task to accept the 
transfer of information from the master. The transfer is received by the slave calling the 
get_transfer() task, as shown in Figure 1-2.

execute_transaction(t) – Master

execute_transfer() – Master

Master BFM
+

Test program
Slave DUTTransfer Transfer TransferTransfer



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c18

Mentor VIP Altera Edition
AXI4-Stream Transactions

January 2016

Figure 1-2. Slave BFM Test Program Role

The slave can cause back-pressure to the master using the execute_stream_ready() task to set 
the TREADY protocol signal to “0” to inhibit subsequent “transfers” from the master.

execute_stream_ready() – Slave

Master 
DUT

Slave BFM
+

Test
Program

Transfer Transfer TransferTransfer

get_transfer() – Slave



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 19
January 2016

Chapter 2
SystemVerilog API Overview

This section provides the functional description of the SystemVerilog (SV) API for all the BFM 
(master, slave, and monitor) components. For each BFM, you can configure the protocol 
transaction fields that are executed on the protocol signals, as well as control the operational 
transaction fields that set delay and timeout values.

In addition, each BFM API has tasks that wait for certain events to occur on the system clock 
and reset signals, and tasks to get and set information about a particular transaction.

Figure 2-1. SystemVerilog BFM Internal Structure

Test Program SystemVerilog 

Notes: 1. Refer to create_*_transaction() 
  2. Refer to execute_transaction() 
  3. Refer to set*() 

SystemVerilog BFM API

Configuration
Creating 
Transaction 

Waiting Events

Executing
Transaction 

Access
Transaction

create_*_transaction1 

set_config/get_config

get_packet/get_transfer
wait_on3

Rx_Transaction  
queuequeue

Tx_Transaction  
Configuration 

Wire level

get*/set*

execute_transaction/execute_transfer2

SystemVerilog interface 



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c20

SystemVerilog API Overview
Configuration

January 2016

Configuration
Configuration sets timeout delays, error reporting, and other attributes of the BFM.

Each BFM has a set_config() function that sets the configuration of the BFM. Refer to the 
individual BFM APIs for details.

Each BFM also has a get_config() function that returns the configuration of the BFM. Refer to 
the individual BFM APIs for details.

set_config() 
Example 2-1 shows how to set the burst timeout factor to 1000 for a transaction in the master 
BFM test program. 

Example 2-1. BFM Test Program Set Configuration

// Setting the burst timeout factor to 1000 
master_bfm.set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000);

get_config()
Example 2-2 shows how to get the signal hold time in the master BFM test program.

Example 2-2. BFM Test Program Get Configuration

// Getting hold time value
hold_time = master_bfm.get_config(AXI4STREAM_CONFIG_HOLD_TIME);

Creating Transactions
To transfer information between a master BFM and slave DUT over the protocol signals, you 
must create a transaction in the master test program. Similarly, to transfer information between 
a master DUT and a slave BFM, you must create a transaction in the slave test program. To 
monitor the transfer of information using a monitor BFM, you must create a transaction in the 
monitor test program.

When you create a transaction, a Transaction Record is created and exists for the life of the 
transaction. This transaction record can be accessed by the BFM test programs during the life of 
the transaction as it transfers information between the master and slave.



SystemVerilog API Overview
Creating Transactions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 21
January 2016

Transaction Record
The transaction record contains two types of transaction fields, protocol and operational, that 
either transfer information over the protocol signals, or define how and when a transfer occurs, 
respectively. 

Protocol fields contain transaction information that is transferred over the protocol signals. For 
example, the id field is transferred over the TID protocol signals during a transaction to identify 
a data stream.

Operational fields define how and when the transaction is transferred. Their content is not 
transferred over protocol signals. For example, the operation_mode field controls the 
blocking/nonblocking operation of a transaction, but this information is not transferred over the 
protocol signals.

Transaction Definition
The transaction record exists as a SystemVerilog class definition in each BFM. Example 2-3 
shows the definition of the axi4stream_transaction class members that form the transaction 
record.

Example 2-3. Transaction Record Definition

// Global Transaction Class
class axi4stream_transaction;
    // Protocol 
    byte unsigned data[];
    axi4stream_byte_type_e byte_type[];
    bit [((`MAX_AXI4_ID_WIDTH) - 1):0]  id;
    bit [((`MAX_AXI4_DEST_WIDTH) - 1):0]  dest;
    bit [((`MAX_AXI4_USER_WIDTH) - 1):0] user_data [];
    int valid_delay[];
    int ready_delay[];

    // Housekeeping
    axi4stream_operation_mode_e

operation_mode  = AXI4STREAM_TRANSACTION_BLOCKING;
    bit transfer_done[];
    bit transaction_done;

...

endclass

Note
The axi4stream_transaction class code above is shown for information only. Access to 
each transaction record during its life is performed by various set*() and get*() tasks 
described later in this chapter.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c22

SystemVerilog API Overview
Creating Transactions

January 2016

The contents of the transaction record is detailed in Table 2-1.

Table 2-1. Transaction Record Fields

Transaction Field Description

Protocol Transaction Fields

data An unsized array of bytes to hold the data of an AXI4-Stream 
packet. The field content is transferred over the TDATA protocol 
signals during a transaction.

byte_type An unsized array to hold the enumerated type of each data byte 
within an AXI4-Stream packet. The field content is transferred 
over the TSTRB and TKEEP protocol signals during a 
transaction. The following are types of byte:

AXI4STREAM_DATA_BYTE
AXI4STREAM_NULL_BYTE
AXI4STREAM_POS_BYTE
AXI4STREAM_ILLEGAL_BYTE

id A bit vector (of length equal to the TID protocol signal bus 
width) to hold the data stream identifier of the data packet. The 
field content is transferred over the TID protocol signals during a 
transaction.

dest A bit vector (of length equal to the TDEST protocol signal bus 
width) to hold the routing information for the data stream packet. 
The field content is transferred over the TDEST protocol signals 
during a transaction.

user_data An unsized bit vector (of length equal to the TUSER protocol 
signal bus width) to hold the user-defined sideband information. 
The field content is transferred over the TUSER protocol signals 
during a transaction.

Operational Transaction Fields

valid_delay An unsized array of integers to hold the delay value of the 
TVALID protocol signal (measured in ACLK cycles) for each 
transfer within a packet. The field content is not transferred over 
the protocol signals during a transaction. 

ready_delay An unsized array of integers to hold the delay value of the 
TREADY protocol signal (measured in ACLK cycles) for each 
transfer within a packet. The field content is not transferred over 
the protocol signals during a transaction.



SystemVerilog API Overview
Creating Transactions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 23
January 2016

The SystemVerilog Master BFM API allows you to create a master transaction by providing 
only an optional burst_length argument to indicate the number of transfers within a packet. All 
other protocol transaction fields automatically default to legal protocol values to create a master 
transaction record. Refer to create_master_transaction() for default protocol transaction field 
values.

The SystemVerilog Slave BFM API allows you to create a slave transaction with no arguments. 
All protocol transaction fields automatically default to legal protocol values to create a slave 
transaction record. Refer to create_slave_transaction() for default protocol transaction field 
values.

The SystemVerilog Monitor BFM API allows you to create a monitor transaction with no 
arguments. All protocol transaction fields automatically default to legal protocol values to 
create a complete monitor transaction record. Refer to create_monitor_transaction() for default 
protocol transaction field values.

Note
If you change the default value of a protocol transaction field, it is valid for all future 
transactions until you set a new value.

create_*_transaction()
The create_master_transaction(), create_slave_transaction() and create_monitor_transaction() 
BFM API functions create a master, a slave, and a monitor transaction, respectively.

Example 2-4 shows a master BFM test program creating a master transaction with a packet 
length of 10 transfers.

operation_mode An enumeration to hold the operation mode of the transaction. 
The following are two types of operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING
AXI4STREAM_TRANSACTION_BLOCKING

The field content is not transferred over the AXI4-Stream 
protocol signals during a transaction.

transfer_done An unsized bit array to hold the done flag for each transfer within 
a packet. The field content is not transferred over the protocol 
signals during a transaction.

transaction_done A bit to hold the done flag for a complete transaction. The field 
content is not transferred over the protocol signals during a 
transaction.

Table 2-1. Transaction Record Fields (cont.)

Transaction Field Description



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c24

SystemVerilog API Overview
Executing Transactions

January 2016

Example 2-4. Master BFM Test Program Transaction Creation

// Define a variable trans of type axi4stream_transaction to hold
// master transaction record
axi4stream_transaction trans;

...

// Create master transaction with 10 transfers
trans = bfm.create_master_transaction(10);

Example 2-5 shows a slave BFM test program creating a slave transaction.

Example 2-5. Slave BFM Test Program Transaction Creation

// Define a variable trans of type axi4stream_transaction to hold
// slave transaction record
axi4stream_transaction trans;

...

// Create a slave transaction
trans = bfm.create_slave_transaction();

Executing Transactions
Executing a transaction in a master/slave BFM test program initiates the transaction onto the 
protocol signals. Each master/slave BFM API has execution tasks that push transactions into the 
BFM internal transaction queues. Figure 2-1 on page 19 illustrates the internal BFM structure.

execute_transaction()
If the DUT is a slave, then the execute_transaction() task is called in the master BFM test 
program. Example 2-6 shows a master test program executing a master transaction.

Example 2-6. Master Test Program Transaction Execution

// Define a variable trans of type axi4stream_transaction to hold the
// master transaction record.
axi4stream_transaction trans;

...

// Create a master transaction with 10 transfers.
trans = bfm.create_master_transaction(10);

...

// By default the execution of a transaction will block.
bfm.execute_transaction(trans);



SystemVerilog API Overview
Waiting Events

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 25
January 2016

Waiting Events
Each BFM API has tasks that block the test program code execution until an event has occurred.

The wait_on() task blocks the test program execution until an ACLK or ARESETn signal event 
has occurred before proceeding.

The get_packet(), get_transfer() tasks block the test program code execution until a complete 
stream packet, or transfer, has occurred.

wait_on()
Example 2-7 shows a BFM test program waiting for the positive edge of the ARESETn signal.

Example 2-7. Test Program Wait for Event

// Block test program execution until the positive edge of the
// ARESETn signal.
bfm.wait_on(AXI4STREAM_RESET_POSEDGE);

get_packet(), get_transfer()
Example 2-8 shows a slave BFM test program using the get_transfer() task to block until it has 
received a data stream transfer.

Example 2-8. Slave Test Program get_transfer() Task

// Create a slave transaction.
trans = bfm.create_slave_transaction();

...

// Wait for a data stream transfer to occur.
bfm.get_transfer(trans, 0, last);

Access Transaction Record
Each BFM API has tasks that can access a complete or partially complete Transaction Record. 
The set*() and get*() tasks are used in a test program to set and get information from the 
transaction record.

Note
The set*() and get*() tasks are not explicitly detailed within each BFM API chapter. The 
simple rule for the task name is set_ or get_ followed by the name of the transaction field 
to be accessed. Refer to “Transaction Record Fields” on page 22 for transaction field 
name details.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c26

SystemVerilog API Overview
Operational Transaction Fields

January 2016

set*()
Example 2-9 shows the master test program calling the set_byte_type() task to set the first data 
byte_type in the transaction.

Example 2-9. Master Test Program set_byte_type() Task

trans.set_byte_type(AXI4STREAM_DATA_BYTE, 0);

get*()
Example 2-10 shows the slave test program calling the get_byte_type() task to get the first data 
byte_type in the transaction.

Example 2-10. Slave Test Program get_byte_type() Task

// Define a variable of type axi4stream_byte_type_e to hold the byte
// type of the data stream byte.
axi4stream_byte_type_e slave_byte_type;

...

// Create a slave transaction.
trans = bfm.create_slave_transaction();

...

// Wait for a data stream transfer to occur.
bfm.get_transfer(trans, 0, last);

...

// Get the byte_type for the first data byte of the data stream transfer
slave_byte_type = trans.get_byte_type(0);

Operational Transaction Fields
Operational transaction fields control the way in which a transaction is executed onto the 
protocol signals. These fields also indicate when an individual data transfer or transaction is 
complete.

Operation Mode
By default, each transaction performs a blocking operation, which prevents a following 
transaction from starting until the current active transaction completes.

You can configure this behavior to be nonblocking by setting the operation_mode transaction 
field to the enumerate type value AXI4STREAM_TRANSACTION_NON_BLOCKING 
instead of the default AXI4STREAM_TRANSACTION_BLOCKING.



SystemVerilog API Overview
Operational Transaction Fields

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 27
January 2016

Example 2-11 shows a master BFM test program creating a transaction by calling the 
create_master_transaction() task. Before executing the transaction, the operation_mode task is 
changed to nonblocking.

Example 2-11. Master Test Program operation_mode() Task

// Define a variable trans of type axi4stream_transaction to hold the
// master transaction record.
axi4stream_transaction trans;

// Create a master transaction to create a transaction record
trans = bfm.create_master_transaction(1);

// Change the operation_mode to be nonblocking in the transaction record
trans.operation_mode(AXI4STREAM_TRANSACTION_NON_BLOCKING);

Handshake Delay
You can configure the TVALID and TREADY handshake signals to insert a delay before their 
assertion.

TVALID Signal Delay Transaction Field
The Transaction Record contains a valid_delay transaction field to configure the delay of the 
TVALID signal. The setting of the valid_delay transaction field is performed in the master 
BFM test program by calling the set_valid_delay() task.

TREADY Signal Delay Transaction Field
The Transaction Record contains a ready_delay transaction field to configure the delay of the 
TREADY signal. The setting of the ready_delay transaction field is performed in the slave 
BFM test program by calling the local ready_delay() task.

Example 2-12 shows the slave BFM test program implementing a ready_delay() task that 
inserts a specified delay before the assertion of the TREADY signal.

Example 2-12. Slave Test Program ready_delay() Task

// Task : ready_delay
// This is used to set ready delay to extend the transfer
task ready_delay();

// Making TREADY '0'. This will consume one cycle.
bfm.execute_stream_ready(0);
// Two clock cycle wait. In total 3 clock wait.
repeat(2) bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);
// Making TREADY '1'.
bfm.execute_stream_ready(1);

endtask



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c28

SystemVerilog API Overview
Operational Transaction Fields

January 2016

Transfer Done
A transfer_done transaction field is set to 1 to indicate when each protocol “transfer” 
completes.

Transaction Done
A transaction_done transaction field is set to 1 to indicate when each protocol “transaction” 
completes.

In a slave BFM test program, you call the get_transfer() task to investigate whether a 
transaction is complete. If complete, the task returns the last argument of the task set to 1, and 
the transaction record will have the transaction_done field set to 1.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 29
January 2016

Chapter 3
SystemVerilog Master BFM

This section provides information about the SystemVerilog master BFM. It has an API that 
contains tasks and functions to configure the BFM and to access the dynamic Transaction 
Record during the life of the transaction.

Master BFM Protocol Support
The master BFM supports the full AMBA AXI4-Stream protocol.

Master Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can use to reference details of the 
following master BFM API timing and events.

The AMBA AXI4-Stream Protocol Specification does not define any timescale or clock period 
with signal events sampled and driven at rising ACLK edges. Therefore, the master BFM does 
not contain any timescale, timeunit, or timeprecision declarations. The signal setup and hold 
times are specified in units of simulator time-steps.

The simulator time-step resolves to the smallest of all the time-precision declarations in the test 
bench and design IP as a result of these directives, declarations, options, or initialization files:

• ` timescale directives in design elements

• Timeprecision declarations in design elements

• Compiler command-line options

• Simulation command-line options

• Local, or site-wide, simulator initialization files

If there is no timescale directive, the default time unit and time precision are tool specific. The 
recommended practice is to use timeunit and timeprecision declarations. For details, refer to 
Section 3.14, “System Time Units and Precision,” of the IEEE Standard for SystemVerilog—
Unified Hardware Design, Specification, and Verification Language, IEEE Std 1800™-2012 , 
February 21, 2013. This user guide refers to this document as the IEEE Standard for 
SystemVerilog.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c30

SystemVerilog Master BFM
Master BFM Configuration

January 2016

Master BFM Configuration
A master BFM supports the full range of signals defined for the AMBA AXI4-Stream Protocol 
Specification. It has parameters that you use to configure the widths of the data and ID signals, 
and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signals widths from their default settings by assigning them 
new values, usually in the top-level module of the test bench. These new values are then passed 
into the master BFM using a parameter port list of the master BFM module. Example 3-1 shows 
the master BFM with the data and ID signal widths defined in module top() and passed in to the 
master BFM mgc_axi4stream_master parameter port list.

Example 3-1. Master BFM Configuration

module top ();

parameter AXI4STREAM_ID_WIDTH = 18;
parameter AXI4STREAM_USER_WIDTH = 4;
parameter AXI4STREAM_DEST_WIDTH = 4;
parameter AXI4STREAM_DATA_WIDTH = 32;

mgc_axi4stream_master #(AXI4STREAM_ID_WIDTH, AXI4STREAM_USER_WIDTH, 
AXI4STREAM_DEST_WIDTH, AXI4STREAM_DATA_WIDTH) bfm_master(....);

Note
In the above code extract, the mgc_axi4stream_master is the master BFM interface.

Table 3-1 lists the parameter names for the data and ID signals, and their default values.

Table 3-1. Master BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.



SystemVerilog Master BFM
Master BFM Configuration

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 31
January 2016

A master BFM has configuration fields that you set by calling the set_config() function to 
configure timeout factors, setup and hold times, and so on. You get the value of a configuration 
field using the get_config() function. Table 3-2 describes the full list of configuration fields.

1. Refer to Master Timing and Events for details of simulator time-steps.

Table 3-2. Master BFM Configuration

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay permitted 
between the individual transfer 
transactions in clock cycles. 
Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of 
TVALID to the assertion of 
TREADY. Default: 10000.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. 
Refer to the Master Assertions 
chapter for details
0 = disabled
1 = enabled (default)



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c32

SystemVerilog Master BFM
Master Assertions

January 2016

Master Assertions
The master BFM performs protocol error checking using built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

By default, all built-in assertions are enabled in the master BFM. To globally disable them in the 
master BFM, use the set_config() command as shown in Example 3-2.

Example 3-2. Master BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS,0)

Alternatively, you can disable individual built-in assertions by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 3-3 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Example 3-3. Master BFM Individual Assertion Enable/Disable

// Define a local bit vector to hold the value of the assertion bit vector
bit [255:0] config_assert_bitvector;

// Get the current value of the assertion bit vector
config_assert_bitvector = 
bfm.get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION);

// Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector[AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY] = 0;

// Set the new value of the assertion bit vector
bfm.set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, 
config_assert_bitvector);

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with 
the AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 3-3 and assign the assertion enable within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of AXI4-Stream assertions, refer to “Assertions” on page 203.



SystemVerilog Master BFM
SystemVerilog Master API

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 33
January 2016

SystemVerilog Master API
This section describes the SystemVerilog master BFM API.

Each task and function available within the master BFM API is detailed with the exception of 
the set*() and get*() tasks that operate on the Transaction Record. The simple rule for the task 
name is set_ or get_ followed by the name of the transaction field to be accessed. Refer to 
“Transaction Record” on page 21 for details of transaction field names.

Note
The master BFM API is the axi4stream/bfm//mgc_axi4stream_master.sv file packaged 
within the Mentor Verification IP Altera Edition.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c34

SystemVerilog Master BFM
set_config()

January 2016

set_config()
This function sets the configuration of the master BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000);

Prototype function void set_config
(

input axi4stream_config_e config_name,
input axi4stream_max_bits_t config_val

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val See “Master BFM Configuration” on page 30 for more details.

 Returns  None



SystemVerilog Master BFM
get_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 35
January 2016

get_config()
This function gets the configuration of the master BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR);

Prototype function axi4stream_max_bits_t get_config
(

input axi4stream_config_e config_name,
);

Arguments  config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

Returns config_val See “Master BFM Configuration” on page 30 for more details.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c36

SystemVerilog Master BFM
create_master_transaction()

January 2016

create_master_transaction()
This nonblocking function creates a master transaction with an optional burst_length argument. 
All other transaction fields default to legal protocol values, unless previously assigned a value. 
It returns with the axi4stream_transaction record.

Example
// Create a master transaction with a data burst length of 3.
trans = bfm.create_write_transaction(3);
trans.set_data[0] = 'hACE0ACE1;
trans.set_data[1] = 'hACE2ACE3;
trans.set_data[2] = 'hACE4ACE5;

Prototype function automatic axi4stream_transaction 
create_master_transaction
(

input int burst_length = 1 // optional
);

Arguments burst_length (Optional) Number of transfers within a packet. Default: 1.

Protocol
Transaction 
Fields

data Data array in bytes.
byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.
dest Destination routing information.
user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction.
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction.
(default = 0).

transfer_done Transfer done flag array for this transaction
transaction_
done

Transaction done flag for this transaction

Returns trans The axi4stream_transaction record.



SystemVerilog Master BFM
execute_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 37
January 2016

execute_transaction()
This task executes a master transaction previously created by the create_master_transaction() 
function. The transaction may be blocking (default) or nonblocking, as defined by the 
transaction record operation_mode field.

It calls the execute_transfer() task for each transfer within a packet, with the number of transfers 
defined by the transaction burst_length field.

Example
// Declare a local variable trans to hold the transaction record.
axi4stream_transaction trans;

// Create a master transaction with a transfer count of 3 and assign
// it to the local trans variable.
trans = bfm.create_master_transaction(3);

....

// Execute the trans transaction. 
bfm.execute_transaction(trans);

Prototype task automatic execute_transaction
(

axi4stream_transaction trans
)

Arguments trans The axi4stream_transaction record.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c38

SystemVerilog Master BFM
execute_transfer()

January 2016

execute_transfer()
This task executes a master transfer previously created by the create_master_transaction() 
function. This task may be blocking (default) or nonblocking, as defined by the transaction 
operation_mode field.

It sets the TVALID protocol signal at the appropriate time defined by the transaction 
valid_delay field, and sets the transfer_done array index element field to 1 when the transfer is 
complete.

If this is the last transfer of the transaction, then it sets the transaction_done field to 1 and 
returns the last argument set to 1 to indicate the whole transaction is complete.

Example
// Declare a local variable to hold the transaction record.
axi4stream_transaction trans;

// Create a master transaction with a transfer count of 3 and assign
// it to the local trans variable.
trans = bfm.create_master_transaction(3);

....

// Execute the first transfer of the trans transaction. 
bfm.execute_transfer(trans, 0, last);

// Execute the second transfer of the trans transaction0. 
bfm.execute_transfer(trans, 1, last);

Prototype task automatic execute_transfer
(

axi4stream_transaction trans,
int index = 0, // Optional
output bit last

);

Arguments trans The axi4stream_transaction record.

index (Optional) Transfer number.

Returns last



SystemVerilog Master BFM
get_stream_ready()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 39
January 2016

get_stream_ready()
This blocking task returns the value of the TREADY signal using the ready argument. It will 
block for one ACLK period.

Example
// Get the value of the TREADY signal
bfm.get_stream_ready(ready);

Prototype task automatic get_stream_ready
(

output bit ready
);

Arguments ready The value of the TREADY signal.

Returns ready



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c40

SystemVerilog Master BFM
wait_on()

January 2016

wait_on()
This blocking task waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE, 10);

Prototype task automatic wait_on
(

axi4stream_wait_e phase,
input int count = 1 //Optional

);

Arguments phase Wait for:

AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 41
January 2016

Chapter 4
SystemVerilog Slave BFM

This section provides information about the SystemVerilog slave BFM. It has an API that 
contains tasks and functions to configure the BFM and to access the dynamic Transaction 
Record during the lifetime of a transaction.

Slave BFM Protocol Support
The slave BFM supports the full AMBA AXI4-Stream protocol.

Slave Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can reference for details of the 
following slave BFM API timing and events.

The AMBA AXI4-Stream Protocol Specification does not define any timescale or clock period 
with signal events sampled and driven at rising ACLK edges. Therefore, the slave BFM does 
not contain any timescale, timeunit, or timeprecision declarations with the signal setup and hold 
times specified in units of simulator time-steps.

The simulator time-step resolves to the smallest of all the time-precision declarations in the test 
bench and design IP as a result of these directives, declarations, options, or initialization files:

• ` timescale directives in design elements

• Timeprecision declarations in design elements

• Compiler command-line options

• Simulation command-line options

• Local or site-wide simulator initialization files

If there is no timescale directive, the default time unit and time precision are tool specific. The 
recommended practice is to use timeunit and timeprecision declarations. Refer to the IEEE 
Standard for SystemVerilog, Section 3.14, for details.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c42

SystemVerilog Slave BFM
Slave BFM Configuration

January 2016

Slave BFM Configuration
The slave BFM supports the full range of signals defined for the AMBA AXI4-Stream Protocol 
Specification. It has parameters that you use to configure the widths of the data and ID signals, 
and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signal widths from their default settings by assigning them new 
values, usually in the top-level module of the test bench. These new values are then passed into 
the slave BFM using a parameter port list of the slave BFM module. Example 4-1 shows the 
slave BFM with the data and ID signal widths defined in module top() and passed in to the slave 
BFM mgc_axi4stream_slave parameter port list.

Example 4-1. Slave BFM Configuration

module top ();

parameter AXI4STREAM_ID_WIDTH = 18;
parameter AXI4STREAM_USER_WIDTH = 4;
parameter AXI4STREAM_DEST_WIDTH = 4;
parameter AXI4STREAM_DATA_WIDTH = 32;

mgc_axi4stream_slave #(AXI4STREAM_ID_WIDTH, AXI4STREAM_USER_WIDTH, 
AXI4STREAM_DEST_WIDTH, AXI4STREAM_DATA_WIDTH) bfm_slave(....);

Note
In the Example 4-1 code extract, the mgc_axi4stream_slave is the slave BFM interface.

Table 4-1 lists the parameter names for the data and ID signals and their default values.

Table 4-1. Slave BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.



SystemVerilog Slave BFM
Slave BFM Configuration

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 43
January 2016

A slave BFM has configuration fields that you can set using the set_config() function to 
configure timeout factors, setup and hold times, and so on. You can also get the value of a 
configuration field with the get_config() function. Table 4-2 lists the configuration fields.

1. Refer to Slave Timing and Events for details of simulator time-steps.

Table 4-2. Slave BFM Configuration  

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay permitted 
between the individual transfer 
transactions in clock cycles. 
Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of 
TVALID to the assertion of 
TREADY. Default: 10000.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. 
Refer to Slave Assertions for 
details
0 = disabled
1 = enabled (default)



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c44

SystemVerilog Slave BFM
Slave Assertions

January 2016

Slave Assertions
The slave BFM performs protocol error checking using built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

By default, all built-in assertions are enabled in the slave BFM. To globally disable them in the 
slave BFM, use the set_config() command as shown in Example 4-2.

Example 4-2. Slave BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS,0)

Alternatively, individual built-in assertions may be disabled by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 4-3 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Example 4-3. Slave BFM Individual Assertion Enable/Disable

// Define a local bit vector to hold the value of the assertion bit vector
bit [255:0] config_assert_bitvector;

// Get the current value of the assertion bit vector
config_assert_bitvector = 
bfm.get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION);

// Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector[AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY] = 0;

// Set the new value of the assertion bit vector
bfm.set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, 
config_assert_bitvector);

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with 
the AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 4-3 and assign the assertion within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of AXI4-Stream assertions, refer to “Assertions” on page 203.



SystemVerilog Slave BFM
SystemVerilog Slave API

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 45
January 2016

SystemVerilog Slave API
This section describes the SystemVerilog slave BFM API

Each task and function available within the slave BFM API is detailed with the exception of the 
set*() and get*() tasks that operate on the Transaction Record. The simple rule for the task name 
is set_ or get_ followed by the name of the transaction field to be accessed. Refer to 
“Transaction Record” on page 21 for details of transaction field names.

Note
The slave BFM API is the axi4stream/bfm//mgc_axi4stream_slave.sv file packaged 
within the Mentor Verification IP Altera Edition.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c46

SystemVerilog Slave BFM
set_config()

January 2016

set_config()
This function sets the configuration of the slave BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000);

Prototype function void set_config
(

input axi4stream_config_e config_name,
input axi4stream_max_bits_t config_val

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val See “Slave BFM Configuration” on page 42 for more details.

 Returns  None



SystemVerilog Slave BFM
get_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 47
January 2016

get_config()
This function gets the configuration of the slave BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR);

Prototype function axi4stream_max_bits_t get_config
(

input axi4stream_config_e config_name,
);

Arguments  config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

Returns config_val See “Slave BFM Configuration” on page 42 for more details.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c48

SystemVerilog Slave BFM
create_slave_transaction()

January 2016

create_slave_transaction()
This nonblocking function creates a slave transaction. All transaction fields default to legal 
protocol values unless previously assigned a value. It returns with the axi4stream_transaction 
record.

Example
// Create a slave transaction.
trans = bfm.create_slave_transaction();

Prototype function automatic axi4stream_transaction 
create_slave_transaction();

Protocol
Transaction 
Fields

burst_length (Optional) Number of transfers within a packet. Default: 1.
data Data array in bytes.
byte_type Byte type:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.
dest Destination routing information.
user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction.
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction.
(default = 0).

transfer_done Transfer done flag array for this transaction.
transaction_
done

Transaction done flag for this transaction.

Returns trans The axi4stream_transaction record.



SystemVerilog Slave BFM
get_transfer()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 49
January 2016

get_transfer()
This blocking task gets a slave transfer previously created by the create_slave_transaction() 
function, and identified by the optional index argument.

It sets the TREADY protocol signal at the appropriate time defined by the transaction 
ready_delay field, and sets the transfer_done array index element field to 1 when the transfer is 
complete.

If this is the last transfer of the transaction, then it sets the transaction_done field to 1 and 
returns the last argument set to 1 to indicate the whole transaction is complete.

Example
// Declare a local variable to hold the transaction record.
axi4stream_transaction trans;

// Create a slave transaction and assign it to the local
// trans variable.
trans = bfm.create_slave_transaction();

....

// Get the first transfer of the trans transaction.
bfm.get_transfer(trans, 0, last);

// Get the second transfer of the trans transaction.
bfm.get_transfer(trans, 1, last);

Prototype task automatic get_transfer
(

axi4stream_transaction trans,
int index = 0, // Optional
output bit last

);

Arguments trans The axi4stream_transaction record.

index (Optional) Transfer number.
last Flag to indicate the last transfer in the packet.

Returns last



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c50

SystemVerilog Slave BFM
execute_stream_ready()

January 2016

execute_stream_ready()
This task executes a slave ready by placing the state of the ready input argument onto the 
TREADY signal. This task may be blocking (default) or nonblocking, as defined by the optional 
non_blocking_mode input argument.

Example
// Assign TREADY = '0'. This will consume one cycle.
bfm.execute_stream_ready(0);

// Two clock cycle wait.
repeat(2) bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);

// Assign TREADY = '1'.
bfm.execute_stream_ready(1);

Prototype task automatic execute_stream_ready
(

input bit ready,
input bit non_blocking_mode = 0 // Optional

);

Arguments ready The value to be placed onto the TREADY signal.

non_blocking_mode (Optional) Controls the blocking or nonblocking mode of the 
task.

0 = blocking (default)
1 = nonblocking

Returns None



SystemVerilog Slave BFM
wait_on()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 51
January 2016

wait_on()
This blocking task waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE, 10);

Prototype task automatic wait_on
(

axi4stream_wait_e phase,
input int count = 1 //Optional

);

Arguments phase Wait for:
AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c52

SystemVerilog Slave BFM
wait_on()

January 2016



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 53
January 2016

Chapter 5
SystemVerilog Monitor BFM

This section provides information about the SystemVerilog monitor BFM. It has an API that 
contains tasks and functions to configure the BFM and to access the dynamic Transaction 
Record during the life of the transaction.

Inline Monitor Connection
The connection of a monitor BFM to a test environment differs from that of a master and slave 
BFM. It is wrapped within an inline monitor interface and connected inline between a master 
and slave, as shown in Figure 5-1. It has separate master and slave ports, and monitors protocol 
traffic between a master and slave. The monitor has access to all the facilities provided by the 
monitor BFM.

Figure 5-1. Inline Monitor Connection Diagram

Monitor BFM Protocol Support
The monitor BFM supports the full AMBA AXI4-Stream Protocol.

Monitor Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can reference for details of the 
following monitor BFM API timing and events.

The AMBA AXI4-Stream Specification does not define any timescale or clock period with 
signal events sampled and driven at rising ACLK edges. Therefore, the monitor BFM does not 

SlaveMaster

Inline monitor

Master portSlave port

Monitor



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c54

SystemVerilog Monitor BFM
Monitor BFM Configuration

January 2016

contain any timescale, timeunit, or timeprecision declarations with the signal setup and hold 
times specified in units of simulator time-steps.

The simulator time-step resolves to the smallest of all the time-precision declarations in the test 
bench and design IP as a result of these directives, declarations, options, or initialization files:

• ` timescale directives in design elements

• Timeprecision declarations in design elements

• Compiler command-line options

• Simulation command-line options

• Local, or site-wide, simulator initialization files

If there is no timescale directive, the default time unit and time precision are tool specific. The 
recommended practice is to use timeunit and timeprecision declarations. Refer to the IEEE 
Standard for SystemVerilog, Section 3.14, for details.

Monitor BFM Configuration
The monitor BFM supports the full range of signals defined for the AMBA AXI4-Stream 
Protocol Specification. It has parameters that you use to configure the widths of the data and ID 
signals, and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signals widths from their default settings by assigning them 
with new values, usually in the top-level module of the test bench. These new values are then 
passed into the monitor BFM using a parameter port list of the monitor BFM module. 
Example 5-1 shows the monitor BFM with the data and ID signal widths defined in module 
top() and passed in to the monitor BFM mgc_axi4stream_monitor parameter port list.

Example 5-1. Monitor BFM Configuration

module top ();

parameter AXI4STREAM_ID_WIDTH = 18;
parameter AXI4STREAM_USER_WIDTH = 4;
parameter AXI4STREAM_DEST_WIDTH = 4;
parameter AXI4STREAM_DATA_WIDTH = 32;

mgc_axi4stream_monitor #(AXI4STREAM_ID_WIDTH, AXI4STREAM_USER_WIDTH, 
AXI4STREAM_DEST_WIDTH, AXI4STREAM_DATA_WIDTH) bfm_monitor(....);

Note
In the above code extract, the mgc_axi4stream_monitor is the monitor BFM interface.



SystemVerilog Monitor BFM
Monitor BFM Configuration

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 55
January 2016

Table 5-1 describes the parameter names for the data and ID signals and their default values.

A monitor BFM has configuration fields that set with the set_config() function to configure 
timeout factors, setup and hold times, and so on. You get the value of a configuration field with 
the get_config() function. Table 5-2 describes the configuration fields.

Table 5-1. Monitor BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.

Table 5-2. Monitor BFM Configuration  

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay permitted 
between the individual transfer 
transactions in clock cycles. 
Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of 
TVALID to the assertion of 
TREADY. Default: 10000.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c56

SystemVerilog Monitor BFM
Monitor Assertions

January 2016

1. Refer to Monitor Timing and Events for details of simulator time-steps.

Monitor Assertions
The monitor BFM performs protocol error checking using built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

By default, all built-in assertions are enabled in the monitor BFM. To globally disable them in 
the monitor BFM, use the set_config() command as shown in Example 5-2.

Example 5-2. Monitor BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS,0)

Alternatively, you can disable individual built-in assertions by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 5-3 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. 
Refer to Monitor Assertions for 
details
0 = disabled
1 = enabled (default)

Table 5-2. Monitor BFM Configuration (cont.) 

Configuration Field Description



SystemVerilog Monitor BFM
SystemVerilog Monitor API

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 57
January 2016

Example 5-3. Monitor BFM Individual Assertion Enable/Disable

// Define a local bit vector to hold the value of the assertion bit vector
bit [255:0] config_assert_bitvector;

// Get the current value of the assertion bit vector
config_assert_bitvector = 
bfm.get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION);

// Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector[AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY] = 0;

// Set the new value of the assertion bit vector
bfm.set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, 
config_assert_bitvector);

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with 
the AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 5-3 and assign the assertion within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of AXI4-Stream assertions, refer to “Assertions” on page 203.

SystemVerilog Monitor API
This section describes the SystemVerilog monitor BFM API.

Each task and function available within the monitor BFM API is detailed with the exception of 
the set*() and get*() tasks that operate on the Transaction Record. The simple rule for the task 
name is set_ or get_ followed by the name of the transaction field to be accessed. Refer to 
“Transaction Record” on page 21 for details of transaction field names

Note
The monitor BFM API is the axi4stream/bfm//mgc_axi4stream_monitor.sv file packaged 
within the Mentor Verification IP Altera Edition.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c58

SystemVerilog Monitor BFM
set_config()

January 2016

set_config()
This function sets the configuration of the monitor BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000);

Prototype function void set_config
(

input axi4stream_config_e config_name,
input axi4stream_max_bits_t config_val

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val See “Monitor BFM Configuration” on page 54 for more details.

 Returns  None



SystemVerilog Monitor BFM
get_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 59
January 2016

get_config()
This function gets the configuration of the monitor BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR);

Prototype function axi4stream_max_bits_t get_config
(

input axi4stream_config_e config_name,
);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

Returns config_val See “Monitor BFM Configuration” on page 54 for more details.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c60

SystemVerilog Monitor BFM
create_monitor_transaction()

January 2016

create_monitor_transaction()
This nonblocking function creates a monitor transaction. All transaction fields default to legal 
protocol values, unless previously assigned a value. It returns with the axi4stream_transaction 
record.

Example
// Create a monitor transaction
trans = bfm.create_monitor_transaction();

Prototype function automatic axi4stream_transaction 
create_monitor_transaction();

Protocol
Transaction 
Fields

burst_length (Optional) Number of transfers within a packet. Default: 1.
data Data array in bytes.
byte_type Byte type:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.
dest Destination routing information.
user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction.
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction.
(default = 0).

transfer_done Transfer done flag array for this transaction
transaction_
done

Transaction done flag for this transaction

Returns trans The axi4stream_transaction record.



SystemVerilog Monitor BFM
get_packet()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 61
January 2016

get_packet()
This blocking task gets a monitor packet previously created by the 
create_monitor_transaction() function.

It calls the get_transfer() task for each transfer of the packet with the number of transfers 
defined by the transaction record burst_length field.

Example
// Declare a local variable to hold the transaction record.
axi4stream_transaction trans;

// Create a monitor transaction and assign it to the local
// trans variable.
trans = bfm.create_monitor_transaction();

....

// Get the packet of the trans transaction.
bfm.get_packet(trans);

Prototype task automatic get_packet
(

axi4stream_transaction trans
);

Arguments trans The axi4stream_transaction record.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c62

SystemVerilog Monitor BFM
get_transfer()

January 2016

get_transfer()
This blocking task gets a monitor transfer previously created by the 
create_monitor_transaction() function and identified by the optional index argument.

It sets the transfer_done array index element field to 1 when the transfer completes.

If this is the last transfer of the transaction, then it sets the transaction_done field to 1 and 
returns the last argument set to 1 to indicate the whole transaction is complete.

Example
// Declare a local variable to hold the transaction record.
axi4stream_transaction trans;

// Create a monitor transaction and assign it to the local
// trans variable.
trans = bfm.create_monitor_transaction();

....

// Get the first transfer of the trans transaction.
bfm.get_transfer(trans, 0, last);

// Get the second transfer of the trans transaction.
bfm.get_transfer(trans, 1, last);

Prototype task automatic get_transfer
(

axi4stream_transaction trans,
int index = 0, // Optional
output bit last

);

Arguments trans The axi4stream_transaction record.

index (Optional) Transfer number.
last Flag to indicate the last transfer in the packet.

Returns last



SystemVerilog Monitor BFM
get_stream_ready()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 63
January 2016

get_stream_ready()
This blocking task gets the state of the TREADY signal using the ready argument. It will block 
for one ACLK period.

Example
// Get the value of the TREADY signal
bfm.get_stream_ready(ready);

Prototype task automatic get_stream_ready
(

output bit ready
);

Arguments ready The value on the TREADY signal.

Returns ready



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c64

SystemVerilog Monitor BFM
wait_on()

January 2016

wait_on()
This blocking task waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE, 10);

Prototype task automatic wait_on
(

axi4stream_wait_e phase,
input int count = 1 //Optional

);

Arguments phase Wait for:

AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 65
January 2016

Chapter 6
SystemVerilog Tutorials

This chapter discusses how to use the Mentor VIP AE master and slave BFMs to verify slave 
and master DUT components, respectively.

In the Verifying a Slave DUT tutorial, the slave is verified using a master BFM and test 
program. In the Verifying a Master DUT tutorial, the master issues “transfers” that are verified 
using a slave BFM and test program.

Following this top-level discussion of how you verify a master and a slave component using the 
Mentor VIP AE is a brief example of how to run Qsys, the powerful system integration tool in 
Quartus® II software. This procedure shows you how to use Qsys to create a top-level DUT 
environment. For more details about this example, refer to “Getting Started with Qsys and the 
BFMs” on page 187.

Verifying a Slave DUT
A slave DUT component is connected to a master BFM at the signal level. A master test 
program written at the transaction level generates stimulus using the master BFM to verify the 
slave DUT. Figure 6-1 illustrates a typical top-level test bench environment.

Figure 6-1. Slave DUT Top-Level Test Bench Environment

A top-level file instantiates and connects all the components required to test and monitor the 
DUT, and controls the system clock (ACLK) and reset (ARESETn) signals.

Master
BFM

On-chip
RAM slave

Master
Test
program

Top-level file



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c66

SystemVerilog Tutorials
Verifying a Slave DUT

January 2016

Master BFM Test Program
A master BFM test program is capable of creating a wide range of stimulus scenarios to verify a 
slave DUT. For a complete code listing of this master test program, refer to “SystemVerilog 
Master Test Program” on page 207.

The master test program contains an Initial Block that creates and executes master transactions 
over the protocol signals. The following sections describe the main procedures and variables:

Initial Block
Within an initial block, the master test program defines a transaction variable trans of type 
axi4stream_transaction to hold a record of a transaction during its life, as shown in 
Example 6-1. The initial wait for the ARESETn signal to be deactivated, followed by a positive 
ACLK edge, satisfies the protocol requirement detailed in Section 2.7.2 of the AMBA 
AXI4-Stream Protocol Specification.

Example 6-1. Definition and Initialization

initial
begin
    axi4stream_transaction trans;    
    static int byte_count = AXI4_DATA_WIDTH/8;
    int transfer_count;
    bit last;
    /*******************
    ** Initialisation **
    *******************/
    bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
    bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);

An outer for loop increments the transfer_count on each iteration of the loop, as shown in 
Example 6-2. Calling the create_master_transaction() function creates a master transaction, 
passing in the optional transfer_count as an argument to the function. The created master 
transaction is then assigned to the transaction variable trans. The TID and TDEST signal values 
are then assigned for the data stream. Each iteration of the outer loop creates a master 
transaction with the transfer_count per transaction passed as an argument.

An inner for loop calls the trans.set_data() task to load a byte into the data transaction field, and 
calls the trans.set_byte_type() task to load the byte_type transaction field for the byte.

Calling the execute_transaction() task executes the trans transaction onto the protocol signals.



SystemVerilog Tutorials
Verifying a Slave DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 67
January 2016

Example 6-2. Master Transaction Creation and Execution

/************************
** Traffic generation: **
************************/    
// 10 x packet with 
// Number of transfer = i % 10. Values : 1, 2 .. 10 
// id = i % 15. Values 0, 1, 2 .. 14
// dest = i %20. Values 0, 1, 2 .. 19
for(int i = 0; i < 10; ++i)
begin

transfer_count = (i % 10) + 1;
trans = bfm.create_master_transaction(transfer_count);
trans.set_id = (i % 15);
trans.set_dest = (i % 20);
for(int j = 0; j < (transfer_count * byte_count); ++j)
begin

trans.set_data(i + j, j);
if(((i + j)% 5) == 0)
begin

trans.set_byte_type(AXI4STREAM_NULL_BYTE, j);
end
else if(((i + j)% 5) == 1)
begin

trans.set_byte_type(AXI4STREAM_POS_BYTE, j);
end
else
begin

trans.set_byte_type(AXI4STREAM_DATA_BYTE, j);
end

end
bfm.execute_transaction(trans);

end 

The master test program repeats the creation of master transactions similar to that shown in 
Example 6-2, but instead calls the execute_transfer() task per iteration of the inner for loop, as 
shown in Example 6-3.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c68

SystemVerilog Tutorials
Verifying a Slave DUT

January 2016

Example 6-3. Master Transfer Execution

// 10 x packet at transfer level with 
// Number of transfer = i % 10. Values : 1, 2 .. 10 
// id = i % 15. Values 0, 1, 2 .. 14
// dest = i %20. Values 0, 1, 2 .. 19
for(int i = 0; i < 10; ++i)
begin

transfer_count = (i % 10) + 1;
trans = bfm.create_master_transaction(transfer_count);
trans.set_id = (i % 15);
trans.set_dest = (i % 20);
for(int j = 0; j < transfer_count; j= j + byte_count)
begin

for(int k = j; k < byte_count; ++k)
begin

trans.set_data(k, k);
if(((i + j)% 5) == 0)
begin

trans.set_byte_type(AXI4STREAM_NULL_BYTE, k);
end
else if(((i + j)% 5) == 1)
begin

trans.set_byte_type(AXI4STREAM_POS_BYTE, k);
end
else
begin

trans.set_byte_type(AXI4STREAM_DATA_BYTE, k);
end

end  
bfm.execute_transfer(trans, j / byte_count, last);

end
end



SystemVerilog Tutorials
Verifying a Master DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 69
January 2016

Verifying a Master DUT
A master DUT component is connected to a slave BFM at the signal level. A slave test program 
written at the transaction level generates stimulus using the slave BFM to verify the master 
DUT. Figure 6-2 illustrates a typical top-level test bench environment.

Figure 6-2. Master DUT Top-Level Test Bench Environment

A top-level file instantiates and connects all the components required to test and monitor the 
DUT, and controls the system clock (ACLK) and reset (ARESETn) signals.

Slave BFM Test Program
The slave test program contains a Basic Slave Test Program API Definition that implements a 
simplified interface for you to start verifying a master DUT with minimal effort. The API 
allows the slave BFM to control back-pressure to the master DUT by configuring the delay for 
the assertion of the TREADY signal. No other slave test program editing is required in this case.

The Advanced Slave Test Program API Definition allows the slave BFM to receive protocol 
transfers and insert a delay for the assertion of the TREADY signal. No further analysis of the 
protocol transfer content is performed. If further analysis is required then the slave test program 
will require editing to add this feature.

For a complete code listing of the slave test program, refer to “SystemVerilog Slave Test 
Program” on page 209.

Basic Slave Test Program API Definition
The Basic Slave Test Program API contains the following:

• Configuration variable m_insert_wait to insert a delay in the assertion of the TREADY 
protocol signal.

Slave
BFM

Master
DUT

Slave
test
program

Top-level file



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c70

SystemVerilog Tutorials
Verifying a Master DUT

January 2016

• Task ready_delay() to configure the delay of the TREADY signal.

m_insert_wait
The m_insert_wait configuration variable controls the insertion of a delay for the TREADY 
signal defined by the ready_delay() task. To insert a delay set m_insert_wait to 1 (default); 
otherwise, set to 0, as shown in Example 6-4.

Example 6-4. m_insert_wait

// This member controls the wait insertion in axi4 stream transfers
// coming from master.
// Assigning m_insert_wait to 0 turns off the wait insertion.
bit m_insert_wait = 1;

ready_delay()
The ready_delay task inserts a delay for the TREADY signal. The delay value extends the 
length of a protocol transfer by a defined number of ACLK cycles. The starting point of the 
delay is determined by the completion of a previous transfer, or from the first positive ACLK 
edge after reset at the start of simulation.

The ready_delay() task initially sets TREADY to 0 by calling the execute_stream_ready() task, 
as shown in Example 6-5. The delay is inserted by calling the wait_on() task within a repeat() 
statement. You can edit the number of repetitions to change the delay. After the delay, the 
execute_stream_ready() task is called again to set the TREADY signal to 1.

Example 6-5. ready_delay()

// Task : ready_delay
// This is used to set ready delay to extend the transfer
task ready_delay();

// Making TREADY '0'. This will consume one cycle.
bfm.execute_stream_ready(0);
// Two clock cycle wait. In total 3 clock wait.
repeat(2) bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);
// Making TREADY '1'.
bfm.execute_stream_ready(1);

endtask

Note
In addition to the above tasks and variables, you can configure other aspects of the slave 
BFM by using these functions: “set_config()” on page 46 and “get_config()” on page 47.



SystemVerilog Tutorials
Verifying a Master DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 71
January 2016

Advanced Slave Test Program API Definition

Note
You are not required to edit the following Advanced Slave Test Program API unless 
further analysis of the protocol transfer is required.

The remaining section of this tutorial presents a walk-through of the Advanced Slave Test 
Program API within the slave BFM test program. It consists of a single initial block() that 
receives protocol transfers, inserting a delay in the assertion of the TREADY signal, as detailed 
in the Basic Slave Test Program API Definition.

initial block()
Within an initial block, the slave test program defines a transaction variable trans of type 
axi4stream_transaction to hold the Transaction Record of the transaction, as shown in 
Example 6-6. The initial wait for the ARESETn signal to be deactivated, followed by a positive 
ACLK edge, satisfies the protocol requirement detailed in Section 2.7.2 of the AXI4-Stream 
Protocol Specification.

Example 6-6. Initialization

initial
  begin
    int i;
    bit last;
    axi4stream_transaction trans;
    /*******************
    ** Initialisation **
    *******************/
    bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
    bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);

To receive protocol transfers, you must create a slave transaction. Within a forever loop, the 
create_slave_transaction() function is used to create a slave transaction and assigned to the 
transaction variable trans, as shown in Example 6-7.

An inner while loop iterates until the last transfer has been received. On each iteration, a delay is 
inserted before the TREADY signal is set to 1 by calling the ready_delay() task if 
m_insert_wait is set to 1. After any TREADY delay, the blocking get_transfer() task is called 
and waits for a transfer to be received.

If further analysis of the received transfer is required, you need to edit the Advanced Slave API 
to achieve this. You can obtain details of the Transaction Record for the received transfer by 
using the get*() tasks within the SystemVerilog Slave BFM.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c72

SystemVerilog Tutorials
Verifying a Master DUT

January 2016

Example 6-7. Transfer Receiving

// Packet receiving
forever
begin

trans = bfm.create_slave_transaction();
i = 0;
last = 0;
while(!last)
begin
if(m_insert_wait)

begin
ready_delay();

end  
bfm.get_transfer(trans, i, last);
++i;

end
end

end



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 73
January 2016

Chapter 7
VHDL API Overview

This section describes the VHDL API procedures for the BFM (master, slave, and monitor) 
components. For each BFM, you can configure protocol transaction fields that execute on the 
protocol signals and control the operational transaction fields that permit delays between the 
handshake signals.

In addition, each BFM API has procedures that wait for certain events to occur on the system 
clock and reset signals, and procedures to “get" and “set" information about a particular 
transaction.

Note
The VHDL API is built on the SystemVerilog API. An internal VHDL to SystemVerilog 
(SV) wrapper casts the VHDL BFM API procedure calls to the SystemVerilog BFM API 
tasks and functions.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c74

VHDL API Overview

January 2016

Figure 7-1. VHDL BFM Internal Structure

Test Program VHDL

SystemVerilog BFM API

Configuration
Creating 
Transaction 

Waiting Events

Executing
Transaction 

Access
Transaction

create*_transaction1 

set_config/get_config

execute_transaction/execute_transfer2

wait_on
get_packet/get_transfer

get*/set*3

Wire level

SystemVerilog Interface 

Notes: 1. Refer to the create*_transaction() 
  2. Refer to the execute_transaction() 
  3. Refer to the get*() 

Port map

SystemVerilog to VHDL

Rx_Transaction  
queuequeue

Tx_Transaction  
Configuration 

Maps API calls from VHDL to SystemVerilog

Translator Package

VHDL to SystemVerilog Wrapper



VHDL API Overview
Configuration

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 75
January 2016

Configuration
Configuration sets timeout delays, error reporting, and other attributes of the BFM.

Each BFM has a set_config() procedure that sets the configuration of the BFM. Refer to the 
individual BFM API for details. Each BFM has a get_config() procedure that sets the 
configuration of the BFM. Refer to the individual BFM API for details.

set_config() 
Example 7-1 shows how to set the burst timeout factor to 1000 for a transaction in the master 
BFM test program. 

Example 7-1. BFM Test Program Set Configuration

-- Setting the burst timeout factor to 1000 
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000, bfm_index, 

axi4stream_tr_if_0(bfm_index))

In the above example, the bfm_index specifies the actual master BFM.

get_config()
Example 7-2 shows how to get the protocol signal hold time in the master BFM test program. 

Example 7-2. BFM Test Program Get Configuration

-- Getting the burst timeout factor
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, config_value, 

bfm_index, axi4stream_tr_if_0(bfm_index))

In the above example, the bfm_index specifies the actual master BFM.

Creating Transactions
To transfer information between a master BFM and slave DUT over the protocol signals, you 
must create a transaction in the master test program. Similarly, to transfer information between 
a master DUT and a slave BFM, you must create a transaction in the slave test program. To 
monitor the transfer of information using a monitor BFM, you must create a transaction in the 
monitor test program.

When you create a Transaction Record, it exists for the life of the transaction. The BFM test 
programs can access this transaction record during the life of the transaction as it transfers 
information between the master and slave.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c76

VHDL API Overview
Creating Transactions

January 2016

Transaction Record
The transaction record contains two types of transaction fields, protocol and operational, that 
either transfer information over the protocol signals, or define how and when a transfer occurs, 
respectively. 

Protocol fields contain transaction information that is transferred over the protocol signals. For 
example, the id field is transferred over the TID protocol signals during a transaction to identify 
a data stream.

Operational fields define how and when the transaction is transferred. Their content is not 
transferred over protocol signals. For example, the operation_mode field controls the 
blocking/nonblocking operation of a transaction, but this information is not transferred over the 
protocol signals.

Transaction Definition
The transaction record exists as a SystemVerilog class definition in each BFM. Example 7-3 
shows the definition of the axi4stream_transaction class members that form the transaction 
record.

Example 7-3. Transaction Record Definition

// Global Transaction Class
class axi4stream_transaction;
    // Protocol 
    byte unsigned data[];
    axi4stream_byte_type_e byte_type[];
    bit [((`MAX_AXI4_ID_WIDTH) - 1):0]  id;
    bit [((`MAX_AXI4_DEST_WIDTH) - 1):0]  dest;
    bit [((`MAX_AXI4_USER_WIDTH) - 1):0] user_data [];
    int valid_delay[];
    int ready_delay[];

    // Housekeeping
    axi4stream_operation_mode_e

operation_mode = AXI4STREAM_TRANSACTION_BLOCKING;
    bit transfer_done[];
    bit transaction_done;

...

endclass

Note
The axi4stream_transaction class code above is shown for information only. Access to 
each transaction record during its life is performed by various VHDL set*() and get*() 
procedures described later in this chapter.



VHDL API Overview
Creating Transactions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 77
January 2016

The contents of the transaction record is detailed in Table 7-1.

Table 7-1. Transaction Record Fields

Transaction Field Description

Protocol Transaction Fields

data An unsized array of bytes to hold the data of an 
AXI4-Stream packet. The field content is transferred over 
the TDATA protocol signals during a transaction.

byte_type An unsized array to hold the enumerated type of each 
byte within an AXI4-Stream packet. The field content is 
transferred over the TSTRB and TKEEP protocol signals 
during a transaction. The types of byte are as follows:

AXI4STREAM_DATA_BYTE
AXI4STREAM_NULL_BYTE
AXI4STREAM_POS_BYTE
AXI4STREAM_ILLEGAL_BYTE

id A bit vector (of length equal to the TID protocol signal 
bus width) to hold the data stream identifier of the data 
packet. The field content is transferred over the TID 
protocol signals during a transaction.

dest A bit vector (of length equal to the TDEST protocol 
signal bus width) to hold the routing information for the 
data stream packet. The field content is transferred over 
the TDEST protocol signals during a transaction.

user_data An unsized bit vector (of length equal to the TUSER 
protocol signal bus width) to hold the user-defined 
sideband information. The field content is transferred 
over the TUSER protocol signals during a transaction.

Operational Transaction Fields

valid_delay An unsized array of integers to hold the delay value of the 
TVALID protocol signal (measured in ACLK cycles) for 
each transfer within a packet. The field content is not 
transferred over the protocol signals during a transaction. 

ready_delay An unsized array of integers to hold the delay value of the 
TREADY protocol signal (measured in ACLK cycles) for 
each transfer within a packet. The field content is not 
transferred over the protocol signals during a transaction.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c78

VHDL API Overview
Creating Transactions

January 2016

The VHDL Master BFM API allows you to create a master transaction by providing only an 
optional burst_length argument to indicate the number of transfers within a packet. All other 
protocol transaction fields automatically default to legal protocol values to create a master 
transaction record. Refer to create_master_transaction() for default protocol transaction field 
values.

The VHDL Slave BFM API allows you to create a slave transaction with no arguments. All 
protocol transaction fields automatically default to legal protocol values to create a slave 
transaction record. Refer to create_slave_transaction() for default protocol transaction field 
values.

The VHDL Monitor BFM API allows you to create a monitor transaction with no arguments. 
All protocol transaction fields automatically default to legal protocol values to create a complete 
monitor transaction record. Refer to create_monitor_transaction() for default protocol 
transaction field values.

Note
If you change the default value of a protocol transaction field, it is valid for all future 
transactions until you set a new value.

create*_transaction()
There create_master_transaction(), create_slave_transaction() and 
create_monitor_transaction() BFM API procedures create master, slave, and monitor 
transactions, respectively.

operation_mode A enumeration to hold the operation mode of the 
transaction. There are two types of operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING
AXI4STREAM_TRANSACTION_BLOCKING

The field content is not transferred over the AXI4-Stream 
protocol signals.

transfer_done An unsized bit array to hold the done flag for each 
transfer within a packet. The field content is not 
transferred over the protocol signals during a transaction.

transaction_done A bit to hold the done flag for a complete transaction. The 
field content is not transferred over the protocol signals 
during a transaction.

Table 7-1. Transaction Record Fields (cont.)

Transaction Field Description



VHDL API Overview
Executing Transactions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 79
January 2016

Example 7-4 shows a master BFM test program creating a master transaction with a packet 
length of 10 transfers.

Example 7-4. Master BFM Test Program Transaction Creation

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

-- Create a master transaction of 10 transfers.
create_master_transaction(10, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

Example 7-5 shows a slave BFM test program creating a slave transaction.

Example 7-5. Slave BFM Test Program Transaction Creation

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

-- Create a slave transaction.
create_slave_transaction(trans, bfm_index,axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual BFM.

Executing Transactions
Executing a transaction in a master/slave BFM test program initiates the transaction onto the 
protocol signals. Each master/slave BFM API has execution procedures that push transactions 
into the BFM internal transaction queues. Figure 7-1 on page 74 illustrates the internal BFM 
structure.

execute_transaction()
If the DUT is a slave, then the execute_transaction() procedure is called in the master BFM test 
program. Example 7-6 shows a master test program executing a master transaction.

Example 7-6. Master Test Program Transaction Execution

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

...

-- Create a master transaction with 10 transfers.
create_master_transaction(10, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

...

-- By default the execution of a transaction will block.
execute_transaction(trans, bfm_index, axi4stream_tr_if_0(bfm_index));



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c80

VHDL API Overview
Waiting Events

January 2016

In the above example, the bfm_index specifies the actual slave BFM.

Waiting Events
Each BFM API has procedures that block the test program code execution until an event has 
occurred.

The wait_on() procedure blocks the test program until an ACLK or ARESETn signal event has 
occurred before proceeding.

The get_packet(), get_transfer() procedures block the test program code execution until a 
complete stream packet or transfer has occurred.

wait_on()
Example 7-7 shows a BFM test program waiting for the positive edge of the ARESETn signal.

Example 7-7. Test Program Wait for Event

-- Block test program execution until the positive edge of the
-- ARESETn signal.
wait_on(AXI4STREAM_RESET_POSEDGE, bfm_index,

axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual master BFM.

get_packet(), get_transfer()
Example 7-8 shows a slave BFM test program using the get_packet() procedure to block until it 
has received a data stream transfer.

Example 7-8. Slave Test Program get_packet() Procedure

-- Define a local variable trans to hold the transaction record
variable trans: integer;

...

-- Create a slave transaction
create_slave_transaction(trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

...

--Wait for the first data stream transfer to occur.
get_transfer(trans, 0, last, bfm_index, axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual slave BFM.



VHDL API Overview
Access Transaction Record

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 81
January 2016

Access Transaction Record
Each BFM API has procedures that can access a complete or partially complete Transaction 
Record. The set*() and get*() procedures are used in a test program to set and get information 
from the transaction record.

set*()
Example 7-9 shows the master test program calling the set_byte_type() procedure to set the first 
byte_type in the transaction.

Example 7-9. Master Test Program set_byte_type() Procedure

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

-- Create a master transaction with 10 transfers.
create_master_transaction(10, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Set the first byte_type in the transfer.
set_byte_type(AXI4STREAM_DATA_BYTE, 0, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual master BFM.

get*()
Example 7-10 shows the slave test program calling the get_byte_type() procedure to get the first 
data byte_type of a transaction.

Example 7-10. Slave Test Program get_byte_type() Procedure

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

-- Define a local variable to hold the transaction byte type
variable byte_type: integer;

-- Create a slave transaction
create_slave_transaction(trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the first byte_type of a transaction.
get_byte_type(byte_type, 0, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual slave BFM.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c82

VHDL API Overview
Operational Transaction Fields

January 2016

Operational Transaction Fields
Operational transaction fields control the way in which a transaction is executed onto the 
protocol signals. These fields also indicate when an individual data transfer or transaction is 
complete.

Operation Mode
By default, each transaction performs a blocking operation that prevents a following transaction 
from starting until the current active transaction completes.

You can configure this behavior to be nonblocking by setting the operation_mode transaction 
field to the enumerate type value AXI4STREAM_TRANSACTION_NON_BLOCKING 
instead of the default AXI4STREAM_TRANSACTION_BLOCKING.

Example 7-11shows a master BFM test program creating a transaction by calling the 
create_master_transaction() procedure. Before executing the transaction, the operation_mode 
is changed to nonblocking.

Example 7-11. Master Test Program set_operation_mode() Procedure

-- Define a local variable trans to hold the transaction record.
variable trans: integer;

-- Create a master transaction with 10 transfers.
create_master_transaction(10, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

// Change the operation_mode to be nonblocking in the transaction record
set_operation_mode(AXI4STREAM_TRANSACTION_NON_BLOCKING, trans, bfm_index,

axi4stream_tr_if_0(bfm_index));

In the above example, the bfm_index specifies the actual master BFM.

Handshake Delay
You can configure the TVALID and TREADY handshake signals to insert a delay before their 
assertion.

TVALID Signal Delay Transaction Field
The Transaction Record contains a valid_delay transaction field to configure the delay of the 
TVALID signal. The setting of the valid_delay transaction field is performed in the master 
BFM test program by calling the set_valid_delay() procedure.



VHDL API Overview
Operational Transaction Fields

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 83
January 2016

TREADY Signal Delay Transaction Field
The Transaction Record contains a ready_delay transaction field to configure the delay of the 
TREADY signal. The setting of the ready_delay transaction field is performed in the slave 
BFM test program by calling the local ready_delay() procedure.

Example 7-12 shows the slave BFM test program implementing a ready_delay() procedure that 
inserts a specified delay before the assertion of the TREADY signal. 

Example 7-12. Slave Test Program ready_delay() Procedure

-- Procedure : ready_delay
-- This is used to set ready delay to extend the transfer
procedure ready_delay(signal tr_if : inout axi4stream_vhd_if_struct_t) is 
begin

--  Making TREADY '0'. This will consume one cycle.
execute_stream_ready(0, index, tr_if);
-- Two clock cycle wait. In total 3 clock wait.
for i in 0 to 1 loop

wait_on(AXI4STREAM_CLOCK_POSEDGE, index, tr_if);
end loop;  
-- Making TREADY '1'.
execute_stream_ready(1, index, tr_if);

end ready_delay;

Transfer Done
A transfer_done transaction field is set to 1 to indicate when each protocol transfer completes.

Transaction Done
A transaction_done transaction field is set to 1 to indicate when each protocol transaction 
completes. 

In a slave BFM, you call the get_packet() BFM procedure to investigate whether a transaction is 
complete. If complete, the procedure returns the last argument set to 1, and the transaction 
record has the transaction_done field set to 1.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c84

VHDL API Overview
Operational Transaction Fields

January 2016



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 85
January 2016

Chapter 8
VHDL Master BFM

This section provides information about the VHDL master BFM. It has an API that contains 
procedures to configure the BFM and to access the dynamic Transaction Record during the life 
of the transaction.

Overloaded Procedure Common Arguments
The BFMs use VHDL procedure overloading, which results in the prototype having a number 
of definitions for each procedure. Their arguments are unique to each procedure and concern the 
protocol or operational transaction fields for a transaction. These procedures have several 
common arguments that may be optional and include the arguments described below: 

• transaction_id is an index number that identifies a specific transaction. Each new 
transaction automatically increments the index number until reaching 255, the 
maximum value, and then the index number automatically wraps to zero. The 
transaction_id uniquely identifies each transaction when there are a number of 
concurrently active transactions.

• bfm_id is a unique identification number for each master, slave, and monitor BFM 
within a multiple BFM test bench.

• tr_if is a signal definition that passes the content of a transaction between the VHDL and 
SystemVerilog environments.

Master BFM Protocol Support
The AXI4-Stream master BFM supports the full AMBA AXI4-Stream Protocol Specification.

Master Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can reference for details of the 
following master BFM API timing and events.

The AMBA AXI4-Stream Protocol Specification does not define any timescale or clock period 
with signal events sampled and driven at rising ACLK edges. Therefore, the master BFM does 
not contain any timescale, timeunit, or timeprecision declarations. The signal setup and hold 
times are specified in units of simulator time-steps.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c86

VHDL Master BFM
Master BFM Configuration

January 2016

Master BFM Configuration 
A master BFM supports the full range of signals defined for the AMBA AXI4-Stream Protocol 
Specification. It has parameters that you use to configure the widths of the data and ID signals, 
and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signal widths from their default setting by assigning them new 
values, usually performed in the top-level module of the test bench. These new values are then 
passed into the master BFM using a parameter port list of the master BFM module.

Table 8-1 lists the parameter names for the data and ID signals and their default values.

A master BFM has configuration fields that you set by calling the set_config() procedure to 
configure timeout factors, setup and hold times, etc. You get the value of a configuration field 
by calling the get_config() procedure. Table 8-2 describes the full list of configuration fields.

Table 8-1. Master BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.

Table 8-2. Master BFM Configuration

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.



VHDL Master BFM
Master Assertions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 87
January 2016

1. Refer to Master Timing and Events for details of simulator time-steps.

Master Assertions
The master BFM performs protocol error checking via built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

By default, all built-in assertions are enabled in the master BFM. To globally disable them in the 
master BFM, use the set_config() command as shown in Example 8-1.

Example 8-1. Master BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS, 0, bfm_index, 
axi4stream_tr_if_0(bfm_index));

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay permitted 
between individual transfers in 
clock cycles. Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of TVALID 
to the assertion of TREADY. 
Default: 10000.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. Refer 
to the Master Assertions chapter 
for details.
0 = disabled
1 = enabled (default)

Table 8-2. Master BFM Configuration (cont.)

Configuration Field Description



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c88

VHDL Master BFM
Master Assertions

January 2016

Alternatively, you can disable individual built-in assertions by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 8-2 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Example 8-2. Master BFM Individual Assertion Enable/Disable

-- Define a local bit vector to hold the value of the assertion bit vector
variable config_assert_bitvector : 
std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0);

-- Get the current value of the assertion bit vector
get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

-- Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector(AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY) := ‘0’;

-- Set the new value of the assertion bit vector
set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with 
the AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 8-2 and assign the assertion enable within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of assertions, refer to “Assertions” on page 203.



VHDL Master BFM
VHDL Master BFM API

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 89
January 2016

VHDL Master BFM API
This section describes the VHDL master BFM API.

Each procedure available within the master BFM API is detailed in the following chapter. The 
set*() and get*() procedures that operate on the Transaction Record fields have a simple rule for 
the procedure name: set_ or get_ followed by the name of the transaction field to be accessed. 
Refer to “Transaction Record” on page 21 for details of transaction field names.

Note
The master BFM API package is the axi4stream/bfm/mgc_axi4stream_bfm_pkg.vhd file 
packaged within the Mentor Verification IP Altera Edition.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c90

VHDL Master BFM
set_config()

January 2016

set_config()
This nonblocking procedure sets the configuration of the master BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000, bfm_index, 

axi4stream_tr_if_0(bfm_index));

Prototype procedure set_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val    : in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Master BFM Configuration” on page 86 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 91
January 2016

get_config()
This nonblocking procedure gets the configuration of the master BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, config_value, 

bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val    : out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Master BFM Configuration” on page 86 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns config_val



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c92

VHDL Master BFM
create_master_transaction()

January 2016

create_master_transaction()
This nonblocking procedure creates a master transaction with an optional burst_length 
argument. All other transaction fields default to legal protocol values, unless previously 
assigned a value. This procedure creates and returns the transaction_id argument.

Prototype procedure create_master_transaction
(

burst_length    : in integer; --optional
transaction_id  : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments burst_length (Optional) Number of transfers within a packet. Default: 1.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Protocol
Transaction 
Fields

data Data array in bytes

byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.

dest Destination routing information.

user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction 
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction 
(default = 0).

transfer_done Transfer done flag array for this transaction

transaction_
done

Transaction done flag for this transaction

Returns transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85.



VHDL Master BFM
create_master_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 93
January 2016

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 

axi4stream_tr_if_0(bfm_index);



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c94

VHDL Master BFM
set_data()

January 2016

set_data()
This nonblocking procedure sets a data field array element for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

The data byte is identified by the optional index argument. If no index is supplied, then the first 
data byte is accessed in the array.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the data field to 2 for the first byte
-- of the tr_id transaction.
set_data(2, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Set the data field to 3 for the second byte
-- of the tr_id transaction.
set_data(3, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_data
(

data: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments data Data byte.

index (Optional) Array element index number for data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_data()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 95
January 2016

get_data()
This nonblocking procedure gets a data field array element for a transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The data byte is identified by the optional index argument. If no index is supplied, then the first 
data byte is accessed in the array.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_data
(

data: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments data Data byte.

index (Optional) Array element index number for data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns data



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c96

VHDL Master BFM
set_byte_type()

January 2016

set_byte_type()
This nonblocking procedure sets a byte_type field array element for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

The byte_type is identified by the optional index argument. If no index is supplied, then the first 
byte_type is accessed in the array.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the byte_type field to data for the first byte
-- of the tr_id transaction.
set_byte_type(AXI4STREAM_DATA_BYTE, 0, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the byte_type field to null for the second byte
-- of the tr_id transaction.
set_byte_type(AXI4STREAM_NULL_BYTE, 1, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

Prototype set_byte_type
(

byte_type: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

index (Optional) Array element index number for byte_type.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_byte_type()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 97
January 2016

get_byte_type()
This nonblocking procedure gets a byte_type field array element for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

The byte_type array element is identified by the optional index argument. If no index is 
supplied, then the first byte_type is accessed in the array.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_byte_type
(

byte_type: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

index (Optional) Array element index number for byte_type.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns byte_type



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c98

VHDL Master BFM
set_id()

January 2016

set_id()
This nonblocking procedure sets the data stream identifier id field for a master transaction that 
is uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the id field to 2 for the tr_id transaction.
set_id(2, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_id
(

id: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 ) 
| integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments id Data stream identifier value placed on the TID signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_id()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 99
January 2016

get_id()
This nonblocking procedure gets the data stream identifier id field for a master transaction that 
is uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_id
(

id: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 
) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments id Data stream identifier value placed on the TID signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns id



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c100

VHDL Master BFM
set_dest()

January 2016

set_dest()
This nonblocking procedure sets the routing information dest field for a master transaction that 
is uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure. 

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the dest field to 2 for the tr_id transaction.
set_dest(2, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_dest
(

dest: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 
) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments dest Data stream routing information value placed on the TDEST signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_dest()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 101
January 2016

get_dest()
This nonblocking procedure gets the routing information id field for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_dest
(

dest: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 
0 ) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments dest Data stream routing information value placed on the TDEST signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns dest



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c102

VHDL Master BFM
set_user_data()

January 2016

set_user_data()
This nonblocking procedure sets the user_data field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The user_data array element is identified by the optional index argument. If no index is 
supplied, then the first user_data is accessed in the array.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the user_data field to 2 for the first transfer
-- of the tr_id transaction.
set_user_data(2, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Set the user_data field to 3 for the second transfer
-- of the tr_id transaction.
set_user_data(3, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_user_data
(

user_data: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0 ) | integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t
);

Arguments user_data User data array values placed on the TUSER signals.

index (Optional) Array element index number for user_data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_user_data()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 103
January 2016

get_user_data()
This nonblocking procedure gets a user_data field array element for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

The user_data array element is identified by the optional index argument. If no index is 
supplied, then the first user_data is accessed in the array.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_user_data
(

user_data: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0 ) | integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments user_data User data array values placed on the TUSER signals.

index (Optional) Array element index number for user_data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns user_data



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c104

VHDL Master BFM
set_valid_delay()

January 2016

set_valid_delay()
This nonblocking procedure sets the valid_delay field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The valid_delay array element is identified by the optional index argument. If no index is 
supplied, then the first valid_delay is accessed in the array.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the TVALID delay to 3 ACLK cycles for the first transfer
-- of the tr_id transaction.
set_valid_delay(3, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Set the TVALID delay to 2 ACLK cycles for the second transfer
-- of the tr_id transaction.
set_valid_delay(2, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_valid_delay
(

valid_delay: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments valid_delay Valid delay array to store TVALID delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for valid_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_valid_delay()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 105
January 2016

get_valid_delay()
This nonblocking procedure gets the valid_delay field for a transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The valid_delay array element is identified by the optional index argument. If no index is 
supplied, then the first valid_delay is accessed in the array.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_valid_delay
(

valid_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments valid_delay Valid delay array to store TVALID delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for valid_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns valid_delay



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c106

VHDL Master BFM
set_ready_delay()

January 2016

set_ready_delay()
This nonblocking procedure sets the ready_delay field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The ready_delay array element is identified by the optional index argument. If no index is 
supplied, then the first ready_delay is accessed in the array.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype set_ready_delay
(

ready_delay: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments ready_delay Ready delay array to hold TREADY delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for ready_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_ready_delay()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 107
January 2016

get_ready_delay()
This nonblocking procedure gets the ready_delay field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The ready_delay array element is identified by the optional index argument. If no index is 
supplied, then first ready_delay is accessed in the array.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the TREADY delay for the first transfer of the tr_id transaction.
get_ready_delay(ready_delay, 0, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the TREADY delay for the second transfer of the tr_id transaction.
get_ready_delay(ready_delay, 1, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

Prototype get_ready_delay
(

ready_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments ready_delay Read data channel array to hold TREADY delays measured in 
ACLK cycles for this transaction. Default: 0.

index (Optional) Array element index number for ready_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns ready_delay



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c108

VHDL Master BFM
set_operation_mode()

January 2016

set_operation_mode()
This nonblocking procedure sets the operation_mode field for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example
-- Create a master transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the operation mode field to nonblocking for the tr_id transaction.
set_operation_mode(AXI4STREAM_TRANSACTION_NON_BLOCKING, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

Prototype set_operation_mode
(

operation_mode: in integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments operation_mode Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_operation_mode()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 109
January 2016

get_operation_mode()
This nonblocking procedure gets the operation_mode field for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_operation_mode
(

operation_mode: out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments operation_mode Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns operation_mode



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c110

VHDL Master BFM
set_transfer_done()

January 2016

set_transfer_done()
This nonblocking procedure sets a transfer_done field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The transfer_done array element is identified by the optional index argument. If no index is 
supplied, then the first transfer_done is accessed in the array. 

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Set the transfer_done flag for the first transfer
-- of the tr_id transaction.
set_transfer_done(1, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

....

-- Set the transfer_done flag for the second transfer
-- of the tr_id transaction.
set_transfer_done(1, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_transfer_done
(

transfer_done : in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transfer_done Transfer done array for this transaction.

index (Optional) Array element index number for transfer_done.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_transfer_done()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 111
January 2016

get_transfer_done()
This nonblocking procedure gets a transfer_done field for a master transaction that is uniquely 
identified by the transaction_id field previously created by the create_master_transaction() 
procedure.

The transfer_done array element is identified by the optional index argument. If no index is 
supplied, then the first transfer_done is accessed in the array. 

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_transfer_done
(

transfer_done : out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transfer_done Transfer done array for this transaction.

index (Optional) Array element index number for transfer_done.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns transfer_done



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c112

VHDL Master BFM
set_transaction_done()

January 2016

set_transaction_done()
This nonblocking procedure sets the transaction_done field for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Set the transaction_done flag of the tr_id transaction.
set_transaction_done(1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype set_transaction_done
(

transaction_done : in integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_done Transaction done flag for this transaction

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
get_transaction_done()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 113
January 2016

get_transaction_done()
This nonblocking procedure gets the transaction_done field for a master transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_master_transaction() procedure.

Example

Note
You would not normally use this procedure within a Master Test Program.

Prototype get_transaction_done
(

transaction_done : out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_done Transaction done flag for this transaction

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns transaction_done



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c114

VHDL Master BFM
execute_transaction()

January 2016

execute_transaction()
This procedure executes a master transaction that is uniquely identified by the transaction_id 
argument previously created by the create_master_transaction() procedure. A transaction can 
be blocking (default) or nonblocking, based on the setting of the transaction operation_mode 
field.

It calls the execute_transfer() procedure for each transfer within a packet, with the number of 
transfers defined by the transaction burst_length field.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Set the ID to 1 for this transaction
set_id(1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Execute the tr_id transaction. 
execute_transaction(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure execute_transaction
(

transaction_id : in integer;
bfm_id : in integer; 
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded 
Procedure Common Arguments” on page 85 for more 
details.

Returns None



VHDL Master BFM
execute_transfer()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 115
January 2016

execute_transfer()
This procedure executes a master transfer that is uniquely identified by the transaction_id 
argument previously created by the create_master_transaction() procedure. This transfer may 
be blocking (default) or nonblocking, as defined by the transaction operation_mode field.

It sets the TVALID protocol signal at the appropriate time defined by the transaction 
valid_delay field and sets the transfer_done array index element field to 1 when the transfer is 
complete.

If this is the last transfer of the transaction, then it sets the transaction_done field to 1 and 
returns the last argument set to 1 to indicate the whole transaction is complete.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Execute the first transfer of the packet for the
-- tr_id transaction.
execute_transfer(tr_id, 0, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Execute the second transfer of the packet for the
-- tr_id transaction.
execute_transfer(tr_id, 1, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure execute_transfer
(

transaction_id  : in integer;
index : in integer; --optional
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

index (Optional) Data phase (beat) number.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c116

VHDL Master BFM
get_stream_ready()

January 2016

get_stream_ready()
This procedure gets the value of the TREADY signal by returning it via the ready argument. It 
will block for one ACLK period.

Example
-- Get the state of the TREADY signal.
get_stream_ready(ready, bfm_index,  axi4stream_tr_if_0(bfm_index));

Prototype procedure get_stream_ready
(

ready : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments ready The value of the TREADY signal

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns ready



VHDL Master BFM
print()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 117
January 2016

print()
This nonblocking procedure prints a transaction record that is uniquely identified by the 
transaction_id argument previously created by the create_master_transaction() procedure.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Print the transaction record (including delay values) of the
-- tr_id transaction.
print(tr_id, 1, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure print
(

transaction_id  : in integer;
print_delays : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

print_delays (Optional) Print delay values flag:

0 = do not print the delay values (default).
1 = print the delay values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c118

VHDL Master BFM
destruct_transaction()

January 2016

destruct_transaction()
This blocking procedure removes a transaction record for cleanup purposes and memory 
management that is uniquely identified by the transaction_id argument previously created by 
the create_master_transaction() procedure.

Example
-- Create a master transaction containing 3 transfers
-- Creation returns tr_id to identify the transaction.
create_master_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Remove the transaction record for the tr_id transaction.
destruct_transaction(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure destruct_transaction
(

transaction_id  : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Master BFM
wait_on()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 119
January 2016

wait_on()
This blocking procedure waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
wait_on(AXI4STREAM_RESET_POSEDGE, bfm_index, 
axi4stream_tr_if_0(bfm_index));

wait_on(AXI4STREAM_CLOCK_POSEDGE, 10, bfm_index, 
axi4stream_tr_if_0(bfm_index));

Prototype procedure wait_on
(

phase           : in integer;
count: in integer; -optional
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments phase Wait for:

AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0

count (Optional) Wait for a number of events to occur set by 
count.

bfm_id BFM identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded 
Procedure Common Arguments” on page 85 for more 
details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c120

VHDL Master BFM
wait_on()

January 2016



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 121
January 2016

Chapter 9
VHDL Slave BFM

This section provides information about the VHDL slave BFM. It has an API that contains 
procedures to configure the BFM and to access the dynamic Transaction Record during the life 
of the transaction.

Slave BFM Protocol Support
The AXI4-Stream slave BFM supports the full AMBA AXI4-Stream protocol.

Slave Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can reference for details of the 
following slave BFM API timing and events.

The AMBA AXI4-Stream Protocol Specification does not define any timescale or clock period 
with signal events sampled and driven at rising ACLK edges. Therefore, the slave BFM does 
not contain any timescale, timeunit, or timeprecision declarations. The signal setup and hold 
times are specified in units of simulator time-steps.

Slave BFM Configuration
A slave BFM supports the full range of signals defined for the AMBA AXI4-Stream Protocol 
Specification. It has parameters that you use to configure the widths of the data and ID signals, 
and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signals widths from their default setting by assigning them new 
values, usually performed in the top-level module of the test bench. These new values are then 
passed into the slave BFM using a parameter port list of the slave BFM module.

Table 9-1 lists the parameter names for the data and ID signals and their default values.

Table 9-1. Slave BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c122

VHDL Slave BFM
Slave BFM Configuration

January 2016

A slave BFM has configuration fields that you set by calling the set_config() procedure to 
configure timeout factors, setup and hold times, and so on. You get the value of a configuration 
field by calling the get_config() procedure. Table 9-2 describes the full list of configuration 
fields.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.

Table 9-2. Slave BFM Configuration

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay between 
individual transfers in clock 
cycles. Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of 
TVALID to the assertion of 
TREADY. Default: 10000.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Table 9-1. Slave BFM Signal Width Parameters (cont.)

Signal Width Parameter Description



VHDL Slave BFM
Slave Assertions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 123
January 2016

1. Refer to Slave Timing and Events for details of simulator time-steps.

Slave Assertions
The slave BFM performs protocol error checking via built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

By default, all built-in assertions are enabled in the slave BFM. To globally disable them in the 
slave BFM, use the set_config() command as shown in Example 9-1.

Example 9-1. Slave BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS, 0, bfm_index, 
axi4stream_tr_if_0(bfm_index));

Alternatively, you can disable individual built-in assertions by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 9-2 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. 
Refer to Slave Assertions chapter 
for details.
0 = disabled
1 = enabled (default)

Table 9-2. Slave BFM Configuration (cont.)

Configuration Field Description



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c124

VHDL Slave BFM
VHDL Slave BFM API

January 2016

Example 9-2. Slave BFM Individual Assertion Enable/Disable

-- Define a local bit vector to hold the value of the assertion bit vector
variable config_assert_bitvector : 
std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0);

-- Get the current value of the assertion bit vector
get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

-- Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector(AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY) := ‘0’;

-- Set the new value of the assertion bit vector
set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with the 
AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 9-2 and assign the assertion within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of assertions, refer to “Assertions” on page 203.

VHDL Slave BFM API
This section describes the VHDL Slave BFM API.

Each procedure available within the slave BFM API is detailed in the following chapter. The 
set*() and get*() procedures that operate on the Transaction Record fields have a simple rule for 
the procedure name: set_ or get_ followed by the name of the transaction field to be accessed. 
Refer to “Transaction Record” on page 21 for details of transaction field names.

Note
The slave BFM API package is the axi4stream/bfm/mgc_axi4stream_bfm_pkg.vhd file 
packaged within the Mentor Verification IP Altera Edition.



VHDL Slave BFM
set_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 125
January 2016

set_config()
This nonblocking procedure sets the configuration of the slave BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000, bfm_index, 

axi4stream_tr_if_0(bfm_index));

Prototype procedure set_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val    : in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Slave BFM Configuration” on page 121 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c126

VHDL Slave BFM
get_config()

January 2016

get_config()
This nonblocking procedure gets the configuration of the slave BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, config_value, 

bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val    : out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Slave BFM Configuration” on page 121 for description and 
valid values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns config_val



VHDL Slave BFM
create_slave_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 127
January 2016

create_slave_transaction()
This nonblocking procedure creates a slave transaction. All transaction fields default to legal 
protocol values, unless previously assigned a value. This procedure creates and returns the 
transaction_id argument.

Prototype procedure create_slave_transaction
(

transaction_id  : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85.

Protocol
Transaction 
Fields

data Data array in bytes

byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.

dest Destination routing information.

user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction 
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction 
(default = 0).

transfer_done Transfer done flag array for this transaction

transaction_
done

Transaction done flag for this transaction

Returns transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c128

VHDL Slave BFM
create_slave_transaction()

January 2016

Example
-- Create a slave transaction
-- Returns the transaction ID (tr_id) for this created transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_3(bfm_index));



VHDL Slave BFM
set_data()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 129
January 2016

set_data()
This nonblocking procedure sets a data field array element for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

The data byte is identified by the optional index argument. If no index is supplied, then the first 
data byte is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_data
(

data: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments data Data byte.

index (Optional) Array element index number for data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c130

VHDL Slave BFM
get_data()

January 2016

get_data()
This nonblocking procedure gets a data field array element for a transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The data byte is identified by the optional index argument. If no index is supplied, then the first 
data byte is accessed in the array.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the data field for the first byte of the tr_id transaction.
get_data(data, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Get the data field for the second byte of the tr_id transaction.
get_data(data, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_data
(

data: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments data Data byte.

index (Optional) Array element index number for data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns data



VHDL Slave BFM
set_byte_type()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 131
January 2016

set_byte_type()
This nonblocking procedure sets a byte_type field array element for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

The byte_type array element is identified by the optional index argument. If no index is 
supplied, then the first byte_type is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_byte_type
(

byte_type: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

index (Optional) Array element index number for byte_type.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c132

VHDL Slave BFM
get_byte_type()

January 2016

get_byte_type()
This nonblocking procedure gets a byte_type field array element for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

The byte_type array element is identified by the optional index argument. If no index is 
supplied, then the first byte_type is accessed in the array.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the byte_type field for the first byte of the tr_id transaction.
get_byte_type(byte_type, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the byte_type field for the second byte of the tr_id transaction.
get_byte_type(byte_type, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_byte_type
(

byte_type: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

index (Optional) Array element index number for byte_type.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns byte_type



VHDL Slave BFM
set_id()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 133
January 2016

set_id()
This nonblocking procedure sets the data stream identifier id field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_id
(

id: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 ) 
| integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments id Data stream identifier value placed on the TID signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c134

VHDL Slave BFM
get_id()

January 2016

get_id()
This nonblocking procedure gets the data stream identifier id field for a slave transaction that is 
uniquely identified by the transaction_id field and previously created by the 
create_slave_transaction() procedure.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Get the id field of the tr_id transaction.
get_id(id, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_id
(

id: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 
) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments id Data stream identifier value placed on the TID signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns id



VHDL Slave BFM
set_dest()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 135
January 2016

set_dest()
This nonblocking procedure sets the routing information dest field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_dest
(

dest: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 
) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments dest Data stream routing information value placed on the TDEST signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c136

VHDL Slave BFM
get_dest()

January 2016

get_dest()
This nonblocking procedure gets the routing information id field for a slave transaction that is 
uniquely identified by the transaction_id field and previously created by the 
create_slave_transaction() procedure.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

....

-- Get the dest field of the tr_id transaction.
get_dest(dest, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_dest
(

dest: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 
0 ) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments dest Data stream routing information value placed on the TDEST signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns dest



VHDL Slave BFM
set_user_data()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 137
January 2016

set_user_data()
This nonblocking procedure sets a user_data field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The user_data array element is identified by the optional index argument. If no index is 
supplied, then the first user_data is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_user_data
(

user_data: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0 ) | integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments user_data User data array values placed on the TUSER signals.

index (Optional) Array element index number for user_data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c138

VHDL Slave BFM
get_user_data()

January 2016

get_user_data()
This nonblocking procedure gets a user_data field array element for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

The user_data array element is identified by the optional index argument. If no index is 
supplied, then the first user_data is accessed in the array.

Example
-- Create a slave transaction containing 3 transfers.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(3, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the user_data field for the first transfer
-- of the tr_id transaction.
get_user_data(user_data, 0, tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the user_data field for the second transfer
-- of the tr_id transaction.
get_user_data(user_data, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_user_data
(

user_data: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0 ) | integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments user_data User data array values placed on the TUSER signals.

index (Optional) Array element index number for user_data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns user_data



VHDL Slave BFM
set_valid_delay()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 139
January 2016

set_valid_delay()
This nonblocking procedure sets the valid_delay field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The valid_delay array element is identified by the optional index argument. If no index is 
supplied, then the first valid_delay is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_valid_delay
(

valid_delay: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments valid_delay Valid delay array to store TVALID delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for valid_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c140

VHDL Slave BFM
get_valid_delay()

January 2016

get_valid_delay()
This nonblocking procedure gets the valid_delay field for a transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The valid_delay array element is identified by the optional index argument. If no index is 
supplied, then the first valid_delay is accessed in the array.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index, 
axi4stream_tr_if_0(bfm_index));

-- Get the TVALID delay for the first transfer of the tr_id transaction.
get_valid_delay(valid_delay, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the TVALID delay or the second transfer of the tr_id transaction.
get_valid_delay(valid_delay, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_valid_delay
(

valid_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments valid_delay Valid delay array to store TVALID delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for valid_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns valid_delay



VHDL Slave BFM
set_ready_delay()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 141
January 2016

set_ready_delay()
This nonblocking procedure sets the ready_delay field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The ready_delay array element is identified by the optional index argument. If no index is 
supplied, then the first ready_delay is accessed in the array.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Set the TREADY delay to 3 ACLK cycles for the first transfer
-- of the tr_id transaction.
set_ready_delay(3, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Set the TREADY delay to 2 ACLK cycles for the first transfer
-- of the tr_id transaction.
set_ready_delay(2, 1, tr_id, bfm_index, axistream_tr_if_0(bfm_index));

Prototype set_ready_delay
(

ready_delay: in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments ready_delay Ready delay array to hold TREADY delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for ready_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c142

VHDL Slave BFM
get_ready_delay()

January 2016

get_ready_delay()
This nonblocking procedure gets the ready_delay field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The ready_delay array element is identified by the optional index argument. If no index is 
supplied, then the first ready_delay is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype get_ready_delay
(

ready_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout *_vhd_if_struct_t

);

Arguments ready_delay Read data channel array to hold RREADY delays measured in 
ACLK cycles for this transaction. Default: 0.

index (Optional) Array element index number for ready_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns ready_delay



VHDL Slave BFM
set_operation_mode()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 143
January 2016

set_operation_mode()
This nonblocking procedure sets the operation_mode field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_operation_mode
(

operation_mode: in integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments operation_mode Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING (default);

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c144

VHDL Slave BFM
get_operation_mode()

January 2016

get_operation_mode()
This nonblocking procedure gets the operation_mode field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the operation mode field of the tr_id transaction.
get_operation_mode(operation_mode, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_operation_mode
(

operation_mode: out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments operation_mode Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns operation_mode



VHDL Slave BFM
set_transfer_done()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 145
January 2016

set_transfer_done()
This nonblocking procedure sets a transfer_done field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The transfer_done array element is identified by the optional index argument. If no index is 
supplied, then the first transfer_done is accessed in the array.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_transfer_done
(

transfer_done : in integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transfer_done Transfer done array for this transaction.

index (Optional) Array element index number for transfer_done.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c146

VHDL Slave BFM
get_transfer_done()

January 2016

get_transfer_done()
This nonblocking procedure gets a transfer_done field for a slave transaction that is uniquely 
identified by the transaction_id field previously created by the create_slave_transaction() 
procedure.

The transfer_done array element is identified by the optional index argument. If no index is 
supplied, then the first transfer_done is accessed in the array.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the trans_done flag for the first transfer
-- of the tr_id transaction.
get_transfer_done(trans_done, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the trans_done flag for the second transfer
-- of the tr_id transaction.
get_transfer_done(trans_done, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_transfer_done
(

transfer_done : out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transfer_done Transfer done array for this transaction.

index (Optional) Array element index number for transfer_done.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns transfer_done



VHDL Slave BFM
set_transaction_done()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 147
January 2016

set_transaction_done()
This nonblocking procedure sets the transaction_done field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example

Note
You would not normally use this procedure within a Slave Test Program.

Prototype set_transaction_done
(

transaction_done : in integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_done Transaction done flag for this transaction

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c148

VHDL Slave BFM
get_transaction_done()

January 2016

get_transaction_done()
This nonblocking procedure gets the transaction_done field for a slave transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_slave_transaction() procedure.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the transaction_done flag of the tr_id transaction.
get_transaction_done(transaction_done, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_transaction_done
(

transaction_done : out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_done Transaction done flag for this transaction

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns transaction_done



VHDL Slave BFM
get_packet()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 149
January 2016

get_packet()
This blocking procedure gets a slave packet that is uniquely identified by the transaction_id 
argument previously created by the create_slave_transaction() procedure.

It calls the get_transfer() procedure for each transfer of the packet, with the number of transfers 
defined by the transaction record burst_length field.

Example
-- Create a slave transaction.
-- Creation returns tr_id to identify the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the packet of the tr_id transaction.
get_packet(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_packet
(

transaction_id  : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

index (Optional) Data phase (beat) number.

last Last data phase (beat) of the burst:
0 = data burst not complete
1 = data burst complete

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns last



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c150

VHDL Slave BFM
get_transfer()

January 2016

get_transfer()
This blocking procedure gets a slave transfer that is uniquely identified by the transaction_id 
argument previously created by the create_slave_transaction() procedure.

The transfer number within a packet is identified by the optional index argument. If no transfer 
index is supplied, then the first transfer within a packet is accessed.

It sets the transfer_done array index element to 1 when the transfer is completed. If this is the 
last transfer of the transaction, it sets the transaction_done field to 1 and returns the last 
argument set to 1 to indicate the whole transaction is complete.

Example
-- Create a slave transaction. Creation returns tr_id to identify
-- the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the first transfer of the tr_id transaction.
get_transfer(tr_id, 0, last, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Get the second transfer of the tr_id transaction.
get_transfer(tr_id, 1, last, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_transfer
(

transaction_id  : in integer;
index : in integer; --optional
last : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

index (Optional) Data phase (beat) number.

last Last data phase (beat) of the burst:

0 = data burst not complete
1 = data burst complete

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns last



VHDL Slave BFM
execute_stream_ready()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 151
January 2016

execute_stream_ready()
This procedure executes a stream ready by placing the ready argument value onto the TREADY 
signal.

Example
-- Assign TREADY = '0'. This will consume one cycle.
execute_stream_ready(0, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Two clock cycle wait.
for i in 0 to 1 loop

wait_on(AXI4STREAM_CLOCK_POSEDGE, bfm_index,
axi4stream_tr_if_0(bfm_index));

end loop;  

-- Assign TREADY = '1'.
execute_stream_ready(1, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure execute_stream_ready
(

ready : in integer;
non_blocking_mode : in integer; -- Optional
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments ready The value of the TREADY signal

non_blocking_mode (Optional) Controls the blocking or nonblocking mode of the 
procedure.

0 = blocking (default)
1 = nonblocking

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c152

VHDL Slave BFM
print()

January 2016

print()
This nonblocking procedure prints a transaction record that is uniquely identified by the 
transaction_id argument previously created by the create_slave_transaction() procedure.

Example
-- Create a slave transaction. Creation returns tr_id to identify
-- the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Print the transaction record (including delay values) of the
-- tr_id transaction.
print(tr_id, 1, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure print
(

transaction_id  : in integer;
print_delays : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

print_delays Print delay values flag:
0 = do not print the delay values (default).
1 = print the delay values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Slave BFM
destruct_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 153
January 2016

destruct_transaction()
This blocking procedure removes a transaction record, for cleanup purposes and memory 
management, uniquely identified by the transaction_id argument previously created by the 
create_slave_transaction() procedure.

Example
-- Create a slave transaction. Creation returns tr_id to identify
-- the transaction.
create_slave_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Remove the transaction record for the tr_id transaction.
destruct_transaction(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure destruct_transaction
(

transaction_id  : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c154

VHDL Slave BFM
wait_on()

January 2016

wait_on()
This blocking procedure waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
wait_on(AXI4STREAM_RESET_POSEDGE, bfm_index,

axi4stream_tr_if_0(bfm_index));

wait_on(AXI4STREAM_CLOCK_POSEDGE, 10, bfm_index,
axi4stream_tr_if_0(bfm_index));

Prototype procedure wait_on
(

phase           : in integer;
count: in integer; -optional
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments phase Wait for:

AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0

count (Optional) Wait for a number of events to occur set by 
count.

bfm_id BFM identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to 
for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 155
January 2016

Chapter 10
VHDL Monitor BFM

This section provides information about the VHDL monitor BFM. It has an API that contains 
procedures to configure the BFM and to access the dynamic Transaction Record during the life 
of the transaction.

Inline Monitor Connection
The connection of a monitor BFM to a test environment differs from that of a master and slave 
BFM. It is wrapped within an inline monitor interface and connected inline between a master 
and slave, as shown in Figure 10-1. It has separate master and slave ports, and monitors protocol 
traffic between a master and slave. The monitor has access to all the facilities provided by the 
monitor BFM.

Figure 10-1. Inline Monitor Connection Diagram

Monitor BFM Protocol Support
The monitor BFM supports the full AMBA AXI4-Stream protocol.

Monitor Timing and Events
For detailed timing diagrams of the protocol bus activity, refer to the relevant AMBA 
AXI4-Stream Protocol Specification chapter, which you can reference for details of the 
following monitor BFM API timing and events.

The AMBA AXI4-Stream Protocol Specification does not define any timescale or clock period 
with signal events sampled and driven at rising ACLK edges. Therefore, the monitor BFM does 

SlaveMaster

Inline monitor

Master portSlave port

Monitor



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c156

VHDL Monitor BFM
Monitor BFM Configuration

January 2016

not contain any timescale, timeunit, or timeprecision declarations, with the signal setup and 
hold times specified in units of simulator time-steps.

Monitor BFM Configuration
The monitor BFM supports the full range of signals defined for the AMBA AXI4-Stream 
Protocol Specification. It has parameters that you use to configure the widths of the data and ID 
signals, and transaction fields to configure timeout factors, setup and hold times, and so on.

You can change the data and ID signals widths from their default settings by assigning them 
new values, usually in the top-level module of the test bench. These new values are then passed 
into the monitor BFM using a parameter port list of the monitor BFM module

Table 10-1 lists the parameter names for the data and ID signals and their default values.

A monitor BFM has configuration fields that you set with the set_config() procedure to 
configure timeout factors, setup and hold times, and so on. You get the value of a configuration 
field with the get_config() procedure. Table 10-2 describes the full list of configuration fields.

Table 10-1. Monitor BFM Signal Width Parameters

Signal Width Parameter Description

AXI4_ID_WIDTH ID signal width in bits. This applies to the TID signal. 
Refer to the AMBA AXI4-Stream Protocol Specification 
for more details. Default: 18.

AXI4_USER_WIDTH User data signal width in bits. This applies to the TUSER 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 8.

AXI4_DEST_WIDTH Destination routing signal width in bits. This applies to 
the TDEST signal. Refer to the AMBA AXI4-Stream 
Protocol Specification for more details. Default: 18.

AXI4_DATA_WIDTH Data signal width in bits. This applies to the TDATA 
signal. Refer to the AMBA AXI4-Stream Protocol 
Specification for more details. Default: 1024.

Table 10-2. Monitor BFM Configuration  

Configuration Field Description

Timing Variables

AXI4STREAM_CONFIG_SETUP_TIME The setup-time prior to the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.



VHDL Monitor BFM
Monitor Assertions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 157
January 2016

1. Refer to Monitor Timing and Events for details of simulator time-steps.

Monitor Assertions
The monitor BFM performs protocol error checking using built-in assertions.

Note
The built-in BFM assertions are independent of programming language and simulator.

AXI4STREAM_CONFIG_HOLD_TIME The hold-time after the active 
edge of ACLK, in units of 
simulator time-steps for all 
signals.1 Default: 0.

AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR The maximum delay between the 
individual phases of a read/write 
transaction in clock cycles. 
Default: 10000.

AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_
ASSERTION_TO_TREADY

The maximum delay permitted 
between the assertion of TVALID 
to the assertion of TREADY. 
Default: 10000.

Master Attributes

AXI4STREAM_LAST_DURING_IDLE Controls the value of TLAST 
during idle.
0 = TLAST driven to 0 during 
idle (default)
1 = TLAST driven to 1 during 
idle

Error Detection

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS Global enable/disable of all 
assertion checks in the BFM.
0 = disabled
1 = enabled (default)

AXI4STREAM_CONFIG_ENABLE_ASSERTION Individual enable/disable of an 
assertion check in the BFM. 
Refer to Assertions chapter for 
details
0 = disabled
1 = enabled (default)

Table 10-2. Monitor BFM Configuration (cont.) 

Configuration Field Description



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c158

VHDL Monitor BFM
Monitor Assertions

January 2016

By default, all built-in assertions are enabled in the monitor BFM. To globally disable them in 
the monitor BFM, use the set_config() command as shown in Example 10-1.

Example 10-1. Monitor BFM Disable All Assertions

set_config(AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS,0,bfm_index, 
axi4stream_tr_if_0(bfm_index));

Alternatively, you can disable individual built-in assertions by using a sequence of get_config() 
and set_config() commands on the respective assertion. Example 10-2 shows how to disable 
assertion checking for the TLAST signal changing between the TVALID and TREADY 
handshake signals.

Example 10-2. Monitor BFM Individual Assertion Enable/Disable

-- Define a local bit vector to hold the value of the assertion bit vector
variable config_assert_bitvector : 
std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0);

-- Get the current value of the assertion bit vector
get_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

-- Assign the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion bit to 0
config_assert_bitvector(AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY) := ‘0’;

-- Set the new value of the assertion bit vector
set_config(AXI4STREAM_CONFIG_ENABLE_ASSERTION, config_assert_bitvector, 
bfm_index, axi4stream_tr_if_0(bfm_index));

Note
Do not confuse the AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector with 
the AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS global enable/disable.

To re-enable the AXI4STREAM_TLAST_CHANGED_BEFORE_TREADY assertion, follow 
the code sequence in Example 10-2 and assign the assertion enable within the 
AXI4STREAM_CONFIG_ENABLE_ASSERTION bit vector to 1.

For a complete listing of assertions, refer to “Assertions” on page 203.



VHDL Monitor BFM
VHDL Monitor BFM API

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 159
January 2016

VHDL Monitor BFM API
This section describes the VHDL monitor API.

Each procedure available within the monitor BFM API is detailed in the following chapter. The 
set*() and get*() procedures that operate on the Transaction Record fields have a simple rule for 
the procedure name: set_ or get_ followed by the name of the transaction field to be accessed. 
Refer to “Transaction Record” on page 21 for details of transaction field names.

Note
The monitor BFM API package is the axi4stream/bfm/mgc_axi4stream_bfm_pkg.vhd file 
packaged within the Mentor Verification IP Altera Edition.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c160

VHDL Monitor BFM
set_config()

January 2016

set_config()
This nonblocking procedure sets the configuration of the monitor BFM.

Example
set_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, 1000, bfm_index, 

axi4stream_tr_if_0(bfm_index));

Prototype procedure set_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val : in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_

ASSERTION_TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Overloaded Procedure Common Arguments” on 
page 85 for description and valid values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Monitor BFM
get_config()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 161
January 2016

get_config()
This nonblocking procedure gets the configuration of the monitor BFM.

Example
get_config(AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR, config_value, 

bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_config
(

config_name   : in std_logic_vector(7 downto 0);
config_val    : out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0)|integer;
bfm_id        : in integer; 
signal tr_if  : inout axi4stream_vhd_if_struct_t

);

Arguments config_name Configuration name:

AXI4STREAM_CONFIG_SETUP_TIME
AXI4STREAM_CONFIG_HOLD_TIME
AXI4STREAM_CONFIG_BURST_TIMEOUT_FACTOR
AXI4STREAM_CONFIG_LAST_DURING_IDLE
AXI4STREAM_CONFIG_MAX_LATENCY_TVALID_ASSERTION_

TO_TREADY

AXI4STREAM_CONFIG_ENABLE_ALL_ASSERTIONS
AXI4STREAM_CONFIG_ENABLE_ASSERTION

config_val Refer to “Monitor BFM Configuration” on page 156 for description and 
valid values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns config_val



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c162

VHDL Monitor BFM
create_monitor_transaction()

January 2016

create_monitor_transaction()
This nonblocking procedure creates a monitor transaction. All transaction fields default to legal 
protocol values, unless previously assigned a value. This procedure creates and returns the 
transaction_id argument.

Prototype procedure create_monitor_transaction
(

transaction_id  : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Protocol
Transaction 
Fields

data Data array in bytes

byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

id Data stream identifier.

dest Destination routing information.

user_data User data array.

Operational
Transaction 
Fields

operation_
mode

Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

valid_delay TVALID delay measured in ACLK cycles for this transaction.
(default = 0).

ready_delay TREADY delay measured in ACLK cycles for this transaction.
(default = 0).

transfer_done Transfer done flag array for this transaction

transaction_
done

Transaction done flag for this transaction

Returns transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85.



VHDL Monitor BFM
create_monitor_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 163
January 2016

Example
-- Create a monitor transaction
-- Returns the transaction ID (tr_id) for this created transaction.
create_monitor_transaction(tr_id, bfm_index, 
axi4stream_tr_if_3(bfm_index));



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c164

VHDL Monitor BFM
get_data()

January 2016

get_data()
This nonblocking procedure gets a data field array element for a transaction that is uniquely 
identified by the transaction_id field previously created by the create_monitor_transaction() 
procedure.

The data byte is identified by the optional index argument. If no index is supplied, then the first 
data byte is accessed in the array.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the data field for the first byte of the tr_id transaction.
get_data(data, 0, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Get the data field for the second byte of the tr_id transaction.
get_data(data, 1, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_data
(

data: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments data Data byte.

index (Optional) Array element index number for data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns data



VHDL Monitor BFM
get_byte_type()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 165
January 2016

get_byte_type()
This nonblocking procedure gets a byte_type field array element for a monitor transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_monitor_transaction() procedure.

The byte_type array element is identified by the optional index argument. If no index is 
supplied, then the first byte_type is accessed in the array.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the byte_type field for the first byte of the tr_id transaction.
get_byte_type(byte_type, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the byte_type field for the second byte of the tr_id transaction.
get_byte_type(byte_type, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_byte_type
(

byte_type: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments byte_type Byte type array:

AXI4STREAM_DATA_BYTE; (default)
AXI4STREAM_NULL_BYTE;
AXI4STREAM_POS_BYTE;
AXI4STREAM_ILLEGAL_BYTE;

index (Optional) Array element index number for byte_type.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns byte_type



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c166

VHDL Monitor BFM
get_id()

January 2016

get_id()
This nonblocking procedure gets the data stream identifier id field for a monitor transaction that 
is uniquely identified by the transaction_id field and previously created by the 
create_monitor_transaction() procedure.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the id field of the tr_id transaction.
get_id(id, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_id
(

id: in std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 0 ) 
| integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments id Data stream identifier value placed on the TID signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns id



VHDL Monitor BFM
get_dest()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 167
January 2016

get_dest()
This nonblocking procedure gets the routing information id field for a monitor transaction that 
is uniquely identified by the transaction_id field and previously created by the 
create_monitor_transaction() procedure.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the dest field of the tr_id transaction.
get_dest(dest, tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype get_dest
(

dest: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 downto 
0 ) | integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments dest Data stream routing information value placed on the TDEST signals.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns dest



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c168

VHDL Monitor BFM
get_user_data()

January 2016

get_user_data()
This nonblocking procedure gets a user_data field array element for a monitor transaction that 
is uniquely identified by the transaction_id field previously created by the 
create_monitor_transaction() procedure.

The user_data array element is identified by the optional index argument. If no index is 
supplied, then the first user_data is accessed in the array.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(3, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the user_data field for the first transfer
-- of the tr_id transaction.
get_user_data(user_data, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the user_data field for the second transfer
-- of the tr_id transaction.
get_user_data(user_data, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_user_data
(

user_data: out std_logic_vector(AXI4STREAM_MAX_BIT_SIZE-1 
downto 0 ) | integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments user_data User data array values placed on the TUSER signals.

index (Optional) Array element index number for user_data.

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns user_data



VHDL Monitor BFM
get_valid_delay()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 169
January 2016

get_valid_delay()
This nonblocking procedure gets the valid_delay field for a monitor transaction that is uniquely 
identified by the transaction_id field previously created by the create_monitor_transaction() 
procedure.

The valid_delay array element is identified by the optional index argument. If no index is 
supplied, then the first valid_delay is accessed in the array.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the TVALID delay for the first transfer of the tr_id transaction.
get_valid_delay(valid_delay, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the TVALID delay or the second transfer of the tr_id transaction.
get_valid_delay(valid_delay, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_valid_delay
(

valid_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments valid_delay Valid delay array to store TVALID delays measured in ACLK 
cycles for this transaction. Default: 0.

index (Optional) Array element index number for valid_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns valid_delay



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c170

VHDL Monitor BFM
get_ready_delay()

January 2016

get_ready_delay()
This nonblocking procedure gets the ready_delay field for a monitor transaction that is uniquely 
identified by the transaction_id field previously created by the create_monitor_transaction() 
procedure.

The ready_delay array element is identified by the optional index argument. If no index is 
supplied, then the first ready_delay is accessed in the array.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(3, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the TREADY delay for the first transfer of the tr_id transaction.
get_ready_delay(ready_delay, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

-- Get the TREADY delay or the second transfer of the tr_id transaction.
get_ready_delay(ready_delay, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_ready_delay
(

ready_delay: out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments ready_delay Read data channel array to hold RREADY delays measured in 
ACLK cycles for this transaction. Default: 0.

index (Optional) Array element index number for ready_delay.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns ready_delay



VHDL Monitor BFM
get_operation_mode()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 171
January 2016

get_operation_mode()
This nonblocking procedure gets the operation_mode field for a monitor transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_monitor_transaction() procedure.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(3, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the operation mode field of the tr_id transaction.
get_operation_mode(operation_mode, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_operation_mode
(

operation_mode: out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments operation_mode Operation mode:

AXI4STREAM_TRANSACTION_NON_BLOCKING;
AXI4STREAM_TRANSACTION_BLOCKING; (default)

transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns operation_mode



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c172

VHDL Monitor BFM
get_transfer_done()

January 2016

get_transfer_done()
This nonblocking procedure gets a transfer_done field for a monitor transaction that is uniquely 
identified by the transaction_id field previously created by the create_monitor_transaction() 
procedure.

The transfer_done array element is identified by the optional index argument. If no index is 
supplied, then the first transfer_done is accessed in the array. 

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the transfer_done flag for the first transfer
-- of the tr_id transaction.
get_transfer_done(transfer_done, 0, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the transfer_done flag for the second transfer
-- of the tr_id transaction.
get_transfer_done(transfer_done, 1, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_transfer_done
(

transfer_done : out integer;
index : in integer; --optional
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transfer_done Transfer done array for this transaction.

index (Optional) Array element index number for transfer_done.

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns None



VHDL Monitor BFM
get_transaction_done()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 173
January 2016

get_transaction_done()
This nonblocking procedure gets the transaction_done field for a monitor transaction that is 
uniquely identified by the transaction_id field previously created by the 
create_monitor_transaction() procedure.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the transaction_done flag of the tr_id transaction.
get_transaction_done(transaction_done, tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

Prototype get_transaction_done
(

transaction_done : out integer;
transaction_id  : in integer;
bfm_id : in integer;
signal tr_if : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_done Transaction done flag for this transaction

transaction_id Transaction identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

Returns transaction_done



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c174

VHDL Monitor BFM
get_packet()

January 2016

get_packet()
This blocking procedure gets a monitor packet that is uniquely identified by the transaction_id 
argument previously created by the create_monitor_transaction() procedure.

It calls the get_transfer() procedure for each transfer of the packet with the number of transfers 
defined by the transaction record burst_length field.

Example
-- Create a monitor transaction.
-- Creation returns tr_id to identify the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the packet of the tr_id transaction.
get_packet(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_packet
(

transaction_id  : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

index (Optional) Data phase (beat) number.

last Last data phase (beat) of the burst:
0 = data burst not complete
1 = data burst complete

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns last



VHDL Monitor BFM
get_transfer()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 175
January 2016

get_transfer()
This blocking procedure gets a monitor transfer that is uniquely identified by the transaction_id 
argument previously created by the create_monitor_transaction() procedure.

The transfer number within a packet is identified by the optional index argument. If no transfer 
index is supplied, then the first transfer within a packet is accessed.

It sets the transfer_done array index element to 1 when the transfer completes. If this is the last 
transfer of the transaction, it sets the transaction_done field to 1 and returns the last argument 
set to 1 to indicate the whole transaction is complete.

Example
-- Create a monitor transaction. Creation returns tr_id to identify
-- the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Get the first transfer of the tr_id transaction.
get_transfer(tr_id, 0, last, bfm_index, axi4stream_tr_if_0(bfm_index));

-- Get the second transfer of the tr_id transaction.
get_transfer(tr_id, 1, last, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure get_transfer
(

transaction_id  : in integer;
index : in integer; --optional
last : out integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

index (Optional) Data phase (beat) number.

last Last data phase (beat) of the burst:
0 = data burst not complete
1 = data burst complete

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns last



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c176

VHDL Monitor BFM
print()

January 2016

print()
This nonblocking procedure prints a transaction record that is uniquely identified by the 
transaction_id argument previously created by the create_monitor_transaction() procedure.

Example
-- Create a monitor transaction. Creation returns tr_id to identify
-- the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Print the transaction record (including delay values) of the
-- tr_id transaction.
print(tr_id, 1, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure print
(

transaction_id  : in integer;
print_delays : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

print_delays Print delay values flag:
0 = do not print the delay values (default).
1 = print the delay values.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



VHDL Monitor BFM
destruct_transaction()

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 177
January 2016

destruct_transaction()
This blocking procedure removes a transaction record, for cleanup purposes and memory 
management, that is uniquely identified by the transaction_id argument previously created by 
the create_monitor_transaction() procedure.

Example
-- Create a monitor transaction. Creation returns tr_id to identify
-- the transaction.
create_monitor_transaction(tr_id, bfm_index,

axi4stream_tr_if_0(bfm_index));

....

-- Remove the transaction record for the tr_id transaction.
destruct_transaction(tr_id, bfm_index, axi4stream_tr_if_0(bfm_index));

Prototype procedure destruct_transaction
(

transaction_id  : in integer;
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments transaction_id Transaction identifier. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

bfm_id BFM identifier. Refer to “Overloaded Procedure Common Arguments” 
on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded Procedure Common 
Arguments” on page 85 for more details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c178

VHDL Monitor BFM
wait_on()

January 2016

wait_on()
This blocking procedure waits for an event on the ACLK or ARESETn signals to occur before 
proceeding. An optional count argument waits for the number of events equal to count.

Example
wait_on(AXI4STREAM_RESET_POSEDGE, bfm_index,

axi4stream_tr_if_0(bfm_index));

wait_on(AXI4STREAM_CLOCK_POSEDGE, 10, bfm_index,
axi4stream_tr_if_0(bfm_index));

Prototype procedure wait_on
(

phase           : in integer;
count: in integer; -optional
bfm_id          : in integer; 
signal tr_if    : inout axi4stream_vhd_if_struct_t

);

Arguments phase Wait for:

AXI4STREAM_CLOCK_POSEDGE
AXI4STREAM_CLOCK_NEGEDGE
AXI4STREAM_CLOCK_ANYEDGE
AXI4STREAM_CLOCK_0_TO_1
AXI4STREAM_CLOCK_1_TO_0
AXI4STREAM_RESET_POSEDGE
AXI4STREAM_RESET_NEGEDGE
AXI4STREAM_RESET_ANYEDGE
AXI4STREAM_RESET_0_TO_1
AXI4STREAM_RESET_1_TO_0

count (Optional) Wait for a number of events to occur set by 
count.

bfm_id BFM identifier. Refer to “Overloaded Procedure 
Common Arguments” on page 85 for more details.

tr_if Transaction signal interface. Refer to “Overloaded 
Procedure Common Arguments” on page 85 for more 
details.

Returns None



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 179
January 2016

Chapter 11
VHDL Tutorials

This chapter discusses how to use the Mentor VIP AE master and slave BFMs to verify slave 
and master components, respectively.

In the Verifying a Slave DUT tutorial, the slave is verified using a master BFM and test 
program. In the Verifying a Master DUT tutorial, the master issued transfers are verified using a 
slave BFM and test program.

Following this top-level discussion of how you verify a master and a slave component using the 
Mentor VIP AE is a brief example of how to run Qsys, the powerful system integration tool in 
the Quartus II software. This procedure shows you how to use Qsys to create a top-level DUT 
environment. For more details about this example, refer to “Getting Started with Qsys and the 
BFMs” on page 187.

Verifying a Slave DUT
A slave DUT component is connected to a master BFM at the signal-level. A master test 
program, written at the transaction-level, generates stimulus via the master BFM to verify the 
slave DUT. Figure 11-1 illustrates a typical top-level test bench environment.

Figure 11-1. Slave DUT Top-Level Test Bench Environment

A top-level file instantiates and connects all the components required to test and monitor the 
DUT, and controls the system clock (ACLK) and reset (ARESETn) signals.

Master
BFM

On-chip
RAM slave

Master test program

Top-level file



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c180

VHDL Tutorials
Verifying a Slave DUT

January 2016

Master BFM Test Program
A master BFM test program is capable of creating a wide range of stimulus scenarios to verify a 
slave DUT. For a complete code listing of this master test program, refer to “VHDL Master 
BFM Code Example” on page 211.

The master test program contains a Traffic Generation process that creates and executes master 
transactions over the protocol signals. The following section describes the main process and 
variables.

Traffic Generation
The traffic generation process creates and executes master transactions, as shown in 
Example 11-1. The process defines a number of local variables to hold the transaction record, 
the byte count within a transfer, the transfer count, and inner and outer loop counters. Execution 
then waits for the ARESETn signal to be deasserted, followed by a positive ACLK edge. This 
satisfies the protocol requirements detailed in Section 2.7.2 of the AMBA 4 AXI4-Stream 
Protocol Specification.

Example 11-1. Definition and Initialization

process
variable trans: integer;
variable byte_count : integer := AXI4_DATA_WIDTH/8;
variable transfer_count : integer;
variable k    : integer;
variable m    : integer;

begin    
wait_on(AXI4STREAM_RESET_POSEDGE, index, axi4stream_tr_if_0(index));
wait_on(AXI4STREAM_CLOCK_POSEDGE, index, axi4stream_tr_if_0(index));

An outer for loop increments the transfer_count on each iteration of the loop, as shown in 
Example 11-2. Calling the create_master_transaction() procedure creates a master transaction, 
passing in the optional transfer_count as an argument to the procedure. The TID and TDEST 
signal values are then assigned for the data stream. Each iteration of the outer loop creates a 
master transaction with the transfer_count per transaction passed as an argument.

An inner for loop calls the set_data() procedure to load a byte into the data transaction field, 
and calls the set_byte_type() procedure to load the byte_type transaction field for the byte.

Calling the execute_transaction() procedure executes the trans transaction onto the protocol 
signals.



VHDL Tutorials
Verifying a Slave DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 181
January 2016

Example 11-2. Master Transaction Creation and Execution

--************************
-- Traffic generation: **
--************************
-- 10 x packet with 
-- Number of transfer = i % 10. Values : 1, 2 .. 10 
-- id = i % 15. Values 0, 1, 2 .. 14
-- dest = i %20. Values 0, 1, 2 .. 19
for i in  0 to 9 loop

transfer_count := (i mod 10) + 1;
create_master_transaction(transfer_count, trans, index,

axi4stream_tr_if_0(index));
set_id(i mod 15, trans, index, axi4stream_tr_if_0(index));
set_dest(i mod 20, trans, index, axi4stream_tr_if_0(index));
for j in  0 to ((transfer_count * byte_count) - 1) loop

set_data(i + j, j, trans, index, axi4stream_tr_if_0(index));
if(((i + j) mod 5) = 0) then

set_byte_type(AXI4STREAM_NULL_BYTE, j, trans, index,
axi4stream_tr_if_0(index));

elsif(((i + j) mod 5) = 1) then 
set_byte_type(AXI4STREAM_POS_BYTE, j, trans, index,

axi4stream_tr_if_0(index));
else 

set_byte_type(AXI4STREAM_DATA_BYTE, j, trans, index,
axi4stream_tr_if_0(index));

end if;
end loop;
execute_transaction(trans, index, axi4stream_tr_if_0(index));

end loop; 

The master test program repeats the creation of master transactions similar to that shown in 
Example 11-2, but instead calls the execute_transfer() task per iteration of the inner for loop, as 
shown in Example 11-3.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c182

VHDL Tutorials
Verifying a Slave DUT

January 2016

Example 11-3. Master Transfer Execution

-- 10 x packet at transfer level with 
-- Number of transfer = i % 10. Values : 1, 2 .. 10 
-- id = i % 15. Values 0, 1, 2 .. 14
-- dest = i %20. Values 0, 1, 2 .. 19
for i in  0 to 9 loop

transfer_count := (i mod 10) + 1;
create_master_transaction(transfer_count, trans, index,

axi4stream_tr_if_0(index));
set_id(i mod 15, trans, index, axi4stream_tr_if_0(index));
set_dest(i mod 20, trans, index, axi4stream_tr_if_0(index));
m := 0;
while(m < transfer_count) loop

k := m;
while(k < transfer_count) loop

set_data(k, k, trans, index, axi4stream_tr_if_0(index));
if(((i + m) mod 5) = 0) then

set_byte_type(AXI4STREAM_NULL_BYTE, m, trans, index,
axi4stream_tr_if_0(index));

elsif(((i + m) mod 5) = 1) then 
set_byte_type(AXI4STREAM_POS_BYTE, m, trans, index,

axi4stream_tr_if_0(index));
else 

set_byte_type(AXI4STREAM_DATA_BYTE, m, trans, index,
axi4stream_tr_if_0(index));

end if;
k := k + 1;

end loop; 
execute_transfer(trans, m / byte_count, index,

axi4stream_tr_if_0(index));
m := m + byte_count;

end loop;
end loop;



VHDL Tutorials
Verifying a Master DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 183
January 2016

Verifying a Master DUT
A master DUT component is connected to a slave BFM at the signal-level. A slave test program, 
written at the transaction-level, generates stimulus using the slave BFM to verify the master 
DUT. Figure 11-2 illustrates a typical top-level test bench environment.

Figure 11-2. Master DUT Top-Level Test Bench Environment

A top-level file instantiates and connects all the components required to test and monitor the 
DUT, and controls the system clock (ACLK) and reset (ARESETn) signals.

Slave BFM Test Program
The slave test program contains a Basic Slave Test Program API Definition that implements a 
simplified interface for you to start verifying a master DUT with minimal effort. The API 
allows the slave BFM to control back-pressure to the master DUT by configuring the delay for 
the assertion of the TREADY signal. No other slave test program editing is required in this case.

The Advanced Slave Test Program API Definition allows the slave BFM to receive protocol 
transfers and insert a delay for the assertion of the TREADY signal. No further analysis of the 
protocol transfer content is performed. If analysis is required, you need to edit the slave test 
program to add this feature.

For a complete code listing of the slave test program, refer to “VHDL Slave BFM Code 
Example” on page 214.

Basic Slave Test Program API Definition
The Basic Slave Test Program API contains the following:

Slave
BFM

Master
DUT

Slave test program

Top-level file



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c184

VHDL Tutorials
Verifying a Master DUT

January 2016

• Configuration variable m_insert_wait to insert a delay in the assertion of the TREADY 
protocol signal

• Procedure ready_delay() to configure the delay of the TREADY signal

m_insert_wait
The m_insert_wait configuration signal controls the insertion of a delay for the TREADY 
protocol signal defined by the ready_delay() procedure. To insert a delay, set m_insert_wait to 1 
(default); otherwise, set to 0 as shown in Example 11-4.

Example 11-4. m_insert_wait

-- This signal controls the wait insertion in axi4 stream transfers
-- coming from master.
-- Making ~m_insert_wait~ to '0' truns off the wait insertion.
signal m_insert_wait : std_logic := '1';

ready_delay()
The ready_delay procedure inserts a delay for the TRREADY signal. The delay value extends 
the length of a protocol transfer by a defined number of ACLK cycles. The starting point of the 
delay is determined by the completion of a previous transfer, or from the first positive ACLK 
edge after reset at the start of simulation.

The ready_delay() task initially sets TREADY to 0 by calling the execute_stream_ready() 
procedure, as shown in Example 11-5. The delay is inserted by calling the wait_on() procedure 
within a for loop statement. You can edit the number of repetitions to change the delay. After 
the delay, the execute_stream_ready() procedure is called again to set the TREADY signal to 1.

Example 11-5. ready_delay

procedure ready_delay(signal tr_if : inout axi4stream_vhd_if_struct_t);

--///////////////////////////////////////////////
-- Code user could edit according to requirements
--///////////////////////////////////////////////

-- Procedure : ready_delay
-- This is used to set ready delay to extend the transfer
procedure ready_delay(signal tr_if : inout axi4stream_vhd_if_struct_t) is
begin

--  Making TREADY '0'. This will consume one cycle.
execute_stream_ready(0, index, tr_if);
-- Two clock cycle wait. In total 3 clock wait.
for i in 0 to 1 loop

wait_on(AXI4STREAM_CLOCK_POSEDGE, index, tr_if);
end loop;  
-- Making TREADY '1'.
execute_stream_ready(1, index, tr_if);

end ready_delay;



VHDL Tutorials
Verifying a Master DUT

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 185
January 2016

Note
In addition to the above procedures and variables, you can configure other aspects of the 
slave BFM by using these procedures: set_config() and get_config().

Advanced Slave Test Program API Definition
The remaining section of this tutorial presents a walk-through of the Advanced Slave Test 
Program API within the slave BFM test program. It consists of a single initial block() process 
that receives protocol transfers, inserting a delay in the assertion of the TREADY signal as 
detailed in the Basic Slave Test Program API Definition.

initial block()
Within a process, the slave test program defines a local variable trans to hold the Transaction 
Record of the transaction, as shown in Example 11-6. The initial wait for the ARESETn signal 
to be deactivated, followed by a positive ACLK edge, satisfies the protocol requirement detailed 
in Section 2.7.2 of the AMBA 4 AXI4-Stream Protocol Specification.

Example 11-6. Initialization

--/////////////////////////////////////////////////////////////////////
-- Code user do not need to edit
--/////////////////////////////////////////////////////////////////////
process

variable trans: integer;
variable i : integer;
variable last : integer;

begin
--*******************
--** Initialisation **
--********************
wait_on(AXI4STREAM_RESET_POSEDGE, index, axi4stream_tr_if_0(index));
wait_on(AXI4STREAM_CLOCK_POSEDGE, index, axi4stream_tr_if_0(index));

To receive protocol transfers, you must create a slave transaction. Within a loop, the 
create_slave_transaction() procedure is called to create a slave transaction, returning the 
transaction_id field of the transaction via the trans variable, as shown in Example 11-7.

An inner while loop iterates until the last transfer has been received. On each iteration, a delay is 
inserted before the TREADY signal is set to 1 by calling the ready_delay() procedure if 
m_insert_wait is set to 1. After any TREADY delay, the blocking get_transfer() procedure is 
called and waits for a transfer to be received.

If further analysis of the received transfer is required, then you need to edit the Advanced Slave 
API to achieve this. You can obtain details of the Transaction Record for the received transfer 
using the get*() procedures within the VHDL Slave BFM.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c186

VHDL Tutorials
Verifying a Master DUT

January 2016

Example 11-7. Transfer Receiving

loop
create_slave_transaction(trans, index, axi4stream_tr_if_0(index));
i := 0;
last := 0;
while(last = 0) loop

if(m_insert_wait = '1') then
-- READY is through path 0
ready_delay(axi4stream_tr_if_0(index));

end if;
get_transfer(trans, i, last, index, axi4stream_tr_if_0(index));
i := i + 1;  

end loop;
end loop;  

wait;
end process;



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 187
January 2016

Chapter 12
Getting Started with Qsys and the BFMs

Note
A license is required to access the Mentor Graphics VIP AE bus functional models and 
inline monitor. See Mentor VIP AE License Requirements for details.

This example shows you how to use the Qsys tool in Quartus II software to create a top-level 
design environment. You will be using the ex1_back_to_back_sv, a SystemVerilog example 
from the $QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae/axi4stream/qsys-examples 
directory in the Altera Complete Design Suite (ACDS) installation. 

Do the following tasks to set up the design environment:

1. Create a work directory.

2. Copy the example to the work directory.

3. Invoke Qsys from the Quartus II software Tools menu.

4. Generate a top-level netlist.

5. Run the simulation by referencing the README text file and command scripts for your 
simulation environment.

Setting Up a Simulation from a UNIX Platform
The following steps outline how to set up the simulation environment from a UNIX platform. 

1. Create a work directory into which you copy the example directory qsys-examples, 
which contains the directory ex1_back_to_back_sv from the Installation.

a. Using the mkdir command, create the work directory into which you will copy the 
qsys-examples directory.

mkdir axi4stream-qsys-example

b. Using the cp command, copy the qsys-examples directory from the Installation 
directory into your work directory.

cp -r $QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae/axi4stream/\
qsys-examples/* axi4stream-qsys-example/



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c188

Getting Started with Qsys and the BFMs
Setting Up a Simulation from a UNIX Platform

January 2016

2. Using the cd command, change the directory path to your local path where the example 
resides.

cd axi4stream-qsys-example/ex1_back_to_back_sv

3. Open the Qsys tool. Refer to the Running the Qsys Tool section for details.



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 189
January 2016

Setting Up Simulation from the Windows GUI
The following steps outline how to set up the simulation environment from a Windows GUI. 
This example uses the Windows7 platform.

1. Create a work folder into which you copy the contents of the qsys-examples folder, 
which includes the ex1_back_to_back_sv folder from the Installation.

a. Using the GUI, select a location for your work folder, then click the New folder 
option on the window’s menu bar to create and name a work folder. For this example 
name the work folder axi4stream-qsys-examples. Refer to figures 12-1 and 12-3 
below. 

Figure 12-1. Copy qsys-examples from the Installation Folder

b. Copy the contents of the qsys-examples folder from the Installation folder to your 
work folder.

Open the Installation and work folders. In the Installation folder, double-click the 
qsys-examples folder to select and open it. When the folder opens, type CRTL/A to 
select the contents of the directory, then right-click to display the drop-down menu 
and select Copy from the drop-down menu. 

Go to the open work folder. Double-click on the folder.

When the folder opens, right-click inside the work folder and select Paste from the 
drop-down menu to copy the contents of the qsys-examples folder to the new 
axi4stream-qsys-examples work folder.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c190

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

Paste the qsys-examples from the Installation folder in to the axi4stream-qsys-
examples work folder (refer to Figure 12-2).

Figure 12-2. Paste qsys-examples from Installation to Work Folder

Note
Alternatively, open both folders, the Installation folder containing the qsys-examples 
folder and the new axi4stream-qsys-examples work folder. Use the Windows select, drag, 
and drop functions to select the qsys-examples folder in the Installation folder, and then 
drag the contents to and drop it in the new axi4stream-qsys-examples work folder. 

2. After creating the new axi4stream-qsys-examples work folder and copying the contents 
of the qsys-examples to it, open the Qsys tool. Refer to Running the Qsys Tool section 
for details.



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 191
January 2016

Running the Qsys Tool 
1. Open Qsys in the Quartus II software menu.

To do this, start the Quartus II software. When the Quartus II GUI appears, select 
Tools>Qsys (refer to Figure 12-3). 

Figure 12-3. Select Qsys from the Quartus II Software Top-Level Menu

2. From the Qsys open window, use the File>Open command to open and select the file 
ex1_back_to_back_sv.qsys. This Qsys file is in the directory axi4stream-qsys-
examples\ex1_back_to_back_sv (refer to Figure 12-3).

Select and Open the ex1_back_to_back_sv.qsys example.

Figure 12-4. Open the ex1_back_to_back_sv.qsys Example 

Note
If you open the Qsys tool in a subsequent session, a Qsys dialog asks you if you want to 
open this file. 

3. Qsys displays the connectivity of the selected example as shown in Figure 12-5.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c192

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

Figure 12-5. Quartus II Software Displays the Connectivity of the Example

Note
If you are using VHDL, you must select each BFM and verify that the index number 
specified for the BFM is correct. An information dialog displays the properties of the 
BFM when you select it. Ensure the specified BFM index is correct in this dialog. If you 
do not know the correct index number, check the VHDL code for the BFM.

4. Click the Generate drop-down menu on the Qsys toolbar, and select Generate HDL to 
open the Generation options window, as shown in Figure 12-5.

5. Specify the Generation window options shown in the following:

a. Synthesis section

i. Set the Create HDL design files for synthesis to None to inhibit the generation of 
synthesis files.

ii. Uncheck the Create block symbol file (.bsf) check box.

b. Simulation section

i. Set the Create simulation model to Verilog.

c. Change the path of the example. In the Path field of the Output Directory section, 
ensure the path correctly specifies the subdirectory ex1_back_to_back_sv, which is 
the subdirectory containing the example that you just copied into a temporary 
directory. 

Note
If the subdirectory name of the example is duplicated in the Path field, you must remove 
one of the duplicated subdirectory names. To reset the path, double-click the square 
browse button to the right of the Path field and locate the correct path of the example.



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 193
January 2016

The path name of the example specified in the Path field of the Output Directory 
section must be correct before generating the HDL for the example.

6. Click the Generate button on the bottom right side of the window, as shown in 
Figure 12-6.

Figure 12-6. Qsys Generation Window Options 

7. Refer to the section Running a Simulation for steps to start the simulation. 

Running a Simulation
The choice of simulator determines the process that you follow to run a simulation. The process 
for each simulator is detailed in the following sections:

• ModelSim Simulation

• Questa Simulation

• Cadence IES Simulation

• Synopsys VCS Simulation

For each simulator, a README text file and a command script file is provided in the installed 
Mentor VIP AE directory location axi4stream/qsys-examples/ex1_back_to_back_sv. Table 12-1 



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c194

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

details the README text file instructions to load a model into the simulator, and the script 
command file to start the simulation.

Note
The VHDL example axi4stream/qsys-examples/ex1_back_to_back_vhd has equivalent 
README text files and command script files. The process to follow for VHDL 
simulation is similar to that for SystemVerilog simulation.

ModelSim Simulation
You can run a ModelSim simulation from a GUI interface or a command line. Before starting a 
simulation, you must do the following:

• Check that the $QUARTUS_ROOTDIR environment variable points to the Quartus II 
software directory in the Quartus II software installation. The example command script 
example.do requires this variable to locate the installed Mentor VIP AE BFMs during 
simulation.

• Ensure that the environment variable MvcHome points to the location of the installed 
Mentor VIP AE BFM. You can set the location of MvcHome using one of the following 
options: 

o To set the MvcHome variable in the modelsim.ini file, refer to the section “Editing 
the modelsim.ini File.”

o To specify the -mvchome option on the command line, refer to the section “Starting a 
Simulation from a UNIX Command Line.”

The following sections outline how to run a ModelSim simulation from either a GUI or a 
command line. 

Starting a Simulation From the ModelSim GUI

To start a simulation with the ModelSim simulator GUI: 

1. Start the ModelSim GUI.

vsim -mvchome $QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae/common

Table 12-1. SystemVerilog README Files and Script Names for all Simulators

Questa 
Simulation

ModelSim
Simulation

IES Simulation VCS Simulation 

README README-
Questa.txt

README-
ModelSim.txt

README-
IUS.txt

README-
VCS.txt

Script File example.do example.do example-ius.sh example-vcs.sh



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 195
January 2016

2. Change directory to the work directory that contains the example to be simulated with 
method (a) or (b) below.

a. From the File menu, click the Change Directory option. When the Browse for 
Folder dialog appears, select the work directory that contains the example.

Figure 12-7. Select the Work Directory

b. In the ModelSim Transcript window, change to the work directory containing the 
example to simulate.

vsim> cd axi4stream-qsys-examples/ex1_back_to_back_sv

3. Run the example.do script within the Transcript window by typing the following 
command to compile and elaborate the test programs:

vsim> do example.do

Note
For details about the processing performed by the example.do script, refer to the section 
ModelSim Example Script Processing.

4. In the Transcript window, start the simulation and run to completion.

vsim> run -all

Starting a Simulation from a UNIX Command Line 

To start a simulation with the ModelSim simulator from a UNIX command line:



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c196

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

1. Change the directory to the work directory containing the example to be simulated.

cd axi4stream-qsys-examples/ex1_back_to_back_sv

2. In a shell, start the Modelsim simulator with the example.do script. 

vsim -mvchome $QUARTUS_ROOTDIR/../ip/altera/\
mentor_vip_ae/common -gui -do example.do

Note
For details about the processing performed by the example.do script, refer to the section 
ModelSim Example Script Processing.

3. In the Transcript window, start the simulation and run to completion.

vsim> run -all

ModelSim Example Script Processing

The example.do script described below is contained in the installed Mentor VIP AE directory 
location axi4stream/qsys-examples/ex1_back_to_back_sv.

The Mentor VIP AE BFMs for AXI4-Stream are compiled.

set TOP_LEVEL_NAME top
set QSYS_SIMDIR    simulation

source $QSYS_SIMDIR/mentor/msim_setup.tcl
if {![info exists env(MENTOR_VIP_AE)]}
{
  set env(MENTOR_VIP_AE) $env(QUARTUS_ROOTDIR)/../ip/altera/mentor_vip_ae
}

ensure_lib libraries
ensure_lib libraries/work
vmap work  libraries/work

vlog -work work -sv \
$env(MENTOR_VIP_AE)/common/questa_mvc_svapi.svh \
$env(MENTOR_VIP_AE)/axi4stream/bfm/mgc_common_axi.sv \
$env(MENTOR_VIP_AE)/axi4stream/bfm/mgc_axi_monitor.sv \
$env(MENTOR_VIP_AE)/axi4stream/bfm/mgc_axi_inline_monitor.sv \
$env(MENTOR_VIP_AE)/axi4stream/bfm/mgc_axi_master.sv \
$env(MENTOR_VIP_AE)/axi4stream/bfm/mgc_axi_slave.sv

The two tcl alias commands dev_com and com compile the required design files. These alias 
commands are defined in the msim_setup.tcl simulation script generated by Qsys, along with the 
simulation model files. 



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 197
January 2016

# Compile device library files
dev_com

# Compile Qsys-generated design files
com

The three example test programs are compiled: 

# Compile example test program files
vlog  master_test_program.sv
vlog   slave_test_program.sv
vlog monitor_test_program.sv

The example top-level file is compiled:

# Compile top-level design file
vlog top.sv

Simulation starts with the elab alias defined in the msim_setup.tcl simulation script generated 
by Qsys:

# Simulate
elab

Editing the modelsim.ini File

The ModelSim simulator does not have a default installation directory path defined for the 
environment variable MvcHome; therefore, you must define a path for this variable.

Note
Setting MvcHome within the modelsim.ini file eliminates the need to specify the 
-mvchome option on the vsim command line. 

To provide the installation directory path of the Mentor VIP AE for running a ModelSim 
simulation:

1. Edit the modelsim.ini file and find the section that starts with [vsim].

2. Search for MvcHome. If it is not already defined in the modelsim.ini file, you must add 
it. You can add this variable at any location in the [vsim] section. 

If the modelsim.ini file is read-only, you must modify the permissions of the file to allow 
write access.

3. Add or change the MvcHome path to point to the location where the Mentor VIP AE is 
installed. Do not forget the common subdirectory.

MvcHome = $QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae/common



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c198

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

Note
Do not use the ModelSim vmap command to specify the installed location of the Mentor 
VIP AE because this places the definition of the environment variable MvcHome in the 
[library] section of modelsim.ini. For example, do not use the command vmap MvcHome 
$QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae/common.

Questa Simulation
To run a Questa simulation, follow the process detailed in the ModelSim Simulation section.

Cadence IES Simulation
Before starting a Cadence IES simulation, you must do the following:

• Check that the $QUARTUS_ROOTDIR environment variable points to the Quartus II 
software directory in the Quartus II software installation. The example script 
example-ius.sh requires this variable to locate the Mentor VIP AE BFMs during 
simulation.

• Set the environment variable CDS_ROOT to the installation directory of the IES Verilog 
compiler ncvlog. The cds_root command returns the installation directory of the 
specified tool ncvlog.

setenv CDS_ROOT        `cds_root ncvlog`

Starting a Simulation from a UNIX Command Line 

To start a simulation with the Cadence IES simulator from a UNIX command line:

1. Change the directory to the work directory containing the example to be simulated.

cd axi4stream-qsys-examples/ex1_back_to_back_sv

2. Start the Cadence IES simulator with the example-ius.sh script. 

• For a 32-bit simulation, execute this command:

sh example-ius.sh 32

• For a 64-bit simulation execute the command:

sh example-ius.sh 64

Note
For details about the process steps performed by the example-ius.sh script, see the section 
Cadence IES Example Script Processing.



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 199
January 2016

Cadence IES Example Script Processing

The example-ius.sh script described below is contained in the installed Mentor VIP AE 
directory location axi4stream/qsys-examples/ex1_back_to_back_sv.

The Mentor VIP AE BFMs for AXI4-Stream are compiled. The ncsim_setup.sh simulation 
script is generated by Qsys, along with the simulation model files.

#!/bin/sh

# Usage: <command> [32|64]
# 32 bit mode is run unless 64 is passed in as the first argument. 

MENTOR_VIP_AE=${MENTOR_VIP_AE:-$QUARTUS_ROOTDIR/../ip/ \
altera/mentor_vip_ae}

if [ "$1" == "64" ]
then

export QUESTA_MVC_GCC_LIB=$MENTOR_VIP_AE/common/ \
questa_mvc_core/linux_x86_64_gcc-4.4_ius

export INCA_64BIT=1
else

export QUESTA_MVC_GCC_LIB=$MENTOR_VIP_AE/common/ \
questa_mvc_core/linux_gcc-4.4_ius

fi
export LD_LIBRARY_PATH=$QUESTA_MVC_GCC_LIB:$LD_LIBRARY_PATH

cd simulation/cadence
# Run once, just to execute the 'mkdir' for the libraries.
source ncsim_setup.sh SKIP_DEV_COM=1 SKIP_COM=1 SKIP_ELAB=1 SKIP_SIM=1

# Compile VIP
ncvlog -sv \

"$MENTOR_VIP_AE/common/questa_mvc_svapi.svh" \
"$MENTOR_VIP_AE/axi4stream/bfm/mgc_common_axi4stream.sv" \
"$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_monitor.sv" \
"$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_inline_monitor.sv" \
"$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_master.sv" \
"$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_slave.sv"

The three example test programs are compiled: 

# Compile the test program
ncvlog -sv ../../master_test_program.sv
ncvlog -sv ../../monitor_test_program.sv
ncvlog -sv ../../slave_test_program.sv

The example top-level file is compiled: 

# Compile the top
ncvlog -sv ../../top.sv                  

Elaboration and simulation starts with the ncsim_setup.sh command. The Cadence IES 
simulator requires the SystemVerilog library path -sv_lib to be passed to the simulator.



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c200

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

# Elaborate and simulate
source ncsim_setup.sh \

USER_DEFINED_ELAB_OPTIONS="\"-timescale 1ns/1ns\"" \
USER_DEFINED_SIM_OPTIONS="\"-MESSAGES \

-sv_lib 
$QUESTA_MVC_GCC_LIB/libaxi4stream_IN_SystemVerilog_IUS_full\"" \

TOP_LEVEL_NAME=top

Synopsys VCS Simulation
Before starting a Synopsys VCS simulation, you must do the following:

• Check that the $QUARTUS_ROOTDIR environment variable points to the Quartus II 
software directory in the Quartus II software installation. The example script 
example-vcs.sh requires this variable to locate the Mentor VIP AE BFMs during 
simulation.

• Set the environment variable VCS_HOME to the installation directory of the VCS 
Verilog compiler.

setenv VCS_HOME <Installation-of-VCS>

Starting a Simulation from a UNIX Command Line 

To start a simulation with the Synopsys VCS simulator from a UNIX command line:

1. Change the directory to the work directory containing the example to be simulated.

cd axi4stream-qsys-examples/ex1_back_to_back_sv

2. Start the Synopsys VCS simulator with the example-vcs.sh script. 

• For a 32-bit simulation execute the command:

sh example-vcs.sh 32

• For a 64-bit simulation execute the command:

sh example-vcs.sh 64

Note
For details about the process steps performed by the example-vcs.sh script, see the section 
Synopsys VCS Example Script Processing.

Synopsys VCS Example Script Processing

The example-vcs.sh script described below is contained in the installed Mentor VIP AE 
directory location axi4stream/qsys-examples/ex1_back_to_back_sv.



Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 201
January 2016

The Mentor VIP AE BFMs for AXI4-Stream are compiled. The vcs_setup.sh simulation script 
is generated by Qsys, along with the simulation model files.

#!/bin/sh

# Usage: <command> [32|64]
# 32 bit mode is run unless 64 is passed in as the first argument.

MENTOR_VIP_AE=${MENTOR_VIP_AE:-
$QUARTUS_ROOTDIR/../ip/altera/mentor_vip_ae}

if [ "$1" == "64" ]
then

export RUN_64bit=-full64
export VCS_TARGET_ARCH=`getsimarch 64`
export LD_LIBRARY_PATH=${VCS_HOME}/gnu/linux/gcc-4.7.2_64-shared/lib64
export QUESTA_MVC_GCC_PATH=${VCS_HOME}/gnu/linux/gcc-4.7.2_64-shared
export QUESTA_MVC_GCC_LIB=${MENTOR_VIP_AE}/common/ \

questa_mvc_core/linux_x86_64_gcc-4.7.2_vcs
else

export RUN_64bit=
export LD_LIBRARY_PATH=${VCS_HOME}/gnu/linux/gcc-4.7.2_32-shared/lib
export QUESTA_MVC_GCC_PATH=${VCS_HOME}/gnu/linux/gcc-4.7.2_32-shared
export QUESTA_MVC_GCC_LIB=${MENTOR_VIP_AE}/common/ \

questa_mvc_core/linux_gcc-4.7.2_vcs
fi

cd simulation/synopsys/vcs
rm -rf csrc simv simv.daidir transcript ucli.key vc_hdrs.h

# VCS accepts the -LDFLAGS flag on the command line, but the shell quoting
# is too difficult. Just set the LDFLAGS ENV variable for the compiler to
# pick up. Alternatively, use the VCS command line option '-file' with the
# LDFLAGS set (this avoids shell quoting issues).
# vcs-switches.f: 
# -LDFLAGS "-L ${QUESTA_MVC_GCC_LIB} -Wl,-rpath ${QUESTA_MVC_GCC_LIB}
# -laxi4stream_IN_SystemVerilog_VCS_full"
export LDFLAGS="-L ${QUESTA_MVC_GCC_LIB} -Wl, \
-rpath ${QUESTA_MVC_GCC_LIB} -laxi4stream_IN_SystemVerilog_VCS_full"

USER_DEFINED_ELAB_OPTIONS="\"\
$RUN_64bit \
+systemverilogext+.sv +vpi +acc +vcs+lic+wait \
-cpp ${QUESTA_MVC_GCC_PATH}/xbin/g++ \
\
$MENTOR_VIP_AE/common/questa_mvc_svapi.svh \
$MENTOR_VIP_AE/axi4stream/bfm/mgc_common_axi4stream.sv \
$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_monitor.sv \
$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_inline_monitor.sv \
$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_slave.sv \
$MENTOR_VIP_AE/axi4stream/bfm/mgc_axi4stream_master.sv \
\



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c202

Getting Started with Qsys and the BFMs
Setting Up Simulation from the Windows GUI

January 2016

The three example test programs and top-level file are compiled: 

../../../master_test_program.sv \

../../../monitor_test_program.sv  \

../../../slave_test_program.sv \

../../../top.sv  \""

Elaboration and simulation starts with the vcs_setup.sh command.

source vcs_setup.sh \
USER_DEFINED_ELAB_OPTIONS="$USER_DEFINED_ELAB_OPTIONS" \
USER_DEFINED_SIM_OPTIONS="'-l transcript'" \
TOP_LEVEL_NAME=top



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 203
January 2016

Chapter 13
Assertions

The master, slave, and monitor BFMs all support error checking via the firing of one or more 
assertions when a property detailed in the AMBA AXI4-Stream Protocol Specification has been 
violated. Each assertion may be individually enabled/disabled using the set_config() function 
for a particular BFM. The Property Reference column of Table 13-1 references the section 
number in the AMBA AXI4-Stream Protocol Specification of the property the assertion covers.

Table 13-1. AXI4-Stream Assertions

Error Code Error Name Description Property 
Ref

AXI4STREAM
-60000

AXI4STREAM_TDATA_CHANGED_
BEFORE_TREADY_
ON_INVALID_LANE

On an invalid byte lane (TSTRB = 
0) the value of TDATA has 
changed between TVALID asserted 
and TREADY asserted.

2.2.1

AXI4STREAM
-60001

AXI4STREAM_TDATA_X_
ON_INVALID_LANE

On an invalid byte lane (TSTRB = 
0), TDATA has an X value.

-

AXI4STREAM
-60002

AXI4STREAM_TDATA_Z_
ON_INVALID_LANE

On an invalid byte lane (TSTRB = 
0), TDATA has a Z value.

-

AXI4STREAM
-60003

AXI4STREAM_TDATA_CHANGED_
BEFORE_TREADY_
ON_VALID_LANE

On a valid byte lane (TSTRB = 1) 
the value of TDATA has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60004

AXI4STREAM_TDATA_X_
ON_VALID_LANE

On a valid byte lane (TSTRB = 1), 
TDATA has an X value.

-

AXI4STREAM
-60005

AXI4STREAM_TDATA_Z_
ON_VALID_LANE

On a valid byte lane (TSTRB = 1), 
TDATA has a Z value.

-

AXI4STREAM
-60006

AXI4STREAM_TDEST_CHANGED_
BEFORE_TREADY

The value of TDEST has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60007

AXI4STREAM_TDEST_X TDEST has an X value. -

AXI4STREAM
-60008

AXI4STREAM_TDEST_Z TDEST has a Z value. -

AXI4STREAM
-60009

AXI4STREAM_TID_CHANGED_
BEFORE_TREADY

The value of TID has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60010

AXI4STREAM_TID_X TID has an X value. -

AXI4STREAM
-60011

AXI4STREAM_TID_Z TID has a Z value. -



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c204

Assertions

January 2016

AXI4STREAM
-60012

AXI4STREAM_TKEEP_CHANGED_
BEFORE_TREADY

The value of TKEEP has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60013

AXI4STREAM_TKEEP_X TKEEP has an X value. -

AXI4STREAM
-60014

AXI4STREAM_TKEEP_Z TKEEP has a Z value. -

AXI4STREAM
-60015

AXI4STREAM_TLAST_CHANGED_
BEFORE_TREADY

The value of TLAST has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60016

AXI4STREAM_TLAST_X TLAST has an X value -

AXI4STREAM
-60017

AXI4STREAM_TLAST_Z TLAST has a Z value -

AXI4STREAM
-60018

AXI4STREAM_TREADY_X TREADY has an X value. -

AXI4STREAM
-60019

AXI4STREAM_TREADY_Z TREADY has a Z value. -

AXI4STREAM
-60020

AXI4STREAM_TSTRB_CHANGED_
BEFORE_TREADY

The value of TSTRB has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60021

AXI4STREAM_TSTRB_X TSTRB has an X value. -

AXI4STREAM
-60022

AXI4STREAM_TSTRB_Z TSTRB has a Z value. -

AXI4STREAM
-60023

AXI4STREAM_TUSER_CHANGED_
BEFORE_TREADY

The value of TUSER has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60024

AXI4STREAM_TUSER_X TUSER has an X value. -

AXI4STREAM
-60025

AXI4STREAM_TUSER_Z TUSER has a Z value. -

AXI4STREAM
-60026

AXI4STREAM_TVALID_HIGH_
EXITING_RESET

TVALID should have been driven 
low when exiting reset.

2.7.2

AXI4STREAM
-60027

AXI4STREAM_TVALID_HIGH_
ON_FIRST_CLOCK

A master interface must only begin 
driving TVALID at a rising edge of 
ACLK following a rising edge of 
ACLK at which TRESETn is 
deasserted.

2.7.2

AXI4STREAM
-60028

AXI4STREAM_TVALID_CHANGED_
BEFORE_TREADY

The value of TVALID has changed 
between TVALID asserted and 
TREADY asserted.

2.2.1

AXI4STREAM
-60029

AXI4STREAM_TVALID_X TVALID has an X value. -

Table 13-1. AXI4-Stream Assertions (cont.)

Error Code Error Name Description Property 
Ref



Assertions

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 205
January 2016

AXI4STREAM
-60030

AXI4STREAM_TVALID_Z TVALID has a Z value. -

AXI4STREAM
-60030

AXI4STREAM_DATA_
WIDTH_VIOLATION

The data bus width of axi4 stream 
interface must be an integer number 
of bytes.

2.1

AXI4STREAM
-60031

AXI4STREAM_TDEST_
MAX_WIDTH_VIOLATION

The recommended width of TDEST 
on AXI4-Stream interface must be 
less than 4-bits.

2.1

AXI4STREAM
-60032

AXI4STREAM_TID_
MAX_WIDTH_VIOLATION

The recommended width of TID on 
AXI4-Stream interface must be less 
than 8-bits.

2.1

AXI4STREAM
-60033

AXI4STREAM_TUSER_
MAX_WIDTH_VIOLATION

The recommended width of TUSER 
on AXI4-Stream interface must be 
an integer multiplication of data bus 
width in bytes.

2.1

AXI4STREAM
-60034

AXI4STREAM_AUXM_TID_
TDEST_WIDTH

The value of 
AXI4STREAM_ID_WIDTH + 
AXI4STREAM_DEST_WIDTH 
must not exceed 24. See ARM 
AXI4STREAM Protocol 
Compliance checkers.

-

AXI4STREAM
-60035

AXI4STREAM_TSTRB_
HIGH_WHEN_TKEEP_LOW

The combination of TSTRB HIGH 
and TKEEP LOW is a reserved 
value.

2.3.4

AXI4STREAM
-60036

AXI4STREAM_TUSER_FIELD_
NONZERO_NULL_BYTE

If a null byte is inserted, then 
appropriate number of user bits 
must also be inserted, which must 
be fixed LOW. (STRM(2.8))

2.8

AXI4STREAM
-60037

AXI4STREAM_TREADY_NOT_
ASSERTED_AFTER_TVALID

When TVALID is asserted, 
ARREADY should be asserted 
within 
config_max_latency_TVALID_asse
rtion_to_TREADY clock periods

AXI4STREAM
-60038

AXI4STREAM_INTERNAL_
RESERVED

A value reserved for internal 
purposes of the BFM.

-

Table 13-1. AXI4-Stream Assertions (cont.)

Error Code Error Name Description Property 
Ref



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c206

Assertions

January 2016



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 207
January 2016

Appendix A
SystemVerilog Master and Slave Test

Programs

SystemVerilog Master Test Program
The example code in this section is a simplified AXI4-Stream master that illustrates how you 
can use the mgc_axi4stream_master BFM. 

// 
*************************************************************************
****
//
// Copyright 2007-2013 Mentor Graphics Corporation
// All Rights Reserved.
//
// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS 
THE PROPERTY OF
// MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE 
TERMS.
//
// 
*************************************************************************
****

/* 
    This is a simple example of an axi4stream master to demonstrate the 
mgc_axi4stream_master BFM usage. 

    This master performs a directed test, initiating 10 sequential packets 
at higher abstraction level 
    followed by 10 transfer at phase level.

*/

import mgc_axi4stream_pkg::*;
module master_test_program #(int AXI4_ID_WIDTH = 18, int AXI4_USER_WIDTH = 
8, int AXI4_DEST_WIDTH = 18, int AXI4_DATA_WIDTH = 1024)
(
    mgc_axi4stream_master bfm
);

initial
begin
    axi4stream_transaction trans;    
    static int byte_count = AXI4_DATA_WIDTH/8;
    int transfer_count;
    bit last;
    /*******************
    ** Initialisation **



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c208

SystemVerilog Master and Slave Test Programs
SystemVerilog Master Test Program

January 2016

    *******************/
    bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
    bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);

    /************************
    ** Traffic generation: **
    ************************/    
    // 10 x packet with 
    // Number of transfer = i % 10. Values : 1, 2 .. 10 
    // id = i % 15. Values 0, 1, 2 .. 14
    // dest = i %20. Values 0, 1, 2 .. 19
    for(int i = 0; i < 10; ++i)
    begin
      transfer_count = (i % 10) + 1;
      trans = bfm.create_master_transaction(transfer_count);
      trans.id = i % 15;
      trans.dest = i % 20;
      for(int j = 0; j < (transfer_count * byte_count); ++j)
      begin
        trans.set_data(i + j, j);
        if(((i + j)% 5) == 0)
        begin
          trans.set_byte_type(AXI4STREAM_NULL_BYTE, j);
        end
        else if(((i + j)% 5) == 1)
        begin
          trans.set_byte_type(AXI4STREAM_POS_BYTE, j);
        end
        else
        begin
          trans.set_byte_type(AXI4STREAM_DATA_BYTE, j);
        end
      end
      bfm.execute_transaction(trans);
    end  
 
    // 10 x packet at transfer level with 
    // Number of transfer = i % 10. Values : 1, 2 .. 10 
    // id = i % 15. Values 0, 1, 2 .. 14
    // dest = i %20. Values 0, 1, 2 .. 19
    for(int i = 0; i < 10; ++i)
    begin
      transfer_count = (i % 10) + 1;
      trans = bfm.create_master_transaction(transfer_count);
      trans.id = i % 15;
      trans.dest = i % 20;
      for(int j = 0; j < transfer_count; ++j)
      begin
        for(int k = 0; k < byte_count; ++k)
        begin
          trans.set_data(k+j, ((j*byte_count)+k));
          if(((i + j)% 5) == 0)
          begin
            trans.set_byte_type(AXI4STREAM_NULL_BYTE, ((j*byte_count)+k));
          end
          else if(((i + j)% 5) == 1)
          begin
            trans.set_byte_type(AXI4STREAM_POS_BYTE, ((j*byte_count)+k));



SystemVerilog Master and Slave Test Programs
SystemVerilog Slave Test Program

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 209
January 2016

          end
          else
          begin
            trans.set_byte_type(AXI4STREAM_DATA_BYTE, ((j*byte_count)+k));
          end
        end  
        bfm.execute_transfer(trans, j, last);
      end
    end

    #100
    $finish();
end
endmodule

SystemVerilog Slave Test Program
The example code in this section is a simplified AXI4-Stream slave that illustrates how you 
can use the mgc_axi4stream_slave BFM.

// 
*************************************************************************
****
//
// Copyright 2007-2013 Mentor Graphics Corporation
// All Rights Reserved.
//
// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS 
THE PROPERTY OF
// MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE 
TERMS.
//
// 
*************************************************************************
****

/* 
    This is a simple example of an AXI4STREAM Slave to demonstrate the 
mgc_axi4stream_slave BFM usage. 
*/

import mgc_axi4stream_pkg::*;

module slave_test_program #(int AXI4_ID_WIDTH = 18, int AXI4_USER_WIDTH = 
8, int AXI4_DEST_WIDTH = 18, int AXI4_DATA_WIDTH = 1024)
(
    mgc_axi4stream_slave bfm
);

  /////////////////////////////////////////////////
  // Code user could edit according to requirements
  /////////////////////////////////////////////////



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c210

SystemVerilog Master and Slave Test Programs
SystemVerilog Slave Test Program

January 2016

  // This member controls the wait insertion in axi4 stream transfers 
coming from master.
  // Making ~m_insert_wait~ to 0 truns off the wait insertion.
  bit m_insert_wait = 1;

  // Task : ready_delay
  // This is used to set ready delay to extend the transfer
  task ready_delay();
    // Making TREADY '0'. This will consume one cycle.
    bfm.execute_stream_ready(0);
    // Two clock cycle wait. In total 3 clock wait.
    repeat(2) bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);
    // Making TREADY '1'.
    bfm.execute_stream_ready(1);
  endtask

  ///////////////////////////////////////////////////////////////////////
  // Code user do not need to edit
  ///////////////////////////////////////////////////////////////////////
  initial
  begin
    int i;
    bit last;
    axi4stream_transaction trans;    
    /*******************
    ** Initialisation **
    *******************/
    bfm.wait_on(AXI4STREAM_RESET_POSEDGE);
    bfm.wait_on(AXI4STREAM_CLOCK_POSEDGE);

    // Packet receiving
    forever
    begin
      trans = bfm.create_slave_transaction();
      i = 0;
      last = 0;
      while(!last)
      begin
        if(m_insert_wait)
        begin
          ready_delay();
        end  
        bfm.get_transfer(trans, i, last);
        ++i;
      end
    end
  end

endmodule



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 211
January 2016

Appendix B
VHDL Master and Slave Test Programs

This appendix contains two VHDL code examples: one for the master BFM, and the other for 
the slave BFM. 

VHDL Master BFM Code Example
The example code in this section is a simplified AXI4-Stream slave that illustrates how you can 
use the mgc_axi4stream_master BFM. 

-- 
*************************************************************************
****
--
-- Copyright 2007-2013 Mentor Graphics Corporation
-- All Rights Reserved.
--
-- THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS 
THE PROPERTY OF
-- MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE 
TERMS.
--
-- 
*************************************************************************
****

--    This is a simple example of an axi4stream master to demonstrate the 
mgc_axi4stream_master BFM usage. 
--
--    This master performs a directed test, initiating 10 sequential 
packets at higher abstraction level 
--    followed by 10 transfer at phase level.

library ieee ;
use ieee.std_logic_1164.all;

library work;
use work.all;
use work.mgc_axi4stream_bfm_pkg.all;
entity master_test_program is
 generic(
            AXI4_ID_WIDTH : integer := 18;
            AXI4_USER_WIDTH : integer := 8;
            AXI4_DEST_WIDTH : integer := 18;
            AXI4_DATA_WIDTH : integer := 1024;
            index : integer range 0 to 511 := 0
           );



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c212

VHDL Master and Slave Test Programs
VHDL Master BFM Code Example

January 2016

end master_test_program;

architecture master_test_program_a of master_test_program is

begin
  process
    variable trans: integer;
    variable byte_count : integer := AXI4_DATA_WIDTH/8;
    variable transfer_count : integer;
    variable k    : integer;
    variable m    : integer;
  begin    
    wait_on(AXI4STREAM_RESET_POSEDGE, index, axi4stream_tr_if_0(index));
    wait_on(AXI4STREAM_CLOCK_POSEDGE, index, axi4stream_tr_if_0(index));

    --************************
    -- Traffic generation: **
    --************************
    -- 10 x packet with 
    -- Number of transfer = i % 10. Values : 1, 2 .. 10 
    -- id = i % 15. Values 0, 1, 2 .. 14
    -- dest = i %20. Values 0, 1, 2 .. 19
    for i in  0 to 9 loop
      transfer_count := (i mod 10) + 1;
      create_master_transaction(transfer_count, trans, index, 
axi4stream_tr_if_0(index));
      set_id(i mod 15, trans, index, axi4stream_tr_if_0(index));
      set_dest(i mod 20, trans, index, axi4stream_tr_if_0(index));
      for j in  0 to ((transfer_count * byte_count) - 1) loop
        set_data(i + j, j, trans, index, axi4stream_tr_if_0(index));
        if(((i + j) mod 5) = 0) then
          set_byte_type(AXI4STREAM_NULL_BYTE, j, trans, index, 
axi4stream_tr_if_0(index));
        elsif(((i + j) mod 5) = 1) then 
          set_byte_type(AXI4STREAM_POS_BYTE, j, trans, index, 
axi4stream_tr_if_0(index));
        else 
          set_byte_type(AXI4STREAM_DATA_BYTE, j, trans, index, 
axi4stream_tr_if_0(index));
        end if;
      end loop;
      execute_transaction(trans, index, axi4stream_tr_if_0(index));
    end loop; 
 
    -- 10 x packet at transfer level with 
    -- Number of transfer = i % 10. Values : 1, 2 .. 10 
    -- id = i % 15. Values 0, 1, 2 .. 14
    -- dest = i %20. Values 0, 1, 2 .. 19
    for i in  0 to 9 loop
      transfer_count := (i mod 10) + 1;
      create_master_transaction(transfer_count, trans, index, 
axi4stream_tr_if_0(index));
      set_id(i mod 15, trans, index, axi4stream_tr_if_0(index));
      set_dest(i mod 20, trans, index, axi4stream_tr_if_0(index));
      m := 0;
      while(m < transfer_count) loop
        k := 0;
        while(k < byte_count) loop



VHDL Master and Slave Test Programs
VHDL Master BFM Code Example

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 213
January 2016

          set_data(k, ((m*byte_count)+k), trans, index, 
axi4stream_tr_if_0(index));
          if(((i + m) mod 5) = 0) then
            set_byte_type(AXI4STREAM_NULL_BYTE, ((m*byte_count)+k), trans, 
index, axi4stream_tr_if_0(index));
          elsif(((i + m) mod 5) = 1) then 
            set_byte_type(AXI4STREAM_POS_BYTE, ((m*byte_count)+k), trans, 
index, axi4stream_tr_if_0(index));
          else 
            set_byte_type(AXI4STREAM_DATA_BYTE, ((m*byte_count)+k), trans, 
index, axi4stream_tr_if_0(index));
          end if;
          k := k + 1;
        end loop; 
        execute_transfer(trans, m, index, axi4stream_tr_if_0(index));
        m := m + 1;
      end loop;
    end loop;

    wait;
  end process;
end master_test_program_a;



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c214

VHDL Master and Slave Test Programs
VHDL Slave BFM Code Example

January 2016

VHDL Slave BFM Code Example
The example code in this section is a simplified AXI4-Stream slave that illustrates how you can 
use the mgc_axi4stream_master BFM. 

-- 
*************************************************************************
****
--
-- Copyright 2007-2013 Mentor Graphics Corporation
-- All Rights Reserved.
--
-- THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS 
THE PROPERTY OF
-- MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE 
TERMS.
--
-- 
*************************************************************************
****
--
--  This is a simple example of an AXI4STREAM Slave to demonstrate the 
mgc_axi4stream_slave BFM usage.

library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

library work;
use work.all;
use work.mgc_axi4stream_bfm_pkg.all;

entity slave_test_program is
   generic(
            AXI4_ID_WIDTH : integer := 18;
            AXI4_USER_WIDTH : integer := 8;
            AXI4_DEST_WIDTH : integer := 18;
            AXI4_DATA_WIDTH : integer := 1024;
            index : integer range 0 to 511 := 0
           );
 end slave_test_program;

architecture slave_test_program_a of slave_test_program is
  --This member controls the wait insertion in axi4 stream transfers 
coming from master.
  -- Making ~m_insert_wait~ to '0' truns off the wait insertion.
  signal m_insert_wait : std_logic := '1';

  procedure ready_delay(signal tr_if : inout axi4stream_vhd_if_struct_t);

  --///////////////////////////////////////////////
  -- Code user could edit according to requirements
  --///////////////////////////////////////////////

  -- Procedure : ready_delay
  -- This is used to set ready delay to extend the transfer



VHDL Master and Slave Test Programs
VHDL Slave BFM Code Example

Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c 215
January 2016

  procedure ready_delay(signal tr_if : inout axi4stream_vhd_if_struct_t) 
is
  begin
    --  Making TREADY '0'. This will consume one cycle.
    execute_stream_ready(0, index, tr_if);
    -- Two clock cycle wait. In total 3 clock wait.
    for i in 0 to 1 loop
      wait_on(AXI4STREAM_CLOCK_POSEDGE, index, tr_if);
    end loop;  
     -- Making TREADY '1'.
    execute_stream_ready(1, index, tr_if);
  end ready_delay;

begin

  --/////////////////////////////////////////////////////////////////////
  -- Code user do not need to edit
  --/////////////////////////////////////////////////////////////////////
  process
    variable trans: integer;
    variable i : integer;
    variable last : integer;
  begin
     --*******************
    --** Initialisation **
    --********************
     wait_on(AXI4STREAM_RESET_POSEDGE, index, axi4stream_tr_if_0(index));
     wait_on(AXI4STREAM_CLOCK_POSEDGE, index, axi4stream_tr_if_0(index));

    ------------------------/
    -- Packet receiving:-- 
    ------------------------/   
    loop
      create_slave_transaction(trans, index, axi4stream_tr_if_0(index));
      i := 0;
      last := 0;
      while(last = 0) loop
        if(m_insert_wait = '1') then
          -- READY is through path 
          ready_delay(axi4stream_tr_if_0(index));
        end if;
        get_transfer(trans, i, last, index, axi4stream_tr_if_0(index));
        i := i + 1;  
      end loop;
    end loop;  
     
    wait;
  end process;
end slave_test_program_a;



Mentor Verification IP AE AMBA AXI4-Stream User Guide, V10.4c216

VHDL Master and Slave Test Programs
VHDL Slave BFM Code Example

January 2016



Third-party Software for Mentor Verification IP Altera 
Edition

This section provides information on open source and third-party software that may be included in the Mentor Verification IP
Altera Edition software product.

This software application may include GNU GCC 4.3.3 third-party software. GNU GCC v4.3.3 is distributed under the terms
of the GNU General Public License version 3.0 and is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the license for the specific language governing rights and limitations under the license.
You can view a copy of the license at: <install_directory>/docs/legal/gnu_gpl_3.0.pdf. Portions of this software may be
subject to the GNU Free Documentation License v1.2. You can view a copy of the GNU Free Documentation License v1.2 at:
<install_directory>/docs/legal/gnu_free_doc_1.2.pdf. Portions of this software may be subject to the GNU Lesser General
Public License v2.1. You can view a copy of the GNU Lesser General Public License v2.1 at: <install_directory>/docs/legal/
gnu_lgpl_2.1.pdf. Portions of this software may be subject to the GNU Library General Public License v2. You can view a
copy of the GNU Library General Public License v2 at: <install_directory>/docs/legal/ gnu_library_gpl_2.0.pdf. Portions of
t h i s  s o f t w a r e  m a y  b e  s u b j e c t  t o  t h e  W 3 C  L i c e n s e .  Y o u  c a n  v i e w  a  c o p y  o f  t h e  W 3 C  L i c e n s e  a t :
<install_directory>/docs/legal/w3c_2002.pdf. Portions of this software may be subject to the Boost License version 1.0. You
can view a copy of the Boost License v1.0 at: <install_directory>/docs/legal/ boost_1.0.pdf. To obtain a copy of the GNU
GCC v4.3.3 source code, send a request to request_sourcecode@mentor.com. This offer shall only be available for three years
from the date Mentor Graphics Corporation first distributed GNU GCC v4.3.3 and valid for as long as Mentor Graphics offers
customer support for this Mentor Graphics product. GNU GCC v4.3.3 may be subject to the following copyrights:

© 1987 Regents of the University of California. 
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph
are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the University of California, Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE.

© 1983, 1990, 1991 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. [rescinded 22 July 1999]

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



© 1991, 2000, 2006 AT&T
The author of this software is David M. Gay.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this
entire notice is included in all copies of any software which is or includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WARRANTY OF ANY
KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.

© 2004 World Wide Web Consortium

(Massachusetts Institute of Technology, European Research Consortium for Informatics and Mathematics, Keio University).
All Rights Reserved. This work is distributed under the W3C(r) Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose
and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software
Short Notice should be included (hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We recommend you
provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without
specific, written prior permission. Title to copyright in this software and any associated documentation will at all times remain
with copyright holders.

© 1996-1999 Silicon Graphics Computer Systems, Inc.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Silicon Graphics makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied warranty.

© 1994, 2002 Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.



© 1997 Christian Michelsen Research AS Advanced Computing
Fantoftvegen 38, 5036 BERGEN, Norway
http://www.cmr.no

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Christian Michelsen Research AS makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

© 2000-2005 INRIA, France Telecom
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 2001 Thai Open Source Software Center Ltd.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Thai Open Source Software Center Ltd. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 2004, Eugene Kuleshov
All rights reserved.



Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 1991-2005 Unicode, Inc. 
All rights reserved.

Distributed under the Terms of Use in http://www.unicode.org/copyright.html

Permission is hereby granted, free of charge, to any person obtaining a copy of the Unicode data files and any associated
documentation (the "Data Files") or Unicode software and any associated documentation (the "Software") to deal in the Data
Files or Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Data Files or Software, and to permit persons to whom the Data Files or Software are furnished to do
so, provided that (a) the above copyright notice(s) and this permission notice appear with all copies of the Data Files or
Software, (b) both the above copyright notice(s) and this permission notice appear in associated documentation, and (c) there
is clear notice in each modified Data File or in the Software as well as in the documentation associated with the Data File(s) or
Software that the data or software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE DATA
FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in these Data Files or Software without prior written authorization of the copyright holder.

© 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL

Permission to use, copy, modify, sell, and distribute this software is hereby granted without fee, provided that the above
copyright notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting
documentation. None of the above authors, nor IBM Haifa Research Laboratories, make any representation about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

© 1997 - 2002, Makoto Matsumoto and Takuji Nishimura
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:



1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 1999 Citrus Project
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software application may include Binutils version 2.19.1 third-party software.  Binutils v2.19.1 is distributed under the
terms of the GNU General Public License version 3.0 and is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied.  See the license for the specific language governing rights and limitations under the
license.  You can view a copy of the license at: <your_Mentor_Graphics_documentation_directory>/legal/gnu_gpl_3.0.pdf.
Portions of this software may be subject to the GNU Free Documentation License v1.2.  You can view a copy of the GNU Free
Documentation License v1.2 at: <your_Mentor_Graphics_documentation_directory>/legal/gnu_free_doc_1.2.pdf.  Portions of
this software may be subject to the GNU Library General Public License v2.  You can view a copy of the GNU Library
General Public License v2 at: <your_Mentor_Graphics_documentation_directory>/legal/ gnu_library_gpl_2.0.pdf.  Portions
of this software may be subject to the GNU Lesser General Public License v3.0.  You can view a copy of the GNU Lesser
General Public License v3.0 at: <your_Mentor_Graphics_documentation_directory>/legal/gnu_lgpl_3.0.pdf.  To obtain a
copy of the Binutils v2.19.1 source code, send a request to request_sourcecode@mentor.com.  This offer shall only be
available for three years from the date Mentor Graphics Corporation first distributed Binutils v2.19.1 and valid for as long as
Mentor Graphics offers customer support for this Mentor Graphics product.    Binutils v2.19.1 may be subject to the following
copyrights:

© 1983, 1990, 1991, 1993, 1998, 2001, 2002  The Regents of the University of California.  All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

http://people.wv.mentorg.com/user/mmaster/production/oss_licenses/gnu_gpl_2.0.pdf
http://people.wv.mentorg.com/user/mmaster/production/oss_licenses/gnu_gpl_2.0.pdf
http://people.wv.mentorg.com/user/mmaster/production/oss_licenses/gnu_free_doc_1.2.pdf
http://people.wv.mentorg.com/user/mmaster/production/oss_licenses/gnu_free_doc_1.2.pdf
http://people.wv.mentorg.com/user/mmaster/production/oss_licenses/gnu_free_doc_1.2.pdf
mailto:request_sourcecode@mentor.com
mailto:request_sourcecode@mentor.com


1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 

3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ` ` AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © 1987 Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph
are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the University of California, Berkeley.  The name of the
University may not be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE.  

© 1997 John D. Polstra All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ` ` AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

  © 1998 Cygnus Solutions.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission
notice are preserved on all copies. Permission is granted to process this file through TeX and print the results, provided the
printed document carries copying permission notice identical to this one except for the removal of this paragraph  Permission
is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a permission notice identical to this one.  Permission is granted
to copy and distribute translations of this manual into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved by the Foundation.



This software application may include MinGW gcc version 4.2.1 third-party software.  MinGW gcc version 4.2.1 is distributed
under the terms of the GNU General Public License version 2.0 and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied.  See the license for the specific language governing rights and
l i m i t a t i o n s  u n d e r  t h e  l i c e n s e .   Y o u  c a n  v i e w  a  c o p y  o f  t h e  l i c e n s e  a t :
<your_Mentor_Graphics_documentation_directory>/legal/gnu_gpl_2.0.pdf.  Portions of this software may be subject to the
GNU Free Documentation License v1.2.  You can view a copy of the GNU Free Documentation License v1.2 at:
<your_Mentor_Graphics_documentation_directory>/legal/gnu_free_doc_1.2.pdf.  Portions of this software may be subject to
the GNU Lesser General Public License v2.1.  You can view a copy of the GNU Lesser General Public License v2.1 at:
<your_Mentor_Graphics_documentation_directory>/legal/ gnu_lgpl_2.1.pdf .  To obtain a copy of the MinGW gcc version
4.2.1 source code, send a request to request_sourcecode@mentor.com.  This offer shall only be available for three years from
the date Mentor Graphics Corporation first distributed MinGW gcc version 4.2.1.  MinGW gcc version 4.2.1 may be subject to
the following copyrights:

 © 1994

 Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.  Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.  It is provided "as is" without express or implied warranty.

  © 1996,1997, 1998

 Silicon Graphics Computer Systems, Inc.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.  Silicon Graphics makes no representations about the suitability of this
software for any purpose.  It is provided "as is" without express or implied warranty.

 © 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL. 

Permission to use, copy, modify, sell, and distribute this software is hereby granted without fee, provided that the above
copyright notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting
documentation. None of the above authors, nor IBM Haifa Research Laboratories, make any representation about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

© 1982, 1986, 1992, 1993

The Regents of the University of California.  All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ` ` AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES,  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

mailto:request_sourcecode@mentor.com


EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT  LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

© 1992, 1993, 1994 Henry Spencer.  All rights reserved.

This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the
University of California. 

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and redistribute it,
subject to the following restrictions: 

1. The author is not responsible for the consequences of use of this software, no matter how awful, even if they arise
from flaws in it. 

2. The origin of this software must not be misrepresented, either by explicit claim or by omission.  Since few users ever
read sources, credits must appear in the documentation. 

3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation. 

4. This notice may not be removed or altered.



End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics”). Except for license agreements related to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties' entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Software and receive a full refund of any license fee paid. 

1. ORDERS, FEES AND PAYMENT. 

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order will not be effective unless agreed in
writing by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax and service tax.
Customer will make all payments free and clear of, and without reduction for, any withholding or other taxes; any such
taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third
party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for payment under
Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2000), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all
rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable license
fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except as
provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee's residence, an airport or hotel, provided that such employee's primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer requests any change or enhancement to Software, whether in the course of
receiving support or consulting services, evaluating Software, performing beta testing or otherwise, any inventions, product

 IMPORTANT INFORMATION 

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS.  CAREFULLY READ THIS LICENSE 
AGREEMENT BEFORE USING THE PRODUCTS.  USE OF SOFTWARE INDICATES CUSTOMER’S 

COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN 
THIS AGREEMENT.  ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS 

SHALL NOT APPLY.

http://www.mentor.com/eula


improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the
exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE. 

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (“Beta Code”), which may not
be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
Customer a temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code
without charge for a limited period of time specified by Mentor Graphics. This grant and Customer’s use of the Beta Code
shall not be construed as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this
Agreement.

5. RESTRICTIONS ON USE. 

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use it except as permitted by
this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of the Products
as soon as Customer learns or becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that is in any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code
in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms
of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.



5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer updates
and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor
Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. AUTOMATIC CHECK FOR UPDATES; PRIVACY. Technological measures in Software may communicate with servers
of Mentor Graphics or its contractors for the purpose of checking for and notifying the user of updates and to ensure that the
Software in use is licensed in compliance with this Agreement. Mentor Graphics will not collect any personally identifiable data
in this process and will not disclose any data collected to any third party without the prior written consent of Customer, except to
Mentor Graphics’ outside attorneys or as may be required by a court of competent jurisdiction.

8. LIMITED WARRANTY. 

8.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification or improper installation. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S
EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE
PAID UPON RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR
REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY, PROVIDED
CUSTOMER HAS OTHERWISE COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

8.2. THE WARRANTIES SET FORTH IN THIS SECTION 8 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

9. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 9 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH
THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF PRODUCTS AS DESCRIBED IN
SECTION 10. THE PROVISIONS OF THIS SECTION 11 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

12. INFRINGEMENT. 

12.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to the action. Customer
understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance
to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the
action.

http://supportnet.mentor.com/about/legal/


12.2. If a claim is made under Subsection 12.1 Mentor Graphics may, at its option and expense, (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

12.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

12.4. THIS SECTION 12 IS SUBJECT TO SECTION 9 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS FOR DEFENSE, SETTLEMENT AND DAMAGES, AND CUSTOMER’S SOLE
AND EXCLUSIVE REMEDY, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

13. TERMINATION AND EFFECT OF TERMINATION. If a Software license was provided for limited term use, such license
will automatically terminate at the end of the authorized term.

13.1. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon written
notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this
Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of
this Agreement or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or
licenses granted prior to the termination, which amounts shall be payable immediately upon the date of termination.

13.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

14. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States government agencies,
which prohibit export or diversion of certain products and information about the products to certain countries and certain
persons. Customer agrees that it will not export Products in any manner without first obtaining all necessary approval from
appropriate local and United States government agencies.

15. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. All Software is commercial
computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to US FAR 48 CFR
12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. Government or a U.S.
Government subcontractor is subject solely to the terms and conditions set forth in this Agreement, except for provisions which
are contrary to applicable mandatory federal laws.

16. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

17. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review
Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm to
confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FLEXlm or FLEXnet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’
request. Customer shall make records available in electronic format and shall fully cooperate with data gathering to support the
license review. Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor
Graphics shall treat as confidential information all information gained as a result of any request or review and shall only use or
disclose such information as required by law or to enforce its rights under this Agreement. The provisions of this Section 17
shall survive the termination of this Agreement.

18. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the United States. To promote consistency around
the world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and
construed under the laws of the State of Oregon, USA, if Customer is located in North or South America, and the laws of Ireland
if Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. This section shall not



restrict Mentor Graphics’ right to bring an action against Customer in the jurisdiction where Customer’s place of business is
located. The United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

19. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

20. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements, including but not limited to any purchase order terms and conditions. Some Software
may contain code distributed under a third party license agreement that may provide additional rights to Customer. Please see
the applicable Software documentation for details. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent
consent, waiver or excuse.

Rev. 100615, Part No. 246066


	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	About This User Guide
	AMBA AXI4-Stream Protocol Specification
	Mentor VIP AE License Requirements
	Supported Simulators
	Simulator GCC Requirements

	Chapter 1 Mentor VIP Altera Edition
	Advantages of Using BFMs and Monitors
	Implementation of BFMs
	What Is a Transaction?
	AXI4-Stream Transactions
	Master BFM and Slave BFM Roles


	Chapter 2 SystemVerilog API Overview
	Configuration
	set_config()
	get_config()

	Creating Transactions
	Transaction Record
	Transaction Definition

	create_*_transaction()

	Executing Transactions
	execute_transaction()

	Waiting Events
	wait_on()
	get_packet(), get_transfer()

	Access Transaction Record
	set*()
	get*()

	Operational Transaction Fields
	Operation Mode
	Handshake Delay
	TVALID Signal Delay Transaction Field
	TREADY Signal Delay Transaction Field

	Transfer Done
	Transaction Done


	Chapter 3 SystemVerilog Master BFM
	Master BFM Protocol Support
	Master Timing and Events
	Master BFM Configuration
	Master Assertions
	SystemVerilog Master API
	set_config()
	Example

	get_config()
	Example

	create_master_transaction()
	Example

	execute_transaction()
	Example

	execute_transfer()
	Example

	get_stream_ready()
	Example

	wait_on()
	Example



	Chapter 4 SystemVerilog Slave BFM
	Slave BFM Protocol Support
	Slave Timing and Events
	Slave BFM Configuration
	Slave Assertions
	SystemVerilog Slave API
	set_config()
	Example

	get_config()
	Example

	create_slave_transaction()
	Example

	get_transfer()
	Example

	execute_stream_ready()
	Example

	wait_on()
	Example



	Chapter 5 SystemVerilog Monitor BFM
	Inline Monitor Connection
	Monitor BFM Protocol Support
	Monitor Timing and Events
	Monitor BFM Configuration
	Monitor Assertions
	SystemVerilog Monitor API
	set_config()
	Example

	get_config()
	Example

	create_monitor_transaction()
	Example

	get_packet()
	Example

	get_transfer()
	Example

	get_stream_ready()
	Example

	wait_on()
	Example



	Chapter 6 SystemVerilog Tutorials
	Verifying a Slave DUT
	Master BFM Test Program
	Initial Block


	Verifying a Master DUT
	Slave BFM Test Program
	Basic Slave Test Program API Definition
	m_insert_wait
	ready_delay()

	Advanced Slave Test Program API Definition
	initial block()




	Chapter 7 VHDL API Overview
	Configuration
	set_config()
	get_config()

	Creating Transactions
	Transaction Record
	Transaction Definition

	create*_transaction()

	Executing Transactions
	execute_transaction()

	Waiting Events
	wait_on()
	get_packet(), get_transfer()

	Access Transaction Record
	set*()
	get*()

	Operational Transaction Fields
	Operation Mode
	Handshake Delay
	TVALID Signal Delay Transaction Field
	TREADY Signal Delay Transaction Field

	Transfer Done
	Transaction Done


	Chapter 8 VHDL Master BFM
	Overloaded Procedure Common Arguments
	Master BFM Protocol Support
	Master Timing and Events
	Master BFM Configuration
	Master Assertions
	VHDL Master BFM API
	set_config()
	Example

	get_config()
	Example

	create_master_transaction()
	Example

	set_data()
	Example

	get_data()
	Example

	set_byte_type()
	Example

	get_byte_type()
	Example

	set_id()
	Example

	get_id()
	Example

	set_dest()
	Example

	get_dest()
	Example

	set_user_data()
	Example

	get_user_data()
	Example

	set_valid_delay()
	Example

	get_valid_delay()
	Example

	set_ready_delay()
	Example

	get_ready_delay()
	Example

	set_operation_mode()
	Example

	get_operation_mode()
	Example

	set_transfer_done()
	Example

	get_transfer_done()
	Example

	set_transaction_done()
	Example

	get_transaction_done()
	Example

	execute_transaction()
	Example

	execute_transfer()
	Example

	get_stream_ready()
	Example

	print()
	Example

	destruct_transaction()
	Example

	wait_on()
	Example



	Chapter 9 VHDL Slave BFM
	Slave BFM Protocol Support
	Slave Timing and Events
	Slave BFM Configuration
	Slave Assertions
	VHDL Slave BFM API
	set_config()
	Example

	get_config()
	Example

	create_slave_transaction()
	Example

	set_data()
	Example

	get_data()
	Example

	set_byte_type()
	Example

	get_byte_type()
	Example

	set_id()
	Example

	get_id()
	Example

	set_dest()
	Example

	get_dest()
	Example

	set_user_data()
	Example

	get_user_data()
	Example

	set_valid_delay()
	Example

	get_valid_delay()
	Example

	set_ready_delay()
	Example

	get_ready_delay()
	Example

	set_operation_mode()
	Example

	get_operation_mode()
	Example

	set_transfer_done()
	Example

	get_transfer_done()
	Example

	set_transaction_done()
	Example

	get_transaction_done()
	Example

	get_packet()
	Example

	get_transfer()
	Example

	execute_stream_ready()
	Example

	print()
	Example

	destruct_transaction()
	Example

	wait_on()
	Example



	Chapter 10 VHDL Monitor BFM
	Inline Monitor Connection
	Monitor BFM Protocol Support
	Monitor Timing and Events
	Monitor BFM Configuration
	Monitor Assertions
	VHDL Monitor BFM API
	set_config()
	Example

	get_config()
	Example

	create_monitor_transaction()
	Example

	get_data()
	Example

	get_byte_type()
	Example

	get_id()
	Example

	get_dest()
	Example

	get_user_data()
	Example

	get_valid_delay()
	Example

	get_ready_delay()
	Example

	get_operation_mode()
	Example

	get_transfer_done()
	Example

	get_transaction_done()
	Example

	get_packet()
	Example

	get_transfer()
	Example

	print()
	Example

	destruct_transaction()
	Example

	wait_on()
	Example



	Chapter 11 VHDL Tutorials
	Verifying a Slave DUT
	Master BFM Test Program
	Traffic Generation


	Verifying a Master DUT
	Slave BFM Test Program
	Basic Slave Test Program API Definition
	m_insert_wait
	ready_delay()

	Advanced Slave Test Program API Definition
	initial block()




	Chapter 12 Getting Started with Qsys and the BFMs
	Setting Up a Simulation from a UNIX Platform
	Setting Up Simulation from the Windows GUI
	Running the Qsys Tool
	Running a Simulation
	ModelSim Simulation
	Starting a Simulation From the ModelSim GUI
	Starting a Simulation from a UNIX Command Line
	ModelSim Example Script Processing
	Editing the modelsim.ini File

	Questa Simulation
	Cadence IES Simulation
	Starting a Simulation from a UNIX Command Line
	Cadence IES Example Script Processing

	Synopsys VCS Simulation
	Starting a Simulation from a UNIX Command Line
	Synopsys VCS Example Script Processing




	Chapter 13 Assertions
	Appendix A SystemVerilog Master and Slave Test Programs
	SystemVerilog Master Test Program
	SystemVerilog Slave Test Program

	Appendix B VHDL Master and Slave Test Programs
	VHDL Master BFM Code Example
	VHDL Slave BFM Code Example

	Third-party Software for Mentor Verification IP Altera Edition
	End-User License Agreement

