

INTEL® HIGH LEVEL SYNTHESIS COMPILER
CONDENSED QUICK REFERENCE

The Intel® High Level Synthesis Compiler
takes in untimed C++ as input and generates
production-quality register transfer level (RTL)
code that is optimized for Intel FPGAs. The
Intel HLS Compiler is available as part of Intel
Quartus® Prime Design Suite.

Use this guide to quickly find declarations and
attributes that you can use with the Intel HLS
Compiler. For details about these declarations
and attributes, see “Intel High Level Synthesis
Compiler Quick Reference” in Intel High Level
Synthesis Compiler Reference Manual.

Some of these declarations and attributes
apply only to Intel HLS Compiler Pro Edition.
For details, see the Intel High Level Synthesis
Compiler Reference Manual

© Intel Corporation. All rights reserved. Intel, the Intel logo, and
Quartus words and logos are trademarks of Intel Corporation or its
subsidiaries in the U.S. and/or other countries.

Last updated for Intel HLS Compiler Pro Edition Version 19.1
(2019.05.06)

HLS Compiler i++ Command Options
For i++ command line flags, use the --help flag.

Header Files
HLS/hls.h Common HLS attributes

Explicit interfaces
HLS/math.h Math functions
HLS/extendedmath.h Math functions not in math.h
HLS/ac_int.h Arbitrary precision integer support
HLS/ac_fixed.h Arbitrary precision fixed-point

support
HLS/ac_fixed_math.h Arbitrary precision fixed-point math

functions
HLS/ac_complex.h Arbitrary precision complex

number support
HLS/stdio.h printf support for components

during x86 emulation
<iostream> Guard cout and cerr statements

with HLS_SYNTHESIS macro

Simulation API (Testbench Only)
ihc_hls_enqueue
(<ptr to storage for
return type>, <function
name>, <function
arguments>)

Enqueue a pipelined
component (with non-void
return type) invocation

ihc_hls_enqueue_noret
(<function
name>,<function
arguments>)

Enqueue a pipelined
component (with void return
type) invocation

ihc_hls_component_run_all
(<function name>)

Simulate all enqueued
invocations of the
component in the HDL
simulator in a pipeline-
parallel fashion

int
ihc_hls_sim_reset(void)

Send a reset signal to the
component during
simulation, returning 1 if
reset was executed

ihc_hls_set_component
_wait_cycle (<function
name>, <wait cycles>)

Tell simulation to continue
running for a number of
cycles after a done signal for
a function is observed.

Local Memory Attributes
hls_register | hls_memory Implement the variable as

registers | RAM blocks
hls_singlepump |
hls_doublepump

Force a RAM block to be
single | double pumped

hls_numbanks(N) Force memory system to
have N banks

hls_bankwidth(N) Force memory system to
have banks that are N bytes
wide

hls_bankbits(b0, b1, … bn) Split the memory system into
2n+1 banks with {b0, b1, …, bn}
forming the bank-select bits

hls_numports_readonly_wri
teonly(M, N)

Force memory to have M
read ports and N write ports

hls_simple_dual_port_memo
ry

Convenience attribute that is
equivalent to both the
hls_singlepump and the
hls_numports_readonly_writ
eonly(1,1) macros

hls_merge("<mem_name>",
"depth") |
hls_merge("<mem_name>",
"width")

Merge two or more local
variables into a single
memory system in a depth-
wise | width-wise manner

hls_init_on_reset |
hls_init_on_powerup

Force a static variable to be
reset when the component
reset signal is asserted | on
powerup when the FPGA is
programmed

hls_memory_impl
("BLOCK_RAM|MLAB")

Implement variable or array
as block RAMs or MLABs

hls_max_concurrency(N) Specify maximum number of
private copies of a memory
when allowing simultaneous
loop iterations

Loop Pragmas
#pragma ii <N> Set loop initiation interval to N
#pragma ivdep
safelen(<N>)
array(<array_name>)

Ignore local memory
dependencies between iterations
up to N iterations apart

#pragma loop_coalesce
<N>

Convert nested loops of level N
down to single loop

#pragma unroll <N> Unroll the loop into N copies
#pragma
max_concurrency <N>

Specify the number of iterations
of a loop that can execute
simultaneously

#pragma
speculated_iterations
<N>

Specify the number of clock
cycles that a loop exit condition
can take to compute

Component Attributes
hls_max_concurrency (<N>) Specify the number of

threads that can enter a
component concurrently

hls_component_ii (<N>) Force the component to
have a specified II. Can
adversely affect fMAX

hls_scheduler_target_fmax_mhz
(<target fMAX>)

Specify the target clock
frequency (in MHz)

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html

Component Invocation Interface Attributes
Component invocation interface attributes apply to the whole
component.

hls_avalon_streaming_component
(default)

Component invocation
interface (start, busy,
done, stall, return) is
implemented as
conduits

hls_avalon_slave_component Component invocation
interface (start, busy,
done, stall, return) is
implemented in
Control/Status Register
(CSR) as Avalon-MM
slave interface with
irq_done signal

hls_always_run_component Component invocation
interface is removed

hls_stall_free_return Stall signal is removed

Parameter Interface Attributes
Parameter interface attributes apply to individual function
parameters.

hls_conduit_argument
(default)

Parameter is synchronous to
the component call interfaces

hls_avalon_slave_register
_argument

Parameter is in the component
CSR, and can be written to over
an Avalon-MM slave interface.
Synchronous to the
component call interfaces

hls_avalon_slave_memory_a
rgument(N)

Local memory that can be read
from and written to over an
Avalon-MM slave interface

hls_stable_argument Argument does not change
while there is live data in the
component

Streaming Interfaces

Streaming Interface Declarations
ihc::stream_in<datatype,
/*template arguments*/>

Streaming input interface to the
component

ihc::stream_out<datatype
, /*template
arguments*/>

Streaming output interface from
the component

Streaming Interface Template Arguments
ihc::buffer Capacity of FIFO on input data
ihc::readylatency Number of cycles between

ready signal being deasserted
and when the input stream
can no longer accept new
inputs

ihc::bitsPerSymbol How data is broken into
symbols

ihc::usesPackets Expose startofpacket and
endofpacket signals

ihc::usesValid Expose valid signal
ihc::usesReady Expose ready signal

Streaming Interface Function Call APIs
T read() Blocking call to be used in the

component void write(T data)
T read(bool& sop, bool&
eop)

Blocking call with sideband
signals to be used in the
component void write(T data, bool

sop, bool eop)
T tryRead(bool
&success)

Non-blocking call to be used in
the component

bool tryWrite(T data)
T tryRead(bool&
success, bool& sop,
bool& eop)

Non-blocking call with
sideband signals to be used in
the component

bool tryWrite(T data,
bool sop, bool eop)

Memory-Mapped Interfaces

Memory-Mapped Interface Declarations
ihc::mm_master<datatype,
/*template arguments*/ >

Avalon-MM master
interface from
component

Memory-Mapped Template Arguments
ihc::dwidth Width of data bus in bits
ihc::awidth Width of address bus in bits
ihc::aspace Address space of interface
ihc::latency Guaranteed latency from when

a read command exits the
component to when the
external memory returns valid
read data.
Variable latency: set value to 0

ihc::maxburst Maximum number of transfers
in a single transaction

ihc::align Byte alignment of base pointer
address

ihc::readwrite_mode Port direction of the interface
ihc::waitrequest Expose waitrequest signal

that the slave exerts when it is
unable to respond to a read or
write request

Memory-Mapped Function Call APIs
getInterfaceAtIndex(int
index)

Testbench function to index
into an mm_master interface
object

Algorithmic C (AC) Datatypes

Arbitrary Width Integers (ac_int)
Declarations
ac_int<N, true> var_name Signed N bit integer
intN var_name
ac_int<N,false> var_name Unsigned N bit integer
uintN var_name

Debugging Tools
#define
DEBUG_AC_INT_WARNING

Runtime tracking of ac_int
during x86 emulation, emitting
a warning when each overflow
is detected

#define
DEBUG_AC_INT_ERROR

Runtime tracking of ac_int
datatypes, erroring out when
the first overflow is detected

Arbitrary Precision Fixed-Point Numbers (ac_fixed)
Declarations
ac_fixed<N, I, true, Q,
O> var_name

Signed arbitrary precision
fixed-point number

ac_fixed<N, I, false, Q,
O> var_name

Unsigned arbitrary precision
fixed-point number

Where:
N Total length in bits
I Number of bits used to represent the integer value
Q Quantization mode
O Overflow mode

Complex Numbers (ac_complex)

Declaration
ac_complex<datatype>
var_name (initial_real,
initial_imaginary)

Complex number of type
datatype.

System of Tasks
ihc::launch Marks function as a task, and

launches task function
asynchronously

ihc::collect Synchronizes completion of
specified task function in the
component

ihc::stream Enables streaming
communication between
different task functions

ihc::stream Template Arguments
ihc::buffer Capacity of FIFO on input data
ihc::usesPackets Exposes startofpacket and

endofpacket signals
The ihc::stream object also supports the Streaming Interface Function Call APIs.

	HLS Compiler i++ Command Options
	Header Files
	Simulation API (Testbench Only)
	Local Memory Attributes
	Loop Pragmas
	Component Attributes
	Component Invocation Interface Attributes
	Parameter Interface Attributes
	Streaming Interfaces
	Streaming Interface Declarations
	Streaming Interface Template Arguments
	Streaming Interface Function Call APIs

	Memory-Mapped Interfaces
	Memory-Mapped Interface Declarations
	Memory-Mapped Template Arguments
	Memory-Mapped Function Call APIs

	Algorithmic C (AC) Datatypes
	Arbitrary Width Integers (ac_int)
	Declarations
	Debugging Tools

	Arbitrary Precision Fixed-Point Numbers (ac_fixed)
	Declarations

	Complex Numbers (ac_complex)
	Declaration

	System of Tasks
	ihc::stream Template Arguments
	The ihc::stream object also supports the Streaming Interface Function Call APIs.

