
101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V1-10.1.0

Quartus II Handbook Version 10.1 Volume 1: Design and
Synthesis

Quartus II Handbook Version 10.1 Volume 1: Design and
Synthesis

http://www.altera.com

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

December 2010 Altera Corporation
Contents
Chapter Revision Dates . xxiii

Section I. Design Flows

Chapter 1. Design Planning with the Quartus II Software
Creating Design Specifications . 1–2
Intellectual Property Selection . 1–2
System Design . 1–2
Device Selection . 1–3

Device Migration Planning . 1–4
Planning for Device Programming or Configuration . 1–4
Early Power Estimation . 1–5
Early Pin Planning and I/O Analysis . 1–6

Simultaneous Switching Noise Analysis . 1–8
Selecting Third-Party EDA Tool Flows . 1–9

Synthesis Tools . 1–9
Simulation Tools . 1–9
Formal Verification Tools . 1–10

Planning for On-Chip Debugging Options . 1–10
Design Practices and HDL Coding Styles . 1–11

Design Recommendations . 1–12
Recommended HDL Coding Styles . 1–12
Managing Metastability . 1–13

Planning for Hierarchical and Team-Based Design . 1–13
Flat Compilation Flow with No Design Partitions . 1–14
Incremental Compilation with Design Partitions . 1–14
Planning Design Partitions and Floorplan Location Assignments . 1–15

Fast Synthesis and Early Timing Estimation . 1–16
Conclusion . 1–16
Document Revision History . 1–17

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow . 2–1

Flat Compilation Flow with No Design Partitions . 2–2
Incremental Capabilities Available When A Design Has No Partitions . 2–2

Incremental Compilation Flow With Design Partitions . 2–3
Team-Based Design Flows and IP Delivery . 2–6

Incremental Compilation Summary . 2–7
Steps for Incremental Compilation . 2–8

Preparing a Design for Incremental Compilation . 2–8
Compiling a Design Using Incremental Compilation . 2–9

Creating Design Partitions . 2–9
Creating Design Partitions in the Project Navigator . 2–9
Creating Design Partitions in the Design Partitions Window . 2–9
Creating Design Partitions With the Design Partition Planner . 2–10
Creating Design Partitions With Tcl Scripting . 2–10
Automatically-Generated Partitions . 2–10

Common Design Scenarios Using Incremental Compilation . 2–10
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

iv Contents
Reducing Compilation Time When Changing Source Files for One Partition 2–11
Optimizing a Timing-Critical Partition . 2–11
Adding Design Logic Incrementally or Working With an Incomplete Design 2–12
Debugging Incrementally With the SignalTap II Logic Analyzer . 2–13

Deciding Which Design Blocks Should Be Design Partitions . 2–14
Impact of Design Partitions on Design Optimization . 2–16
Design Partition Assignments Compared to Physical Placement Assignments 2–17
Using Partitions With Third-Party Synthesis Tools . 2–17

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus 2–17
Other Synthesis Tools . 2–18

Assessing Partition Quality . 2–18
Partition Statistics Reports . 2–18
Partition Timing Reports . 2–19
Incremental Compilation Advisor . 2–19

Specifying the Level of Results Preservation for
Subsequent Compilations . 2–21

Netlist Type for Design Partitions . 2–21
Fitter Preservation Level for Design Partitions . 2–22
Where Are the Netlist Databases Saved? . 2–23
Deleting Netlists . 2–23
What Changes Initiate a Partition’s Automatic Resynthesis? . 2–24

Resynthesis Due to Source Code Changes . 2–25
Forcing Use of the Compilation Netlist When a Partition has Changed . 2–26

Exporting Design Partitions from Separate Quartus II Projects . 2–26
Preparing the Top-Level Design . 2–27

Empty Partitions . 2–28
Project Management—Making the Top-Level Design Available to Other Designers 2–28

Distributing the Top-Level Quartus II Project . 2–28
Generating Design Partition Scripts . 2–30

Exporting Partitions . 2–31
Viewing the Contents of a Quartus II Exported Partition File (.qxp) . 2–31
Integrating Partitions into the Top-Level Design . 2–32

Integrating Assignments from the .qxp . 2–32
Integrating Encrypted IP Cores from .qxp Files . 2–33
Advanced Importing Options . 2–33

Team-Based Design Optimization and Third-Party IP Delivery Scenarios . 2–35
Using an Exported Partition to Send to a Design Without
Including Source Files . 2–35
Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse . 2–36
Designing in a Team-Based Environment . 2–38
Enabling Designers on a Team to Optimize Independently . 2–39

Resolving Assignment Conflicts During Integration . 2–41
Importing a Partition to be Instantiated Multiple Times . 2–42

Performing Design Iterations With Lower-Level Partitions . 2–42
Creating a Design Floorplan With LogicLock Regions . 2–44

Creating and Manipulating LogicLock Regions . 2–45
Changing Partition Placement with LogicLock Changes . 2–46
Taking Advantage of the Early Timing Estimator . 2–46

Incremental Compilation Restrictions . 2–47
When Timing Performance May Not Be Preserved Exactly . 2–47
When Placement and Routing May Not Be Preserved Exactly . 2–47
Using Incremental Compilation With Quartus II Archive Files . 2–48
Limitations for HardCopy Compilation and Migration Flows . 2–48
Formal Verification Support . 2–49
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents v
SignalProbe Pins and Engineering Change Orders . 2–49
SignalTap II Logic Analyzer in Exported Partitions . 2–49
External Logic Analyzer Interface in Exported Partitions . 2–50
Assignments Made in HDL Source Code in Exported Partitions . 2–50
Design Partition Script Limitations . 2–50

Warnings About Extra Clocks Due to Design Partition Scripts . 2–50
Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts . 2–51
Wildcard Support in Design Partition Scripts . 2–51
Derived Clocks and PLLs in Design Partition Scripts . 2–51
Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts 2–52
Virtual Pin Timing Assignments in Design Partition Scripts . 2–52
Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts 2–52

Restrictions on Megafunction Partitions . 2–52
Register Packing and Partition Boundaries . 2–53
I/O Register Packing . 2–53

Scripting Support . 2–54
Creating Design Partitions . 2–54
Enabling or Disabling Design Partition Assignments During Compilation 2–55
Setting the Netlist Type . 2–55
Setting the Fitter Preservation Level for a Post-fit or Imported Netlist . 2–56
Preserving High-Speed Optimization . 2–56
Specifying the Software Should Use the Specified Netlist and
Ignore Source File Changes . 2–56
Generating Design Partition Scripts . 2–56
Exporting a Partition . 2–57
Importing a Partition into the Top-Level Design . 2–57
Makefiles . 2–58
Scripting and Command-Line Application Examples . 2–58

Reducing Opening a Project, Creating Design Partitions, and Performing
an Initial Compilation . 2–59
Reducing Compilation Time When Changing a Source File for One
Partition—Command-Line Example . 2–59
Optimizing the Placement for a Timing-Critical Partition . 2–59

Conclusion . 2–60
Document Revision History . 2–61

Chapter 3. Quartus II Support for HardCopy Series Devices
HardCopy Series Design Benefits . 3–1
Quartus II Features for HardCopy Planning . 3–2

HardCopy Development Flow . 3–2
Designing the FPGA First . 3–3
Designing the HardCopy Device First . 3–5

HardCopy Companion Device Selection . 3–6
HardCopy Utilities . 3–7

Companion Revisions . 3–8
Compiling the HardCopy Companion Revision . 3–9
Comparing HardCopy and FPGA Companion Revisions . 3–9
Generating a HardCopy Handoff Report . 3–9
Archiving HardCopy Handoff Files . 3–10
HardCopy Advisor . 3–10

HardCopy Device Resource Guide . 3–11
HardCopy Recommended Settings in the Quartus II Software . 3–12

Limit DSP and RAM to HardCopy Device Resources . 3–12
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

vi Contents
Enabling Design Assistant to Run During Compile . 3–12
Timing Settings . 3–13
Constraints for Clock Effect Characteristics . 3–13
Quartus II Software Features Supported for HardCopy Designs . 3–14

Physical Synthesis Optimization . 3–14
LogicLock Regions . 3–15
PowerPlay Power Analyzer . 3–15
Incremental Compilation . 3–15

HardCopy Design Readiness Check . 3–15
Turning the HardCopy Design Readiness Check On and Off . 3–16
Setting Check . 3–16

Summary . 3–16
Global Setting . 3–16
Instance Setting . 3–16
Operating Setting . 3–16

I/O Check . 3–17
Input Pin Placement for Global and Regional Clock . 3–17

PLL Usage Check . 3–17
PLL Real-Time Reconfigurable Check . 3–18
PLL Clock Outputs Driving Multiple Clock Network Types Check . 3–18
PLL with No Compensation Mode Check . 3–18
PLL with Normal or Source Synchronous Mode Feeding Output Pin Check 3–18

RAM Usage Check . 3–18
Initialized Memory Dependency Testing . 3–19

ALTGX Usage Check . 3–20
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner 3–20

Migrating One-to-One Changes . 3–20
Migrating Changes that Must Be Implemented Differently . 3–21
Changes that Cannot be Migrated . 3–22
Overall Migration Flow . 3–22

Preparing the Revisions . 3–22
Applying ECO Changes . 3–22

Formal Verification of FPGA and HardCopy Revisions . 3–23
HardCopy Floorplan View . 3–24

Document Revision History . 3–25

Chapter 4. Quartus II Design Separation Flow
Design Flow Overview . 4–2
Creating Design Partitions for the Design Separation Flow . 4–4

Merging PLL Resources . 4–5
Avoiding Multiple Design Partitions With a Secured Region . 4–6

Creating a Design Floorplan with Secured Regions . 4–6
Using Security Attributes . 4–7

Using Secured Regions . 4–9
Adding I/O Pins as Members of Secured Regions . 4–9
Using Security Routing Interfaces . 4–9

Making Design Separation Flow Location Assignments in the Chip Planner 4–10
Understanding Fencing Regions . 4–11
Creating Non-Rectangular Regions . 4–13
Guidelines for the Relative Placement of Secured LogicLock Regions . 4–14
Creating a Complete Floorplan . 4–14
Ensuring Routability Between Regions . 4–16
Ensuring Planarity . 4–17
Placing Physical Resources . 4–19
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents vii
Making Signal Security Assignments . 4–19
Understanding Signal Names . 4–20
Working with Global Signals . 4–21

Assigning I/O Pins . 4–25
Making Post Compilation Edits . 4–26
Routing Restrictions . 4–26

Number of Signals in Routing Interfaces . 4–28
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow . . . 4–31
Report Panels . 4–33

Secured LogicLock Region Summary . 4–33
Security Routing Interfaces . 4–34
Secured LogicLock Region Inputs and Outputs . 4–34
Security I/O Bank Usage . 4–35

Quartus Settings File Syntax . 4–35
LL_SECURITY_ROUTING_INTERFACE . 4–35
LL_REGION_SECURITY_LEVEL . 4–35
LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE . 4–35
LL_SIGNAL_SECURITY_LEVEL . 4–36

Document Revision History . 4–36

Section II. System Design with Qsys

Chapter 5. Creating a System with Qsys
Qsys GUI . 5–2

Qsys Component Library . 5–3
Integrating Custom Components . 5–3
Integrating Third-Party Components . 5–4

Adding System Contents . 5–4
Adding Components . 5–4
Connecting Components . 5–4
Filtering Components . 5–5

Using the System Inspector . 5–5
Defining the Address Map . 5–6
Specifying Clock Settings . 5–7
Specifying Project Settings . 5–7
System Generation . 5–8
Viewing the HDL Example . 5–8

Qsys Design Flow . 5–8
Generating Output Files . 5–10
Simulating a Qsys System . 5–11

Example Hierarchical System . 5–12
Using Pipeline Bridges . 5–16
Creating Hierarchical Components . 5–16

Document Revision History . 5–17

Chapter 6. Creating Qsys Components
Qsys Components . 6–1

Component Providers . 6–2
Component Interfaces . 6–2
Component Types . 6–2
Component Structure . 6–3

Component Description File (_hw.tcl) . 6–3
Component File Organization . 6–4
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

viii Contents
Component Versioning . 6–4
Component Search Path . 6–4
Adding Components to the Library . 6–5

Copy to the IP Root Directory . 6–5
Reference Components in an .ipx File . 6–6
Understanding IPX File Syntax . 6–8

Component Editor . 6–9
Component Hardware Structure . 6–9
Starting the Component Editor . 6–10
HDL Files Tab . 6–10

Bottom-Up Component Design . 6–10
Top-Down Component Design . 6–11

Signals Tab . 6–11
Naming Signals for Automatic Type and Interface Recognition . 6–11
Templates for Interfaces to External Logic . 6–12

Interfaces Tab . 6–13
HDL Parameters Tab . 6–13
Library Info . 6–14
Saving a Component . 6–15
Editing a Component . 6–15
Registering Software Assignments . 6–15
Component Parameterization . 6–15

Document Revision History . 6–16

Chapter 7. Qsys Interconnect
Avalon-MM Interface Components . 7–2

Component Interconnect Domains . 7–5
Using Two Separate Domains . 7–6
Using One Domain with Width Adaptation . 7–6

Qsys Transformations . 7–7
Master Command and Slave Response Networks . 7–7

Merlin Master Translator . 7–8
Merlin Master Agent . 7–8
Merlin Router . 7–9
Merlin Traffic Limiter . 7–9
Merlin Slave Translator . 7–9
Merlin Slave Agent . 7–10

Arbitration . 7–10
Arbitration Examples . 7–11
Merlin Arbiter . 7–11

Interconnect Pipelining . 7–13
Additional Qsys Interconnect Components . 7–14

Clock Bridge . 7–15
Avalon-MM Clock Crossing Bridge (Qsys) . 7–15
Avalon-MM Pipeline Bridge (Qsys) . 7–15
Merlin Width Adapter . 7–16

Burst Transfers . 7–17
Merlin Burst Adapter . 7–17
Burst Types . 7–18

Avalon-ST Interfaces . 7–18
Avalon-ST Examples . 7–18
Avalon-ST Components . 7–19

Avalon-ST Handshake Clock Crosser . 7–19
Avalon-ST Pipeline Stage . 7–19
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents ix
Merlin Multiplexer . 7–20
Merlin Demultiplexer . 7–20

Avalon-ST and Avalon-MM Interfaces . 7–20
Tristate Conduit Components . 7–21

Generic Tristate Controller . 7–24
Tristate Conduit Pin Sharer . 7–26
Tristate Conduit Bridge . 7–26
Timing . 7–27

Interrupt Interfaces . 7–27
Assigning IRQs in Qsys . 7–27
IRQ Bridge . 7–28
Merlin IRQ Mapper . 7–28
Merlin IRQ Clock Crosser . 7–29

Clock Interfaces . 7–29
Reset Interfaces . 7–29

Single Global Reset Signal Implemented by Qsys . 7–29
Multiple Reset Signals . 7–29

Merlin Reset Controller . 7–29
Reset Bridge . 7–30

Conduits . 7–30
Summary: Qsys Interconnect Components . 7–30
Document Revision History . 7–32

Chapter 8. Component Interface Tcl Reference
Information in a Hardware Component Description File . 8–1
Component Phases . 8–2
Writing a Hardware Component Description File . 8–3

Providing Basic Information . 8–3
Declaring Parameters . 8–4

User Parameters . 8–4
Derived Parameters . 8–4
SYSTEM_INFO Parameters . 8–4

Declaring Interfaces . 8–5
Adding Files and Guiding Generation . 8–5

Default Behaviors . 8–6
Validation Phase Behavior . 8–6
Elaboration Phase Behavior . 8–6

Automatic Port Widths . 8–6
Parameterized Parameter Widths . 8–7

Generation Phase Behavior . 8–7
Edit Phase Behavior . 8–7

Overriding Default Behaviors . 8–8
Validation Callback . 8–9
Elaboration Callback . 8–9
Generation Callback . 8–10
Compose Callback . 8–11
Editor Callback . 8–13

Hardware Tcl Command Reference . 8–14
Module Definition . 8–17

package . 8–17
get_module_properties . 8–17
get_module_property . 8–19
set_module_property . 8–19
get_module_ports . 8–20
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

x Contents
get_module_assignments . 8–20
get_module_assignment . 8–20
set_module_assignment . 8–21
get_files . 8–21
add_file . 8–21
add_documentation_link . 8–22
get_file_properties . 8–22
get_file_property . 8–22
set_file_property . 8–23
send_message . 8–23

Parameters . 8–24
add_parameter . 8–24
get_parameters . 8–25
get_parameter_properties . 8–25
get_parameter_property . 8–30
set_parameter_property . 8–30
get_parameter_value . 8–31
set_parameter_value . 8–31
decode_address_map . 8–32

Display Items . 8–33
add_display_item . 8–33
get_display_items . 8–34
get_display_item_properties . 8–35
get_display_item_property . 8–35
set_display_item_property . 8–35

Interfaces and Ports . 8–36
add_interface . 8–36
get_interfaces . 8–37
get_interface_properties . 8–38
get_interface_property . 8–38
set_interface_property . 8–39
add_interface_port . 8–39
get_interface_ports . 8–40
get_port_properties . 8–40
get_port_property . 8–41
set_port_property . 8–42
get_interface_assignments . 8–42
get_interface_assignment . 8–42
set_interface_assignment . 8–43

Compose . 8–43
add_instance . 8–43
get_instances . 8–44
get_instance_parameters . 8–44
set_instance_parameter_value . 8–44
get_instance_parameter_value . 8–44
get_instance_parameter_properties . 8–45
get_instance_parameter_property . 8–45
get_instance_interfaces . 8–46
get_instance_interface_properties . 8–46
get_instance_interface_property . 8–46
get_instance_interface_ports . 8–47
get_instance_port_property . 8–47
add_connection . 8–47
get_connections . 8–48
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xi
get_connection_parameters . 8–48
get_connection_parameter_value . 8–49
set_connection_parameter_value . 8–49

Generation . 8–49
get_generation_properties . 8–49
get_generation_property . 8–50

Document Revision History . 8–50

Section III. Design Guidelines

Chapter 9. Recommended Design Practices
Synchronous FPGA Design Practices . 9–2

Fundamentals of Synchronous Design . 9–2
Hazards of Asynchronous Design . 9–3

Design Guidelines . 9–4
Combinational Logic Structures . 9–4

Combinational Loops . 9–4
Latches . 9–5
Delay Chains . 9–5
Pulse Generators and Multivibrators . 9–6

Clocking Schemes . 9–7
Internally Generated Clocks . 9–8
Divided Clocks . 9–8
Ripple Counters . 9–8
Multiplexed Clocks . 9–9
Gated Clocks . 9–10
Synchronous Clock Enables . 9–11
Recommended Clock-Gating Methods . 9–11

Power Optimization . 9–12
Metastability . 9–13
Incremental Compilation . 9–13

Checking Design Violations With the Design Assistant . 9–13
Quartus II Design Flow with the Design Assistant . 9–14
Enabling and Disabling Design Assistant Rules . 9–15
Viewing Design Assistant Results . 9–15
Custom Rules . 9–15

Custom Rules Coding Examples . 9–16
Targeting Clock and Register-Control Architectural Features . 9–19

Clock Network Resources . 9–20
Reset Resources . 9–21

Synchronous Reset . 9–21
Asynchronous Reset . 9–21
Synchronized Asynchronous Reset . 9–22

Register Control Signals . 9–24
Targeting Embedded RAM Architectural Features . 9–24
Conclusion . 9–25
Document Revision History . 9–26

Chapter 10. Recommended HDL Coding Styles
Quartus II Language Templates . 10–1
Using Altera Megafunctions . 10–2
Instantiating Altera Megafunctions in HDL Code . 10–3

Instantiating Megafunctions Using the MegaWizard Plug-In Manager . 10–3
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xii Contents
Creating a Netlist File for Other Synthesis Tools . 10–4
Instantiating Megafunctions Using the Port and Parameter Definition . 10–4

Inferring Multiplier and DSP Functions from HDL Code . 10–5
Inferring Multipliers from HDL Code . 10–5
Inferring Multiply-Accumulators and Multiply-Adders from HDL Code . 10–8

Inferring Memory Functions from HDL Code . 10–13
Inferring RAM functions from HDL Code . 10–13

Use Synchronous Memory Blocks . 10–14
Avoid Unsupported Reset and Control Conditions . 10–14
Check Read-During-Write Behavior . 10–16
Controlling Inference and Implementation in Device RAM Blocks . 10–18
Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior 10–18
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior 10–20
Simple Dual-Port, Dual-Clock Synchronous RAM . 10–22
True Dual-Port Synchronous RAM . 10–24
Mixed-Width Dual-Port RAM . 10–28
RAM with Byte-Enable Signals . 10–31
Specifying Initial Memory Contents at Power-Up . 10–33

Inferring ROM Functions from HDL Code . 10–36
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code 10–40

Simple Shift Register . 10–41
Shift Register with Evenly Spaced Taps . 10–42

Coding Guidelines for Registers and Latches . 10–43
Register Power-Up Values in Altera Devices . 10–43
Secondary Register Control Signals Such as Clear and Clock Enable . 10–45
Latches . 10–49

Unintentional Latch Generation . 10–49
Inferring Latches Correctly . 10–50

General Coding Guidelines . 10–53
Tri-State Signals . 10–54
Clock Multiplexing . 10–54
Adder Trees . 10–58

Architectures with 4-Input LUTs in Logic Elements . 10–58
Architectures with 6-Input LUTs in Adaptive Logic Modules . 10–59

State Machines . 10–60
Verilog HDL State Machines . 10–61
VHDL State Machines . 10–65

Multiplexers . 10–67
Quartus II Software Option for Multiplexer Restructuring . 10–67
Multiplexer Types . 10–67
Implicit Defaults in If Statements . 10–69
Default or Others Case Assignment . 10–69

Cyclic Redundancy Check Functions . 10–70
If Performance is Important, Optimize for Speed . 10–70
Use Separate CRC Blocks Instead of Cascaded Stages . 10–70
Use Separate CRC Blocks Instead of Allowing Blocks to Merge . 10–71
Take Advantage of Latency if Available . 10–71
Save Power by Disabling CRC Blocks When Not in Use . 10–71
Use the Device Synchronous Load (sload) Signal to Initialize . 10–72

Comparators . 10–72
Counters . 10–73

Designing with Low-Level Primitives . 10–73
Conclusion . 10–74
Document Revision History . 10–74
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xiii
Chapter 11. Managing Metastability with the Quartus II Software
Introduction . 11–1
Metastability Analysis in the Quartus II Software . 11–2

Synchronization Register Chains . 11–2
Identifying Synchronizers for Metastability Analysis . 11–4
How Timing Constraints Affect Synchronizer Identification and Metastability Analysis 11–4

Metastability and MTBF Reporting . 11–5
Metastability Reports . 11–5

MTBF Summary Report . 11–5
Synchronizer Summary Report . 11–6
Synchronizer Chain Statistics Report in the Timing Analyzer . 11–7

Synchronizer Data Toggle Rate in MTBF Calculation . 11–7
MTBF Optimization . 11–8

Synchronization Register Chain Length . 11–8
Reducing Metastability Effects . 11–9

Apply Complete System-Centric Timing Constraints for the Timing Analyzer 11–9
Force the Identification of Synchronization Registers . 11–9
Set the Synchronizer Data Toggle Rate . 11–10
Optimize Metastability During Fitting . 11–10
Increase the Length of Synchronizers to Protect and Optimize . 11–10
Set Fitter Effort to Standard Fit instead of Auto Fit . 11–10
Increase the Number of Stages Used in Synchronizers, If Possible . 11–10
Select a Faster Speed Grade Device, if Possible . 11–11

Scripting Support . 11–11
Identifying Synchronizers for Metastability Analysis . 11–11
Synchronizer Data Toggle Rate in MTBF Calculation . 11–12
report_metastability and Tcl Command . 11–12
MTBF Optimization . 11–12
Synchronization Register Chain Length . 11–12

Conclusion . 11–13
Document Revision History . 11–13

Chapter 12. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation . 12–2

Recommendations for the Netlist Type . 12–2
Design Flows Using Incremental Compilation . 12–3

Project Management in Team-Based Design Flows . 12–4
Why to Plan Partitions and Floorplan Assignments . 12–5

Partition Boundaries and Optimization . 12–6
General Partitioning Guidelines . 12–7

Plan Design Hierarchy and Source Design Files . 12–8
Using Partitions with Third-Party Synthesis Tools . 12–8

Partition Design by Functionality and Block Size . 12–9
Partition Design by Clock Domain and Timing Criticality . 12–9
Consider What Is Changing . 12–9

Design Partition Guidelines . 12–10
Register Partition Inputs and Outputs . 12–10
Minimize Cross-Partition-Boundary I/O . 12–11
Avoid the Need for Logic Optimization Across Partitions . 12–12

Keep Logic in the Same Partition for Optimization and Merging . 12–13
Keep Constants in the Same Partition as Logic . 12–14
Avoid Unconnected Partition I/O . 12–15
Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together 12–16
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xiv Contents
Invert Clocks in Destination Partitions . 12–17
Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries 12–18
Do Not Use Internal Tri-States . 12–22
Include All Tri-State and Enable Logic in the Same Partition . 12–23
Include Bidirectional I/O Registers in the Same Partition (For Older Device Families) 12–24
Summary of Guidelines Related to Logic Optimization Across Partitions 12–24

Consider a Cascaded Reset Structure . 12–25
Design Partition Guidelines for Third-Party IP Delivery . 12–26

Allocate Logic Resources . 12–27
Allocate Global Routing Signals and Clock Networks if Required . 12–28
Assign Virtual Pins . 12–29
Perform Timing Budgeting if Required . 12–30
Drive Clocks Directly . 12–30
Recreate PLLs for Lower-Level Partitions if Required . 12–31

Checking Partition Quality . 12–31
Incremental Compilation Advisor . 12–32
Design Partition Planner . 12–32
Viewing Design Partition Planner and Floorplan Side-by-Side . 12–34
Partition Statistics Report . 12–35
Report Partition Timing in the TimeQuest Timing Analyzer . 12–36
Check if Partition Assignments Impact the Quality of Results . 12–36

Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery . 12–37

Creating an .sdc File With Project-Wide Constraints . 12–38
Creating an .sdc with Partition-Specific Constraints . 12–39
Consolidating the .sdc in the Top-Level Design . 12–40

Introduction to Design Floorplans . 12–41
The Difference between Logical Partitions and Physical Regions . 12–41
Why Create a Floorplan? . 12–42
When to Create a Floorplan . 12–44

Early Floorplan . 12–44
Late Floorplan . 12–44

Design Floorplan Placement Guidelines . 12–44
Assigning Partitions to LogicLock Regions . 12–45
How to Size and Place Regions . 12–46
Modifying Region Size and Origin . 12–46

I/O Connections . 12–47
LogicLock Resource Exclusions . 12–48

Creating Non-Rectangular Regions . 12–50
Checking Floorplan Quality . 12–50

Incremental Compilation Advisor . 12–50
LogicLock Region Resource Estimates . 12–50
LogicLock Region Properties Statistics Report . 12–50
Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner 12–51
Inter-Region Connection Bundles . 12–51
Routing Utilization . 12–51
Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results 12–51

Recommended Design Flows and Application Examples . 12–52
Create a Floorplan for Major Design Blocks . 12–52
Create a Floorplan Assignment for One Design Block with Difficult Timing 12–53
Create a Floorplan as the Project Lead in a Team-Based Flow . 12–53

Conclusion . 12–54
Document Revision History . 12–55
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xv
Section IV. Synthesis

Chapter 13. Quartus II Integrated Synthesis
Design Flow . 13–1
Language Support . 13–3

Verilog HDL Support . 13–4
SystemVerilog Support . 13–5
Initial Constructs and Memory System Tasks . 13–7
Verilog HDL Macros . 13–8

VHDL Support . 13–8
VHDL-2008 Support . 13–10
VHDL Standard Libraries and Packages . 13–10
VHDL wait Constructs . 13–10

AHDL Support . 13–11
Schematic Design Entry Support . 13–11
State Machine Editor . 13–11
Design Libraries . 13–12

Specifying a Destination Library Name in the Settings Dialog Box . 13–13
Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl 13–13
Specifying a Destination Library Name in a VHDL File . 13–13
Mapping a VHDL Instance to an Entity in a Specific Library . 13–14

Using Parameters/Generics . 13–16
Setting Default Parameter Values and BDF Instance Parameter Values 13–16
Passing Parameters Between Two Design Languages . 13–18

Incremental Compilation . 13–20
Partitions for Preserving Hierarchical Boundaries . 13–20
Parallel Synthesis . 13–21
Quartus II Exported Partition File as Source . 13–22

Quartus II Synthesis Options . 13–22
Setting Synthesis Options . 13–24

Analysis & Synthesis Settings Page of the Settings Dialog Box . 13–24
Quartus II Logic Options . 13–24
Synthesis Attributes . 13–25
Synthesis Directives . 13–27

Optimization Technique . 13–28
Auto Gated Clock Conversion . 13–28
Timing-Driven Synthesis . 13–30
SDC Constraint Protection . 13–31
PowerPlay Power Optimization . 13–31
Limiting Resource Usage in Partitions . 13–32

Creating LogicLock Regions . 13–32
Using Assignments to Limit the Number of RAM and DSP Blocks . 13–33

Restructure Multiplexers . 13–33
Synthesis Effort . 13–35
Synthesis Seed . 13–35
State Machine Processing . 13–35
Manually Specifying State Assignments Using the syn_encoding Attribute 13–37
Manually Specifying Enumerated Types Using the enum_encoding Attribute 13–38
Safe State Machines . 13–39
Power-Up Level . 13–41

Inferred Power-Up Levels . 13–41
Power-Up Don’t Care . 13–42
Remove Duplicate Registers . 13–42
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xvi Contents
Preserve Registers . 13–43
Disable Register Merging/Don’t Merge Register . 13–43
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node . 13–44
Keep Combinational Node/Implement as Output of Logic Cell . 13–45
Disabling Synthesis Netlist Optimizations with dont_retime Attribute . 13–46
Disabling Synthesis Netlist Optimizations with dont_replicate Attribute 13–47
Maximum Fan-Out . 13–48
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable 13–49

Inferring Multiplier, DSP, and Memory Functions from HDL Code . 13–50
Multiply-Accumulators and Multiply-Adders . 13–51
Shift Registers . 13–51
RAM and ROM . 13–51
Resource Aware RAM, ROM, and Shift-Register Inference . 13–52
Auto RAM to Logic Cell Conversion . 13–53

RAM Style and ROM Style—for Inferred Memory . 13–53
Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute 13–55
RAM Initialization File—for Inferred Memory . 13–59
Multiplier Style—for Inferred Multipliers . 13–59
Full Case Attribute . 13–61
Parallel Case . 13–62
Translate Off and On / Synthesis Off and On . 13–63
Ignore translate_off and synthesis_off Directives . 13–64
Read Comments as HDL . 13–65
Use I/O Flipflops . 13–66
Specifying Pin Locations with chip_pin . 13–67
Using altera_attribute to Set Quartus II Logic Options . 13–69

Analyzing Synthesis Results . 13–72
Analysis & Synthesis Section of the Compilation Report . 13–72
Project Navigator . 13–72

Analyzing and Controlling Synthesis Messages . 13–72
Quartus II Messages . 13–73
VHDL and Verilog HDL Messages . 13–73

Setting the HDL Message Level . 13–75
Enabling or Disabling Specific HDL Messages by Module/Entity . 13–76

Node-Naming Conventions in Quartus II Integrated Synthesis . 13–77
Hierarchical Node-Naming Conventions . 13–77
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) . 13–78
Register Changes During Synthesis . 13–79

Synthesis and Fitting Optimizations . 13–79
State Machines . 13–80
Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions 13–80
Packed Input and Output Registers of RAM and DSP Blocks . 13–81

Preserving Register Names . 13–81
Node-Naming Conventions for Combinational Logic Cells . 13–81
Preserving Combinational Logic Names . 13–82

Scripting Support . 13–83
Adding an HDL File to a Project and Setting the HDL Version . 13–84
Assigning a Pin . 13–86
Creating Design Partitions for Incremental Compilation . 13–86
Quartus II Synthesis Options . 13–87

Conclusion . 13–89
Document Revision History . 13–90
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xvii
Chapter 14. Synopsys Synplify Support
Altera Device Family Support . 14–1
Design Flow . 14–2

Specifying the Output Netlist File Name and Result Format . 14–5
Specifying the Quartus II Software Version . 14–5

Synplify Optimization Strategies . 14–6
Using Synplify Premier to Optimize Your Design . 14–6
Using Implementations in Synplify Pro or Premier . 14–7
Timing-Driven Synthesis Settings . 14–7

Clock Frequencies . 14–7
Multiple Clock Domains . 14–8
Input and Output Delays . 14–8
Multicycle Paths . 14–8
False Paths . 14–8

FSM Compiler . 14–9
FSM Explorer in Synplify Pro and Premier . 14–9

Optimization Attributes and Options . 14–10
Retiming in Synplify Pro and Premier . 14–10
Maximum Fan-Out . 14–10
Preserving Nets . 14–10
Register Packing . 14–10
Resource Sharing . 14–10
Preserving Hierarchy . 14–11
Register Input and Output Delays . 14–11
syn_direct_enable . 14–12
I/O Standard . 14–12

Altera-Specific Attributes . 14–12
altera_chip_pin_lc . 14–12
altera_io_powerup . 14–13
altera_io_opendrain . 14–13

Exporting Designs to the Quartus II Software Using NativeLink Integration 14–13
Running the Quartus II Software from within the Synplify Software . 14–14
Using the Quartus II Software to Run the Synplify Software . 14–15
Running the Quartus II Software Manually With the Synplify-Generated Tcl Script 14–15
Passing TimeQuest SDC Timing Constraints to the Quartus II Software . 14–15

Individual Clocks and Frequencies . 14–16
Input and Output Delay . 14–16
Multicycle Path . 14–16
False Path . 14–16

Guidelines for Altera Megafunctions and Architecture-Specific Features . 14–16
Instantiating Altera Megafunctions With the MegaWizard Plug-In Manager 14–17

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files . 14–18
Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated VHDL Files . . 14–18
Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions 14–18
Instantiating Intellectual Property With the MegaWizard Plug-In Manager and
IP Toolbench . 14–19
Instantiating Black Box IP Functions With Generated Verilog HDL Files 14–20
Instantiating Black Box IP Functions With Generated VHDL Files . 14–20
Other Synplify Software Attributes for Creating Black Boxes . 14–21

Including Files for Quartus II Placement and Routing Only . 14–22
Inferring Altera Megafunctions from HDL Code . 14–22

Inferring Multipliers . 14–23
Inferring RAM . 14–25
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xviii Contents
RAM Initialization . 14–27
Inferring ROM . 14–28
Inferring Shift Registers . 14–28

Incremental Compilation and Block-Based Design . 14–29
Creating a Design with Separate Netlist Files for Incremental Compilation 14–30
Using MultiPoint Synthesis with Incremental Compilation . 14–31

Set Compile Points and Create Constraint Files . 14–31
Additional Considerations for Compile Points . 14–33
Creating a Quartus II Project for Compile Points and Multiple .vqm Files 14–33

Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate
Synplify Projects . 14–35

Manually Creating Multiple .vqm Files With Black Boxes . 14–35
Creating a Quartus II Project for Multiple .vqm Files . 14–39

Performing Incremental Compilation in the Quartus II Software . 14–40
Conclusion . 14–41
Document Revision History . 14–41

Chapter 15. Mentor Graphics Precision Synthesis Support
Altera Device Family Support . 15–1
Design Flow . 15–2
Creating and Compiling a Project in the Precision Synthesis Software . 15–4
Mapping the Precision Synthesis Design . 15–5

Setting Timing Constraints . 15–6
Setting Mapping Constraints . 15–6
Assigning Pin Numbers and I/O Settings . 15–6
Assigning I/O Registers . 15–8
Disabling I/O Pad Insertion . 15–8

Preventing the Precision Synthesis Software from Adding I/O Pads . 15–8
Preventing the Precision Synthesis Software from Adding an I/O Pad on an
Individual Pin . 15–9

Controlling Fan-Out on Data Nets . 15–9
Synthesizing the Design and Evaluating the Results . 15–9

Obtaining Accurate Logic Utilization and Timing Analysis Reports . 15–10
Exporting Designs to the Quartus II Software Using NativeLink Integration 15–10

Running the Quartus II Software from within the Precision Synthesis Software 15–10
Running the Quartus II Software Manually Using the Precision Synthesis-Generated
Tcl Script . 15–11
Using the Quartus II Software to Run the Precision Synthesis Software . 15–12
Passing Constraints to the Quartus II Software . 15–12

create_clock . 15–12
set_input_delay . 15–13
set_output_delay . 15–13
set_max_delay and set_min_delay . 15–14
set_false_path . 15–14
set_multicycle_path . 15–15

Guidelines for Altera Megafunctions and Architecture-Specific Features . 15–15
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 15–16

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files . 15–16
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated VHDL Files . . 15–17
Instantiating Intellectual Property With the MegaWizard Plug-In Manager
and IP Toolbench . 15–17
Instantiating Black Box IP Functions With Generated Verilog HDL Files 15–18
Instantiating Black Box IP Functions With Generated VHDL Files . 15–18
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xix
Inferring Altera Megafunctions from HDL Code . 15–19
Multipliers . 15–19
Setting the Use Dedicated Multiplier Option . 15–20
Setting the dedicated_mult Attribute . 15–20
Multiplier-Accumulators and Multiplier-Adders . 15–21
Controlling DSP Block Inference . 15–22
RAM and ROM . 15–24

Incremental Compilation and Block-Based Design . 15–24
Creating a Design with Precision RTL Plus Incremental Synthesis . 15–24

Creating Partitions with the incr_partition Attribute . 15–25
Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations . 15–26
Creating Black Boxes to Create EDIF Netlists . 15–28

Creating Black Boxes in Verilog HDL . 15–28
Creating Black Boxes in VHDL . 15–29

Creating Quartus II Projects for Multiple EDIF Files . 15–30
Creating a Single Quartus II Project for a Standard Incremental Compilation Flow 15–31
Creating Multiple Quartus II Projects for a Bottom-Up Flow . 15–32

Hierarchy and Design Considerations . 15–32
Conclusion . 15–33
Document Revision History . 15–33

Chapter 16. Mentor Graphics LeonardoSpectrum Support
Altera Device Family Support . 16–1
Design Flow . 16–2
LeonardoSpectrum Optimization Strategies . 16–4

Timing-Driven Synthesis . 16–4
Global PowerTab . 16–4
Clock PowerTab . 16–5
Input and Output PowerTabs . 16–5

Other Constraints . 16–5
Encoding Style . 16–5
Resource Sharing . 16–6
Mapping I/O Registers . 16–6

Timing Analysis with the LeonardoSpectrum Software . 16–6
Exporting Designs Using NativeLink Integration . 16–7

Generating Netlist Files . 16–7
Including Design Files for Black Boxed Modules . 16–7
Passing Constraints with Scripts . 16–8
Integration with the Quartus II Software . 16–8

Guidelines for Altera Megafunctions and LPM Functions . 16–8
Instantiating Altera Megafunctions . 16–9
Inferring Altera Memory Elements . 16–9

Inferring Multipliers and DSP Functions . 16–10
Simple Multipliers . 16–10
Multiplier Accumulators . 16–10
Multiplier Adders . 16–11

Controlling DSP Block Inference . 16–11
Global Attribute . 16–11
Module Level Attributes . 16–12
Signal Level Attributes . 16–13
Guidelines for Using DSP Blocks . 16–15

Block-Based Design with the Quartus II Software . 16–16
Hierarchy and Design Considerations . 16–16
Creating a Design with Multiple .edf Files . 16–17
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xx Contents
Generating Multiple .edf Files Using the LogicLock Option . 16–17
Creating a Quartus II Project for Multiple .edf Files Including LogicLock Regions 16–19

Generating Multiple .edf Files Using Black Boxes . 16–20
Black Box Methodology in Verilog HDL . 16–21
Black Boxing in VHDL . 16–22
Creating a Quartus II Project for Multiple .edf Files . 16–24

Incremental Synthesis Flow . 16–25
Modifications Required for the LogicLock_Incremental.tcl Script File . 16–25
Running the Tcl Script File in LeonardoSpectrum . 16–26

Conclusion . 16–27
Document Revision History . 16–27

Chapter 17. Analyzing Designs with Quartus II Netlist Viewers
When to Use the Netlist Viewers: Analyzing Design Problems . 17–1
Quartus II Design Flow with the Netlist Viewers . 17–2
RTL Viewer Overview . 17–4
State Machine Viewer Overview . 17–5
Technology Map Viewer Overview . 17–5
Introduction to the User Interface . 17–6

Schematic View . 17–7
Schematic Symbols . 17–7
Selecting an Item in the Schematic View . 17–14
Moving and Panning in the Schematic View . 17–15

Netlist Navigator Pane . 17–15
State Machine Viewer . 17–16

State Diagram View . 17–17
State Transition Table . 17–18
State Encoding Table . 17–18
Selecting an Item in the State Machine Viewer . 17–18
Switching Between State Machines . 17–18

Global Options . 17–18
Display Settings . 17–19
Tracing . 17–20
Customize View . 17–21
Shortcut Commands . 17–22

Navigating the Schematic View . 17–22
Traversing and Viewing the Design Hierarchy . 17–22

Flattening the Design Hierarchy . 17–22
Viewing the Contents of a Design Hierarchy in the Current Schematic 17–22

Viewing Contents of Atom Primitives . 17–23
Viewing the Properties of Instances and Primitives . 17–24
Viewing LUT Representations in the Technology Map Viewer . 17–24
Grouping Combinational Logic into Logic Clouds . 17–26

Logic Clouds in the RTL Viewer . 17–26
Logic Clouds in the Technology Map Viewer . 17–27
Grouping and Ungrouping Logic Clouds . 17–28

Changing the Constant Signal Value Formatting . 17–28
Zooming and Magnification . 17–28

Schematic Debugging and Tracing Using the Bird’s Eye View . 17–29
Partitioning the Schematic into Pages . 17–30

Moving Between Schematic Pages . 17–31
Moving Back and Forward Through Schematic Pages . 17–31
Following Nets Across Schematic Pages . 17–31
Go to Net Driver . 17–32
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Contents xxi
Filtering in the Schematic View . 17–33
Filter Sources Command . 17–33
Filter Destinations Command . 17–34
Filter Sources and Destinations Command . 17–34
Filter Between Selected Nodes Command . 17–35
Filter Selected Nodes and Nets Command . 17–36
Filter Bus Index Command . 17–37
Filter Command Processing . 17–37
Filtering Across Hierarchies . 17–37
Expanding a Filtered Netlist . 17–38
Reducing a Filtered Netlist . 17–39

Probing to a Source Design File and Other Quartus II Windows . 17–39
Moving Selected Nodes to Other Quartus II Windows . 17–40

Probing to the Netlist Viewers from Other Quartus II Windows . 17–40
Viewing a Timing Path . 17–41
Other Features in the Schematic Viewer . 17–42

Tooltips . 17–42
Finding Design Elements in the Netlist Viewers . 17–44
Exporting and Copying a Schematic Image . 17–45
Printing . 17–45

Conclusion . 17–46
Document Revision History . 17–46

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xxii Contents
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

December 2010 Altera Corporation
Chapter Revision Dates
The chapters in this document, Quartus II Handbook Version 10.1 Volume 1: Design
and Synthesis, were revised on the following dates. Where chapters or groups of
chapters are available separately, part numbers are listed.

Chapter 1. Design Planning with the Quartus II Software
Revised: December 2010
Part Number: QII51016-10.1.0

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: December 2010
Part Number: QII51015-10.1.0

Chapter 3. Quartus II Support for HardCopy Series Devices
Revised: December 2010
Part Number: QII51004-10.1.0

Chapter 4. Quartus II Design Separation Flow
Revised: December 2010
Part Number: QII51019-10.1.0

Chapter 5. Creating a System with Qsys
Revised: December 2010
Part Number: QII51020-10.1.0

Chapter 6. Creating Qsys Components
Revised: December 2010
Part Number: QII51022-10.1.0

Chapter 7. Qsys Interconnect
Revised: December 2010
Part Number: QII51021-10.1.0

Chapter 8. Component Interface Tcl Reference
Revised: December 2010
Part Number: QII51023-10.1.0

Chapter 9. Recommended Design Practices
Revised: December 2010
Part Number: QII51006-10.1.0

Chapter 10. Recommended HDL Coding Styles
Revised: December 2010
Part Number: QII51007-10.1.0

Chapter 11. Managing Metastability with the Quartus II Software
Revised: December 2010
Part Number: QII51018-10.0.1
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

xxiv Chapter Revision Dates
Chapter 12. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: December 2010
Part Number: QII51017-10.1.0

Chapter 13. Quartus II Integrated Synthesis
Revised: December 2010
Part Number: QII51008-10.1.0

Chapter 14. Synopsys Synplify Support
Revised: December 2010
Part Number: QII51009-10.1.0

Chapter 15. Mentor Graphics Precision Synthesis Support
Revised: December 2010
Part Number: QII51011-10.1.0

Chapter 16. Mentor Graphics LeonardoSpectrum Support
Revised: December 2010
Part Number: QII51010-10.1.0

Chapter 17. Analyzing Designs with Quartus II Netlist Viewers
Revised: December 2010
Part Number: QII51013-10.0.1
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

December 2010 Altera Corporation
Section I. Design Flows
The Altera® Quartus® II design software provides a complete design environment
that easily adapts to your specific design requirements. This handbook is arranged in
chapters, sections, and volumes that correspond to the major stages in the overall
design flow. For a general introduction to features and the standard design flow in the
software, refer to the Introduction to the Quartus II Software manual.

This section is an introduction to design planning. It documents various specialized
design flows in the following chapters:

■ Chapter 1, Design Planning with the Quartus II Software

This chapter is an overview of various design planning considerations: device
selection, early power estimation, I/O pin planning, and design planning. To help
you improve design productivity, it provides recommendations and describes
various tools available for Altera FPGAs.

■ Chapter 2, Quartus II Incremental Compilation for Hierarchical and Team-Based
Design

This chapter documents Altera’s incremental design and compilation flow, which
allows you to preserve the results and performance for unchanged logic in your
design as you make changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular hierarchical and
team-based design flows using top-down or bottom-up methodologies.

■ Chapter 3, Quartus II Support for HardCopy Series Devices

With the Quartus II software, you can use an FPGA device as a prototype and
seamlessly migrate your design to a HardCopy ASIC to reduce cost for volume
production. This chapter describes the Quartus II support for HardCopy design
flows.

■ Chapter 4, Quartus II Design Separation Flow

This chapter describes rules and guidelines for creating a floorplan with the
Design Separation flow. The Quartus II Design Separation flow provides the
ability to design physically independent structures on a single device. This allows
system designers to achieve a higher level of integration on a single FPGA, and
alleviates increasingly strict Size Weight and Power (SWaP) requirements.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

I–2 Section I: Design Flows
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51016-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51016-10.1.0
1. Design Planning with the
Quartus II Software
This chapter discusses key FPGA design planning considerations, provides
recommendations, and describes various tools available for you to improve your
design productivity with Altera® FPGAs.

Because of the significant increase in FPGA device densities, designs are complex and
can sometimes involve multiple designers. System architects must resolve design
issues when integrating design blocks, often leading to problems that affect the
overall time to market and thereby increasing cost. You can solve potential problems
early in the design cycle by following the design planning considerations provided in
this chapter.

This chapter contains the following sections:

■ “Creating Design Specifications” on page 1–2

■ “Intellectual Property Selection” on page 1–2

■ “System Design” on page 1–2

■ “Device Selection” on page 1–3

■ “Planning for Device Programming or Configuration” on page 1–4

■ “Early Power Estimation” on page 1–5

■ “Early Pin Planning and I/O Analysis” on page 1–6

■ “Selecting Third-Party EDA Tool Flows” on page 1–9

■ “Planning for On-Chip Debugging Options” on page 1–10

■ “Design Practices and HDL Coding Styles” on page 1–11

■ “Planning for Hierarchical and Team-Based Design” on page 1–13

■ “Fast Synthesis and Early Timing Estimation” on page 1–16

f This chapter provides only an introduction to various design planning features in the
Quartus® II software. For a general overview of the Quartus II design flow and
features, refer to the Introduction to the Quartus II Software manual. For more
information about specific Quartus II features and methodologies, this chapter
provides references to other appropriate chapters in the Quartus II Handbook.

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. More device features, density, or performance requirements can
increase system cost. Signal integrity and board issues can impact I/O pin locations.
Power, timing performance, and area utilization all affect each other, and compilation
time is affected when optimizing these priorities.

The Quartus II software optimizes designs for the best results, but you can change the
settings to intensify optimization of one aspect of your design. Certain tools or
debugging options can lead to restrictions in your design flow. Your design priorities
help you choose the tools, features, and methodologies to use for the design.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51016
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

1–2 Chapter 1: Design Planning with the Quartus II Software
Creating Design Specifications
f After you select a device family, to check if additional guidelines are available, refer to
the design guidelines section of the appropriate device handbook.

Creating Design Specifications
Before you create your logic design or complete your system design, create detailed
design specifications that define the system, specify the I/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions.

Creating a test plan also helps you to design for verification and manufacturability.
For example, you might need to validate interfaces incorporated in the design. To
perform any built-in self-test functions to drive interfaces, you can use a UART
interface with a Nios® II processor inside the FPGA device. For guidelines related to
analyzing and debugging the device after it is in the system, refer to “Planning for
On-Chip Debugging Options” on page 1–10.

If more than one designer works on your design, you should consider a common
design directory structure or source control system to make design integration easier.
For more suggestions on team-based designs, refer to “Planning for Hierarchical and
Team-Based Design” on page 1–13.

Intellectual Property Selection
Altera and its third-party intellectual property (IP) partners offer a large selection of
off-the-shelf IP cores optimized for Altera devices. The IP you select often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/O interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

The OpenCore Plus feature, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports the following modes:

■ Untethered—the design runs for a limited time.

■ Tethered—the design requires an Altera serial JTAG cable connected between the
JTAG port on your board and a host computer running the Quartus II Programmer
for the duration of the hardware evaluation period.

f For descriptions of available IP cores, refer to the Intellectual Property page of the
Altera website.

System Design
You can use the Quartus II SOPC Builder or Qsys system integration tools to create
your design. With SOPC Builder and Qsys, you can specify system components in a
GUI and generate the required interconnect logic automatically, along with adapters
for clock crossing and width adaptation. Because system design tools change the
design entry methodology, you should plan to start developing your design within
the tool and ensure all design blocks use appropriate standard interfaces from the
beginning of the design cycle so that you do not need to make changes later.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/products/ip/ipm-index.html

Chapter 1: Design Planning with the Quartus II Software 1–3
Device Selection
SOPC Builder and Qsys components use Avalon® standard interfaces for the physical
connection of components, and you can connect any logical device (either on-chip or
off-chip) that has an Avalon interface. The Avalon Memory-Mapped interface allows a
component to use an address mapped read or write protocol that enables flexible
topologies for connecting master components to any slave components. The Avalon
Streaming interface enables point-to-point connections between streaming
components that send and receive data using a high-speed, unidirectional system
interconnect between source and sink ports.

f For more information about SOPC Builder, refer to the SOPC Builder User Guide.

f For information about using Qsys to improve your productivity, refer to the System
Design with Qsys section in volume 1 of the Quartus II Handbook.

Device Selection
The device you choose affects board specification and layout. This section provides
guidelines in the device selection process.

Choose the device family that best suits your design requirements. Families differ in
cost, performance, logic and memory density, I/O density, power utilization, and
packaging. You should also consider feature requirements, such as I/O standards
support, high-speed transceivers, global or regional clock networks, and the number
of phase-locked loops (PLLs) available in the device.

f You can use the Altera Product Selector available on the Altera website to help you
choose your device. You can also review important features of each device family in
the Selector Guides page of the Altera website. Each device family also has a device
handbook or set of data sheets that documents the device features in detail. You can
also see a summary of the resources for each device in the Device dialog box in the
Quartus II software.

Carefully study the device density requirements for your design. Devices with more
logic resources and higher I/O counts can implement larger and potentially more
complex designs, but might cost more. Smaller devices use lower static power. Select a
device that has some extra capacity than what meets your design requirements, in
case you want to add more logic later in the design cycle to upgrade or expand your
design, and reserve logic and memory for on-chip debugging (refer to “Planning for
On-Chip Debugging Options” on page 1–10). Consider requirements for specific
types of dedicated logic blocks, such as memory blocks of different sizes, or digital
signal processing (DSP) blocks to implement certain arithmetic functions.

If you have older designs that target an Altera device, you can use their resource
utilization as an estimate for your design. Compile existing designs in the Quartus II
software with the Auto device selected by the Fitter option in the Settings dialog
box. Review the resource utilization to learn which device density fits the design.
Consider coding style, device architecture, and the optimization options used in the
Quartus II software, which can significantly affect the resource utilization and timing
performance of your design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/products/selector/psg-index.html
http://www.altera.com/literature/lit-sg.jsp

1–4 Chapter 1: Design Planning with the Quartus II Software
Planning for Device Programming or Configuration
f To obtain resource utilization estimates for certain configurations of Altera’s IP
designs, refer to the user guides for Altera megafunctions and IP MegaCores on the
IP and Megafunctions literature page of the Altera website.

Device Migration Planning
Determine whether you want the option to migrate your design to another device
density to allow flexibility when your design nears completion, or whether you want
to migrate to a HardCopy® ASIC when your design reaches volume production. In
some cases, designers may target a smaller (and less expensive) device and then move
to a larger device if necessary to meet their design requirements. Other designers may
prototype their design in a larger device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a smaller device after prototyping.
Similarly, many designers compile and optimize their design for an FPGA device and
then migrate to a HardCopy ASIC when the design is complete and ready for
higher-volume production. If you want the flexibility to migrate your design, you
should specify these migration options in the Quartus II software at the beginning of
your design cycle.

h For more information about specifying the target migration devices, refer to Specifying
Devices for Device Migration in Quartus II Help.

Selecting a migration device impacts pin placement because some pins may serve
different functions in different device densities or package sizes. If you make pin
assignments in the Quartus II software, the Pin Migration View in the Pin Planner
highlights pins that change function between your migration devices. (For more
information, refer to “Early Pin Planning and I/O Analysis” on page 1–6.) Selecting a
companion device might restrict logic utilization to ensure that your design is
compatible with a selected HardCopy device. Adding migration or companion
devices later in the design cycle is possible, but requires extra effort to check pin
assignments, and might require design changes to fit into the new target device.
Consider these issues early in the design cycle rather than at the end, when the design
is near completion and ready for migration.

Additionally, if you plan to migrate your design to a HardCopy ASIC, review
HardCopy guidelines early in the design cycle for any Quartus II settings that you
should use or other restrictions you should consider. You must use complete timing
constraints if you want to migrate to a HardCopy ASIC because of the rigorous
verification requirements for ASIC devices.

f For more information about timing requirements and analysis for HardCopy designs,
refer to the HardCopy Series Handbook, and the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Planning for Device Programming or Configuration
Planning how you want to program or configure the device in your system allows
system and board designers to determine what companion devices, if any, your
system requires. Your board layout also depends on the type of programming or
configuration method you plan to use for programmable devices. Many
programming options require a JTAG interface to connect to the devices, so you might
have to set up a JTAG chain on the board. Additionally, the Quartus II software uses
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 1: Design Planning with the Quartus II Software 1–5
Early Power Estimation
the settings for the configuration scheme, configuration device, and configuration
device voltage to enable the appropriate dual purpose pins as regular I/O pins after
you complete configuration. The Quartus II software performs voltage compatibility
checks of those pins during I/O assignment analysis and compilation of your design.
You can use the Configuration tab of the Device and Pin Options dialog box to select
your configuration scheme.

f The device family handbooks describe the configuration options available for a given
device family. For more details about configuration options, refer to the Configuration
Handbook. For information about programming CPLD devices, refer to your device
data sheet or handbook.

Early Power Estimation
You can use the Quartus II power estimation and analysis tools to provide
information to PCB board and system designers. Power consumption in FPGA
devices depend on the logic design, which can make planning difficult. You can
perform early power estimation before you create any source code, or when you have
a preliminary version of the design source code, and then perform the most accurate
analysis with the PowerPlay Power Analyzer when you complete the design.

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

■ Thermal—ensure that the cooling solution is sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

■ Power supply—ensure that the power supplies provide adequate current to
support device operation.

The PowerPlay Early Power Estimator (EPE) spreadsheet allows you to estimate
power utilization for your design.

You can enter data about the design manually, or you can use the tools in the
Quartus II software to assist you in generating the device resources usage information
for your design.

To manually enter data into the EPE spreadsheet, enter the device resources,
operating frequency, toggle rates, and other parameters for your design. If you do not
have an existing design, estimate the number of device resources used in your design,
and then enter them manually.

If you have an existing design or a partially completed design, you can use the
Quartus II software to generate the PowerPlay EPE File to assist you in completing the
PowerPlay EPE spreadsheet.

h For more information about generating the PowerPlay EPE File, refer to Performing an
Early Power Estimate Using the PowerPlay Early Power Estimator in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm

1–6 Chapter 1: Design Planning with the Quartus II Software
Early Pin Planning and I/O Analysis
The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the PowerPlay EPE File and transfers the information into the
spreadsheet. If you do not want to use the macro, you can manually transfer the data
into the EPE spreadsheet. For example, after importing the PowerPlay EPE File
information into the PowerPlay EPE spreadsheet, you can add additional devices
resource information. If the existing Quartus II project represents only a portion of
your full design, manually enter the additional device resources you use in the final
design.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results for designers developing the PCB.

f The PowerPlay EPE spreadsheets for each supported device family are available on
the PowerPlay Early Power Estimator and Power Analyzer page of the Altera
website.

When you complete the design, perform a complete power analysis to check the
power consumption more accurately. The PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power, ensuring that thermal
and supply limitations are not violated. For the most accurate power estimation, use
gate-level simulation results from a Verilog Value Change Dump File (.vcd) with the
PowerPlay Power Analyzer.

f For more information about power estimation and analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Pin Planning and I/O Analysis
In many design environments, FPGA designers want to plan the top-level FPGA I/O
pins early to help board designers begin the PCB design and layout. The I/O
capabilities and board layout guidelines of the FPGA device influence pin locations
and other types of assignments. If the board design team specifies an FPGA pin-out, it
is crucial that the pin locations are verified in the FPGA placement and routing
software to avoid board design changes.

You can create a preliminary pin-out for an Altera FPGA with the Quartus II Pin
Planner before you develop the source code, based on standard I/O interfaces (such
as memory and bus interfaces) and any other I/O-related assignments defined by
system requirements. The Quartus II I/O Assignment Analysis checks that the pin
locations and assignments are supported in the target FPGA architecture. You can
then use I/O Assignment Analysis to validate I/O-related assignments that you
create or modify throughout the design process. When you compile your design in the
Quartus II software, I/O Assignment Analysis is run automatically in the Fitter to
validate that the assignments meet all the device requirements and generates
messages if there are problems.

This section describes pin planning and I/O analysis features for different stages of
the design flow.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 1: Design Planning with the Quartus II Software 1–7
Early Pin Planning and I/O Analysis
Early in the design process, before the source code is created, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores that are used in the design, and any other I/O-related assignments
defined by system requirements. You can use this information with the Create/Import
Megafunction feature in the Pin Planner to specify details about the design I/O
interfaces. Specifying these details allows you to create a top-level design file that
includes all your I/O information, so that you can analyze the I/O assignments in the
Quartus II software.

The Pin Planner interfaces with the MegaWizard™ Plug-In Manager, and allows you
to create or import custom megafunctions and IP cores that use I/O interfaces. You
can configure how the functions and cores are connected to each other by specifying
matching node names for selected ports in the Set Up Top-Level Design File dialog
box. Create any other I/O-related assignments for these interfaces or other design I/O
pins in the Pin Planner, as described in this section. When you have entered as much
I/O-related information as possible, generate a top-level design file using the Create
Top-Level Design File command. The Pin Planner creates virtual pin assignments for
internal nodes, so internal nodes are not assigned to device pins during compilation.
After analysis and synthesis of the newly generated top-level wrapper file, use the
generated netlist to perform I/O Analysis with the Start I/O Assignment Analysis
command.

h For more information about setting up the nodes in your design, refer to Set Up
Top-Level Design File Window (Edit Menu) in Quartus II Help.

You can use the I/O analysis results to change pin assignments or IP parameters even
before the design is created, and repeat the checking process until the I/O interface
meets your design requirements and passes the pin checks in the Quartus II software.
When you complete initial pin planning, you can create a revision based on the
Quartus II-generated netlist. You can then use the generated netlist to develop the
top-level design file for the actual design, or disregard the generated netlist and use
the generated Quartus II Settings File (.qsf) with the actual design.

During this initial pin planning, after you have generated a top-level design file, or
when you have developed your design source code, you can assign pin locations and
assignments using the Pin Planner.

The Pin Planner enables easy I/O pin assignment planning, assignment, and
validation. You can use the View menu in the Pin Planner to create pin location and
other assignments using a device package view instead of pin numbers.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups,
and differential pin pairings to help you through the I/O planning process. If
migration devices are selected (including HardCopy devices) as described in “Device
Migration Planning” on page 1–4, the Pin Migration View highlights the pins that
have changed functions in the migration device when compared to the currently
selected device. Selecting the pins in the Device Migration view cross-probes to the
rest of the Pin Planner, so that you can use device migration information when
planning your pin assignments. You can also configure board trace models of selected
pins for use in “board-aware” signal integrity reports generated with the Enable
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm

1–8 Chapter 1: Design Planning with the Quartus II Software
Early Pin Planning and I/O Analysis
Advanced I/O Timing option. This option ensures that you get very accurate I/O
timing analysis. You can use a Microsoft Excel spreadsheet to start the I/O planning
process if you normally use a spreadsheet in your design flow, and you can export a
Comma-Separated Value File (.csv) containing your I/O assignments for spreadsheet
use when you assign all pins.

When you complete your pin planning, you can pass pin location information to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools,
and can read pin location changes from these tools to check suggested changes. Your
pin assignments must match between the Quartus II software and your schematic and
board layout tools to ensure the FPGA works correctly on the board, especially if you
must make changes to the pin-out. The system architect uses the Quartus II software
to pass pin information to team members designing individual logic blocks, allowing
them to achieve better timing closure when they compile their design.

Start FPGA planning before you complete the HDL design to improve the confidence
in early board layouts, reduce the chance of error, and improve the overall time to
market of the design. When you complete the design, use the Fitter reports for the
final sign-off of pin assignments. After compilation, the Quartus II software generates
the Pin-Out File (.pin), and you can use this file to verify that each pin is correctly
connected in board schematics.

f For more information about I/O assignment and analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook. For more information about passing
I/O information between the Quartus II software and third-party EDA tools, refer to
the Mentor Graphics PCB Design Tools Support and Cadence PCB Design Tools Support
chapters in the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Simultaneous Switching Noise Analysis
Simultaneous switching noise (SSN) is a noise voltage inducted onto a victim I/O pin
of a device due to the switching behavior of other aggressor I/O pins in the device.
SSN often leads to the degradation of signal integrity by causing signal distortion,
thereby reducing the noise margin of a system. The best approach to resolving this
issue is to address SSN with estimation early in your system design, to reduce the
chance of any later board design changes. When the design is complete, perform a
complete SSN analysis of your FPGA in the Quartus II software to verify the board
design.

Altera provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) tool, and the SSN Analyzer in the Quartus II
software.

You can use the ESE tool to estimate SSN in your FPGA design, which is available for
various device families.

f For more information and device support for the ESE spreadsheet tool, refer to
Altera’s Signal Integrity Center on the Altera website. For more information about the
SSN Analyzer, refer to the Simultaneous Switching Noise (SSN) Analysis and
Optimizations chapter in volume 2 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_02.pdf
http://www.altera.com/technology/signal/sgl-index.html

Chapter 1: Design Planning with the Quartus II Software 1–9
Selecting Third-Party EDA Tool Flows
Selecting Third-Party EDA Tool Flows
Your complete FPGA design flow may include third-party EDA tools in addition to
the Quartus II software. Determine which tools you want to use with the Quartus II
software to ensure that they are supported and set up correctly, and that you are
aware of any useful features or undesired limitations.

Synthesis Tools
The Quartus II software includes integrated synthesis that supports Verilog HDL,
VHDL, Altera Hardware Description Language (AHDL), and schematic design entry.
You can also use supported standard third-party EDA synthesis tools to synthesize
your Verilog HDL or VHDL design, and then compile the resulting output netlist file
in the Quartus II software. Different synthesis tools may give different results for each
design. To assess the best-performing tool for your application, you can experiment
by synthesizing typical designs for your specific application and coding style.
Perform placement and routing in the Quartus II software to get accurate timing
analysis and logic utilization results.

Because tool vendors frequently add new features, fix tool issues, and enhance
performance for Altera devices, you should use the most recent version of third-party
synthesis tools. The Quartus II Software Release Notes lists the version of each synthesis
tool that is officially supported by that version of the Quartus II software.

The synthesis tool you choose may allow you to create a Quartus II project and pass
constraints, such as the EDA tool setting, device selection, and timing requirements
that you specified in your synthesis project. You can save time when setting up your
Quartus II project for placement and routing.

If you want to take advantage of an incremental compilation methodology, you
should partition your design for synthesis and generate multiple output netlist files.
For more information, refer to “Incremental Compilation with Design Partitions” on
page 1–14.

f For more information about synthesis tool flows, refer to the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Simulation Tools
Altera provides the ModelSim®-Altera Starter Edition with the Quartus II software.
You can also purchase the ModelSim-Altera Edition to support large designs and
achieve faster simulation performance. The Quartus II software can generate both
functional and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that is supported with your Quartus II software version for
best results. You should also use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist. The Quartus II Software Release Notes list the
version of each simulation tool that is supported with that particular version of the
Quartus II software.

Specify your simulation tool in the EDA Tools Settings page of the Settings dialog
box to generate the appropriate output simulation netlist.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

1–10 Chapter 1: Design Planning with the Quartus II Software
Planning for On-Chip Debugging Options
f For more information about simulation tool flows, refer to the appropriate chapter in
the Simulation section in volume 3 of the Quartus II Handbook.

Formal Verification Tools
Consider whether the formal verification flow that you want to use is supported, and
whether the flow impacts the design and compilation stages of your design.

f For more information about formal verification flows and supported tools, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the Quartus II
Handbook.

Using a formal verification flow can impact performance results because the flow
requires turning off certain logic optimizations, such as register retiming, and forces
you to preserve hierarchy blocks, which can restrict optimization. Formal verification
treats memory blocks as black boxes. Therefore, you should keep memory in a
separate hierarchy block so other logic does not get incorporated into the black box
for verification. Other restrictions may limit your design, and you should consult the
documentation for details. If formal verification is important to your design, plan for
limitations and restrictions at the beginning of the design cycle rather than make
changes later.

Specify your formal verification tool in the EDA Tools Settings page of the Settings
dialog box to generate the appropriate output netlist.

Planning for On-Chip Debugging Options
In-system debugging tools offer different advantages and trade-offs. A particular
debugging tool may work better for different systems and designers. You should
evaluate on-chip debugging options early in your design process, to ensure that your
system board, Quartus II project, and design are all set up to support the appropriate
options. You can reduce debugging time and avoid later changes to accommodate
your preferred debugging methodologies.

f For more information about debugging tools, refer to Section IV. In-System Debugging
in volume 3 of the Quartus II Handbook. For an overview of debugging options that
can help you decide which option to use, refer to the System Debugging Tools Overview
chapter in volume 3 of the Quartus II Handbook.

If you intend to use any of these features, you may have to plan for the features when
developing your system board, Quartus II project, and design. Consider the following
factors related to your debugging requirements when you are planning your design:

■ JTAG connections—required to perform in-system debugging with JTAG tools.
Plan your system and board with JTAG ports that are available for debugging.

■ Additional logic resources—required to implement JTAG hub logic. If you set up
the appropriate feature early in your design cycle, you can include these device
resources in your early resource estimations to ensure that you do not overfill the
device with logic.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii53027.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 1: Design Planning with the Quartus II Software 1–11
Design Practices and HDL Coding Styles
■ Reserve device memory—required if your tool uses device memory to capture
data during system operation. To ensure that you have enough memory resources
to take advantage of this debugging technique, consider reserving device memory
to be used during debugging.

■ Reserve I/O pins—required if you are using the logic analyzer interface (LAI) or
SignalProbe feature, which require I/O pins for debugging. If you reserve I/O
pins for debugging, you do not have to change the design or board later. Keep in
mind that the LAI can multiplex signals with design I/O pins if required. Ensure
that your board supports a debugging mode, where debugging signals do not
affect system operation.

■ Instantiate a megafunction in your HDL code—required if your debugging tool
uses a Quartus II megafunction.

Table 1–1 lists which factors are important for each debugging tool.

Design Practices and HDL Coding Styles
When you develop complex FPGA designs, design practices and coding styles have
an enormous impact on the timing performance, logic utilization, and system
reliability of your device.

Table 1–1. Factors to Consider When Using Debugging Tools During Design Planning Stages

Factor

Si
gn

ap
Ta

p
II

Lo
gi

c
An

al
yz

er

Sy
st

em
 C

on
so

le

In
-S

ys
te

m
 M

em
or

y
Co

nt
en

t E
di

to
r

Lo
gi

c
An

al
yz

er
 In

te
rf

ac
e

(L
AI

)

Si
gn

al
Pr

ob
e

In
-S

ys
te

m
 S

ou
rc

es

an
d

Pr
ob

es

Vi
rt

ua
l J

TA
G

M
eg

af
un

ct
io

n

JTAG connections v v v v — v v
Additional logic resources — v — — — — v
Reserve device memory v v — — — — —

Reserve I/O pins — — — v v — —

Instantiate a megafunction in your HDL
code — (1) — — — — v v
Notes to Table 1–1:

(1) You can instantiate the SignalTap II Logic Analyzer as a megafunction, so that you can manually connect the SignalTap II Logic Analyzer to nodes
in your design and ensure that the tapped node names do not change during synthesis. You can add the debugging block as a separate design
partition for incremental compilation to minimize recompilation times.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

1–12 Chapter 1: Design Planning with the Quartus II Software
Design Practices and HDL Coding Styles
Design Recommendations
You can use synchronous design practices to consistently meet your design goals.
Problems with asynchronous design techniques include reliance on propagation
delays in a device, incomplete timing analysis, and possible glitches. In a synchronous
design, a clock signal triggers all events. When you meet all register timing
requirements, a synchronous design behaves in a predictable and reliable manner for
all process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability
of your design. Problems with clock signals can cause functional and timing problems
in your design. Use dedicated clock pins and clock routing for best results, and if you
have PLLs in your target device, use the PLLs for clock inversion, multiplication, and
division. For clock multiplexing and gating, use the dedicated clock control block or
PLL clock switchover feature instead of combinational logic if these features are
available in your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce glitches.

The Design Assistant in the Quartus II software is a design-rule checking tool that
enables you to verify design issues. The Design Assistant checks your design for
adherence to Altera-recommended design guidelines. You can also use third-party
”lint” tools to check your coding style.

h For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.

You should also understand the target architecture of your device in order to take
advantage of device-specific features. For example, the control signals should use the
dedicated control signals in the device architecture. In some cases, you might need to
limit the number of different control signals used in your design to achieve the best
results.

f For more information about design recommendations and using the Design Assistant,
refer to the Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook. You can also refer to industry
papers for more information about multiple clock design. For a good analysis, refer to
Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs under
Papers (www.sunburst-design.com).

Recommended HDL Coding Styles
HDL coding styles can have a significant effect on the quality of results for
programmable logic designs. If you design memory and DSP functions, you should
understand the target architecture of your device so you can use the dedicated logic
block sizes and configurations. Follow the coding guidelines for inferring
megafunctions and targeting dedicated device hardware, such as memory and DSP
blocks.

f For specific HDL coding examples and recommendations, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For additional
tool-specific guidelines, refer to the documentation of your synthesis tool.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.sunburst-design.com

Chapter 1: Design Planning with the Quartus II Software 1–13
Planning for Hierarchical and Team-Based Design
Managing Metastability
Metastability problems can occur in digital design when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the designer
cannot guarantee that the signal meets the setup and hold time requirements during
the signal transfer. Designers commonly use a synchronization chain to minimize the
occurrence of metastable events. Ensure that your design accounts for
synchronization between any asynchronous clock domains. Consider using a
synchronizer chain of more than two registers for high-frequency clocks and
frequently-toggling data signals to reduce the chance of a metastability failure.

You can use the Quartus II software to analyze the average mean time between
failures (MTBF) due to metastability when a design synchronizes asynchronous
signals, and optimize the design to improve the metastability MTBF. The MTBF due to
metastability is an estimate of the average time between instances when metastability
could cause a design failure. A high MTBF (such as hundreds or thousands of years
between metastability failures) indicates a more robust design. Determine an
acceptable target MTBF given the context of your entire system and the fact that
MTBF calculations are statistical estimates.

The Quartus II software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your
clock and data frequencies.

f For information about the industry-leading metastability analysis, reporting, and
optimization features in the Quartus II software, refer to the Managing Metastability
with the Quartus II Software chapter in volume 1 of the Quartus II Handbook.

Planning for Hierarchical and Team-Based Design
If you want to create a hierarchical design so that you can use compilation-time
savings and performance preservation with the Quartus II software incremental
compilation feature, plan for an incremental compilation flow from the beginning of
your design cycle. The following subsections describe the flat compilation flow, in
which the design hierarchy is flattened without design partitions, and then the
incremental compilation flow that uses design partitions. Incremental compilation
flows offer several advantages but require more design planning to ensure good
quality of results. The last subsections discuss factors to consider when planning an
incremental compilation flow, planning design partitions, and optionally creating a
design floorplan.

f For information about using the incremental compilation flow methodology in the
Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

1–14 Chapter 1: Design Planning with the Quartus II Software
Planning for Hierarchical and Team-Based Design
Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions in the Quartus II software, the
entire design is compiled together in a “flat” netlist. Your source code can have
hierarchy, but the design is flattened during compilation and all the design source
code is synthesized and fit in the target device whenever the design is recompiled
after any change in the design. By processing the entire design, the software performs
all available logic and placement optimizations on the entire design to improve area
and performance. You can use debugging tools in an incremental design flow, such as
the SignalTap II Logic Analyzer, but you do not specify any design partitions to
preserve design hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any design partitions.
However, because the entire design is recompiled whenever there are any changes to
the design, compilation times can be relatively long for large devices. Additionally,
you may find that the results for one part of the design change when you change a
different part of your design. You can turn on the Rapid Recompile option to instruct
the software to preserve compatible placement and routing results when the design
changes in subsequent compilations. This option can reduce your compilation time in
a flat or partitioned design when you make very small changes to the design.

Incremental Compilation with Design Partitions
In an incremental compilation flow, the system architect splits a large design into
partitions. When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while maintaining
the quality of results.

Incremental compilation preserves the compilation results and performance of
unchanged partitions in the design, greatly reducing design iteration time by focusing
new compilations on changed design partitions only. New compilation results are
then merged with the previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical synthesis, to
specific design partitions while leaving other partitions untouched. You can also use
empty partitions to indicate that parts of your design are incomplete or missing, while
you compile the rest of the design.

Third-party IP designers can also export logic blocks to be integrated into the
top-level design. Team members can work on partitions independently, which can
simplify the design process and reduce compilation time. With exported partitions,
the system architect must provide guidance to designers or IP providers to ensure that
each partition uses the appropriate device resources. Because the designs may be
developed independently, each designer has no information about the overall design
or how their partition connects with other partitions. This lack of information can lead
to problems during system integration. The top-level project information, including
pin locations, physical constraints, and timing requirements, must be communicated
to the designers of lower-level partitions before they start their design.

The system architect plans design partitions at the top level and allows third-party
designs to access the top-level project framework. By designing within a copy of the
top-level project (or by checking out the project files in a source control environment),
the designers of the lower-level block have full information about the entire project,
which helps to ensure optimal results.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 1: Design Planning with the Quartus II Software 1–15
Planning for Hierarchical and Team-Based Design
When you are planning your design code and hierarchy, ensure that each design
entity is created in a separate file so that the entities remain independent when you
make source code changes in the file. If you use a third-party synthesis tool, create
separate Verilog Quartus Mapping or EDIF netlists for each design partition in your
synthesis tool. You may have to create separate projects within your synthesis tool, so
that the tool synthesizes each partition separately and generates separate output
netlist files. The netlists are then considered the source files for incremental
compilation. For information about support for Quartus II incremental compilation,
refer to your synthesis tool documentation.

Planning Design Partitions and Floorplan Location Assignments
Partitioning a design for an FPGA requires planning to ensure optimal results when
the partitions are integrated, and ensure that each partition is placed well relative to
other partitions in the device. Following Altera’s recommendations for creating
design partitions improves the overall quality of results. For example, registering
partition I/O boundaries keeps critical timing paths inside one partition that can be
optimized independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

If you have timing-critical partitions that are changing through the design flow, or
partitions exported from another Quartus II project, you can create design floorplan
assignments to constrain the placement of the affected partitions. Creating location
assignments ensures that no location conflicts occur between partitions. Additionally,
design floorplan assignments help to avoid a situation in which the Fitter is directed
to place or replace a portion of the design in an area of the device in which most
resources are claimed. You can use the Quartus II Chip Planner to create floorplan
assignments using LogicLock™ region assignments for design partitions. With a basic
design framework for the top-level design, you can view connections between
regions, estimate physical timing delays on the chip, and move regions around the
device floorplan. When you have compiled the full design, you can also view logic
placement and locate areas of routing congestion to improve floorplan assignments.
Good partition and floorplan design helps partitions meet top-level design
requirements when integrated with the rest of the design, reducing time spent
integrating and verifying the timing of the top-level design.

f For detailed guidelines about creating design partitions and organizing your source
code, as well as information about when and how to create floorplan assignments,
refer to the Best Practices for Incremental Compilation Partitions and Floorplan chapter in
volume 1 of the Quartus II Handbook.

f For more information about creating floorplan assignments in the Chip Planner, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

1–16 Chapter 1: Design Planning with the Quartus II Software
Fast Synthesis and Early Timing Estimation
Fast Synthesis and Early Timing Estimation
It is more cost-effective to find design issues early in the design cycle than to find
problems in the final timing closure stages. When the first version of the design source
code is complete, you might want to perform a quick compilation to create a kind of
silicon virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Quartus II software, you can choose to perform a Fast
synthesis, which reduces the compilation time but may give reduced quality of
results.

h For more information about Fast synthesis, refer to Synthesis Effort logic option in
Quartus II Help.

Regardless of your compilation flow, you can use the an Early Timing Estimate to
perform a quick placement and routing, and a timing analysis of your design. The
software chooses a device automatically if required, places any LogicLock regions
used to create a floorplan, finds a quick initial placement for all the design logic, and
provides a useful estimate of the final design performance. If you have entered timing
constraints, timing analysis reports on these constraints.

h For more information about how to run an early timing estimate, refer to Running a
Timing Analysis in Quartus II Help.

If you are designing individual design blocks or partitions separately, you can use
these features as you develop the design. Any issues highlighted in the lower-level
design blocks are communicated to the system architect. Resolving these issues might
require allocating additional device resources to the individual partition, or changing
its timing budget.

If you are a top-level designer, you can also use fast synthesis and early timing
estimation to prototype the entire design. Incomplete partitions are marked as empty
in an incremental compilation flow, while the rest of the design is compiled to get an
early timing estimate and detect any problems with design integration.

Conclusion
Modern FPGAs support large, complex designs with fast timing performance. By
planning several aspects of your design early, you can reduce time in later stages of
the development cycle. Use features of the Quartus II software to quickly plan your
design and achieve the best possible results. Following the guidelines presented in
this chapter can improve productivity, which can reduce cost and development time.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synthesis_effort.htm

Chapter 1: Design Planning with the Quartus II Software 1–17
Document Revision History
Document Revision History
Table 1–2 shows the revision history for this chapter.

Table 1–2. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Changed to new document template

■ Updated “System Design” on page 1–2 to include information about the Qsys system
integration tool

■ Added link to the Altera Product Selector in “Device Selection” on page 1–3

■ Converted information into new table (Table 1–1) in “Planning for On-Chip Debugging
Options” on page 1–10

■ Simplified description of incremental compilation usages in “Incremental Compilation
with Design Partitions” on page 1–14

■ Added information about the Rapid Recompile option in “Flat Compilation Flow with No
Design Partitions” on page 1–14

■ Removed details and linked to Quartus II Help in “Fast Synthesis and Early Timing
Estimation” on page 1–16

July 2010 10.0.0

■ Added new section “System Design” on page 1–3

■ Removed details about debugging tools from “Planning for On-Chip Debugging Options”
on page 1–10 and referred to other handbook chapters for more information

■ Updated information on recommended design flows in “Incremental Compilation with
Design Partitions” on page 1–14 and removed “Single-Project Versus Multiple-Project
Incremental Flows” heading

■ Merged the “Planning Design Partitions” section with the “Creating a Design Floorplan”
section. Changed heading title to “Planning Design Partitions and Floorplan Location
Assignments” on page 1–15

■ Removed “Creating a Design Floorplan” section

■ Removed “Referenced Documents” section

■ Minor updates throughout chapter
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

1–18 Chapter 1: Design Planning with the Quartus II Software
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2009 9.1.0

■ Added details to “Creating Design Specifications” on page 1–2

■ Added details to “Intellectual Property Selection” on page 1–2

■ Updated information on “Device Selection” on page 1–3

■ Added reference to “Device Migration Planning” on page 1–4

■ Removed information from “Planning for Device Programming or Configuration” on
page 1–4

■ Added details to “Early Power Estimation” on page 1–5

■ Updated information on “Early Pin Planning and I/O Analysis” on page 1–6

■ Updated information on “Creating a Top-Level Design File for I/O Analysis” on page 1–8

■ Added new “Simultaneous Switching Noise Analysis” section

■ Updated information on “Synthesis Tools” on page 1–9

■ Updated information on “Simulation Tools” on page 1–9

■ Updated information on “Planning for On-Chip Debugging Options” on page 1–10

■ Added new “Managing Metastability” section

■ Changed heading title “Top-Down Versus Bottom-Up Incremental Flows” to “Single-
Project Versus Multiple-Project Incremental Flows”

■ Updated information on “Creating a Design Floorplan” on page 1–18

■ Removed information from “Fast Synthesis and Early Timing Estimation” on page 1–18

March 2009 9.0.0 ■ No change to content

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

■ Organization changes

■ Added “Creating Design Specifications” section

■ Added reference to new details in the In-System Design Debugging section of volume 3

■ Added more details to the “Design Practices and HDL Coding Styles” section

■ Added references to the new Best Practices for Incremental Compilation and Floorplan
Assignments chapter

■ Added reference to the Quartus II Language Templates

Table 1–2. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51015-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51015-10.1.0
2. Quartus II Incremental Compilation for
Hierarchical and Team-Based Design
This chapter provides information and design scenarios to help you partition your
design to take advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus II software introduced the FPGA industry’s first true incremental design
and compilation flow, with the following benefits:

■ Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

■ Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

■ Facilitates modular hierarchical and team-based design flows, as well as design
reuse and intellectual property (IP) delivery.

1 Quartus II incremental compilation supports the Arria® GX, Stratix®, and Cyclone®
series of devices, with limited support for HardCopy® ASICs (for details, refer to
“Limitations for HardCopy Compilation and Migration Flows” on page 2–48).

This document contains the following sections:

■ “Deciding Whether to Use an Incremental Compilation Flow”

■ “Incremental Compilation Summary” on page 2–7

■ “Common Design Scenarios Using Incremental Compilation” on page 2–10

■ “Deciding Which Design Blocks Should Be Design Partitions” on page 2–14

■ “Specifying the Level of Results Preservation for Subsequent Compilations” on
page 2–21

■ “Exporting Design Partitions from Separate Quartus II Projects” on page 2–26

■ “Team-Based Design Optimization and Third-Party IP Delivery Scenarios” on
page 2–35

■ “Creating a Design Floorplan With LogicLock Regions” on page 2–44

■ “Incremental Compilation Restrictions” on page 2–47

■ “Scripting Support” on page 2–54

Deciding Whether to Use an Incremental Compilation Flow
The Quartus II incremental compilation feature enhances the standard Quartus II
design flow by allowing you to preserve satisfactory compilation results and
performance of unchanged blocks of your design.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51015

2–2 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
This section outlines the flat compilation flow with no design partitions in “Flat
Compilation Flow with No Design Partitions”, and the incremental flow when you
divide the design into partitions in“Incremental Compilation Flow With Design
Partitions” on page 2–3, and explains the differences. This section also explains when
a flat compilation flow is satisfactory, and highlights some of the reasons you might
want to create design partitions and use the incremental flow. A discussion about
incremental and team design flows in “Team-Based Design Flows and IP Delivery” on
page 2–6 describes how it is beneficial to keep your design within one project, as well
as when it might be necessary for other team members or IP providers to develop
particular design blocks or partitions separately, and then later integrate their
partitions into the top-level design.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions, all the source code is processed
with the Analysis and Synthesis module, and all the logic is placed and routed by the
Fitter module whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

Refer to the next subsection for ways to reduce compilation time when you use a flat
compilation for your design.

Incremental Capabilities Available When A Design Has No Partitions
The Quartus II software has incremental compilation capabilities available even when
you do not partition your design, including Smart Compilation, incremental
debugging, and Rapid Recompile. These features work with design partitions as well,
if you do follow an incremental design flow.

In any Quartus II compilation flow, you can use Smart Compilation to allow the
compiler to determine which compiler stages are required, based on the changes
made to the design since the last smart compilation, and then skip any stages that are
not required. For example, when Smart Compilation is turned on, the compiler skips
the Analysis and Synthesis module if all the design source files are unchanged. When
Smart Compilation is turned on, if you make any changes to the logic of a design, the
Compiler uses all the modules during processing. You can turn on Smart Compilation
in the Settings dialog box on the Compilation Process Settings page.

The Quartus II software also includes a Rapid Recompile feature that instructs the
compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of the design
are recompiled using this option; the compiler determines which parts of the design
must be recompiled. The Rapid Recompile preserves performance and can save
compile time by reducing the amount of changed logic that must be recompiled. You
can turn on the Rapid Recompile option in the Quartus II software on the
Incremental Compilation page in the Settings dialog box.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–3
Deciding Whether to Use an Incremental Compilation Flow
During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap® II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design. For more
information, refer to “Debugging Incrementally With the SignalTap II Logic
Analyzer” on page 2–13.

Incremental Compilation Flow With Design Partitions
In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
times for each design iteration.

Incremental compilation is recommended for large designs and high resource
densities when preserving results is important to achieve timing closure. The
incremental compilation feature also facilitates team-based design flows that allow
designers to create and optimize design blocks independently, when necessary. Refer
to the next section “Team-Based Design Flows and IP Delivery” on page 2–6 for more
information.

To take advantage of incremental compilation, start by splitting your design along
any of its hierarchical boundaries into design blocks to be compiled incrementally,
and assign each block as a design partition. The Quartus II software synthesizes each
individual hierarchical design partition separately, and then merges the partitions
into a complete netlist for subsequent stages of the compilation flow. When
recompiling your design, you can use source code, post-synthesis results, or
post-fitting results to preserve satisfactory results for each partition. Refer to
“Incremental Compilation Summary” on page 2–7 and subsequent sections for more
details.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design. Refer to “Team-Based Design
Flows and IP Delivery” on page 2–6 for more details.

Table 2–1 shows a summary of the impact the Quartus II incremental compilation
feature has on compilation results.

Table 2–1. Impact Summary of Using Incremental Compilation (Part 1 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation
Time Savings

Typically saves an average of 75% compilation time for small design changes in large designs when
post-fit netlists are preserved; there are savings in both Quartus II Integrated Synthesis and the Fitter.
(1)

Performance
Preservation

Excellent performance preservation when timing critical paths are contained within a partition,
because you can preserve post-fitting information for unchanged partitions.

Node Name
Preservation Preserves post-fitting node names for unchanged partitions.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–4 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a
floorplan if you start planning for incremental compilation at the beginning of your
design cycle.

f For more information and recommendations on how to prepare your design to use the
Quartus II incremental compilation feature, and how to avoid negative impact on
your design results, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Area Changes The area (logic resource utilization) might increase because cross-boundary optimizations are no
longer possible, and placement and register packing are restricted.

fMAX Changes The design’s maximum frequency might be reduced because cross-boundary optimizations are no
longer possible. If the design is partitioned and the floorplan location assignments are created
appropriately, there might be no negative impact on fMAX.

Note to Table 2–1:

(1) Quartus II incremental compilation does not reduce processing time for the early "pre-fitter" operations, such as determining pin locations and
clock routing, so the feature cannot reduce compilation time if runtime is dominated by those operations.

Table 2–1. Impact Summary of Using Incremental Compilation (Part 2 of 2)

Characteristic Impact of Incremental Compilation with Design Partitions
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–5
Deciding Whether to Use an Incremental Compilation Flow
Figure 2–1 shows a diagram of the Quartus II design flow using incremental
compilation with design partitions.

The diagram in Figure 2–1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each
partition.

Figure 2–1. Quartus II Design Flow Using Incremental Compilation

Note to Figure 2–1:

(1) When you use EDIF or VQM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the
design database, but logic synthesis and technology mapping are performed only for black boxes.

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

Verilog
HDL
(.sv)

Timing
Analyzerin parellel
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–6 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow
The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Quartus II
projects, depending on the netlist type that you specify for each partition.

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Quartus II software. The
Fitter also generates individual netlists for each partition so that the Partition Merge
stage can use the post-fit netlist to preserve the placement and routing of a partition if
you specify to do so in future compilations.

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the compiler to ignore all partitions
assignments in your project and compile the design as a "flat" netlist. When you turn
on the Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Quartus II software disables all design partition assignments
in your project and runs a full compilation ignoring all partition boundaries and
netlists. Turning off the Ignore partitions assignments during compilation option
restores all partition assignments and netlists for subsequent compilations.

h For more information on incremental compilation settings, refer to Incremental
Compilation Page in Quartus II Help.

Team-Based Design Flows and IP Delivery
The Quartus II software supports various design flows to enable team-based design
and third-party IP delivery. A top-level design can include one or more partitions that
are designed or optimized by different designers or IP providers, as well as partitions
that will be developed as part of a standard incremental methodology.

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Quartus II project. In this scenario,
you can add the completed partitions to the design incrementally, however, the design
flow allows all design optimization to occur in the top-level design for easiest design
integration. Altera recommends using a single Quartus II project whenever possible
because using multiple projects can add significant up-front and debugging time to
the development cycle.

Alternatively, partition designers can design their partition in a copy of the top-level
design, or in a separate Quartus II project. Designers export their completed partition
as either a post-synthesis netlist, or optimized placed and routed netlist, or both,
along with assignments such as LogicLock™ regions, as appropriate. The project lead
then integrates each design block as a design partition into the top-level design. Altera
recommends that designers export and reuse post-synthesis netlists, unless optimized
post-fit results are required in the top-level design, to simplify design optimization.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–7
Incremental Compilation Summary
Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate Quartus
II projects for each partition. However, optimizing design partitions in separate
Quartus II projects, and then later integrating the results into a top-level design, can
have the following potential drawbacks that require careful planning:

■ Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design
rules, such as always registering the ports at the module boundaries.

■ Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when
design partitions are developed independently in separate Quartus II projects.

■ Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Quartus II projects. The project lead must ensure that
the top-level design and the separate projects are consistent in their assignments.

A unique challenge of team-based design and IP delivery for FPGAs is the fact that
the partitions being developed independently must share a common set of resources.
To minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project, or a copy of the top-level design.
A common project ensures that designers have a consistent view of the top-level
project framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Quartus II projects, the project
lead can perform most of the design planning, and then pass the top-level design
constraints to the partition designers. Preferably, partition designers can obtain a copy
of the top-level design by checking out the required files from a source control system.
Alternatively, the project lead can provide a copy of the top-level project framework,
or pass design information using Quartus II-generated design partition scripts. In the
case that a third-party designer has no information about the top-level design,
developers can export their partition from an independent project if required.

For more information about managing team-based design flows, refer to“Exporting
Design Partitions from Separate Quartus II Projects” on page 2–26 and the subsection
“Project Management—Making the Top-Level Design Available to Other Designers”
on page 2–28.

1 Exporting partitions is not supported in HardCopy or FPGA companion device
compilations when there is a migration device setting. For details, refer to
“Limitations for HardCopy Compilation and Migration Flows” on page 2–48.

Incremental Compilation Summary
This section provides a summary of the standard incremental compilation design flow
and describes how to create design partitions.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–8 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Summary
Figure 2–2 illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Steps for Incremental Compilation
This section summarizes the steps in an incremental compilation flow; preparing a
design to use the incremental compilation feature, and then preserving satisfactory
results and performance in subsequent incremental compilations.

h For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Quartus II
software. For a step-by-step introduction on how to use incremental compilation, refer
to Using the Incremental Compilation Design Flow in Quartus II Help.

Preparing a Design for Incremental Compilation
To begin, elaborate your design, or run any compilation flow (such as a full
compilation) that includes the elaboration step. Elaboration is the part of the synthesis
process that identifies your design’s hierarchy.

Next, designate specific instances in the design hierarchy as design partitions, as
described in “Creating Design Partitions” on page 2–9.

If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality of
results and avoid conflicts in certain situations. Refer to “Creating a Design Floorplan
With LogicLock Regions” on page 2–44 for details about LogicLock region
assignments.

Figure 2–2. Summary of Standard Incremental Compilation Design Flow

Perform Analysis & Elaboration

Repeat as Needed
During Design, Verification
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Prepare Design for Incremental Compilation
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–9
Incremental Compilation Summary
Compiling a Design Using Incremental Compilation
The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or
source file the Partition Merge stage uses in the next incremental compilation. You can
choose to use the Source File, Post-Synthesis netlist, or Post-Fit netlist. For details
about the Netlist Type setting, refer to “Specifying the Level of Results Preservation
for Subsequent Compilations” on page 2–21.

Creating Design Partitions
There are several ways to designate a design instance as a design partition. This
section provides an overview of tools you can use to create partitions in the Quartus II
software. For information on selecting which design blocks to assign as partitions and
how to analyze the quality of your partition assignments, refer to “Deciding Which
Design Blocks Should Be Design Partitions” on page 2–14.

Creating Design Partitions in the Project Navigator
You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

h For detailed information about how to create design partitions in the Project
Navigator, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions in the Design Partitions Window
The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations. For information about how to set the netlist type and the available
settings, refer to “Netlist Type for Design Partitions” on page 2–21.

The Design Partitions window also lists recommendations at the bottom of the
window with links to the Incremental Compilation Advisor, where you can view
additional recommendations about partitions. The Color column indicates the color
of each partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. You can edit the partition name in the
Design Partitions Window so that you avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially useful when using command-line
commands or assignments, or when you merge partitions to give the partition a
meaningful name. Partition names can be from 1 to 1024 characters in length and
must be unique. The name can only contain alphanumeric characters and the pipe
(|), colon (:), and underscore (_) characters.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm

2–10 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
h For more information about how to create and manage design partitions in the Design
Partitions window, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions With the Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks.

f For more details about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in Quartus II Help and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Creating Design Partitions With Tcl Scripting
You can also create partitions with Tcl scripting commands. For details about the
command line and scripting flow, refer to “Scripting Support” on page 2–54.

Automatically-Generated Partitions
The compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sld_hub partition is
created for tools that use JTAG hub connections, such as the SignalTap II Logic
Analyzer. The hard_block partition is created to contain certain "hard" or dedicated
logic blocks in the device that are implemented in a separate partition so that they can
be shared throughout the design.

Common Design Scenarios Using Incremental Compilation
This section provides recommended applications of the incremental compilation flow
after you have set up your design with partitions for incremental compilation as
described in, “Steps for Incremental Compilation” on page 2–8.

This section contains the following design scenarios:

■ “Reducing Compilation Time When Changing Source Files for One Partition” on
page 2–11

■ “Optimizing a Timing-Critical Partition” on page 2–11

■ “Adding Design Logic Incrementally or Working With an Incomplete Design” on
page 2–12
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–11
Common Design Scenarios Using Incremental Compilation
■ “Debugging Incrementally With the SignalTap II Logic Analyzer” on page 2–13

Reducing Compilation Time When Changing Source Files for One Partition
Scenario background: You set up your design to include partitions for several of the
major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being
fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance for these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

1 The Quartus II software recompiles partitions by default when changes are
detected in a source file. You can refer to the Partition Dependent Files table
in the Analysis and Synthesis report to see which partitions were
recompiled. If you change an assignment but do not change the logic in a
source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the Timing Analyzer
report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition
Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met, and you have to optimize one particular partition. You want
to try optimization techniques such as raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer. Because these
techniques all involve significant compilation time, it makes sense to apply them to
only the partition in question.

Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already meet their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–12 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation
Perform the following steps to preserve the results for partitions that meet their
timing requirements, and to recompile a timing-critical partition with new
optimization settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

1 If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

1 You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use the Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Adding Design Logic Incrementally or Working With an Incomplete Design
Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this
subset of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty wrapper
file.

2. For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–13
Common Design Scenarios Using Incremental Compilation
3. For the remaining partitions, set the netlist type to Empty.

4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check Timing Analyzer reports to ensure that timing requirements are met. If so,
proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are met.

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in the
Design Partitions Properties dialog box to Placement to allow more flexibility
during routing if exact placement and routing preservation is not required.

7. Change the netlist type from Empty to Source File for the remaining partitions ,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements are met. If not,
make design or option changes and repeat step 8 and step 9 until the requirements
are met.

1 The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level , such as in the team-based design
flow described in “Designing in a Team-Based Environment” on page 2–38. Generally,
optimization in this flow works only if each critical path is contained within a single
partition due to the effects described in “Deciding Which Design Blocks Should Be
Design Partitions” on page 2–14. Ensure that if there are any partitions representing a
design file that is missing from the project, you create a placeholder wrapper file to
define the port interface. Refer to “Empty Partitions” on page 2–28 for more
information.

Debugging Incrementally With the SignalTap II Logic Analyzer
Scenario background: Your design is not functioning as expected, and you want to
debug the design using the SignalTap II Logic Analyzer. To maintain low compilation
times and to ensure that you do not ngatively affect the current version of your
design, you want to preserve the synthesis and fitting results and add the SignalTap II
Logic Analyzer to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II File
without modifying your design logic or its placement.

It is not necessary to create design partitions in order to use the SignalTap II
incremental compilation feature. The SignalTap II Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the SignalTap II Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–14 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
1 The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II File using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis. This allows the Fitter to add the
SignalTap II logic to the post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to
Source File and use the SignalTap II: pre-synthesis filter in the Node Finder. This
allows the software to resynthesize the partition and to tap directly to the
pre-synthesis node names that you choose. In this case, the partition is
resynthesized and refit, so the placement is typically different from previous
fitting results.

f For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus II Handbook.

Deciding Which Design Blocks Should Be Design Partitions
The incremental compilation design flow requires more up-front planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not automatically
consider each design entity or instance to be a design partition for incremental
compilation; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions prevents the compiler from
performing optimizations across partition boundaries, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2–16. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 2–3, a complete design is made up of instances A, B, C, D, E, F, and G. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called “Top”, automatically contains the top-level
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–15
Deciding Which Design Blocks Should Be Design Partitions
entity in the design, and contains any logic not defined as part of another partition.
The design file for the top level may be just a wrapper for the hierarchical instances
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Entities F and G were first identified as separate partitions,
and then merged together to create a partition F-G. The partition for the top-level
entity A, called “Top”, includes the logic in one of its lower-level instances, C, because
C was not defined as part of any other partition.

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

Figure 2–3. Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Merged Partition F-G

D

D

E

B

B C

A

A

F

C

E F

G

G

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–16 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
Impact of Design Partitions on Design Optimization
The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions prevents the compiler from performing logic optimizations across
partition boundaries, which allows the software to synthesize and place each partition
separately in an incremental flow. Therefore, consider partitioning guidelines to help
reduce the effect of partition boundaries.

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs, because to maintain incremental
behavior, the software cannot use the constants to optimize logic on either side of the
partition boundary. You can also merge two or more partitions to allow cross-
boundary optimizations for paths that cross between the partitions, as long as the
partitions have the same parent partition. Merging related logic from different
hierarchy blocks into one partition can be useful if you cannot change the design
hierarchy to accommodate partition assignments.

The Design Partition Planner can help you create good assignments, as described in
“Creating Design Partitions” on page 2–9. Refer to “Partition Statistics Reports” on
page 2–18, for information about the number of I/O connections and how many are
unregistered or driven by a constant value. For information on timing reports and
additional design guidelines, refer to “Partition Timing Reports” on page 2–19 and
“Incremental Compilation Advisor” on page 2–19.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus II projects, there may be conflicts related
to global routing resources for clock signals when the design is integrated into the
top-level design. You can use the Global Signal logic option to specify which clocks
should use global or regional routing, use the ALTCLK_CTRL megafunction to
instantiate a clock control block and connect it appropriately in both the partitions
being developed in separate Quartus II projects, or find the compiler-generated clock
control node in your design and make clock control location assignments in the
Assignment Editor.

f For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource allocation, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–17
Deciding Which Design Blocks Should Be Design Partitions
Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design
partition does not refer to a physical area of the device and does not directly control
the placement of instances. A logical design partition sets up a virtual boundary
between design hierarchies so that each is compiled separately, preventing logical
optimizations from occurring between them. When the software compiles the design
source code, the logic in each partition can be placed anywhere in the device unless
you make additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Quartus II project. The incremental compilation feature does not
use placement “assignments” to preserve placement results; it simply reuses the
netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Quartus II software, LogicLock regions are used
to constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions for timing-critical design blocks that will change in
subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases. Creating floorplan location assignments for design partitions
using LogicLock regions is discussed in “Creating a Design Floorplan With LogicLock
Regions” on page 2–44.

f For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Using Partitions With Third-Party Synthesis Tools
If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–18 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
f For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the appropriate chapter in volume 1 of the Quartus II
Handbook: Synopsys Synplify Support or Mentor Graphics Precision Synthesis Support.

Other Synthesis Tools
You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Assessing Partition Quality
The Quartus II software provides various tools to assess the quality of your assigned
design partitions. You can take advantage of these tools to assess your partition
quality, and use the information to improve your design or assignments as required to
achieve the best results.

f For more information about ensuring good partition quality, refer to the Best Practices
for Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1 of
the Quartus II Handbook.

Partition Statistics Reports
After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected. This report is useful when optimizing your design
partitions, ensuring that the partitions meet the guidelines presented in the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–19
Deciding Which Design Blocks Should Be Design Partitions
Figure 2–4 shows the report window.

You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition
Properties dialog box.

Partition Timing Reports
You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer, or using the report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design
partitions.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location
assignments.

As shown in Figure 2–5, recommendations are split into General Recommendations,
Timing Recommendations, and Team-Based Design Recommendations that apply
to design flows in which partitions are compiled independently in separate Quartus II
projects before being integrated into the top-level design. Each recommendation
provides an explanation, describes the effect of the recommendation, and provides the
action required to make a suggested change. In some cases, there is a link to the
appropriate Quartus II settings page where you can make a suggested change to

Figure 2–4. Partition Merge Partition Statistics Report
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–20 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions
assignments or settings. For some items, if your design does not follow the
recommendation, the Check Recommendations operation creates a table that lists
any nodes or paths in your design that could be improved. The relevant timing-
independent recommendations for the design are also listed in the Design Partitions
window and the LogicLock Regions window.

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and then click Check Recommendations. For large designs, these operations
can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if
some or all of the design or project settings do not follow the recommendations.
Following these recommendations is not mandatory to use the incremental
compilation feature. The recommendations are most important to ensure good results
for timing-critical partitions.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.

When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Quartus II features, such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Figure 2–5. Incremental Compilation Advisor
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–21
Specifying the Level of Results Preservation for Subsequent Compilations
Specifying the Level of Results Preservation for
Subsequent Compilations

As introduced in “Incremental Compilation Summary” on page 2–7 and “Common
Design Scenarios Using Incremental Compilation” on page 2–10, the netlist type of
each design partition allows you to specify the level of results preservation. The
netlist type determines which type of netlist or source file the Partition Merge stage
uses in the next incremental compilation.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported
by the device family. The advanced Fitter Preservation Level setting allows you to
specify the amount of information that you want to preserve from the post-fit netlist
file.

Netlist Type for Design Partitions
Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. Table 2–2 describes
the settings for the netlist type, explains the behavior of the Quartus II software for
each setting, and provides guidance on when to use each setting.

Table 2–2. Partition Netlist Type Settings (Part 1 of 2)

Netlist Type Quartus II Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s). (1)

Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.

Post-
Synthesis

Preserves post-synthesis results for the partition and reuses the post-synthesis netlist as long as the
following conditions are true:

■ A post-synthesis netlist is available from a previous synthesis.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. (2) For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–24.

Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available. (1)

Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following
conditions are true:

■ A post-fit netlist is available from a previous fitting.

■ No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. (2) For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–24.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Compiles the partition from the source files if resynthesis is
initiated. (1)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level for Design Partitions” on page 2–22.

Assignment changes, such as Fitter optimization settings, do not cause a partition set to Post-Fit to
recompile.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–22 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
Fitter Preservation Level for Design Partitions
The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog
box. Table 2–3 describes the Fitter Preservation Level settings.

Empty Uses an empty placeholder netlist for the partition. The partition's port interface information is required
during Analysis and Synthesis to connect the partition correctly to other logic and partitions in the
design, and peripheral nodes in the source file including pins and PLLs are preserved to help connect the
empty partition to the rest of the design and preserve timing of any lower-level non-empty partitions
within empty partitions. If the source file is not available, you can create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. In Verilog HDL: a module
declaration, and in VHDL: an entity and architecture declaration.

You can use this netlist type to skip the compilation of a partition that is incomplete or missing from the
top-level design. You can also set an empty partition if you want to compile only some partitions in the
design, such as to optimize the placement of a timing-critical block such as an IP core before
incorporating other design logic, or if the compilation time is large for one partition and you want to
exclude it.

If the project database includes a previously generated post-synthesis or post-fit netlist for an unchanged
Empty partition, you can set the netlist type from Empty directly to Post-Synthesis or Post-Fit and the
software reuses the previous netlist information without recompiling from the source files.

Notes to Table 2–2:

(1) If you turn on the Rapid Recompile option, the Quartus II software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results if there have been only small changes to the logic in the partition. Refer to “Incremental Capabilities
Available When A Design Has No Partitions” on page 2–2 for more information.

(2) You can turn on the Ignore changes in source files and strictly use the specified netlist, if available option on the Advanced tab in the Design
Partitions Properties dialog box to specify whether the Compiler should ignore source file changes when deciding whether to recompile the
partition.

Table 2–2. Partition Netlist Type Settings (Part 2 of 2)

Netlist Type Quartus II Behavior for Partition During Compilation

Table 2–3. Fitter Preservation Level Settings (Part 1 of 2)

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Placement and
Routing

Preserves the design partition’s netlist atoms and their placement and routing.

This setting reduces compilation times compared to Placement only, but provides less flexibility to
the router to make changes if there are changes in other parts of the design.

By default, the Fitter preserves the usage of high-speed programmable power tiles contained
within the selected partition, for devices that support high-speed and low-power tiles. You can turn
off the Preserve high-speed tiles when preserving placement and routing option on the
Advanced tab in the Design Partitions Properties dialog box.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–23
Specifying the Level of Results Preservation for Subsequent Compilations
h For detailed information about how to set the Netlist Type and Fitter Preservation
Level settings in the Quartus II software, refer to Setting the Netlist Type and Fitter
Preservation Level for Design Partitions in Quartus II Help.

Where Are the Netlist Databases Saved?
The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the incremental compilation database files to preserve
post-synthesis or post-fit compilation results. For details, refer to “Using Incremental
Compilation With Quartus II Archive Files” on page 2–48.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Quartus II Settings File (.qxp) for each partition in the
design that will be integrated into the top-level design. Refer to “Exporting Design
Partitions from Separate Quartus II Projects” on page 2–26 for more details about how
to create a .qxp for a partition within your design.

Deleting Netlists
You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

Placement Preserves the netlist atoms and their placement in the design partition. Re-routes the design
partition and does not preserve high-speed power tile usage.

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.
A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:

■ Preserve Fitter optimizations but allow the software to perform placement and routing again.

■ Reapply certain Fitter optimizations that would otherwise be impossible when the placement is
locked down.

■ Resolve resource conflicts between two imported partitions.

Table 2–3. Fitter Preservation Level Settings (Part 2 of 2)

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type.htm

2–24 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations
What Changes Initiate a Partition’s Automatic Resynthesis?
A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you do not want this resynthesis to
occur automatically, refer to “Forcing Use of the Compilation Netlist When a Partition
has Changed” on page 2–26.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

■ The device family setting has changed.

■ Any dependent source design file has changed. Refer to “Resynthesis Due to
Source Code Changes” on page 2–25 for details.

■ The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

■ A dependent source file was compiled into a different library (so it has a different
-library argument).

■ A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

■ The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

■ The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

■ You have moved the project and compiled database between a Windows and
Linux system. Due to the differences in the way new line feeds are handled
between the operating systems, the internal checksum algorithm may detect a
design file change in this case.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following:

■ Source File to recompile with all new settings

■ Post-Synthesis to recompile using existing synthesis results but new Fitter
settings
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–25
Specifying the Level of Results Preservation for Subsequent Compilations
■ Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist. For details about how you can affect
placement with LogicLock regions, refer to “Changing Partition Placement with
LogicLock Changes” on page 2–46.

Resynthesis Due to Source Code Changes
The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design description files
used to create the design, and include Memory Initialization Files (.mif) as well as
.qxp from exported partitions. When design files in a partition have dependencies on
other files, changing one file may initiate an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report lists the
design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

1 If you turn on the Rapid Recompile option, the Quartus II software may not
recompile the entire partition from the source code as described in this section; it will
reuse compatible results if there have been only small changes to the logic in the
partition. Refer to “Incremental Capabilities Available When A Design Has No
Partitions” on page 2–2 for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘include includes.v, all partitions are dependent on this file.
A change to includes.v causes the entire design to be recompiled. The VHDL
statement use work.all also typically results in unnecessary recompilations, because
it makes all entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work.all statements in your VHDL file or replace them by
including only the specific design units needed for each entity.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–26 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
Forcing Use of the Compilation Netlist When a Partition has Changed
Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep
the previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes to
the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore changes
in source files and strictly use the specified netlist, if available option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

Exporting Design Partitions from Separate Quartus II Projects
Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a
Quartus II Exported Partition File (.qxp), and then integrated into a top-level design.
A .qxp is a binary file that contains compilation results describing the exported design
partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does
not contain the source design files from the original Quartus II project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Quartus II project framework,
or even in isolation. If the designers have access to the top-level project framework
through a source control system, they can access project files as read-only and develop
their partition within the source control system. If designers do not have access to a
source control system, the project lead can provide the designer with a copy of the
top-level project framework to use as they develop their partitions. The project lead
also has the option to generate design partition scripts to manage resource and timing
budgets in the top-level design when partitions are developed outside the top-level
project framework.

The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Quartus II project, and use the standard incremental compilation
flow described previously.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–27
Exporting Design Partitions from Separate Quartus II Projects
The diagram in Figure 2–6 illustrates the team-based incremental compilation design
flow using a methodology in which partitions are compiled in separate Quartus II
projects before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

1 You cannot export or import partitions that have been merged. For more information
about merged partitions, refer to “Deciding Which Design Blocks Should Be Design
Partitions” on page 2–14.

The topics in this section provide a description of the team-based design flow using
exported partitions, describe how to generate a .qxp for a design partition, and
explain how to integrate the .qxp into the top-level design:

There are some additional restrictions related to design flows using exported
partitions, described in “Incremental Compilation Restrictions” on page 2–47.

Preparing the Top-Level Design
To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

Figure 2–6. Summary of Team-Based Incremental Compilation Flow

Repeat as Needed
During Design, Verif
& Debugging Stages

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Integrate Partition(s)
into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Provide Project Framework or
Constraints to Designers

Prepare Top-Level Design for
 Incremental Compilation
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–28 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Quartus II project to Empty.
Refer to “Empty Partitions” below for details. It may be necessary to constrain the
location of partitions with LogicLock region assignments if they are timing-critical
and are expected to change in future compilations, or if the designer or IP provider
wants to place and route their design partition independently, to avoid location
conflicts. For details, refer to “Creating a Design Floorplan With LogicLock Regions”
on page 2–44.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system. Refer to “Project Management—Making the Top-
Level Design Available to Other Designers” on page 2–28 for more information.

Empty Partitions
You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist type
to Empty for partitions in your design that will be developed by other designers or IP
providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should
include an entity and architecture declaration.

Project Management—Making the Top-Level Design Available to Other
Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings and
constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Quartus II software provides tools for
passing project information to partition designers.

Distributing the Top-Level Quartus II Project
There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–29
Exporting Design Partitions from Separate Quartus II Projects
■ If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

■ If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

■ Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

■ If a partition designer does not have access to the top-level project framework, the
project lead can give the partition designer a Tcl script or other documentation to
create the separate Quartus II project and all the assignments from the top-level
design.

For details about project management scripts you can create with the Quartus II
software, refer to“Generating Design Partition Scripts” on page 2–56.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Quartus II project and
integrate the optimized post-fitting results into the top-level design, use the following
guidelines to improve the integration process:

■ Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

■ Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

■ Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

■ To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on the
Fitter page in the Settings dialog box. Alternatively, you can set the Global
Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

■ Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–30 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
■ When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

f For more information about resource balancing and timing allocation between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Generating Design Partition Scripts
If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

■ Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are
required to set up low-level designs.

■ Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

■ Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the partition implementation may not be available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Quartus II projects before being integrated into the top-level design. If the
project lead cannot provide each designer with a copy of the top-level project
framework, the Quartus II software provides an interface for managing resources and
timing budgets in the top-level design. Design partition scripts make it easier for
partition designers to implement the instructions from the project lead, and avoid
conflicts between projects when integrating the partitions into the top-level design.
This flow also helps to reduce the need to further optimize the designs after
integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Quartus II projects.

For an example design scenario using design partition scripts, refer to “Enabling
Designers on a Team to Optimize Independently” on page 2–39.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–31
Exporting Design Partitions from Separate Quartus II Projects
h For step-by-step information on how to generate design partition scripts, and a
description of each option that can be included in design partition scripts, refer to
Generating Design Partition Scripts for Project Management, and Generate Design Partition
Scripts Dialog Box in Quartus II Help.

Exporting Partitions
When partition designers achieve the design requirements in their separate Quartus II
projects, each designer can export their design as a partition so it can be integrated
into the top-level design by the project lead. The Export Design Partition dialog box,
available from the Project menu, allows designers to export a design partition to a
Quartus II Exported Partition File (.qxp) with a post-synthesis netlist, a post-fit netlist,
or both. The project lead then adds the .qxp to the top-level design to integrate the
partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately to
avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Quartus II project so that it matches the
top-level design environment, especially in cases where you do not have access to the
full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts to
export the partitions and create .qxp files. When a partition has been compiled and is
ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

h For more information about how to export a design partition, refer to Using a Team-
Based Incremental Compilation Design Flow in the Quartus II Help.

Viewing the Contents of a Quartus II Exported Partition File (.qxp)
The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Quartus II software. The .qxp is a binary file that contains
compilation results so the file cannot be read in a text editor. The QXP report opens in
the main Quartus II window and contains summary information including a list of
the I/O ports, resource usage summary, and a list of the assignments used for the
exported partition.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

2–32 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
Integrating Partitions into the Top-Level Design
To integrate a partition developed in a separate Quartus II project into the top-level
design, you can simply add the .qxp as a source file in your top-level design (just like
a Verilog or VHDL source file). You can also use the Import Design Partition dialog
box to import the partition, in certain situations, described in “Advanced Importing
Options” on page 2–33.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the original
HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the instance
as a design partition, the partition boundary is preserved, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2–16.

Integrating Assignments from the .qxp
The Quartus II software filters assignments from .qxp files to include appropriate
assignments in the top-level design. The assignments in the .qxp are treated like
assignments made in an HDL source file, and are not listed in the Quartus II Settings
File (.qsf) for the top-level design. Most assignments from the .qxp can be overridden
by assignments in the top-level design.

The following subsections provide more details about specific assignment types:

Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Quartus II project are not
added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

Synopsys Design Constraint Files for the Quartus II TimeQuest Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing Analyzer in a
Synopsys Design Constraint File (.sdc) in the lower-level partition project are not
added to the top-level design. Ensure that the top-level design includes all of the
timing requirements for the entire project.

f For recommendations about managing SDC constraints for the top-level design and
independent lower-level partition projects, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–33
Exporting Design Partitions from Separate Quartus II Projects
Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level
design for any lower-level partition designs where designer or IP providers plan to
export post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will
not appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all the
placement information. For information on how to control LogicLock region
assignments for exported partitions, refer to the “Advanced Importing Options” on
page 2–33.

Integrating Encrypted IP Cores from .qxp Files
Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Quartus II project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support,
you can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a
simulation netlist, but you cannot create programming files unless you have a full
license.

Advanced Importing Options
You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Quartus II project into the top-level design. The
import process adds more control than using the .qxp as a source file, and is useful
only in the following circumstances:

■ If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf file during the import process.

■ If you want different settings or placement for different instantiations of the
same entity—You can control the setting import process with the advanced import
options, and specify different settings for different instances of the same .qxp
design block.

When you use the Import Design Partition dialog box to integrate a partition into the
top-level design, the import process sets the partition’s netlist type to Imported in the
Design Partitions window.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–34 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus II Projects
After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. Refer to “Netlist
Type for Design Partitions” on page 2–21 for details. The import process sets the
partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value. For more information
about preserving previous compilation results, refer to “Netlist Type for Design
Partitions” on page 2–21 and “Fitter Preservation Level for Design Partitions” on
page 2–22.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
deign because the netlists from the file have been imported into the project database.
Therefore if a new version of a .qxp is exported, the top-level designer must perform
another import of the new .qxp.

When you import a partition into a top-level design with the Import Design Partition
dialog box, the software imports relevant assignments from the partition into the
top-level design, as described for the source file integration flow in “Integrating
Assignments from the .qxp” on page 2–32. If required, you can change the way some
assignments are imported, as described in the following subsections.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. For details, refer to “Changing
Partition Placement with LogicLock Changes” on page 2–46. To preserve changes
made to a partition after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to
resolve assignment conflicts.

h For descriptions of the advanced import options available, refer to Advanced Import
Settings Dialog Box in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–35
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
This section includes the following design flows with step-by-step descriptions when
you have partitions being developed in separate Quartus II projects, or by a
third-party IP provider.

■ “Using an Exported Partition to Send to a Design Without Including Source Files”
on page 2–35

■ “Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse” on
page 2–36

■ “Designing in a Team-Based Environment” on page 2–38

■ “Enabling Designers on a Team to Optimize Independently” on page 2–39

■ “Performing Design Iterations With Lower-Level Partitions” on page 2–42

Using an Exported Partition to Send to a Design Without
Including Source Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

■ If you are using the Quartus II GUI, use the Export Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_export option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.

6. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–36 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp does not include placement information), as specified by the
IP designer sending the design block. Instantiate the design block using the port
information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus II project to replace
any empty wrapper file. If you want to use just the post-synthesis information, you
can choose whether you want the file to be a partition in the top-level design. To use
the post-fit information from the .qxp, assign the instance as a design partition and set
the netlist type to Post-Fit. Refer to “Creating Design Partitions” on page 2–9 and
“Netlist Type for Design Partitions” on page 2–21.

Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

1 Using a LogicLock region for the IP core allows the customer to create an
empty placeholder region to reserve space for the IP in the design floorplan
and ensures that there are no conflicts with the top-level design logic.
Reserved space also helps ensure the IP core does not affect the timing
performance of other logic in the top-level design. Additionally, with a
LogicLock region, you can preserve placement either absolutely or relative
to the origin of the associated region. This is important when a .qxp is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level design does
not match the location used by the IP provider.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–37
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
4. If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.

6. Export the level of hierarchy for the IP core into a single .qxp.

7. Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1. Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

2. Perform Analysis and Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 2–54) with the netlist type set to Empty (refer to “Netlist Type
for Design Partitions” on page 2–21).

4. You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

5. Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

■ If you are using the Quartus II GUI, use the Import Design Partition
command.

■ If you are using command-line executables, run quartus_cdb with the
--incremental_compilation_import option.

■ If you are using Tcl commands, use the following command:
execute_flow -incremental_compilation_import.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible. Refer to “Changing Partition Placement with
LogicLock Changes” on page 2–46

1 The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.
Refer to “Netlist Type for Design Partitions” on page 2–21.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–38 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
1 If the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Designing in a Team-Based Environment
Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Quartus II project before integrating their
design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a "skeleton" or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions that
will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the top-level project framework to partition designers using one of the
following procedures:

■ Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work on
their blocks independently. This design flow provides each designer with the
most information about the full design, which helps avoid resource conflicts
and makes design integration easy.

■ Provide a copy of the top-level Quartus II project framework for each designer.
You can use the Copy Project command on the Project menu or create a project
archive.

As the designer of a lower-level design block in this scenario, design and optimize
your partition in your copy of the top-level design, and then follow these steps when
you have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–39
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
2. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Enabling Designers on a Team to Optimize Independently
Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to the “Creating Precompiled
Design Blocks (or Hard-Wired Macros) for Reuse” on page 2–36 scenario, but assumes
that there are several design blocks being developed independently (instead of just
one IP block), and the project lead can provide some information about the design to
the individual designers. If the designers have shared access to the top-level design,
use the previous scenario “Designing in a Team-Based Environment” on page 2–38.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Quartus II project before
sending the design to the project lead. In this scenario, the IP developers do not have
access to the top-level project framework. This design flow requires more planning
and careful resource allocation because design blocks are developed independently.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a “skeleton” or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–40 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
5. Provide the constraints from the top-level design to partition designers using one
of the following procedures:.

■ Use design partition scripts to pass constraints and generate separate
Quartus II projects. On the Project menu, use the Generate Design Partition
Scripts command, or run the script generator from a Tcl or command prompt.
Make changes to the default script options as required for your project. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. If partitions
have not already been created by the other designers, use the partition script to
set up the projects so that you can easily take advantage of makefiles. Provide
each partition designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

■ Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the
master_makefile command to export this partition and create a .qxp, and then
import it into the top-level design.

If you are not using makefiles, perform the following steps:

1. If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

■ To source the Tcl script in the Quartus II software, on the Tools menu, click
Utility Windows to open the Tcl console. Navigate to the script’s directory, and
type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–41
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
2. If you are not using design partition scripts, create a new Quartus II project for the
subdesign, and then apply the following settings and constraints to ensure
successful integration:

■ Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

■ Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

■ Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist instead if placement or performance preservation is
not required, to provide the most flexibility for the Fitter in the top-level design.
Select Post-fit to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

6. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the master_makefile command to export each partition and create .qxp files,
and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Resolving Assignment Conflicts During Integration
When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or
placement constraints, or if the designers applied I/O port timing constraints that
differ from constraints added to the top-level design by the project lead. The project
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–42 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
lead can address these conflicts by explicitly importing the partitions into the
top-level design, and using options in the Advanced Import Settings dialog box, as
described in “Advanced Importing Options” on page 2–33. After the project lead
obtains the .qxp for each lower-level design block from the other designers, use the
Import Design Partition command on the Project menu and specify the partition in
the top-level design that is represented by the lower-level design block .qxp. Repeat
this import process for each partition in the design. After you have imported each
partition once, you can select all the design partitions and use the Reimport using
latest import files at previous locations option to import all the files from their
previous locations at one time. To address assignment conflicts, the project lead can
take one or both of the following actions:

■ Allow new assignments to be imported

■ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

■ Allow the imported region to replace the existing region

■ Allow the imported region to update the existing region

■ Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level
design, the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

Performing Design Iterations With Lower-Level Partitions
Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–43
Team-Based Design Optimization and Third-Party IP Delivery Scenarios
Use this flow if you re-optimize partitions exported from separate Quartus II projects
by incorporating additional constraints from the integrated top-level design.

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following
steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Quartus II project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation database.

3. Provide each partition designer with a checked-out version or copy of the
top-level design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.

4. The Quartus II software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

■ Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

■ Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

■ INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths to and
from the I/O pins of the partition. These constrain the pins to optimize the
timing paths to and from the pins.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–44 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
5. The partition designers source the file provided by the project lead.

■ To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command: source <filename> r

■ To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <filename>.tcl r

6. The partition designers recompile their designs with the new project information
or assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and adds
them to the top-level design. When a new .qxp is added to the files list, the software
will detect the change in the “source file” and use the new .qxp results during the next
compilation. If the project uses the advanced import flow, the project lead must
perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements have
been achieved. Because the partitions were compiled with more information about
connectivity at the top level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

Creating a Design Floorplan With LogicLock Regions
A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes describe the process of mapping the
logical design hierarchy onto physical regions in the device floorplan. After you have
partitioned the design, you can create floorplan location assignments for the design to
improve the quality of results when using the incremental compilation design flow.
Creating a design floorplan is not a requirement to use an incremental compilation
flow, but it is recommended in certain cases. Floorplan location planning can be
important for a design that uses incremental compilation for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

■ To ensure a good quality of results when recompiling individual timing-critical
partitions

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–45
Creating a Design Floorplan With LogicLock Regions
The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general
location and size of the logic in each partition. Or, initially, you can set each region
with the default settings of Auto size and Floating location to allow the Quartus II
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for
your design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed. Alternatively, you
can perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

f For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, as described in “Incremental Compilation Advisor”
on page 2–19.

Creating and Manipulating LogicLock Regions
Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Quartus II Chip Planner. You can select a region in the graphical interface in the Chip
Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.

h For more information about creating and viewing LogicLock regions in the LogicLock
Regions window and Chip Planner, refer to Creating and Manipulating LogicLock
Regions in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–46 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions
Changing Partition Placement with LogicLock Changes
When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. As
described in “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2–24, most assignment changes do not initiate a recompilation of a partition if
the netlist type specifies that Fitter results should be preserved. For example,
changing a pin assignment does not initiate a recompilation; therefore, the design
does not use the new pin assignment unless you change the netlist type to
Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type ,
or with .qxp that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

■ When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

■ When you set the region Origin to Floating, the following conditions apply:

■ If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

■ If the region’s member placement is preserved with a Post-Fit netlist type, the
Fitter does not change the Origin location, and reuses the previous placement
results.

Taking Advantage of the Early Timing Estimator
When creating a floorplan you can take advantage of the Early Timing Estimator to
enable quick compilations of the design while creating assignments. The Early Timing
Estimator feature provides a timing estimate for a design without having to run a full
compilation. You can use the Chip Planner to view the “placement estimate” created
by this feature, identify critical paths by locating from the timing analyzer reports,
and, if necessary, add or modify floorplan constraints. You can then rerun the Early
Timing Estimator to quickly assess the impact of any floorplan location assignments
or logic changes, enabling rapid iterations on design variants to help you find the best
solution. This faster placement has an impact on the quality of results. If getting the
best quality of results is important in a given design iteration, perform a full
compilation with the Fitter instead of using the Early Timing Estimate feature.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–47
Incremental Compilation Restrictions
Incremental Compilation Restrictions
This section documents the following restrictions and limitations that you may
encounter when using incremental compilation, including interactions with other
Quartus II features:

■ “When Timing Performance May Not Be Preserved Exactly” on page 2–47

■ “When Placement and Routing May Not Be Preserved Exactly” on page 2–47

■ “Using Incremental Compilation With Quartus II Archive Files” on page 2–48

■ “Formal Verification Support” on page 2–49

■ “SignalProbe Pins and Engineering Change Orders” on page 2–49

■ “SignalTap II Logic Analyzer in Exported Partitions” on page 2–49

■ “External Logic Analyzer Interface in Exported Partitions” on page 2–50

■ “Assignments Made in HDL Source Code in Exported Partitions” on page 2–50

■ “Design Partition Script Limitations” on page 2–50

■ “Restrictions on Megafunction Partitions” on page 2–52

■ “Register Packing and Partition Boundaries” on page 2–53

■ “I/O Register Packing” on page 2–53

When Timing Performance May Not Be Preserved Exactly
Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly
The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–48 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Using Incremental Compilation With Quartus II Archive Files
The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use_file_set full_db [-revision <revision name>]
<project name>

Limitations for HardCopy Compilation and Migration Flows
Incremental compilation within a single Quartus II project is supported for the base
family in HardCopy migration flows for both the FPGA first and HardCopy first
flows. Design partition assignments are migrated to the companion device. However,
you can not make changes to the design after migration because the design would not
match the compilation results for the base family. Therefore, you can perform
incremental compilation on one device family, but cannot add new partitions or
remove existing partitions after migration.

The Netlist Only preservation level is not supported for Post-fit netlists for FPGA or
HardCopy ASIC device compilations when a migration device is specified (that is, for
HardCopy ASIC device compilations with a FPGA migration device, or FPGA device
compilations with a HardCopy ASIC migration device).

Exporting and importing partitions is not supported in HardCopy ASIC or FPGA
device compilations when there is a migration device setting.

The Revision Compare feature requires that the HardCopy ASIC and FPGA netlists
are the same. Therefore, all operations performed on one revision must also occur on
the other revision. This is accomplished by logging all operations and replaying them
on the other revision. Importing partitions does not support this requirement. You can
often use Empty partitions to implement behavior similar to an exported partition
flow, as long as you do not change any global assignments between compilations. All
global assignments must be the same for all compiled partitions, so the assignments
can be reproduced in the companion device after migration.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–49
Incremental Compilation Restrictions
Formal Verification Support
You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Orders
ECO and SignalProbe changes are performed only during ECO and SignalProbe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
SignalProbe signal settings. However, the presence of ECO and/or SignalProbe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and SignalProbe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes and
SignalProbe signals, you must use the Change Manager to re-apply the ECOs after
compilation.

For partitions developed independently in separate Quartus II projects, the exported
netlist includes all currently saved ECO changes and SignalProbe signals. If you make
any ECO or SignalProbe changes that affect the interface to the lower-level partition,
the software issues a warning message during the export process that this netlist does
not work in the top-level design without modifying the top-level HDL code to reflect
the lower-level change. After integrating the .qxp partition into the top-level design,
the ECO changes will not appear in the Change Manager.

f For more information about using the SignalProbe feature to debug your design, refer
to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

SignalTap II Logic Analyzer in Exported Partitions
You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and
configuration without recompiling the full design. Use the appropriate filter in the
Node Finder to find your node names. Use SignalTap II: post-fitting if the netlist
type is Post-Fit to incrementally tap node names in the post-fit netlist database. Use
SignalTap II: pre-synthesis if the netlist type is Source File to make connections to
the source file (pre-synthesis) node names when you synthesize the partition from the
source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

2–50 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
For design partitions that are being developed independently in separate Quartus II
projects and contain the logic analyzer, when you export the partition, the Quartus II
software automatically removes the SignalTap II logic analyzer and related SLD_HUB
logic. You can tap any nodes in a Quartus II project, including nodes within .qxp
partitions. Therefore, you can use the logic analyzer within the full top-level design to
tap signals from the .qxp partition.

You can also instantiate the SignalTap II megafunction directly in your lower-level
design (instead of using an .stp file) and export the entire design to the top level to
include the logic analyzer in the top-level design.

f For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

External Logic Analyzer Interface in Exported Partitions
You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.

f For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Assignments Made in HDL Source Code in Exported Partitions
Assignments made with I/O primitives or the altera_attribute HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .qsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Design Partition Script Limitations
The Quartus II software has some additional limitations related to the design partition
scripts described in “Generating Design Partition Scripts” on page 2–30.

Warnings About Extra Clocks Due to Design Partition Scripts
The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–51
Incremental Compilation Restrictions
Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts
After you have compiled a design using TimeQuest constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the TimeQuest Timing
Analyzer.

1 PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. For suggestions on managing SDC constraints between top-level and
lower-level projects, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Wildcard Support in Design Partition Scripts
When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top|A:inst|B:inst|*, where A and B are lower-level partitions, and hierarchy
B is a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B:inst* is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top|A:inst|*|B:inst|* are not
supported. The Quartus II software issues a warning in these cases.

Derived Clocks and PLLs in Design Partition Scripts
If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–52 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions
Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Design Partition Scripts
Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY assignments to
specify inter-partition delays associated with input and output pins, which would not
otherwise be visible to the project. These assignments require that the software specify
the clock domain for the assignment and set this clock domain to ” * ”.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts
When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because I/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

Restrictions on Megafunction Partitions
The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard™ Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–53
Incremental Compilation Restrictions
The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries
The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries prevent cross-boundary
optimization. This restriction applies to all types of register packing, including I/O
cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic from two
partitions cannot be packed into the same ALM.

I/O Register Packing
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device I/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–54 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
f For more information and examples of cross-partition boundary I/O packing, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt.

h For information about the ::quartus::incremental_compilation Tcl package that
contains a set of functions for manipulating design partitions and settings related to
the incremental compilation feature, refer to ::quartus::incremental_compilation in
Quartus II Help.

f For scripting support information, including design examples and training, refer to
the Quartus II Software Scripting Support page of the Altera website. For detailed Tcl
scripting and command-line information, including design examples, refer to the Tcl
Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II Handbook.

Creating Design Partitions
To create a design partition, use the following Tcl command example:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

■ <file name>—The name for the partition, which is auto-generated by the Quartus II
software if you create the partition in the GUI or with the set_partition TCL
command. The Quartus II software uses file name for the internally generated
netlists files during incremental compilation. If you use Tcl to create your
partitions, you must assign a file name that is unique across all partitions. For the
top-level partition, the file name is ignored. To ensure the names are platform
independent, file names must be unique and case-sensitive. For example, if a
partition uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file name on the
corresponding instance name for the partition.

■ <destination>—The hierarchy name to make into a partition.

■ <partition name>—The user-specified partition name, which appears in the Design
Partitions window in the Quartus II software. The partition name must be unique
and less than 1024 characters. The name can consist only of alphanumeric
characters, and the pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

1 You can use the same value for file name and partition name in most cases, but be
aware that the legal characters are different, for example, you cannot have the pipe "|"
character in a filename. The Quartus software uses the hierarchy path as a default for
the partition name, and a shortened MD5 hash as the default for the filename.

f For more information about hierarchical naming conventions, refer to the
Node-Naming Conventions in Quartus II Integrated Synthesis section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/support/software/scripting/sof-qts-scripting.html
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/10.1/mergedProjects/tafs/tafs/tcl_pkg_incremental_compilation_ver_1.1.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–55
Scripting Support
The Quartus II software stores all netlists in the \incremental_db compilation
database directory.

Enabling or Disabling Design Partition Assignments During Compilation
To direct the Quartus II Compiler to enable or disable design partition assignments
during compilation, use the following Tcl command:

set_global_assignment -name IGNORE_PARTITIONS <value> r
■ OFF—The Qusrtus II software recognizes the design partitions assignments set in

the current Quartus II project and recompiles the partition in subsequent
compilations depending on their netlist status.

■ ON—The Quartus II software does not recognize design partitions assignments set
in the current Quartus II project and performs a compilation without regard to
partition boundaries or netlists.

Setting the Netlist Type
To set the partition netlist type, use the following Tcl command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> \
-section_id <partition name>

■ SOURCE

■ POST_SYNTH

■ POST_FIT

■ IMPORTED

■ EMPTY

1 For details about design partition properties, refer to “Specifying the Level of Results
Preservation for Subsequent Compilations” on page 2–21.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–56 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
Tcl command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL \
<value> -section_id <partition name>

■ NETLIST_ONLY

■ PLACEMENT

■ PLACEMENT_AND_ROUTING

1 For details about design partition properties, refer to “Specifying the Level of Results
Preservation for Subsequent Compilations” on page 2–21.

Preserving High-Speed Optimization
To preserve high-speed optimization for tiles contained within the selected partition,
use the following Tcl command:

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES

Specifying the Software Should Use the Specified Netlist and
Ignore Source File Changes

To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>".

Generating Design Partition Scripts
To generate design partition scripts, use the following script:

load required package
load_package database_manager

name and open the project
set project <project_path/project_name>
project_open $project

generate the design partiion scripts
generate_bottom_up_scripts <options>

#close project
project_close

h The options map to the same as those in the Quartus II software in the Generate
Design Partition Scripts dialog box. For detailed information about each option, refer
to Generate Design Partition Scripts Dialog Box in Quartus II Help.

To generate design partition scripts at the command-line, use the following command:

quartus_cdb <project name> --generate_bottom_up_scripts=on <options> r
■ --include_makefiles_with_bottom_up_scripts <on|off>
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–57
Scripting Support
■ --include_project_creation_in_bottom_up_scripts <on|off>

■ --include_virtual_pins_in_bottom_up_scripts <on|off>

■ --include_virtual_pin_timing_in_bottom_up_scripts <on|off>

■ --bottom_up_scripts_virtual_pin_delay <delay in ns>

■ --include_virtual_pin_locations_in_bottom_up_scripts <on|off>

■ --include_logiclock_regions_in_bottom_up_scripts <on|off>

■ --include_all_logiclock_regions_in_bottom_up_scripts <on|off>

■ --include_global_signal_promotion_in_bottom_up_scripts <on|off>

■ --include_pin_locations_in_bottom_up_scripts <on|off>

■ --include_timing_assignments_in_bottom_up_scripts <on|off>

■ --include_design_partitions_in_bottom_up_scripts <on|off>

■ --remove_existing_regions_in_bottom_up_scripts <on|off>

■ --disable_auto_global_promotion_in_bottom_up_scripts <on|off>

■ --bottom_up_scripts_output_directory=<output directory>

Exporting a Partition
To open a project and load the ::quartus::incremental_compilation package before
you use the Tcl commands to export a partition to a .qxp that contains both a post-
synthesis and post-fit netlist, with routing, use the following script:

load required package
package require ::quartus::incremental_compilation

open project
project_open <project name>

export partition to the .qxp and set preservation level
export_partition -partition <partition name>
-qxp <.qxp file name> -<options>

#close project
project_close

■ POST_FIT <on|off>

■ POST_SYNTH <on|off>

■ ROUNTING <on|off>

Importing a Partition into the Top-Level Design
To import a .qxp into a top-level design, use the following script:

load required packages
load_package incremental_compilation
load_package project
load_package flow
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–58 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support
open project
project_open <project name>

make partition import file assignments
set_global_assignment -name PARTITION_IMPORT_FILE \
-entity <entity which instantiates imported .qxp> \
-section_id <imported partition name> \
<.qxp filename>

execute import
execute_flow -incremental_compilation_import

Makefiles
For an example of how to use incremental compilation with a makefile as part of the
team-based incremental compilation design flow, refer to the read_me.txt file
that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory.

h When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change. For more information about the Generate Design Partition Scripts dialog
box, refer to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Scripting and Command-Line Application Examples
This section provides scripting examples that cover some of the topics discussed in
the main section of this chapter.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–59
Scripting Support
Reducing Opening a Project, Creating Design Partitions, and Performing an
Initial Compilation
Example background: You open a project called AB_project, set up two design
partitions, entities A and B, and then perform an initial complete compilation.

Reducing Compilation Time When Changing a Source File for One Partition—
Command-Line Example
Example background: You have run the initial compilation shown in the example
script in Example 2–1. You have modified the HDL source file for partition A and
want to recompile it.

Run the standard flow compilation command in your Tcl script:

execute_flow -full_compile

Or, type the following command at a system command prompt:

quartus_sh --flow compile AB_projectr
Assuming the source files for partition B do not depend on A, only A is recompiled.
The placement of B and its timing performance is preserved, which also saves
significant compilation time.

Optimizing the Placement for a Timing-Critical Partition
Example background: You have run the initial compilation shown in the example
script under Example 2–1. You would like to apply Fitter optimizations, such as
physical synthesis, only to partition A. No changes have been made to the HDL files.

Example 2–1. AB_project

set project AB_project

package require ::quartus::flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
set_instance_assignment -name PARTITION_HIERARCHY \
incremental_db/A_inst -to A –section_id "Partition_A"
set_instance_assignment -name PARTITION_HIERARCHY \
incremental_db/B_inst -to B –section_id "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_A"
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_B"

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

2–60 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Conclusion
To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in the
following example:

Conclusion
With the Quartus II incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.

Example 2–2. AB_project (2)

set project AB_project

package require ::quartus::flow
project_open $project

Turn on Physical Synthesis Optimization
set_global_assignment -name \
PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON

For A, set the netlist type to post-synthesis
set_global_assignment –name PARTITION_NETLIST_TYPE POST_SYNTH \
–section_id "Partition_A"

For B, set the netlist type to post-fit
set_global_assignment –name PARTITION_NETLIST_TYPE POST_FIT \
–section_id "Partition_B"

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design 2–61
Document Revision History
Document Revision History
Table 2–4 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive

Table 2–4. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Reorganized Tcl scripting section. Added description for new feature: Ignore partitions
assignments during compilation option.

■ Reorganized “Incremental Compilation Summary” on page 2–7 section.

July 2010 10.0.0

■ Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

■ Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

■ Restructured Altera recommendations for when to use a floorplan.

■ Added “Viewing the Contents of a Quartus II Exported Partition File (.qxp)” on page 2–31
section.

■ Reorganized chapter to make design flow scenarios more visible; integrated into various
sections rather than at the end of the chapter.

October 2009 9.1.0

■ Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
designers.

■ Moved SDC Constraints from Lower-Level Partitions section to the Best Practices for
Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1
of the Quartus II Handbook.

■ Reorganized the “Conclusion” on page 2–60 section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0

■ Split up netlist types table

■ Moved “Team-Based Incremental Compilation Design Flow” into the “Including or
Integrating partitions into the Top-Level Design” section.

■ Added new section “Including or Integrating Partitions into the Top-Level Design”.

■ Removed “Exporting a Lower-Level Partition that Uses a JTAG Feature” restriction

■ Other edits throughout chapter

November 2008 8.1.0

■ Added new section “Importing SDC Constraints from Lower-Level Partitions” on
page 2–44

■ Removed the Incremental Synthesis Only option

■ Removed section “OpenCore Plus Feature for MegaCore Functions in Bottom-Up Flows”

■ Removed section “Compilation Time with Physical Synthesis Optimizations”

■ Added information about using a .qxp as a source design file without importing

■ Reorganized several sections

■ Updated Figure 2–10
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2–62 Chapter 2: Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History
f Take an online survey to provide feedback about this handbook chapter.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51004-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51004-10.1.0
3. Quartus II Support for HardCopy Series
Devices
This chapter describes Quartus® II support for HardCopy® series devices.

Altera® HardCopy ASICs are the lowest risk, lowest total cost ASICs. The HardCopy
system development methodology offers fast time-to-market, low risk, and with the
Quartus II software, you can design with one set of RTL code and one IP set for both
FPGA and ASIC implementations. This flow enables you to conduct true
hardware/software co-design and completely prepare your system for production
prior to ASIC design hand-off. Altera provides a turn-key process to convert your
design to a HardCopy ASIC for production.

In this chapter, the term FPGA refers to a Stratix® II, Stratix III, or Stratix IV device,
which is the prototype device for a HardCopy II, HardCopy III, or HardCopy IV
device, respectively.

This chapter discusses the following topics:

■ “HardCopy Development Flow” on page 3–2

■ “HardCopy Companion Device Selection” on page 3–6

■ “HardCopy Utilities” on page 3–7

■ “HardCopy Device Resource Guide” on page 3–11

■ “HardCopy Recommended Settings in the Quartus II Software” on page 3–12

■ “HardCopy Design Readiness Check” on page 3–15

■ “Performing ECOs with Quartus II Engineering Change Management with the
Chip Planner” on page 3–20

■ “Formal Verification of FPGA and HardCopy Revisions” on page 3–23

f For more information about HardCopy series devices, refer to the respective
HardCopy device handbook, which is available on the Literature page of the Altera
website at www.altera.com.

HardCopy Series Design Benefits
Designing with HardCopy ASICs offers the following substantial benefits over other
ASIC offerings:

■ Seamless prototyping using an FPGA for at-speed system verification and system
development reduces total project development time and cost

■ Dependable conversion from an FPGA prototype to a HardCopy ASIC expands
product planning options

■ Unified design methodology for FPGA and HardCopy designs reduces the need
for ASIC development software, two sets of intellectual property, and project risk

■ System development methodology delivers lowest total cost
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51004
http://www.altera.com/

3–2 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Development Flow
Quartus II Features for HardCopy Planning
With the Quartus II software, you can design a HardCopy ASIC using seamless FPGA
prototyping. The Quartus II software provides the following expanded features,
which are described in further detail later in this chapter, for HardCopy series device
planning:

■ HardCopy Companion Device Assignment—Identifies compatible HardCopy
series devices for use with the FPGA prototype device currently selected.

This feature constrains the pins of your FPGA prototype, making it compatible
with your HardCopy device. The feature also constrains the correct resources
available for the HardCopy device, ensuring the compatibility of your FPGA
design. You must compile the design targeting the HardCopy device to ensure that
the design fits, routes, and meets timing requirements.

■ HardCopy Utilities—The HardCopy Utilities menu provides a variety of
functions to create or overwrite HardCopy companion revisions, set current
revisions, and compare revisions for equivalency.

■ HardCopy Advisor—The HardCopy Advisor guides you through the steps
necessary to successfully submit a HardCopy design to the Altera HardCopy
Design Center.

■ HardCopy Floorplan—The Chip Planner can show a preliminary floorplan view
of your HardCopy design’s Fitter placement results.

■ HardCopy Device Preliminary Timing—The TimeQuest Timing Analyzer
performs a timing analysis of HardCopy devices based on preliminary timing
models and Fitter placements. Final timing results for HardCopy devices are
provided by the Altera HardCopy Design Center.

■ HardCopy Design Readiness Check—The Quartus II software checks the project
settings to ensure compliance with the HardCopy device settings, I/O, PLL, and
RAM usage checks.

■ HardCopy Handoff Report—The Quartus II software generates a handoff report
containing information about the HardCopy design used by the Altera HardCopy
Design Center in the design review process.

■ HardCopy Design Archiving—The Quartus II software archives the HardCopy
design project’s files required to hand off the design to the Altera HardCopy
Design Center.

■ Formal Verification—Cadence Encounter Conformal software performs formal
verification between the source RTL design files and post-compilation gate-level
netlist from a HardCopy design.

HardCopy Development Flow
In the Quartus II software, you design your FPGA and HardCopy companion device
together in one Quartus II project using one of the following methods:

■ Design the FPGA first for in-system verification, and then create a HardCopy
companion device second.

■ Design the HardCopy device first, and then create the FPGA companion device
second for in-system verification.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–3
HardCopy Development Flow
Both of these flows are illustrated at a high level in Figure 3–1. The features in the
HardCopy Utilities menu help you complete your HardCopy design for submission
to the Altera HardCopy Design Center for back-end implementation.

1 The FPGA first flow is the default flow and the rest of this chapter is based on this
flow.

Designing the FPGA First
The HardCopy FPGA first flow development flow begins with seamless FPGA
prototyping and is identical to the traditional FPGA design flow; plus a few
additional tasks necessary to convert the design to the HardCopy companion device
within the same project. To design your HardCopy device when selecting the FPGA
companion device first, complete the following tasks:

■ Specify an FPGA device and a HardCopy companion device

■ Compile the FPGA design

■ Create and compile the HardCopy companion revision

■ Compare the HardCopy companion revision compilation to the FPGA device
compilation

Figure 3–1. HardCopy Flow in Quartus II Software

Notes to Figure 3–1:

(1) Refer to Figure 3–2 on page 3–4 for an expanded description of this process.
(2) Refer to Figure 3–3 on page 3–6 for an expanded description of this process.

Select FPGA Device
& HardCopy

Companion Device

Design FPGA First

Complete FPGA
Device First Flow (1)

Select HardCopy
Device & FPGA

Companion Device

Design FPGA Second

Complete HardCopy
Device First Flow (2)

In-System Verification

of FPGA Design

Compare FPGA
& HardCopy

Design Revisions

Generate the HardCopy
Handoff Files and
Archive the Design

Prepare Design HDL

Handoff Design Archive for
HardCopy ASIC Back-End

Design
FPGA
First?

Yes No
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

3–4 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Development Flow
Figure 3–2 provides an overview of the development process for designing with an
FPGA first and creating a HardCopy companion device second.

Figure 3–2. Designing FPGA Device First Flow

Prepare FPGA Design

Archive Project for Handoff

Design Submission & Back-End Implementation Phase

Select HardCopy Companion Device

Review HardCopy Advisor

Apply Design Constraints

Compile FPGA Design

Any
Violations?

Any
Violations?

Create or Overwrite HardCopy
Companion Revision

Compile HardCopy Companion Revision

Fits in
HardCopy Device?

Compare FPGA and HardCopy Revisions

Generate Handoff Report

HardCopy Device Development with the FPGA Device First Flow

In-System Verification

Select a Larger
HardCopy Companion

Device

Fix Violations
Yes

No

Yes

Yes

No

No
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–5
HardCopy Development Flow
You must select a target FPGA device and a companion HardCopy device when
compiling an FPGA design that you will migrate to a HardCopy device.

During the early stages of the design process, selecting the right HardCopy device
may be difficult. The HardCopy Device Resource Guide can assist you in the selection
process. After you select an FPGA and a HardCopy device, compile the FPGA and
review the HardCopy Device Resource Guide to see if all resources are available in the
targeted HardCopy device. If there are not enough resources available in the target
HardCopy device, you must select a larger HardCopy device and recompile the FPGA
design.

Once the FPGA and the HardCopy device selections have been finalized, perform the
following tasks:

■ Review the HardCopy Advisor for required and recommended tasks

■ Enable the Design Assistant to run during compilation

■ Add timing and location assignments

■ Compile your FPGA design

■ Create your HardCopy companion revision

■ Compile your design for the HardCopy companion device

■ Compare the HardCopy companion device compilation with the FPGA revision

■ Generate a HardCopy handoff report

■ Generate a HardCopy handoff archive

■ Arrange for submission of your HardCopy Handoff Archive to the Altera
HardCopy Design Center for back-end implementation

f For more information about the overall design flow using the Quartus II software,
refer to the Introduction to the Quartus II Software manual, which is available on the
Literature page of the Altera website at www.altera.com.

Designing the HardCopy Device First
After you select an initial HardCopy ASIC device, you can design your HardCopy
device first, and then create your FPGA prototype second. This approach is preferred
when using the HardCopy device to achieve higher performance than the FPGA
prototype, because you can see your potential maximum performance in the
HardCopy device immediately during development, and you can create a slower
performing FPGA prototype of the design for in-system verification. This design
process is similar to the HardCopy FPGA first flow development flow, but you begin
the design with a different initial device family instead. The remaining tasks to
complete your design for both the FPGA and HardCopy devices roughly follow the
same process (Figure 3–3). The HardCopy Advisor adjusts its list of tasks based on
which device family you start with, FPGA or HardCopy, to help you complete the
process seamlessly.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/

3–6 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Companion Device Selection
HardCopy Companion Device Selection
In the Quartus II software, you can select a HardCopy companion device to ensure
compatibility between the FPGA design and the HardCopy device’s resources. To
select your HardCopy companion device, on the Assignments menu, click Device and
select a companion device from the Companion device list.

Figure 3–3. Designing HardCopy Device First Flow

Prepare HardCopy Design

Design Submission & Back-End Implementation Phase

Select FPGA Companion Device

Review HardCopy Advisor

Apply Design Constraints

Compile HardCopy Design

Any
Violations?

Any
Violations?

Create or Overwrite FPGA
Companion Revision

Compile FPGA Companion Revision

Compare FPGA and HardCopy Revisions

Generate Handoff Report

HardCopy Device Development with the HardCopy Device First Flow

In-System Verification

Fix Violations
Yes

No

Yes

No

Archive Project for Handoff
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–7
HardCopy Utilities
Selecting a HardCopy companion device for your FPGA prototype constrains the
memory blocks, DSP blocks, and pin assignments, so that your design fits into the
HardCopy device resources. Pin assignments are constrained in the FPGA design
revision, so that the HardCopy device selected is pin-compatible. The Quartus II
software also constrains the FPGA design revision so that identical device resources
are targeted in both the FPGA and the HardCopy ASIC.

You can also specify your HardCopy companion device using the following tool
command language (Tcl) command:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST <HardCopy Device Part Number>

For example, to select the HC230F1020 device as your HardCopy companion device
for the EP2S130F1020C4 FPGA, use the following the Tcl command:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST HC230F1020C

HardCopy Utilities
The HardCopy Utilities menu contains the main functions you use to develop your
HardCopy design and FPGA prototype companion revision. To access this menu, on
the Project menu, click HardCopy Utilities. From the HardCopy Utilities menu, you
can perform the following tasks:

■ Create or overwrite HardCopy companion revisions

■ Specify the current HardCopy companion revision

■ Compare the companion revisions for functional equivalence

■ Generate a HardCopy Handoff report for design reviews

■ Archive HardCopy handoff files for submission to the Altera HardCopy Design
Center

■ Start the HardCopy Design Readiness Check

■ Track your design progress using the HardCopy Advisor

Each HardCopy Utilities feature is summarized in Table 3–1. The process for using
each of these features is explained in the following sections.

Table 3–1. HardCopy Utilities Menu Options (Part 1 of 2)

Menu Description Applicable Design Revision Restrictions

Create/Overwrite
HardCopy Companion
Revision

Creates a new companion
revision or overwrites an existing
companion revision for your
FPGA and HardCopy design

FPGA prototype design and
HardCopy companion
revision

■ The Auto device selected
by the Fitter option must
be turned off

■ An FPGA device and a
HardCopy companion
device must be set

Set Current HardCopy
Companion Revision

Specifies the companion revision
to associate with the current
design revision

FPGA prototype design and
HardCopy companion
revision

A companion revision must
already exist
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

3–8 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Utilities
Companion Revisions
You can create multiple design revisions for both the FPGA and the HardCopy device.
For example, if your initial FPGA revision is named top and the corresponding
HardCopy revision is named top_hc, you could create another FPGA revision, named
top_fpga, and the corresponding HardCopy revision would be named top_fpga_hc. The
Quartus II software creates specific HardCopy design revisions of the project in
conjunction with the primary project revisions. These parallel design revisions for
HardCopy devices are called companion revisions.

1 Although you can create multiple design revisions, Altera recommends that you
maintain only one FPGA revision once you create the HardCopy companion revision.

Once you have successfully compiled your FPGA prototype, you can create and
compile the HardCopy companion revision of your design.

You can associate only one FPGA revision to one HardCopy companion revision. If
you create more than one revision or companion revision, set the current companion
for the revision you are working on.

h For more information about creating or setting a companion revision in the Quartus II
software, refer to Migrating a Design to a HardCopy or FPGA Device in Quartus II Help.

Compare HardCopy
Companion Revisions

Compares the FPGA design
revision with the HardCopy
companion design revision and
generates a report

FPGA prototype design and
HardCopy companion
revision

Both revisions must be
compiled

Generate HardCopy
Handoff Report

Generates a report containing
important design information
files and messages generated by
the Quartus II Compiler

FPGA prototype design and
HardCopy companion
revision

■ Both revisions must be
compiled

■ The Compare HardCopy
Companion Revisions
command must be
successfully run

Archive HardCopy
Handoff Files

Generates a Quartus II Archive
File (.qar) specifically for
submitting the design to the
Altera HardCopy Design Center

HardCopy companion
revision

■ Both revisions must be
compiled

■ The Compare HardCopy
Companion Revisions
command must be
successfully run

■ The Generate HardCopy
Handoff Report command
must be successfully run

Start HardCopy
Design Readiness
Check

Generates a reports with the
design’s settings, I/O check, PLL,
and RAM usage checks

FPGA prototype design and
HardCopy companion
revision

None

HardCopy Advisor

Opens the HardCopy Advisor,
which walks you through the
process of creating a HardCopy
project

FPGA prototype design and
HardCopy companion
revision

None

Table 3–1. HardCopy Utilities Menu Options (Part 2 of 2)

Menu Description Applicable Design Revision Restrictions
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migrate_hc2.htm

Chapter 3: Quartus II Support for HardCopy Series Devices 3–9
HardCopy Utilities
Compiling the HardCopy Companion Revision
You can compile your HardCopy design with preliminary timing information in the
Quartus II software. The timing constraints for the HardCopy companion revision can
be the same as the FPGA design used to create the revision. The Quartus II software
contains preliminary timing models for HardCopy devices and you can gauge the
degree of performance improvement you can achieve in the HardCopy device
compared to the FPGA. Altera verifies that the HardCopy companion device timing
requirements are met in the Altera HardCopy Design Center.

After you create your HardCopy companion revision from your compiled FPGA
design, select the companion revision in the Quartus II software design revision
pull-down list (Figure 3–4) or from the Revisions list. Compile the HardCopy
companion revision. After you compile your design in the Quartus II software, you
can perform a comparison check of the HardCopy companion revision to the FPGA
prototype revision.

Comparing HardCopy and FPGA Companion Revisions
Altera uses the companion revisions in a single Quartus II project to maintain
compatibility between the FPGA and HardCopy ASIC. This methodology allows you
to design with one set of RTL code that is used in both the FPGA and HardCopy
ASIC, guaranteeing functional equivalency.

When making changes to companion revisions, use the Compare HardCopy
Companion Revisions command to ensure that your design matches your HardCopy
design functionality and compilation settings.

The Comparison Revision Summary in the Compilation report identifies where
assignments were changed between revisions or if there is a change in the logic
resource count due to different compilation settings.

h For more information about comparing companion revisions in the Quartus II
software, refer to Migrating a Design to a HardCopy or FPGA Device in Quartus II Help.

Generating a HardCopy Handoff Report
To submit a design to the Altera HardCopy Design Center, you must generate a
HardCopy Handoff report, which provides important information about the design
that you want the Altera HardCopy Design Center to review.

After you generate the HardCopy Handoff report, you can archive the design using
the Archive HardCopy Handoff Files command, which is described in “Archiving
HardCopy Handoff Files”.

Figure 3–4. Changing Current Revision
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migrate_hc2.htm

3–10 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Utilities
h For more information about the Generate HardCopy Handoff Report command in
the Quartus II software, refer to Generate HardCopy Handoff Report Command in
Quartus II Help.

Archiving HardCopy Handoff Files
The last step in the HardCopy design methodology is to archive the HardCopy project
for submission to the Altera HardCopy Design Center for HardCopy back-end
implementation. The Archive HardCopy Handoff command creates a unique .qar
file, which is different than the standard Quartus II project archive utility generates.
This archive contains only the necessary data from the Quartus II project required to
implement the design in the Altera HardCopy Design Center.

h For more information about the Archive HardCopy Handoff Files command in the
Quartus II software, refer to Archive HardCopy Handoff Files Command in Quartus II
Help.

HardCopy Advisor
The HardCopy Advisor provides a list of tasks to help guide you through the
development of your FPGA prototype and your HardCopy design. The following
tasks highlight the checkpoints that the HardCopy Advisor reviews, including the
major checkpoints in the design process, but they do not include show every step in
the process for completing your FPGA and HardCopy designs:

1. Select an FPGA device.

2. Select a HardCopy device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the FPGA design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy companion results.

9. Compare companion revisions.

10. Generate a Handoff report.

11. Archive handoff files and send them to Altera.

When your design uses an FPGA as your starting point, Altera recommends
following the HardCopy Advisor guidelines for your FPGA until you complete the
prototype revision.

When the FPGA design is complete, create and switch to your HardCopy companion
revision. Follow the HardCopy Advisor steps for that revision until completion, and
then submit the design to Altera for the HardCopy back-end implementation process.

h For more information about the HardCopy Advisor in the Quartus II software, refer to
About the HardCopy Advisor in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_gen_hc2_handoff.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_archive_hc2_handoff.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_hc2_advisor.htm

Chapter 3: Quartus II Support for HardCopy Series Devices 3–11
HardCopy Device Resource Guide
HardCopy Device Resource Guide
The HardCopy Device Resource Guide compares the resources required to
successfully compile a design with the resources available in the various HardCopy
devices. The report rates each HardCopy device and each device resource according
to how well it fits the design. The Quartus II software generates the HardCopy Device
Resource Guide for all designs successfully compiled for FPGA devices. This guide is
found in the Fitter folder of the Compilation report. Refer to Table 3–2 for an
explanation of the color codes.

Use this report to identify potential HardCopy device candidates for your design. The
HardCopy and FPGA device package must be compatible. A logic resource usage
greater than 100% or a ratio greater than 1:1 in any category indicates that the design
probably will not fit in that specific HardCopy device.

The HardCopy architecture consists of an array of fine-grained HCells, which are
used to build logic equivalent to FPGA adaptive logic modules (ALMs) and digital
signal processing (DSP) blocks. The DSP blocks in HardCopy devices match the
functionality of the FPGA DSP blocks, though timing of these blocks is different than
the FPGA DSP blocks because they are constructed of HCell macros. The memory
blocks in HardCopy devices are equivalent to the FPGA memory blocks. Preliminary
timing reports of the HardCopy device are available in the Quartus II software. Final
timing results of the HardCopy device are provided by the Altera HardCopy Design
Center after the HardCopy back-end implementation process is complete.

f For more information about the HardCopy device resources, refer to the respective
HardCopy series device handbook, which is available on the Literature page of the
Altera website at www.altera.com.

Table 3–2. HardCopy Device Resource Guide Color Legend

Color Package Resource (1) Device Resources

Green
(High)

The design can map to the HardCopy package and
has been fitted with target device migration enabled
in the HardCopy Companion Device dialog box.

The resource quantity is within the range of the
HardCopy device and the design can likely map if all
other resources also fit.

You still must compile the HardCopy revision to
ensure the design is able to route and close timing.

Orange
(Medium)

The design can map to the HardCopy package.
However, the design has not been fitted with the
target device migration enabled in the HardCopy
Companion Device dialog box.

The resource quantity is within the range of the
HardCopy device. However, the resource is at risk of
exceeding the range for the HardCopy package.

If your target HardCopy device falls in this category,
compile your design targeting the HardCopy device
as soon as possible to check if the design fits and is
able to route and migrate all other resources. You
might have to select a larger device.

Red
(None) The design cannot map to the HardCopy package.

The resource quantity exceeds the range of the
HardCopy device. The design cannot migrate to this
HardCopy device.

Note to Table 3–2:

(1) The package resource is constrained by the FPGA for which the design was compiled. Only vertical migration devices within the same package
are able to migrate to HardCopy devices.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/

3–12 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus II Software
The report example in Figure 3–5 shows the resource comparisons for a design
compiled for an EP2S130F1020 device. Based on the report, the HC230F1020 device in
the 1,020-pin FineLine BGA package is an appropriate HardCopy device. If the
HC230F1020 device is not specified as a migration target during the compilation, its
package and migration compatibility is rated medium (orange). The migration
compatibilities of the other HardCopy devices are rated none (red), because the
package types are incompatible with the FPGA device. The 1,020-pin FBGA HC240
device is rated none (red) because it is only compatible with the EP2S180F1020 device.

Figure 3–5 shows the report after the (unchanged) design was recompiled with the
HardCopy HC230F1020 device specified as a migration target. Now the HC230F1020
device package and migration compatibility is rated high (green).

HardCopy Recommended Settings in the Quartus II Software
The HardCopy development flow involves additional planning and preparation in
the Quartus II software when compared to a standard FPGA design. Additional
planning and preparation is required because you are developing your design for
implementation in two devices: a prototype of your design/system in an FPGA and a
companion revision in a HardCopy device for production. Additional settings and
constraints are required to make the FPGA design compatible with the HardCopy
device, and in some cases, you must remove certain settings in the design. This
section explains the additional settings and constraints necessary for your design to
be successful in both FPGA and HardCopy ASIC devices.

Limit DSP and RAM to HardCopy Device Resources
The Limit DSP & RAM to HardCopy device resources option in the Device dialog
box maintains compatibility between the FPGA and HardCopy devices by ensuring
that your design does not use resources in the FPGA device that are not available in
the selected HardCopy device or vice versa.

h For more information about the Limit DSP & RAM to HardCopy device resources
option in the Quartus II software, refer to Device Dialog Box in Quartus II Help.

Enabling Design Assistant to Run During Compile
You must use the Design Assistant in the Quartus II software to check all HardCopy
designs for design rule violations before submitting the designs to the Altera
HardCopy Design Center. Additionally, you must fix all critical and high-level errors.

Figure 3–5. HardCopy Device Resource Guide with Target Migration Enabled
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_chips.htm

Chapter 3: Quartus II Support for HardCopy Series Devices 3–13
HardCopy Recommended Settings in the Quartus II Software
1 Altera recommends turning on the Design Assistant to run automatically during each
compilation so that you can review the violations you must fix or waive.

h For more information about the Design Assistant and its rules in the Quartus II
software, refer to About the Design Assistant in Quartus II Help.

Timing Settings
The TimeQuest Timing Analyzer is a complete static timing analysis tool that you use
as a sign-off tool for Altera FPGAs and HardCopy ASICs. The TimeQuest Timing
Analyzer guides the Fitter and analyzes timing results after compilation and is the
required timing analysis tool for all designs.

h For more information about the TimeQuest Timing Analyzer, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook and About TimeQuest
Timing Analysis in Quartus II Help.

Constraints for Clock Effect Characteristics
The create_clock and create_generated_clock commands create ideal clocks, but
do not account for board effects. To account for clock effect characteristics, you can use
the set_clock_latency and set_clock_uncertainty commands.

f For more information about how to use these commands, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

You can use the derive_clock_uncertainty command to automatically derive the
clock uncertainties in your .sdc file. This command is useful when you are unsure of
the clock uncertainties. The calculated clock uncertainty values are based on I/O
buffer, static phase errors (SPE) and jitter in the PLLs, clock networks, and core noise.

The derive_clock_uncertainty command applies interclock, intraclock, and I/O
interface uncertainties. This command automatically calculates and applies setup and
hold clock uncertainties for each clock-to-clock transfer found in your design.

To determine I/O interface uncertainty, you must create a virtual clock, then assign
delays to the input/output ports with the set_input_delay and set_output_delay
commands for that virtual clock.

1 These uncertainties are applied in addition to those you specified with the
set_clock_uncertainty command. However, if a clock uncertainty assignment for a
source and destination pair 1is already defined, the new one is ignored. In this case,
you can use either the -overwrite command to overwrite the previous clock
uncertainty command, or manually remove them with the
remove_clock_uncertainty command.

The following syntax is for the derive_clock_uncertainty command:

derive_clock_uncertainty [-h | -help] [-long_help] [-add]
\[-overwrite]

The arguments for this command are listed in Table 3–3:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

3–14 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus II Software
When the derive_clock_uncertainty command is used, a PLLJ_PLLSPE_INFO.txt
file is automatically generated in the project directory. This file lists the names of the
PLLs, as well as their jitter and SPE values in the design. This text file can be used by
the HCII_DTW_CU_Calculator.

f For more information about the derive_clock_uncertainty command, refer to the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

1 Altera strongly recommends that you use the derive_clock_uncertainty command
in the HardCopy revision. The Altera HardCopy Design Center does not accept
designs that do not have clock uncertainty constraints by either using the
derive_clock_uncertainty command or the HardCopy II Clock Uncertainty
Calculator, and then using the set_clock_uncertainty command.

f For more information about how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty Calculator User Guide.

Quartus II Software Features Supported for HardCopy Designs
The Quartus II software supports optimization features for HardCopy prototype
development, including the following features discussed in this section:

■ “Physical Synthesis Optimization”

■ “LogicLock Regions” on page 3–15

■ “PowerPlay Power Analyzer” on page 3–15

■ “Incremental Compilation” on page 3–15

Physical Synthesis Optimization
The physical synthesis optimizations performed in the FPGA device are passed to the
HardCopy companion revision for placement and timing closure. When designing
with a HardCopy device first, you can enable physical synthesis optimizations for the
HardCopy device, and these post-fit optimizations are passed to the FPGA revision.

The Effort level on the Physical Synthesis Optimizations page of the Settings dialog
box for HardCopy III and HardCopy IV devices must be Fast because the
performance gain achieved compared to the compilation time is very limited.

h For more information about setting physical synthesis optimizations for the FPGA
revision of the designs in the Quartus II software, refer to Setting up and Running the
Fitter in Quartus II Help.

Table 3–3. Arguments for derive_clock_uncertainty

Option Description

-h | -help Short help

-long_help Long help with examples and possible return values

-add Adds results user-defined clock uncertainty assignments

-overwrite Overwrites previously performed clock uncertainty assignments
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/ug/ug_hc2_cuc.pdf

Chapter 3: Quartus II Support for HardCopy Series Devices 3–15
HardCopy Design Readiness Check
LogicLock Regions
LogicLock regions are flexible floorplan location constraints that help you place logic
on the target device. You can use LogicLock regions in FPGA designs targeted to
HardCopy devices, which are also passed onto the HardCopy companion revision.
LogicLock regions in HardCopy devices cannot have their size set to Auto. Although
floating LogicLock regions are supported, Altera recommends that you do not use
floating LogicLock regions for HardCopy devices, because floating LogicLock regions
may affect the design’s ability to meet timing closure. HardCopy LogicLock regions
must be manually sized and placed in the floorplan. When LogicLock regions are
created in a HardCopy device, they start with width and height dimensions set to
(1,1), and the origin coordinates for placement are at X1_Y1 in the lower left corner of
the floorplan. You must adjust the size and location of the LogicLock regions that you
create in the HardCopy device before compiling the design.

f For more information about using LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

PowerPlay Power Analyzer
You can initially perform power estimation and analysis of your HardCopy and
FPGA devices using the PowerPlay Early Power Estimator. You can then use the
PowerPlay Power Analyzer for a more accurate estimation of your device’s power
consumption.

f For more information about using the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Incremental Compilation
Quartus II incremental compilation within a single Quartus II project is supported for
the base family in HardCopy migration flows for both the FPGA first and HardCopy
first flows. Exporting and importing partitions is not supported in HardCopy ASIC or
FPGA device compilations when there is a migration device setting.

f For more information about using Quartus II incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook and About Incremental Compilation in Quartus II
Help.

HardCopy Design Readiness Check
The HardCopy Design Readiness Check (HCDRC) is available as one of the
processing steps in the default compilation of either the FPGA first or the HardCopy
first flow. This feature checks issues that must be addressed prior to handing off the
HardCopy design to the Altera HardCopy Design Center for the HardCopy back-end
process. This is different from the user-driven approach in the HardCopy Advisor, in
which you must manually open the advisor to check for any violations.

The checks performed in the HCDRC for the Quartus II software include I/Os, PLL,
RAM, ALTGX, and settings checks (global, instance, and operating settings).
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

3–16 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Design Readiness Check
Turning the HardCopy Design Readiness Check On and Off
The HCDRC is turned on by default, but can be turned on or off using the following
.qsf file assignments:

set_global_assignment -name \ FLOW_HARDCOPY_DESIGN_READINESS_CHECK ON

set_global_assignment -name \ FLOW_HARDCOPY_DESIGN_READINESS_CHECK OFF

You can also turn on the HCDRC in the More Compilation Process Settings dialog
box.

Setting Check
The Setting Check report lists the results of the setting checks from the Handoff
report. The Setting Check report consists of the following sections.

Summary
The Summary section displays the number of settings that do not meet
recommendations. One of the following messages is displayed:

<number> global setting(s) do not meet recommendation. Please review the
recommendation and do appropriate correction as it may affect the result of
the migration to HardCopy.

or

<number> instance setting(s) do not meet recommendation. Please review the
recommendation and do appropriate correction as it may affect the result of
the migration to HardCopy.

Global Setting
The Global Setting section displays recommendations for global settings only. Global
settings with values other than the recommended values are highlighted in red.

Instance Setting
The Instance Setting section is identical to the Global Setting section, but checks only
for instances assignments.

Operating Setting
The Operating Setting section displays checks related to the recommended operating
settings for the FPGA and the HardCopy device.

This check is primarily applicable to Stratix III devices used as prototype FPGAs
because HardCopy III devices only support 0.9 V core voltage, whereas Stratix III
devices support both 1.1 V and 0.9 V core voltage.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–17
HardCopy Design Readiness Check
The Setting Check reports also include checking for illegal assignments in the
HardCopy design flow. The illegal assignments checks are shown in Example 3–1.

I/O Check
The HCDRC I/O check ensures that you have assigned location assignments for the
pins, I/O standard, current strength assignment, output pin load assignment,
termination assignments, and also checks for any unconnected pins. The tool issues a
warning if you have not specified the assignment for the I/O check.

For example, for missing I/O standard assignments, the HCDRC issues the following
warning:

5 pin(s) have no explicit I/O Standard assignments provided in the setting
file and default values are being used. Please add a specific I/O Standard
assignment for these pins.

Input Pin Placement for Global and Regional Clock
Due to the difference in the interconnect delays between the FPGA and HardCopy
device, the use of non-primary clock inputs as clock inputs in a design can cause
timing closure to be a problem when migrating the FPGA to the HardCopy device.
The Input Pin Placement for Global and Regional Clock check informs you of the
problem before finalizing the pin location, so that any clock inputs can be moved to
the primary clock input.

This check lists all the pins that drive the global or regional clock but are not placed in
a dedicated clock pad. All pins are required to have manual location assignments.
Pins that are missing location assignments are listed in the Missing Pin Location
Assignment report.

The following message appears in the message panel during compilation and also
appears in the I/O Check Summary:

<number> pin(s) drives global or regional clock, but is not placed in a
dedicated clock pin position. Clock insertion delay will be different
between FPGA and HardCopy companion revisions because of differences in
local routing interconnect delays.

PLL Usage Check
The PLL Usage Check report lists PLL usage requirements and violations checks.

Example 3–1. Illegal Assignment Checks

USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT ON (1)

SIGNAL_PROBE_ENABLE ON|OFF

SIGNAL_PROBE_SOURCE ON|OFF (2)

Notes to Example 3–1:

(1) Refer to the section “RAM Usage Check” on page 3–18.
(2) SignalProbe is not supported in HardCopy ASICs.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

3–18 Chapter 3: Quartus II Support for HardCopy Series Devices
HardCopy Design Readiness Check
PLL Real-Time Reconfigurable Check
This check highlights the PLLs that do not have PLL reconfiguration. PLL
reconfiguration allows fine tuning of the PLLs in the design after manufacturing.

The following message appears in the message panel during compilation and also
appears in the Logic Check Summary:

<number> PLL(s) don't have real time reconfiguration. It is highly
recommended that each PLL to have PLL reconfiguration for designs migrating
to HardCopy.

PLL elements that do not have PLL reconfiguration are listed in a table.

PLL Clock Outputs Driving Multiple Clock Network Types Check
This check is derived from the Design Assistant rule check for HardCopy (H102) and
lists all PLL instances in the current design that have clock outputs driving multiple
clock network types.

The following message is displayed if the tool detects violations of this type:

Found <number> PLL(s) with clock outputs that drives multiple clock network
types.

PLL with No Compensation Mode Check
This check lists all PLLs that are in No Compensation operating mode. This setting is
not recommended for a design migrating to a HardCopy device because of differences
in the clock networks and the clock delays between the FPGA and HardCopy device.

The following warning message appears during compilation when a PLL is in a No
Compensation mode:

<number> PLL(s) is operating in a "No compensation" mode.

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check
When a PLL is directly feeding an output pin, it must be set to Zero Delay Buffer
operating mode. However, if a PLL is set either in Normal Compensation mode or
Source Synchronous mode, a warning message is issued during compilation.

The following warning message appears during the runtime of HC Ready:

<number> PLL(s) is in normal or source synchronous mode that is not fully
compensated because it feeds an output pin -- only PLLs in zero delay
buffer mode can fully compensate output pins.

RAM Usage Check
HardCopy series devices do not support initialized RAM blocks upon power-up.
However, you can use the ALTMEM_INIT megafunction to initialize the RAMs of a
HardCopy series device in your design with the content of a ROM.

f For more information about the ALTMEM_INIT megafunction, refer to the RAM
Initializer (ALTMEM_INIT) Megafunction User Guide.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_altmem_init.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

Chapter 3: Quartus II Support for HardCopy Series Devices 3–19
HardCopy Design Readiness Check
In HardCopy series devices, RAM blocks power up uninitialized. During the RAM
Usage check, the HCDRC tool checks for RAMs that are initialized using a Memory
Initialization File (.mif). Any RAM with a .mif file is listed in a table with the
following compilation warning message:

<number> RAM(s) have Memory Initialization File (MIF). HardCopy devices do
not allow initialized RAM. Please ensure that no RAM is initialized by a
MIF file.

Initialized Memory Dependency Testing
The Assembler module of the Compiler allows you to write an FPGA programming
file with an initialized checkerboard pattern for memory contents of M4K memory
blocks for the FPGA revision. You should not use this option in a FPGA revision used
to migrate to the HardCopy revision because it creates irreconcilable revision
differences between the FPGA and HardCopy designs because the HardCopy handoff
cannot physically have any initialized memory content. Use this option only on a
parallel copy of your compiled FPGA design that you want to test on your board.

To create a programming file with an initialized checkerboard pattern, perform the
following steps:

1. Compile your completed FPGA design revision to use for prototype testing. This
is the revision you should eventually use to create your HardCopy companion
revision.

2. Create the HardCopy companion revision.

3. Compile, compare, and generate the hand off archive files for your design.

4. Switch back to your FPGA revision, and on the Project menu, click Revisions, and
then double click <<new revision>> in the Revisions table.

5. In the Create Revision dialog box, type a revision name in the Revision name box
and turn on Copy database and Set as current revision. This step copies your
FPGA revision and sets the new revision as the current open revision in the
Quartus II software.

6. On the Assignments menu, click Settings, and then click Assembler in the
Category list. Turn on Use checkered pattern as uninitialized RAM content on
the Assembler page, or add the following line to the revision .qsf file:

set_global_assignment -name
USE_CHECKERED_PATTERN_AS_UNINITIALIZED_RAM_CONTENT ON

7. Run the Assembler in the FPGA revision to generate a new programming file for
your FPGA.

8. Test the new programming file in your prototype environment to determine if
your design has a dependency for FPGA RAM contents initialized with zeros after
power-up and configuration.

Because the checkerboard pattern is used for testing, the patterns written into the
RAM blocks for the new programming file may not detect all cases of zero-initialized
RAM content dependencies. Some designs may detect only one bit as zero (for
example, the LSB of a memory word), so this method may not detect all cases. This
checkerboard pattern test will detect a case when a full RAM word line is expected as
zeros at startup.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

3–20 Chapter 3: Quartus II Support for HardCopy Series Devices
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
ALTGX Usage Check
Beginning in the Quartus II software version 10.0, the ALTGX Usage check of the
HCDRC performs checks on ALTGX instance usage for designs targeting
Stratix IV GX and HardCopy IV GX devices.

The HCDRC tool checks all the ALTGX instances that are initialized in the design for
connectivity with the ALTGX_RECONFIG instance. For ALTGX instances that do not
connect to an ALTGX_RECONFIG instance, the following warning message appears
with the respective instance HSSI_CMU atom name:

ALTGX megafunctions do not have ALTGX_RECONFIG megafunctions connected.
Altera recommends connecting ALTGX_RECONFIG megafunction to each ALTGX
megafunction when migrating your designs to HardCopy devices.

Performing ECOs with Quartus II Engineering Change Management with
the Chip Planner

As designs grow larger in density, analyzing designs for performance, routing
congestion, logic placement, and executing Engineering Change Orders (ECOs)
becomes critical. In addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage your design. This process may become
difficult to manage, because ECOs are often implemented as last minute changes to
your design.

With the Altera Chip Planner, you can shorten the design cycle time significantly.
When changes are made to your design as ECOs, you do not have to perform a full
compilation in the Quartus II software. Instead, you can make changes directly to the
post place-and-route netlist, generate a new programming file, test the revised design
by performing a gate-level simulation and timing analysis, and then verify the fix on
the system. When the fix has been verified on the FPGA, switch to the HardCopy
revision, apply the same ECOs, run timing analysis and the Assembler, compare the
revisions, and then run the HardCopy Netlist Writer for design submission.

There are three types of migration scenarios:

■ One-to-one changes, which are changes that can be implemented on both
architectures—FPGA and HardCopy.

■ Changes that must be implemented differently on the two architectures to achieve
the same result.

■ Changes that cannot be implemented on both architectures.

The following sections outline the methods for migrating each of these types of
changes.

Migrating One-to-One Changes
One-to-one changes are implemented using identical commands in both architectures.
In general, such changes include those that affect only I/O cells or PLL cells. Some
examples of one-to-one changes include creating, deleting, or moving pins, changing
pin or PLL properties, or changing pin connectivity (provided the source and
destination of the connectivity changes are I/Os or PLLs). These types of changes can
be implemented identically on both architectures.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–21
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
The following list is a partial list of one-to-one change examples:

■ I/O creation, deletion, and moves

■ I/O property changes (for example, I/O standards, delay chain settings, and so
forth)

■ PLL property changes

■ Connectivity changes between non-LCELL_COMB atoms (for example, PLL to
I/O, DSP to I/O, and so forth)

If such changes are exported to Tcl, directly reapplying the generated Tcl script (with a
minor text edit) on the companion revision implements the appropriate changes as
described in the following steps:

1. Export the changes from the Change Manager to Tcl.

2. Open the generated Tcl script and change the project_open <project> -revision
<revision> to refer line to the appropriate companion revision.

3. Apply the Tcl script to the companion revision.

Migrating Changes that Must Be Implemented Differently
Some changes must be implemented differently on the two architectures, such as
changes affecting the logic of the design. Examples include LUTMASK changes,
LC_COMB/HSADDER creation and deletion, connectivity changes not described in the
previous section, and different PLL settings for the FPGA and the HardCopy
revisions.

f For more information about how to use different PLL settings for the FPGA and
HardCopy devices, refer to AN 432: Using Different PLL Settings Between Stratix II and
HardCopy II Devices.

Table 3–4 summarizes suggested implementation of various changes.

Table 3–4. Implementation Suggestions for Changes that Must Be Implemented Differently

Change Type Suggested Implementation

LUTMASK changes
Because a single FPGA atom can require multiple HardCopy atoms to
implement, you may need to change multiple HardCopy atoms to
implement the change, including adding or modifying connectivity.

Make/Delete LC_COMB

If you are using an FPGA LC_COMB in extended mode (7-LUT) or are
using a SHARE chain, you must create multiple atoms to implement the
same logic functions in the HardCopy device. Additionally, the
placement of the LC_COMB cell has no meaning in the companion
revision because the underlying resources are different.

Make/Delete LC_FF
Basic creation and deletion is the same on both architectures; however,
similar to LC_COMB creation and deletion, the location of an LC_FF in a
HardCopy and FPGA revision do not translate.

Editing logic connectivity

Because a LCELL_COMB atom might have to be broken up into several
HardCopy LCELL_COMB atoms, the source or destination ports for
connectivity changes might have to be analyzed to properly implement
the change in the companion revision.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/an/AN432.pdf

3–22 Chapter 3: Quartus II Support for HardCopy Series Devices
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
Changes that Cannot be Migrated
A small set of changes are incompatible and cannot be implemented in both
architectures. The best example of this incompatibility occurs when moving logic in a
design; because the logic fabric is different between the two architectures, locations in
the FPGA are not compatible in HardCopy, and vice versa.

Overall Migration Flow
This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful revision comparison
such that the design can be submitted to the Altera HardCopy Design Center.

Preparing the Revisions
The general procedure for migrating changes between devices is the same, whether
migrating from the FPGA to HardCopy device or vice versa. The steps are described
below:

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the companion
revision.

3. Compile the companion revision.

4. Run the Compare HardCopy Companion Revisions command. Both revisions
should pass the revision comparison.

If testing identifies problems requiring ECO changes, equivalent changes can be
applied to both FPGA and HardCopy revisions, as described in the following section.

Applying ECO Changes
The general flow for applying equivalent changes in companion revisions is described
below:

1. Make changes in one revision using the Chip Planner tools (Chip Planner,
Resource Property Editor, and Change Manager), and then, to verify and export
these changes, follow these steps:

a. Make changes using a Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist Changes
command.

c. Verify correctness using timing analysis, simulation, and prototyping (FPGA
only). If more changes are required, repeat steps a and b.

d. Export change records from the Change Manager to Tcl scripts, or .csv or .txt
file formats. This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using a Chip Planner tool.
As stated previously, some changes can be reapplied directly to the companion
revision (either manually or by applying the Tcl commands), while others require
some modifications.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 3: Quartus II Support for HardCopy Series Devices 3–23
Formal Verification of FPGA and HardCopy Revisions
4. Run the Compare HardCopy Revisions command. The revisions should match.

5. Verify the correctness of all changes, which may require running timing analysis.

6. Run the HardCopy Assembler command and the HardCopy Netlist Writer
command for design submission along with handoff files.

The following command is the Tcl command for running the HardCopy
Assembler:

execute_module -tool asm -args "--read_settings_files=off --
write_settings_files=off"

The following command is the Tcl command for the HardCopy Netlist Writer:

execute_module -tool cdb \
-args "--generate_hardcopy_files"\

f For more information about using the Chip Planner, refer to the Quartus II Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Formal Verification of FPGA and HardCopy Revisions
Third-party formal verification software, Cadence Encounter Conformal verification
software, is used for several FPGA and HardCopy families.

The formal verification flow for HardCopy ASIC designs is a two-step process. First,
run formal verification on the FPGA netlist to ensure that the FPGA netlist matches
the RTL. Second, use the Compare HardCopy Revisions command in the Quartus II
software to ensure that the HardCopy implementation matches the FPGA.

1 While this flow is enabled, performing formal verification is not necessary due to the
one-to-one mapping of logic between the FPGA prototype and the HardCopy ASIC.

To use the Conformal software with the Quartus II software project for your FPGA
design revision, you must enable the EDA Netlist Writer so it can generate the
necessary netlist and command files required to run the Conformal software. To
automatically run the EDA Netlist Writer during the compilation of your FPGA
revision, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, under EDA Tool Settings, select Formal Verification, and
then in the Tool name list, select Conformal LEC.

3. Compile your FPGA and HardCopy design revisions.

The Quartus II EDA Netlist Writer produces the netlist for the FPGA when run on that
revision. You can compare your FPGA post-compilation netlist to your RTL source
code using the scripts generated by the EDA Netlist Writer.

After both the FPGA and HardCopy revisions have been compiled, you can run the
Compare HardCopy Revisions command to ensure that the HardCopy
implementation matches the FPGA.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

3–24 Chapter 3: Quartus II Support for HardCopy Series Devices
Formal Verification of FPGA and HardCopy Revisions
f For more information about using the Cadence Encounter Conformal verification
software, refer to the Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook.

HardCopy Floorplan View
The Quartus II software displays the floorplan and placement of your HardCopy
companion revision. This floorplan shows the preliminary placement and
connectivity of all I/O pins, PLLs, memory blocks, HCell macros, and DSP HCell
macros. Congestion mapping of routing connections can be viewed using the Layers
Setting dialog box (from the View menu of the Chip Planner). This is useful in
analyzing densely packed areas of your floorplan that can reduce the peak
performance of your design. The Altera HardCopy Design Center verifies final HCell
macro timing and placement to guarantee that timing closure is achieved.

Figure 3–6 shows an example of the HC230F1020 device floorplan.

Figure 3–6. HC230F1020 Device Floorplan
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53011.pdf

Chapter 3: Quartus II Support for HardCopy Series Devices 3–25
Document Revision History
In this small example design, the logic is placed near the bottom edge. You can see the
placement of a DSP block constructed of HCell macros, various logic HCell macros,
and an M4K memory block. A labeled close-up view of this region is shown in
Figure 3–7.

The Altera HardCopy Design Center performs final placement and timing closure on
your HardCopy design based on the timing constraints provided in the FPGA design.

f For more information about the Altera HardCopy Design Center process, refer to the
respective HardCopy series device handbook, which is available on the Literature
page of the Altera website at www.altera.com.

Document Revision History
Table 3–5 shows the revision history for this chapter.

Figure 3–7. Close-Up View of Floorplan

Table 3–5. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Edited the “Timing Settings” on page 3–14 section to remove support for the Classic
Timing Analyzer

■ Changed to new document template

■ Editorial changes

July 2010 10.0.0

■ Added new section “ALTGX Usage Check” on page 3–21

■ Updated “LogicLock Regions” on page 3–16 to reflect updated companion revision
support

■ Updated “Incremental Compilation” on page 3–16 to reflect updated companion revision
support

■ Linked sections throughout the chapter to Quartus II Help

■ Removed “Referenced Documents”
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/

3–26 Chapter 3: Quartus II Support for HardCopy Series Devices
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2009 9.1.0

■ Removed HardCopy Stratix legacy support information

■ Updated “Physical Synthesis Optimization” on page 3–15

■ Updated “Quartus II Software Features Supported for HardCopy Designs” on page 3–15

■ Updated “Referenced Documents”

■ Updated the tables and figures for HardCopy Series devices

March 2009 9.0.0
■ Updated “RAM Usage Check” on page 3–19

■ Updated “Referenced Documents”

November 2008 8.1.0

■ Added HardCopy IV E support information

■ Added notes for Initialized Memory Dependency testing

■ Changed page size to 8.5” × 11”

May 2008 8.0.0
■ Updated “RAM Usage Check” on page 3–19

■ Updated “Referenced Documents”

Table 3–5. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51019-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51019-10.1.0
4. Quartus II Design Separation Flow
This chapter contains rules and guidelines for creating a floorplan with the design
separation flow, and assumes familiarity with the Quartus® II incremental
compilation flow and floorplanning with the LogicLockTM feature.

The basic principle of a secure and reliable system is that critical subsystems in the
design have physical and functional independence. Systems with redundancy require
physical independence to ensure fault isolation—that a failure or corruption of any
single subsystem will not adversely affect any other part of the system. Furthermore,
if errors occur, physical independence simplifies analysis by allowing developers to
evaluate each subsystem separately.

Traditionally, systems that require redundancy implement critical IP structures using
multiple devices. The Quartus II design separation flow, used in Cyclone® III LS
devices, provides the ability to design physically independent structures on a single
device. This functionality allows system designers to achieve a higher level of
integration on a single FPGA, and alleviates increasingly strict Size Weight and Power
(SWaP) requirements. Figure 4–1 illustrates this concept.

The Quartus II design separation flow introduces the constraints necessary to create
secured regions and floorplan a secured system. When implemented in Cyclone III LS
devices, a secured region provides physical independence through controlled routing
and a boundary of unused resources. By restricting routing resources and providing a
physical guard band of unused logic array blocks (LABs), faults or unintended signals
originating in one secured region are prevented from adversely affecting other design
blocks on the device.

1 The Quartus II design separation flow features require specific licensing in addition to
licensing the Quartus II software. For further details, contact your local Altera sales
representative or Altera distributor.

Figure 4–1. Achieving Higher Level Integration on a Single Cyclone III LS Device

Critical
Subsystem

1

Other subsystems

Complex System Cyclone III LS FPGA

Other subsystems

Other user logic

Critical
Subsystem

2

Critical
Function

1

Critical
Function

2

and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51019

4–2 Chapter 4: Quartus II Design Separation Flow
Design Flow Overview
The Quartus II design separation flow incorporates additional LogicLock and
floorplanning features into the incremental compilation flow. The following three
chapters in the Quartus II Handbook serve as companion references to this chapter:

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design—Describes
the Quartus II incremental compilation flow

■ Best Practices for Incremental Compilation Partitions and Floorplan Assignments—
Contains guidelines for using the incremental compilation flow and creating a
design floorplan

■ Analyzing and Optimizing the Design Floorplan—Describes various attributes
associated with LogicLock location constraints and introduces the Chip Planner
for creating and modifying a floorplan

Design Flow Overview
The design separation flow is based on the incremental compilation flow. You begin
with an incremental compilation design flow and then apply design separation
constraints to each design partition that you want to physically isolate from the rest of
the design. This section provides an overview of the design separation flow steps.

Figure 4–2 shows a flow chart of the design separation flow. Red boxes in the flow
chart highlight steps that are specific to the design separation flow, while the
remaining boxes in the flow chart are common to both the design separation and
incremental compilation flows. A brief description is given for each step in the flow
chart below and serves as a quick-start guide for the design separation flow.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 4: Quartus II Design Separation Flow 4–3
Design Flow Overview
1. Set up design hierarchy for secured partitioning—Prepare your design for
implementation of the design separation flow, by setting up your design hierarchy
for secured partitioning along logical hierarchical boundaries. If necessary, create
wrapper files to create logical boundaries in the design hierarchy to support the
design entities that you must separate from the remainder of the design.

2. Perform analysis and elaboration—Run analysis and elaboration to identify the
hierarchy in your design.

3. Create design partitions for secured regions—For each design entity that requires
physical independence, create a logical design partition for each design entity.
Partition logic using guidelines from the incremental compilation flow.

Figure 4–2. Design Separation Compilation Flow

Perform Analysis and Elaboration

Create Design Partitions for Secured Regions

Create Floorplan Assignments

Make Design Changes

Set Netlist Type for Each Design Partition

Compile the Design

Repeat as Required during
the Design, Verification, and

Debugging Stages

Set Up Design Hierarchy for Secure Partitioning

Create a Design Floorplan
with Security Attributes

Assign Design Partitions to Secured Regions

Add I/O Pins that Directly Interface to a Secured
Region as a Member of the Secured Region

Create Security Routing Interfaces to and
from Secured Regions

Assign I/O Pins
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–4 Chapter 4: Quartus II Design Separation Flow
Creating Design Partitions for the Design Separation Flow
Refer to “Creating Design Partitions for the Design Separation Flow” on page 4–4
for more information.

4. Create a design floorplan with security attributes—After creating design
partitions, create LogicLock location assignments and a floorplan, at minimum, for
all the entities to be secured in your design. Use the security attributes in the
LogicLock Regions window to specify the security level of each LogicLock region.
When you apply this attribute, fencing regions are automatically created in your
floorplan to isolate the secured LogicLock regions. Refer to “Creating a Design
Floorplan with Secured Regions” on page 4–6 for more information.

5. Assign design partitions to secured regions—Assign design partitions to secured
LogicLock regions to separate them from each other and from all other hierarchy
blocks. Refer to “Using Secured Regions” on page 4–9 for more information.

6. Add I/O pins that directly interface with a secured region as a member of the
secured region—If a secured region interfaces with one or more I/O pins, make
the I/O pins members of the secured region. If a secured region has I/O pins as
members, that region must overlap the I/O pads. Refer to “Adding I/O Pins as
Members of Secured Regions” on page 4–9 for more information.

7. Create security routing interfaces to and from secured regions—Create security
routing interfaces by applying the security routing interface attribute to LogicLock
regions.

Only routing resources can be used within a security routing interface; no logic can
be placed. Each security routing interface must abut one or two secured regions.
After you create an interface region for each signal or group of signals entering or
exiting a secured region, assign the signals to the appropriate routing interfaces.

For signals routing between secured regions with different security attributes or
between a secured region and an unsecured region, you must lower the security
attribute for the signal exiting the stricter security region. Refer to “Making Signal
Security Assignments” on page 4–19 for more information.

8. Assign I/O pins—After creating secured regions and security routing interfaces, if
the secured regions contain I/O pins as members, assign I/O pins to meet design
separation flow requirements. For example, I/O banks cannot be shared between
secured regions. If a secured region contains I/O pins as members, the entire I/O
bank is usable only by the secured region that sinks or sources the I/O pin. Refer
to “Assigning I/O Pins” on page 4–25 for more information.

9. Make design changes, set the netlist type for each design partition, and compile
the design—After making the necessary I/O pin assignments, you complete the
design separation flow-specific steps, and you can start the iterative process of
making design changes, setting the netlist type for each design partition, and then
compiling your design until you achieve a floorplan that meets your design
requirements.

The design separation flow-specific steps, step 1 and steps 4 through 8, are described
in further detail in subsequent sections in this chapter.

Creating Design Partitions for the Design Separation Flow
After setting up your design to support secured partitioning and running analysis
and elaboration, you can create design partitions.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–5
Creating Design Partitions for the Design Separation Flow
Each secured region floorplan assignment uses a single design partition in the
incremental compilation flow to identify the functional elements belonging to a
secured region. Design partition assignments are made along entity boundaries in the
hierarchy of your RTL design.

Because only a single design partition may be used in a secured region, you must plan
your design entities such that logic that requires physical isolation from the rest of the
design is packed into a single design entity. Additionally, you should create wrapper
files where necessary to reorganize your hierarchy, so that all your secured regions are
contained within a single entity or module in your RTL. The incremental compilation
feature allows functional independence of each design partition because it disables
netlist optimizations across partition boundaries.

Most of the rules, guidelines, and tools for creating design partitions used in the
incremental compilation flow are applicable in the design separation flow. You can
use the Incremental Compilation Advisor, the Design Partition Planner, and the Chip
Planner features in the Quartus II software to help you create design partition
assignments.

When creating design partitions, the following considerations are important:

■ Register the inputs and outputs of a design partition to avoid cross-boundary logic
optimizations and to maintain timing performance along the signal path.

■ Minimize the number of I/O paths that cross partition boundaries to keep logic
paths within a single partition for optimization. Minimizing the number of
cross-boundary I/O paths makes partitions more independent for both logic and
placement optimization.

■ Avoid logic that requires cross-boundary logic optimizations.

f For more details about guidelines for creating design partitions, refer to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

When creating your design in the design separation flow, you must be aware of some
restrictions and special considerations that differ from the incremental compilation
flow. These considerations are discussed in the following “Merging PLL Resources”
and “Avoiding Multiple Design Partitions With a Secured Region” sections.

Merging PLL Resources
In the Quartus II incremental compilation flow without design separation constraints,
the Fitter can use the same PLL resource on the device when multiple design
partitions instantiate a PLL with the same parameters. This resource merge occurs
even if optimization across design partitions is required. When the design separation
flow is enabled and a design contains one or more secured regions, PLL merging
across design partitions is disabled, which helps to maintain the physical separation
between design partitions. PLL merging is disabled for the entire design, even if
LogicLock regions in a Cyclone III LS design contain no security attributes. For
partitions that require shared PLL resources, the PLL must be instantiated outside of
the design partitions.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

4–6 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Avoiding Multiple Design Partitions With a Secured Region
Multiple design partitions, including child partitions and multi-hierarchy partitions,
are not allowed in a secured region. Each secured region, which you designate after
creating design partitions, must contain only a single design partition.

Child partitions are design partitions created from a subentity of an existing design
partition and would potentially create multiple design partitions in a secured region,
so they are not allowed in the design separation flow.

Multi-hierarchy partitions are created by merging multiple design partitions from
different branches of the hierarchy. These partitions are merged into a single netlist
during elaboration to allow cross-boundary optimizations during synthesis and
fitting, and result in a single incremental result for each multi-hierarchy partition.
Multi-hierarchy partitions function similarly as single-hierarchy partitions, but must
contain hierarchies from a common parent partition and are not allowed in the design
separation flow.

Creating a Design Floorplan with Secured Regions
After creating design partitions, you can create a design floorplan with secured
regions with the Chip Planner and security attributes in the LogicLock Regions
window.

The Quartus II software uses LogicLock location assignments to map logic in your
design hierarchy to physical resources on the device. The Chip Planner provides a
visual floorplan of the entire device and allows you to move and resize your
LogicLock location constraints on the floorplan of the device. The design separation
flow adds an security attribute constraint to each LogicLock region to further
constrain routing to achieve physical isolation between LogicLock regions. Signals
that require connectivity between two secured regions or between a secured region
and unsecured logic are assigned to a special LogicLock region known as a security
routing interface. A security routing interface is a controlled region that limits the
routing of the contained signals to only the one or two LogicLock regions that this
region abuts.

To create fault isolation between secured regions, the design separation flow
selectively shuts off routing around the periphery of a secured region. Because signal
connectivity at the boundary of the secured region is unused, any faults that occur
within the secured region are prevented from adversely affecting neighboring
regions. Fault isolation, when using the design separation flow, is possible because no
physical connection exists to propagate the fault outside of the region.

Cyclone III LS devices use a MultiTrack interconnect architecture consisting of row
and column interconnects that span fixed distances to achieve signal connectivity
between LABs. In the horizontal direction, row interconnects use wire resources that
span 1 LAB, 4 LABs, and 24 LABs. These row-routing resources are direct link
interconnects, R4 interconnects, and R24 interconnects, respectively. In the vertical
direction, routing resources span distances of 1 LAB, 4 LABs, and 16 LABs. These
column routing resources are register chain interconnects, C4 interconnects, and
C16 interconnects, respectively. In the design separation flow, LogicLock region
routing wires (C4, C16, R4, and R16) that cross outside the border of a boundary are
turned off. Each secured region uses an unused boundary (or a fence) of LABs to
guard against the faults from wire resources spanning a length of one-LAB (direct link
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–7
Creating a Design Floorplan with Secured Regions
and register chain routing resources) from affecting a neighboring region.

The rules and guidelines for floorplanning in the design separation flow are similar to
those in a typical compilation flow. However, there are some special considerations
for the relative placement of secured regions in your design floorplan. Because each
secured region is a keep-out region for routing resources from other LogicLock
regions, ensure that a routing path with valid communication interfaces exists
between secured regions. Furthermore, the routing path (encapsulated in a security
routing interface) should not follow a circuitous path and must be simple enough to
meet your timing requirements.

A Fitter-generated floorplan is not possible while a security attribute is applied to a
LogicLock region; that is, the size attribute cannot be Auto, and the state attribute
cannot be Floating for any LogicLock region in a secured design.

1 You can use a Fitter-generated floorplan, created without security attributes, as a
starting point to create a final floorplan for the design separation flow.

To use a Fitter-generated floorplan as an initial floorplan, apply Reserved attributes to
LogicLock regions that must be physically isolated from the rest of the design. A
Fitter-generated floorplan with Reserved attributes generates non-overlapping
LogicLock regions. You can modify the initial floorplan by adjusting the relative
placement for each secured region, taking into account the connectivity requirements
for each region.

Subsequent sections further detail the rules and guidelines for floorplanning that are
specific to the design separation flow.

f For more information about using the Chip Planner settings and options, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

Using Security Attributes
The Security Attributes column in the LogicLock Regions window and the Security
tab in the LogicLock Regions Properties dialog box are available when your version
of the Quartus II software is licensed specifically for the design separation feature.
Setting the Security attribute applies a constraint to a LogicLock region, making the
region either a secured region or a security routing interface, from where signals enter
or exit a secured region.

The Signals list is populated after analysis and synthesis with the inputs and outputs
of secured regions. Columns in the Signals list describe the Security Level, the
security routing interface the signal is assigned to, and whether the signal is an output
or input to the region.

The design separation flow security features are highlighted in the LogicLock Regions
window and the LogicLock Regions Properties dialog box shown in Figure 4–3 and
Figure 4–4, respectively.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www/literature/hb/qts/qts_qii52006.pdf

4–8 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Table 4–1 lists a summary of the Security Attributes available for the design
separation flow.

Figure 4–3. Security Attribute Column Available in the Design Separation Flow

Figure 4–4. Security Tab Available in the Design Separation Flow

Table 4–1. Security Attributes for LogicLock Regions (Part 1 of 2)

Security
Attribute Description

Unsecured Removes the constraint for physical isolation.

1

Creates a secured region. Physically isolates the LogicLock region by restricting routing resources from
leaving the region. Creates a one-lab width border of unused LABs around the LogicLock region.

Applying this attribute to a LogicLock region sets the global assignment
LL_REGION_SECURITY_LEVEL 1 for the LogicLock region.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–9
Creating a Design Floorplan with Secured Regions
Using Secured Regions
When you apply a secured region attribute (1 or 2) to an existing LogicLock region,
the LogicLock region must have a fixed size with a locked origin. Each secured region
must have a minimum size of eight-LABs in both the horizontal and vertical
dimensions. A region smaller than 8 × 8 LABs may be non-routable when using the
design separation flow.

Child regions are not allowed when creating a secured region because a secured
region contains only a single partition. In the non-secured compilation flow, child
regions are used primarily to ensure that logic in a child partition is physically
contained inside the LogicLock region of the parent partition.

Adding I/O Pins as Members of Secured Regions
A secured region must contain all physical device resources required to complete
compilation. I/O pads that are members of a secured region must be contained within
the boundaries of the secured region that sources or sinks it. That is, a secured region
must overlap the I/O pads that are members of the region. If the logic in the secured
region instantiates a PLL or a clock block, those physical device resources must also be
overlapped by the region.

You can add I/O pins as members of a secured region using the LogicLock Region
Properties dialog box.

Using Security Routing Interfaces
A LogicLock region with the security routing interface security attribute creates a
routing channel for signals to and from a secured region. No logic may be placed in a
security routing interface. Each security routing interface can connect two secured
regions, or a secured region with one or more unsecured regions. If you are
connecting two secured regions, a fencing region is automatically placed around the
interface region. You can assign each signal entering or exiting a secured region to a
security routing interface on the Security tab in the LogicLock Regions Properties
dialog box.

For information about assigning signals to a security routing interface, refer to
“Making Signal Security Assignments” on page 4–19.

2

Creates a secured region. Security attribute 2 typically represents a stricter level of fault isolation than
security attribute 1. For Cyclone III LS devices, implementation of security attribute 2 is the same as
security attribute 1; however, this may not be true in subsequent architectures supporting the design
separation flow. When selected for the Cyclone III LS family, the Quartus II software creates a one-lab
width border of unused LABs around the LogicLock region.

Applying this attribute to a LogicLock region sets the global assignment
LL_REGION_SECURITY_LEVEL 2 for the LogicLock region.

Security
Routing
Interface

Creates a routing interface for signals entering or exiting a secured region. Only routing resources (no
logic) may be used within a security routing interface.

Applying this attribute to a LogicLock region sets the global assignment
LL_SECURITY_ROUTING_INTERFACE ON for the LogicLock region.

Table 4–1. Security Attributes for LogicLock Regions (Part 2 of 2)

Security
Attribute Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–10 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
For information about the number of signals that can be contained in a security
routing interface, refer to “Routing Restrictions” on page 4–26.

Making Design Separation Flow Location Assignments in the Chip Planner
The Chip Planner allows you to visually modify the size and location of LogicLock
regions. This section describes the attributes of LogicLock regions within the context
of the design separation flow.

When the design separation flow is enabled, the fencing region around each secured
region in the Chip Planner is shaded grey. Security routing interfaces are shaded
green. Illegal placements that violate secured region boundaries are highlighted in red
at the location where the violation occurs. Figure 4–5 shows the LogicLock regions
with security attributes in the Chip Planner.

Figure 4–5. LogicLock Regions With Security Attributes

Notes to Figure 4–5:

(1) Floorplan Editing Mode task.
(2) Unused fence around a secured region
(3) Security violation, created by a LogicLock region placement within a fencing region of a secured region
(4) Security routing interface region connecting two secured regions
(5) Security routing interface region connecting secured region and unsecured logic

1

2

3

4

5

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–11
Creating a Design Floorplan with Secured Regions
Understanding Fencing Regions
The Quartus II software automatically adds a fencing region, which is a border of
unused LABs, when you apply security attribute 1 or security attribute 2 to a
LogicLock region. No logic may be placed into a fencing region. The Fitter does not
use any routing wires that exit the fence boundary of a secured region. Because direct
drive and carry chains can be used at the edge of a secured region, the fencing region
prevents signals driven on one length one wires (in the horizontal and vertical
directions) from exiting the secured region.

The fencing region around a secured region is generally one-LAB horizontally and
one-LAB vertically. There are two regions that require special fencing regions:

■ Vertical I/O regions

■ Areas around the configuration engine

I/O banks along the top and bottom of the chip use only vertical routing wires to and
from the I/O Elements (IOEs). The heavy use of C4 wires from IOEs creates a
four- LAB fence between the vertical I/O banks and a secured region. Secured regions
requiring a connection to I/O in the top or bottom banks of the device optimally use
resources if you add the I/O signals as members of the secured region and overlap the
corresponding I/O pads in the floorplan. In Figure 4–6, Secured_Region2 is five
LABs away from the bottom of the device and Secured-Region1 is four LABs away
from the bottom of the device.

A configuration engine is a hard IP block that manages the configuration of the
device. Additionally, the configuration engine routes the control signals for the CRC
detection circuit and the internal oscillator into the core logic on the device. In the

Figure 4–6. Vertical Fencing Near I/O Banks
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–12 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
design separation flow, a one-LAB fence is automatically added around the
configuration engine whenever a secured region occupies the same LAB column as
the configuration engine. The configuration engine is a region notched out of the left
side in the middle of the device.

All control signals to and from the configuration engine route from its right edge. If
you use an instantiated WYSIWYG that uses any control signals to and from the
configuration engine, the signals must either interface with unsecured logic or they
must interface with a secured region through a security routing interface.

1 If your design routes signals to and from the configuration engine, placing a secured
region that directly abuts the configuration engine signal interface (along the right
side of the configuration engine) causes a Fitter error.

Figure 4–7 shows a configuration engine with a fencing region in the floorplan.

Fencing regions between two secured regions are allowed to overlap. That is, two
adjacent secured regions can be separated by a one-LAB fence. The Chip Planner
issues a security warning violation if a LogicLock region is placed within the
boundary of a secured region. Security violations are highlighted in red and the
tooltip of a secured region indicates the locations of all security violations. You may
receive an error if you try to compile a design with a security violation. Figure 4–8
shows two regions with overlapping fences and a security violation from an
unsecured region.

Figure 4–7. Configuration Engine

Configuration Engine

Configuration Engine
Signal Interface
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–13
Creating a Design Floorplan with Secured Regions
Creating Non-Rectangular Regions
You can create non-rectangular regions by creating multiple rectangular regions and
then merging them.

h For more information about creating non-rectangular regions in the Chip Planner in
the Quartus II software, refer to Creating and Manipulating LogicLock Regions in
Quartus II Help.

Non-rectangular LogicLock regions in the design separation flow make circuitous
routes more likely. As such, non-rectangular regions can have an adverse affect on
performance when used with the design separation flow.

If a secured non-rectangular region contains a subregion that is less than 8 × 8 LABs,
the chances of a non-routable situation occurring increases. Subregions that
deterministically require the use of certain routing resources may not fit successfully
if a violation of the secured region is occurs. As a general guideline, each subregion
should be 8 × 8 LABs or larger, to ensure that routing resources with a length four
LABs are readily available. In Figure 4–9, each subregion of Region 2 (labeled A, B, C,
and D) are less than 8 × 8 LABs in dimension. These subregions can potentially cause
a no-fit situation. Depending on the placement and connectivity of LABs, certain
routes may be difficult to achieve. For example, the Fitter would not be able to route a
connection from LAB 1 to LAB 2 in region A directly. While another path may be
possible, a series of hops that do not leave the LogicLock region may not be available
and may not satisfy the timing requirements of the route.

Figure 4–8. Overlapping Regions
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

4–14 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Guidelines for the Relative Placement of Secured LogicLock Regions
Because each secured region is a keep-out region for placement and routing of any
logic that is not a member of the secured region, you should be aware of the
guidelines in this section as you lay out your floorplan. Placement that does not
account for the connectivity requirements between LogicLock regions may cause poor
performance or a non-routable design. The guidelines for floorplanning when using
the design separation flow include:

■ Create a complete floorplan, including location assignments for unsecured logic.

■ Create a non-circuitous route between secured regions requiring a routing region.
Generally, routing regions between secured regions should be rectangular.

■ Create security routing interfaces between secured regions that do not intersect
with other routing regions; secured regions and their routing edges must fit on a
single plane. A secured region must overlap any physical resources (such as I/Os,
PLLs, and CLKCTRL) that are instantiated by the design partition contained in the
secured region.

■ Abut the secured region to the edge of the device whenever possible.

Creating a Complete Floorplan
You should allocate a region for all logic in your design. If you have a large secured
region that divides the device into multiple disjointed regions, and you have
unsecured logic that is not floorplanned, the design may not be routable.

If an unsecured partition does not contain any location assignments, the placement
algorithms may make logic assignments on any unallocated space on the device. In
the floorplan shown in Figure 4–10, the source and sink registers do not have a valid
path through the device, because all routing channels are occupied by Secured
Region 1 and Secured Region 2.

Figure 4–9. Non-Rectangular LogicLock Regions

A B

C

D

1

2

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–15
Creating a Design Floorplan with Secured Regions
If a complete floorplan is not possible for all partitions in your design, you can use
empty LogicLock regions with the Reserved attribute to prevent the Fitter from
placing any logic in a region that can potentially cause a no-fit. For the example
provided in Figure 4–10, an empty region can be placed in the upper-left corner of the
device to prevent any logic that has not been floorplanned from being placed there,
which is then shown in Figure 4–11.

Figure 4–10. Non-Routable Placement Example
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–16 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
Ensuring Routability Between Regions
The Quartus II software cannot create auto-generated location constraints for any
region with a security attribute. If you use a Fitter-generated placement as a starting
point for a floorplan with security attributes, an optimal floorplan in a design without
separation may not work in the same design. In a floorplan without secured regions,
only the placement of logic is restricted. All routing resources on the device are
available for the Fitter, and may be routed through a region. Secured regions reserve
all routing resources within the LogicLock boundary to the design partition contained
in the region.

Having a circuitous route between two regions degrades performance and may cause
a non-routable design. Modify any regions that have signal connectivity and must
route around a secured region to achieve a connection. Figure 4–12 shows a floorplan
that does not contain disjointed parts. However, the source region must route around
a secured region to connect to the sink region.

Figure 4–11. Empty Reserved Region Preventing Fitter From Placing Logic
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–17
Creating a Design Floorplan with Secured Regions
Ensuring Planarity
A fence is automatically created around a security routing interface connecting two
secured regions. Because no other routing resources may pass through a security
routing interface connecting two secured regions, you should model all secured
regions as nodes in a routing graph and all security routing interfaces as the edges,
and all nodes and their edges must fit on a planar graph (that is, none of the edges can
intersect). If you have five or more secured regions on the device, and each secured
region contains signals that fan-out to multiple secured regions, a planar floorplan
may not be possible. Figure 4–13 shows a routing graph with five nodes. A complete
graph having each pair of distinct vertices connected by an edge is not possible
without having any of the edges cross. If the topology of your floorplan contains such
a non-routable arrangement, your design hierarchy must be rearranged to collapse
related design partitions into a single design partition.

If your secured regions and security routing interfaces can be modeled as a planar
graph, but have a high degree of connectivity between the components, you may have
to rearrange the shape, size, or location of the secured regions to generate a routable
floorplan. For instance, the hypothetical floorplan shown in Figure 4–14 does not have
a valid routing path BD (between region B and region D). The modified floorplan in
Figure 4–15 shows how all of the required connections can be achieved on a planar
surface.

Figure 4–12. Relative Placement of Regions Containing a Circuitous Path

Figure 4–13. Non-Planar Routing Graph: Connection BD Not Possible

Secure
Region

Source
Region

Sink
Region

A

B C D E
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–18 Chapter 4: Quartus II Design Separation Flow
Creating a Design Floorplan with Secured Regions
You can use the Design Partition Planner for a visual representation of the
connectivity between design partitions. This tool helps you determine if the secured
regions in the design can be arranged on a planar floorplan. Figure 4–16 shows the
Design Partition Planner.

Figure 4–14. Floorplan with Non-Routable Connection BD

Figure 4–15. Floorplan Arranged to Accommodate Connection BD

Secure
Region

B

Device Boundary

Secure
Region

E
Secure
Region

A

Secure
Region

C

Secure
Region

D

AB BE

CEAC

AD DE

Non-Routable
Connection BD

Connection

Secure
Region

B

Secure
Region

A

Secure
Region

C

Secure
Region

DAB

AD

BD

AC CE

DE

BE

Secure
Region

E

Device Boundary
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–19
Making Signal Security Assignments
Placing Physical Resources
All physical resources that are required by the secured region must be contained
inside the boundary of the secured region, including I/O pins connected to the
secured region and primitives that have been instantiated within the secured region,
such as PLLs and clock control blocks.

Making Signal Security Assignments
Each signal that enters or exits a secured region must have a security level attribute
and be explicitly assigned to a security routing interface. The security level for each
signal is automatically assigned a default value and matches the secured region that is
the source of the signal. Possible security levels of a signal include: Auto, Unsecured,
1, and 2. An assignment of Auto sets the default security level for the signal.

A signal with a security attribute may connect to a region with an equivalent or higher
security level. For example, a signal with a security level of Unsecured can drive logic
in a region set to Unsecured, 1, or 2 and a signal with a security level of 1 can drive
logic in a region set to 1 or 2. A signal originating from a secured region may not drive
logic in a region with a lower security level. If you have a signal from a higher security
level that must drive logic in a lower security level, you can direct the Fitter to honor
the connection by explicitly lowering the security level of the signal.

At most, each security routing interface connects two regions. If a signal fans out to
multiple regions, assign the signal to multiple security routing interface regions; one
interface region per destination.

You can assign signals to security routing interfaces and the security level of signals
with the Security tab in the LogicLock Region Properties dialog box, as shown in
Figure 4–4.

Figure 4–16. Design Partition Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–20 Chapter 4: Quartus II Design Separation Flow
Making Signal Security Assignments
To assign a signal to a security routing interface, follow these steps:

1. On the Security tab of the LogicLock Regions Properties dialog box, select a
signal name in the Signals list, and then click Edit. The Edit Security
Assignments for Signal dialog box appears, as shown in Figure 4–17.

1 Alternatively, you can select multiple names in the Signal list by pressing
the Ctrl key, clicking multiple names, and then clicking Edit.

The Signals list is populated with the names of signals entering and exiting the
secured region after analysis and synthesis and a partition merge have been run
successfully.

2. If necessary, lower the security level of the signal by specifying the Security level.

3. Select the security routing interface for signal(s) assignment. Signals that fan-out
or fan-in to multiple regions can be assigned to multiple security routing
interfaces.

Understanding Signal Names
The list of signals entering and exiting a secured region are signal names from the
post-map netlist. Signal outputs from a secured region are derived from the output
port name, as specified in the top-level RTL entity contained in the secured region.
Signal inputs to a secured region are derived from the name of the output port name
that feeds the secured region. In the design separation flow, output port names are
preserved through the compilation process, and are used as an alias for the logic or
register that feed them.

The post-map region output signals listed in the signal list coincide with the signal
name in the post-fit netlist. However, combinational signal names from unsecured or
unpartitioned logic that feed a secured region may change through the compilation
process. Many of the RTL signals are optimized during the process of synthesis and

Figure 4–17. Edit Security Assignments for Signal Dialog Box
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–21
Making Signal Security Assignments
place-and-route. Frequently, RTL signal names may not appear in the post-fit netlist
after optimization. For example, the compilation process can add tildes (~) to nets that
fan out from a node, making it difficult to decipher which signal nets they actually
represent. Use the post-compilation filter in the node finder to add additional signals
to a security routing interface. When possible, use registered signals as inputs into a
secured region, and register the output signals from a secured design partition.

Working with Global Signals
Global signals are low-skew routing lines that drive throughout the device. Global
signals do not require an interface region to drive into a secured region. In
Cyclone III LS devices, there are 20 global routing resources for use with high fan-out
signals, such as clocks or control signals. Each global signal is accessed by a clock
control block, which are located on the periphery boundary of the device. Each clock
control block can be driven directly by external clock pins, PLL outputs, or a signal
generated from internal logic.

f For more information about the clock networks in Cyclone III LS devices, refer to the
Clock Networks and PLLs in Cyclone III LS Devices chapter in volume 1 of the Cyclone III
Device Handbook.

In a compilation flow without security assignments, signals with a high fan-out (such
as clock pins and control signals) are automatically promoted to use global clock
resources. In the design separation flow, automatic global promotion is not turned on.
Signals with high fan-out requiring global routing resources must be manually
promoted to drive a clock control block.

Signals cannot be promoted onto a global routing resource through a global signal
assignment from within a secured region. The Fitter only allows a clock promotion
assignment to a signal if the signal is in an unsecured region. If you have a signal
inside of a secured region that must use a global routing resource, you must first route
the signal outside of the secured region before applying a global promotion
assignment. The signal must be assigned to a security routing interface and the
security level of the signal must be lowered.

For a global promotion assignment to be honored, there must be an available clock
control block that is not overlapped by a secured region, and an available routing path
to the clock control block. There are five clock control blocks located on each side of
the device, along the horizontal and vertical axes that run through the center of the
device. Figure 4–18 shows the location of the clock control blocks and the PLLs for a
3CLS70 device in the Chip Planner floorplan.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/cyc3/cyc3_ciii51006.pdf

4–22 Chapter 4: Quartus II Design Separation Flow
Making Signal Security Assignments
Figure 4–18. PLL and Clock Control Block Location on a EPC3SL70 Device

PLL 3

PLL 1

PLL 2

PLL 4
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–23
Making Signal Security Assignments
PLLs and clock control blocks can be manually instantiated in the design partition of a
secured region using the ALTPLL and ALTCLKCTRL megafunctions, respectively.
Instantiation of the ALTCLKCTRL megafunction within a secured partition forces the
global promotion of the signal driving the clock control block. To generate a valid
placement when you instantiate PLLs or a clock control block, the secured region
containing the physical resource must overlap a free PLL, a free clock control block, or
both.

There are certain restrictions you should be aware of when you instantiate a PLL
within a secured region. Secured regions with a PLL that are fed by an external clock
pin must contain the PLL and a valid clock pin that can drive the PLL. Each PLL has a
set of dedicated clock control blocks that it can access, located to the right (clockwise)
of the PLL in the device floorplan.

Because automatic promotion of signals onto a global resource is not allowed, a PLL
and the clock control block it drives must not be located in the same secured region. If
your design has a PLL inside of a secured region, you must assign the PLL output to a
security routing interface and then lower the security level of the PLL output.

The clock control block associated with the PLL must not be covered by any secured
region. There are two sets of dedicated clock pins that can drive a PLL input. The pads
for the clock input pins are co-located with the clock control blocks. If you use the
clock input pin that is co-located with the clock control block associated with the PLL,
the clock pin cannot be added as a member of the secured region. Instead, you must
either assign the clock pin to a security routing interface that is connected with the
secured region, or you can apply the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT
assignment to relax the fitter restriction on the clock input pin.

For more information about the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT
assignment, refer to “Assigning I/O Pins” on page 4–25.

Figure 4–19 shows examples of valid placement and invalid placement of secured
regions that instantiate PLLs, if the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT
assignment has not been applied.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–24 Chapter 4: Quartus II Design Separation Flow
Making Signal Security Assignments
Figure 4–19. Location of Valid and Invalid PLL, Clock Pin, and Clock Control Block Placement in a Cyclone III LS Device

Notes to Figure 4–19:

(1) There are five clock control blocks on each side.
(2) Remote clocks cannot be used to feed the PLLs.
(3) Dedicated clock paths can feed into this PLL. However, these are not fully-compensated paths.
(4) This secured region contains a PLL that is fed by an external clock pin, whose outputs drive the clock control block through an unsecured region.
(5) This secured region contains a PLL whose output drives an clock control block within the same secured region. This placement is invalid.

Remote Clock from
Two Clock Pins

at Adjacent Edge
of Device (2)

Clock Control
Blocks (1)

Clock Control
Blocks (1)

5

44

2 4 2

D
PC

LK
[1

1:
0]

CL
K[

11
:8

]

D
PC

LK
[9

:8
]

D
PC

LK
[3

:2
]

CL
K[

15
:1

2]

D
PC

LK
[5

:4
]

DPCLK1

CLK[3:0]

DPCLK0

DPCLK6

CLK[7:4]

DPCLK7

5

5

5

4

4 4

2 4 2

4

4

4

4

4

(3)

(3)

(3)

(3)

PLL
4

PLL
1

PLL
2

PLL
3

Secured Region

5

4

2 4 2

(3)

3)
PLL

4X Invalid Placement (5)

Remote Clock from
Two Clock Pins

at Adjacent Edge
of Device (2)

Clock Control
Blocks (1)

Clock Control
Blocks (1)

5

44

2 4 2

D
PC

LK
[1

1:
0]

CL
K[

11
:8

]

D
PC

LK
[9

:8
]

D
PC

LK
[3

:2
]

CL
K[

15
:1

2]

D
PC

LK
[5

:4
]

DPCLK1

CLK[3:0]

DPCLK0

DPCLK6

CLK[7:4]

DPCLK7

5

5

5

4

4 4

2 4 2

4

4

4

4

4

(3)

(3)

(3)

(3)

PLL
4

PLL
1

PLL
2

PLL
3

5

4

4

4

(3)

PLL
4

Secured Region

Valid Placement (4)
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–25
Assigning I/O Pins
Assigning I/O Pins
After ensuring that signals that enter or exit a secured region contain a security level
attribute and are explicitly assigned to a security routing interface, you must also
ensure that I/O pin assignments adhere to design separation flow guidelines.
Consider the following three rules, in addition to the typical pin assignment rules,
when assigning I/O pins with the design separation flow enabled:

■ I/O pins that are connected to a secured region must be assigned as a member of
that secured region or assigned to a security routing interface region that abuts the
secured region.

■ Secured regions with I/O pins as members cannot share the I/O banks with any
other region.

■ I/O pins associated with different secured regions or security levels may not use
adjacent pins.

I/O pins may be added as members of a secured region, typically when directly
connected to the secured region. To add I/O pins as members of a secured region, in
the LogicLock Regions Properties dialog box, on the General tab, click Add node. If
an I/O pin is a member of a secured region, the I/O pad must be physically contained
within the region, and the secured region must overlap the I/O resource.

If you do not add the I/O pin as a member of the secured region, you must assign the
I/O signal to a security routing interface that abuts the secured region. This security
routing interface must connect the secured region to the root region or another
unsecured region. Explicitly lower the security level of any output signals from the
secured region that are connected to I/O pins.

c I/O signals that are routed out to unsecured logic are no longer guaranteed to be
physically isolated from other signals in the design.

Each I/O pin is adjacent to eight other pins: four along the horizontal and vertical
axes, and four in the two diagonal axes, as shown in Figure 4–20.

Figure 4–20. Pin Adjacency

Eight Pins Adjacent
to Pin E4

Pins D4 and D5
Set to GND

Pins E4
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–26 Chapter 4: Quartus II Design Separation Flow
Making Post Compilation Edits
Pins from different I/O banks may not share an adjacent I/O pin if one of the I/O
banks contains pins that are members of a secured region. User I/O pins that are
adjacent to a signal in a secured region, which belong to a different I/O bank than the
secured signal, should be assigned to GND in the Quartus II software. For example, in
Figure 4–20, pin E4 is assigned a signal from a secured region, and I/O banks 1 and 7
belong to different LogicLock regions. Pins D4 and D5 are assigned to GND to ensure
that no signal adjacencies exist between the I/O banks.

As a general rule, all unused I/O pins should be assigned to GND in the Quartus II
software and assigned to a ground plane on the PCB. By default, the Quartus II
software assigns unused pins to GND. You can configure this option in the Unused
Pins page of the Device and Pin Options dialog box.

If you must relax a particular I/O restriction for specific signals to meet your design
requirements, you may use the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment,
which is used to bypass normal I/O pin checks for a specific signal. For example, you
can apply this assignment to a clock pin assigned to one of the dedicated clock inputs.

1 Apply the LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment in the Quartus
Settings File (.qsf) located within the project directory of the active design. Note that
there is a single .qsf per project revision.

To disable the I/O signal rule check for the specified pin name in the .qsf, add the
assignment line:

set_instance_assignment -name LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT ON -to
<pin_name>

f For more information about the pinouts and pin adjacencies for Cyclone III LS
devices, refer to the Cyclone III Device Pin-Out tables. For more information and
guidance about I/O assignments, refer to the Cyclone III Device Family Pin Connection
Guidelines for Cyclone III LS devices and the I/O Management chapter in volume 2 of
the Quartus II Handbook.

Making Post Compilation Edits
Engineering Change Orders (ECOs) and the Rapid Recompile feature make
incremental changes to routing in a post-fit netlist. ECOs are small changes made to
the functionality of a design after the design has been fully compiled. A design is fully
compiled when synthesis and place-and-route are completed.

Any ECOs that do not affect routing, such as changing the LUT mask on an ALM, are
supported. ECOs that affect routing or make incremental changes to the routing in a
post-fit netlist are not permitted in the design separation flow.

h For more information about Rapid Recompile option in the Quartus II software, refer
to Incremental Compilation Page (Settings Dialog Box) in Quartus II Help.

Routing Restrictions
During the overall planning of your design, you should be aware of specific design
separation flow routing restrictions, especially during the floorplanning stages. These
routing restrictions are discussed in this section.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

Chapter 4: Quartus II Design Separation Flow 4–27
Routing Restrictions
Column and row interconnect routing resources on Cyclone III LS devices are
staggered, with a group of routing elements starting at each LAB location. Each
routing element is driven by the LAB location where the wire starts and can reach any
LAB destination along the length of the routing element. Figure 4–21 shows a set of
staggered R4 interconnects.

The Fitter disables routing wires near the edge of a secured region, where routing is
confined within the region. Figure 4–22 shows the Chip Planner displaying used
routing elements in a design with secured regions, using options in the Layer Settings
dialog box and using the background color map I/O banks, with only the Global
Routing and Used Resources options turned on.

Figure 4–21. Staggered R4 Interconnects

COL

7

COL

6

COL

5

COL

4

COL

3

COL

2

COL

1

COL

0

ENDPOINT

LABs

 R4
Interconnects

LABs

Figure 4–22. Chip Planner View of Used Resources
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–28 Chapter 4: Quartus II Design Separation Flow
Routing Restrictions
Figure 4–22 shows that no routing resources reach outside of LogicLock region
boundaries, except for global routing signals and signals through interface regions.

Long wires are often unusable in secured regions because their length extends beyond
the border of the region. If a secured region abuts the device boundary, you can often
attain an increase in routability, because all of the routing interconnects that start
inside the region and drive toward the edge of the device can be used.

I/O pads along the top and bottom of the device can only use column interconnects to
drive into the device fabric. The shortest routing element from the I/O to core logic is
a C4 routing wire. I/O pads on the left and right sides of the device can use both C4
and R4 routing elements to reach their LAB destinations. Because column I/Os are
restricted to using C4 interconnects going into the device, a four-LAB fence is created
around secured regions when the boundary of the secured region is within four-LABs
of the top and bottom I/O pads.

Secured regions should be sized at a minimum of 8 × 8 LABs. If a region is smaller
than 8 × 8 LABs, a connection between two LABs that violates the secured region
boundary may occur. For example, in Figure 4–23, any elements along the middle axis
of the 7 × 7 LAB array cannot use any C4 or R4 routing elements, because a C4 routing
element would reach outside the secured region.

Number of Signals in Routing Interfaces
In Cyclone III LS devices, every LAB location has 68 routing elements (R4) driving
horizontally in each direction and 48 routing elements (C4) driving vertically in each
direction. The number of connections that can be directly driven by an individual
LAB is 17 connections in the horizontal direction and 12 in the vertical direction. To
guarantee routability, Altera recommends that you have a routing interface height of
at least one-LAB for every 17 signals routing either left or right, and a routing
interface width of one-LAB for every 12 signals routing either up or down.

Figure 4–23. 7x7 LAB Array

U/D U/D U/D L/R,
U/D

L/R

L/R

L/R

L/R

L/R

L/R

U/D U/D U/D
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–29
Routing Restrictions
Figure 4–24, Table 4–2, and Table 4–3 illustrate this concept. Figure 4–24 shows three
secured regions with two security routing regions; one routing signals horizontally
and the other routing signals vertically. Table 4–2 and Table 4–3 list the maximum and
the recommended number of signals crossing each security region.

In Figure 4–24, HAB is both the smaller of the height of the region and the height of the
routing interface. The minimum WAB is one-LAB. WBC is both the smaller width of the
region and the width of the routing interface. The minimum HBC is one-LAB.
Changing WAB or HBC does not affect the values in Table 4–3.

Figure 4–24. Signals Crossing a Routing Interface

Table 4–2. Maximum Number of Signals Assigned in an Interface Region

To
From

A B C

A — 68 × HAB —

B 68 × HAB — 48 × WBC

C — 48 × WBC —

Table 4–3. Recommended Number of Signals to Ensure Routability

To
From

A B C

A — 17 × HAB —

B 17 × HAB — 12 × WBC

C — 12 × WBC —
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–30 Chapter 4: Quartus II Design Separation Flow
Routing Restrictions
As a general guideline, keep the security routing interface channel width between the
two connecting secured regions as short as possible and the depth of the channel as
wide as possible. The channel width is the number of LABs that a security routing
interface abuts and the depth of the channel is the number of LABs a signal passes as
it goes through the routing channel.

In Figure 4–25, an optimal security interface for routing AB would have a channel
width equal to the height of secured region A (HAB) and a channel depth of one-LAB
(WAB). Having a wide channel with a short depth increases the number of routing
resources available between two secured regions.

You can use the Routing Congestion task in the Chip Planner for a visual
representation of the routing utilization between secured regions. Routing resources
are filtered by type. Utilization of each routing resource type is highlighted on a color
gradient over the range that you specify. This tool can help you adjust region sizes
and security routing interface channel widths to help you achieve an optimal
floorplan. A design with the Routing Congestion task in the Chip Planner and R24
routing utilization is shown in Figure 4–25.

Figure 4–25. Routing Congestion
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–31
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the
Design Separation Flow

In this application example, the design contains five partitions that must be packed
into secured regions. Figure 4–26 shows a block diagram of the design, the entities of
the design, and the connectivity between the five secured partitions.

The following steps outline a recommended design flow for creating a floorplan for
this design:

1. Create a LogicLock region for each partition that must be packed into a secured
region.

2. Set each LogicLock region with the Auto, Floating, On, and Unsecured attributes
for the Size, State, Reserved, and Security Attributes columns, respectively.
Running an initial placement with these settings generates non-overlapping
LogicLock regions that can be used as an initial floorplan.

3. On the Processing menu, point to Start and click Start Early Timing Estimate to
run an initial place and route. The initial place and route approximates the size of
each region and the general placement of the LogicLock regions relative to other
LogicLock regions to achieve timing closure. The floorplan generated by the early
timing estimate is shown in Figure 4–27.

Figure 4–26. Connectivity between Five Secured Partitions

Figure 4–27. Initial Fitter-Generated Floorplan

Secure Region 1Connection to I/O

Connection to I/O

Connection to I/O

Secure Region 2

Secure Region 3

Secure Region 4

Secure Region 5

3

1

2

54
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–32 Chapter 4: Quartus II Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
4. In the LogicLock Regions window, select the LogicLock regions, right-click, and
then click Set Size and Origin to Previous Fitter Results.

5. Use the Design Partition Planner to view the connectivity between the different
regions. You can experiment with the relative placement of the blocks by dragging
and dropping each design partition. The wire bundles between design partitions
help you to determine a placement that has non-overlapping routing channels.

1 You must also consider the connectivity to the I/O banks when arranging
your floorplan. You can toggle the display of the connections between the
partitions and the I/O banks within the Design Partition Planner to help
you properly allocate I/O resources, as well as avoid conflicts between I/O
connections and inter-partition signals. To display routing between
partitions and the I/O banks, turn on Display connections to I/O banks in
the Bundle Configuration dialog box.

6. Set each LogicLock region to the desired security attribute.

7. In the Chip Planner, adjust the size and placement of each LogicLock region using
the relative placement you created with the Design Partition Planner. Note the
following considerations when modifying the floorplan:

■ The floorplan must be complete. If there is unsecured logic that is
non-contiguous due to the placement of a secured region, use an empty
reserved LogicLock region to prevent a non-routable placement.

■ Each secured region must be a minimum of 8 × 8 LABs.

■ Each region that has I/O pins added as members of the LogicLock region
should overlap the I/O bank to which it is connected. You can use the I/O
bank background color map to visualize the boundaries between the I/O
banks (Figure 4–28).

■ All global resources (such as clock pins and PLLs) that are required by
unsecured logic must not be covered by a secured region.

Figure 4–28. I/O Banks Layers Setting for Viewing Connectivity of LogicLock Regions to I/O Banks
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–33
Report Panels
8. Create security routing interfaces between each of the secured regions. Assign all
signals entering or exiting a region to a security routing interface.

The final floorplan result for this application example is shown in Figure 4–29.

Report Panels
After the Fitter successfully places and routes a design with secured regions, the
Quartus II software generates security reports. Use the security reports to review the
secured regions, their associated routing interfaces, all inputs and outputs from each
secured region, and the I/O bank usage for each secured region. The security reports
are located in the Fitter section of the Compilation reports.

Secured LogicLock Region Summary
This report provides a summary of all secured regions in your design. Table 4–4
describes each column in the Secured LogicLock Region Summary report.

Figure 4–29. Final Floorplan

2

1

4 5

3

Table 4–4. Secured LogicLock Region Report (Part 1 of 2)

Column Name Description

Secured LogicLock Region Lists all secured LogicLock regions in the design.

Security Attribute Lists the security attribute (unsecured,1, 2, or security routing interface) of the LogicLock
region.

Partition Assigned Lists the design partition assigned to the secured region.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–34 Chapter 4: Quartus II Design Separation Flow
Report Panels
Security Routing Interfaces
This report summarizes the security routing interfaces. Table 4–5 describes each
column in the Security Routing Interfaces report.

Secured LogicLock Region Inputs and Outputs
This set of reports provides a detailed list of every signal that enters or exits a secured
region. There is one report per secured region.

Number of Input Signals
(Total Fanout)

Lists the number of inputs and fan-outs into a region. The input counts the number of unique
drivers that feed a secured region. The fan-out counts the total number of unique destinations
being fed by the input signals into the secured region. Figure 4–30 illustrates input signals and
fan-outs to a region.

Number of Output Signals
(Total Fanout)

Lists the number of outputs and fan-outs from a region. The output counts the number of
unique drivers sourcing a signal from the secured region. The fan-out counts the total number
of unique destinations fed by the output signal.

Table 4–4. Secured LogicLock Region Report (Part 2 of 2)

Column Name Description

Figure 4–30. Input Signals and Fan-Outs to a Region

Set

CLRN

D Q

Set

CLRN

D Q

Secured Region A

Secured Region B

Secured Region A - Number of Output Signals (Total Fanout) : 1
Secured Region B - Number of Input Signals (Total Fanout) : 1

Table 4–5. Security Routing Interface Report

Column Name Description

Interface Name Lists all security routing interfaces in the design.

Abutting Region A First region that the security routing interface abuts (touches the border of the secured
region).

Abutting Region B Second region that the security routing interface abuts (touches the border of the secured
region).

Number of Signals A to B
(Total Fanout in B)

Lists the number of signal connections between region A and region B. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region A. Fan-out lists
the number of unique destinations in region B that are fed by region A.

Number of Signals B to A
(Total Fanout in A)

Lists the number of signal connections between region B and region A. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region B. Fan-out lists
the number of unique destinations in region A that are fed by region B.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 4: Quartus II Design Separation Flow 4–35
Quartus Settings File Syntax
Security I/O Bank Usage
This report displays the secured LogicLock region associated with each I/O bank, lists
the number of pins within each region, and lists the number of pins in use. Table 4–6
describes each column in the Secured LogicLock Region Inputs and Outputs report.

Quartus Settings File Syntax
This section contains the syntax description for each Quartus Settings File (.qsf)
assignment in the design separation flow.

LL_SECURITY_ROUTING_INTERFACE
This command changes a LogicLock region assignment to a security routing interface.

Type: Boolean; (ON/OFF - Defaults to OFF)

Syntax:

set_global_assignment -name LL_SECURITY_ROUTING_INTERFACE <value> \ -section_id
<section_identifier>LL_REGION_SECURITY_ LEVEL

LL_REGION_SECURITY_LEVEL
This command identifies the security level of a LogicLock region.

Type: Enumeration—defaults to UNSECURED

■ 1

■ 2

■ UNSECURED

Syntax:

set_global_assignment -name LL_REGION_SECURITY_LEVEL <value> \
-section_id <section_identifier>

LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
This command assigns an I/O pin from a secured region to a security routing
interface. Both <value> and <section_id> denote the name of the routing interface
region. <to> specifies the name of the signal.

Type: String

Table 4–6. Secured LogicLock Region Input and Output Report

Column Name Description

I/O Bank Lists all available I/O banks on the device.

Associated Region
An I/O bank becomes associated with a secured LogicLock region if any portion of the I/O bank
is covered by the region. If no secured region covers an I/O bank, “Unsecured Logic” is
displayed, and all pins of the I/O bank are available for unsecured use.

Pin Locations Used /
Pin Locations Covered
by Region

Displays the ratio of pins with a signal assignment in the I/O bank to the number of possible I/O
pin assignments.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

4–36 Chapter 4: Quartus II Design Separation Flow
Document Revision History
Syntax:

set_instance_assignment -name \ LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
<value> -to <to> \
-section_id <section_id>

LL_SIGNAL_SECURITY_LEVEL
This command sets the security level of a signal. The default value is the security level
of the region that generates the signal. This assignment may be used only to lower a
security level.

Type: Enumeration

■ UNSECURED

■ 1

■ 2

Syntax:

set_instance_assignment -name LL_SIGNAL_SECURITY_LEVEL <value> \
-to <to> -section_id <section_id>

Document Revision History
Table 4–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 4–7. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Modified the former “Avoiding Child Partitions” section into the new “Avoiding Multiple
Design Partitions With a Secured Region” on page 4–6 section and added information
about multi-hierarchy partitions

■ Updated the “Using Secured Regions” on page 4–9 section

■ Updated the “Making Design Separation Flow Location Assignments in the Chip Planner”
on page 4–10 section

■ Updated the “Creating a Complete Floorplan” on page 4–14section

■ Updated the “Working with Global Signals” on page 4–21 and “Assigning I/O Pins” on
page 4–25 sections with information about the
LL_IGNORE_IO_PIN_SECURITY_CONSTRAINT assignment

■ Added the “Making Post Compilation Edits” on page 4–26 section

■ Updated the “Number of Signals in Routing Interfaces” on page 4–28 section

■ Added feature licensing information

■ Updated figures and overall editorial update

■ Template update

July 2010 10.0.0 Initial release. Content originated from AN 567: Quartus II Design Separation Flow.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

December 2010 Altera Corporation
Section II. System Design with Qsys
c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

This section provides information about Qsys. Qsys is a powerful system integration
tool which is included as part of the Quartus II software. Qsys automates the task of
capturing of integrating customized HDL components, which may include IP cores,
verification IP, and other design modules. You can use Qsys to integrate your own
components with the components that Altera® or third-party developers provide. In
some cases, you can implement an entire design using components from the Qsys
component library.

This section includes the following chapters:

■ Chapter 5, Creating a System with Qsys

This chapter describes the Qsys system integration tool.

■ Chapter 6, Creating Qsys Components

This chapter describes Qsys components and how to define Qsys components
using a GUI.

■ Chapter 7, Qsys Interconnect

This chapter discusses the Qsys interconnect, a high-bandwidth structure for
connecting components that use Avalon® interfaces.

■ Chapter 8, Component Interface Tcl Reference

This chapter describes an alternative method for defining Qsys components by
declaring their properties and behaviors in a Hardware Component Description
File (_hw.tcl). It also provides a reference for the Tool Command Language (Tcl)
commands that describe Qsys components.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis
Preliminary

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

II–2 Section II: System Design with Qsys
Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation
Preliminary

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51020-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51020-10.1.0
5. Creating a System with Qsys
c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

Qsys is a powerful system integration tool which is included as part of the Quartus® II
software. Qsys captures system level hardware designs at a relatively high level of
abstraction and also automates the task of defining and integrating customized HDL
components, which may include IP cores, verification IP, and other design modules.
Qsys facilitates design reuse by packaging and making available your custom
components and systems. Qsys integrates your custom components with Altera® and
third-party developer components. In some cases, you can implement an entire
design using components from the Altera component library. During system
generation, Qsys automatically creates high-performance interconnect logic from the
connectivity options you specify, eliminating the error-prone and time-consuming
task of writing HDL to specify the system-level connections.

Qsys provides the following advantages for hardware system design:

■ Automates the process of customizing and integrating components

■ Supports modular system design

■ Supports visualization of large systems

■ Supports optimization of interconnect fabric and pipelining within the system

■ Fully integrated with the Quartus II softwareQsy
s B

eta
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51020
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

5–2 Chapter 5: Creating a System with Qsys
Qsys GUI
Qsys supports hierarchical system design. You can include any Qsys system that
exports an interface as a component in another Qsys system. Figure 5–1 shows the top
level of a Qsys example design that implements a PCI Express to Ethernet bridge. This
example combines separate PCI Express and Ethernet subsystems with Altera’s DDR3
SDRAM Controller with UniPHY IP core. Different members of the design team could
develop the various subsystems simulataneously, decreasing time-to-market for the
complete design. For a detailed discussion of this example design refer to “Example
Hierarchical System” on page 5–12.

Hierarchical system design in Qsys offers the following advantages:

■ Enables team-based, modular design by dividing large designs into subsystems

■ Enables design reuse by allowing you to use any Asys system as a component

■ Enables scalability by allowing you to instantiate multiple instances of a Qsys
system

Qsys supports enhanced component parameterization, allowing you to design for
maximum efficiency and utility. For example, you can specify parameters that can be
fed to a program that generates the RTL at run time, allowing unlimited
parameterization.

This chapter introduces Qsys, including the following sections:

■ “Qsys GUI” on page 5–2

■ “Qsys Design Flow” on page 5–8

■ “Example Hierarchical System” on page 5–12

Qsys GUI
You can launch Qsys from the Quartus II software GUI or from a command prompt.
To start Qsys from the Quartus II software, on the File menu click New. In the New
dialog box, click Qsys System File. To start Qsys at the command line, type
qsys-edit r.

h For more information about the Qsys GUI, refer to About Qsys in Quartus II Help.

Figure 5–1. Top-Level Block Diagram for a PCI Express to Ethernet Bridge

DDR3
SDRAM

Ethernet
Subsystem

Ethernet

Embedded Cntl

PCI Express
Subsystem

Qsys System
PCIe to Ethernet Bridge

PCIe

CSR
Mem
Mstr

Mem
Slave

PHY
Cntl

Mem
Mstr

CSR

DDR3
SDRAM

Controller

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_about_qsys.htm

Chapter 5: Creating a System with Qsys 5–3
Qsys GUI
Qsys Component Library
The Qsys component library contains all the components found on the component
search path that you specify, whether or not they are included in a Quartus II project.
These components include Altera-provided IP cores, third-party IP cores, and custom
IP cores that you provide. Qsys components are listed in the component library and
can be used in designs if they have exported interfaces. The component library also
includes all the components that are used the Qsys interconnect.

Altera recommends that you use standard Avalon interfaces in your component
designs. By using these standard interfaces, you can create components that
interoperate with the components in the Qsys component library. In addition, you can
take advantage of bus functional models (BFMs), monitors, and other verification IP
when verifying your design. However, Qsys allows you to design with any interface
that your design requires. If a set of signals cannot adhere to the Avalon Interface
Specifications, you can encapsulate any arbitrary collection of signals as a conduit
interface. You can connect conduit interfaces inside of Qsys or export them for
connection outside of the immediate module.

f For more information all interface types, refer to the Avalon Interface Specifications. For
more information about BFMS, refer to the Avalon Verification IP Suite User Guide.

Altera and third-party developers provide ready-to-use Qsys components. The
component library has many different types of components including all of the
following:

■ Microprocessors, such as the Nios II processor

■ DSP IP cores, such as the FIR Compiler II

■ Interface protocols, such as the PCI Express Compiler IP core

■ Transceiver PHYs, such as the XAUI PHY IP core

■ Memory controllers, such as the RLDRAM II Controller with UniPHY

■ Avalon Streaming (Avalon-ST) components, such as the Avalon-ST Multiplexer IP
core

■ Qsys interconnect components, such as the Qsys master router which decodes
addresses

These components are installed automatically with the Quartus II software, and are
available in the Qsys component library.

Integrating Custom Components
You can use the following steps to integrate you custom components into a Qsys
system:

1. Determine the interfaces that interact with your custom component.

2. Create the component logic using either Verilog HDL or VHDL.

3. Use the Qsys component editor to define the_hw.tcl file.

4. Instantiate the component in the system.

Once you have created a Qsys component, you can use the component in other Qsys
systems and share the component with other design teams.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

5–4 Chapter 5: Creating a System with Qsys
Qsys GUI
f For instructions on developing a custom Qsys component, details about the file
structure of a component, or the component editor, refer to the Creating Qsys
Components chapter in volume 1 of the Quartus II Handbook.

Integrating Third-Party Components
You can also use Qsys components created by third-party IP developers. Altera
awards the Qsys Certified label to IP cores that are fully supported in Qsys. These
cores support Avalon interfaces and may include timing and placement constraints,
software drivers, simulation models, and reference designs.

To find Qsys third-party components that you can use in Qsys systems, follow these
steps:

1. On the Tools menu in Qsys, click Download Components.

2. On the Intellectual Property & Reference Designs web page, type
Qsys Certifiedr in the Search box labeled Search IP and Reference Designs
products by their descriptions.

f You can also do advanced searches by clicking on Launch the Altera Product Selector
Guide from the Altera Product Selector web page and then clicking the IP Selector
tab.

Adding System Contents
The System Contents tab displays the components that you have added to your
system.

Adding Components
To add a component to your system, click on the component in the Component
Library and then click the Add button. A parameter editor appears allowing you to
customize the component.

1 You can type some or all of the component’s name in the Component Library search
box to display all components including that string.

Connecting Components
You specify connections at the interface level; individual signals within connected
interfaces are connected automatically. You connect interfaces of compatible types
and opposing directions. For example, you can connect an Avalon Memory-Mapped
(Avalon-MM) master interface to an Avalon-MM slave interface, and an interrupt
sender interface to an interrupt receiver interface. To see the possible connections for
an interface, click the System Contents tab and then click the interface name. Hover

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/products/selector/psg-index.html

Chapter 5: Creating a System with Qsys 5–5
Qsys GUI
your cursor in the Connections column. To see the connectivity matrix where open
circles represent possible connections and black circles indicate connections that you
have made. To make a connection, click on the open circle at the intersection of the
two interface names. Clicking a second time removes the connection. Figure 5–2
illustrates the connectivity matrix.

h For more information, refer to Connecting Qsys Components in Quartus II Help.

Filtering Components
You can use the Filters dialog box to filter the display of your system in the System
Contents tab. You can filter the display of your system by interface type, instance
name, interface type, or using custom tags. For example, you can use filtering to view
only instances that include an Avalon-MM interface or instances that are connected to
a particular Nios II processor.

h For more information, refer to the Filters Dialog Box in Quartus II Help.

Using the System Inspector
The System Inspector tab displays the underlying model of your complete system.
The System Inspector provides comprehensive details about your system such as the
following information:

■ The connections between all signals.

■ The signal names of all signals included in exported interfaces.

■ The internal connections of Qsys subsystems that are included as components.

1 In contrast, the System Contents tab, displays only the exported interfaces
of Qsys subsystems included as components.

Figure 5–2. Connections Column

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_conn_comps.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_db_filter.htm

5–6 Chapter 5: Creating a System with Qsys
Qsys GUI
■ The global parameter settings that you specified on the Project Settings tab.

You can use the System Inspector tab to review and change component parameters
and to review interface timing. For example, Figure 5–3 shows the timing for the
Avalon-MM DMA write master for the PCI Express-to-Ethernet system illustrated in
Figure 5–8 on page 5–14.

.

1 To display the timing for an interface, expand the component to display its interfaces
and click on the interface name.

Defining the Address Map
The Address Map tab provides a table including all the Avalon-MM slaves in your
design and the address range that each connected Avalon-MM master uses to address
that slave. The table shows the slaves on the left and masters along the top, with the
address span of the connection shown in each cell. A blank cell implies that there is no
connection between that master and slave.

Follow these steps to change or create a connection between master and slave
components:

1. In Qsys, click the Address Map tab.

2. Locate the table cell that represents the connection between the Avalon-MM
master and slave component pair.

3. Either type in a base address or update the current base address in the cell.

1 You can design a system where two Avalon-MM masters see Avalon-MM slave at
different addresses. If you use this feature, the Base and End address columns of the
System Contents tab are labeled mixed rather than providing the address range.

Figure 5–3. Avalon-MM Write Master Timing Waveforms Available on Project Settings Tab

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 5: Creating a System with Qsys 5–7
Qsys GUI
Specifying Clock Settings
You can use the Clock Settings tab to define the clocks in your system. The Clock
Settings tab defines the Name, Source, and frequency (MHz) of each clock. Clicking
the Add button adds a new clock. To change the default values, click in the
appropriate column, backspace, and type the new value.

h For more information, refer to the Adding Components to a Qsys System (To define clock
domains in a system) in Quartus II Help.

Specifying Project Settings
You can use the Project Settings tab to view and change the properties of your Qsys
system. Table 5–1 describes system-level parameters available on the Project Settings
tab.

Table 5–1. Project Settings Parameters

Parameter Name Description

Device Family Specifies the Altera device family. If your final design targets a HardCopy® series device,
specify that device here.

Clock Crossing Adapter Type

Specifies the default implementation for automatically inserted clock crossing adapters. The
following choices are available:

■ Handshake–This adapter uses a simple hand-shaking protocol to propagate transfer
control signals and responses across the clock boundary. This methodology uses fewer
hardware resources because each transfer is safely propagated to the target domain
before the next transfer can begin. The Handshake adapter is appropriate for systems
with low throughput requirements.

■ FIFO–This adapter uses dual-clock FIFOs for synchronization. The latency of the
FIFO-based adapter is a couple of clock cycles more than the handshaking clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it can
support multiple transactions in flight at any given time. The FIFO-based clock crossers
require more resources. The FIFO adapter is appropriate for memory mapped transfers
requiring high throughput across clock domains.

■ Auto–if you select Auto, Qsys specifies the FIFO adapter for bursting links and the
Handshake adapter for all other links.

Max Additional Latency

Specifies the maximum number of pipeline stages on each command and response path
that Qsys may insert to increase the fMAX at the expense of additional latency. You can
specify between 0–4 pipeline stages, where 0 means that the interconnect has a
combinatorial datapath.This setting is per-Qsys system or subsystem, meaning that each
subsystem can have a different setting. Note that this additional latency is for both the
command and response directions for the two Qsys systems even if you combine them into
a single Quartus II project.

Global Reset

When this option is on, Qsys creates a global reset bus for your design. Turn this option off
if you want control over reset connectivity. If you turn this option off, you must avoid reset
loops and system lockup. For example, resetting an Avalon-MM slave while it is responding
to a burst read request results in system lockup. The default setting for this option is on.

Use SOPC Builder Port
Naming

If you turn this option on, Qsys uses the SOPC Builder naming conventions for port names
and exports the interfaces that were exported in the original SOPC Builder system. This
option is only for backwards compatibility for legacy designs created in SOPC Builder.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_add_comp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_add_comp.htm

5–8 Chapter 5: Creating a System with Qsys
Qsys Design Flow
System Generation
You specify the files you want to generate on the Generation tab. You can generate
simulation models, HDL files for Quartus II synthesis, or a Block Symbol File (.bsf)
for schematic design. By default, Qsys places these output files in a subdirectory of
your project directory. To change the default behavior, click on the Output Path
directory, specify a new directory.

You must add the Quartus II IP File (.qip) file to your Quartus II project. The .qip file
is stored in the synthesis directory. It lists the files necessary for Quartus II
compilation. The .qip file includes references to the following information:

■ HDL files used in the Qsys system

■ TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files

■ Component definition files for archiving purposes

h For more information about adding files to your Quartus II project, refer to Managing
Files in a Project in Quartus II Help.

Viewing the HDL Example
The HDL Example tab provides the top-level HDL definition of your Qsys sytem in
either Verilog HDL or VHDL. This tab also displays VHDL component declarations.
You can copy this example and paste it into a top-level HDL file that instantiates the
Qsys system, if the system is not the top-level module in your Quartus II project.

Qsys Design Flow
Figure 5–4 illustrates an example bottom-up design flow in Qsys which starts with
component design. As this flow diagram illustrates, the typical design flow includes
the following high-level steps:

1. Package your component for Qsys using the Component Editor.

2. Simulate at the unit-level, possibly incorporating Avalon BFMs to verify the
system.

3. Complete the Qsys design by adding other components, specifying interrupts,
clocks, resets, and addresses.

4. Generate the Qsys system.

5. Perform system level simulation.

6. Constrain and compile the design.

7. Download the design to an Altera device.

8. Test in hardware.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm/#mergedProjects/program/pgm/pgm_intro.thm
http://quartushelp.altera.com/10.1/master.htm/#mergedProjects/program/pgm/pgm_intro.thm

Chapter 5: Creating a System with Qsys 5–9
Qsys Design Flow
1 In the alternative top-down valid design flow, you begin by designing the Qsys
system and then define and instantiate custom Qsys component. This approach
clarifies the system requirements earlier in the design process.

Designs targeting HardCopy devices are require specific design constraints.
Consequently, if you are targeting a HardCopy series device, you must verify you
design for the HardCopy companion device.

Figure 5–4. Complete Qsys Design Flow

No

No

Yes

Yes

Simulation at Unit-Level,
Possibly Using Avalon BFMs

Debug Design

Does
Simulation Give

Expected Results?

Debug Design

Does
Simulation Give

Expected Results?

Complete System, Adding
Components, IRQs, Addrs

Perform System-Level
Simulation

Generate Qsys
System

Yes

No

Modify Design or
Constraints

Does
HW Testing Give

Expected Results? Qsys System Complete

Constraint, Compile
in Quartus II Generating .sof

Download .sof to PCB
with Altera FPGA

Package Component
Using Component Editor1

2

3

5
8

9

10

6

7

4

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

5–10 Chapter 5: Creating a System with Qsys
Qsys Design Flow
Follow these guidelines to verify your design for both devices:

1. In the Quartus II Device dialog box, select both the FPGA and the appropriate
HardCopy companion device.

2. In Step 8 of the design flow shown in Figure 5–4, compile for both the FPGA and
HardCopy device.

3. After Step 10 of the design flow shown in Figure 5–4, if FPGA passes all functional
simulation and hardware verification tests, generate the HardCopy handoff
archive and send this archive to the HardCopy Design Center for the backend flow
and tapeout.

h For more information about designing for HardCopy devices, refer to About Designing
HardCopy Devices in Quartus II Help.

Generating Output Files
Qsys system generation creates the interconnect between components. In addition to
the files for simulation and synthesis, Qsys creates a .bsf and an HTML datasheet.

Figure 5–5 illustrates the directory structure for the output files.

Table 5–2 describes the files that Qsys generates. Each time you generate your system,
Qsys overwrites these files. If you have additional constraints, such as board-level
timing constraints, Altera recommends that you create a separate Synopsys Design
Constraints File (.sdc) and include that file in your Quartus II project.

Figure 5–5. Qsys Generated Files Directory Structure

<qsys_design>.qsys
<qsys_design>.bsf
<qsys_design>.sdc
<qsys_design>.html
<qsys_design>.qip
<qsys_design>.sopcinfo

<project_name>

<component_name>

<qsys_design>.v
<qsys_design>/synthesis

<qsys_design>/sim_verilog
<qsys_design>/sim_vhdl

. .
 .

<component_name>
<component_name>.v or .vhd

or

Table 5–2. Qsys Generated Files (Part 1 of 2)

File Name or Directory Name Description

 <system_name>.qsys Qsys System File (.qsys). The .qsys file contains a list of system components,
connections and their parameterizations.

<system_name>.bsf A Block Symbol File (.bsf) representation of the top-level Qsys system for use in
Quartus II Block Diagram Files (.bdf).

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/quartus/common/help/master.htm#mergedProjects/comp/migrate/comp_view_design_hc2.htm

Chapter 5: Creating a System with Qsys 5–11
Qsys Design Flow
Simulating a Qsys System
To simulate your Qsys system, first use Qsys to create a simulation model. Enable
Create Verilog simulation model and click Generate on the Generation tab. This
command creates Verilog simulation model files in the specified Output Directory,
along with a ModelSim® example simulation script that compiles the system design
files in the correct order and sets up the ModelSim simulation environment. You can
use the generated ModelSim script mti_setup.tcl as an example for your testbench
and simulation environment, or to create scripts for the VCS and NC-Sim simulators.

 <system_name>.html

This is a datasheet for the system which provides a system overview including the
following information:

■ All external connections for the system

■ A memory map showing the address of each Avalon-MM slave with respect to
each Avalon-MM master to which it is connected

■ All parameter assignments for each component

<system_name>.sopcinfo

Qsys information file (.sopcinfo) that describes all of the components and
connections in your system. This file is a complete system description, and is used
by downstream tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently, you can parse its
contents to get requirements when developing software drivers for Qsys
components.

<system_name>.sdc Synopsys Design Constraints File (.sdc). Provides constraints for timing analysis
for Timequest. This file only includes constraints for the Qsys system.

synthesis This directory includes the files that the Quartus II software uses to synthesize your
design. These files are over-written each time you generate your system.

 <system_name>.qip This file lists the Quartus II software needed to compile your design. You must add
the .qip file to your Quartus II project.

 <system_name>.v or
<system_name>.vhd

<component_name>.v or
<component_name>.vhd

An HDL file for the top-level Qsys system and for each component in the system.
The files under the <system_name>/synthesis directory are used for synthesis.

sim_verilog This directory includes the files to simulate your design.

<system_name>.v or
<system_name>.vhd

<component_name>.v or
<component_name>.vhd

An HDL file for the top-level Qsys system and for each component in the system.
The files under the <system_name>/simulation directory are used for simulation.

Table 5–2. Qsys Generated Files (Part 2 of 2)

File Name or Directory Name Description

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

5–12 Chapter 5: Creating a System with Qsys
Example Hierarchical System
You can add monitors to Avalon-MM and Avalon-ST interfaces in your system to
verify protocol correctness and test coverage with a SystemVerilog simulator.
Figure 5–6 demonstrates the use of monitors. It places an Avalon-MM monitor
between the previously connected pcie_compiler bar1_0_Prefetchable Avalon-MM
master interface and the dma_0 control_port_slave Avalon-MM slave interface.

In a similar manner, you can insert an Avalon-ST monitor between Avalon-ST source
and sink interfaces. You can also add BFM components that drive the external
interfaces of your system components.

f For more information about using BFMs and system monitors, including tutorials
demonstrating sample systems, refer to the Avalon Verification IP Suite User Guide.

To simulate a Nios II processor running software code, you must generate a Nios II
memory initialization file in the Nios II Software Build Tools (Nios II SBT) for Eclipse.
Right-click on the application project in Eclipse, point to Make Targets, and choose
Build, then select the mem_init_install and click Build. This Tcl file provides an
example of a script that compiles the design files and sets up the ModelSim
simulation environment.

1 In the Quartus II software version 10.1, you can simulate application code for one
Nios II processor in your system at a time, using one info.meminit file.

f For more information about the Nios II SBT for Eclipse, refer to Getting Started with the
Graphical User Interface in the Nios II Software Developer’s Handbook. For more
information on the status of simulation in the beta release of Qsys in the Quartus II
version 10.1, refer to the Quartus II Release Notes.

Example Hierarchical System
Figure 5–7 shows the details of the PCI Express example subsystem which is also
illustrated at a very high level in Figure 5–1 on page 5–2. In this example system, a
software application running on the root complex processor programs the DMA
controller. The DMA controller’s Avalon-MM read and write master interfaces initiate
transfers to and from the DDR3 memory and to the PCI Express Avalon-MM Tx data
port. The system exports the DMA master interfaces through an Avalon-MM pipeline
bridge. As the figure illustrates, all three masters connect to a single slave interface.

Figure 5–6. Inserting an Avalon-MM Monitor between Avalon-MM Master and Slave Interfaces

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 5: Creating a System with Qsys 5–13
Example Hierarchical System
During system generation, Qsys automatically inserts arbitration logic to control
access to this slave interface. By default, the arbiter provides equal access to all
requesting masters; however, you can weight the arbitration by changing the number
of arbitration shares for the requesting masters. A second Avalon-MM pipeline bridge
allows the control and status interfaces to be connected internally and also exported.

f For more information, refer to “Arbitration” in the Qsys Interconnect chapter in
volume 1 of the Quartus II Handbook.

Figure 5–7. PCI Express Subsystem Block Diagram

PCI Express Subsystem

PCIe Link

DMA Avalon-MM Master
 (exported to DDR3 Controller)

Cntl and Status Avalon-MM Slave
(exported to Embedded Controller)

(exported
to PCIe root port)

DMA
Controller

CSR

Rd

Wr

Avalon-MM PIpeline
 Bridge (Qsys)

Avalon-MM PIpeline
 Bridge (Qsys)

PCI Express
IP Core

CSR

CSR

Tx Data

M

M

M

M

M

S

S

S

S

S

Cn

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

5–14 Chapter 5: Creating a System with Qsys
Example Hierarchical System
Figure 5–8 shows the Qsys representation of the PCI Express subsystem.

Figure 5–9 shows the details of the Ethernet example subsystem from Figure 5–1. In
this subsystem, the transmit (TX) DMA receives data from the DDR3 memory and
writes it to the Altera Triple-Speed Ethernet IP core using an Avalon-ST source
interface. The receive (RX) DMA accepts data from the Triple-Speed Ethernet IP core
on its Avalon-ST sink interface and writes it to DDR3 memory.

The read and write masters of both Scatter-Gather DMA controllers and the
Triple-Speed Ethernet IP core connect to the DDR3 memory through an Avalon-MM
pipeline bridge. This Ethernet example subsystem exports all three control and status
interfaces through an Avalon-MM pipeline bridge which connects to a controller
outside of the Qsys system.

Figure 5–8. Qsys Representation of the PCI Express Subsystem

Figure 5–9. Scatter-Gather DMA-to-Ethernet Example Subsystem

TX Avalon-ST

RX Avalon-ST

Scatter Gather
DMA

M

Src

M M

Scatter Gather
DMA

MM M

S

S

S

Src

Snk

Triple Speed
Ethernet

Snk

M

S

Avalon-MM Pipeline
Bridge (Qsys)

CSR

M S
DDR3

CSR
CSR

CSR

Ethernet
Cn

Calibration
Cn

Ethernet Subsystem

Avalon-MM
Pipeline
Bridge
(Qsys)

Qsys inserts
 arbitration

logicQsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 5: Creating a System with Qsys 5–15
Example Hierarchical System
Figure 5–10 shows the Qsys representation of the Ethernet subsystem.

This example system includes two clock domains. The PCI Express and Ethernet
subsystems run at 125 MHz. The DDR3 SDRAM controller runs at 200 MHz. Qsys
automatically inserts clock crossing logic to synchronize the DDR3 SDRAM
Controller with the with the PCI Express and Ethernet subsystems. Figure 5–11 shows
the top level of the example system.

Figure 5–10. Qsys Representation of the Ethernet Subsystem

Figure 5–11. PCI Express-to-Ethernet Bridge Example System

Qsys inserts
arbitration and
Clock crossing

logic
(125 MHz-200MHz)

Qsys System

400 MHz

Ethernet
Subsystem

SCSR M DDR3

CnEthernet

CnCalibration

CSRM

PCIe link Cn

PCI Express
Subsystem

S

MS

Avalon-MM
PIpeline

 Bridge (Qsys)

MS

DDR3
SDRAM

Controller

125 MHz

125 MHz

125 MHz

200 MHz

DDR3
SDRAM

to CPU

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

5–16 Chapter 5: Creating a System with Qsys
Example Hierarchical System
Figure 5–12 shows the Qsys representation of the complete design.

Using Pipeline Bridges
The PCI Express to Ethernet bridge example system uses several pipeline bridges.
These bridges must be configured to accommodate the address range of all of
connected components, including the components in the originating subsystem and
the components in the next higher level of the system hierarchy. As the name
suggests, the pipeline bridge inserts a pipeline stage between the connected
components. Altera recommends registering signals at the subsystem interface level
for the following reasons:

■ Decreases the amount of combinational logic that must be completed in one cycle
making it easier to close timing.

■ Raises the potential frequency, or fMAX, of your design at the expense of an
additional cycle of latency which might adversely affect system throughput.

■ Incremental compilation can get better fMAX results if the subsystem boundary is
registered.

f For more information about incremental compilation, refer to Quartus II Incremental
Compilation for Hierarchical and Team-Based Design in volume 1 of the Quartus II
Handbook.

Creating Hierarchical Components
Any Qsys system that exports an interface is available for use in other Qsys systems.
Figure 5–13 shows the component library including the PCI Express and Ethernet
subsystems as components in the component library for the PCI Express to Ethernet
bridge example system. To include this Qsys component in other designs, you can
add it to the component library or include the directory for this component in
component search path for Qsys.

Figure 5–12. Qsys Representation of the Complete PCI Express to Ethernet Bridge

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 5: Creating a System with Qsys 5–17
Document Revision History
f For more information about your IP search path, refer to the “Component Search
Path” section in the Creating Qsys Components chapter in volume 1 of the Quartus II
Handbook.

f For more information about adding components to your library, refer to the
“Installing Additional Components” section in the Creating Qsys Components
chapter in volume 1 of the Quartus II Handbook.

Document Revision History
Table 5–3 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Figure 5–13. Qsys Component Library

Table 5–3. Document Revision History

Date Version Changes

December 2010 10.1.0 Initial release.Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

5–18 Chapter 5: Creating a System with Qsys
Document Revision History
Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51022-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51022-10.1.0
6. Creating Qsys Components
c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

A Qsys component is a hardware design block available within Qsys that can be
instantiated in a Qsys system. You can use Altera-provided or define custom Qsys
components as hierarchical building blocks in creating Qsys systems. This chapter
describes the structure of Qsys components, with an emphasis on the using the
component editor to create and edit the Hardware Component Description Files
(_hw.tcl) that describes a component to Qsys.

This chapter includes the following major sections:

■ “Qsys Components” on page 6–1

■ “Component Editor” on page 6–9

Qsys Components
A Qsys component includes the following elements:

■ The HDL description of the component’s hardware.

■ A description of the interface to the component hardware, such as the names and
types of I/O signals.

■ A description of the parameters that determine the operation of the component.

■ A parameter editor for customizing an instance of the component in Qsys.

■ Scripts and other information Qsys requires to generate the HDL files for the
component and integrate the component into the Qsys system.

■ Other component-related information, such as references to software drivers,
necessary for development steps downstream of Qsys.

Qsy
s B

eta
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

https://www.altera.com/servlets/subscriptions/alert?id=QII51022
http://www.altera.com/common/legal.html
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

6–2 Chapter 6: Creating Qsys Components
Qsys Components
Component Providers
Qsys components are provided by multiple sources, including the following:

■ Altera provides a great variety of components automatically installed with the
Quartus® II software.

■ You can use the Qsys component editor to define your won custom Qsys
components.

■ Third-party IP developers provide Qsys-compliant components. You can display a
list of third-party components by clicking Download Components on the Tools
menu. Then, on the Intellectual Property & Reference Designs web page, type
Qsys Certified r in the Search box labeled Search for IP and Reference Designs
products by their descriptions.

■ Altera® development kits which are listed on the All Development Kits web page.

Component Interfaces
You can design Qsys components with any combination of the following Avalon
interface types:

■ Avalon Memory-Mapped (Avalon-MM)—for Avalon-MM master and slaves that
communicate using read and write commands.

■ Avalon Streaming (Avalon-ST)—for point-to-point connections between
Avalon-ST sources and sinks that stream data.

■ Tristate conduits—for a tristate conduit controller in your Qsys system to tristate
devices on your PCB.

■ Interrupts—for point-to-point connections between interrupt senders that
generate interrupts and interrupt receivers that service interrupts.

■ Clocks—for point-to-point connections between clock sources and clock sinks.

■ Resets—for point-to-point connections between reset sources and reset sinks.

■ Conduits—for point-to-point connections between conduit interfaces. You can use
the conduit interface type to define an arbitrary collection of signals that do not fit
into any of the other Avalon interface categories.

A single component can use as many of these interface types as it requires. For
example, a component might provide an Avalon-ST source port for high-throughput
data, in addition to an Avalon-MM slave for control. All components must include the
clock interface type.

Component Types
You can build more flexibility into your components by writing a generation callback
routine which generates your HDL programmatically. The following sections
describe the different component types.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.altera.com/products/ip/ipm-index.html

Chapter 6: Creating Qsys Components 6–3
Qsys Components
Static HDL Components

A static _hw.tcl file defines the top-level HDL file and associated component files. The
HDL that describes a static component is created by the component author and is not
changed by users of the component. HDL parameters are available when instantiating
the component.

Generated HDL Components

Alternatively, you can also define a component whose HDL is generated based on the
value of its declared parameters. These components use a custom callback to generate
the HDL for each instance of the component.

For example, you could write a custom callback to include a control and status
interface based on the value of a status interface parameter.The callback overcomes a
limitation of HDL languages which do not allow runtime parameters.

Composed HDL Components

Composed components are constructed from combinations of other components.You
can use a compose callback to connect and parameterize a composed component.
Composed components can static or generated.

f For more information about defining your own generation or compose callback
procedure, refer to the “Generation Callback” and “Compose Callback” sections in
the Component Interface Tcl Reference chapter in volume 1 of the Quartus II Handbook.

Component Structure
Components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. You can author an _hw.tcl file by
creating a text file manually or using the component editor. This section describes the
structure of _hw.tcl components and how they are stored.

Component Description File (_hw.tcl)
Component files include the following elements:

■ A component description file, which is a Tcl file with file name of the form <entity
name>_hw.tcl.

■ SystemVerilog, Verilog HDL, or VHDL files that define the custom component.

The _hw.tcl file defines everything that Qsys requires about the name and location of
component design files, including files for simulation and constraint files.

The component editor simplifies the process of creating components and
automatically saves components in the _hw.tcl format. You can use these Tcl files as a
template for editing components by hand. When you edit a previously saved _hw.tcl
file, Qsys automatically backs up the earlier version as _hw.tcl~.

For more information about _hw.tcl file details, refer to the Component Interface Tcl
Reference chapter in volume 1 of the Quartus II Handbook.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

6–4 Chapter 6: Creating Qsys Components
Qsys Components
Component File Organization
A typical component uses the following directory structure. The precise names of the
directories are not significant.

■ <component_directory>/

■ <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file.

■ <component name>_hw.tcl—the component description file.

■ <component name>.v or .vhd—the HDL file that contains the top-level module.

■ <component_name>_sw.tcl—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

■ <software>/—a directory that contains software drivers or libraries related to
the component, if any. Altera recommends that the software directory be
subdirectory of the directory that contains the _hw.tcl file.

f For information on writing a device driver or software package suitable for
use with the Nios II processor, refer to the Hardware Abstraction Layer
section of the Nios II Software Developer’s Handbook. The Nios II Software Build
Tool Reference chapter of the Nios II Software Developer’s Handbook describes
the commands you can use in the Tcl script.

Component Versioning
You can create and maintain multiple versions of the same component using one of
the following options:

■ Define the module property version in your _hw.tcl file.

■ If multiple versions of the component are defined in your component libraries,
you can add a different the version of a component by right-clicking on the
component and selecting Add version <version_number>.

■ You can create an .ipx file in the same directory as your Qsys project to control the
search path for your project.

Component Search Path
Qsys searches for component files each time you open the tool. Qsys locates and
displays the list of available components in the Component Library. Qsys searches
the directories in the IP search path for the following component file types:

■ Hardware Component Description Files (_hw.tcl) files. Each _hw.tcl file defines a
single component.

■ IP Index (.ipx) files. Each file indexes a collection of available components, or a
reference to other directories to search.In general, .ipx files facilitate faster startup
for Qsys and other tools because fewer files need to be read and analyzed.

Qsys searches the directories recursively, while others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Creating Qsys Components 6–5
Qsys Components
■ $$PROJECT_DIR/*

■ $$PROJECT_DIR/ip/**/*

■ $QUARTUS_INSTALLDIR/../ip/**/*

Complete the following steps to extend the default search path by specifying
additional directories:

1. On the Tools menu click Options.

2. In the Category list, click IP Search Path.

3. Click Add.

4. Browse to locate additional directories and click Open to add them to your search
path.

1 These additional paths apply to all projects; that is, the paths are global to
the current version of Qsys. The search path is ultimately defined by the
file, <$QUARTUS_INSTALLDIR>/sopc_builder/bin/root_components.ipx.

Adding Components to the Library
Use one of the following methods to add components to the Component Library:

Copy to the IP Root Directory
The simplest method to add a new component is to copy your components into the
standard IP directory provided by Altera. This approach is useful in the following
situations:

■ You want to associate your components with a specific release of the Quartus II
software

■ You want to and have the same components available across multiple projects

Figure 6–1 illustrates this approach.

Figure 6–1. User Library Included In Subdirectory of $IP_ROOTDIR

.altera_components.ipx
<components>

.

 user_components

 component1

component2

<install_dir>

 quartus

 ip

altera

component1_hw.tcl
component1.v

component2_hw.tcl
component2.v

2

1

3

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

6–6 Chapter 6: Creating Qsys Components
Qsys Components
In Figure 6–1, the circled numbers identify three steps of the algorithm that Qsys
follows during initialization. These steps are explained in the following paragraphs.

1. Qsys recursively searches the <install_dir>/ip/ directory by default. It finds the
file in the altera subdirectory, which tells it about all of the Altera components.
altera_library.ipx includes listings for all components found in its subdirectories.
The recursive search stops when Qsys finds this .ipx file.

2. As part of its recursive search, Qsys also looks in the adjacent user_components
directory. Qsys finds the component1 directory, which contains
component1_hw.tcl. When Qsys finds that component, the recursive search stops
so that no components in subdirectories of component1 are found.

3. Qsys then searches in the adjacent component2 directory, which includes
component2_hw.tcl. If Qsys finds that component, the recursive search stops.

1 If you save your _hw.tcl file in the <install_dir>/ip/ directory, Qsys finds your _hw.tcl
file and stops. Qsys does not conduct the search just described.

Reference Components in an .ipx File
Alternatively, you can specify the search path in a user_components.ipx file under
<install_dir>/ip path. This method allows you to store components in a location that is
not linked to your Quartus II installation and to add a location that is independent of
the default search path. Figure 6–2 illustrates this approach.

The user_components.ipx file includes a single line of code redirecting Qsys to the
location of the user library. Example 6–1 shows the code for this redirection.

1 For both of these approaches, if you install a new version of the Quartus II software,
you must also repeat the steps to include your components.

Figure 6–2. Specifying A User .ipx directory

Example 6–1. Redirect to User Library

<library>
 <path path="<user_lib_dir>/user_ip/**/*" />

/<library>

altera_components.ipx
<components>

user_components.ipx
 user_components

<install_dir>

 ip

altera

quartus

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 6: Creating Qsys Components 6–7
Qsys Components
You can verify that components are available and also decrease the time it takes to
launch Qsys by using the utilities, ip-catalog and ip-make-ipx commands. The
following sections describe these commands.

ip–catalog

This commands displays the a catalog of available components in either plain text or
XML format.

Usage
ip-catalog --project-dir[=<directory>] --name[=<value>]
--verbose[=<true|false>] --xml[=<true|false>] --help

Options

■ --project-dir[=<directory>]. Optional. Components can be found in
certain locations relative to the project, if any. By default, the current directory,
‘.’ is used. To exclude any project directory, use “.

■ --name[=<value>]. Optional. This argument provides a pattern to filter the
names of the components found. To show all components, use a * or ‘ ‘. By
default, all components are shown. The argument is not case sensitive.

■ --verbose[=<true|false>]. Optional. When true, reports the progress of
the command.

■ --xml[=<true|false>]. Optional. When true, prints the output in XML
format instead of a line- and colon-delimited format.

■ --help. Shows help for the ip-catalog command.

ip-make-ipx

This command creates an index file for the directory specified. It returns a 0 for
successful completion and a non-zero value for failure.

Usage
ip-make-ipx --source-directory[=<directory>] --output[=<file>]
--relative-vars[=<value>] --thorough-descent
--message-before[=<value>] --message-after[=<value>] --helpQsy

s B
eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

6–8 Chapter 6: Creating Qsys Components
Qsys Components
Options

■ --source-directory=<directory>. Optional. The directory to index. The
default directory is “.”. You can also provide a comma separated list of
directories.

■ --output[=<file>]. Optional. The name of the file to generate. The default
name is ./components.ipx.

■ --relative-vars[=<value>]. Optional. Causes the output file to include
references relative to the specified variable or variables where possible. You
can specify multiple variables as a comma-separated list.

■ --thorough-descent[=<true|false>]. Optional. If set, a component or .ipx
file in a directory does not prevent subdirectories from being searched.

■ --message-before[=<value>]. Optional. A message to print to stdout when
indexing begins

■ --message-after[=<value>]. Optional. A message to print to stdout when
indexing completes

■ --help. Show help for this command

Understanding IPX File Syntax
An .ipx file is an XML file whose top-level element is <library> with a <path>
subelements are <path> and <component>.

A <path> element contains a single attribute, also called path and may reference a
directory with a wildcard, (*), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

■ .ipx—additional index files

■ _hw.tcl—Qsys component definitions

■ _sw.tcl—Nios II board support package (BSP) software component definitions

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 6: Creating Qsys Components 6–9
Component Editor
A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
Qsys is less than if Qsys must discover the files in a directory. Example 6–2 shows two
<component> elements. Note that the paths for file names are specified relative to the
.ipx file.

Component Editor
The Qsys component editor is a GUI that allows you to define a component and its
parameter editor GUI. You use the component editor to do the following:

■ Specify the SystemVerilog, Verilog HDL, or VHDL files that describe the modules
in your component, and simulation and constraint files

■ Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

■ Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

■ Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

■ Declare any parameters that alter the component structure or functionality, and
define a user interface to let users parameterize instances of the component.

After you define your component in the component editor the component is available
in the component library. The following sections explain how to use the component
editor.

Component Hardware Structure
The component editor allows you to define components with one or more interfaces.
For a description of the available interface types refer to “Component Interfaces” on
page 6–2. You can specify exported interfaces which appear at the top-level of the
Qsys system. You can connect exported interfaces to devices on the PCB or to other
Qsys subsystems in hierarchical designs.

You can also use the component editor to generate an early version of the _hw.tcl file
and then manually edit this file to complete the component definition.

Example 6–2. Component Elements

<library>
 <component
 name="A Qsys Component"
 displayName="Qsys FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component

name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

6–10 Chapter 6: Creating Qsys Components
Component Editor
Starting the Component Editor
To start the component editor in Qsys, on the File menu, click New Component.
When the component editor starts, the Introduction tab describes how to use the
component editor.

1 Each tab in the component editor provides on-screen information that describes how
to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Component Editor (Qsys) in Quartus II Help for
additional information about the component editor.

HDL Files Tab
The HDL Files tab allows you to create an Qsys component from existing Verilog
HDL or VHDL files, or to create an HDL template in either Verilog HDL or VHDL for
a Qsys component by first specifying its interfaces. The following sections describe
both the bottom-up and top-down approaches to component design.

Bottom-Up Component Design
You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim® in the same order as they appear in the HDL Files table.

You can also use the component editor to define the interface to components outside
the Qsys system. In this case, you do not provide HDL files. Instead, you use the
component editor to interactively define the hardware interface.

After you specify an HDL file, the Quartus II Analysis and Elaboration analyzes
signals and parameters declared for all modules in the top-level file. After successful
analysis, the component editor Signals tab lists all design modules in the Top Level
Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Simulation files are passed
to ModelSim for simulation. To add a synthesis-only file, turn off the Sim file option.

c The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_com_new_comp.htm

Chapter 6: Creating Qsys Components 6–11
Component Editor
Top-Down Component Design
The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have created the component’s HDL code, you can add other files that are
required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

Signals Tab
You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

The Interface list also allows creation of a new interface so that you can assign a
signal to a different interface without first switching to the Interfaces tab. Each signal
must belong to an interface and be assigned a legal signal type for that interface. In
addition to Avalon-MM and Avalon-ST interfaces, components may have clock,
interrupt, reset, tristate conduit and conduit interfaces.

Naming Signals for Automatic Type and Interface Recognition
The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal
type>[_n]

For any value of <interface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6–1 lists the valid values for
<interface_type>.

Table 6–1. Valid Values for <Interface Type> (Part 1 of 2)

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

aso Avalon-ST source

asi Avalon-ST sink

cso Clock output

csi Clock input

coe Conduit

inr Interrupt receiver

ins Interrupt sender

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

6–12 Chapter 6: Creating Qsys Components
Component Editor
Example 6–3 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Templates for Interfaces to External Logic
You can use the Create HDL Template command to generate an HDL template for the
component. Then, you connect these signals outside of the Qsys system. If your
component uses an Avalon interface to interface outside of the Qsys system, you can
use the Templates menu in the component editor to add typical interface signals to
your signal list. There are templates for the following interfaces:

■ Avalon-MM Slave

■ Avalon-MM Slave with Interrupt

■ Avalon-MM Master

■ Avalon-MM Master with Interrupt

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

rsi Reset sink

rso Reset source

tcm Tristate conduit master

tcs Tristate conduit slave

Example 6–3. Verilog HDL Module With Automatically Recognized Signal Names

module my_slave_irq_component (

csi_clockreset_clk; // clock interface
csi_clockreset_reset_n;//reset clock interface

avs_s1_address;//s1 slave interface
avs_s1_read; //s1 slave interface
avs_s1_write; //s1 slave interface
avs_s1_writedata; //s1 slave interface
avs_s1_readdata; //s1 slave interface
ins_irq0_irq; //irq0 interrupt sender interface
);

input csi_clockreset_clk;
input csi_clockreset_reset_n;
input [7:0] avs_s1_address;
input avs_s1_read;
input avs_s1_write;
input [31:0] avs_s1_writedata;
output wire[31:0] avs_s1_readdata;
output wire ins_irq0_irq;

/* Insert your logic here */

endmodule

Table 6–1. Valid Values for <Interface Type> (Part 2 of 2)

Value Meaning

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 6: Creating Qsys Components 6–13
Component Editor
■ Avalon-ST Source

■ Avalon-ST Sink

■ Nios Custom Instruction Slave

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

Interfaces Tab
The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the Qsys connection panel. The interface name is also used to uniquely
identify any signals that are ports on the top-level Qsys system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specify. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

■ Avalon-MM

■ Avalon-ST

■ Interrupts

HDL Parameters Tab
You specify the parameters that users of your component can set to configure your
component on the HDL Parameters tab. The Parameters table included on this tab
displays Verilog HDL parameters or VHDL generics that you declared in the top-
level HDL module. Using the Parameters table, you can specify the following
information about each parameter:

■ Default value

■ Whether or not it is user-editable

■ Type

■ Group

■ Tool tip

Click Preview the GUI at any time to see how the component GUI appears.

The following rules apply to HDL parameters exposed via the component parameter
editor:

■ Editable parameters cannot contain computed expressions.

■ If a parameter <n> defines the width of a signal, the signal width must be of the
form <n-1>:0.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

6–14 Chapter 6: Creating Qsys Components
Component Editor
■ When a VHDL component is used in a Verilog HDL Qsys system, or a Verilog
HDL component is used in a VHDL Qsys system, numeric parameters must be
32-bit decimal integers. When passing other numeric parameter types,
unpredictable results occur. (The interconnect fabric is written in Verilog HDL and
SystemVerilog.)

f Refer to Component Interface Tcl Reference chapter in volume 1 of the Quartus II
Handbook for detailed information about creating and displaying parameters using Tcl
scripts.

Library Info
The Library Info tab allows you to specify the following information about your
component:

■ Name—Specifies the component name. When you save your component, the
component editor saves your component to the string that you specified
concatenated to the _hw.tcl suffix, for example, my_component_hw.tcl

■ Display Name—Specifies the user-visible name for this component in Qsys.

■ Version—Specifies the version number of the component.

■ Group—Specifies which group in Qsys displays your component in the list of
available components. If you enter a previously unused group name, Qsys creates
a new group by that name.

■ Description—Allows you to describe the component.

■ Created By—Allows you to specify the author of the component.

■ Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

■ Documentation—Allows you to specify multiple documents that pertain to your
component. You can use this property to specify a file on the internet or in your
company’s file system. The specified file can be in either .html or .pdf format. To
specify an internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example: file:////company_server/datasheets/
my_memory_controller.pdf. For handwritten _hw.tcl files, you can specify
documentation using the add_documentation_link Tcl command. shows how to
specifiy documentation that is included in the component directory.

f For more information refer to the add_documentation_link command in the
Component Tcl Interface Reference.

Example 6–4. Documentation Link for Documentation Stored with Component HDL Files

set_module_property DATASHEET_URL
"file:/[get_module_property MODULE_DIRECTORY]Modular_SGDMA_Dispatcher_Core_UG.pdf"

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

Chapter 6: Creating Qsys Components 6–15
Component Editor
Saving a Component
You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

1 Altera recommends that you store _hw.tcl files for a project in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

Editing a Component
After you save a component and exit the component editor, you can edit it in Qsys. To
edit a component, right-click it in the list of available components on the System
Contents tab and click Edit Component. The component editor appears.

1 You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Registering Software Assignments
You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6–5 shows
a typical Tcl API script:

The assignments are added to the Qsys information file (.sopcinfo), available for use
for downstream components.

f For more information about these software assignments, refer to the Publishing
Component Information to Embedded Software chapter in the Nios II software
Developer’s Handbook.

Component Parameterization
To edit component instance parameters, select a component in the System Contents
tab of Qsys and click Edit.

Example 6–5. Typical Software Assignment with Tcl API Scripting

set_module_assignment name value
set_interface_assignment name value

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

6–16 Chapter 6: Creating Qsys Components
Document Revision History
Document Revision History
Table 6–2 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 6–2. Document Revision History

Date Version Changes

December 2010 10.1.0 Initial release.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51021-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51021-10.1.0
7. Qsys Interconnect
c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

The Qsys interconnect is a high-bandwidth structure for connecting components that
use Avalon® interfaces. This chapter describes the Qsys interconnect. The
interconnect uses algorithmic transformations to insert interconnect components in
implementing the Qsys system. This chapter also provides brief descriptions of the
Qsys interconnect components that implement the interconnect. All Qsys interconnect
components are available to be used in your own designs. The Qsys interconnect
connects the following Avalon interface types:

■ Avalon-ST—connects Avalon-ST sources and sinks that stream unidirectional
data.

■ Avalon-MM—connects Avalon-MM master and slaves that communicate using
read and write commands.

■ Tristate conduits— connects tristate conduit controllers in the FPGA to tristate
devices on the PCB using a three-signal encoding of tristate information.

■ Interrupts—connects interrupt senders and the interrupt receivers of the
component that service them.

■ Clocks—connects clock sources and clock sinks.

■ Resets—connects reset sources and reset sinks.

■ Conduits—connects point-to-point conduit interfaces. You can use the conduit
interface type to define an arbitrary collection of signals that does not fit into any
of the other Avalon interface categories.

f For more information about the Avalon interfaces, refer to the Avalon Interface
Specifications.

For Avalon-ST interfaces, Qsys provides adapters that allow flexibility in creating
point-to-point connections. For example, the Avalon-ST data format adapter allows
you to connect streaming interfaces of different widths.

Qsy
s B

eta
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

https://www.altera.com/servlets/subscriptions/alert?id=QII51021
http://www.altera.com/common/legal.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

7–2 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
For Avalon-MM interfaces, the implementation of the Qsys interconnect is based on a
network-on-chip architecture. Transactions between masters and slaves are
encapsulated in packets and transmitted on a network that carries the packets
between masters and slaves. The master command network transports read and write
command packets from master interfaces to slave interfaces. The slave response
network transports read response packets from slave interfaces to master interfaces.

This chapter includes the following sections:

■ “Avalon-MM Interface Components” on page 7–2

■ “Avalon-ST Interfaces” on page 7–18

■ “Tristate Conduit Components” on page 7–21

■ “Interrupt Interfaces” on page 7–27

■ “Clock Interfaces” on page 7–29

■ “Reset Interfaces” on page 7–29

■ “Conduits” on page 7–30

Avalon-MM Interface Components
Qsys interconnect for memory-mapped interfaces connects Avalon-MM master and
slave interfaces. It supports the following items:

■ Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

■ Master and slaves of different data widths.

■ Components operating in different clock domains.

■ Components with different interface properties and signals. Qsys can adapt the
component interfaces so that interfaces with the following types differences can be
connected:

■ Interfaces that use active-high and active-low signalling

■ Interfaces with different burst characteristics

■ Interfaces with different latencies

■ Interfaces with different port signatures

Figure 7–1 is a simplified representation of the Qsys interconnect for an Avalon-MM
system with multiple masters. As this figure illustrates, the underlying
implementation of the master and slave connections uses a network topology. When
you generate a Qsys system, Qsys implements the interconnect connectivity that you
specified, replacing the point-to-point connections you created in the Connections
column with a network topology.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–3
Avalon-MM Interface Components
Figure 7–1. Qsys interconnect—Example System

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction
Memory

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

TCn Tristate Conduit

Flash
Memory

Chip

S

SSS

Ethernet
MAC/PHY

Chip

S

Response Switch
(Avalon-ST)

Tristate Conduit
 Pin Sharer and Bridge

Interconnect

Qsys Design
in Altera FPGA

PCB

Command Switch
(Avalon-ST)

TCn TCn

Master Network Interface

Slave Network Interface

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–4 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
Figure 7–2 shows the format of the Qsys packet that encapsulates the Avalon-MM
master commands and Avalon-MM slave responses.

Table 7–1 describes the fields of Qsys packet.

Figure 7–2. Qsys Packet Format

Source ID
Destination

ID
Burstwrap ProtectionByte count

Byte
enable

DataAddress
 Transaction

type

Table 7–1. Qsys Packet Format

Field Description

Address Specifies the byte address for the lowest byte in the current cycle.

Transaction_type Indicates the transaction type. Table 7–2 lists the 5 transaction types.

Data
For command packets, carries the data to be written. For read response packets, carries the
data that has been read.

Byteenable

Specifies which symbol of the data are valid. The following values are legal for Avalon-MM
master and slaves transferring 32-bit data:

■ 1111 writes full 32 bits

■ 0011 writes lower 2 bytes

■ 1100 writes upper 2 bytes

■ 0001 writes byte 0 only

■ 0010 writes byte 1 only

■ 0100 writes byte 2 only

■ 1000 writes byte 3 only

Source_ID The ID of the master or slave that initiated the command or response.

Destination_ID The ID master or slave to which the command or response is directed.

Burstwrap

The burstwrap value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<n>-1. The following types are defined:

■ Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value. When the
burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write to
addresses 0x1C, 0x0, 0x4, 0x8, and 0xC. For a burst wrap boundary of size <m>,
Burstwrap = <m> - 1, or for this case Burstwrap = (32 - 1) = 31 which is 25 -1.

■ Sequential–Sequential bursts increment the address for each transfer in the burst. For
sequential bursts, the Burstwrap field is set to all 1s. For example, with a 6-bit
Burstwrap field, the value for a sequential burst is 6'b111111 or 63, which is 26 - 1.

In version 10.1 of the Quartus II software, adaptation logic sets a hardwired value for the
burstwrap field, according the declared master burst properties. For example, for a master
which declares sequential bursting, the burstwrap field is set to all 1-bits. Similarly, masters
that declare linewrap burst have their burstwrap field set to the appropriate constant value.

Protection
Access level protection. When 0, the packet has normal access. When 1, the packet has
privileged access. For Avalon-MM interfaces, this field maps directly to the privileged access
signal, which allows an Avalon-MM master to write to an on-chip memory ROM instance.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–5
Avalon-MM Interface Components
Table 7–2 lists the transaction type encodings.

The fields of the Qsys packet format are variable length to minimize the resources
used. However, if the majority of components in a design have a single data width,
for example 32 bits, and a single component has a data width of 64 bits, Qsys inserts a
width adapter to accommodate 64-bit transfers.

Component Interconnect Domains
A group of connected Avalon-MM masters and slaves is called an interconnect domain.
The components in a single interconnect domain share the same packet format. The
following two examples illustrate this point.

Table 7–2. Transaction Types

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ
For read transactions, specifies whether or not the read command
can be expressed in a single cycle, that is whether or not it has all
byteenables asserted on every cycle.

2 PKT_TRANS_WRITE: When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK
When asserted, indciates arbitration is locked. Applies to write
packets.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–6 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
Using Two Separate Domains
Figure 7–3 illustrates the use of two separate domains. The first domain includes two,
64-bit masters connected to two, 64-bit slaves. The second domain includes one, 16-bit
master connected to two, 16-bit slaves. Because the interfaces in Domain 1 and
Domain 2 do not share any connections, Qsys can optimize the packet format for the
two separate domains. In this example, the first domain uses a 64-bit data width and
the second domain uses 16-bit data.

Using One Domain with Width Adaptation
Figure 7–4 illustrates a Qsys system that includes two, 64-bit masters that access two,
64-bit slaves. It also includes one, 16-bit Master, accessing two, 16-bit slaves and one,
64-bit slave. Because one of the masters connects to all of the slaves, Qsys creates a
single domain with two packet formats: one with 64-bit data and one with 16-bit data.
A width adapter manages accesses between the 16-bit master and 64-bit slaves.

Figure 7–3. Two Domains

Figure 7–4. One Domain with 1:4 and 1:4 Width Adapters

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master

M

Component 1 Component 2

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master
M

Single Domain with 1:4 and 4:1 Width Adapters

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Master
M

64-bit
Avalon-MM

Master
M

4:1 1:4

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–7
Avalon-MM Interface Components
Qsys Transformations
Figure 7–5 provides a more detailed view of the transformation that occurs when you
generate a Qsys system with Avalon-MM master and slave components. As this figure
illustrates, the Avalon-MM master and slave components connect to network
interface modules that encapsulate the transaction in Avalon ST packets. The
Avalon-MM interfaces have no information about the encapsulation or the function of
the layer transporting the packets and simply operate in accordance with Avalon-MM
protocol, using the read and write signals and transfers as defined in the Avalon
Interface Specifications.

Master Command and Slave Response Networks
Many Qsys components implement the Qsys interconnect and network interfaces
represented by the Avalon-ST Network (Command) and Avalon-ST Network
(Response) blocks in Figure 7–5. All of these Qsys components are provided by Altera
and included in the Component Library available in Qsys. They are available for you
to be used stand-alone in your designs. For example, you may want to include the
Avalon-ST pipeline stage in your datapath to pipeline a streaming connection, thus
increasing the clock frequency of your design.

The subsequent sections describe the components that are part of the Avalon-ST
master command and Avalon-ST slave response network, including the following
components:

■ Merlin Master Translator

■ Merlin Master Agent

■ Merlin Router

Figure 7–5. Qsys Transform from Avalon-MM to Avalon-ST

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM Avalon-MM

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–8 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
■ Merlin Traffic Limiter

■ Merlin Slave Translator

■ Merlin Slave Agent

Figure 7–6 provides a block diagram for the Master command network showing the
Merlin master translator, agent, router and limiter.

Merlin Master Translator
The Merlin master translator interfaces to an Avalon-MM master component. It
converts the Avalon-MM master interface to a simpler representation that the Qsys
network uses. It performs the following functions:

■ Translates active low signalling to active high signalling

■ Inserts wait states to prevent an Avalon-MM master from reading invalid data

■ Translates word and symbol addresses

■ Translates word and symbol burst counts

■ Handles burst count timing and sequencing

■ Removes unnecessary address bits

Merlin Master Agent
The agent translates Avalon-MM master transactions into Qsys command packets
and translates the Qsys Avalon-MM slave response packets into Avalon-MM
responses.

Figure 7–6. Qsys Components in the Master Command Network

Master
Interface

Master Network Interface

Translator Agent

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–9
Avalon-MM Interface Components
Merlin Router
The router routes command packets from the master to the slave and response
packets from the slave to the master. For master command packets, the router uses the
Avalon-MM address to set the Destination_ID and Avalon-ST channel. For the slave
response packet, the router uses the Destination_ID to set the Avalon-ST channel.
The demultliplexers use the Avalon-ST channel to route the packet to the correct
destination.

Merlin Traffic Limiter
The limiter ensuresthe responses arrive in order. It prevents any command from
being sent if the response could conflict with the response for a command that has
already been issued. By guaranteeing in-order responses, the limiter simplifies the
response network.

Merlin Slave Translator
The Merlin slave translator interfaces to an Avalon-MM slave component as
Figure 7–7 illustrates. It converts the Avalon-MM slave interface to a simplified
representation that the Qsys network uses. An Avalon-MM Merlin slave translator
performs the following functions:

■ Drives the begintransfer, beginbursttransfer, and writebyteenable signals

■ Supports Avalon-MM slaves that operate using fixed timing and or slaves that use
the readdatavalid signal to identify valid data

■ Translates the read, write, and chipselect signals into the representation that the
Avalon-ST slave response network uses

■ Converts active low signals to active high signals

■ Translates word and symbol addresses and burstcounts

■ Handles burstcount timing and sequencing

■ Removes unnecessary address bits

Figure 7–7 shows the Qsys components that comprise the slave response network.

Figure 7–7. Qsys Components in the Slave Response Network

Slave
Interface

Slave Network Interface

Agent Translator
waitrequest

overflow error

command

response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–10 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
Merlin Slave Agent
The agent accepts command packets, and issues the resulting transactions to the
Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores information about
pending transactions. The size of this FIFO is the maximum number of pending
responses that you specify when creating the slave component.

The agent also backpressures the Avalon-MM master command interface when the
FIFO is full if the slave component includes the waitrequest signal.

Arbitration
When multiple masters contend for access to a slave, Qsys automatically inserts
arbitration which grants access in fairness-based, round-robin order. In a
fairness-based arbitration scheme, each master has an integer value of transfer shares
with respect to a slave. One share represents permission to perform one transfer. The
default arbitration sheme is equal share round-robin granting equal, sequential access
to all requesting masters. You can change the arbitration scheme to weighted round
robin by specifying a relative number of arbitration shares to the masters that access a
particular slave. To display arbitration settings, on the View menu, click Show
Arbitration.

Figure 7–8 illustrates the arbitration shares.

Figure 7–8. Arbitration Settings on the System Contents Tab

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–11
Avalon-MM Interface Components
Arbitration Examples
Figure 7–9 illustrates the timing for two Avalon-MM masters continuously accessing a
single Avalon-MM slave to perform back-to-back transfers. Master 1 has three shares
and Master 2 has four shares. The Merlin arbiter grants Master 1 access for three
transfers, then Master 2 for four transfers. This cycle repeats indefinitely.

If a master stops requesting transfers before it exhausts its shares, it forfeits all of its
remaining shares, and the Merlin arbiter grants access to another requesting master as
Figure 7–10 illustrates. After completing one transfer, Master 2 stops requesting for
one clock cycle. As a result, the arbiter grants access back to Master 1, which gets three
shares.

Merlin Arbiter
The input to the Merlin arbiter is the Avalon-MM master command packet for all
masters requesting access to the a particular slave. The arbiter outputs the channel
number for the selected master. This channel number controls the output of a
multiplexer that selects slave device. Figure 7–11 illustrates this logic.

Figure 7–9. Arbitration of Continuous Transfer Requests from Two Masters

Figure 7–10. Arbitration of Two Masters with a Gap in Transfer Requests

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–12 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
In Figure 7–11, four Avalon-MM masters connect to four Avalon-MM slaves. In each
cycle, an arbiter positioned in front of each Avalon-MM slave, selects among the
requesting the Avalon-MM masters.

If you specifed a Max Additional Latency parameter greater than zero on the Qsys
Project Settings tab, the output of the arbiter is registered. Registering this output
reduces the amount of combinational logic between the master and fabric, increasing
the fMAX of the system.

f For more information about the Max Additional Latency parameter refer to the
“Project Settings” section in the Creating a System with Qsys chapter in volume 1 of the
Quartus II Handbook.

Figure 7–11. Arbitration Logic

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected requestQsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera/com/literature/hb/qts/qsys_intro.pdf

Chapter 7: Qsys Interconnect 7–13
Avalon-MM Interface Components
Interconnect Pipelining
If you set the Max Additional Latency parameter to a value greater than 0 on the
Project Settings tab, Qsys automatically inserts Avalon-ST pipeline stages when you
generate your design. The pipeline stages increase the fMAX of your design by
reducing the combinational logic depth. The cost is additional latency and logic.

Figure 7–12 shows the placement of up to four potential pipeline stages inserted by
Qsys in the following locations:

■ Before the input to the demultiplexer

■ At the output of the multiplexer

■ Between the arbiter and the multiplexer

■ At the outputs of the demultiplexer

■ Please add an additional paragraph:

1 The insertion of pipeline stages depends upon the existence of certain interconnect
components. For example, in a single-slave system, no multiplexer exists; therefore
multiplexer pipelining does not occur. In an extreme case, of a single-master to
single-slave system, no pipelining occurs, regardless of the value of Max Additional
Latency.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–14 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
Additional Qsys Interconnect Components
The following sections describe additional components used by the Qsys
interconnect. All of these components are in the Qsys Component Library for use in
your designs.

■ “Clock Bridge” on page 7–15

■ “Avalon-MM Clock Crossing Bridge (Qsys)” on page 7–15

■ “Avalon-MM Pipeline Bridge (Qsys)” on page 7–15

■ “Merlin Width Adapter” on page 7–16

Figure 7–12. Pipeline Placement in Arbitration Logic

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–15
Avalon-MM Interface Components
Clock Bridge
The clock bridge allows you to route clocks between Qsys subsystems. You can use
this bridge to connect a single clock source to the input clocks of multiple Qsys
subsystems. Figure 7–13 illustrates the use of this bridge.

Avalon-MM Clock Crossing Bridge (Qsys)
The Avalon-MM clock crossing bridge transfers Avalon-MM commands and
responses between asynchronous clock domains. It uses asynchronous FIFOs to
implement the clock crossing logic. The Avalon-MM clock crossing bridge has a
number of parameters, including parameters to control the depth of the
synchronization FIFO in both the master and slave clock domains.

1 The Avalon-MM clock clocking bridge (Qsys) core is implemented to work with the
Qsys interconnect. The legacy Avalon-MM clock crossing bridge core is available for
SOPC Builder systems. If you port an SOPC Builder design that includes the
Avalon-MM clock crossing bridge to Qsys, Qsys automatically changes the older
version to the Qsys version.

Avalon-MM Pipeline Bridge (Qsys)
The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command
and response paths. It accepts commands on its Avalon-MM slave port and
propagates them to its Avalon-MM master port. It provides separate parameters to
turn on pipelining in the command and response networks.

Figure 7–13. Clock Bridge

Clock Bridge

CSrc

CSnk

 PIO

 Export Export

external clock from PCB external clock from PCB

S

 DMA

M MS

 Nios II
Processor

Qsys Subsystem

Qsys Subsystem

Dual Port
On-Chip Memory

SS M M

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–16 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components
Because you can turn the pipelining feature of this bridge off, you can also use the
Avalon-MM bridge to export a single Avalon-MM slave interface that can used to
control multiple Avalon-MM slave devices. In this configuration, it transfers
commands received on its Avalon-MM slave interface to its Avalon-MM master port.
Figure 7–14 illustrates its use.

Because the Avalon-MM slave interface is exported to the pins of the device, having a
single Avalon-MM slave port, rather than separate ports for each Avalon-MM slave
device, reduces the pin count of the FPGA.

The Avalon-MM pipeline bridge (Qsys) is implemented to work with the Qsys
interconnect. The older Avalon-MM pipeline bridge is available for SOPC Builder
systems. If you upgrade from SOPC Builder to Qsys, Qsys automatically replaces the
bridge.

Merlin Width Adapter
The Merlin width adapter converts between Avalon-MM master and slaves with
different data and byteenable widths. This adapter is used in the Avalon-ST domain
and operates with information contained in the packet format illustrated Figure 7–2
on page 7–4. It accepts packets on its sink interface with one data width and produces
output packets on its source interface with a different data width. The ratio of the
wider data width to the narrower width must be a power of two, such as 4:1, 8:1, and
16:1. This adapter assumes that the field ordering of the input and output packets is
the same, with the only difference being the width of the data and accompanying byte
enable signals.

Figure 7–14. Avalon Bridge

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr

XAUI PHY

M

Avalon-MM
Pipeline

Bridge (Qsys)

S

PMA
Ch
Cntl

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–17
Avalon-MM Interface Components
When the width adapter converts from a wide data to a narrow data, the narrower
data is transmitted over several beats. The first output beat contains the lowest
addressed segment of the input data and byte enables. Figure 7–15 illustrates the
timing for a 4:1 width adapter.

When the width adapter converts from narrow data to wide data, each input beat’s
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

Burst Transfers
Avalon-MM burst transactions grant a master uninterrupted access to an Avalon-MM
slave for a specified number of transfers. The master specifies the number of transfers
when it initiates the burst using the burstcount signal. Once a burst begins between a
master-slave pair, arbiter logic is locked until the burst completes. For burst masters,
the size of the burst is the number of cycles that the master has access to the slave, and
the selected arbitration shares have no effect.

Merlin Burst Adapter
The Qsys interconnect uses the Qsys Merlin burst adapter to accommodate the burst
capabilities of each interface in the system, including interfaces that do not support
burst transfers. The maximum burst length for each interface is a property of the
component interface and is independent of other interfaces in the system. Therefore, a
particular master might be capable of initiating a burst longer than a slave’s
maximum supported burst length. In this case, the burst adapter translates the large
master burst into smaller bursts, or into individual slave transfers if the slave does not
support bursting. Until the master completes the burst, the arbiter logic prevents
other masters from accessing the target slave. For example, if a master initiates a burst
of 16 transfers to a slave with maximum burst length of 8, the burst adapter initiates 2
bursts of length 8 to the slave.

Avalon-MM masters always issue addresses that are aligned to the size of the
transfer. However, in some cases, when a narrow-to-wide width adaptation is used,
the resulting address may be unaligned. In the case of unaligned addresses, the burst
adapter issues the maximum possible sized bursts, with appropriate byte enables, to
bring the burst-in-progress up to an aligned slave address. Then, it completes the
burst on aligned addresses.

Figure 7–15. Width Adapter Timing for a 4:1 Adapter

08

08 09

AABBCCDD

C

BB AA

clock

Input to
Adapter

Output of
Adapter

addr_in[7:0]

addr_out[7:0]

wide_data[31:0]

byteenable_in[3:0]

narrow_data[7:0]

write

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–18 Chapter 7: Qsys Interconnect
Avalon-ST Interfaces
Burst Types
The burst adapter supports variable wrap or sequential burst types to accommodate
the different properties of the Avalon-MM masters. Refer to Table 7–1 on page 7–4 for
definitions of these burst types. Some bursting masters can issue more than one burst
type.

Avalon-ST Interfaces
The interconnect for Avalon-ST connects high-bandwidth, low-latency components
that use the Avalon-ST interface. This interconnect creates datapaths for
unidirectional traffic including multichannel streams, packets, and DSP data. The
Avalon-ST interconnect is flexible and can be used to implement on-chip interfaces for
industry standard telecommunications and data communications cores, such as
Ethernet, Interlaken, and video. In all cases, you can define bus widths, packets, and
error conditions.

You specify how Avalon-ST source and sink ports connect in Qsys. If your source and
sink interfaces have different properties, selecting Insert Avalon-ST adapters on the
XXXX menu Qsys inserts the necessary adapters which are visible in the System
Contents tab.

Avalon-ST Examples
Figure 7–16 illustrates the simplest system example with an Avalon-ST connection
between the source and sink. This source-sink pair includes only the data signal. The
sink must be able to receive data as soon as the source interface comes out of reset.

Figure 7–17 illustrates a more extensive interface that includes signals indicating the
start and end of packets, channel numbers, error conditions, and back pressure.

All data transfers using Avalon-ST interconnect occur synchronously to the rising
edge of the associated clock interface. Throughput and frequency of a system depends
on the components and how they are connected.

Figure 7–16. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Figure 7–17. Avalon Streaming Interface for Packet Data

Data Source Data Sinkdata

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–19
Avalon-ST Interfaces
f For details about the Avalon-ST interface protocol, refer to the Avalon Interface
Specification.

Avalon-ST Components
The Qsys Component Library includes a number of Avalon-ST components that you
can use to create datapaths, including datapaths whose input and output streams
have different properties. Generated systems that include Avalon-MM master and
slave components may also use these Avalon-ST components because the generation
process creates an interconnect whose structure resembles a network topology as
“Qsys Transformations” on page 7–7 describes. The following sections introduce the
Avalon-ST components.

Avalon-ST Handshake Clock Crosser
The Avalon-ST handshake clock crossing adapter connects streams that operate at
different frequencies. This adapter uses a simple hand-shaking protocol to propagate
transfer control signals and responses across the clock boundary and responses in the
other direction. This methodology uses fewer FPGA resources because each transfer
is safely propagated to the target domain before the next transfer can begin. The
Avalon-ST handshake clock crosser is appropriate for lithotripsy connections because
the handshake incurs at least four cycles of round-trip latency for every read
command, limiting throughput.

You can use the parameter editor for the Avalon-ST handshake clock crosser to
specify parameter values. Among the parameters that you can specify are the data
width, whether or not to include packet support, and synchronizer depths.

Avalon-ST Pipeline Stage
The Avalon-ST pipeline stage optionally inserts a single pipeline (register) stage in the
Avalon-ST command and response datapaths. It receives data on its Avalon-ST sink
interfaces and drives it unchanged on its Avalon-ST source interface.

1 The Qsys Component Library also includes an Avalon-MM pipeline bridge whose
data interfaces use the Avalon-MM protocol, rather than the Avalon-ST protocol. Qsy

s B
eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–20 Chapter 7: Qsys Interconnect
Avalon-ST Interfaces
Merlin Multiplexer
The Merlin multiplexer accepts data on its Avalon-ST sink interface and multiplexes
the data for transmission on its Avalon-ST source interface. You can parameterize the
multiplexer to append channel information on the source to indicate which sink is
driving the source data. The multiplexer includes internal arbitration logic which
selects between inputs using a round-robin arbitration algorithm. Figure 7–18
illustrates the Avalon-ST multiplexer. Among the parameters that you can specify are
the option to use packet scheduling, which guarantees that the multiplexer only
changes inputs at the end of a packet.

Merlin Demultiplexer
The Merlin demultiplexer accepts channelized data on its sink interfaces, and
transmits the data on one of its source interfaces. The channel bits of the source stream
indicate which port the drives the output data. Figure 7–19 illustrates the Merlin
multiplexer. Among the parameters that you can specify are the number of output
ports and the width of the channel signal.

Avalon-ST and Avalon-MM Interfaces
The Avalon-ST and Avalon-MM interfaces are complementary. High bandwidth
components with streaming data typically use Avalon-ST interfaces for the high
throughput datapath. These components can also use Avalon-MM connection
interfaces to provide an access point for control. In contrast to the Avalon-MM
interconnect, which can be used to create a wide variety of topologies, the Avalon-ST
interconnect fabric always creates a point-to-point between a single data source and
data sink, as Figure 7–20 illustrates.

There are two connection pairs in this figure:

■ The data source in the Rx Interface transfers data to the data sink in the FIFO.

■ The data source in the FIFO transfers data to the Tx Interface data sink.

Figure 7–18. Merlin Multiplexer

Figure 7–19. Avalon-ST Demultiplexer

Snk

Snk

Src

Snk
Avalon-ST Source0

Avalon-ST Source

Avalon-ST Source2

Avalon-ST Source1

SnkAvalon-ST Source

Avalon-ST Source0

Avalon-ST Source2

Avalon-ST Source1

Src

Src

Src

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–21
Tristate Conduit Components
In Figure 7–20, the Avalon-MM interface allows a processor to access the data source,
FIFO or data sink to provide system control.

Tristate Conduit Components
The tristate conduit interface type allows you to design Qsys subsystems that connect
to tristate devices on your PCB. The following three components implement the
tristate conduit functionality:

■ Generic Tristate Controller

■ Tristate Conduit Pin Sharer

■ Tristate Conduit Bridge

You can use these components to implement pin sharing, convert between
unidirectional and bidirectional signals, and create tristate controllers for devices
whose interfaces can be described using the Avalon-MM signal types.

f For more information about the Avalon-MM signal types, refer to the Avalon
Memory-Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

Figure 7–20. Use of the Avalon-MM Avalon-ST Interfaces

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Avalon Memory Mapped Inteface

Data Plane Avalon Streaming Interface

RAM

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–22 Chapter 7: Qsys Interconnect
Tristate Conduit Components
Figure 7–21 illustrates the typical use of these components. This figure includes two
generic tristate conduit controllers. The first is customized to control a flash memory.
The second is customized to control an off-chip SSRAM. The tristate conduit pin
sharer multiplexes between these two controllers, and the tristate conduit bridge
converts between an onchip encoding of tristate signals and true bidirectional signals.

Figure 7–21. Tristate Conduit System to Control Off-Chip SRAM and Flash Devices

Altera FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tristate
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tristate
Conduit

Pin
Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tristate
Conduit
Bridge

Generic Tristate
Controller

Parameterized
for 8 MByte
x16 FlashS

S

TCS

TCM Tristate Conduit Master

Tristate Conduit Slave

Conduit Cn

TCS

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–23
Tristate Conduit Components
By default, the tristate conduit pin sharer and tristate conduit bridge presents byte
addresses. Each address location in many memory devices contains more than one
byte of data. In the example presented in Figure 7–21, the flash device operates on
16-bit words and must ignore the least-significant bit of the Avalon-MM address. The
SSRAM memory operates on 32-bit words and must ignore the two, low-order
memory bits. Because neither device requires a byte address, addr[0] is not routed on
the PCB. Figure 7–22 shows addr[0]as a unconnected.

In this example design, the flash device responds to address range
0 MBytes–8 MBytes-1. The SSRAM responds to address range 8 MBytes–10 MBytes-1.
The PCB schematic for the PCB connects addr[20:2] to addr[18:0] of the SSRAM
device because the SSRAM responds to 32-bit word address. The 8 MByte flash device
accesses 16-bit words; consequently, the schematic does not connect addr[0].
Chipselect signals select between the two devices.

1 If you create a custom tristate conduit master with word-aligned addresses, the
tristate conduit pin sharer does nothing to change or align the address signals.

Figure 7–22. Address Connections from Qsys System to PCB

PCB_Addr[21:0]

2 MByte SSRAM
(32-bit word)

2 MByte SSRAM
(32-bit word)

0

8 MBytes

16 MBytes

10 MBytes

PCB_Addr[19:1]

A[21:0]

8 MByte Flash
 (16-bit word)

8 MByte Flash
 (16-bit word)

UnusedA[18:0]

Tristate Conduit
Bridge

PCB

Qsys Address Map

Addr[22:1]
PCB_Addr[21:0]

Addr[0]

Addr[23] x

x

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–24 Chapter 7: Qsys Interconnect
Tristate Conduit Components
Figure 7–23 illustrates this example system in Qsys.

Generic Tristate Controller
The generic tristate controller provides a template for a controller that you can
parameterize to reflect the behavior of an off-chip device. The generic tristate
controller has many parameters that you can use to customize this component such as
the following examples:

■ The width of the address and data signals

■ The read and write wait times

■ The bus turnaround time

1 In calculating delays, the generic tristate controller chooses the larger of the
bus turnaround time and read latency. Turnaround time is measured from
the time that a command is accepted, not from the time that the previous
read returned data.

■ The data hold time

The generic tristate controller always includes the following interfaces:

■ Avalon-MM slave interface—This interface connects to an Avalon-MM master,
such as a Nios II processor.

■ Tristate conduit master—This interface usually connects to the tristate conduit
slave interface of the tristate conduit pin sharer.

■ Clock sink—The component’s clock reference. This interface must be connected to
a clock source.

■ Resets sink—This interface connects to a reset source interface.

In addition, the generic tristate controller includes optional reset source and interrupt
sender interfaces.

Figure 7–23. Tristate Conduit System in Qsys

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–25
Tristate Conduit Components
To work correctly with the Nios II SBT, the controller must include appropriate
module and interface assignments. You can include these assignments by adding
assignments using the Module Assignments and Avalon Connection Point
Assignments section of the parameter editor. Downstream embedded software tools
use these assignments.

f For more information about these configuration names, refer to the Publishing
Component Information to Embedded Software chapter in the Nios II Software Developer’s
Handbook.

1 Altera provides preset values for all configuration names for many commonly used
devices. Figure 7–24 illustrates the Module Assignments and Avalon Connection
Point Assignments for the Flash Memory Interface (CFI).

Table 7–3 lists configuration names that you can use to identify your components to
downstream embedded software tools.

Figure 7–24. Module and Avalon Connection Point Assignments

Table 7–3. Configuration Names

Assignment Value

embeddedsw.configuration.isNonVolatileStorage 0 or 1

embeddedsw.configuration.isPrintableDevice 0 or 1

embeddedsw.configuration.isMemoryDevice 0 or 1

embeddedsw.configuration.isFlash 0 or 1

embeddedsw.configuration.isEthernetMacDevice 0 or 1

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

7–26 Chapter 7: Qsys Interconnect
Tristate Conduit Components
Tristate Conduit Pin Sharer
The tristate conduit pin sharer multiplexes between the signals of the connected
tristate controllers. You connect all signals from the tristate controllers to the tristate
conduit pin sharer and use the parameter editor to specify the signals that are shared.
The parameter editor includes the Originating Signal name of the connected signals
and a Shared Signal Name column for you to type the shared name as Figure 7–25
illustrates.

If the widths of shared signals differ, the signals are aligned on their 0th bit and the
higher-order pins are driven to 0 whenever the smaller signal has control of the bus.
Unshared signals always propagate through the pin sharer. The tristate conduit pin
sharer uses the round-robin arbiter that is described in “Arbitration” on page 7–10 to
select between tristate conduit controllers.

1 All tristate conduit components connected to a given pin sharer must be in the same
clock domain.

Tristate Conduit Bridge
The tristate conduit bridge is the final component on the edge of the Qsys system. It
instantiates bidirectional signals for each tristate triplet while passing all other signals
straight through the component. The tristate conduit bridge registers all outgoing and
incoming signals, which adds two cycles of latency for a read request. You must
account for this additional pipelining when designing a custom controller. During
reset, all outputs are placed in a high-impedance state; outputs are enabled in the first
clock cycle after reset is deasserted. The Quartus II software labels these output
signals bidirectional.

Figure 7–25. Specifying Shared Signals Using the Tristate Conduit Pin Sharer

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–27
Interrupt Interfaces
Timing
Figure 7–26 illustrates the arbitration timing. As this figure illustrates, a device can
drive valid data in the granted cycle. Figure 7–26 shows the following sequence of
events:

1. In cycle one, the arbiter grants a request. The granted device drives valid data in
cycles one and two.

2. In cycle 4, the arbiter grants a request. The granted device drives valid data in
cycles 4 and 5.

3. In cycle 6, the arbiter grants a request. The granted device drives valid data in
cycles 6and 7.

4. Cycle 3 is the only cycle that does not contain valid data.

Interrupt Interfaces
In systems with interrupt sender interfaces, the Qsys interconnect includes several
components to implement interrupt handling. Qsys hndles individual, single-bit
interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines
which IRQ has highest priority, then responds appropriately.

Using individual requests, the interrupt logic can handle up to 32 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt receiver_0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the Merlin IRQ mapper component. For more information refer to the
“Merlin IRQ Mapper” on page 7–28.

Assigning IRQs in Qsys
You assign IRQ connections on the System Contents tab of Qsys. After adding all
components to the system, you connect interrupt senders and receivers. You can use
the IRQ column to specify an IRQ number with respect to each receiver or specify not
to connect the IRQ.

h For more information, refer to Connecting Qsys Components in Quartus II Help.

Figure 7–26. Arbitration Timing

clock

request

grant

data[31:0]

1 3 62 74 5

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_conn_comps.htm

7–28 Chapter 7: Qsys Interconnect
Interrupt Interfaces
Qsys uses the following four components to implement interrupt handling:

■ IRQ Bridge

■ Merlin IRQ Mapper

■ Merlin IRQ Clock Crosser

The following sections describe these components.

IRQ Bridge
The IRQ bridge allows you to route interrupt wires between Qsys subsystems. In
Figure 7–27, the Peripheral Subsystem has three interrupt senders that are exported to
the top level of the subsystem. These interrupts are routed to the Merlin IRQ receiver
bridge in the CPU Subsystem.

Merlin IRQ Mapper
The Merlin IRQ mapper converts individual interrupt wires into a bus. In addition,
you can use the IRQ mapper to specify the interrupt number. By default, the interrupt
sender connected to receiver0 interface of the IRQ mapper is highest priority with
sequential receivers being successively lower priority. You can use the IRQ Map
parameter in the parameter editor to remap the priority. For example, to reverse the
priority of the four interrupt senders connected to the IRQ mapper in Figure 7–27, you
can type the following string for the IRQ Map parameter, 0:3, 1:2, 2:1, 0:3.

Figure 7–27. Qsys IRQ Bridge Application

3

4

 IRQ Bridge

IR

IS

IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS Interrupt
 Sender 4

IS

 Merlin IRQ Mapper

export export export

export

IR

 Nios II
Processor

CPU Subsystem

Peripheral Subsystem

Top-Level Qsys System

IS Interrupt Sender IR Interrupt Receiver

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 7: Qsys Interconnect 7–29
Clock Interfaces
Merlin IRQ Clock Crosser
The Merlin IRQ clock crosser synchronizes interrupt senders and receivers that are in
different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver in addition to the interrupt sender and receiver
interfaces. Qsys automatically inserts this component when it is required.

Clock Interfaces
You can use the Clock Settings tab to define external clock sources, for example an
oscillator on your board. You can define separate reset sources for each clock domain,
a single reset source for all clocks, or any combination in between.

Reset Interfaces
You can choose to have a single global reset domain generated by Qsys or, if your
design requires more than one reset domain, you can implement you own reset logic
and connectivity.

Single Global Reset Signal Implemented by Qsys
If you turn on Global Reset on the Project Settings tab in Qsys, the Qsys interconnect
distributes a global reset bus. All of the reset requests are ORed together, synchronized
to each clock domain, and fed to the reset inputs. The duration of the reset signal is at
least one clock period.

The Qsys interconnect inserts the system-wide reset under the following conditions:

■ The global reset input to the Qsys system is asserted.

■ Any component asserts its resetrequest signal.

Multiple Reset Signals
The Qsys component library includes a reset controller and a reset bridge to
implement the reset functionality. You can also design your own reset logic.

1 If you design your own reset circuitry you must carefully consider situations which
might result in system lockup. For example, if an Avalon-MM slave is reset in the
middle of a transaction, the Avalon-MM master might wait forever.

Merlin Reset Controller
If you design a system with multiple reset inputs, the Merlin reset controller, ORs all
reset inputs and generates a single reset output. The reset controller has the following
three parameters which you can specify to customize its behavior.

■ Number of reset inputs—indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–30 Chapter 7: Qsys Interconnect
Conduits
■ Output reset synchronous edges—specifies the level of synchronization. You can
select one the following options:

■ None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry.

■ Both—The reset is asserted and deasserted synchronously.

■ Deassert—The reset is deasserted synchronously and asserted
asynchronously.

■ Synchronization depth—specifies the number of register stages the synchronizer
uses to eliminate the propagation of metastable events.

Qsys automatically inserts reset synchronizers under the following conditions:

■ More than one reset source is connected to a reset sink

■ There is a mismatch between the reset source’s synchronous edges and the reset
sinks’ synchronous edges

Reset Bridge
The reset bridge allows you to use a reset signal in two or more subsystems of your
Qsys system. You can connect one reset source to local components and export one or
more to other subsystems as required. You to specify the number of reset outputs
using the parameter editor.

Conduits
You can use the conduit interface type for interfaces that do not fit any of the interface
types defined in the Avalon Interface Specifications. You can use conduit interfaces to
group any arbitrary collection of signals. Like other interface types, you can export or
connect conduit interfaces. The PCI Express link of the PCI Express IP core shown in
Figure 5–11 on page 5–15 is an example of the use of the conduit interface for export.

To connect two conduit interfaces inside Qsys, the following conditions must be met:

■ The interfaces must match exactly with the same signal roles and widths.

■ The interfaces must be the opposite directions.

1 Conduits connections are always point-to-point connections.

Summary: Qsys Interconnect Components
Table 7–4 lists all of the Qsys components that implement the Qsys interconnect.

Table 7–4. Summary of Qsys Interconnect Components (Part 1 of 2)

Component Name
Typical Applications

Internal Qsys interconnect (Note 1) User Designs

Avalon-MM Master and Slave Network Transformation

Merlin Master Translator v —

Merlin Master Agent v —

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Qsys Interconnect 7–31
Summary: Qsys Interconnect Components
Merlin Router v —

Merlin Traffic Limiter v —

Merlin Slave Translator v —

Merlin Slave Agent v —

Avalon-ST Components

Avalon-ST Handshake Clock Crosser v v
Avalon-ST Pipeline Stage v v
Merlin Multiplexer v v
Merlin Demultiplexer v v

Bridges

Clock Bridge — v
Avalon-MM Clock Crossing Bridge (Qsys) — v
Avalon-MM Pipeline Bridge (Qsys) — v

Arbitration and Adapters

Merlin Arbiter v —

Merlin Width Adapter v v
Merlin Burst Adapter v v

Tristate Conduits

Generic Tristate Controller — v
Tristate Conduit Pin Sharer — v
Tristate Conduit Bridge — v

Interrupts

IRQ Bridge — v
Merlin IRQ Mapper v —

Merlin IRQ Clock Crosser v v
Reset

Merlin Reset Controller v v
Reset Bridge — v
Note to Table 7–4:

(1) These components are described to enhance your understanding of the Qsys interconnect. You probably will not need to use them in your own
designs.

(2) In this table, a v means that the component is typically used for the purpose specifed by the column header, a – means that the component
is not typically used for the purpose specified by the column header.

Table 7–4. Summary of Qsys Interconnect Components (Part 2 of 2)

Component Name
Typical Applications

Internal Qsys interconnect (Note 1) User Designs

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

7–32 Chapter 7: Qsys Interconnect
Document Revision History
Document Revision History
Table 7–5 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 7–5. Document Revision History

Date Version Changes

December 2010 10.1.0 Initial release.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51023-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51023-10.1.0
8. Component Interface Tcl Reference
c Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

You define Qsys components in the component editor by declaring their properties
and behaviors or directly in a Hardware Component Description File (_hw.tcl). Each
_hw.tcl file represents one component which you can add to an Qsys system. You can
also share components with other designers. For your component to have maximum
flexibility, you should consider what aspects of its behavior can be parameterized so
that other users can change the default parameterization to address different design
requirements.

An Qsys component is usually composed of the following four types of files:

■ _hw.tcl file—describes the Qsys related characteristics, such as interface behaviors.
This file is required.

■ HDL files—define the component’s functionality as hardware, simulation, and
constraint files. These files are optional.

■ _sw.tcl—used by the software build tools to compile the component driver code.
This file is optional.

■ Component driver files—defines the component register map and driver software
to allow software to control the component. These files are optional.

This chapter discusses the following topics:

■ “Information in a Hardware Component Description File”

■ “Component Phases” on page 8–2

■ “Writing a Hardware Component Description File” on page 8–3

■ “Overriding Default Behaviors” on page 8–8

■ “Hardware Tcl Command Reference” on page 8–14

f An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Information in a Hardware Component Description File
A typical _hw.tcl file contains the following information:

Qsy
s B

eta
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51023
http://www.tcl.tk/
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

8–2 Chapter 8: Component Interface Tcl Reference
Component Phases
■ Basic component information—includes the component’s name, version, and
description, a link to its documentation, and pointers to HDL implementation files
for synthesis and simulation.

■ Parameter Declarations—Parameters are values that the user of your component
can set that affect how the component is implemented, such as the size of a
memory. Properties of each parameter include the parameter’s name, whether or
not it is visible, and, if visible, the text to display when describing it. When the
Qsys system is generated, the parameters can be applied to the component as
Verilog HDL parameters or VHDL generics.

■ Interface Properties—The interfaces of a component define how to connect it to the
rest of the system and determine how other components in the system interact
with it. When you add interfaces to a component, you declare which signals make
up each interface. You also define interface properties, such as wait states for an
Avalon® Memory-Mapped (Avalon-MM) interface.

Component Phases
The following section describes the distinct phases in the development of an Qsys
component.

■ Main Program—Qsys first discovers a component and adds it to the component
library. The _hw.tcl file is executed and the Tcl statements provide non-instance-
specific information to Qsys. During this phase, some component interfaces may
be incompletely described and ports may have a width of 0 or -1 to indicate that
they are variable.

■ Validation—Validation allows the component to generate error, warning, or
informational messages. Validation occurs when an instance of a component is
created, when its parameters are changed, or when some other property of the
system is changed.

■ Elaboration—Elaboration occurs as Qsys queries a component for its interface
information. Elaboration typically occurs immediately after validation and before
generation. Interfaces defined in the main program can be enabled or disabled
during elaboration. Depending on the validation callback code, elaboration and
validation may alternate a few times. Elaboration and validation always occur
before generation. Once elaboration is complete, the component must be
completely described. For example, all port widths must have positive values.

■ Generation—Generation creates all the information that the Quartus® II software
and HDL simulator require. The required files typically include VHDL or Verilog
HDL files, simulation models, and timing constraints.

■ Editor—After an instance of your component has been added to an Qsys system,
allows the user of your component to edit the GUI that displays the parameter
editor. You can change the appearance of the default editor to make it easier to
use. You also use the editor to instantiate a component.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–3
Writing a Hardware Component Description File
■ Compose—compose is not really a component phase in and of itself, but it
overrides the default behavior for the validation, elaboration, and generation
phases. Compose allows you to create hierarchical components, constructing new
components from combinations of other components. You can include the Tcl
commands to compose hierarchical components in the main program or in a
compose callback.

Writing a Hardware Component Description File
This section provides detailed information about _hw.tcl files and describes the
default behavior of a component in all phases. The following example uses a simple
UART with some simple parameterization.

Providing Basic Information
A typical _hw.tcl file first declares basic information such as the name, location, and
the files it includes. The first command in a _hw.tcl file should specify the version of
the _hw.tcl API to use, with the following Tcl command:

package require –exact sopc <version>

The version number is a Quartus II release version, such as 10.1. Qsys guarantees that
a valid _hw.tcl file that requests a particular sopc package behaves identically in future
versions of the tool. Because of differences between versions of the Quartus II
software, you cannot assume that an HDL file that functions correctly one sopc
package automatically functions correctly with other versions of the package.

1 This chapter describes the behavior of components that request the sopc 10.1
package.

f An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Example 8–1. Basic Information for _hw.tcl File

The package command must be the first command in the file
package require -exact sopc 10.1

The name and VERSION of the component
set_module_property NAME example_uart
set_module_property VERSION 1.0

The name of the component to display in the library
set_module_property DISPLAY_NAME "Example Component"

The component’s description.
set_module_property DESCRIPTION "An Example Component"

The component library group that component belongs to
set_module_property GROUP Examples

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.tcl.tk/

8–4 Chapter 8: Component Interface Tcl Reference
Writing a Hardware Component Description File
Declaring Parameters
By including configuration parameters in your _hw.tcl file, you allow users of your
component to parameterize it in different ways. Each parameter has a number of
properties such as its name, type, display name, and default value that can be used to
control how the parameter is displayed and used. Example 8–2 illustrates the use of
parameters that can be configured by users of your component.

Parameters can be divided into three types: user parameters, system information
parameters, and derived parameters. The following sections describe these parameter
types.

User Parameters
User parameters are parameters that users have control over and that are exposed in
the component parameter editor.

Derived Parameters
Derived parameters are parameters that are inferred by the component itself from
user parameters or other derived parameters. For example, a clock period parameter
can be derived from a data rate parameter. You can use derived parameters to
perform operations that cannot be performed in HDL. For example, determining the
number of address bits that a component requires using logarithmic functions is easy
in Tcl and impossible in HDL.

SYSTEM_INFO Parameters
You can use SYSTEM_INFO parameter to request that certain parameter values are
populated with information about the system. For example, you might want to know
the frequency of the clock that ends up being connected to your clock input. When
you declare SYSTEM_INFO properties, you provide an <info-type> and further
arguments. The <info-type> is the type of information you want, such as clock_rate,
and you use the additional arguments to specify things, such as which clock input
interface you require. Example 8–3 illustrates the use of the SYSTEM_INFO parameter.
For more information about the SYSTEM_INFO parameter properties refer to Table 8–5
on page 8–29.

Example 8–2. Declaring Parameters

Declare Baud Rate parameter as an integer with a default value of 9600.
add_parameter BAUD_RATE int 9600

Display this parameter as "Baud Rate" in the Parameter Editor.
set_parameter_property BAUD_RATE DISPLAY_NAME "Baud Rate (bps)"

We only support three baud rates
set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Example 8–3. Syntax of Tcl Command using the SYSTEM_INFO Parameter

set_parameter_property my_parameter SYSTEM_INFO {<info-type> [<arg>]}

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–5
Writing a Hardware Component Description File
Declaring Interfaces
To declare an interface, use the add_interface command. Then use the
set_interface_property and add_interface_port commands to set its properties and
indicate which signals belong to it. The interface declaration statement includes the
name of the interface, the interface direction, and the clock interface with which it is
associated. For interfaces that are not associated with clocks (such as clock interfaces
themselves), omit the associated clock interface, or use the word asynchronous.
Example 8–4 illustrates interface declaration.

Adding Files and Guiding Generation
Component description files typically provide all of the information required for
generation and downstream tools, identifying the files used by the component such as
HDL files. You also identify which of the added files is the top-level HDL file and
specify which Verilog module or VHDL entity within that file is the top-level module
for the component. Example 8–5 illustrates the files that are typically required for
generation and downstream tools.

Example 8–4. Declare Interfaces

Declare the clock sink interface, "clock_sink", type=clock, direction=sink
add_interface clock_sink clock sink

The clock interface has two signals, named "clk" and "reset_n" of types "clk" "reset_n"
add_interface_port clock_sink clk clk input 1
add_interface_port clock_sink reset_n reset_n input 1

Declare the Avalon slave interface, name=avalon_slave_0, type=avalon,
directon=slave, associated with the clock_sink clock interface.
add_interface avalon_slave_0 avalon slave clock_sink

Set a number of properties about the Avalon Slave interface
set_interface_property avalon_slave_0 writeWaitTime 0
set_interface_property avalon_slave_0 addressAlignment DYNAMIC
set_interface_property avalon_slave_0 readWaitTime 1
set_interface_property avalon_slave_0 readLatency 0

Declare all the signals that belong to my Avalon Slave interface
add_interface_port avalon_slave_0 my_readdata readdata output 8
add_interface_port avalon_slave_0 my_read read input 1
add_interface_port avalon_slave_0 my_write write input 1
add_interface_port avalon_slave_0 my_waitrequest waitrequest output 1
add_interface_port avalon_slave_0 my_address address input 24
add_interface_port avalon_slave_0 my_writedata writedata input 8

Example 8–5. Add Files

Add the HDL file to the component,to be used for synthesis and simulation.
add_file simple_uart.v {SYNTHESIS SIMULATION}

Add the Timequest file with Quartus timing constraints.
add_file simple_uart.sdc SYNTHESIS

Indicate which of the added HDL files holds the top-level module/entity
that describes the component, name of the top-level module/entity
set_module_property TOP_LEVEL_HDL_FILE simple_uart.v
set_module_property TOP_LEVEL_HDL_MODULE simple_uart

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–6 Chapter 8: Component Interface Tcl Reference
Default Behaviors
Default Behaviors
The _hw.tcl file described in the previous section has default behaviors during the
editor, validation, elaboration, and generation phases. These default behaviors apply
to instances of a component. This section describes the default Qsys behaviors for
each of these phases. To override these default behaviors, refer to “Overriding Default
Behaviors” on page 8–8.

Validation Phase Behavior
The default Qsys validation checks each parameter value against its ALLOWED_RANGES
property. If the values specified are outside the allowed ranges, an error message is
displayed.

The ALLOWED_RANGES property of each parameter is a list of ranges that the parameter
can take on, where each range is a single value, or a range of values defined by a start
and end value separated by a colon. Table 8–1 shows some examples of values the
ALLOWED_RANGES property can take.

Elaboration Phase Behavior
If the main program does not explicitly define the widths of all ports to constant
values or to an expression, then default Qsys elaboration process calls quartus_map to
determine the correct port widths. If you define all port widths in the main program,
quartus_map is not called.

Automatic Port Widths
When port widths are not specified, or have a value of '-1', quartus_map determines
port widths as a function of the parameter set. While this process makes authoring a
component easier, it slows component generation. When using automatic port widths,
you can indicate that a certain parameter does not affect any port widths or interfaces
by setting that parameter's affects_elaboration property to false, meaning that
quartus_map is not called when the parameter's value is changed by your user.
However, indicating that a parameter does not affect elaboration when it actually
does can lead to problems that are difficult to debug.

As an alternative to the automatic port widths, you can set port widths to simple HDL
expressions using the width_expr property. width_expr is a string that holds an
expression describing the port width. By using the width_expr property, you can
define port widths as an expression that is evaluated without needing to analyze the
HDL file or set them in an elaboration callback. The syntax for width expressions is
the same as the HDL language that you use; however, only the addition, subtraction,

Table 8–1. ALLOWED_RANGES Property

ALLOWED_RANGES Meaning

{a b c}

{1 2 4 8 16}

1:3

{1 2 3 7:10}

a or b or c

1, 2, 4, 8, or 16.

1 through 3, inclusive

1, 2, 3, or 7 through 10 inclusive

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–7
Default Behaviors
multiplication, and division operators are allowed. For more complex port widths, the
width of the port can be set as an arbitrary function of the component’s parameters in
an elaboration callback. The width expression is the last argument to the
add_interface_port command. Example 8–6 illustrates the use of mathematical
operators and the width_expr property.

Parameterized Parameter Widths
For VHDL users, Qsys allows a std_logic_vector parameter to have a width that is
defined by another parameter. When adding a parameter of type std_logic_vector
you can also specify its width as a parameter property. The width can be a constant or
the name of another parameter. The commands Example 8–7 add a std_logic_vector
parameter called myParameter whose width is set by another parameter, called
dataWidth.

Generation Phase Behavior
The default Qsys generation does one of the following:

■ If the component defines the TOP_LEVEL_HDL_MODULE property, Qsys creates a
Verilog HDL or VHDL wrapper module to instantiate the top-level module and
applies the parameters as selected by the user of your component. Qsys does not
apply parameters in the wrapper if they are not declared in the underlying HDL
file.

or

■ If the component does not define the TOP_LEVEL_HDL_MODULE property, but instead
sets the INSTANTIATE_IN_SYSTEM_MODULE module property to false, the module is
not instantiated inside the Qsys system and a wrapper file is not created. Rather,
the interface to the module is exported to the top-level of the Qsys system, and the
module must be connected outside the system.

Edit Phase Behavior
The default Qsys editor phase behavior is to use all of the parameter definitions to
display the parameter editor. The properties of the parameters guide Qsys when it
builds the default parameter editor. Table 8–4 on page 8–26 lists the properties of
parameters.

Example 8–6. Defining Port Widths Using Simple Mathematical Operators

add_interface_port din din_data data input {WIDTH * SYMBOLS}
set_port_property din_data width_expr WIDTH

Example 8–7. Adding Parameters

add_parameter myParameter STD_LOGIC_VECTOR
set_parameter_property myParameter WIDTH dataWidth

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–8 Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors
You can place parameters in logical groups and provide images and text to create a
custom parameter editor for your component. Example 8–8 defines four parameters
and illustrates the use of the add_display_item command and the DISPLAY_HINT and
ALLOWED_RANGES parameters.

Figure 8–1 shows the parameter editor that the Tcl commands in Example 8–8
produces.

Overriding Default Behaviors
You can override each of the default behaviors by using callbacks. This section
explains how to write callback procedures for each phase of component development.

Example 8–8. Defining and Customizing the parameter editor

provide an icon for the sound group
add_display_item icon Speaker speaker-image speaker.png
add_parameter sound string 0 0
add_parameter volume_control boolean 0 0
add_parameter separate_control string 0 0

Setup display_names for the parameters
set_parameter_property sound DISPLAY_NAME Audio
set_parameter_property volume_control DISPLAY_NAME "Include Volume Control Interface"
set_parameter_property separate_control DISPLAY_NAME "Treble/Bass Controls"

Display all parameters in the Speaker group
add_display_item Speaker sound parameter
add_display_item Speaker volume_control parameter
add_display_item Speaker separate_control parameter

There are 4 choices for the sound parameter.
Strings with internal spaces require double quotes
set_parameter_property sound ALLOWED_RANGES {"0:No Audio" 1:Monophonic 2:Stereo
4:Quadraphonic}
set_parameter_property separate_control ALLOWED_RANGES {"No Control" "Single Control" "Dual
Controls"}

#Specify how parameters should be displayed
set_parameter_property volume_control DISPLAY_HINT boolean
set_parameter_property separate_control DISPLAY_HINT radio

Figure 8–1. parameter editor for Audio Component

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–9
Overriding Default Behaviors
Validation Callback
You can use the validation callback to provide validation that extends beyond the
default range checking. A validation callback is defined by setting the
VALIDATION_CALLBACK module property to be the name of the validation callback
procedure, as shown in Example 8–9. This validation procedure displays an error if
you select a baud rate of 38400 and odd parity.

You can also use the validation callback to set the value of derived parameters.
Derived parameters are parameters that are derived from other parameters; their
values are not editable and are not saved in the Qsys System File (.qsys). You indicate
that a parameter is derived by setting the parameter's DERIVED property to true. In
Example 8–9 BAUDRATE_PRESCALE is a derived parameter whose value is 1/16 of the
value of the BAUDRATE parameter.

Elaboration Callback
You can use an elaboration callback to change interface properties or add new
interfaces as a function of parameter values. You define an elaboration callback by
setting the ELABORATION_CALLBACK module property to the name of the elaboration
callback function, as shown in Example 8–10. You can enable and disable interfaces
from the elaboration callback if they are only needed for some parameterizations of
the component. Example 8–10 shows how an Avalon-MM slave interface can be
included in an instance of the component, based on the USE_STATUS_INTERFACE
parameter. All of the functionality available in the validation callback can also be used
in the elaboration callback; separate callbacks for validation and elaboration are not
required.

Example 8–9. Custom Validation Callback Function

Declare the validation callback.
set_module_property VALIDATION_CALLBACK my_validation_callback

Add the BAUDRATE_PRESCALE parameter, and indicate that it’s derived
add_parameter BAUDRATE_PRESCALE int 600
set_parameter_property BAUDRATE_PRESCALE DERIVED true

Add the PARITY parameter
add_parameter PARITY string ODD
set_parameter_property PARITY ALLOWED_RANGES {EVEN ODD}

The validation callback
proc my_validation_callback {} {
 # Get the current value of parameters we care about
 set br [get_parameter_value BAUD_RATE]
 set p [get_parameter_value PARITY]
 # Display an error for invalid combinations.
 if {($br==38400) && ($p=="ODD")} {

send_message warning "Odd parity at 38400 bps is not supported."
 }
 # Set the value of our DERIVED parameter
 set bp [expr $br / 16]
 set_parameter_value BAUDRATE_PRESCALE $bp
} Qsy

s B
eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–10 Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors
1 The elaboration callback is not be called when parameters with
AFFECTS_ELABORATION=false are changed by the user of the component.

Generation Callback
If you define a generation callback, Qsys does not generate an HDL wrapper file to
apply parameter values to your component. Instead, it calls the generation callback
you defined during the generation phase, allowing the component to
programmatically generate its HDL. A generation callback is defined by setting the
GENERATION_CALLBACK module property to be the name of the generation callback
function, as Example 8–11 illustrates.

Generation callbacks typically retrieve the current value of the component’s
parameters and the generation properties that guide the generation process, and then
generate the HDL files and supporting files in Tcl or by calling an external program.
The callback procedure also reports the required files to Qsys with the add_file
command. Any files added in the generation callback are in addition to the files
added in the main body of the _hw.tcl file.

The generation callback must write <output_name>.v or .sv for Verilog or
<output_name.vhd> for VHDL to the specified <output_directory>. This file is a
parameterized instance of the component. Other supporting files, such as .hex files to
initialize memory, may be written to <output_directory>. These file names must begin
with <output_name>. If the supporting files are the same for all parameterizations of
the component, you add them from the main program rather than the generation

Example 8–10. Elaboration Callback

Declare the callback.
set_module_property ELABORATION_CALLBACK my_elaboration_callback

Add the USE_STATUS_INTERFACE parameter
add_parameter USE_STATUS_INTERFACE boolean

Declare the status slave interface
add_interface status_slave avalon slave clock_sink
set_interface_property status_slave ENABLED false

The elaboration callback
Declare signals
add_interface_port status_slave st_readdata readdata output 16
add_interface_port status_slave st_read read input 1
add_interface_port status_slave st_write write input 1
add_interface_port status_slave st_waitrequest waitrequest output 1
add_interface_port status_slave st_address address input 24
add_interface_port status_slave st_writedata writedata input 16

The elaboration callback
proc my_elaboration_callback {} {

 # Get the current value of parameters we care about
 set use_status [get_parameter_value USE_STATUS_INTERFACE]

 # Optionally add the status interface
 if { $use_status } {
 set_interface_property status_slave ENABLED true
 }
}

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–11
Overriding Default Behaviors
callback. If your system includes multiple instantiations of a component with
different parameterizations, you must add the supporting files from the main
program to prevent failures. If a static supporting file is only needed in some
parameterizations of the component, you should add it from the main program and
turn it on or off by setting its SYNTHESIS and SIMULATION properties appropriately
from the elaboration callback.

Compose Callback
You can use a compose callback to define components that are constructed from
combinations of other components. Compose can be used in one of two ways:

■ You can use compose commands such as add_instance,
set_instance_parameter_value, and add_connection in the main
program to create and parameterize subcomponent instances.

■ Or, after you have set up the basic component template in the main program, you
can then use a compose callback to instantiate and parameterize subcomponents
as a function of the component’s parameter values. You define a compose callback
by setting the COMPOSE_CALLBACK module property to the name of the compose
callback function.

When used, compose replaces elaboration and generation. Your component's interface
information is collected by analyzing the interfaces on exported subcomponents. HDL
is generated by generating all of your subcomponents and a top-level that stitches
them all together.

Example 8–11. Generation Callback Example

set_module_property GENERATION_CALLBACK my_generate

My generation method

proc my_generate {} {
 send_message info "Starting Generation"

get generation settings

set language [get_generation_property HDL_LANGUAGE]
set outdir [get_generation_property OUTPUT_DIRECTORY]
set outputname [get_generation_property OUTPUT_NAME]

get parameter values

 set p1 [get_parameter_value PARAMETER_ONE]
set csr [get_parameter_value CSR_ENABLED]

Your callback needs to write $outdir$outputname.v here,
perhaps by using exec to call an external program.

add_file creates files relative to the _hw.tcl directory; therefore specify $outdir
for synthesis and simulation files

exec perl my_generate.pl lang=$language dir=$outdir name=$outputname p1=$p1 csr=$csr
 add_file ${outdir}${outputname}.v SYNTHESIS
 add_file ${outdir}${outputname}_sim.v SIMULATION
}

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–12 Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors
Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. Set the EXPORT_OF
property of the externally visible interface to indicate that it is an exported view of the
submodule's interface. Refer to “get_interface_properties” on page 8–38 for the
format of the EXPORT_OF property. You can set this from the main program or the
compose callback.

Exporting an interface is different than connecting two interfaces together—the
exported interface is a copy of the subcomponent’s interface. For example, if the inner
interface is a 32-bit Avalon-MM master without bursting then the exported interface
will be as well.

1 Because the exported interface is a copy of the inner interface, no adaptation is
possible between the two interfaces.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied
from the subcomponents interface with only one modification—the names of the
exported ports on the composed component are chosen to ensure they are unique.

Figure 8–1 is a block diagram for the composed component that is shown
Example 8–1.

Example 8–1 provides an example of a composed _hw.tcl file which instantiates two
subcomponents. It connects them together, also connecting the clocks and resets. Note
that a clock bridge component is required to allow both subcomponents to see a
common clock input.

Figure 8–1. Top-Level of a Composed Component

slave

clk

my_component

pins
my_phy_microcore my_regs_microcore

altera
clock
bridge

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–13
Overriding Default Behaviors
Editor Callback
You can use the editor callback procedure to replace the parameter editor to make it
easier to use. An editor callback is defined by setting the EDITOR_CALLBACK module
property to the name of your editor callback procedure, as shown in the
Example 8–12. If the editor callback is defined, Qsys calls the editor callback instead of
displaying the parameter editor, typically when the component is added to a system
or updated after it is in the system.

To display your custom parameter editor, the editor callback must call another
program. Typically, an editor callback provides the current parameter values to your
program via the command line and collects the new parameter values via stdout. The
editor callback then uses the set_parameter_value command to update Qsys with the
new parameter values.

The editor callback returns one of the following three values:

■ OK—indicates that the results of the edit should be applied.

■ CANCEL—indicates that the system should revert to the state it was in before the
editor callback was called.

■ ERROR—indicates that the parameter editor was unable to launch. An appropriate
error message should be displayed.

Example 8–1. Composed Component

package require -exact sopc 10.1
set_module_property name my_component
...
add_interface clk clock end
set_interface_property clk EXPORT_OF clk.in_clk

add_interface reset reset end
set_interface_property reset EXPORT_OF reset.in_reset

add_interface pins conduit end
set_interface_property pins EXPORT_OF phy.pins

add_interface slave avalon slave
set_interface_property slave EXPORT_OF regs.slave

add_instance clk altera_clock_bridge
add_instance reset altera_reset_bridge
set_instance_property_value reset synchronous_edges deassert
add_connection clk.out_clk reset.clk

add_instance phy my_phy_microcore
add_connection clk.out_clk phy.clk
add_connection reset.out_reset phy.clk_reset

add_instance regs my_regs_microcore
add_connection clk.out_clk regs.clk
add_connection reset.out_reset regs.reset
add_connection phy.output regs.input
add_connection regs.output phy.input

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–14 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
If no value is returned, OK is assumed.

Hardware Tcl Command Reference
This section provides a reference for all hardware Tcl commands, as follows:

■ “Module Definition” on page 8–17

■ “Parameters” on page 8–24

■ “Display Items” on page 8–33

■ “Interfaces and Ports” on page 8–36

■ “Compose” on page 8–43

■ “Generation” on page 8–49

The description of each command indicates during which phases it is available: in the
main body of the program (main), or during the validation, elaboration, compose,
generation, and editor callback phases, or any combination. Table 8–2 summarizes the
commands and provides a reference to the full description.

Example 8–12. Editor Callback

set_module_property EDITOR_CALLBACK my_editor

Define Module parameters.
add_parameter PARAMETER_ONE integer 32 "A parameter"
add_parameter CSR_ENABLED boolean true "Enable CSR interface"

My editor method

proc my_editor {} {

get parameter values
set p1 [get_parameter_value PARAMETER_ONE]
set csr [get_parameter_value CSR_ENABLED]

Display UI, populated with current parameter values.
The stdout returned by the UI program includes the new paramter values.
set result [exec my_component_ui.exe p1=$p1 csr=$csr]

Use the fictional "parse_for_new_value" procedure to parse the returned text for the
new parameter values.
set p1 [parse_for_new_value $result p1]

 set csr [parse_for_new_value $result csr]

Return the new parameter values to Qsys
set_parameter_value PARAMETER_ONE $p1

 set_parameter_value CSR_ENABLED $csr
return OK

}

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–15
Hardware Tcl Command Reference
1 All Tcl commands that you can use in the validation callback are also available in the
elaboration callback. You may be able to omit the custom validation callback by
including some validation commands in your elaboration callback.

Table 8–2. Command Summary (Note 1) (Part 1 of 2)

Command Full Description

Module Definition

package <require> -exact sopc <version> page 8–17

get_module_properties page 8–17

get_module_property <propertyName> page 8–19

set_module_property <propertyName> <propertyValue> page 8–19

get_module_ports page 8–20

get_module_assignments page 8–20

get_module_assignment <moduleName> page 8–21

set_module_assignment <moduleName> [value] page 8–21

get_files page 8–21

add_file filename [<fileProperties> . . .] page 8–21

add_documentation_link <docType> <title> <fileOrUrl> page 8–22

get_file_properties page 8–22

get_file_property <filename> <propertyName> page 8–22

set_file_property <filename> <propertyName> <propertyValue> page 8–23

send_message <messageLevel> <messageText> page 8–23

Parameters

add_parameter <parameterName> <parameterType> [<defaultValue> <description>] page 8–24

get_parameters page 8–25

get_parameter_properties page 8–25

get_parameter_property <parameterName> <propertyName> page 8–30

set_parameter_property <parameterName> <propertyName> <value> page 8–30

get_parameter_value <parameterName> page 8–31

set_parameter_value <parameterName> <value> page 8–31

decode_address_map <address_map_XML_string> page 8–32

Display Items

add_display_item <groupName> <id> <type> [<additionalInfo>] page 8–33

get_display_items page 8–34

get_display_item_properties page 8–35

get_display_item_property <itemName> <propertyName> page 8–35

set_display_item_property <itemName> <propertyName> <value> page 8–35

Interfaces and Ports

add_interface <interfaceName> <interfaceType> <direction>
[<associatedClock>] page 8–37

get_interfaces <interfaceName> page 8–37

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–16 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_interface_property <interfaceName> <propertyName> page 8–38

set_interface_property <interfaceName> <propertyName> <value> page 8–39

add_interface_port <interfaceName> <portName> <portRole> [<direction>
<width_expr>]

page 8–39

get_interface_ports [<interfaceName>] page 8–40

get_port_properties page 8–40

get_port_property <portName> <propertyName> page 8–41

set_port_property <portName> <propertyName> [<value>] page 8–42

get_interface_assignments page 8–42

get_interface_assignment <interfaceName> <name> page 8–42

set_interface_assignmet <interfaceName> <name> [<value>] page 8–43

Compose

add_instance <instanceName> <instanceType> <version> page 8–43

get_instances page 8–44

get_instance_parameters <instanceName> page 8–44

set_instance_parameter <instanceName> <parameterName> <parameterValue> page 8–44

get_instance_parameter_value <instanceName> <parameterName> page 8–44

get_instance_parameter_properties <instanceName> <parameterName> page 8–45

get_instance_parameter_property <instanceName> <parameterName>
<propertyName>

page 8–45

get_instance_interfaces <instanceName> page 8–46

get_instance_interface_properties <instanceName> <interfaceName> page 8–46

get_instance_interface_property <instanceName> <interfaceName>
<propertyName>

page 8–46

get_instance_interface_ports <instanceName> <portName> page 8–47

get_instance_port_property <instanceName> <interfaceName>
<propertyName>

page 8–47

add_connection [instanceName>] <startInterface> <endInterface> page 8–47

get_connections page 8–48

get_connection_parameters <instanceName> page 8–48

get_connection_parameter <connectionName> <parameterName> page 8–49

set_connection_parameter_value <connectionName> <parameterName>
<parameterValue>

page 8–49

Generation

get_generation_properties page 8–49

get_generation_property <propertyName> page 8–50

Note to Table 8–2:

(1) Arguments enclosed in []’s are optional

Table 8–2. Command Summary (Note 1) (Part 2 of 2)

Command Full Description

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–17
Hardware Tcl Command Reference
Module Definition
This section provides information about the commands that you use to define and
query a module.

package
The package command allows you to specify a particular version of the Qsys software
to avoid software compatibility issues. You should use the package command at the
beginning of your _hw.tcl file. When used, the component files behave as if they are
interpreted by the version of the Qsys software that you specify. When the package
command is not used, installed version of the Qsys software is assumed. For
components designed before 9.0, you can set the required package to 9.0. This
document describes the behavior of component which start with
package require -exact sopc 10.1 For earlier releases, refer to the documentation for
that release.

f package is a standard Tcl command. For more information on this command refer to
the following Package page of the Altera website.

get_module_properties
This command returns the names of all the available module properties as a list of
strings. You can use the get_module_property and set_module_property commands
to get and set values of individual properties. The value returned by this command is
always the same for a particular version of Qsys.

package

Callback
availability Main (before any other commands in the file)

Usage package require -exact sopc <version>

Returns None

Arguments version The version of Qsys that you require, specified as decimal number

Example package require -exact sopc 10.0

get_module_properties

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_module_properties

Returns List of strings

Arguments None

Example get_module_properties

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.tcl.tk/man/tcl8.0/TclCmd/package.htm

8–18 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
Table 8–3 lists the available module properties, their use, and the phases in which they
can be set.

Table 8–3. Module Properties (Part 1 of 2)

Property Name Property
Type Can Be Set Description

ANALYZE_HDL Boolean Main program

When set to false. prevents a call to the
Quartus II mapper to verify port widths and
directions, speeding up generation time at the
expense of fewer validation checks. If this
property is set to false, invalid port widths
and directions are discovered during Quartus II
compilation.

AUTHOR String Main program The module’s author.

DESCRIPTION String Main program The description of the module, such as
“Example Qsys Module.”

DISPLAY_NAME String Main program The name to display when referencing the
module, such as “My SOPC Component.”

EDITABLE Boolean Main program Indicates if the component is editable in the
component editor.

EDITOR_CALLBACK String Main program
The name of the editor callback. The default
parameterization UI is displayed if this property
is not set.

ELABORATION_CALLBACK String Main program
The name of the elaboration callback. For static
and generated components, the default
elaborations used if this property is not set.

GENERATION_CALLBACK String Main program The name of the generation callback.

GROUP String Main program The component group that the module belongs
to, such as “Example Components.”

HIDE_FROM_QSYS Boolean Main program When set to true, the component is not visible
in the component library.

ICON_PATH String Main program A path to an icon to display in the module’s
parameter editor.

INSTANTIATE_IN_SYSTEM_MODULE Boolean Main program

When false the instances of the module are
not included in the generated system
interconnect fabric. Instead, interfaces to the
module are exported out of the top-level of the
Qsys system.

INTERNAL Boolean Main program

A component which is marked as internal does
not appear in the Qsys component library. This
feature allows you to hide the submodules of a
larger composed component.

MODULE_DIRECTORY String
Can only be
read, not set

The directory containing the _hw.tcl file. All
relative file names within the Tcl file are
resolved relative to this directory. This
directory is set as the current directory when
running the main program or a callback.

MODULE_TCL_FILE String
Can only be
read, not set The path to the _hw.tcl file.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–19
Hardware Tcl Command Reference
1 The INSTANTIATE_IN_SYSTEM_MODULE, TOP_LEVEL_HDL_MODULE and
GENERATION_CALLBACK commands are used to select the type of generation used by the
component. You must set only one of these in the main program of your file.

get_module_property
This command returns the value of a single module property.

set_module_property
This command allows you to set the values for module properties.

NAME String Main program The name of the module, such as
my_sopc_component.

TOP_LEVEL_HDL_FILE String Main program
Indicates which of the files added by the
add_file command contains the module’s
top-level HDL.

TOP_LEVEL_HDL_MODULE String Main program
Indicates the name of the top-level module
which must be defined in the module’s
top-level HDL file.

VALIDATION_CALLBACK String Main program
The name of the validation callback. This
callback is run in addition to the default
validation.

VERSION String Main program The module’s version, such as 10.0

COMPOSE_CALLBACK String Main Program
The name of the compose callback. If you
define a compose callback then you must not
define the generation or elaboration callbacks.

Table 8–3. Module Properties (Part 2 of 2)

Property Name Property
Type Can Be Set Description

get_module_property

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_module_property <propertyName>

Returns String, boolean, or file

Arguments propertyName One of the properties listed in Table 8–3 on page 8–18

Example set my_name [get_module_property NAME]

set_module_property

Callback
availability Main program

Usage set_module_property <propertyName> <propertyValue>

Returns None

Arguments
propertyName One of the properties listed in Table 8–3 on page 8–18

propertyValue The new value of the property

Example set_module_property VERSION 10.0

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–20 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_module_ports
This command returns a list of the names of all the ports which are currently defined.

get_module_assignments
This command returns names of the module assignment variables.

get_module_assignment
This command returns the value of the specified argument. You can use the
get_module_assignment and set_module_assignment and the
get_interface_assignment and set_interface_assignment commands to transfer
information about hardware components to embedded software tools and
applications.

f For more information about specifying information for software tools, refer to
Publishing Component Information to Embedded Software in the Nios II Software
Developer’s Handbook.

get_module_ports

Callback
availability Main, validation, elaboration, generation, and editor

Usage get_module_ports

Returns String

Arguments None

Example get_module_ports

get_module_assignments

Callback
availability Main, validation, elaboration, and compose

Usage get_module_assignments

Returns String

Arguments None

Example get_module_assignments

get_module_assignment

Callback
availability Main, validation, elaboration, and compose

Usage get_module_assignment <name>

Returns String

Arguments name The name whose value is being retrieved

Example get_module_assignment embedded.sw.CMacro.colorSpace

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

Chapter 8: Component Interface Tcl Reference 8–21
Hardware Tcl Command Reference
set_module_assignment
This command sets the value of the specified argument.

get_files
This command returns a list of all the files that have been added to the module.

add_file
This command adds a synthesis, simulation, or TimeQuest constraints file to the
module. Files added in the main program cannot be removed. Adding files in the
generation callback allows the included files to be a function of the parameter set or to
be a result of generation. Files added in callbacks are in addition to any files added in
the main program.

set_module_assignment

Callback
availability Main, validation, elaboration, and compose

Usage set_module_assignment <name> [<value>]

Returns None

Arguments
name The name whose value is being set

value The value of the <name> argument

Example set_module_assignment embedded.sw.CMacro.colorSpace CMYK

get_files

Callback
availability Main, validation, elaboration, generation, and editor

Usage get_files

Returns List of strings

Arguments None

Example set list_of_files [get_files]

add_file

Callback
availability Main, elaborate, and generation

Usage add_file filename [<fileProperties> . . .]

Returns String

Arguments

filename The file name to be added, relative to the directory containing the _hw.tcl file

fileProperties

Files support the following 3 properties:

■ SIMULATION—File for simulation

■ SYNTHESIS—File for synthesis

■ SDC—TimeQuest constraints (SDC behaves like a synthesis file)

Example add_file my_component.v {SIMULATION SYNTHESIS}

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–22 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
add_documentation_link
This command allows you to add multiple documentation links for a single
component.

get_file_properties
This command returns the list of all properties that have been defined for a file.

get_file_property
This command returns the value of a single file property. The file name passed as an
argument may be a partial as long as it is unique. For example, if the full file name is
/components/my_file.v, my_file.v is sufficient.

add_documentation_link

Callback
availability Main

Usage add_documentation_link filename <docType> <title> <fileOrUrl>

Returns None

Arguments

docType
One of the following document types: USER_GUIDE, RELEASE_NOTES, WEBLINK,
ERRATA, DATASHEET, REFERENCE_MANUAL, WAVEFORM, SCHEMATICS. TUTORIAL,
OTHER

title The title of the document for use on menus and buttons.

fileOrUrl
A path to the component documentation, using a syntax that provides the entire
URL, not a relative path. For example: http://www.mydomain.com/my_
memory_controller.html or file:///datasheet.txt.

Example
add_documentation_link USER_GUIDE "Avalon Verification IP Suite User Guide"

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

get_file_properties

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_file_properties

Returns List of strings

Arguments None

Example get_file_properties

get_file_property

Callback
availability Main, validation, elaboration, generation, and editor

Usage get_file_property <filename> <propertyName>

Returns Boolean

Arguments
filename The file name whose properties are being retrieved

propertyName The file name property whose value is being retrieved

Example set forSynthesis [get_file_property my_file.v SYNTHESIS]

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–23
Hardware Tcl Command Reference
set_file_property
This command sets the value of a single file property. The file name passed to the
function can be a partial file name as long as it is unique. For example, if the full file
name is /components/my_file.v, my_file.v is sufficient. The available properties are
described in the add_files command.

send_message
This command sends a message to the user of the component. The message text is
normally interpreted as HTML. The element can be used to provide emphasis. If
you do not want the message text to be interpreted as HTML then pass a list like
{ info text } as the message level.

set_file_property

Callback
availability Main, elaboration, and generation

Usage set_file_property <filename> <propertyName> <propertyValue>

Returns Boolean

Arguments

filename The file name whose properties are being retrieved

propertyName Name of the file property whose value is being retrieved

propertyValue Value to set for the file property

Example set_file_property my_file.v SYNTHESIS true

send_message

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage send_message <messageLevel> <messageText>

Returns None

Arguments
messageLevel

The following 4 message levels are supported:

■ Error—provides an error message. The Qsys system cannot be generated
while there are error messages.

■ Warning—provides a warning message.

■ Info—provides an informational message.

■ Debug—provides messages when debug mode is enabled.

messageText The text of the message

Example send_message Error "param1 must be greater than param2."

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–24 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
Parameters
Parameters allow users of your component to affect its operation in the same manner
as Verilog HDL parameters or VHDL generics.

add_parameter
This command adds a parameter to your component. Most of the parameter types are
self-explanatory because they are used in the C programming language or HDL.
However, the string_list and integer_list parameters that are used to create tables
in GUIs require some explanation.

■ When you use the add_parameter command with a string_list or integer_list
parameter type, the parameter you define is displayed in a variable-sized table
that includes add and remove buttons.

■ If you define multiple parameters of type string_list or integer_list, you can
also use the add_display_item command to specify that parameters should each
be displayed as a column in a table, each parameter of type string_list or
integer_list becomes a column in the table. Example 8–13 illustrates the use of
the integer_list parameter types to create a multi-column table.

Example 8–13. Creating Tables Using the string_list and integer_list Parameter Types

add_parameter bitsWide INTEGER
add_parameter divider INTEGER
add_parameter coefficients INTEGER_LIST
add_parameter positions INTEGER_LIST
add_display_item myTable coefficients TABLE
add_display_item myTable positions TABLE

add_parameter

Callback
availability Main program

Usage add_parameter <parameterName> <parameterType> [<defaultValue> <description>]

Returns String

Arguments

parameterName A name that you, the component author, choose for your parameter

parameterType
The following types are supported: Integer, Natural, Positive,
Boolean, Std_logic, Std_logic_vector, String, String_list, and
Integer_list.

defaultValue The default length of the parameter is derived from its range.

description Explains the use of the parameter

Example add_parameter seed integer 17 "The seed to use for data generation."

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–25
Hardware Tcl Command Reference
get_parameters
This command returns the names of all parameters that have been previously defined
by add_parameter as a space separated list.

get_parameter_properties
This command returns a list of all the available parameter properties as a list of
strings. The get_parameter_property and set_parameter_property commands are
used to get and set the values of these properties, respectively.

get_parameters

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_parameters

Returns List of strings

Arguments None

Example set parameter_summary [get_parameters]

get_parameter_properties

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_parameter_properties

Returns List of strings

Arguments None

Example set property_summary [get_parameter_properties]

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–26 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
Table 8–4 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

Table 8–4. Parameter Properties (Part 1 of 3)

Property Name Type/
Default Can Be Set Description

AFFECTS_ELABORATION Boolean, true Main program

Set AFFECTS_ELABORATION to false for parameters
that do not affect the external interface of the module.
An example of a parameter that does not affect the
external interface is isNonVolatileStorage. An
example of a parameter that does affect the external
interface is width. When the value of a parameter
changes, if that parameter has set
AFFECTS_ELABORATION=false, the elaboration phase
(calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS_ELABORATION is true, the provided
HDL file is normally re-analyzed to determine the new
port widths and configuration every time a parameter
changes.

AFFECTS_GENERATION
Boolean, refer to
description Main program

The default value of AFFECTS_GENERATION is false if
you provide a top-level HDL module, it is true if you
provide a custom generation callback. Set
AFFECTS_GENERATION to false if the value of a
parameter does not change the results of system
generation.

ALLOWED_RANGES String,"" Main program

Indicates the range or ranges that the parameter value
can have. For integers, The ALLOWED_RANGES property
is a list of ranges that the parameter can take on, where
each range is a single value, or a range of values
defined by a start and end value separated by a colon,
such as 11:15. This property can also specify legal
values and display strings for integers, such as {0:None
1:Monophonic 2:Stereo 4:Quadrophonic} meaning
0,1,2,4 are the legal values. You can also assign longer
strings to be displayed in the parameter editor to string
variables. For example, ALLOWED_RANGES
{"dev1:Cyclone IV GX"
"dev2:Stratix V GT"}Refer to Example 8–8 on
page 8–8 and Figure 8–1 on page 8–8 for additional
examples illustrating the use of this property.

DEFAULT_VALUE
String or
Boolean

Main program The default value.

DERIVED Boolean,false
Validation or
elaboration
callback

When true, indicates that the parameter value does not
need to be stored, typically because it is set from the
validation callback. The default value is false.

DESCRIPTION String, "" Main program A user-visible description of the parameter.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–27
Hardware Tcl Command Reference
DISPLAY_HINT String,"" Main program

Provides a hint about how to display a property. The
following values are possible:

■ boolean—for integer parameters whose value can
be 0 or 1. The parameter displays as an option that
you can turn on or off.

■ radio—displays a parameter with a list of values as
radio buttons instead of a drop-down list.

■ hexadecimal—for integer parameters, display and
interpret the value as a hexadecimal number, for
example: 0x00000010 instead of 16.

■ fixed_size—for string_list and
integer_list parameters, the fixed_size
DISPLAY_HINT eliminates the add and remove
buttons from tables.

Refer to Example 8–8 on page 8–8 and Figure 8–1 on
page 8–8 for examples illustrating the use of this
property.

DISPLAY_NAME String,"" Main program This is the GUI label that appears to the left of the
parameter.

DISPLAY_UNITS String, "" Main program This is the GUI label that appears to the right of the
parameter.

ENABLED Boolean, true

Main program,
validation, and
elaboration,
callbacks

When false, the parameter is disabled, meaning that it
is displayed, but greyed out, indicating that it is not
editable on the parameter editor.

GROUP String, "" Main Controls the layout of parameters in GUI. Refer to
Example 8–8 for an illustration of its use.

HDL_PARAMETER Boolean,false Main program When true, the parameter must be passed to the HDL
component description. The default value is false.

NEW_INSTANCE_VALUE String, "" Main program

This property allows you to change the default value of
a parameter without affecting older components that
have assigned a default value to this parameter using
the defaultValue argument. The practical result is
that older components will continue to use
defaultValue for the parameter and newer
components can use the value assigned by
NEW_INSTANCE_VALUE.

Table 8–4. Parameter Properties (Part 2 of 3)

Property Name Type/
Default Can Be Set Description

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–28 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
SYSTEM_INFO String, "" Main program

Allows you to assign information about the instantiating
system to a parameter that you define. SYSTEM_INFO
requires a keyword argument specifying the type of
information requested, <info-type>. <info-
type> may also take an argument. The syntax of the
Tcl command is:

set_parameter_property my_parameter
SYSTEM_INFO <info-type> [<arg>]

The following values for <info-type> are predefined:
ADDRESS_MAP, ADDRESS_WIDTH, CLOCK_DOMAIN,
CLOCK_RATE, CLOCK_RESET_INFO,
CUSTOM_INSTRUCTION_SLAVES,DEVICE,
DEVICE_FAMILY, DEVICE_FEATURES,
INTERRUPTS_USED, GENERATION_ID,
MAX_SLAVE_DATA_WIDTH, RESET_DOMAIN, and
TRISTATE_ONDUIT_MASTERS

Refer to Table 8–5 for descriptions of the <info_type>
argument.

TYPE String, "" Main program

Specifies one of the following types: INTEGER,
NATURAL, POSITIVE, BOOLEAN, STD_LOGIC,
STD_LOGIC_VECTOR, STRING, STRING_LIST,
INTEGER_LIST, LONG, or FLOAT.

UNITS String, "" Main program

Sets the units of the parameter. The following values
are possible: None, Picoseconds, Nanoseconds,
Microseconds, Milliseconds, Seconds, Hertz,
Kilohertz, Megahertz, Gigahertz, Address, Bits,
Bytes, Kilobytes, Megabytes, Gigabytes,
BitsPerSecond, KiloBitsPersecond,
MegaBitsPerSecond, BigaBitsPerSecond,
Percent, and Cycles. For example,
set_parameter_property frequency UNITS
gigahertz

VISIBLE Boolean, true

Main program,
validation, and
elaboration,
callbacks

Indicates whether or not to display the parameter in the
parameterization GUI.

Table 8–4. Parameter Properties (Part 3 of 3)

Property Name Type/
Default Can Be Set Description

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–29
Hardware Tcl Command Reference
■ Table 8–5 describes the properties that you can use with the system_info
parameter property. For more information about how to use the system_info
parameter property, refer to “SYSTEM_INFO Parameters” on page 8–4.

Table 8–5. SYSTEM_INFO Properties (Part 1 of 2)

Property Type Description

ADDRESS_MAP String

Assigns an XML formatted string describing the address map to the
parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_MAP <my_avalon-mm_master>}

ADDRESS_WIDTH Integer

Assigns an integer to the parameter that you specify that is the number of
bits an Avalon-MM master must drive to address all of its slaves, using
byte addresses.

set_parameter_property <my_parameter> SYSTEM_INFO
{ADDRESS_WIDTH <my_avalon-mm_master>}

CLOCK_DOMAIN Integer

Assigns an integer representing the clock domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
clock domain, the CLOCK_DOMAIN value is guaranteed to be the same and
greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_DOMAIN <my_clk>}

CLOCK_RATE
Integer or
String

Assigns a positive number which is the clock frequency in Hz to the clock
input interface you specify. Assigns 0 if the clock rate is not known.

set_parameter_property <my_parameter> SYSTEM_INFO
{CLOCK_RATE <my_clk>}

CLOCK_RESET_INFO String
Specifies the name of the module’s clock or reset sink interface. (Specifies
the clock sink interface for designs that use a global reset.)

CUSTOM_INSTRUCTION_
SLAVES

String
Provides custom instruction slave information, including the name, base
address, address span, and clock cycle type.

DEVICE String Specifes the Altera part number, for example EP2S15F484C3.

DEVICE_FAMILY String

Assigns the family name (not the specific device part number) of the
currently selected device to the parameter you specify.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FAMILY}

DEVICE_FEATURES String

Creates a list of key/value pairs delineated by spaces indicating whether a
particular device feature is available in the currently selected device family.
The format of the list is suitable for passing to the Tcl array set
command. This list is assigned to the parameter you specify. The following
features are supported: M512_MEMORY, M4K_MEMORY, M9K_MEMORY,
M144K_MEMORY, MRAM_MEMORY, MLAB_MEMORY, ESB, DSP, and EMUL.

set_parameter_property <my_parameter> SYSTEM_INFO
{DEVICE_FEATURES}

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–30 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_parameter_property
This command returns a single parameter property.

set_parameter_property
This command sets a single parameter property.

INTERRUPTS_USED
Integer or
string

Creates a mask indicating which bits of the interrupt receiver vector are
connected to an interrupt sender. This mask is assigned to the parameter
you specify. You can use this interrupt mask to optimize logic that handles
interrupts.

set_parameter_property <my_parameter> SYSTEM_INFO
(INTERRUPTS_USED <my_interrupt_receiver>}

GENERATION_ID Integer Records a unique ID for a particular generation run.

MAX_SLAVE_DATA_WIDTH Integer

Assigns an integer to the parameter you specify that is the data width of the
widest slave connected to the specified Avalon-MM master.

set_parameter_property <my_parameter> SYSTEM_INFO
{MAX_SLAVE_DATA_WIDTH <my_avalon_mm_master>}

RESET_DOMAIN Integer

Assigns an integer representing the reset domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same reset domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
reset domain, the RESET_DOMAIN value is guaranteed to be the same and
greater than zero.

set_parameter_property <my_parameter> SYSTEM_INFO
{RESET_DOMAIN <my_reset>}

Table 8–5. SYSTEM_INFO Properties (Part 2 of 2)

Property Type Description

get_parameter_property

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_parameter_property <parameterName> <propertyName>

Returns string, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26.

Arguments
parameterName The name of the parameter whose property value is being retrieved

propertyName One of the properties listed in Table 8–4 on page 8–26

Example get_parameter_property parameter1 GROUP

set_parameter_property

Callback
availability Main, validation, compose, and elaboration

Usage set_parameter_property <parameterName> <propertyName> <value>

Returns string, boolean, or units depending on property

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–31
Hardware Tcl Command Reference
get_parameter_value
This command returns the current value of a parameter defined previously with the
add_parameter command.

set_parameter_value
This command sets a parameter value. The values of derived parameters can be set
from the validation and elaboration callbacks. The values of parameters which are not
marked as derived or system_info can be set from the editor callback.

Arguments

parameterName Specifies the parameter that is being set

propertyName
Specifies the property of parameterName that is being set, refer to Table 8–4 on
page 8–26 for a list of properties

value Provides the values

Example set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

set_parameter_property

get_parameter_value

Callback
availability Validation, elaboration (1), compose. generation, and editor

Usage get_parameter_value <parameterName>

Returns String

Arguments parameterName Specifies the parameter that is being retrieved

Example set fifo_width [get_parameter_value fifo_width]

Note:

(1) If AFFECTS_ELABORATION=false for a given parameter, get_parameter_value is not available for that parameter from the elaboration
callback. If affects_generation=false then it is not available from the generation callback.

set_parameter_value

Callback
availability Validation, elaboration, compose, and editor

Usage set_parameter_value <parameterName> <value>

Returns None

Arguments
parameterName Specifies the parameter that is being set

value Specifies the value of parameterName

Example set_parameter_value BAUD_RATE 19200

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–32 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
decode_address_map
This is a utility function to convert an XML–formatted address map into a list of Tcl
lists. Each inner list is in the correct format for conversion to an array. The XML code
describing each slave includes: its name, start address, and end address + l. Figure 8–2
shows a portion of an Qsys system with three Avalon-MM slave devices.

Example 8–14 shows the XML that describes the address map for the Avalon-MM
master that accesses these slaves. The format of the XML string provided may differ
from that described here, it may have different white space between the elements and
could include additional attributes or elements. Using decode_address_map command
to decode the XML representing an Avalon-MM master’s address map is easier and
ensures that your code will work with future versions of the XML address map.

1 Altera recommends that you use the code provided in the description of
Example 8–14 to enumerate over the components within an address map, rather than
writing your own parser.

Figure 8–2. Qsys System with Three Avalon-MM Slaves

Example 8–14. Address Map for an Avalon-MM Master

<address-map>

 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />

<slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />

<slave name='sysid' start='0x021208B8' end='0x021208C0' />

</address-map>

decode_address_map

Callback
availability Validation, compose. elaboration, and generation

Usage decode_address_map <address_map_XML_string>

Returns List of Tcl lists, each one suitable for passing to array set

Arguments address_map_
XML_string

An XML string describing the address map of an Avalon-MM master.

Example

set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {

array set info $i
send_message info "Connected to slave $info(name)"

}

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–33
Hardware Tcl Command Reference
Display Items
You specify your component GUI using the display commands.

add_display_item
You can use this command to specify the following aspects of component display:

■ You can create logical groups for a component’s parameters. For example, you
might want to create separate groups for the component’s timing, size, and
simulation parameters. A component displays the groups and parameters in the
order that you specify the display items for them in the _hw.tcl file.

■ You can create multicolumn tables to present a component’s parameters. Refer to
Example 8–13 on page 8–24 for an example that illustrates multicolumn tables.

■ You can specify an image to provide a pictorial representation of a parameter or
parameter group.

■ You can create a button by adding a display item of type action. The display item
includes the name of the callback to run when the action is performed.

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–34 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
You create a display group by adding display items to it.

get_display_items
This command returns a list of all items to be displayed as part of the
parameterization GUI.

add_display_item

Callback
availability Main program

Usage add_display_item <groupName> <id> <type> [<additionalInfo>]

Returns String

Arguments

groupName Specifies the group to which a display item belongs.

id
Specifies the parameter or icon to be displayed in a group. Each display item
associated with a component must have a different ID.

type

Specifies the category of the display item. The following types are defined:

■ icon–a .gif, .jpg, or .png file

■ parameter–a parameter in the instance

■ text–a block of text

■ group–a group. If the groupName is also defined, the new group is a child of
the groupName group. If groupName is an empty string, the group is
top-level.

■ action–an action defined by a callback procedure when you click the button
labeled by actionName.

additionalInfo

Provides extra information required for display items. The following examples
illustrate how you use the additionalInfo argument for the various types:

■ add_display_item groupName id icon path-to-image-file

■ add_display_item groupName parameterName parameter
(additionalInfo not required)

■ add_display_item groupName id text "your-text"
The your-text argument is a block of text that is displayed in the GUI. Some
simple HTML formatting is allowed, such as and <i>, if the text starts
with "html>".

■ add_display_item parentGroupName childGroupName group
[tab]
The tab is an optional parameter. If present, the group appears in separate
tab in the GUI for the instance.

■ add_display_item parentGroupName actionName action
buttonClickCallbackProc

Examples
add_display_item timing read_latency parameter

add_display_item sound speaker icon speaker.jpg

get_display_items

Callback
availability Main, elaboration, validation, generation, compose, and editor

Usage get_display_items

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–35
Hardware Tcl Command Reference
get_display_item_properties
This command returns a list of names of the properties of display items that are part
of the parameterization GUI.

get_display_item_property
This command returns the value of specific property of a display item that is part of
the parameterization GUI.

set_display_item_property
This command sets the value of specific property of a display item that is part of the
parameterization GUI.

Returns List of strings

Arguments None

Example get_display_items

get_display_items

get_display_item_properties

Callback
availability Main

Usage get_display_item_properties

Returns List of strings

Arguments None

Example get_display_item_properties

get_display_item_property

Callback
availability Main

Usage get_display_item_property <itemName> <propertyName>

Returns String

Arguments
itemName The item whose property value is being retrieved

propertyName The property whose value is being retrieved

Example set my_label [get_display_item_property my_action DISPLAY_NAME]

set_display_item_property

Callback
availability Main

Usage set_display_item_property <itemName> <propertyName> <value>

Returns String

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–36 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
Interfaces and Ports
You can use the interface and port commands to define interfaces and ports and
retrieve their properties.

add_interface
This command adds an interface to your module. As the component author, you
choose the name of the interface. By default, interfaces are enabled. You can set the
interface property ENABLED to false, to disable a component interface. If an interface is
disabled, it is hidden and its ports are automatically terminated to their default
values. Signals that you designate as active low by appending a _n are terminated to
1. All other signals are terminated to 0.

f The properties available for each interface type are different. The common properties,
ENABLED and ASSOCIATED_CLOCK apply to all interface types. Refer to the Avalon
Interface Specifications for a description of other properties.

Arguments

itemName The item whose property value is being set

propertyName The property whose value is being set

value The value to set

Example
set_display_item_property my_action DISPLAY_NAME “Click Me”

set_display_item_property my_action DESCRIPTION “clicking this button runs the
click_me_callback proc in the hw.tcl file”

set_display_item_property

add_interface (Part 1 of 2)

Callback
availability Main program, elaboration, and compose

Usage add_interface <interfaceName> <interfaceType> <direction> [<associatedClock>] (1)

Returns String

Arguments

interfaceName A name that you choose to identify an interface.

interfaceType and
direction

There are 7 interfaceTypes. The following directions are possible for
these interfaceTypes

Interface Type Direction

avalon master, slave (2)

avalon_conduit_tristate master

avalon_streaming source, sink

interrupt sender, receiver

conduit end

clock source, sink

reset source,sink

nios_custom_instruction slave

associatedClock
This defines the clock associated with the interface. It is required for all
interfaces except clock interfaces.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference 8–37
Hardware Tcl Command Reference
get_interfaces
This command returns the names of all interfaces that have been previously defined
by add_interface as a space separated list.

get_interface_properties
This command returns the names of all the available interface properties for the
specified interface as a space separated list.

f The properties available for each interface type are different. Refer to the Avalon
Interface Specifications for more information about interface properties.

Example add_interface mm_slave avalon slave clock0

Notes:

(1) For interfaces that are not associated with clocks, such as clock interfaces themselves, the associatedClock is omitted. Another option
is to specify the associatedClock argument as asynchronous.

(2) The terms master, source, and start are interchangeable. The terms slave, sink, and end are interchangeable.

add_interface (Part 2 of 2)

get_interfaces

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_interfaces

Returns List of strings

Arguments None

Example set all_interfaces [get_interfaces]

get_interface_properties

Callback
availability Main program, validation, elaborations, compose, and editor

Usage get_interface_properties <interfaceName>

Returns List of strings

Arguments interfaceName The name of an interface that you defined

Example get_interface_properties mm_slaveQsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

8–38 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
The interface properties that are common to all interface types are listed below in
Table 8–6.

get_interface_property
This command returns the value of a single interface property from the specified
interface.

set_interface_property
This command sets a single interface property for an interface.

Table 8–6. Interface Properties Common to All Interface Types

Property Type Description

EXPORT_OF String

For composed _hwl.tcl files, the EXPORT_OF property indicates which
interface of a child instance is to be exported through this interface.
Before using this command, you must have created the border interface
using add_interface. The interface to be exported is of the form
<instanceName.interfaceName>.

Example: set_interface_property CSC_input EXPORT_OF
my_colorSpaceConverter.input_port

ASSOCIATED_CLOCK String The name of the clock interface that this interface is synchronous to.

ENABLED Boolean Specifies whether or not interface is enabled.

get_interface_property

Callback
availability Main program, compose, and elaboration

Usage get_interface_property <interfaceName> <propertyName>

Returns string, boolean, or units, depending on property. Refer to the Avalon Interface Specifications for
more information about interface properties

Arguments

interfaceName The name of an interface from which you want to retrieve information

propertyName
The name of the property whose value you want to retrieve. This property is
either ENABLED or ASSOCIATED_CLOCK or a property name defined by the
interface.

Example get_interface_property mm_slave readWaitTime

set_interface_property

Callback
availability Main, compose, and elaboration

Usage set_interface_property <interfaceName> <propertyName> <value>

Returns String

Arguments

interfaceName The name of an interface that includes this property

propertyName
The name of the property whose value you want to set, which is ENABLED or
ASSOCIATED_CLK or a name from the Avalon Interface Specifications.

value The value to set for the specified property

Example set_interface_property mm_slave linewrapBursts false

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference 8–39
Hardware Tcl Command Reference
add_interface_port
This command adds a port to an interface on your module. As the component author,
you determine the name of the port. The port width and direction must be set by the
end of the elaboration phase. The port width can be set with one of the following
mechanisms:

■ A constant width or a width expression can be set in the main program

■ A constant width can be set in the elaboration callback

1 Without an elaboration callback, for static components quartus_map determines the
port width from the HDL

get_interface_ports
This command returns the names of all of the ports that have been added to a given
interface. If the interface name is omitted, all ports for all interfaces are returned.

add_interface_port

Callback
availability Main program and elaboration

Usage add_interface_port <interfaceName> <portName> <portRole> [<direction>
<width_expr>]

Returns String

Arguments

interfaceName The name of the interface to which the port belongs.

portName The name of the port that you, the component author, have chosen.

portRole
The role of this port within the interfaces. Port roles are referred to as signal
types in the Avalon Interface Specification. Refer to the Avalon Interface
Specifications for the signal types available for each interface type.

direction The direction can be input, output, or bidir

width_expr
The port's width expression. In simple cases, this is just the width of the port in
bits.

Example add_interface_port mm_slave s0_rdata readdata output 32

get_interface_ports

Callback
availability Main, validation, elaboration, generation, and editor

Usage get_interface_ports [<interfaceName>]

Returns String

Arguments interfaceName The name of the interface whose ports you want to list. (Optional)

Example get_interface_ports mm_slave

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

8–40 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_port_properties
This command returns a list of all available port properties.

Table 8–7 describes the available port properties

get_port_properties

Callback
availability Main, validation, elaboration, generation, compose, and editor

Usage get_port_properties <portName>

Returns String, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26

Arguments portName

The name of the port whose properties are required. The following 7 port properties are
supported:

■ DIRECTION

■ TERMINATION

■ TERMINATION_VALUE

■ VHDL_TYPE

■ WIDTH

■ WIDTH_EXPR

■ DRIVEN_BY

■ ROLE

Refer to Table 8–7 for a description of these properties.

Example get_port_properties mm_slave

Table 8–7. Port Properties (Part 1 of 2)

Name Type Description

DIRECTION
input, output,
bidir

The direction of the port from the component’s perspective.

TERMINATION boolean

When true, instead of connecting the port to the Qsys system, it is
left unconnected for output and bidir or set to a fixed value for
input. Has no effect for components that implement a generation
callback instead of using the default wrapper generation.

TERMINATION_VALUE integer The constant value to drive an input port.

VHDL_TYPE
std_logic
std_logic_vector
auto

indicates the type of a VHDL port. The default value, auto, selects
std_logic if the width is fixed at 1, and std_logic_vector
otherwise.

WIDTH integer The width of the port in bits.

WIDTH_EXPR string

The width expression of a port. Setting the width and width_expr
properties have the same effect; they both update the effective width
expression. The width/width_expr properties can be set to an
integer at any time. They can only be set to arithmetic expressions
in the main program.

The values of the width and width_expr properties behave
differently when get_port_property is used. width always
returns the current integer width of the port. width_expr always
returns the unevaluated width expression.

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–41
Hardware Tcl Command Reference
get_port_property
This command returns the value of single port property for the specified port.

set_port_property
This command sets a single port property.

get_interface_assignments
This command returns the value of all interface assignments for the specified
interface.

DRIVEN_BY integer, input

Indicates that this output port is always driven to a constant value or
by an input port. If all outputs on a component have their
driven_by property set to a valid value then the component's HDL
is generated automatically.

ROLE string
Specifies an Avalon signal type such as waitrequest, readdata,
or read. For a complete list of signal types, refer to the Avalon
Interface Specifications.

Table 8–7. Port Properties (Part 2 of 2)

Name Type Description

get_port_property

Callback
availability Main, validation, elaboration, generation, and editor

Usage get_port_property <portName> <propertyName>

Returns Depends on the type of the property

Arguments
portName The name of the port

propertyName One of the supported properties described in Table 8–7.

Example get_port_property rdata WIDTH

set_port_property

Callback
availability Main program, elaboration, and generation

Usage set_port_property <portName> <propertyName> [<value>]

Returns String, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26.

Arguments

portName The name of the port

propertyName One of the supported properties described in Table 8–7.

value The value to set

Example set_port_property rdata WIDTH 32

get_interface_assignments

Callback
availability Main, validation, compose, and elaboration

Usage get_interface_assignments <interfaceName>

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

8–42 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_interface_assignment
This command returns the value of the specified name for the specified interface.

set_interface_assignment
This command sets the value of the specified assignment for the specified interface.

f For more information about the use of the set_interface_assignment command, refer
to the “Publishing Component Information to Embedded Software” chapter in the Nios II
Software Developer’s Handbook.

Returns String

Arguments interfaceName The name of the Avalon interface whose assignment is being retrieved

Example get_interface_assignments s1

get_interface_assignments

get_interface_assignment

Callback
availability Main, validation, compose, and elaboration

Usage get_interface_assignments <interfaceName> <name>

Returns String

Arguments
interfaceName The name of the Avalon interface whose assignment is being retrieved

name The assignment whose value is being retrieved

Example get_interface_assignment s1 embeddedsw.configuration.isFlash

set_interface_assignment

Callback
availability Main, validation, compose, and elaboration

Usage set_interface_assignment <interfaceName> <name> [<value>]

Returns None

Arguments

interfaceName The name of the Avalon interface whose assignment is being set

name The assignment whose value is being set

value The value to assign

Example set_interface_assignment s1 embeddedsw.configuration.isFlash 1Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 8: Component Interface Tcl Reference 8–43
Hardware Tcl Command Reference
Compose
This section covers the commands that allow you to build new components by
combining other components. It also includes commands to query the module
instances in the system.

add_instance
The add_instance command adds an instance of a predefined module, referred to as
a child or child module, to a new component. You can use this command to create
components that are composed of other components.

get_instances
This command lists the instance names of all modules in the system.

add_instance

Callback
availability

Main and compose

Usage add_instance <instanceName> <type> [<version>]

Returns String

Arguments instanceName Specifies a unique local name that you can use to manipulate the module. This
name is used in the generated HDL to identify the module.

type The type refers to a module available in a library, for example
altera_avalon_uart.

version The required version of the specified module. If no version is specified, the
latest version is used.

Example add_instance my_uart altera_avalon_uart

get_instances

Callback
availability

Main, validation, and compose

Usage get_instances

Returns List of strings

Arguments None

Example get_instances
Qsy

s B
eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–44 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_instance_parameters
This command returns the names of all parameters on a child instance that can be
manipulated by the parent. It omits parameters that are derived and those that have
the SYSTEM_INFO parameter property set.

set_instance_parameter_value
This command sets a parameter on a child module. Derived parameters and
SYSTEM_INFO parameters for the child module may not be set using this command.

get_instance_parameter_value
This command returns the value of the named parameter. You cannot use this
command to get the value of parameters whose values are derived or those that are
defined using the SYSTEM_INFO parameter property.

get_Instance_parameters

Callback
availability

Main, validation, and compose

Usage get_instance_parameters <instanceName>

Returns List of strings

Arguments instanceName Specifies the name of the instance whose parameters are being retrieved.

Example get_instance_parameters pixel_converter

set_instance_parameter_value

Callback
availability

Main and compose

Usage set_instance_parameter_value <instanceName> <parameterName>
<parameterValue>

Returns None

Arguments instanceName Specifies the name of the child module

parameterName Specifies the parameter that is being set

parameterValue Specifies the value of the parameter that is being set

Example set_instance_parameter_value pixel_converter input_DPI 1200

get_instance_parameter_value

Callback
availability

Main and compose

Usage get_instance_parameter_value <instanceName> <parameterName>

Returns String, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26

Arguments instanceName Specifies the name of the instance whose parameter is being retrieved

parameterName Specifies the parameter whose value is being retrieved

Example get_instance_parameter_value pixel_converter input_DPI

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–45
Hardware Tcl Command Reference
get_instance_parameter_properties
This command returns the names of all properties for the specified parameter. The
values returned are a subset of those returned from get_parameter_properties.
Refer to Table 8–4 for a list of parameter properties.

get_instance_parameter_property
This command returns the names of the specified instance parameter property. The
following parameter properties on a child instance that are visible from the parent: TYPE,
WIDTH, DERIVED, VISIBLE, ENABLED, UNITS, DISPLAY_NAME, ALLOWED_RANGES, and
SYSTEM_INFO.

get_instance_parameter_properties

Callback
availability

Main and compose

Usage get_instance_parameter_properties <instanceName> <parameterName>

Returns List of strings

Arguments instanceName Specifies the instance name of the module

parameterName Specifies the parameter that is being set

Example get_instance_parameter_properties my_colorSpaceConverter colorSpace

get_Instance_parameter_property

Callback
availability

Main and compose

Usage get_instance_parameter_property <instanceName> <parameterName>
<propertyName>

Returns String, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26.

Arguments instanceName Specifies the instance name of the module

parameterName Specifies the parameter for which a property is being retrieved

propertyName Specifies the property whose value is being retrieved

Example get_instance_parameter_property my_stereo separate_control
DISPLAY_NAMEQsy

s B
eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–46 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_instance_interfaces
This command returns the names of all of the interfaces of a child module as a list. The
interfaces can change if the parameterization of the module changes.

get_instance_interface_properties
This command returns the names of all of the properties of the specified interface.

get_instance_interface_property
This command returns the value of a property associated with the specified module
interface.

get_Instance_interfaces

Callback
availability

Main and compose

Usage get_instance_interfaces <instanceName>

Returns String

Arguments instanceName Specifies the instance name of the module

Example get_instance_interfaces my_ColorSpaceConverter

get_Instance_interface_properties

Callback
availability

Main and compose

Usage get_instance_interface_properties <instanceName> <interfaceName>

Returns String

Arguments instanceName Specifies the instance name of the module

interfaceName Specifies an interface of instance

Example get_instance_interface_properties my_ColorSpaceConverter
inputInterface

get_Instance_interface_property

Callback
availability

Main and compose

Usage get_instance_interface_property <instanceName> <interfaceName>
<propertyName>

Returns String

Arguments instanceName Specifies the instance name of the module

interfaceName Specifies an interface of instance

propertyName Specifies the property whose value is being retrieved.

Example get_instance_interface_property my_component s1 setupTime

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–47
Hardware Tcl Command Reference
get_instance_interface_ports
This command returns a list of the names of the ports on the specified interface.

get_instance_port_property
This command returns a information about the port property specified.

add_connection
This command connects the named interfaces together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, mux0.out is the
interface named out on the instance named mux0. The command returns the name of
the newly added connection in start.point/end.point format. Be careful to
connect the start to the end, and not the other way around.

get_Instance_interface_ports

Callback
availability

Main and compose

Usage get_instance_interface_ports <instanceName> <interfaceName>

Returns List of Strings

Arguments instanceName Specifies the instance name of the module

interfaceName Specifies an interface of instance

Example get_instance_interface_ports my_ColorSpaceConverter outputInterface

get_instance_port_property

Callback
availability

Main and compose

Usage get_instance_port_property <instanceName> <portName> <propertyName>

Returns String

Arguments instanceName Specifies the instance name of the module

portName Specifies a port

property Specifies the property for which information is being retrieved. Not all port
properties are visible from the parent. Those which are visible are ROLE,
DIRECTION, WIDTH, WIDTH_EXPR and VHDL_TYPE.

Example get_instance_port_property my_uart width

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–48 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference
get_connections
This command lists the connectivity for all modules in the system.

get_connection_parameters
This command gets the names of all parameters for the connection specified.

add_connection

Callback
availability

Main program and compose

Usage add_connection <start.Interface> [<end.Interface>] [kind] [name]

Returns String

Arguments start.interface The start interface to be connected, of the form,
<instance_name>.<interface_name>

end.interface The end interface to be connected,
<instance_name>.<interface_name>

kind Indicates the interface type. For a list of interface types refer to “add_interface”
on page 8–37.

name Specifies the name of the connection. If omitted, the name is of the form
start-module.start-interface/end-module.end-interface.

Example add_connection dma.read_master sdram.s1

get_connections

Callback
availability

Main and compose

Usage get_connections

Returns List of strings

Arguments None

Example get_connections

get_connection_parameters

Callback
availability

Main and compose

Usage get_connection_parameters <connectionName>

Returns List of strings

Arguments connectionName Specifies the connection whose connection parameters are required.

Example get_connection_parameters cpu0.data_master/dma0.csr

Qsy
s B

eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 8: Component Interface Tcl Reference 8–49
Hardware Tcl Command Reference
get_connection_parameter_value
This command gets the value of a parameter on the connection.

set_connection_parameter_value
This command sets a property of the connection. The start and end are each interface
names of the format <instance>.<interface>. Connection parameters depend
on the type of connection, for Avalon-MM they include base addresses and arbitration
priorities.

Generation
This section covers the commands that get generation properties.

get_generation_properties
This command returns the names of all the available generation properties as a space
separated list. These properties cannot be changed by the module. Generation
properties are provided to the generation callback to support per-instance HDL
generation.

set_connection_parameter_value

Callback
availability

Main program and compose

Usage set_connection_parameter_value <connName> <parameterName>
<parameterValue>

Returns None

Arguments connName Specifies the name of the connection as returned by the add_conection
command. It is of the form start.point/end.point

parameterName Specifies the parameter that is being set

parameterValue Specifies the value of the parameter

Example set_connection_parameter_value cpu0.data_master/dma0.csr baseAddress
0x1000

get_generation_properties

Callback
availability

Main, validation, elaboration, compose generation, and editor

Usage get_generation_properties

Returns String. The following generation properties are supported:

n hdl_language

n output_directory

n output_name

Refer to Table 8–8 for a description of the generation properties.

Arguments None

Example get_generation_properties

Qsy
s B

eta
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

8–50 Chapter 8: Component Interface Tcl Reference
Document Revision History
Table 8–8 describes the generation properties.

get_generation_property
This command returns the value of a single generation property.

Document Revision History
Table 8–9 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 8–8. Generation Properties

Name Type Description

HDL_LANGUAGE enum The HDL language to generate. Is either verilog or vhdl (lowercase). If
the module cannot generate the specified language, generating in the other
language is acceptable.

OUTPUT_DIRECTORY file The location in which files must be generated. The filename components in
the directory name are separated with forward slashes.

OUTPUT_NAME string OUTPUT_NAME is module_0 and the HDL_LANGUAGE is verilog,
the file module_0.v or module_O.sv _must be generated and must contain
the module, module_0.

get_generation_property

Callback
availability

Generation

Usage get_generation_property <propertyName>

Returns String, boolean, or units, depending on property. Refer to Table 8–4 on page 8–26.

Arguments propertyName One of the 3 generation properties:

■ HDL_LANGUAGE

■ OUTPUT_DIRECTORY

■ OUTPUT_NAME

Example get_generation_property OUTPUT_DIRECTORY

Table 8–9. Document Revision History

Date Version Changes

December 2010 10.1.0 Initial release.
Qsy

s B
eta
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

December 2010 Altera Corporation
Section III. Design Guidelines
When designing for large and complex FPGAs, your design and coding styles can
impact your quality of results significantly. Designs reflecting synchronous design
practices behave predictably reliably, even when re-targeted to different device
families or speed grades. Using recommended HDL coding styles ensures that
synthesis tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic provides the
most flexibility when partitioning the design for incremental compilation, and leads
to the best results. If you create floorplan location assignments to control the
placement of different design blocks (useful in team-based designs so each designer
can target a different area of the device floorplan), following best practices is
important to maintaining good design performance.

This section presents design and coding style recommendations in the following
chapters:

■ Chapter 9, Recommended Design Practices

This chapter describes synchronous design practices, and provides guidelines for
combinational logic structures and clocking schemes. It also explains how to check
design rules using the Quartus® II Design Assistant. Finally, it discusses use of
clock and register-control features in device architecture.

■ Chapter 10, Recommended HDL Coding Styles

This chapter discusses Altera megafunctions and provides specific Verilog HDL
and VHDL coding examples to insure the Quartus II software infers Altera
dedicated logic such as memory and DSP blocks. It also provides device-specific
coding recommendations for registers and certain logic functions such as tri-state
signals, multiplexers, and cyclic redundancy check (CRC) functions, and includes
references to other Altera documentation for low-level logic design information.

■ Chapter 11, Managing Metastability with the Quartus II Software

This chapter describes ways you can use the Quartus II software to analyze the
average mean time between failures (MTBF) due to metastability caused by
synchronization of asynchronous signals, and optimize the design to improve the
metastability MTBF.

■ Chapter 12, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and partition your
design to take advantage of the compilation time savings, performance
preservation, and hierarchical design features offered by Quartus II incremental
compilation, and to help you create a design floorplan (using LogicLockTM

regions) to support the flow when required.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

III–2 Section III: Design Guidelines
Use this chapter when setting up your design hierarchy and determining the
interfaces between logic blocks in your design, as well as if/when you create a
design floorplan. You can also use this chapter to make changes to a design that
was not originally set up to take advantage of incremental compilation, because it
provides tips on changing a design to work better with an incremental design
flow.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51006-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51006-10.1.0
9. Recommended Design Practices
This chapter provides design recommendations for Altera® devices and describes the
Quartus® II Design Assistant, which helps you check your design for violations of
Altera’s design recommendations. Current FPGA applications have reached the
complexity and performance requirements of ASICs. In the development of complex
system designs, good design practices have an enormous impact on the timing
performance, logic utilization, and system reliability of a device. Well-coded designs
behave in a predictable and reliable manner even when retargeted to different families
or speed grades. Good design practices also aid in successful design migration
between FPGA and HardCopy® or ASIC implementations for prototyping and
production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera devices, you should adhere to the following guidelines:

■ Understand the impact of synchronous design practices

■ Follow recommended design techniques, including hierarchical design
partitioning

■ Take advantage of the architectural features in the targeted device

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 9–2

■ “Design Guidelines” on page 9–4

■ “Checking Design Violations With the Design Assistant” on page 9–13

■ “Targeting Clock and Register-Control Architectural Features” on page 9–19

■ “Targeting Embedded RAM Architectural Features” on page 9–24

f For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital
signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about partitioning a hierarchical
design for incremental compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

f For information about migrating designs to HardCopy devices, refer to the Design
Guidelines for HardCopy Series Devices chapter in volume 1 of the HardCopy Series
Handbook.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51006
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

9–2 Chapter 9: Recommended Design Practices
Synchronous FPGA Design Practices
Synchronous FPGA Design Practices
The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as you ensure that
all the timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily target synchronous designs to different device families or
speed grades. In addition, synchronous design practices help ensure successful
migration if you plan to migrate your design to a high-volume solution such as a
HardCopy device or if you are prototyping an ASIC design.

Fundamentals of Synchronous Design
In a synchronous design, the clock signal controls the activities of all inputs and
outputs. On every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active clock edge, the
outputs of combinational logic feeding the data inputs of registers change values. This
change triggers a period of instability due to propagation delays through the logic as
the signals go through several transitions and finally settle to new values. Changes
that occur on data inputs of registers do not affect the values of their outputs until the
next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as you
meet the following timing requirements:

■ Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

■ After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all of your clock frequencies and other timing requirements, the
Quartus II TimeQuest Timing Analyzer reports actual hardware requirements for the
setup times (tSU) and hold times (tH) for every pin in your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers in your device.

1 To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
input of the device to help prevent a violation of the required setup and hold times.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–3
Synchronous FPGA Design Practices
When you violate the setup or hold time of a register, the output can be set to an
intermediate voltage level between the high and low levels, called a metastable state.
In this unstable state, small perturbations such as noise in power rails can cause the
register to assume either the high or low voltage level, resulting in an unpredictable
valid state. Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

h For information about timing requirements and analysis in the Quartus II software,
refer About TimeQuest Timing Analysis in Quartus II Help.

Hazards of Asynchronous Design
In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
result in incomplete timing constraints and possible glitches and spikes.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster due
to device process improvements, the delays in an asynchronous design may decrease,
resulting in a design that does not function as expected. Specific examples are
provided in “Design Guidelines” on page 9–4. Relying on a particular delay also
makes asynchronous designs difficult to migrate to different architectures, devices, or
speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit several glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

9–4 Chapter 9: Recommended Design Practices
Design Guidelines
Design Guidelines
When designing with HDL code, you should understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your combinational logic
carefully to avoid potential problems and pay attention to your clocking schemes so
you can maintain synchronous functionality and avoid timing problems.

Combinational Logic Structures
Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) of the device’s architecture, with either logic elements (LEs) or
adaptive logic modules (ALMs). For some cases in which combinational logic feeds
registers, the register control signals can implement part of the logic function to save
LUT resources. By following the recommendations in this section, you can improve
the reliability of your combinational design.

Combinational Loops
Combinational loops are among the most common causes of instability and
unreliability in digital designs. They should be avoided whenever possible. In a
synchronous design, feedback loops should include registers. Combinational loops
generally violate synchronous design principles by establishing a direct feedback loop
that contains no registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic, as shown in
Figure 9–1.

1 Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as clear or reset in the Quartus II software.

h If you are using the TimeQuest Timing Analyzer, refer to Specifying Timing Constraints
and Exceptions (TimeQuest Timing Analyzer) in Quartus II Help for details about how
the TimeQuest analyzer performs recovery and removal analysis.

Figure 9–1. Combinational Loop Through Asynchronous Control Pin

D Q

CLRN

Logic
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 9: Recommended Design Practices 9–5
Design Guidelines
Combinational loops are inherently high-risk design structures for the following
reasons:

■ Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches
A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. You can implement latches with the Quartus II Text Editor or Block
Editor. It is common for mistakes in HDL code to cause unintended latch inference;
Quartus II Synthesis issues a warning message if this occurs.

Unlike other technologies, a latch in an FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The TimeQuest analyzer analyzes latches as synchronous elements by default, and
allows you to treat latches as having nontransparent start and end points. Be aware
that even an instantaneous transition through transparent mode can lead to glitch
propagation. The TimeQuest analyzer cannot perform cycle-borrowing analysis; this
is performed instead by the Synopsys PrimeTime third-party timing analysis tool.

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, you should not rely on formal verification for a design
that includes latches.

1 Avoid using latches to ensure that you can completely analyze the timing
performance and reliability of your design.

Delay Chains
Delay chains occur when you use two or more consecutive nodes with a single fan-in
and a single fan-out to cause delay. Inverters are often chained together to add delay.
Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–6 Chapter 9: Recommended Design Practices
Design Guidelines
Delays in PLD designs can change with each placement and routing cycle. Effects
such as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Refer to “Hazards of Asynchronous Design” on page 9–3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to prevent these kinds
of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators
You can use delay chains to generate either one pulse (pulse generators) or a series of
pulses (multivibrators). There are two common methods for pulse generation, as
shown in Figure 9–2. These techniques are purely asynchronous and must be avoided.

In Figure 9–2, a trigger signal feeds both inputs of a 2-input AND gate, but the design
inverts or adds a delay chain to one of the inputs. The width of the pulse depends on
the relative delays of the path that feed the gate directly and the path that goes
through the delay. This is the same mechanism responsible for the generation of
glitches in combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

As also shown in Figure 9–2, a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse width can only
be determined after placement and routing, when routing and propagation delays are
known. You cannot reliably determine the width of the pulse when creating HDL
code, and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. Additionally, static timing analysis cannot be used to verify the
pulse width, so verification is difficult.

Figure 9–2. Asynchronous Pulse Generators

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–7
Design Guidelines
Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. Additionally, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be analyzed by
the design tools.

When you must use a pulse generator, use synchronous techniques, as shown in
Figure 9–3.

In this design, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes
Like combinational logic, clocking schemes have a large effect on the performance
and reliability of a design. Avoid using internally generated clocks wherever possible
because they can cause functional and timing problems in the design. Clocks
generated with combinational logic can introduce glitches that create functional
problems and the delay inherent in combinational logic can lead to timing problems.

1 Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

You use global device-wide, low-skew dedicated routing for all internally-generated
clocks, instead of routing clocks on regular routing lines. For more information, refer
to “Clock Network Resources” on page 9–20.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a Clock Setup Uncertainty and Clock Hold
Uncertainty value of 10% to 15% of the clock delay.

The following sections provide some specific examples and recommendations for
avoiding clocking scheme problems.

Figure 9–3. Recommended Pulse-Generation Technique

D QTrigger Signal

Clock

Pulse

D Q
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–8 Chapter 9: Recommended Design Practices
Design Guidelines
Internally Generated Clocks
If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, expect to see glitches in your design. In a synchronous design, glitches on
data inputs of registers are normal events that have no consequences. However, a
glitch or a spike on the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s minimum pulse
width requirements. Setup and hold times might also be violated if the data input of
the register is changing when a glitch reaches the clock input. Even if the design does
not violate timing requirements, the register output can change value unexpectedly
and cause functional hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational
logic before you use it as a clock signal (Figure 9–4).

Registering the output of combinational logic ensures that the glitches generated by
the combinational logic are blocked at the data input of the register.

Divided Clocks
Designs often require clocks created by dividing a master clock. Most Altera FPGAs
provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks”, and
route the clock on global clock resources. To avoid glitches, do not decode the outputs
of a counter or a state machine to generate clock signals.

Ripple Counters
To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because
the counters are easy to design and may use fewer gates than their synchronous
counterparts. Ripple counters use cascaded registers, in which the output pin of each
register feeds the clock pin of the register in the next stage. This cascading can cause
problems because the counter creates a ripple clock at each stage. These ripple clocks
must be handled properly during timing analysis, which can be difficult and may
require you to make complicated timing assignments in your synthesis and placement
and routing tools.

Figure 9–4. Recommended Clock-Generation Technique

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q

Clock
Generation

Logic
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–9
Design Guidelines
Ripple clock structures are often used to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

Multiplexed Clocks
Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as shown in Figure 9–5. For
example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

■ The clock multiplexing logic does not change after initial configuration

■ The design uses multiplexing logic to select a clock for testing purposes

■ Registers are always reset when the clock switches

■ A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-to-register paths are analyzed
using that clock.

Figure 9–5. Multiplexing Logic and Clock Sources

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–10 Chapter 9: Recommended Design Practices
Design Guidelines
1 Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

f For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

Gated Clocks
Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry, as shown in Figure 9–6. When a clock is turned off, the corresponding clock
domain is shut down and becomes functionally inactive.

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Altera devices to shut down an
entire clock network. Dedicated hardware blocks ensure that you use global routing
with low skew and avoid any possible hold time problems on the device due to logic
delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 9–11.

Figure 9–6. Gated Clock

Clock

Gated Clock

D Q D Q

Gating Signal
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-index.html

Chapter 9: Recommended Design Practices 9–11
Design Guidelines
Synchronous Clock Enables
To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, but it performs the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input of every
register to either load new data or copy the output of the register (Figure 9–7).

Recommended Clock-Gating Methods
Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 9–8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so you can shut down
the entire clock network instead of gating it further along the clock network at the
registers.

In the technique shown in Figure 9–8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated. Use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 9–8. Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the falling edge, use
an OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Figure 9–7. Synchronous Clock Enable

Figure 9–8. Recommended Clock-Gating Technique

D Q

Enable

Data

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–12 Chapter 9: Recommended Design Practices
Design Guidelines
When using this technique, pay attention to the duty cycle of the clock and the delay
through the logic that generates the enable signal because the enable command must
be generated in one-half the clock cycle. This situation might cause problems if the
logic that generates the enable command is particularly complex, or if the duty cycle
of the clock is severely unbalanced. However, careful management of the duty cycle
and logic delay may be an acceptable solution when compared with problems created
by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the Quartus II software. As
shown in Figure 9–8 on page 9–11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer might analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help to reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. This
option is available for all devices that are supported by the TimeQuest analyzer
(Arria® II, Arria II GX, Cyclone® II, Cyclone III, Cyclone IV, HardCopy series,
Stratix® II, Stratix II GX, Stratix III, Stratix IV, and Stratix V devices).

f For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Power Optimization
The total FPGA power consumption is comprised of I/O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven placement and routing.

f For information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook.

f For information about power optimization techniques available for Stratix III devices,
refer to AN 437: Power Optimization in Stratix III FPGAs. For information about power
optimization techniques available for Stratix IV devices, refer to AN 514: Power
Optimization in Stratix IV FPGAs.

h Additionally, you can use the Quartus II PowerPlay suite of power analysis and
optimization tools to help you during the design process by delivering fast and
accurate estimations of power consumption. For information about the Quartus II
PowerPlay suite of power analysis and optimization tools, refer to About Power
Estimation and Analysis in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf

Chapter 9: Recommended Design Practices 9–13
Checking Design Violations With the Design Assistant
Metastability
Metastability in Altera designs can be caused by the synchronization of asynchronous
signals. You can use the Quartus II software to analyze the mean time between
failures (MTBF) due to metastability, thus optimizing the design to improve the
metastability MTBF. A high metastability MTBF indicates a more robust design.

f For more information about how to ensure complete and accurate metastability
analysis, refer to the Managing Metastability With the Quartus II Software chapter in
volume 1 of the Quartus II Handbook.

h For more information about viewing metastability reports, refer to Viewing
Metastability Reports in Quartus II Help.

Incremental Compilation
The incremental compilation feature in the Quartus II software allows you to partition
your design, separately compile partitions, and reuse the results for unchanged
partitions. Incremental compilation flows require more up-front planning than flat
compilations, and generally require you to be more rigorous about following good
design practices than flat compilations.

f For more information about incremental compilation and floorplan assignments, refer
to the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Checking Design Violations With the Design Assistant
To improve the reliability, timing performance, and logic utilization of your design,
practicing good design methodology and understanding how to avoid design rule
violations are important. The Quartus II software provides the Design Assistant tool
that automatically checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical, so you can allow these rule violations.
The Design Assistant generates design violation reports with clear details about each
violation, based on the settings that you specified.

This section provides an introduction to the Quartus II design flow with the Design
Assistant, message severity levels, and an explanation about how to set up the Design
Assistant. The last parts of the section describe the design rules and the reports
generated by the Design Assistant. The Design Assistant supports all Altera devices
supported by the Quartus II software.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm

9–14 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant
Quartus II Design Flow with the Design Assistant
You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. If you set the Design Assistant to run
automatically during compilation, the Design Assistant performs a post-fitting netlist
analysis of your design. The default is to apply all of the rules to your project. If there
are some rules that are unimportant to your design, you can turn off the rules that you
do not want the Design Assistant to use.

h For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.

Figure 9–9 shows the Quartus II software design flow with the Design Assistant.

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
might be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

■ When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

■ When you start the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

Figure 9–9. Quartus II Design Flow with the Design Assistant

Notes to Figure 9–9:

(1) Database of the default rules for the Design Assistant.
(2) A file that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create

this file, refer to “Custom Rules” on page 9–15.

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

Timing Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule Violation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm

Chapter 9: Recommended Design Practices 9–15
Checking Design Violations With the Design Assistant
■ When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the -rtl option with the quartus_drc executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on r

h For more information about Design Assistant settings, refer to About the Design
Assistant and Design Assistant Page (Settings Dialog Box) in Quartus II Help.

Enabling and Disabling Design Assistant Rules

h For more information about enabling or disabling Design Assistant rules on
individual nodes by making an assignment in the Assignment Editor, in the
Quartus II Settings File (.qsf), with the altera_attribute synthesis attribute in Verilog
HDL or VHDL, or with a Tcl command, refer to Enabling Design Assistant Rules on
Nodes, Entities, or Instances, or Disabling Design Assistant Rules on Nodes, Entities, or
Instances in Quartus II Help.

Viewing Design Assistant Results
If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated design rule. The Design
Assistant displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name> subdirectory
of the project directory.

h For information about the contents of the reports generated by the Design Assistant,
refer to Design Assistant Reports in Quartus II Help.

Custom Rules
In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) with the XML format. You then specify the path to that file in the
Design Assistant settings page and run the Design Assistant for violation checking.

The file that contains the default rules for the Design Assistant is located at
<Quartus II install path>\quartus\libraries\design-assistant\da_golden_rule.xml.

h For more information about how to set the file path to your custom rules, refer to
Custom Rules Settings Dialog Box in Quartus II Help. For more information about the
basics of writing custom rules, the Design Assistant settings, and coding examples on
how to check for clock relationship and node relationship in a design, refer to Creating
Custom Design Assistant Rules in Quartus II Help. To specify the rules that you want
the Design Assistant to use when checking for violations, refer to Design Assistant Page
(Settings Dialog Box) in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_da_summary.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_db_custom_rules.htm

9–16 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant
Custom Rules Coding Examples
The following examples of custom rules show how to check node relationships and
clock relationships in a design.

Checking SR Latch Structures In a Design

Example 9–1 shows the XML codes for checking SR latch structures in a design.

In Example 9–1, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></AND> block are tied together, meaning that each
statement in the block must be true for the block to be fulfilled (AND gate similarity).
In the <OR></OR> block, as long as one statement in the block is true, the block is
fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR> block are specified, the
default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

Example 9–1. Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>

<FORBID>
<OR>

<NODE NAME="NODE_1" TYPE="SRLATCH" />
<HAS_NODE NODE_LIST="NODE_1" />
<NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
<NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
TO_TYPE="NAND" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
TO_TYPE="NAND" />

</AND>
<AND>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />

</AND>
</OR>

</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />

</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–17
Checking Design Violations With the Design Assistant
The following examples are the undesired conditions from Example 9–1 with their
equivalent block diagrams (Figure 9–10 and Figure 9–11):

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"

TO_TYPE="NAND" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"

TO_TYPE="NAND" />
</AND>

<AND>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2" TO_TYPE="NOR" />
<NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1" TO_TYPE="NOR" />

</AND>

Relating Nodes to a Clock Domain

Example 9–2 shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes to
clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 9–2 checks for the synchronizer configuration based on the following
guidelines:

■ The cascading registers need to be triggered on the same clock edge

Figure 9–10. Undesired Condition 1

Figure 9–11. Undesired Condition 2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–18 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant
■ There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN means
non-asynchronous. This notation is useful for describing nodes that are in different
clock domains. The following lines from Example 9–2 state that NODE_2 and NODE_3 are
in the same clock domain, but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

The next line of code states that NODE_2 and NODE_3 have a clock relationship of either
sequential edge or asynchronous.

 <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

Example 9–2. Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>

<NODE NAME="NODE_1" TYPE="REG" />
<NODE NAME="NODE_2" TYPE="REG" />
<NODE NAME="NODE_3" TYPE="REG" />

</DECLARE>
<FORBID>

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<OR>
<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"

REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />
<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

</OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">

<MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
<MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">

<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
<MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />

</MESSAGE>
</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–19
Targeting Clock and Register-Control Architectural Features
The following examples are the undesired conditions from Example 9–2 with their
equivalent block diagrams (Figure 9–12 and Figure 9–13):

Targeting Clock and Register-Control Architectural Features
In addition to following general design guidelines, you must code your design with
the device architecture in mind. FPGAs provide device-wide clocks and register
control signals that can improve performance.

Example 9–3.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

Figure 9–12. Undesired Condition 3

Example 9–4.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 9–13. Undesired Condition 4
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–20 Chapter 9: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Clock Network Resources
Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or with a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In an ASIC design, you should balance the clock delay as it is distributed across the
device. Because Altera FPGAs provide device-wide global clock routing resources
and dedicated inputs, there is no need to manually balance delays on the clock
network.

You should limit the number of clocks in your design to the number of dedicated
global clock resources available in your FPGA. Clocks feeding multiple locations that
do not use global routing may exhibit clock skew across the device that could lead to
timing problems. In addition, when you use combinational logic to generate an
internal clock, it adds delays on the clock line. In some cases, delay on a clock line can
result in a clock skew greater than the data path length between two registers. If the
clock skew is greater than the data delay, the timing parameters of the register (such
as hold time requirements) are violated and the design does not function correctly.

FPGAs offer increasing numbers of global clocks to address large designs with many
clock domains. Many large FPGA devices provide dedicated global clock networks,
regional clock networks, and dedicated fast regional clock networks. These clocks are
organized into a hierarchical clock structure that allows many clocks in each device
region with low skew and delay. There are typically several dedicated clock pins to
drive either global or regional clock networks, and both PLL outputs and internal
clocks can drive various clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Quartus II software automatically uses global
routing for high fan-out control signals, PLL outputs, and signals feeding the global
clock pins on the device. You can make explicit Global Signal logic option settings by
turning on the Global Signal option settings. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Altera device families (such as FLEX® 10K and
ACEX® 1K), if a clock signal feeds the data ports of a register, the signal may not be
able to use dedicated routing, which can lead to decreased performance and clock
skew problems. In general, allowing clock signals to drive the data ports of registers is
not considered synchronous design and can complicate timing analysis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–21
Targeting Clock and Register-Control Architectural Features
Reset Resources
ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

Three types of resets are used in synchronous circuits:

■ Synchronous Reset

■ Asynchronous Reset

■ Synchronized Asynchronous Reset—this type is preferred when designing an
FPGA circuit

Synchronous Reset
The synchronous reset ensures that the circuit is fully synchronous. You can easily
time it with static timing analyzer tools, such as the Quartus II TimeQuest analyzer.
The synchronous reset is easier to use with cycle-based simulators.

However, the synchronous reset might require pulse stretchers to guarantee a reset
pulse width wide enough to ensure that reset is present during an active edge of the
clock. The synchronous reset requires a clock to reset a circuit. If the clock fails to
launch, the resulting circuit is not reset.

Asynchronous Reset
The asynchronous reset is the most common form of reset used in circuit designs.
Typically, you can insert the asynchronous reset into the device, turn on the global
buffer, and connect to the asynchronous reset pin of every register in the device. This
method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the data path, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers receive
the reset pulse, the registers are reset. The asynchronous reset is not dependent on the
clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or
removal (µtH) time check (both times are checked by the TimeQuest analyzer
Recovery and Removal Analysis), the edge is said to have fallen in the metastability
zone. Additional time is required to determine the correct state, and the delay can
cause the setup time to fail to register downstream, leading to system failure.

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced and
filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

9–22 Chapter 9: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features
Synchronized Asynchronous Reset
To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets. These resets are asynchronously asserted and synchronously deasserted. This
takes effect almost instantaneously, and ensures that no data path for speed is
involved, and that the circuit is synchronous for timing analysis and is resistant to
noise.

Figure 9–14 shows a method for implementing the synchronized asynchronous reset.
You should use synchronizer registers in a similar manner as synchronous resets.
However, the asynchronous reset input is gated directly to the CLRN pin of the
synchronizer registers and immediately asserts the resulting reset. When the reset is
deasserted, logic “1” is clocked through the synchronizers to synchronously deassert
the resulting reset.

Figure 9–14. Schematic of Synchronized Asynchronous Reset
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 9: Recommended Design Practices 9–23
Targeting Clock and Register-Control Architectural Features
Example 9–5 shows the equivalent Verilog code. The active edge of the reset is used in
the sensitivity list for the blocks in Figure 9–14.

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (reset_n) must be cut with a set_false_path command, so
the reset that comes from the synchronization register (rst_n) can be timed in the
TimeQuest analyzer with Recovery and Removal Analysis.

f For more information about specifying the minimum routing delay, refer to the Best
Practices for the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Example 9–5. Verilog Code for Synchronized Asynchronous Reset

module sync_async_reset (
input clock,
input reset_n,
input data_a,
input data_b,
output out_a,
output out_b
);

reg reg1, reg2;
reg reg3, reg4;

assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;

always @ (posedge clock, negedge reset_n)
begin

if (!reset_n)
begin

reg3 <= 1’b0;
reg4 <= 1;b0;

end
else
begin

reg3 <= 1’b1;
reg4 <= reg3;

end
end

always @ (posedge clock, negedge rst_n)
begin

if (!rst_n)
begin

reg1 <= 1’b0;
reg2 <= 1;b0;

end
else
begin

reg1 <= data_a;
reg2 <= data_b;

end
end

endmodule // sync_async_reset
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf

9–24 Chapter 9: Recommended Design Practices
Targeting Embedded RAM Architectural Features
The circuit in Figure 9–14 on page 9–22 ensures that the synchronized asynchronous
reset is at least one full clock period in length. To extend this time to n clock periods,
you must increase the number of synchronizer registers to n + 1. You must connect the
asynchronous input reset (reset_n) to the CLRN pin of all the synchronizer registers to
maintain the asynchronous assertion of the synchronized asynchronous reset.

Register Control Signals
Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid
using both asynchronous clear and preset if the architecture provides only one of
these control signals. Stratix III devices, for example, directly support an
asynchronous clear function, but not a preset or load function. When the target device
does not directly support the signals, the synthesis or placement and routing software
must use combinational logic to implement the same functionality. In addition, if you
use signals in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the necessary control signals.
Combinational logic is less efficient and can cause glitches and other problems; it is
best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control signals, and
information about the inherent priority order of register control signals in Altera
device architecture, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

Targeting Embedded RAM Architectural Features
Altera’s dedicated memory architecture offers many advanced features that you can
target easily with the MegaWizard™ Plug-In Manager or with the recommended HDL
coding styles that infer the appropriate RAM megafunction (ALTSYNCRAM or
ALTDPRAM). Use synchronous memory blocks for your design, so the blocks can be
mapped directly into the device dedicated memory blocks. You can use single-port,
dual-port, or three-port RAM with a single- or dual-clocking method. Asynchronous
memory logic is not inferred as a memory block or placed in the dedicated memory
block, but is implemented in regular logic cells.

Altera memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

It is important to check how you specify the memory in your HDL code when you use
read-during-write behavior. The HDL code that describes the read returns either the
old data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port
RAM in Arria GX devices and the Cyclone and Stratix series of devices to avoid this
extra logic implementation.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Recommended Design Practices 9–25
Conclusion
f For Verilog HDL and VHDL examples and guidelines for inferring RAM functions
that match the dedicated memory architecture in Altera devices, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Quartus II integrated synthesis, add the synthesis
attribute ramstyle=”no_rw_check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block and, in some
cases, can allow memory inference when it would otherwise be impossible.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about the
synthesis attributes in other synthesis tools, refer to your synthesis tool
documentation, or to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook.

Conclusion
Following the design practices described in this chapter can help you to consistently
meet your design goals. Asynchronous design techniques may result in incomplete
timing analysis, may cause glitches on data signals, and may rely on propagation
delays in a device leading to race conditions and unpredictable results. Taking
advantage of the architectural features in your FPGA device can also improve the
quality of your results.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9–26 Chapter 9: Recommended Design Practices
Document Revision History
Document Revision History
Table 9–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 9–1. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Title changed from Design Recommendations for Altera Devices and the Quartus II
Design Assistant.

■ Updated to new template.

■ Added references to Quartus II Help for “Metastability” on page 9–13 and
“Incremental Compilation” on page 9–13.

■ Removed duplicated content and added references to Quartus II Help for “Custom
Rules” on page 9–15.

July 2010 10.0.0

■ Removed duplicated content and added references to Quartus II Help for Design
Assistant settings, Design Assistant rules, Enabling and Disabling Design Assistant
Rules, and Viewing Design Assistant reports.

■ Removed information from “Combinational Logic Structures” on page 5–4

■ Changed heading from “Design Techniques to Save Power” to “Power
Optimization” on page 5–12

■ Added new “Metastability” section

■ Added new “Incremental Compilation” section

■ Added information to “Reset Resources” on page 5–23

■ Removed “Referenced Documents” section

November 2009 9.1.0 ■ Removed documentation of obsolete rules.

March 2009 9.0.0 ■ No change to content.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Added new section “Custom Rules Coding Examples” on page 5–18

■ Added paragraph to “Recommended Clock-Gating Methods” on page 5–11

■ Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0

■ Updated Figure 5–9 on page 5–13; added custom rules file to the flow

■ Added notes to Figure 5–9 on page 5–13

■ Added new section: “Custom Rules Report” on page 5–34

■ Added new section: “Custom Rules” on page 5–34

■ Added new section: “Targeting Embedded RAM Architectural Features” on
page 5–38

■ Minor editorial updates throughout the chapter

■ Added hyperlinks to referenced documents throughout the chapter
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51007-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51007-10.1.0
10. Recommended HDL Coding Styles
This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Altera® devices.

HDL coding styles can have a significant effect on the quality of results that you
achieve for programmable logic designs. Synthesis tools optimize HDL code for both
logic utilization and performance, however, synthesis tools have no information
about the purpose or intent of the design. The best optimizations often require
conscious interaction by you, the designer.

This chapter includes the following sections:

■ “Quartus II Language Templates”

■ “Using Altera Megafunctions” on page 10–2

■ “Instantiating Altera Megafunctions in HDL Code” on page 10–3

■ “Inferring Multiplier and DSP Functions from HDL Code” on page 10–5

■ “Inferring Memory Functions from HDL Code” on page 10–13

■ “Coding Guidelines for Registers and Latches” on page 10–43

■ “General Coding Guidelines” on page 10–53

■ “Designing with Low-Level Primitives” on page 10–73

f For additional guidelines about structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook. For additional handcrafted techniques you can
use to optimize design blocks for the adaptive logic modules (ALMs) in many Altera
devices, including a collection of circuit building blocks and related discussions, refer
to the Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and
Stratix IV Devices.

f The Altera website also provides design examples for other types of functions and to
target specific applications. For more information about design examples, refer to the
Design Examples page and the Reference Designs page on the Altera website.

For style recommendations, options, or HDL attributes specific to your synthesis tool
(including Quartus® II integrated synthesis and other EDA tools), refer to the tool
vendor’s documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Quartus II Language Templates
Many of the Verilog HDL and VHDL examples in this document correspond with
examples in the Full Designs section of the Quartus II Templates. You can easily insert
examples into your HDL source code using the Insert Template dialog box in the
Quartus II software user interface, shown in Figure 10–1.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51007
http://www.altera.com/support/refdesigns/ref-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/examples/exm-index.html

10–2 Chapter 10: Recommended HDL Coding Styles
Using Altera Megafunctions
To open the Insert Template dialog box when you have a file open in the Text Editor
of the Quartus II software, on the Edit menu, click Insert Template. Alternatively, you
can right-click in the Text Editor window and click Insert Template.

Using Altera Megafunctions
Altera provides parameterizable megafunctions that are optimized for Altera device
architectures. Using megafunctions instead of coding your own logic saves valuable
design time. Additionally, the Altera-provided megafunctions may offer more
efficient logic synthesis and device implementation. You can scale the megafunction’s
size and specify various options by setting parameters. Megafunctions include the
library of parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as described in
“Instantiating Altera Megafunctions in HDL Code” on page 10–3.

Sometimes it is preferable to make your code independent of device family or vendor.
In this case, you might not want to instantiate megafunctions directly. For some types
of logic functions, such as memories and DSP functions, you can infer device-specific
dedicated architecture blocks instead of instantiating a megafunction. Synthesis tools,
including Quartus II integrated synthesis, recognize certain types of HDL code and
automatically infer the appropriate megafunction or map directly to device atoms.
Synthesis tools infer megafunctions to take advantage of logic that is optimized for
Altera devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of instantiating a specific
function, follow the guidelines and coding examples in “Inferring Multiplier and DSP
Functions from HDL Code” on page 10–5 and “Inferring Memory Functions from
HDL Code” on page 10–13 to ensure your HDL code infers the appropriate function.

Figure 10–1. Insert Template Dialog Box
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–3
Instantiating Altera Megafunctions in HDL Code
1 You can infer or instantiate megafunctions to target some Altera device-specific
architecture features such as memory and DSP blocks. You must instantiate
megafunctions to target certain other device and high-speed features, such as LVDS
drivers, phase-locked loops (PLLs), transceivers, and double-data rate input/output
(DDIO) circuitry.

Instantiating Altera Megafunctions in HDL Code
The following sections describe how to use megafunctions by instantiating them in
your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In Manager”—You can
use the MegaWizard™ Plug-In Manager to parameterize the function and create a
wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can optionally create a
netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter Definition”—You can
instantiate the function directly in your HDL code.

Instantiating Megafunctions Using the MegaWizard Plug-In Manager
Use the MegaWizard Plug-In Manager as described in this section to create
megafunctions in the Quartus II software that you can instantiate in your HDL code.
The MegaWizard Plug-In Manager provides a GUI to customize and parameterize
megafunctions, and ensures that you set all megafunction parameters properly. When
you finish setting parameters, you can specify which files you want generated.
Depending on which language you choose, the MegaWizard Plug-In Manager
instantiates the megafunction with the correct parameters and generates a
megafunction variation file (wrapper file) in Verilog HDL (.v), VHDL (.vhd), or
AHDL (.tdf), along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the files listed in
Table 10–1.

Table 10–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v|.vhd|.tdf (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL, VHDL, or AHDL design respectively.

<output file>.inc ADHL Include File—Used in AHDL Text Design Files (.tdf).

<output file>.cmp Component Declaration File—Used in VHDL design files.

<output file>.bsf Block Symbol File—Used in Quartus II schematic Block Design Files (.bdf).

<output file>_inst.v|.vhd|.tdf HDL Instantiation Template for the language of the variation file—Sample instantiation of
the Verilog HDL module, VHDL entity, or AHDL subdesign.

<output file>_bb.v
Black box Verilog HDL Module Declaration—Hollow-body module declaration that can
be used in Verilog HDL designs to specify port directions when instantiating the
megafunction as a black box in third-party synthesis tools.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–4 Chapter 10: Recommended HDL Coding Styles
Instantiating Altera Megafunctions in HDL Code
Creating a Netlist File for Other Synthesis Tools
When you use certain megafunctions with other EDA synthesis tools (that is, tools
other than Quartus II integrated synthesis), you can optionally create a netlist for
timing and resource estimation instead of a wrapper file.

The netlist file is a representation of the customized logic used in the Quartus II
software. The file provides the connectivity of architectural elements in the
megafunction but may not represent true functionality. This information enables
certain other EDA synthesis tools to better report timing and resource estimates. In
addition, synthesis tools can use the timing information to focus timing-driven
optimizations and improve the quality of results.

To generate the netlist, turn on Generate netlist under Timing and resource
estimation on the EDA page of the MegaWizard Plug-In Manager. The netlist file is
called <output file>_syn.v. If you use this netlist for synthesis, you must include the
megafunction wrapper file, either <output file>.v or <output file>.vhd, for placement
and routing in the project created with the Quartus II software.

Because your synthesis tool may call the Quartus II software in the background to
generate this netlist, turning on this option might not be required.

f For information about support for timing and resource estimation netlists in your
synthesis tool, refer to the tool vendor’s documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Instantiating Megafunctions Using the Port and Parameter Definition
You can instantiate the megafunction directly in your Verilog HDL, VHDL, or AHDL
code by calling the megafunction and setting its parameters as you would any other
module, component, or subdesign.

f For a list of the megafunction ports and parameters, refer to the specific megafunction
in the Quartus II Help. You can also refer to the IP and Megafunction page on the
Altera website.

1 Altera strongly recommends that you use the MegaWizard Plug-In Manager for
complex megafunctions such as PLLs, transceivers, and LVDS drivers. For details
about using the MegaWizard Plug-In Manager, refer to “Instantiating Megafunctions
Using the MegaWizard Plug-In Manager” on page 10–3.

<output file>_syn.v
Synthesis timing and resource estimation netlist—Additional synthesis netlist file
created if you enable the option to generate a synthesis timing and resource estimation
netlist. Refer to “Creating a Netlist File for Other Synthesis Tools” for details.

Note to Table 10–1:

(1) The MegaWizard Plug-In Manager generates a .v, .vhd, or .tdf file, depending on the language you select for the output file on the megafunction-
selection page of the wizard.

Table 10–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 10: Recommended HDL Coding Styles 10–5
Inferring Multiplier and DSP Functions from HDL Code
Inferring Multiplier and DSP Functions from HDL Code
The following sections describe how to infer multiplier and DSP functions from
generic HDL code, and, if applicable, how to target the dedicated DSP block
architecture in Altera devices:

■ “Inferring Multipliers from HDL Code”

■ “Inferring Multiply-Accumulators and Multiply-Adders from HDL Code” on
page 10–8

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

f For more design examples involving advanced multiply functions and complex DSP
functions, refer to the DSP Design Examples page on the Altera website.

Inferring Multipliers from HDL Code
To infer multiplier functions, synthesis tools look for multipliers and convert them to
LPM_MULT or ALTMULT_ADD megafunctions, or may map them directly to device
atoms. For devices with DSP blocks, the software can implement the function in a DSP
block instead of logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register packing) to
improve performance and area utilization.

f For additional information about the DSP block and supported functions, refer to the
appropriate Altera device family handbook and the Altera DSP Solutions Center
website.

Example 10–1 and Example 10–2 show Verilog HDL code examples, and
Example 10–3 and Example 10–4 show VHDL code examples, for unsigned and
signed multipliers that synthesis tools can infer as a megafunction or DSP block
atoms. Each example fits into one DSP block element. In addition, when register
packing occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 10–1. Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/technology/dsp/dsp-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html

10–6 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 10–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed_mult (out, clk, a, b);
output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–7
Inferring Multiplier and DSP Functions from HDL Code
Example 10–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

Example 10–4. VHDL Signed Multiplier

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN

result <= a * b;
END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–8 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Inferring Multiply-Accumulators and Multiply-Adders from HDL Code
Synthesis tools detect multiply-accumulators or multiply-adders and convert them to
ALTMULT_ACCUM or ALTMULT_ADD megafunctions, respectively, or may map
them directly to device atoms. The Quartus II software then places these functions in
DSP blocks during placement and routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder functions only if the
Altera device family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator.
The addition operator feeds a set of registers that then feeds the second input to the
addition operator. A simple multiply-adder consists of two to four multipliers feeding
one or two levels of addition, subtraction, or addition/subtraction operators.
Addition is always the second-level operator, if it is used. In addition to the
multiply-accumulator and multiply-adder, the Quartus II Fitter also places input and
output registers into the DSP blocks to pack registers and improve performance and
area utilization.

Some device families offer additional advanced multiply-add and accumulate
functions, such as complex multiplication, input shift register, or larger
multiplications.

f For details about advanced DSP block features, refer to the appropriate device
handbook. For more design examples of DSP functions and inferring advanced
features in the multiply-add and multiply-accumulate circuitry, refer to the DSP
Design Examples page on Altera’s website.

The Verilog HDL and VHDL code samples in Example 10–5 through Example 10–8 on
pages 10–9 through 10–12 infer multiply-accumulators and multiply-adders with
input, output, and pipeline registers, as well as an optional asynchronous clear signal.
Using the three sets of registers provides the best performance through the function,
with a latency of three. You can remove the registers in your design to reduce the
latency.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/examples/exm-index.html

Chapter 10: Recommended HDL Coding Styles 10–9
Inferring Multiplier and DSP Functions from HDL Code
Example 10–5. Verilog HDL Unsigned Multiply-Accumulator

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output reg[16:0] dataout;

reg [7:0] dataa_reg, datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [16:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 17'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–10 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 10–6. Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr,
result);

input signed [15:0] dataa, datab, datac, datad;
input clock, aclr;
output reg signed [32:0] result;

reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
reg signed [31:0] mult0_result, mult1_result;

always @ (posedge clock or posedge aclr) begin
 if (aclr) begin
 dataa_reg <= 16'b0;
 datab_reg <= 16'b0;
 datac_reg <= 16'b0;
 datad_reg <= 16'b0;
 mult0_result <= 32'b0;
 mult1_result <= 32'b0;
 result <= 33'b0;
 end
 else begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 datac_reg <= datac;
 datad_reg <= datad;
 mult0_result <= dataa_reg * datab_reg;
 mult1_result <= datac_reg * datad_reg;
 result <= mult0_result + mult1_result;
 end

end
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–11
Inferring Multiplier and DSP Functions from HDL Code
Example 10–7. VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

 IF (aclr = '1') then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 pdt_reg <= (others => '0');
 adder_out <= (others => '0');
 ELSIF (clk'event and clk = '1') THEN

a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–12 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code
Example 10–8. VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–13
Inferring Memory Functions from HDL Code
Inferring Memory Functions from HDL Code
The following sections describe how to infer memory functions from generic HDL
code and, if applicable, to target the dedicated memory architecture in Altera devices:

■ “Inferring RAM functions from HDL Code” on page 10–13

■ “Inferring ROM Functions from HDL Code” on page 10–36

■ “Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code”
on page 10–40

f For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

Altera’s dedicated memory architecture offers a number of advanced features that can
be easily targeted using the MegaWizard Plug-In Manager, as described in
“Instantiating Altera Megafunctions in HDL Code” on page 10–3. The coding
recommendations in the following sections provide portable examples of generic
HDL code that infer the appropriate megafunction. However, if you want to use some
of the advanced memory features in Altera devices, consider using the megafunction
directly so that you can control the ports and parameters more easily.

Inferring RAM functions from HDL Code
To infer RAM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or ALTDPRAM megafunctions for device families
that have dedicated RAM blocks, or may map them directly to device memory atoms.
Tools typically consider all signals and variables that have a multi-dimensional array
type and then create a RAM block, if applicable, based on the way the signals,
variables, or both are assigned, referenced, or both in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Some tools (such as the Quartus II software) also
recognize true dual-port (two read ports and two write ports) RAM blocks that map
to the memory blocks in certain Altera devices.

Some tools (such as the Quartus II software) also infer memory blocks for array
variables and signals that are referenced (read/written) by two indices, to recognize
mixed-width and byte-enabled RAMs for certain coding styles.

1 If your design contains a RAM block that your synthesis tool does not recognize and
infer, the design might require a large amount of system memory that can potentially
cause compilation problems.

When you use a formal verification flow, Altera recommends that you create RAM
blocks in separate entities or modules that contain only the RAM logic. In certain
formal verification flows, for example, when using Quartus II integrated synthesis,
the entity or module containing the inferred RAM is put into a black box
automatically because formal verification tools do not support RAM blocks. The
Quartus II software issues a warning message when this situation occurs. If the entity
or module contains any additional logic outside the RAM block, this logic cannot be
verified because it also must be treated as a black box for formal verification.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–14 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
The following sections present several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then provide
recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks
Altera recommends using synchronous memory blocks for Altera designs. Because
memory blocks in the newest devices from Altera are synchronous, RAM designs that
are targeted towards architectures that contain these dedicated memory blocks must
be synchronous to be mapped directly into the device architecture. For these devices,
asynchronous memory logic is implemented in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory,
including higher frequencies and thus higher memory bandwidth, increased
reliability, and less standby power. In many designs with asynchronous memory, the
memory interfaces with synchronous logic so that the conversion to synchronous
memory design is straightforward. To convert asynchronous memory you can move
registers from the data path into the memory block.

Synchronous memories are supported in all Altera device families. A memory block is
considered synchronous if it uses one of the following read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or a VHDL
clocked process. The recommended coding style for synchronous memories is to
create your design with a registered read output.

■ Memory read occurs outside a clocked block, but there is a synchronous read
address (that is, the address used in the read statement is registered). This type of
logic is not always inferred as a memory block, or may require external bypass
logic, depending on the target device architecture.

1 The synchronous memory structures in Altera devices can differ from the structures
in other vendors’ devices. For best results, match your design to the target device
architecture.

Later sections provide coding recommendations for various memory types. All of
these examples are synchronous to ensure that they can be directly mapped into the
dedicated memory architecture available in Altera FPGAs.

f For additional information about the dedicated memory blocks in your specific
device, refer to the appropriate Altera device family data sheet on the Altera website
at www.altera.com.

Avoid Unsupported Reset and Control Conditions
To ensure that your HDL code can be implemented in the target device architecture,
avoid unsupported reset conditions or other control logic that does not exist in the
device architecture.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com

Chapter 10: Recommended HDL Coding Styles 10–15
Inferring Memory Functions from HDL Code
The RAM contents of Altera memory blocks cannot be cleared with a reset signal
during device operation. If your HDL code describes a RAM with a reset signal for the
RAM contents, the logic is implemented in regular logic cells instead of a memory
block. Altera recommends against putting RAM read or write operations in an always
block or process block with a reset signal. If you want to specify memory contents,
initialize the memory as described in “Specifying Initial Memory Contents at
Power-Up” on page 10–33 or write the data to the RAM during device operation.

Example 10–9 shows an example of undesirable code where there is a reset signal that
clears part of the RAM contents. Avoid this coding style because it is not supported in
Altera memories.

Example 10–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(

input clock, reset, we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–16 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 10–10 shows an example of undesirable code where the reset signal affects
the RAM, although the effect may not be intended. Avoid this coding style because it
is not supported in Altera memories.

In addition to reset signals, other control logic can prevent memory logic from being
inferred as a memory block. For example, you cannot use a clock enable on the read
address registers in Stratix® devices because doing so affects the output latch of the
RAM, and therefore the synthesized result in the device RAM architecture would not
match the HDL description. You can use the address stall feature as a read address
clock enable in Stratix II, Cyclone® II, Arria® GX, and other newer devices to avoid
this limitation. Check the documentation for your device architecture to ensure that
your code matches the hardware available in the device.

Check Read-During-Write Behavior
It is important to check the read-during-write behavior of the memory block
described in your HDL design as compared to the behavior in your target device
architecture. Your HDL source code specifies the memory behavior when you read
and write from the same memory address in the same clock cycle. The code specifies
that the read returns either the old data at the address, or the new data being written
to the address. This behavior is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write behavior
depending on the target device family, memory mode, and block type.

Example 10–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–17
Inferring Memory Functions from HDL Code
Synthesis tools map an HDL design into the target device architecture, with the goal
of maintaining the functionality described in your source code. Therefore, if your
source code specifies unsupported read-during-write behavior for the device RAM
blocks, the software must implement the logic outside the RAM hardware in regular
logic cells.

One common problem occurs when there is a continuous read in the HDL code, as in
the following examples. You should avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

When a write operation occurs, this type of HDL implies that the read should
immediately reflect the new data at the address, independent of the read clock.
However, that is not the behavior of synchronous memory blocks. In the device
architecture, the new data is not available until the next edge of the read clock.
Therefore, if the synthesis tool mapped the logic directly to a synchronous memory
block, the device functionality and gate-level simulation results would not match the
HDL description or functional simulation results. If the write clock and read clock are
the same, the synthesis tool can infer memory blocks and add extra bypass logic so
that the device behavior matches the HDL behavior. If the write and read clocks are
different, the synthesis tool cannot reliably add bypass logic, so the logic is
implemented in regular logic cells instead of dedicated RAM blocks. The examples in
the following sections discuss some of these differences for read-during-write
conditions.

In addition, the MLAB feature in certain device logic array blocks (LABs) does not
easily support old data or new data behavior for a read-during-write in the dedicated
device architecture. Implementing the extra logic to support this behavior
significantly reduces timing performance through the memory.

1 For best performance in MLAB memories, your design should not depend on the read
data during a write operation.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; for example, if you never read from the same address to
which you write in the same clock cycle. For Quartus II integrated synthesis, add the
synthesis attribute ramstyle set to "no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior specified by your
HDL code. In some cases, this attribute prevents the synthesis tool from using extra
logic to implement the memory block, or can allow memory inference when it would
otherwise be impossible.

Synchronous RAM blocks require a synchronous read, so Quartus II integrated
synthesis packs either data output registers or read address registers into the RAM
block. When the read address registers are packed into the RAM block, the read
address signals connected to the RAM block contain the next value of the read
address signals indexing the HDL variable, which impacts which clock cycle the read
and the write occur, and changes the read-during-write conditions. Therefore, bypass
logic may still be added to the design to preserve the read-during-write behavior,
even if the "no_rw_check" attribute is set.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–18 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
f For more information about attribute syntax, the no_rw_check attribute value, or
specific options for your synthesis tool, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

The next section describes how you control the logic implementation in the Altera
device, and the following sections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior and addresses
the support for the memory type in Altera devices.

Controlling Inference and Implementation in Device RAM Blocks
Tools usually do not infer small RAM blocks because small RAM blocks typically can
be implemented more efficiently using the registers in regular logic. If you are using
Quartus II integrated synthesis, you can direct the software to infer RAM blocks for
all sizes with the Allow Any RAM Size for Recognition option in the More Analysis
& Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred RAM
blocks for Altera devices with synchronous memory blocks. For example, Quartus II
integrated synthesis provides the ramstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block. Quartus II integrated synthesis does not map inferred memory into MLABs
unless the HDL code specifies the appropriate ramstyle attribute, although the Fitter
may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

If you want to control the implementation after the RAM function is inferred during
synthesis, you can set the ram_block_type parameter of the ALTSYNCRAM
megafunction. In the Assignment Editor, select Parameters in the Categories list. You
can use the Node Finder or drag the appropriate instance from the Project Navigator
window to enter the RAM hierarchical instance name. Type ram_block_type as the
Parameter Name and type one of the following memory types supported by your
target device family in the Value field: "M-RAM", "M4K", "M20K", "M512", "M9K", "M144K", or
"MLAB".

You can also specify the maximum depth of memory blocks used to infer RAM or
ROM in your design. Apply the max_depth synthesis attribute to the declaration of a
variable that represents a RAM or ROM in your design file. For example:

// Limit the depth of the memory blocks implement "ram" to 512
// This forces the software to use two M512 blocks instead of one M4K block to
implement this RAM

(* max_depth = 512 *) reg [7:0] ram[0:1023];

Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
The code examples in this section show Verilog HDL and VHDL code that infers
simple dual-port, single-clock synchronous RAM. Single-port RAM blocks use a
similar coding style.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 10: Recommended HDL Coding Styles 10–19
Inferring Memory Functions from HDL Code
The read-during-write behavior in these examples is to read the old data at the
memory address. Refer to “Check Read-During-Write Behavior” on page 10–16 for
details. Altera recommends that you use the Old Data Read-During-Write coding
style for most RAM blocks as long as your design does not require the RAM location’s
new value when you perform a simultaneous read and write to that RAM location.
For best performance in MLAB memories, use the appropriate attribute so that your
design does not depend on the read data during a write operation.

If you require that the read-during-write results in new data, refer to “Single-Clock
Synchronous RAM with New Data Read-During-Write Behavior” on page 10–20.

The simple dual-port RAM code samples in Example 10–11 and Example 10–12 map
directly into Altera synchronous memory.

Single-port versions of memory blocks (that is, using the same read address and write
address signals) can allow better RAM utilization than dual-port memory blocks,
depending on the device family.

Example 10–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address]; // q doesn't get d in this clock cycle
 end
endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–20 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
The examples in this section describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being written to that
RAM location.

To implement this behavior in the target device, synthesis software adds bypass logic
around the RAM block. This bypass logic increases the area utilization of the design
and decreases the performance if the RAM block is part of the design’s critical path.
Refer to “Check Read-During-Write Behavior” on page 10–16 for details. If this
behavior is not required for your design, use the examples from “Single-Clock
Synchronous RAM with Old Data Read-During-Write Behavior” on page 10–18.

The simple dual-port RAM in Example 10–13 and Example 10–14 require the software
to create bypass logic around the RAM block.

Single-port versions of the Verilog memory block (that is, using the same read address
and write address signals) do not require any logic cells to create bypass logic in the
Arria, Stratix, and Cyclone series of devices, because the device memory supports
new data read-during-write behavior when in single-port mode (same clock, same
read address, and same write address).

Example 10–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–21
Inferring Memory Functions from HDL Code
1 Example 10–13 is similar to Example 10–11, but Example 10–13 uses a blocking
assignment for the write so that the data is assigned immediately.

An alternative way to create a single-clock RAM is to use an assign statement to read
the address of mem to create the output q, as shown in the following coding style
example. By itself, the code describes new data read-during-write behavior. However,
if the RAM output feeds a register in another hierarchy, a read-during-write results in
the old data. Synthesis tools may not infer a RAM block if the tool cannot determine
which behavior is described, such as when the memory feeds a hard hierarchical
partition boundary. For this reason, avoid using this alternate type of coding style:

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

Example 10–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if

// we is high
end

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–22 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
The VHDL sample in Example 10–14 uses a concurrent signal assignment to read
from the RAM. By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, a read-during-write
results in the old data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds a hard
hierarchical partition boundary.

For Quartus II integrated synthesis, if you do not require the read-through-write
capability, add the synthesis attribute ramstyle="no_rw_check" to allow the software
to choose the read-during-write behavior of a RAM, rather than using the behavior
specified by your HDL code. As discussed in “Check Read-During-Write Behavior”
on page 10–16, this attribute may prevent generation of extra bypass logic but it is not
always possible to eliminate the requirement for bypass logic.

Simple Dual-Port, Dual-Clock Synchronous RAM
In dual clock designs, synthesis tools cannot accurately infer the read-during-write
behavior because it depends on the timing of the two clocks within the target device.
Therefore, the read-during-write behavior of the synthesized design is undefined and
may differ from your original HDL code. Refer to “Check Read-During-Write
Behavior” on page 10–16 for details.

Example 10–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–23
Inferring Memory Functions from HDL Code
When Quartus II integrated synthesis infers this type of RAM, it issues a warning
because of the undefined read-during-write behavior. If this functionality is
acceptable in your design, you can avoid the warning by adding the synthesis
attribute ramstyle="no_rw_check"to allow the software to choose the read-during-
write behavior of a RAM.

The code samples in Example 10–15 and Example 10–16 show Verilog HDL and
VHDL code that infers dual-clock synchronous RAM. The exact behavior depends on
the relationship between the clocks.

Example 10–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock_ram(
output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–24 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
True Dual-Port Synchronous RAM
The code examples in this section show Verilog HDL and VHDL code that infers true
dual-port synchronous RAM. Different synthesis tools may differ in their support for
these types of memories. This section describes the inference rules for Quartus II
integrated synthesis. This type of RAM inference is supported for the Arria GX,
Stratix, and Cyclone series of devices.

Altera synchronous memory blocks have two independent address ports, allowing
for operations on two unique addresses simultaneously. A read operation and a write
operation can share the same port if they share the same address. The Quartus II
software infers true dual-port RAMs in Verilog HDL and VHDL with any
combination of independent read or write operations in the same clock cycle, with at
most two unique port addresses, performing two reads and one write, two writes and
one read, or two writes and two reads in one clock cycle with one or two unique
addresses.

Example 10–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–25
Inferring Memory Functions from HDL Code
In the synchronous RAM block architecture, there is no priority between the two
ports. Therefore, if you write to the same location on both ports at the same time, the
result is indeterminate in the device architecture. You must ensure your HDL code
does not imply priority for writes to the memory block, if you want the design to be
implemented in a dedicated hardware memory block. For example, if both ports are
defined in the same process block, the code is synthesized and simulated sequentially
so that there is a priority between the two ports. If your code does imply a priority, the
logic cannot be implemented in the device RAM blocks and is implemented in regular
logic cells.

You must also consider the read-during-write behavior of the RAM block to ensure
that it can be mapped directly to the device RAM architecture. Refer to “Check
Read-During-Write Behavior” on page 10–16 for details.

When a read and write operation occurs on the same port for the same address, the
read operation may behave as follows:

■ Read new data—This mode matches the behavior of synchronous memory blocks.

■ Read old data—This mode is supported only by synchronous memory blocks in
Arria II GX, Cyclone III, Stratix III, and newer device families. This behavior is not
possible in memory blocks of older families.

When a read and write operation occurs on different ports for the same address (also
known as mixed port), the read operation may behave as follows:

■ Read new data—Quartus II integrated synthesis supports this mode by creating
bypass logic around the synchronous memory block.

■ Read old data—This behavior is supported by synchronous memory blocks.

The Verilog HDL single-clock code sample in Example 10–17 maps directly into
Altera synchronous memory. When a read and write operation occurs on the same
port for the same address, the new data being written to the memory is read. When a
read and write operation occurs on different ports for the same address, the old data
in the memory is read. Simultaneous writes to the same location on both ports results
in indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–26 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
If you use the following Verilog HDL read statements instead of the if-else
statements in Example 10–17, the HDL code specifies that the read results in old data
when a read operation and write operation occurs at the same time for the same
address on the same port or mixed ports. This behavior is supported only in the
memory blocks of Arria II GX, Cyclone III, Stratix III, and newer device families, and
is not inferred as memory for older device families.

always @ (posedge clk)
begin // Port A
 if (we_a)

 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B
 if (we_b)

 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
end

Example 10–17. Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
end
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–27
Inferring Memory Functions from HDL Code
The VHDL single-clock code sample in Example 10–18 maps directly into Altera
synchronous memory. When a read and write operation occurs on the same port for
the same address, the new data being written to the memory is read. When a read and
write operation occurs on different ports for the same address, the old data in the
memory is read. Simultaneous write operations to the same location on both ports
results in indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in
the target device will have undefined mixed port read-during-write behavior because
it depends on the relationship between the clocks.

Example 10–18. VHDL True Dual-Port RAM with Single Clock (Part 1 of 2)

library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
-- Declare the RAM signal.
shared variable ram : memory_t;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–28 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Mixed-Width Dual-Port RAM
The RAM code examples in Example 10–20 through Example 10–23 show
SystemVerilog and VHDL code that infers RAM with data ports with different widths.
This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the
requirement for a multi-dimensional array to model the different read width, write
width, or both. Different synthesis tools may differ in their support for these
memories. This section describes the inference rules for Quartus II integrated
synthesis.

The first dimension of the multi-dimensional packed array represents the ratio of the
wider port to the narrower port, and the second dimension represents the narrower
port width. The read and write port widths must specify a read or write ratio
supported by the memory blocks in the target device, or the synthesis tool does not
infer a RAM.

Example 10–19. VHDL True Dual-Port RAM with Single Clock (Part 2 of 2)

begin
process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data
q_a <= ram(addr_a);

end if;
end if;
end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;
-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–29
Inferring Memory Functions from HDL Code
Refer to the Quartus II Templates for parameterized examples that you can use for
supported combinations of read and write widths, and true dual port RAM examples
with two read ports and two write ports for mixed-width writes and reads.

Example 10–20. SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

module mixed_width_ram // 256x32 write and 1024x8 read
(

input [7:0] waddr,
input [31:0] wdata,
input we, clk,
input [9:0] raddr,
output [7:0] q

);
logic [3:0][7:0] ram[0:255];
always_ff@(posedge clk)

begin
if(we) ram[waddr] <= wdata;
q <= ram[raddr / 4][raddr % 4];

end
endmodule : mixed_width_ram

Example 10–21. SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(

input [9:0] waddr,
input [31:0] wdata,
input we, clk,
input [7:0] raddr,
output [9:0] q

);
logic [3:0][7:0] ram[0:255];
always_ff@(posedge clk)

 begin
if(we) ram[waddr / 4][waddr % 4] <= wdata;
q <= ram[raddr];

 end
endmodule : mixed_width_ram
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–30 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 10–22. VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 255) of word_t;

end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
port (

we, clk : in std_logic;
waddr : in integer range 0 to 255;
wdata : in word_t;
raddr : in integer range 0 to 1023;
q : out std_logic_vector(7 downto 0));

end mixed_width_ram;

architecture rtl of mixed_width_ram is
signal ram : ram_t;

begin -- rtl
process(clk, we)
begin

if(rising_edge(clk)) then
if(we = '1') then

ram(waddr) <= wdata;
end if;
q <= ram(raddr / 4)(raddr mod 4);

end if;
end process;

end rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–31
Inferring Memory Functions from HDL Code
RAM with Byte-Enable Signals
The RAM code examples in Example 10–24 and Example 10–25 show SystemVerilog
and VHDL code that infers RAM with controls for writing single bytes into the
memory word, or byte-enable signals. Byte enables are modeled by creating write
expressions with two indices and writing part of a RAM "word." With these
implementations, you can also write more than one byte at once by enabling the
appropriate byte enables.

This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the
requirement for a multidimensional array. Different synthesis tools may differ in their
support for these memories. This section describes the inference rules for Quartus II
integrated synthesis.

Example 10–23. VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 255) of word_t;

end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
port (

we, clk : in std_logic;
waddr : in integer range 0 to 1023;
wdata : in std_logic_vector(7 downto 0);
raddr : in integer range 0 to 255;
q : out word_t);

end mixed_width_ram;

architecture rtl of mixed_width_ram is
signal ram : ram_t;

begin -- rtl
process(clk, we)
begin

if(rising_edge(clk)) then
if(we = '1') then

ram(waddr / 4)(waddr mod 4) <= wdata;
end if;
q <= ram(raddr);

end if;
end process;

end rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–32 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Refer to the Quartus II Templates for parameterized examples that you can use for
different address widths, and true dual port RAM examples with two read ports and
two write ports.

Example 10–24. SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(
 input we, clk,
 input [5:0] waddr, raddr, // address width = 6
 input [3:0] be, // 4 bytes per word
 input [31:0] wdata, // byte width = 8, 4 bytes per word
 output reg [31:0] q // byte width = 8, 4 bytes per word
);

// use a multi-dimensional packed array
//to model individual bytes within the word

 logic [3:0][7:0] ram[0:63];// # words = 1 << address width

 always_ff@(posedge clk)
 begin
 if(we) begin
 if(be[0]) ram[waddr][0] <= wdata[7:0];
 if(be[1]) ram[waddr][1] <= wdata[15:8];
 if(be[2]) ram[waddr][2] <= wdata[23:16];

 if(be[3]) ram[waddr][3] <= wdata[31:24];
 end

q <= ram[raddr];
 end
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–33
Inferring Memory Functions from HDL Code
Specifying Initial Memory Contents at Power-Up
Your synthesis tool may offer various ways to specify the initial contents of an
inferred memory.

1 Certain device memory types do not support initialized memory, such as the M-RAM
blocks in Stratix and Stratix II devices.

Example 10–25. VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (

we, clk : in std_logic;
waddr, raddr : in integer range 0 to 63 ; -- address width = 6
be : in std_logic_vector (3 downto 0); -- 4 bytes per word
wdata : in std_logic_vector(31 downto 0); -- byte width = 8
q : out std_logic_vector(31 downto 0)); -- byte width = 8

end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
 -- build up 2D array to hold the memory

type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
type ram_t is array (0 to 63) of word_t;

signal ram : ram_t;
signal q_local : word_t;

begin -- Re-organize the read data from the RAM to match the output
unpack: for i in 0 to 3 generate

q(8*(i+1) - 1 downto 8*i) <= q_local(i);
end generate unpack;

process(clk)
begin

if(rising_edge(clk)) then
if(we = '1') then

if(be(0) = '1') then
ram(waddr)(0) <= wdata(7 downto 0);

end if;
if be(1) = '1' then

ram(waddr)(1) <= wdata(15 downto 8);
end if;
if be(2) = '1' then

ram(waddr)(2) <= wdata(23 downto 16);
end if;
if be(3) = '1' then

ram(waddr)(3) <= wdata(31 downto 24);
end if;

end if;
q_local <= ram(raddr);

end if;
end process;

end rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–34 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
There are slight power-up and initialization differences between dedicated RAM
blocks and the MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are set to the initial value
on the first read. For example, if address 0 is pre-initialized to FF, the RAM block
powers up with the output at 0. A subsequent read after power-up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is powered up and an
enable (read enable or clock enable) is held low, the power-up output of 0 is
maintained until the first valid read cycle. The MLAB is implemented using registers
that power-up to 0, but are initialized to their initial value immediately at power-up
or reset. Therefore, the initial value is seen, regardless of the enable status. The
Quartus II software maps inferred memory to MLABs when the HDL code specifies
an appropriate ramstyle attribute.

Quartus II integrated synthesis supports the ram_init_file synthesis attribute that
allows you to specify a Memory Initialization File (.mif) for an inferred RAM block.

f For information about the ram_init_file attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred
memory. Quartus II integrated synthesis automatically converts the initial block into a
.mif file for the inferred RAM. Example 10–26 shows Verilog HDL code that infers a
simple dual-port RAM block and corresponding .mif file.

Quartus II integrated synthesis and other synthesis tools also support the $readmemb
and $readmemh commands so that RAM initialization and ROM initialization work
identically in synthesis and simulation. Example 10–27 shows an initial block that
initializes an inferred RAM block using the $readmemb command.

Example 10–26. Verilog HDL RAM with Initialized Contents

module ram_with_init(
output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 10: Recommended HDL Coding Styles 10–35
Inferring Memory Functions from HDL Code
f Refer to the Verilog Language Reference Manual (LRM) 1364-2001 Section 17.2.8 or the
example in the Templates for the Quartus II software for details about the format of
the ram.txt file.

In VHDL, you can initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. Quartus II integrated synthesis
automatically converts the default value into a .mif file for the inferred RAM.
Example 10–28 shows VHDL code that infers a simple dual-port RAM block and
corresponding .mif file.

Example 10–27. Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin

$readmemb("ram.txt", ram);
end

Example 10–28. VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–36 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Inferring ROM Functions from HDL Code
To infer ROM functions, synthesis tools detect sets of registers and logic that can be
replaced with the ALTSYNCRAM or LPM_ROM megafunctions, depending on the
target device family, and only for device families that have dedicated memory blocks.

ROMs are inferred when a CASE statement exists in which a value is set to a constant
for every choice in the case statement. Because small ROMs typically achieve the best
performance when they are implemented using the registers in regular logic, each
ROM function must meet a minimum size requirement to be inferred and placed into
memory.

1 If you use Quartus II integrated synthesis, you can direct the software to infer ROM
blocks for all sizes with the Allow Any ROM Size for Recognition option in the
More Analysis & Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM
blocks for Altera devices with synchronous memory blocks. For example, Quartus II
integrated synthesis provides the romstyle synthesis attribute to specify the type of
memory block or to specify the use of regular logic instead of a dedicated memory
block.

f For details about using the romstyle attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about
synthesis attributes in other synthesis tools, refer to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

1 Because formal verification tools do not support ROM megafunctions, Quartus II
integrated synthesis does not infer ROM megafunctions when a formal verification
tool is selected. When you are using a formal verification flow, Altera recommends
that you instantiate ROM megafunction blocks in separate entities or modules that
contain only the ROM logic, because you may need to treat the entity or module as a
black box during formal verification.

The Verilog HDL and VHDL code samples in Example 10–29 through Example 10–32
on pages 10–37 through 10–39 infer synchronous ROM blocks. Depending on the
device family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; refer to the device family handbook for details.

For device architectures with synchronous RAM blocks, such as the Arria series,
Cyclone series, or Stratix series devices and newer device families, either the address
or the output must be registered for synthesis software to infer a ROM block. When
your design uses output registers, the synthesis software implements registers from
the input registers of the RAM block without affecting the functionality of the ROM. If
you register the address, the power-up state of the inferred ROM can be different from
the HDL design. In this scenario, the synthesis software issues a warning. The
Quartus II Help explains the condition under which the functionality changes when
you use Quartus II integrated synthesis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 10: Recommended HDL Coding Styles 10–37
Inferring Memory Functions from HDL Code
The ROM code examples in Example 10–29 through Example 10–32 on pages 10–37
through 10–39 map directly to the Altera memory architecture.

Example 10–29. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 10–30. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS
WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–38 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Example 10–31. Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom (
input [(addr_width-1):0] addr_a, addr_b,
input clk,
output reg [(data_width-1):0] q_a, q_b

);
parameter data_width = 8;
parameter addr_width = 8;

reg [data_width-1:0] rom[2**addr_width-1:0];

initial // Read the memory contents in the file
 //dual_port_rom_init.txt.

begin
$readmemb("dual_port_rom_init.txt", rom);

end

always @ (posedge clk)
begin

q_a <= rom[addr_a];
q_b <= rom[addr_b];

end
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–39
Inferring Memory Functions from HDL Code
Example 10–32. VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
generic (

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8

);
port (

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);
end entity;

architecture rtl of dual_port_rom is
-- Build a 2-D array type for the ROM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(addr_a'high downto 0) of word_t;

function init_rom
return memory_t is
variable tmp : memory_t := (others => (others => '0'));

begin
for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop

-- Initialize each address with the address itself
tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,

DATA_WIDTH));
end loop;
return tmp;

end init_rom;

-- Declare the ROM signal and specify a default initialization value.
signal rom : memory_t := init_rom;

begin
process(clk)
begin
if (rising_edge(clk)) then

q_a <= rom(addr_a);
q_b <= rom(addr_b);

end if;
end process;

end rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–40 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL
Code

To infer shift registers, synthesis tools detect a group of shift registers of the same
length and convert them to an ALTSHIFT_TAPS megafunction. To be detected, all the
shift registers must have the following characteristics:

■ Use the same clock and clock enable

■ Do not have any other secondary signals

■ Have equally spaced taps that are at least three registers apart

When you use a formal verification flow, Altera recommends that you create shift
register blocks in separate entities or modules containing only the shift register logic,
because you might have to treat the entity or module as a black box during formal
verification.

1 Because formal verification tools do not support shift register megafunctions,
Quartus II integrated synthesis does not infer the ALTSHIFT_TAPS megafunction
when a formal verification tool is selected. You can select EDA tools for use with your
design on the EDA Tool Settings page of the Settings dialog box in the Quartus II
software.

f For more information about the ALTSHIFT_TAPS megafunction, refer to the
ALTSHIFT_TAPS Megafunction User Guide.

Synthesis software recognizes shift registers only for device families that have
dedicated RAM blocks, and the software uses certain guidelines to determine the best
implementation.

Quartus II integrated synthesis uses the following guidelines which are common in
other EDA tools. The Quartus II software determines whether to infer the
ALTSHIFT_TAPS megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N). If the Auto Shift Register
Recognition setting is set to Auto, Quartus II integrated synthesis uses the
Optimization Technique setting, logic and RAM utilization information about the
design, and timing information from Timing-Driven Synthesis to determine which
shift registers are implemented in RAM blocks for logic.

■ If the registered bus width is one (W = 1), the software infers ALTSHIFT_TAPS if
the number of taps times the length between each tap is greater than or equal to 64
(N × L  64).

■ If the registered bus width is greater than one (W > 1), the software infers
ALTSHIFT_TAPS if the registered bus width times the number of taps times the
length between each tap is greater than or equal to 32 (W × N × L  32).

If the length between each tap (L) is not a power of two, the software uses more logic
to decode the read and write counters. This situation occurs because for different sizes
of shift registers, external decode logic that uses logic elements (LEs) or ALMs is
required to implement the function. This decode logic eliminates the performance and
utilization advantages of implementing shift registers in memory.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf

Chapter 10: Recommended HDL Coding Styles 10–41
Inferring Memory Functions from HDL Code
The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in a Verilog HDL or VHDL output file for simulation tools
because their node names do not exist after synthesis.

Simple Shift Register
The code samples in Example 10–33 and Example 10–34 show a simple, single-bit
wide, 64-bit long shift register. The synthesis software implements the register (W = 1
and M = 64) in an ALTSHIFT_TAPS megafunction for supported devices and maps it
to RAM in supported devices, which may be placed in dedicated RAM blocks or
MLAB memory. If the length of the register is less than 64 bits, the software
implements the shift register in logic.

Example 10–33. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out);
input clk, shift;
input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule

Example 10–34. VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x64 IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC;
sr_out: OUT STD_LOGIC

);
END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)

BEGIN
IF (clk'EVENT and clk = '1') THEN

IF (shift = '1') THEN
sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;
END IF;

END IF;
END PROCESS;
sr_out <= sr(63);

END arch;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–42 Chapter 10: Recommended HDL Coding Styles
Inferring Memory Functions from HDL Code
Shift Register with Evenly Spaced Taps
The code samples in Example 10–35 and Example 10–36 show a Verilog HDL and
VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with evenly spaced taps
at 15, 31, and 47. The synthesis software implements this function in a single
ALTSHIFT_TAPS megafunction and maps it to RAM in supported devices, which is
allowed placement in dedicated RAM blocks or MLAB memory.

Example 10–35. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one,
sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end
sr[0] <= sr_in;

end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–43
Coding Guidelines for Registers and Latches
Coding Guidelines for Registers and Latches
This section provides device-specific coding recommendations for Altera registers
and latches. Understanding the architecture of the target Altera device helps ensure
that your code produces the expected results and achieves the optimal quality of
results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”

■ “Secondary Register Control Signals Such as Clear and Clock Enable” on
page 10–45

■ “Latches” on page 10–49

Register Power-Up Values in Altera Devices
Registers in the device core always power up to a low (0) logic level on all Altera
devices. However, there are ways to implement logic such that registers behave as if
they were powering up to a high (1) logic level.

Example 10–36. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–44 Chapter 10: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
If you use a preset signal on a device that does not support presets in the register
architecture, your synthesis tool may convert the preset signal to a clear signal, which
requires synthesis to perform an optimization referred to as NOT gate push-back.
NOT gate push-back adds an inverter to the input and the output of the register so
that the reset and power-up conditions will appear to be high, and the device operates
as expected. In this case, your synthesis tool may issue a message informing you
about the power-up condition. The register itself powers up low, but the register
output is inverted, so the signal that arrives at all destinations is high.

Due to these effects, if you specify a non-zero reset value, you may cause your
synthesis tool to use the asynchronous clear (aclr) signals available on the registers to
implement the high bits with NOT gate push-back. In that case, the registers look as
though they power up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your
synthesis tools can implement a reset of 1 or 0 value by using an asynchronous load of
1 or 0. When the synthesis tool uses a load signal, it is not performing NOT gate
push-back, so the registers power up to a 0 logic level.

f For additional details, refer to the appropriate device family handbook or the
appropriate handbook on the Altera website.

Designers typically use an explicit reset signal for the design, which forces all registers
into their appropriate values after reset. Altera recommends this practice to reset the
device after power-up to restore the proper state if there is any doubt about the
power-up conditions of the device.

You can make your design more stable and avoid potential glitches by synchronizing
external or combinational logic of the device architecture before you drive the
asynchronous control ports of registers.

f For additional information about good synchronous design practices, refer to the
Design Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, you can use the
synthesis options available in your synthesis tool. With Quartus II integrated
synthesis, you can apply the Power-Up Level logic option. You can also apply the
option with an altera_attribute assignment in your source code. Using this option
forces synthesis to perform NOT gate push-back because synthesis tools cannot
actually change the power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level logic option to a
specific register or to a design entity, module, or subdesign. If you do so, every
register in that block receives the value. Registers power up to 0 by default; therefore,
you can use this assignment to force all registers to power up to 1 using NOT gate
push-back.

1 Using NOT gate push-back as a global assignment could slightly degrade the quality
of results due to the number of inverters that are required. In some situations, issues
are caused by enable signal inference or secondary control logic inference. It may also
be more difficult to migrate such a design to an ASIC or a HardCopy® device. You can
simulate the power-up behavior in a functional simulation if you use initialization.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 10: Recommended HDL Coding Styles 10–45
Coding Guidelines for Registers and Latches
f The Power-Up Level option and the altera_attribute assignment are described in
the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Some synthesis tools can also read the default or initial values for registered signals
and implement this behavior in the device. For example, Quartus II integrated
synthesis converts default values for registered signals into Power-Up Level settings.
When the Quartus II software reads the default values, the synthesized behavior
matches the power-up state of the HDL code during a functional simulation.

For example, the code samples in Example 10–37 and Example 10–38 both infer a
register for q and set its power-up level to high.

1 If the target device architecture does not support two asynchronous control signals,
such as aclr and aload, you cannot set a different power-up state and reset state. If
the NOT gate push-back algorithm creates logic to set a register to 1, that register will
power-up high. If you set a different power-up condition through a synthesis
assignment or initial value, the power-up level is ignored during synthesis.

Secondary Register Control Signals Such as Clear and Clock Enable
The registers in Altera FPGAs provide a number of secondary control signals (such as
clear and enable signals) that you can use to implement control logic for each register
without using extra logic cells. Device families vary in their support for secondary
signals, so consult the device family data sheet to verify which signals are available in
your target device.

To make the most efficient use of the signals in the device, your HDL code should
match the device architecture as closely as possible. The control signals have a certain
priority due to the nature of the architecture, so your HDL code should follow that
priority where possible.

Example 10–37. Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin

q <= d;
end

Example 10–38. VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN

IF (rising_edge(clk)) THEN
q <= d;

END IF;
END PROCESS;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

10–46 Chapter 10: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
Your synthesis tool can emulate any control signals using regular logic, so achieving
functionally correct results is always possible. However, if your design requirements
are flexible in terms of which control signals are used and in what priority, match your
design to the target device architecture to achieve the most efficient results. If the
priority of the signals in your design is not the same as that of the target architecture,
extra logic may be required to implement the control signals. This extra logic uses
additional device resources and can cause additional delays for the control signals.

In addition, there are certain cases where using logic other than the dedicated control
logic in the device architecture can have a larger impact. For example, the clock enable
signal has priority over the synchronous reset or clear signal in the device
architecture. The clock enable turns off the clock line in the LAB, and the clear signal is
synchronous. Therefore, in the device architecture, the synchronous clear takes effect
only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority over the clock
enable signal, the software must emulate the clock enable functionality using data
inputs to the registers. Because the signal does not use the clock enable port of a
register, you cannot apply a Clock Enable Multicycle constraint. In this case, following
the priority of signals available in the device is clearly the best choice for the priority
of these control signals, and using a different priority causes unexpected results with
an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera devices differs from the
order for other vendors’ devices. If your design requirements are flexible regarding
priority, verify that the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors and try to match your
target device architecture to achieve the best results.

The signal order is the same for all Altera device families, although, as noted
previously, not all device families provide every signal. The following priority order is
observed:

1. Asynchronous Clear, aclr—highest priority

2. Preset, pre

3. Asynchronous Load, aload

4. Enable, ena

5. Synchronous Clear, sclr

6. Synchronous Load, sload

7. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that creates a register
with the aclr, aload, and ena control signals.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–47
Coding Guidelines for Registers and Latches
1 The Verilog HDL example (Example 10–39) does not have adata on the sensitivity list,
but the VHDL example (Example 10–40) does. This is a limitation of the Verilog HDL
language—there is no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis tools should infer an aload
signal from this construct despite this limitation. When they perform such inference,
you may see information or warning messages from the synthesis tool.

Example 10–39. Verilog HDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

module dff_control(clk, aclr, aload, ena, data, adata, q);
input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

Example 10–40. VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
aload: IN STD_LOGIC;
adata: IN STD_LOGIC;
ena: IN STD_LOGIC;

 data: IN STD_LOGIC;
q: OUT STD_LOGIC

);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–48 Chapter 10: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
The dedicated preset signal is available only in MAX 3000 and MAX 7000 devices;
therefore, it is not included in the examples.

Creating many registers with different sload and sclr signals can make packing the
registers into LABs difficult for the Quartus II Fitter because the sclr and sload
signals are LAB-wide signals. In addition, using the LAB-wide sload signal prevents
the Fitter from packing registers using the quick feedback path in the device
architecture, which means that some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases in which there
are enough registers with common signals to allow good LAB packing. Using the
look-up table (LUT) to implement the signals is always more flexible if it is available.
Because different device families offer different numbers of control signals, inference
of these signals is also device-specific. For example, because Stratix II devices have
more flexibility than Stratix devices with respect to secondary control signals,
synthesis tools might infer more sload and sclr signals for Stratix II devices.

If you use these additional control signals, use them in the priority order that matches
the device architecture. To achieve the most efficient results, ensure the sclr signal
has a higher priority than the sload signal in the same way that aclr has higher
priority than aload in the previous examples. Remember that the register signals are
not inferred unless the design meets the conditions described previously. However, if
your HDL described the desired behavior, the software always implements logic with
the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace the
if (ena) q <= data; statements in the Verilog HDL in Example 10–39 (after adding
the control signals to the module declaration).

In VHDL, the following code for sload and sclr could replace the IF (ena ='1')
THEN q <= data; END IF; statements in the VHDL in Example 10–40 on page 10–47
(after adding the control signals to the entity declaration).

Example 10–41. Verilog HDL sload and sclr Control Signals

if (ena) begin
if (sclr)
q <= 1'b0;

else if (sload)
q <= sdata;

else
q <= data;

end

Example 10–42. VHDL sload and sclr Control Signals

IF (ena ='1') THEN
IF (sclr = '1') THEN
q <= '0';

ELSIF (sload = '1') THEN
q <= sdata;

ELSE
q <= data;

END IF;
END IF;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–49
Coding Guidelines for Registers and Latches
Latches
A latch is a small combinational loop that holds the value of a signal until a new value
is assigned.

1 Altera recommends that you design without the use of latches whenever possible.

f For additional information about the issues involved in designing with latches and
combinational loops, refer to the Design Recommendations for Altera Devices and the
Quartus II Design Assistant chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a latch, as
described in “Unintentional Latch Generation”. If you do intend to infer a latch, it is
important to infer it correctly to guarantee correct device operation as detailed in
“Inferring Latches Correctly” on page 10–50.

Unintentional Latch Generation
When you are designing combinational logic, certain coding styles can create an
unintentional latch. For example, when CASE or IF statements do not cover all possible
input conditions, latches may be required to hold the output if a new output value is
not assigned. Check your synthesis tool messages for references to inferred latches. If
your code unintentionally creates a latch, make code changes to remove the latch.

A latch is required if a signal is assigned a value outside of a clock edge (for example,
with an asynchronous reset), but is not assigned a value in an edge-triggered design
block. An unintentional latch may be generated if your HDL code assigns a value to a
signal in an edge-triggered design block, but that logic is removed during synthesis.
For example, when a CASE or IF statement tests the value of a condition with a
parameter or generic that evaluates to FALSE, any logic or signal assignment in that
statement is not required and is optimized away during synthesis. This optimization
may result in a latch being generated for the signal.

1 Latches have limited support in formal verification tools. Therefore, ensure that you
do not infer latches unintentionally.

The full_case attribute can be used in Verilog HDL designs to treat unspecified cases
as don’t care values (X). However, using the full_case attribute can cause simulation
mismatches because this attribute is a synthesis-only attribute, so simulation tools still
treat the unspecified cases as latches.

f Refer to the appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook for more information about using attributes in your synthesis tool. The
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook provides
an example explaining possible simulation mismatches.

Omitting the final else or when others clause in an if or case statement can also
generate a latch. Don’t care (X) assignments on the default conditions are useful in
preventing latch generation. For the best logic optimization, assign the default case or
final else value to don’t care (X) instead of a logic value.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–50 Chapter 10: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
The VHDL code sample in Example 10–43 prevents unintentional latches. Without the
final else clause, this code creates unintentional latches to cover the remaining
combinations of the sel inputs. When you are targeting a Stratix device with this
code, omitting the final else condition can cause the synthesis software to use up to
six LEs, instead of the three it uses with the else statement. Additionally, assigning
the final else clause to 1 instead of X can result in slightly more LEs, because the
synthesis software cannot perform as much optimization when you specify a constant
value compared to a don’t care value.

Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard
problems typically associated with combinational loops.

1 Any use of latches generates warnings and is flagged if the design is migrated to a
HardCopy ASIC. In addition, timing analysis does not completely model latch timing
in some cases. Do not use latches unless required by your design, and you fully
understand the impact of using the latches.

When using Quartus II integrated synthesis, latches that are inferred by the software
are reported in the User-Specified and Inferred Latches section of the Compilation
Report. This report indicates whether the latch is considered safe and free of timing
hazards.

If a latch or combinational loop in your design is not listed in the User-Specified and
Inferred Latches section, it means that it was not inferred as a safe latch by the
software and is not considered glitch-free.

Example 10–43. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
if sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END if;

END PROCESS;
END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–51
Coding Guidelines for Registers and Latches
All combinational loops listed in the Analysis & Synthesis Logic Cells Representing
Combinational Loops table in the Compilation Report are at risk of timing hazards.
These entries indicate possible problems with your design that you should
investigate. However, it is possible to have a correct design that includes
combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This can occur in cases where there is an electrical path in the hardware,
but either the designer knows that the circuit never encounters data that causes that
path to be activated, or the surrounding logic is set up in a mutually exclusive manner
that prevents that path from ever being sensitized, independent of the data input.

For macrocell-based devices, such as MAX® 7000AE and MAX 3000A, all data
(D-type) latches and set-reset (S-R) latches listed in the Analysis & Synthesis
User-Specified and Inferred Latches table have an implementation free of timing
hazards, such as glitches. The implementation includes both a cover term to ensure
there is no glitching and a single macrocell in the feedback loop.

For 4-input LUT-based devices, such as Stratix devices, the Cyclone series, and
MAX II devices, all latches in the User-Specified and Inferred Latches table with a
single LUT in the feedback loop are free of timing hazards when a single input
changes. Because of the hardware behavior of the LUT, the output does not glitch
when a single input toggles between two values that are supposed to produce the
same output value, such as a D-type input toggling when the enable input is inactive
or a set input toggling when a reset input with higher priority is active. This hardware
behavior of the LUT means that no cover term is required for a loop around a single
LUT. The Quartus II software uses a single LUT in the feedback loop whenever
possible. A latch that has data, enable, set, and reset inputs in addition to the output
fed back to the input cannot be implemented in a single 4-input LUT. If the Quartus II
software cannot implement the latch with a single-LUT loop because there are too
many inputs, the User-Specified and Inferred Latches table indicates that the latch is
not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch inputs with a
single adaptive look-up table (ALUT) in the combinational loop. Therefore, all latches
in the User-Specified and Inferred Latches table are free of timing hazards when a
single input changes.

If a latch is listed as a safe latch, other optimizations performed by the Quartus II
software, such as physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input can change at a time. Changing
two inputs simultaneously, such as deasserting set and reset at the same time, or
changing data and enable at the same time, can produce incorrect behavior in any
latch.

Quartus II integrated synthesis infers latches from always blocks in Verilog HDL and
process statements in VHDL, but not from continuous assignments in Verilog HDL or
concurrent signal assignments in VHDL. These rules are the same as for register
inference. The software infers registers or flipflops only from always blocks and
process statements.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–52 Chapter 10: Recommended HDL Coding Styles
Coding Guidelines for Registers and Latches
The Verilog HDL code sample in Example 10–44 infers a S-R latch correctly in the
Quartus II software.

The VHDL code sample in Example 10–45 infers a D-type latch correctly in the
Quartus II software.

The following example shows a Verilog HDL continuous assignment that does not
infer a latch in the Quartus II software:

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly
as a latch, and its timing is not analyzed as a latch.

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the LPM_LATCH megafunction. You can use this megafunction to
create a latch with any combination of data, enable, set, and reset inputs. The same
limitations apply for creating safe latches as for inferring latches from HDL code.

Example 10–44. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

Example 10–45. VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
PORT (

enable, data : IN STD_LOGIC;
q : OUT STD_LOGIC

);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = '1') THEN

q <= data;
END IF;

END PROCESS latch;
END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–53
General Coding Guidelines
Inferring the Altera LPM_LATCH function in another synthesis tool ensures that the
implementation is also recognized as a latch in the Quartus II software. If a
third-party synthesis tool implements a latch using the LPM_LATCH megafunction,
the Quartus II integrated synthesis lists the latch in the User-Specified and Inferred
Latches table in the same way as it lists latches created in HDL source code. The
coding style necessary to produce an LPM_LATCH implementation may depend on
your synthesis tool. Some third-party synthesis tools list the number of LPM_LATCH
functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals, including
signals that Analysis and Synthesis identifies as latch enables. In some cases the
global insertion delay may decrease the timing performance. If necessary, you can
turn off the Quartus II Global Signal logic option to manually prevent the use of
global signals. Global latch enables are listed in the Global & Other Fast Signals table
in the Compilation Report.

General Coding Guidelines
This section helps you understand how synthesis tools map various types of HDL
code into the target Altera device. Following Altera recommended coding styles, and
in some cases designing logic structures to match the appropriate device architecture,
can provide significant improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state signals for
bidirectional I/O pins.

■ “Clock Multiplexing” on page 10–54. This section provides recommendations for
multiplexing clock signals.

■ “Adder Trees” on page 10–58. This section explains the different coding styles that
lead to optimal results for devices with 4-input LUTs and 6-input ALUTs.

■ “State Machines” on page 10–60. This section helps ensure the best results when
you use state machines.

■ “Multiplexers” on page 10–67. This section explains how multiplexers can be
synthesized, addresses common problems, and provides guidelines to achieve
optimal resource utilization.

■ “Cyclic Redundancy Check Functions” on page 10–70. This section provides
guidelines for getting good results when designing Cyclic Redundancy Check
(CRC) functions.

■ “Comparators” on page 10–72. This section explains different comparator
implementations and provides suggestions for controlling the implementation.

■ “Counters” on page 10–73. This section provides guidelines to ensure your
counter design targets the device architecture optimally.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–54 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Tri-State Signals
When you target Altera devices, you should use tri-state signals only when they are
attached to top-level bidirectional or output pins. Avoid lower-level bidirectional
pins, and avoid using the Z logic value unless it is driving an output or bidirectional
pin.

Synthesis tools implement designs with internal tri-state signals correctly in Altera
devices using multiplexer logic, but Altera does not recommend this coding practice.

1 In hierarchical block-based or incremental design flows, a hierarchical boundary
cannot contain any bidirectional ports, unless the lower-level bidirectional port is
connected directly through the hierarchy to a top-level output pin without connecting
to any other design logic. If you use boundary tri-states in a lower-level block,
synthesis software must push the tri-states through the hierarchy to the top level to
make use of the tri-state drivers on output pins of Altera devices. Because pushing
tri-states requires optimizing through hierarchies, lower-level tri-states are restricted
with block-based design methodologies.

The code in Example 10–46 and Example 10–47 show Verilog HDL and VHDL code
that creates tri-state bidirectional signals.

Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function with
different clock sources. This type of logic can introduce glitches that create functional
problems, and the delay inherent in the combinational logic can lead to timing
problems. Clock multiplexers trigger warnings from a wide range of design rule
check and timing analysis tools.

Example 10–46. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir);
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

Example 10–47. VHDL Tri-State Signal

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–55
General Coding Guidelines
Altera recommends using dedicated hardware to perform clock multiplexing when it
is available, instead of using multiplexing logic. For example, you can use the Clock
Switchover feature or the Clock Control Block available in certain Altera devices.
These dedicated hardware blocks avoid glitches, ensure that you use global low-skew
routing lines, and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL
reconfiguration, which is the safest and most robust method of changing clock rates
during device operation.

f Refer to the appropriate device data sheet or handbook for device-specific
information about clocking structures. Also refer to the ALTCLKCTRL Megafunction
User Guide, the ALTPLL Megafunction User Guide, and the Phase-Locked Loops
Reconfiguration (ALTPLL_RECONFIG) Megafunction User Guide.

If you implement a clock multiplexer in logic cells because the design has too many
clocks to use the clock control block, or if dynamic reconfiguration is too complex for
your design, it is important to consider simultaneous toggling inputs and ensure
glitch-free transitions.

Figure 10–2 shows a simple representation of a clock multiplexer (mux) in a device
with 6-input LUTs.

The data sheet for your target device describes how LUT outputs may glitch during a
simultaneous toggle of input signals, independent of the LUT function. Although, in
practice, the 4:1 MUX function does not generate detectable glitches during
simultaneous data input toggles, it is possible to construct cell implementations that
do exhibit significant glitches, so this simple clock mux structure is not recommended.
An additional problem with this implementation is that the output behaves erratically
during a change in the clk_select signals. This behavior could create timing
violations on all registers fed by the system clock and result in possible metastability.

Figure 10–2. Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf
http://www.altera.com/literature/ug/ug_altpll_reconfig.pdf

10–56 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems, as in Figure 10–3.

This structure can be generalized for any number of clock channels. Example 10–48
contains a parameterized version in Verilog HDL. The design enforces that no clock
activates until all others have been inactive for at least a few cycles, and that activation
occurs while the clock is low. The design applies a synthesis_keep directive to the
AND gates on the right side of the figure, which ensures there are no simultaneous
toggles on the input of the clk_out OR gate.

1 Switching from clock A to clock B requires that clock A continue to operate for at least a
few cycles. If the old clock stops immediately, the design sticks. The select signals are
implemented as a “one-hot” control in this example, but you can use other encoding if
you prefer. The input side logic is asynchronous and is not critical. This design can
tolerate extreme glitching during the switch process.

Figure 10–3. Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–57
General Coding Guidelines
Example 10–48. Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock_mux (clk,clk_select,clk_out);

parameter num_clocks = 4;

input [num_clocks-1:0] clk;
input [num_clocks-1:0] clk_select; // one hot
output clk_out;

genvar i;

reg [num_clocks-1:0] ena_r0;
reg [num_clocks-1:0] ena_r1;
reg [num_clocks-1:0] ena_r2;
wire [num_clocks-1:0] qualified_sel;

// A look-up-table (LUT) can glitch when multiple inputs
// change simultaneously. Use the keep attribute to
// insert a hard logic cell buffer and prevent
// the unrelated clocks from appearing on the same LUT.

wire [num_clocks-1:0] gated_clks /* synthesis keep */;

initial begin
ena_r0 = 0;
ena_r1 = 0;
ena_r2 = 0;

end

generate
for (i=0; i<num_clocks; i=i+1)
begin : lp0

wire [num_clocks-1:0] tmp_mask;
assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 & tmp_mask));

always @(posedge clk[i]) begin
ena_r0[i] <= qualified_sel[i];
ena_r1[i] <= ena_r0[i];

end

always @(negedge clk[i]) begin
ena_r2[i] <= ena_r1[i];

end

assign gated_clks[i] = clk[i] & ena_r2[i];
end

endgenerate

// These will not exhibit simultaneous toggle by construction
assign clk_out = |gated_clks;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–58 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Adder Trees
Structuring adder trees appropriately to match your targeted Altera device
architecture can result in significant performance and density improvements. A good
example of an application using a large adder tree is a finite impulse response (FIR)
correlator. Using a pipelined binary or ternary adder tree appropriately can greatly
improve the quality of your results.

This section explains why coding recommendations are different for Altera 4-input
LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements
Architectures such as Stratix devices and the Cyclone series of devices contain 4-input
LUTs as the standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and C
in devices that use 4-input lookup tables is to add A + B, register the output, and then
add the registered output to C. Adding A + B takes one level of logic (one bit is added
in one LE), so this runs at full clock speed. This can be extended to as many numbers
as desired.

Example 10–49 shows five numbers A, B, C, D, and E are added. Adding five numbers
in devices that use 4-input lookup tables requires four adders and three levels of
registers for a total of 64 LEs (for 16-bit numbers).

Example 10–49. Verilog HDL Pipelined Binary Tree

module binary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2, sum3, sum4;
reg [width-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign out = sumreg4;

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–59
General Coding Guidelines
Architectures with 6-Input LUTs in Adaptive Logic Modules
High-performance Altera device families use a 6-input LUT in their basic logic
structure, so these devices benefit from a different coding style from the previous
example presented for 4-input LUTs. Specifically, in these devices, ALMs can
simultaneously add three bits. Therefore, the tree in Example 10–49 must be two
levels deep and contain just two add-by-three inputs instead of four add-by-two
inputs.

Although the code in the previous example compiles successfully for 6-input LUT
devices, the code is inefficient and does not take advantage of the 6-input adaptive
ALUT. By restructuring the tree as a ternary tree, the design becomes much more
efficient, significantly improving density utilization. Therefore, when you are
targeting with ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the advanced
device architecture.

Example 10–50 uses just 32 ALUTs in a Stratix II device—more than a 4:1 advantage
over the number of LUTs in the prior example implemented in a Stratix device.

1 You cannot pack a LAB full when using this type of coding style because of the
number of LAB inputs. However, in a typical design, the Quartus II Fitter can pack
other logic into each LAB to take advantage of the unused ALMs.

These examples show pipelined adders, but partitioning your addition operations can
help you achieve better results in nonpipelined adders as well. If your design is not
pipelined, a ternary tree provides much better performance than a binary tree. For
example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal implementation of
a 3-input adder for A + B + C followed by a 3-input adder for sum1 + D + E than the
code without the parentheses. If you do not add the parentheses, the synthesis tool
may partition the addition in a way that is not optimal for the architecture.

Example 10–50. Verilog HDL Pipelined Ternary Tree

module ternary_adder_tree (a, b, c, d, e, clk, out);
parameter width = 16;
input [width-1:0] a, b, c, d, e;
input clk;
output [width-1:0] out;

wire [width-1:0] sum1, sum2;
reg [width-1:0] sumreg1, sumreg2;
// registers

always @ (posedge clk)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = a + b + c;
assign sum2 = sumreg1 + d + e;
assign out = sumreg2;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–60 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
State Machines
Synthesis tools can recognize and encode Verilog HDL and VHDL state machines
during synthesis. This section presents guidelines to ensure the best results when you
use state machines. Ensuring that your synthesis tool recognizes a piece of code as a
state machine allows the tool to recode the state variables to improve the quality of
results, and allows the tool to use the known properties of state machines to optimize
other parts of the design. When synthesis recognizes a state machine, it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot encoding for
FPGA devices and minimal-bit encoding for CPLD devices, although the choice of
implementation can vary for different state machines and different devices. Refer to
your synthesis tool documentation for specific ways to control the manner in which
state machines are encoded.

f For information about state machine encoding in Quartus II integrated synthesis,
refer to the State Machine Processing section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to improve the
quality of results, Altera recommends that you observe the following guidelines,
which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so that synthesis
does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and data paths,
including assigning output values.

■ If your design contains an operation that is used by more than one state, define the
operation outside the state machine and cause the output logic of the state
machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined power-up
state. If your state machine design contains more elaborate reset logic, such as both
an asynchronous reset and an asynchronous load, the Quartus II software
generates regular logic rather than inferring a state machine.

If a state machine enters an illegal state due to a problem with the device, the design
likely ceases to function correctly until the next reset of the state machine. Synthesis
tools do not provide for this situation by default. The same issue applies to any other
registers if there is some kind of fault in the system. A default or when others clause
does not affect this operation, assuming that your design never deliberately enters
this state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an option to
implement a safe state machine. The software inserts extra logic to detect an illegal
state and force the state machine’s transition to the reset state. It is commonly used
when the state machine can enter an illegal state. The most common cause of this
situation is a state machine that has control inputs that come from another clock
domain, such as the control logic for a dual-clock FIFO.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 10: Recommended HDL Coding Styles 10–61
General Coding Guidelines
This option protects only state machines by forcing them into the reset state. All other
registers in the design are not protected this way. If the design has asynchronous
inputs, Altera recommends using a synchronization register chain instead of relying
on the safe state machine option.

f For additional information about tool-specific options for implementing state
machines, refer to the tool vendor’s documentation or the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL State
Machines” on page 10–65, describe additional language-specific guidelines and
coding examples.

Verilog HDL State Machines
To ensure proper recognition and inference of Verilog HDL state machines, observe
the following additional Verilog HDL guidelines. Some of these guidelines may be
specific to Quartus II integrated synthesis. Refer to your synthesis tool documentation
for specific coding recommendations.

If the state machine is not recognized and inferred by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as regular logic
gates and registers, and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types to describe
state machines. For more information, refer too “SystemVerilog State Machine
Coding Example” on page 10–64.

■ Represent the states in a state machine with the parameter data types in
Verilog-1995 and Verilog-2001, and use the parameters to make state assignments.
For more information, refer too“Verilog-2001 State Machine Coding Example” on
page 10–62. This parameter implementation makes the state machine easier to
read and reduces the risk of errors during coding.

1 Altera recommends against the direct use of integer values for state
variables, such as next_state <= 0. However, using an integer does not
prevent inference in the Quartus II software.

■ No state machine is inferred in the Quartus II software if the state transition logic
uses arithmetic similar to that in the following example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state variable is an
output.

■ No state machine is inferred in the Quartus II software for signed variables.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

10–62 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Verilog-2001 State Machine Coding Example

The following module verilog_fsm is an example of a typical Verilog HDL state
machine implementation (Example 10–51).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in_1 and in_2 is an output of the state machine in state_1 and
state_2. The difference (in_1 – in_2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of
in_1 and in_2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive states.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–63
General Coding Guidelines
Example 10–51. Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
input clk, reset;
input [3:0] in_1, in_2;
output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else
state <= next_state;

end
always @ (state or in_1 or in_2)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 <= in_1 + 5'b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5'b00001;
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5'b00001;
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5'b00000;
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–64 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
An equivalent implementation of this state machine can be achieved by using ‘define
instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x instead of
a state_x, for example:

next_state <= ‘state_3;

1 Although the ‘define construct is supported, Altera strongly recommends the use of
the parameter data type because doing so preserves the state names throughout
synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm in Example 10–52 is an example of a SystemVerilog state
machine implementation that uses enumerated types. Altera recommends using this
coding style to describe state machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that defines the states for the
state machine must be of an unsigned integer type as in Example 10–52. If you do not
specify the enumerated type as int unsigned, a signed int type is used by default. In
this case, the Quartus II integrated synthesis synthesizes the design, but does not infer
or optimize the logic as a state machine.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–65
General Coding Guidelines
VHDL State Machines
To ensure proper recognition and inference of VHDL state machines, represent the
states in a state machine with enumerated types and use the corresponding types to
make state assignments. This implementation makes the state machine easier to read
and reduces the risk of errors during coding. If the state is not represented by an
enumerated type, synthesis software (such as Quartus II integrated synthesis) does
not recognize the state machine. Instead, the state machine is implemented as regular
logic gates and registers and the state machine is not listed as a state machine in the
Analysis & Synthesis section of the Quartus II Compilation Report. In this case, the
software does not perform any of the optimizations that are specific to state machines.

VHDL State Machine Coding Example

The following entity, vhd1_fsm, is an example of a typical VHDL state machine
implementation (Example 10–53).

This state machine has five states. The asynchronous reset sets the variable state to
state_0. The sum of in1 and in2 is an output of the state machine in state_1 and
state_2. The difference (in1 - in2) is also used in state_1 and state_2. The
temporary variables tmp_out_0 and tmp_out_1 store the sum and the difference of in1
and in2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

Example 10–52. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data[3:0], output int o);

enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_state_logic
 next_state = S0;
 case(state)

S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

 endcase
end

always_comb begin
 case(state)

 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];

 endcase
end

always_ff@(posedge clk or negedge reset) begin
 if(~reset)

 state <= S0;
 else

 state <= next_state;
end
endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–66 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Example 10–53. VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS

PORT(
clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS

TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;

PROCESS (state, in1, in2)
VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–67
General Coding Guidelines
Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexer logic, you ensure the most efficient implementation in
your Altera device. This section addresses common problems and provides design
guidelines to achieve optimal resource utilization for multiplexer designs. The section
also describes various types of multiplexers, and how they are implemented.

For more information, refer to the Advanced Synthesis Cookbook: A Design Guide for
Stratix II, Stratix III, and Stratix IV Devices.

Quartus II Software Option for Multiplexer Restructuring
Quartus II integrated synthesis provides the Restructure Multiplexers logic option
that extracts and optimizes buses of multiplexers during synthesis. The default setting
Auto for this option uses the optimization when it is most likely to benefit the
optimization targets for your design. You can turn the option on or off specifically to
have more control over its use.

f For details, refer to the Restructure Multiplexers section in the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to understand how
your coding style can be interpreted by your synthesis tool, and avoid the situations
that can cause problems in your design.

Multiplexer Types
This section addresses how multiplexers are created from various types of HDL code.
CASE statements, IF statements, and state machines are all common sources of
multiplexer logic in designs. These HDL structures create different types of
multiplexers, including binary multiplexers, selector multiplexers, and priority
multiplexers. Understanding how multiplexers are created from HDL code, and how
they might be implemented during synthesis, is the first step toward optimizing
multiplexer structures for best results.

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
Example 10–54 shows Verilog HDL code for two ways to describe a simple 4:1 binary
multiplexer.

Example 10–54. Verilog HDL Binary-Encoded Multiplexers

case (sel)
2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf

10–68 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Stratix series devices starting with the Stratix II device family feature 6-input look up
tables (LUTs) which are perfectly suited for 4:1 multiplexer building blocks (4 data
and 2 select inputs). The extended input mode facilitates implementing 8:1 blocks,
and the fractured mode handles residual 2:1 multiplexer pairs. For device families
using 4-input LUTs, such as the Cyclone series and Stratix devices, the 4:1 binary
multiplexer is efficiently implemented by using two 4-input LUTs. Larger binary
multiplexers are decomposed by the synthesis tool into 4:1 multiplexer blocks,
possibly with a residual 2:1 multiplexer at the head.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The select lines
for the multiplexer are one-hot encoded. Example 10–55 shows a simple Verilog HDL
code example describing a one-hot selector multiplexer.

Selector multiplexers are commonly built as a tree of AND and OR gates. An N-input
selector multiplexer of this structure is slightly less efficient in implementation than a
binary multiplexer. However, in many cases the select signal is the output of a
decoder, in which case Quartus II Synthesis will try to combine the selector and
decoder into a binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to select the
correct item must be checked in a specific order based on signal priority. These
structures commonly are created from IF, ELSE, WHEN, SELECT, and ?: statements in
VHDL or Verilog HDL. The example VHDL code in Example 10–56 probably results
in the schematic implementation illustrated in Figure 10–4.

Example 10–55. Verilog HDL One-Hot-Encoded Case Statement

case (sel)
4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Example 10–56. VHDL IF Statement Implying Priority

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–69
General Coding Guidelines
The multiplexers in Figure 10–4 form a chain, evaluating each condition or select bit
sequentially.

Depending on the number of multiplexers in the chain, the timing delay through this
chain can become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if
priority is not required. If the order of the choices is not important to the design, use a
CASE statement to implement a binary or selector multiplexer instead of a priority
multiplexer. If delay through the structure is important in a multiplexed design
requiring priority, consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

Implicit Defaults in If Statements
The IF statements in Verilog HDL and VHDL can be a convenient way to specify
conditions that do not easily lend themselves to a CASE-type approach. However,
using IF statements can result in complicated multiplexer trees that are not easy for
synthesis tools to optimize. In particular, every IF statement has an implicit ELSE
condition, even when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

There are several ways you can simplify multiplexed logic and remove unneeded
defaults. The optimal method may be to recode the design so the logic takes the
structure of a 4:1 CASE statement. Alternatively, if priority is important, you can
restructure the code to reduce default cases and flatten the multiplexer. Examine
whether the default "ELSE IF" conditions are don’t care cases. You may be able to
create a default ELSE statement to make the behavior explicit. Avoid unnecessary
default conditions in your multiplexer logic to reduce the complexity and logic
utilization required to implement your design.

Default or Others Case Assignment
To fully specify the cases in a CASE statement, include a default (Verilog HDL) or
OTHERS (VHDL) assignment. This assignment is especially important in one-hot
encoding schemes where many combinations of the select lines are unused.
Specifying a case for the unused select line combinations gives the synthesis tool
information about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Figure 10–4. Priority Multiplexer Implementation of an IF Statement

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–70 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Some designs do not require that the outcome in the unused cases be considered,
often because designers assume these cases will not occur. For these types of designs,
you can specify any value for the default or OTHERS assignment. However, be aware
that the assignment value you choose can have a large effect on the logic utilization
required to implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use different speed
and area optimizations.

To obtain best results, explicitly define invalid CASE selections with a separate default
or OTHERS statement instead of combining the invalid cases with one of the defined
cases.

If the value in the invalid cases is not important, specify those cases explicitly by
assigning the X (don’t care) logic value instead of choosing another value. This
assignment allows your synthesis tool to perform the best area optimizations.

Cyclic Redundancy Check Functions
CRC computations are used heavily by communications protocols and storage
devices to detect any corruption of data. These functions are highly effective; there is a
very low probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The way synthesis
tools flatten and factor these XOR gates to implement the logic in FPGA LUTs can
greatly impact the area and performance results for the design. XOR gates have a
cancellation property that creates an exceptionally large number of reasonable
factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs.
When properly synthesized, CRC processing designs can run at high speeds in
devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in
Altera devices.

If Performance is Important, Optimize for Speed
Synthesis tools flatten XOR gates to minimize area and depth of levels of logic.
Synthesis tools such as Quartus II integrated synthesis target area optimization by
default for these logic structures. Therefore, for more focus on depth reduction, set the
synthesis optimization technique to speed.

Flattening for depth sometimes causes a significant increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages
Some designers optimize their CRC designs to use cascaded stages (for example, four
stages of 8 bits). In such designs, intermediate calculations are used as required (such
as the calculations after 8, 24, or 32 bits) depending on the data width. This design is
not optimal in FPGA devices. The XOR cancellations that can be performed in CRC
designs mean that the function does not require all the intermediate calculations to
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 10: Recommended HDL Coding Styles 10–71
General Coding Guidelines
determine the final result. Therefore, forcing the use of intermediate calculations
increases the area required to implement the function, as well as increasing the logic
depth because of the cascading. It is typically better to create full separate CRC blocks
for each data width that you require in the design, and then multiplex them together
to choose the appropriate mode at a given time

Use Separate CRC Blocks Instead of Allowing Blocks to Merge
Synthesis tools often attempt to optimize CRC designs by sharing resources and
extracting duplicates in two different CRC blocks because of the factoring options in
the XOR logic. As addressed previously, the CRC logic allows significant reductions,
but this works best when each CRC function is optimized separately. Check for
duplicate extraction behavior if you have different CRC functions that are driven by
common data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that two CRC
functions are sharing logic, ensure that the blocks are synthesized independently
using one of the following methods:

■ Define each CRC block as a separate design partition in an incremental
compilation design flow.

f For details, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project in your third-party synthesis tool
and then write a separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for
each.

Take Advantage of Latency if Available
If your design can use more than one cycle to implement the CRC functionality,
adding registers and retiming the design can help reduce area, improve performance,
and reduce power utilization. If your synthesis tool offers a retiming feature (such as
the Quartus II software Perform gate-level register retiming option), you can insert
an extra bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide and alternate
between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use
CRC designs are heavy consumers of dynamic power because the logic toggles
whenever there is a change in the design. To save power, use clock enables to disable
the CRC function for every clock cycle that the logic is not required. Some designs
don’t check the CRC results for a few clock cycles while other logic is performed. It is
valuable to disable the CRC function even for this short amount of time.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

10–72 Chapter 10: Recommended HDL Coding Styles
General Coding Guidelines
Use the Device Synchronous Load (sload) Signal to Initialize
The data in many CRC designs must be initialized to 1’s before operation. If your
target device supports the use of the sload signal, you should use it to set all the
registers in your design to 1’s before operation. To enable use of the sload signal,
follow the coding guidelines presented in “Secondary Register Control Signals Such
as Clear and Clock Enable” on page 10–45. You can check the register equations in the
Chip Planner to ensure that the signal was used as expected.

f If you must force a register implementation using an sload signal, you can use
low-level device primitives as described in the Designing with Low-Level Primitives
User Guide.

Comparators
Synthesis software, including Quartus II integrated synthesis, uses device and
context-specific implementation rules for comparators (<, >, or ==) and selects the best
one for your design. This section provides some information about the different types
of implementations available and provides suggestions on how you can code your
design to encourage a specific implementation.

The == comparator is implemented in general logic cells. The < comparison can be
implemented using the carry chain or general logic cells. In devices with 6-input
ALUTs, the carry chain is capable of comparing up to three bits per cell. In devices
with 4-input LUTs, the capacity is one bit of comparison per cell, which is similar to an
add/subtract chain. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance
when it is part of a larger design due to the increased restriction on the Fitter. The area
requirement is similar for most input patterns. The synthesis software selects an
appropriate implementation based on the input pattern.

If you are using Quartus II integrated synthesis, you can guide the synthesis by using
specific coding styles. To select a carry chain implementation explicitly, rephrase your
comparison in terms of addition. As a simple example, the following coding style
allows the synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few
cases, such as when the chain is very short or the signals a and b minimize to the same
signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos
complement logic if a is less than b, because the subtraction a – b results in a negative
number.

If you have any information about the range of the input, you have “don’t care”
values that you can use to optimize the design. Because this information is not
available to the synthesis tool, you can often reduce the device area required to
implement the comparator with specific hand implementation of the logic.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

Chapter 10: Recommended HDL Coding Styles 10–73
Designing with Low-Level Primitives
You can also check whether a bus value is within a constant range with a small
amount of logic area by using the logic structure in Figure 10–5. This type of logic
occurs frequently in address decoders.

Counters
Implementing counters in HDL code is easy; they are implemented with an adder
followed by registers. Remember that the register control signals, such as enable (ena),
synchronous clear (sclr), and synchronous load (sload), are available. For the best
area utilization, ensure that the up/down control or controls are expressed in terms of
one addition instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement two
separate carry chains for addition (if it doesn’t detect the issue and optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because there is only
one carry chain adder, and the –1 constant logic is implemented in the LUT in front of
the adder without adding extra area utilization.

Designing with Low-Level Primitives
Low-level HDL design is the practice of using low-level primitives and assignments
to dictate a particular hardware implementation for a piece of logic. Low-level
primitives are small architectural building blocks that assist you in creating your
design. With the Quartus II software, you can use low-level HDL design techniques to
force a specific hardware implementation that can help you achieve better resource
utilization or faster timing results.

1 Using low-level primitives is an advanced technique to help with specific design
challenges, and is optional in the Altera design flow. For many designs, synthesizing
generic HDL source code and Altera megafunctions gives you the best results.

Low-level primitives allow you to use the following types of coding techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II integrated
synthesis from performing optimizations across a logic cell

Figure 10–5. Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

10–74 Chapter 10: Recommended HDL Coding Styles
Conclusion
■ Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE primitives

■ Instantiate registers with specific control signals using DFF primitives

■ Specify the creation of LUT functions by identifying the LUT boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and other I/O
assignments

■ Use I/O buffers to specify differential pin names in your HDL code, instead of
using the automatically-generated negative pin name for each pair

f For details about and examples of using these types of assignments, refer to the
Designing with Low-Level Primitives User Guide.

Conclusion
Because coding style and megafunction implementation can have such a large effect
on your design performance, it is important to match the coding style to the device
architecture from the very beginning of the design process. To improve design
performance and area utilization, take advantage of advanced device features, such as
memory and DSP blocks, as well as the logic architecture of the targeted Altera device
by following the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Document Revision History
Table 10–2 shows the revision history for this document.

Table 10–2. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Updated Unintentional Latch Generation content.

■ Code update for Example 10-18.

July 2010 10.0.0

■ Added support for mixed-width RAM

■ Updated support for no_rw_check for inferring RAM blocks

■ Added support for byte-enable

November 2009 9.1.0
■ Updated support for Controlling Inference and Implementation in Device RAM Blocks

■ Updated support for Shift Registers

March 2009 9.0.0

■ Corrected and updated several examples

■ Added support for Arria II GX devices

■ Other minor changes to chapter
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf

Chapter 10: Recommended HDL Coding Styles 10–75
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

Updates for the Quartus II software version 8.0 release, including:

■ Added information to “RAM Functions—Inferring ALTSYNCRAM and ALTDPRAM
Megafunctions from HDL Code” on page 6–13

■ Added information to “Avoid Unsupported Reset and Control Conditions” on page 6–14

■ Added information to “Check Read-During-Write Behavior” on page 6–16

■ Added two new examples to “ROM Functions—Inferring ALTSYNCRAM and LPM_ROM
Megafunctions from HDL Code” on page 6–28: Example 6–24 and Example 6–25

■ Added new section: “Clock Multiplexing” on page 6–46

■ Added hyperlinks to references within the chapter

■ Minor editorial updates

Table 10–2. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10–76 Chapter 10: Recommended HDL Coding Styles
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51018-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51018-10.0.1
11. Managing Metastability with the
Quartus II Software
This chapter describes the industry-leading analysis, reporting, and optimization
features that can help you manage metastability in Altera® devices. You can use the
Quartus® II software to analyze the average mean time between failures (MTBF) due
to metastability caused by synchronization of asynchronous signals, and optimize the
design to improve the metastability MTBF. This chapter explains how to take
advantage of these features in the Quartus II software, and provides guidelines to
help you reduce the chance of metastability effects caused by signal synchronization.

Introduction
All registers in digital devices, such as FPGAs, have defined signal-timing
requirements that allow each register to correctly capture data at its input ports and
produce an output signal. To ensure reliable operation, the input to a register must be
stable for a minimum amount of time before the clock edge (register setup time or tSU)
and a minimum amount of time after the clock edge (register hold time or tH). The
register output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register
might go into a metastable state. In a metastable state, the voltage at the register
output hovers at a value between the high and low states, which means the output
transition to a defined high or low state is delayed beyond the specified tCO. Different
destination registers might capture different values for the metastable signal, which
can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing
requirements, so that metastability does not occur. Metastability problems commonly
occur when a signal is transferred between circuitry in unrelated or asynchronous
clock domains, because the signal can arrive at any time relative to the destination
clock.

The MTBF due to metastability is an estimate of the average time between instances
when metastability could cause a design failure. A high MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.
You should determine an acceptable target MTBF in the context of your entire system
and taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design,
can be calculated using information about the design and the device characteristics.
Improving the metastability MTBF for your design reduces the chance that signal
transfers could cause metastability problems in your device.

f For more information about metastability due to signal synchronization, its effects in
FPGAs, and how MTBF is calculated, refer to the Understanding Metastability in FPGAs
white paper on the Altera website. Your overall device MTBF is also affected by other
FPGA failure mechanisms that you cannot control with your design. For information
about Altera device reliability, refer to the Reliability Report on the Altera website.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/literature/rr/rr.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51018

11–2 Chapter 11: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software
The Quartus II software provides analysis, optimization, and reporting features to
help manage metastability in Altera designs. These metastability features are
supported only for designs constrained with the Quartus II Timing Analyzer. Both
typical and worst-case MBTF values are generated for select device families.

h For information about device and version support for the metastability features in the
Quartus II software, refer to the Quartus II Help.

This chapter contains the following topics:

■ “Metastability Analysis in the Quartus II Software”

■ “Metastability and MTBF Reporting” on page 11–5

■ “MTBF Optimization” on page 11–8

■ “Reducing Metastability Effects” on page 11–9

■ “Scripting Support” on page 11–11

Metastability Analysis in the Quartus II Software
When a signal transfers between circuitry in unrelated or asynchronous clock
domains, the first register in the new clock domain acts as a synchronization register.
To minimize the failures due to metastability in asynchronous signal transfers, circuit
designers typically use a sequence of registers (a synchronization register chain or
synchronizer) in the destination clock domain to resynchronize the signal to the new
clock domain and allow additional time for a potentially metastable signal to resolve
to a known value. Designers commonly use two registers to synchronize a new signal,
but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified
synchronizer that meets its timing requirements, and can generate an estimate of the
overall design MTBF. The software uses this information to optimize the design
MTBF, and you can use this information to determine whether your design requires
longer synchronizer chains.

This section contains the following subsections:

■ “Synchronization Register Chains”

■ “Identifying Synchronizers for Metastability Analysis” on page 11–4

■ “How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis” on page 11–4

For information about the reports generated by the timing analyzer, refer to
“Metastability and MTBF Reporting” on page 11–5. For more information about
optimizing the MTBF, refer to “MTBF Optimization” on page 11–8.

Synchronization Register Chains
A synchronization register chain, or synchronizer, is defined as a sequence of registers
that meets the following requirements:

■ The registers in the chain are all clocked by the same clock or phase-related clocks.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 11: Managing Metastability with the Quartus II Software 11–3
Metastability Analysis in the Quartus II Software
■ The first register in the chain is driven asynchronously or from an unrelated clock
domain.

■ Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the
synchronizing clock domain that meet the above requirements. Figure 11–1 shows a
sample two-register synchronization chain.

The path between synchronization registers can contain combinational logic as long
as all registers of the synchronization register chain are in the same clock domain.
Figure 11–2 shows an example of a synchronization register chain that includes logic
between the registers.

The Quartus II software uses the design timing constraints to determine which
connections are asynchronous signal transfers, as described in “How Timing
Constraints Affect Synchronizer Identification and Metastability Analysis” on
page 11–4.

The timing slack available in the register-to-register paths of the synchronizer allows a
metastable signal to settle, and is referred to as the available settling time. The
available settling time in the MTBF calculation for a synchronizer is the sum of the
output timing slacks for each register in the chain. Adding available settling time with
additional synchronization registers improves the metastability MTBF.

Figure 11–1. Sample Synchronization Register Chain

Figure 11–2. Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

11–4 Chapter 11: Managing Metastability with the Quartus II Software
Metastability Analysis in the Quartus II Software
Identifying Synchronizers for Metastability Analysis
The first step in enabling metastability MTBF analysis and optimization in the
Quartus II software is to identify which registers are part of a synchronization register
chain. You can apply synchronizer identification settings globally to automatically list
possible synchronizers with the Synchronizer identification option on the Timing
Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Altera intellectual property
(IP) cores.

h For more information about how to enable metastability MTBF analysis and
optimization in the Quartus II software, and more detailed descriptions of the
synchronizer identification settings, refer to Identifying Synchronizers for Metastability
Analysis in Quartus II Help.

How Timing Constraints Affect Synchronizer Identification and
Metastability Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain
meets its timing requirements. The metastability failure rate depends on the timing
slack available in the synchronizer’s register-to-register connections, because that
slack is the available settling time for a potential metastable signal. Therefore, you
must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification
options use timing constraints to automatically detect the synchronizer chains in the
design. These options check for signal transfers between circuitry in unrelated or
asynchronous clock domains, so clock domains must be related correctly with timing
constraints.

The timing analyzer views input ports as asynchronous signals unless they are
associated correctly with a clock domain. If an input port fans out to registers that are
not acting as synchronization registers, apply a set_input_delay constraint to the
input port; otherwise, the input register might be reported as a synchronization
register. Constraining a synchronous input port with a set_max_delay constraint for a
setup (tSU) requirement does not prevent synchronizer identification because the
constraint does not associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated
with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu requirement> <input
port name>

Registers that are at the end of false paths are also considered synchronization
registers because false paths are not timing-analyzed. Because there are no timing
requirements for these paths, the signal may change at any point, which may violate
the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can
turn off synchronizer identification and analysis. To do so, set Synchronizer
Identification to Off for the first synchronization register in these register chains.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_identifying_synchronizers.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_identifying_synchronizers.htm

Chapter 11: Managing Metastability with the Quartus II Software 11–5
Metastability and MTBF Reporting
Metastability and MTBF Reporting
The Quartus II software reports the metastability analysis results in the Compilation
Report and Timing Analyzer reports as described in “Metastability Reports”. The
MTBF calculation uses timing and structural information about the design, silicon
characteristics, and operating conditions, along with the data toggle rate described in
“Synchronizer Data Toggle Rate in MTBF Calculation” on page 11–7.

If you change the Synchronizer Identification settings, you can generate new
metastability reports by rerunning the timing analyzer. However, you should rerun
the Fitter first so that the registers identified with the new setting can be optimized for
metastability MTBF. For information about metastability optimization, refer to “MTBF
Optimization” on page 11–8.

For more information about how metastability MTBF is calculated, refer to the
Understanding Metastability in FPGAs white paper.

Metastability Reports
Metastability reports provide summaries of the metastability analysis results. In
addition to the MTBF Summary and Synchronizer Summary reports, the Timing
Analyzer tool reports additional statistics in a report for each synchronizer chain.

h For more information about how to access metastability reports in the Quartus II
software, refer to Viewing Metastability Reports in Quartus II Help.

1 If the design uses only the Auto Synchronizer Identification setting, the reports list
likely synchronizers but do not report MTBF. To obtain an MTBF for each register
chain, force identification of synchronization registers as described in “Identifying
Synchronizers for Metastability Analysis” on page 11–4.

1 If the synchronizer chain does not meet its timing requirements, the reports list
identified synchronizers but do not report MTBF. To obtain MTBF calculations, ensure
that the design is properly constrained and that the synchronizer meets its timing
requirements, as described in “How Timing Constraints Affect Synchronizer
Identification and Metastability Analysis” on page 11–4.

MTBF Summary Report
The MTBF Summary reports an estimate of the overall robustness of cross-clock
domain and asynchronous transfers in the design. This estimate uses the MTBF
results of all synchronization chains in the design to calculate an MTBF for the entire
design.

The MTBF Summary Report reports the Typical MTBF of Design and the Worst-Case
MTBF of Design for supported fully-characterized devices. The typical MTBF result
assumes typical conditions, defined as nominal silicon characteristics for the selected
device speed grade, as well as nominal operating conditions. The worst case MTBF
result uses the worst case silicon characteristics for the selected device speed grade.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf.

11–6 Chapter 11: Managing Metastability with the Quartus II Software
Metastability and MTBF Reporting
When you analyze multiple timing corners in the timing analyzer, the MTBF
calculation may vary because of changes in the operating conditions, and the timing
slack or available metastability settling time. Altera recommends running
multi-corner timing analysis to ensure that you analyze the worst MTBF results,
because the worst timing corner for MTBF does not necessarily match the worst
corner for timing performance.

h For more information about turning on multicorner timing analysis in the Quartus II
software, refer to the Timing Analyzer page in Quartus II Help.

The MTBF Summary report also lists the Number of Synchronizer Chains Found
and the length of the Shortest Synchronizer Chain, which can help you identify
whether the report is based on accurate information. If the number of synchronizer
chains found is different from what you expect, or if the length of the shortest
synchronizer chain is less than you expect, you might have to add or change
Synchronizer Identification settings for the design. The report also provides the
Worst Case Available Settling Time, defined as the available settling time for the
synchronizer with the worst MTBF.

You can use the reported Fraction of Chains for which MTBFs Could Not be
Calculated to determine whether a high proportion of chains are missing in the
metastability analysis. A fraction of 1, for example, means that MTBF could not be
calculated for any chains in the design. MTBF is not calculated if you have not
identified the chain with the appropriate Synchronizer identification option, or if
paths are not timing-analyzed and therefore have no valid slack for metastability
analysis. You might have to correct your timing constraints to enable complete
analysis of the applicable register chains.

Finally, the MTBF Summary report specifies how an increase of 100ps in available
settling time increases the MTBF values. If your MTBF is not satisfactory, this metric
can help you determine how much extra slack would be required in your
synchronizer chain to allow you to reach the desired design MTBF.

Synchronizer Summary Report
The Synchronizer Summary lists the synchronization register chains detected in the
design depending on the Synchronizer Identification setting. The Source Node is the
register or input port that is the source of the asynchronous transfer. The
Synchronization Node is the first register of the synchronization chain. The Source
Clock is the clock domain of the source node, and the Synchronization Clock is the
clock domain of the synchronizer chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical
MTBF, for each appropriately identified synchronization register chain that meets its
timing requirement. To see more detail about each synchronizer, refer to the statistics
report described in the following section.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

Chapter 11: Managing Metastability with the Quartus II Software 11–7
Metastability and MTBF Reporting
Synchronizer Chain Statistics Report in the Timing Analyzer
The timing analyzer provides an additional report for each synchronizer chain. The
Chain Summary tab matches the Synchronizer Summary information described in
the previous section, while the Statistics tab adds more details, including whether the
Method of Synchronizer Identification was User Specified (with the Forced if
Asynchronous or Forced settings for the Synchronizer Identification setting), or
Automatic (with the Auto setting). The Number of Synchronization Registers in
Chain report provides information about the parameters that affect the MTBF
calculation, including the Available Settling Time for the chain and the Data Toggle
Rate Used in MTBF Calculation.

1 For information about the toggle rate, see “Synchronizer Data Toggle Rate in MTBF
Calculation” on page 11–7.

The following information is also included to help you locate the chain is in your
design:

■ Source Clock and Asynchronous Source node of the signal.

■ Synchronization Clock in the destination clock domain.

■ Node names of the Synchronization Registers in the chain.

Synchronizer Data Toggle Rate in MTBF Calculation
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. That is, the arriving data is assumed to
switch once every eight source clock cycles. If multiple clocks apply, the highest
frequency is used. If no source clocks can be determined, the data rate is taken as
12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the
Synchronizer Toggle Rate assignment in the Assignment Editor. You can also apply
this assignment to an entity or the entire design. Set the data toggle rate, in number of
transitions per second, on the first register of a synchronization chain. The timing
analyzer takes the specified rate into account when computing the MTBF of that
particular register chain. If a data signal never toggles and does not affect the
reliability of the design, you can set the Synchronizer Toggle Rate to 0 for the
synchronization chain so the MTBF is not reported. To apply the assignment with Tcl,
use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

1 There are two other assignments associated with toggle rates, which are not used for
metastability MTBF calculations. The I/O Maximum Toggle Rate is only used for
pins, and specifies the worst-case toggle rates used for signal integrity purposes. The
Power Toggle Rate assignment is used to specify the expected time-averaged toggle
rate, and is used by the PowerPlay Power Analyzer to estimate time-averaged power
consumption.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

11–8 Chapter 11: Managing Metastability with the Quartus II Software
MTBF Optimization
MTBF Optimization
In addition to reporting synchronization register chains and MTBF values found in
the design, the Quartus II software can also protect these registers from optimizations
that might negatively impact MTBF and can optimize the register placement and
routing if the MTBF is too low. Synchronization register chains must first be explicitly
identified as synchronizers, as described in “Identifying Synchronizers for
Metastability Analysis” on page 11–4. Altera recommends that you set Synchronizer
Identification to Forced If Asynchronous for all registers that are part of a
synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical
synthesis, are not performed on identified synchronization registers. The Fitter
protects the number of synchronization registers specified by the Synchronizer
Register Chain Length option which is described in the next section.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by
placing and routing the registers to increase their output setup slack values. Adding
slack in the synchronizer chain increases the available settling time for a potentially
metastable signal, which improves the chance that the signal resolves to a known
value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length
option.

Metastability optimization is on by default. To view or change the option, on the
Assignments menu, click Settings. Under Fitter Settings, click More Settings. From
the More Settings dialog box, you can turn on or off the Optimize Design for
Metastability option. To turn the optimization on or off with Tcl, use the following
command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Synchronization Register Chain Length
The Synchronization Register Chain Length option specifies how many registers
should be protected from optimizations that might reduce MTBF for each register
chain, and controls how many registers should be optimized to increase MTBF with
the Optimize Design for Metastability option. For example, if the Synchronization
Register Chain Length option is set to 2, optimizations such as register duplication or
logic retiming are prevented from being performed on the first two registers in all
identified synchronization chains. The first two registers are also optimized to
improve MTBF when the Optimize Design for Metastability option is turned on.

The default setting for the Synchronization Register Chain Length option is 2. The
first register of a synchronization chain is always protected from operations that
might reduce MTBF, but you should set the protection length to protect more of the
synchronizer chain. Altera recommends that you set this option to the maximum
length of synchronization chains you have in your design so that all synchronization
registers are preserved and optimized for MTBF.

To change the global Synchronization Register Chain Length option, on the
Assignments menu, click Settings. Under Analysis & Synthesis Settings, click More
Settings. From the More Settings dialog box, you can set the Synchronization
Register Chain Length.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 11: Managing Metastability with the Quartus II Software 11–9
Reducing Metastability Effects
You can also set the Synchronization Register Chain Length on a node or an entity in
the Assignment Editor. You can set this value on the first register in a synchronization
chain to specify how many registers to protect and optimize in this chain. This
individual setting is useful if you want to protect and optimize extra registers that you
have created in a specific synchronization chain that has low MTBF, or optimize less
registers for MTBF in a specific chain where the maximum frequency or timing
performance is not being met. To make the global setting with Tcl, use the following
command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain
with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Reducing Metastability Effects
You can check your design's metastability MTBF in the Metastability Summary report
described in “Metastability Reports” on page 11–5, and determine an acceptable
target MTBF given the context of your entire system and the fact that MTBF
calculations are statistical estimates. A high metastability MTBF (such as hundreds or
thousands of years between metastability failures) indicates a more robust design.

This section provides guidelines to ensure complete and accurate metastability
analysis, and some suggestions to follow if the Quartus II metastability reports
calculate an unacceptable MTBF value. The Timing Optimization Advisor (available
from the Tools menu) gives similar suggestions in the Metastability Optimization
section.

Apply Complete System-Centric Timing Constraints for the Timing Analyzer
To enable the Quartus II metastability features, make sure that the timing analyzer is
used for timing analysis.

Ensure that the design is fully timing constrained and that it meets its timing
requirements. If the synchronization chain does not meet its timing requirements,
MTBF cannot be calculated. If the clock domain constraints are set up incorrectly, the
signal transfers between circuitry in unrelated or asynchronous clock domains might
be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using
FPGA-centric timing constraints. As described in “How Timing Constraints Affect
Synchronizer Identification and Metastability Analysis” on page 11–4, you should use
set_input_delay constraints in place of set_max_delay constraints to associate each
input port with a clock domain to help eliminate false positives during
synchronization register identification.

Force the Identification of Synchronization Registers
Use the guidelines in “Identifying Synchronizers for Metastability Analysis” on
page 11–4 to ensure the software reports and optimizes the appropriate register
chains.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

11–10 Chapter 11: Managing Metastability with the Quartus II Software
Reducing Metastability Effects
In summary, identify synchronization registers with the Synchronizer Identification
set to Forced If Asynchronous in the Assignment Editor. If there are any registers that
the software detects as synchronous but you want to be analyzed for metastability,
apply the Forced setting to the first synchronizing register. Set Synchronizer
Identification to Off for registers that are not synchronizers for asynchronous signals
or unrelated clock domains.

To help you find the synchronizers in your design, you can set the global
Synchronizer Identification setting on the Timing Analyzer page of the Settings
dialog box to Auto to generate a list of all the possible synchronization chains in your
design.

Set the Synchronizer Data Toggle Rate
The MTBF calculations assume the data being synchronized is switching at a toggle
rate of 12.5% of the source clock frequency. To obtain a more accurate MTBF for a
specific chain or all chains in your design, set the Synchronizer Toggle Rate as
described in “Synchronizer Data Toggle Rate in MTBF Calculation” on page 11–7.

Optimize Metastability During Fitting
Ensure that the Optimize Design for Metastability setting described in “MTBF
Optimization” on page 11–8 is turned on.

Increase the Length of Synchronizers to Protect and Optimize
Increase the Synchronizer Chain Length parameter to the maximum length of
synchronization chains in your design, as described in “Synchronization Register
Chain Length” on page 11–8. If you have synchronization chains longer than 2
identified in your design, you can protect the entire synchronization chain from
operations that might reduce MTBF and allow metastability optimizations to improve
the MTBF.

Set Fitter Effort to Standard Fit instead of Auto Fit
If your design MTBF is too low after following the previous guidelines in this section,
you can try increasing the Fitter effort to perform more metastability optimization.
The default Auto Fit setting reduces the Fitter’s effort after meeting the design’s
timing and routing requirements to reduce compilation time. This effort reduction can
result in less metastability optimization if the timing requirements are easy to meet. If
Auto Fit reduces the Fitter’s effort during your design compilation, setting the Fitter
effort to Standard Fit might improve the design’s MTBF results. In the Settings dialog
box, on the Fitter Settings page, set Fitter effort to Standard Fit.

Increase the Number of Stages Used in Synchronizers, If Possible
Designers commonly use two registers in a synchronization chain to minimize the
occurrence of metastable events, and a standard of three registers provides better
metastability protection. However, synchronization chains with two or even three
registers may not be enough to produce a high enough MTBF when the design runs at
high clock and data frequencies.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 11: Managing Metastability with the Quartus II Software 11–11
Scripting Support
If a synchronization chain is reported to have a low MTBF, consider adding an
additional register stage to your synchronization chain. This additional stage
increases the settling time of the synchronization chain, allowing more opportunity
for the signal to resolve to a known state during a metastable event. Additional
settling time increases the MTBF of the chain and improves the robustness of your
design. However, adding a synchronization stage introduces an additional stage of
latency on the signal.

If you use the Altera FIFO megafunction with separate read and write clocks to cross
clock domains, increase the metastability protection (and latency) for better MTBF. In
the MegaWizard™ Plug-In Manager for the DCFIFO function, choose the Best
metastability protection, best fmax, unsynchronized clocks option to add three or
more synchronization stages. You can increase the number of stages to more than
three using the How many sync stages? setting.

Select a Faster Speed Grade Device, if Possible
The design MTBF depends on process parameters of the device used. Faster devices
are less susceptible to metastability issues. If the design MTBF falls significantly
below the target MTBF, switching to a faster speed grade can improve the MTBF
substantially.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook and About Quartus II Scripting in
Quartus II Help.

Identifying Synchronizers for Metastability Analysis
To apply the global Synchronizer Identification assignment described in “Identifying
Synchronizers for Metastability Analysis” on page 11–4, use the following command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION
<OFF|AUTO|"FORCED IF ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or instance,
use the following command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION
<AUTO|"FORCED IF ASYNCHRONOUS"|FORCED|OFF> -to <register or instance
name>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/current/mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

11–12 Chapter 11: Managing Metastability with the Quartus II Software
Scripting Support
Synchronizer Data Toggle Rate in MTBF Calculation
To specify a toggle rate for MTBF calculations as described on page “Synchronizer
Data Toggle Rate in MTBF Calculation” on page 11–7, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in
transitions/second> -to <register name>

report_metastability and Tcl Command
If you use a command-line or scripting flow, you can generate the metastability
analysis reports described in “Metastability Reports” on page 11–5 outside of the
Quartus II and user interfaces. Table 11–1 describes the options for the
report_metastability and Tcl command.

MTBF Optimization
To ensure that metastability optimization described on page “MTBF Optimization” on
page 11–8 is turned on (or to turn it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Synchronization Register Chain Length
To globally set the number of registers in a synchronization chain to be protected and
optimized as described on page “Synchronization Register Chain Length” on
page 11–8, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers>

To apply the assignment to a design instance or the first register in a specific chain,
use the following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH
<number of registers> -to <register or instance name>

Table 11–1. report_metastabilty Command Options

Option Description

-append
If output is sent to a file, this option appends the result to that file.
Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The extension specified
in the file name determines the file type—either *.txt or *.html.

-panel_name <name> Sends the results to the panel and specifies the name of the new
panel.

-stdout
Indicates the report be sent to the standard output, via messages.
This option is required only if you have selected another output
format, such as a file, and would also like to receive messages.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 11: Managing Metastability with the Quartus II Software 11–13
Conclusion
Conclusion
Altera’s Quartus II software provides industry-leading analysis and optimization
features to help you manage metastability in your FPGA designs. Set up your
Quartus II project with the appropriate constraints and settings to enable the software
to analyze, report, and optimize the design MTBF. Take advantage of these features in
the Quartus II software and follow the guidelines in this chapter to make your design
more robust with respect to metastability.

Document Revision History
Table 11–2 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 11–2. Document Revision History

Date Version Changes

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November 2009 9.1.0
Clarified description of synchronizer identification settings.

Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

11–14 Chapter 11: Managing Metastability with the Quartus II Software
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51017-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51017-10.1.0
12. Best Practices for Incremental
Compilation Partitions and

Floorplan Assignments
This chapter provides a set of guidelines to help you partition your design to take
advantage of Quartus II incremental compilation, and to help you create a design
floorplan using LogicLockTM regions when they are recommended to support the
flow.

The Quartus® II incremental compilation feature allows you to partition a design,
compile partitions separately, and reuse results for unchanged partitions. It provides
the following benefits:

■ Reduces compilation times by an average of 75% for large design changes

■ Preserves performance for unchanged design blocks

■ Provides repeatable results and reduces the number of compilations

■ Enables team-based design flows

f For more information about the incremental compilation feature and application
examples, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. For feature support, refer to
About Incremental Compilation in Quartus II Help.

This document contains the following sections:

■ “Overview: Incremental Compilation” on page 12–2

■ “Design Flows Using Incremental Compilation” on page 12–3

■ “Why to Plan Partitions and Floorplan Assignments” on page 12–5

■ “General Partitioning Guidelines” on page 12–7

■ “Design Partition Guidelines” on page 12–10

■ “Design Partition Guidelines for Third-Party IP Delivery” on page 12–26

■ “Checking Partition Quality” on page 12–31

■ “Including SDC Constraints from Lower-Level Partitions for Third-Party IP
Delivery” on page 12–37

■ “Introduction to Design Floorplans” on page 12–41

■ “Design Floorplan Placement Guidelines” on page 12–44

■ “Checking Floorplan Quality” on page 12–50

■ “Recommended Design Flows and Application Examples” on page 12–52
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51017
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

12–2 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation
Overview: Incremental Compilation
Quartus II incremental compilation is an optional compilation flow that enhances the
default Quartus II compilation. If you do not partition your design for incremental
compilation, your design is compiled using the default “flat” compilation flow. This
section provides an overview of the incremental compilation flow and highlights
several best practices.

To prepare your design for incremental compilation, you first determine which logical
hierarchy boundaries should be treated as separate partitions in your design, and
ensure your design hierarchy and source code is set up to support this partitioning.
Then create design partition assignments in the Quartus II software to specify which
hierarchy blocks are compiled independently as partitions (including empty
partitions for missing or incomplete logic blocks).

During compilation, Quartus II Analysis & Synthesis and the Fitter create separate
netlists for each partition. These netlists are internal post-synthesis and post-fit
database representations of your design.

In subsequent compilations, you can select which netlist type to preserve for each
partition. You can either reuse the synthesis or fitting netlist, or instruct the Quartus II
software to resynthesize the source files. You can also use compilation results
exported from another Quartus II project.

When you make changes to your design, the Quartus II software recompiles only the
required partitions and merges the new compilation results with existing netlists for
other partitions, according to the degree of results preservation you set with the netlist
for each design partition.

In some cases, as described in “Introduction to Design Floorplans” on page 12–41,
Altera recommends that you create a design floorplan with placement assignments to
constrain parts of the design to specific regions of the device.

h For step-by-step information on using incremental compilation to recompile only
changed parts of your design, refer to Using the Incremental Compilation Design Flow in
Quartus II Help.

Recommendations for the Netlist Type
For subsequent compilations, you must specify which post-compilation netlist you
want to use by specifying the netlist type for each partition.

Use the following general guidelines to set the netlist type for partitions:

■ Source File—Use this setting to resynthesize the source code (with any new
assignments and replace any previous synthesis or Fitter results)

■ If you modify the design source, the software automatically resynthesizes the
partitions with the appropriate netlist type settings, which makes the Source
File setting optional in this case.

■ Most assignments do not trigger an automatic recompilation, so setting the
netlist type to Source File is required to compile the source files with new
assignments or constraints that affect synthesis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–3
Design Flows Using Incremental Compilation
■ Post-Synthesis (default)—Use this setting to re-fit the design (with any new Fitter
assignments), but preserve the synthesis results when the source files have not
changed. If it is difficult to meet the required timing performance, you can use this
setting to allow the Fitter the most flexibility in placement and routing. This
setting does not reduce compilation time as much as the Post-Fit setting or
preserve timing performance from the previous compilation.

■ Post-Fit—Use this setting to preserve Fitter and performance results when the
source files have not changed. This setting reduces compilation time the most, and
preserves timing performance from the previous compilation.

■ Post-Fit with Fitter Preservation Level set to Placement—Use the advanced Fitter
Preservation Level setting on the Advanced tab in the Design Partition Properties
dialog box to allow more flexibility to find the best routing for all partitions given
their placement.

The Quartus II software Rapid Recompile feature instructs the compiler to reuse the
compatible compilation results if most of the design has not changed since the last
compilation. This feature reduces compilation times and preserves performance when
there are small and isolated design changes within a partition, and works with all
netlist type settings. You do not have control over which parts of the design are
recompiled using this option; the Compiler determines which parts of the design
must be recompiled. You can turn on the Rapid Recompile option in the Quartus II
software on the Incremental Compilation page of the Settings dialog box.

Design Flows Using Incremental Compilation
The Quartus II incremental compilation feature supports various design flows. Your
design flow affects the impact design partitions have on design optimization, and the
amount of design planning required to obtain optimal results.

In the standard incremental compilation flow, the top-level design is divided into
partitions, which can be compiled and optimized together in one Quartus II project. If
another team member or IP provider is developing source code for the top-level
design, they can functionally verify their partition independently, and then simply
provide the partition's source code to the project lead for integration into the top-level
design. If the project lead wants to compile the top-level design when source code is
not yet complete for a partition, they can create an empty placeholder for the partition
until the code is ready and added to the top-level design.

Compiling all design partitions in a single Quartus II project ensures that all design
logic is compiled with a consistent set of assignments and allows the software to
perform global placement and routing optimizations. Compiling all design logic
together is beneficial for FPGA design flows because all parts of the design must use
the same shared set of device resources. Therefore, it is often easier to ensure good
quality of results when partitions are developed within a single top-level Quartus II
project.

To enable team-based development, you can design and optimize partitions by
accessing the top-level project from a shared source control system or creating copies
of the top-level Quartus II project framework, and later exporting each partition so
that the post-synthesis netlist or post-fitting results can be integrated into the top-level
design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–4 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Flows Using Incremental Compilation
If required for third-party IP delivery, or in cases where designers can not access a
shared or copied top-level project framework, you can create and compile a design
partition logic in isolation and export a partition that is included in the top-level
project. If this type of design flow is necessary, planning and rigorous design
guidelines may be required to ensure that designers have a consistent view of project
assignments and resource allocations. Therefore, developing partitions in completely
separate Quartus II projects can be more challenging than having all source code
within one project or developing design partitions within the same top-level project
framework. See the following subsection “Project Management in Team-Based Design
Flows” on page 12–4 for more information.

You can also combine design flows and use exported partitions only when it is
necessary to support your design environment. For example, if the top-level design
includes one or more design blocks that will be optimized by remote designers or IP
providers, you can integrate those blocks into the reserved partitions in top-level
design when the code is complete, but also have other partitions that will be
developed within the top-level design.

If any partitions are developed independently, the project lead must ensure that
top-level constraints (such as timing constraints, any relevant floorplan or pin
assignments, and optimization settings) are consistent with those used by all
designers working independently.

Project Management in Team-Based Design Flows
If possible, each team member should work within the same top-level project
framework. As mentioned in the beginning of this section, using the same project
framework amongst team members ensures that designers have the settings and
constraints needed for their partition, and allows designers to analyze how their
design block interacts with other partitions in the top-level design.

In a team-based environment where designers have access to the project through
source control software, each designer can use project files as read-only and develop
their partition within the source control system. As designers check in their completed
designs, other team members can see how their design partitions interact. If designs
do not have access to a source control system, the project lead can provide each
designer with a snapshot copy of the top-level project framework to use as they
develop their partitions. In both cases, each designer exports their completed design
as a partition, and then the project lead integrates the partition into the top-level
design. The project lead can choose to use just the post-synthesis netlist and rerun
placement and routing, or to use the post-fitting results to preserve the placement and
routing results from the other designer's project. Using post-synthesis partitions gives
the Fitter the most flexibility and is likely to achieve a good result for all partitions,
but if one partition has difficultly meeting timing, then the designer can preserve their
successful fitting results.

Alternatively, designers can use their own Quartus II project for their independent
design block. You might use this design flow if a designer, such as a third-party IP
provider, does not have access to the entire top-level project framework. In this case,
each designer must create their own project with all the relevant assignments and
constraints. As mentioned at the beginning of this section, this type of design flow
requires more planning and rigorous design guidelines. If the project lead plans to
incorporate the post-fitting compilation results for the partition, then this design flow
requires especially careful planning to avoid resource conflicts.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–5
Why to Plan Partitions and Floorplan Assignments
The project lead also has the option to generate design partition scripts to manage
resource and timing budgets in the top-level design when partitions are developed
outside the top-level project framework. Scripts make it easier for any designers of
independent Quartus II projects to implement instructions from the project lead. The
Quartus II design partition scripts feature creates Tcl scripts or Tcl Script Files (.tcl)
and makefiles that an independent designer can run to set up an independent
Quartus II project.

h For more information on how to generate design partition scripts, refer to Generating
Design Partition Scripts for Project Management in Quartus II Help.

If designers create Quartus II assignments or timing constraints for their partitions,
they must ensure that the constraints are integrated into the top-level design. If
partition designers use the same top-level project framework (and design hierarchy),
then the constraints or Synopsys Design Constraints File (.sdc) can be easily copied or
included in the top-level design. If any partition designers use a separate Quartus II
project with a different design hierarchy, they must ensure that constraints are applied
to the appropriate level of hierarchy in the top-level design, and should design the
.sdc for easy delivery to the project lead, as described in “Including SDC Constraints
from Lower-Level Partitions for Third-Party IP Delivery” on page 12–37.

You cannot use an exported partition if you want to migrate to a HardCopy ASIC. The
Revision Compare feature requires that the HardCopy and FPGA netlists are the
same, and all operations performed on one revision must also occur on the other
revision. Unfortunately, exporting partitions does not support this requirement.

f For more information about the various types of incremental design flows and
example applications, as well as documented restrictions and limitations, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Why to Plan Partitions and Floorplan Assignments
Incremental design flows typically require more up-front planning than flat
compilations, and require you to be more rigorous about following good design
practices. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization. It is easier to
implement the correct logic grouping early in the design cycle than to restructure the
code later.

Planning involves setting up the design logic for partitioning, and may also involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. For more information, refer to “Introduction to Design
Floorplans” on page 12–41. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation much
easier. Poor partition or floorplan assignments can worsen design area utilization and
performance, making timing closure more difficult.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

12–6 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Why to Plan Partitions and Floorplan Assignments
As FPGA devices get larger and more complex, following good design practices
becomes more important for all design flows. Adhering to recommended
synchronous design practices makes designs more robust and easier to debug. Using
an incremental compilation flow adds additional steps and requirements to your
project, but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation times.

Partition Boundaries and Optimization
If there are cross-boundary optimizations between partitions, the Quartus II software
cannot obtain separate results for each individual partition. The logical hierarchical
boundaries between partitions are treated as hard boundaries for logic optimization
to allow the software to size and place each partition independently. Figure 12–1
shows the effects of partition boundaries during logic optimization. It is important to
understand this effect so that you can effectively plan your design partitions.

To prevent any cross-boundary optimizations, the Quartus II software synthesizes
each partition without using any information about logic in other partitions. In a flat
compilation, the software uses unconnected signals, constants, inversions, and other
design information to perform optimizations. When you partition a design, these
types of optimizations do not take place on partition I/O ports. Good design
partitions do not rely on these types of logic optimizations.

You can use the Merge command in Design Partitions window to combine
hierarchical partitions into a single partition, as long as they share the same
immediate parent partition. Merging partitions allows additional optimizations for
partition I/O ports that connect between or feed more than one of the merged
hierarchical design blocks.

When all partitions are placed together, the Fitter can perform placement
optimizations on the design as a whole to optimize the placement of cross-boundary
paths. However, the Fitter can never perform any logic optimizations such as physical
synthesis across the partition boundary. If partitions are fit separately in different
projects, or if some partitions use previous post-fitting results, the Fitter does not
place and route the entire cross-boundary path at the same time and cannot fully
optimize placement across the partition boundaries. Good design partitions can be
placed independently because cross-partition paths are not the critical timing paths in
the design.

Figure 12–1. Effects of Partition Boundaries During Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Presence of cross-boundary
optimization

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

Possible to incrementally
recompile each hierarchy

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–7
General Partitioning Guidelines
There are possible timing performance utilization effects because of partitioning and
creating a floorplan. Not all designs encounter these issues, but you should consider
these effects if a flat version of your design is very close to meeting its timing
requirements, or is close to using all the device resources, before adding partition or
floorplan assignments:

■ Partitions can increase resource utilization due to cross-boundary optimization
limitations if the design does not follow partitioning guidelines, for example when
partitions include unconnected ports or ports driven by constants. For more
information, ref er to “Design Partition Guidelines” on page 12–10. Floorplan
assignments can also increase resource utilization because regions can lead to
unused logic. If your device is full with the flat version of your design, you can
focus on creating partitions and floorplan assignments for timing-critical or often-
changing blocks to benefit most from the Quartus II features. For more
information, ref er to “Checking Floorplan Quality” on page 12–50.

■ Partitions and floorplan assignments might increase routing utilization compared
to a flat design. If long compilation times are due to routing congestion, you might
not be able to use the incremental flow to reduce compilation time. Review the
Fitter messages to check how much time is spent during routing optimizations and
to determine the percentage of routing utilization. When routing is difficult, you
can use incremental compilation to lock the routing for routing-critical blocks only
(with other partitions empty), and then compile the rest of the design after the
critical block meets its requirements.

■ Partitions can reduce timing performance in some cases because of the
optimization and resource effects described above, causing longer logic delays.
Floorplan assignments restrict logic placement, which can make it more difficult
for the Fitter to meet timing requirements. Use the guidelines in this chapter to
reduce any effect on your design performance.

Because cross-boundary logic and placement optimizations cannot occur, the quality
of results may decrease as the number of partitions increases. Although more
partitions allow for greater reduction in compilation time, consider limiting the
number of partitions to prevent degradation in the quality of results.

Creating good design partitions and good floorplan location assignments helps to
improve the design resource utilization and timing performance results for
cross-partition paths. Guidelines for creating these assignments are discussed in the
following sections.

General Partitioning Guidelines
The first stage in planning your design partitions is to organize your source code so
that it supports good partition assignments. Although you can assign any hierarchical
block of your design as a design partition or merge hierarchical blocks into the same
partition, following the design guidelines presented in this section ensures better
results.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–8 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
General Partitioning Guidelines
Plan Design Hierarchy and Source Design Files
You begin the partitioning process by planning the design hierarchy. When you assign
a hierarchical instance as a design partition, the partition includes the assigned
instance and any entities instantiated below it that are not defined as separate
partitions. You can also use the Merge command in the Design Partitions window to
combine hierarchical partitions into a single partition, as long as they have the same
immediate parent partition.

Take advantage of the design hierarchy to provide flexibility for partitioning and to
support different design flows. Keep logic in the “leaves” of the hierarchy tree instead
of having a lot of logic at the top-level of the design so that you can isolate partitions if
required.

Create entities that can form partitions of approximately equal size. For example, do
not instantiate a lot of small entities at the same hierarchy level because it is more
difficult to group them to form reasonably-sized partitions.

Create each entity in an independent file. The software uses a file checksum to detect
changes, and automatically recompiles a partition if its source file changes and its
netlist type is set to either post-synthesis or post-fit. If the design entities for two
partitions are defined in the same file, changes to the logic in one partition initiates
recompilation for both partitions.

Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes in
that lower-level entity affect both partitions. Commands such as VHDL use and
Verilog HDL include create dependencies between files, so that changes to one file
can trigger recompilations in all dependent files. Avoid these types of file
dependencies if possible. The Partition Dependent Files report for each partition in
the Analysis & Synthesis section of the Compilation report lists which files contribute
to each partition.

f For more information about what changes initiate an automatic recompilation of a
partition, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Using Partitions with Third-Party Synthesis Tools
Incremental compilation works well with third-party synthesis tools in addition to
Quartus II Integrated Synthesis. If you use a third-party synthesis tool, set up your
tool to create a separate Verilog Quartus Mapping File (.vqm) or EDIF Input File (.edf)
netlist for each hierarchical partition. In the Quartus II software, designate the
top-level entity from each netlist as a design partition. The .vqm or .edf netlist file is
treated as the source file for the partition in the Quartus II software.

f For more information about incremental synthesis in third-party tools, refer to the
documentation provided by your tool vendor, or the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–9
General Partitioning Guidelines
Partition Design by Functionality and Block Size
Initially, you should partition your design along functional boundaries. In a top-level
system block diagram, each block is often a natural design partition. Typically, each
block of a system is relatively independent and has more signal interaction internally
than interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can
optimize related logic as a whole, which can lead to improved optimization.

Consider how many partitions you want to maintain in your design to determine the
size of each partition. Your compilation time reduction goal is also a factor, because
compiling small partitions is typically faster than compiling large partitions.

There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should contain
more than approximately 2,000 logic elements (LEs) or adaptive logic modules
(ALMs). If your design is incomplete when you partition the design, use previous
designs to help you estimate the size that each block is likely to be.

Partition Design by Clock Domain and Timing Criticality
Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if
the partition logic will be constrained to one region of the design. Additionally,
limiting the number of clocks within each partition simplifies the timing requirements
for each partition during optimization. Use an appropriate subsystem to implement
the required logic for any clock domain transfers (such as a synchronization circuit,
dual-port RAM, or FIFO). You can include this logic inside the partition at one side of
the transfer.

Try to isolate timing-critical logic from logic that you expect to meet its timing
requirements easily. Doing so allows you to preserve the satisfactory results for
non-critical partitions and focus optimization iterations on just the timing-critical
portions of the design to minimize compilation time.

Consider What Is Changing
When assigning partitions, you should consider what is changing in the design. Is
there intellectual property (IP) or reused logic for which the source code will not
change during future design iterations? If so, define the logic in its own partition so
that you can compile one time and immediately preserve the results, so that you will
not have to compile that part of the design again. Is logic being tuned or optimized, or
are specifications changing for part of the design? If so, define changing logic in its
own partition so that you can recompile only the changing part while the rest of the
design remains unchanged

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of
unchanged logic and minimizes compilation time.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–10 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Design Partition Guidelines
Follow the partitioning guidelines presented in this section when you create or
modify the HDL code for each design block that you might want to assign as a design
partition. You do not have to follow all the recommendations exactly to achieve a
good quality of results with the incremental compilation flow, but adhering to as
many as possible maximizes your chances for success.

This section includes examples of the types of optimizations that are prevented by
partition boundaries and describes how you can structure or modify your partitions
to avoid these limitations.

Register Partition Inputs and Outputs
Use registers at partition input and output connections that are potentially
timing-critical. Registers minimize the delays on inter-partition paths and prevent the
need for cross-boundary logic optimizations.

If every partition boundary has a register as shown in Figure 12–2, every
register-to-register timing path between partitions includes only routing delay.
Therefore, the timing paths between partitions are likely not timing-critical, and the
Fitter can generally place each partition independently from other partitions. This
advantage makes it easier to create floorplan location assignments for each separate
partition, and is especially important for flows in which partitions are placed
independently in separate Quartus II projects. Additionally, the partition boundary
does not affect combinational logic optimization because each register-to-register
logic path is contained within a single partition.

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each connection.
If you register every partition output, for example, the combinational logic that occurs
in each cross-partition path is included in one partition so that it can be optimized
together.

It is a good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block. For more
information about I/O ports and registers for each partition, refer to “Partition
Statistics Report” on page 12–35, and “Incremental Compilation Advisor” on
page 12–50.

Figure 12–2. Registering Partition I/O

Partition A Partition B

Cross-partition
routing delay is not the

critical timing path

D Q D Q D Q D Q
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–11
Design Partition Guidelines
Minimize Cross-Partition-Boundary I/O
Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

This guideline is most important for timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework or merge the partitions to avoid these
inter-partition paths.

When dividing your design into partitions, consider the types of functions at the
partition boundaries. Figure 12–3 shows an expansive function with more outputs
than inputs in the left diagram, which makes a poor partition boundary, and, on the
right side, a better place to assign the partition boundary that minimizes cross-
partition I/Os. Adding registers to one or both sides of the cross-partition path in this
example would further improve the partition quality.

Figure 12–3. Minimizing I/O Between Partitions by Moving the Partition Boundary

Expansive function;
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–12 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Another way to minimize connections between partitions is to avoid using
combinational ”glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram in Figure 12–4 includes a new level of hierarchy C
defined as a partition instead of block B. Clearly, there are fewer I/O connections
between partitions A and C than between partitions A and B.

For more information about the number of I/O ports, as well as the number of inter-
partition connections for each partition, refer to “Partition Statistics Report” on
page 12–35. For more information about the number of intra-partition (within a
partition) and inter-partition (between partitions) timing edges, refer to “Incremental
Compilation Advisor” on page 12–50.

Avoid the Need for Logic Optimization Across Partitions
As discussed in “Partition Boundaries and Optimization” on page 12–6, partition
boundaries prevent logic optimizations across partitions. Remember this rule: Logic
cannot be optimized or merged across a partition boundary.

To ensure correct and optimal logic optimization, follow the guidelines in this section.
In some cases, especially if part of the design is complete or comes from another
designer, the designer might not have followed these guidelines when the source code
was created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in this section. Many of the
examples suggest simple changes to your partition definitions or hierarchy to move
the partition boundary and improve your results.

Figure 12–4. Minimizing I/O between Partitions by Modifying Glue Logic

Top

A B
Glue
Logic

Many cross-partition paths: Poor design partition assignment

Fewer cross-partition paths: Better partition assignment

Top

A
C

Glue
Logic

B

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–13
Design Partition Guidelines
The following guidelines ensure that your design does not require logic optimization
across partition boundaries:

■ “Keep Logic in the Same Partition for Optimization and Merging” on page 12–13

■ “Keep Constants in the Same Partition as Logic” on page 12–14

■ “Avoid Unconnected Partition I/O” on page 12–15

■ “Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together” on
page 12–16

■ “Invert Clocks in Destination Partitions” on page 12–17

■ “Connect I/O Pin Directly to I/O Register for Packing Across Partition
Boundaries” on page 12–18

■ “Do Not Use Internal Tri-States” on page 12–22

■ “Include All Tri-State and Enable Logic in the Same Partition” on page 12–23

■ “Include Bidirectional I/O Registers in the Same Partition (For Older Device
Families)” on page 12–24

Keep Logic in the Same Partition for Optimization and Merging
If any design logic requires logic optimization or merging to obtain optimal results,
ensure that all the logic is part of the same partition.

If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left diagram of Figure 12–5. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The Quartus II software cannot use information about
other partitions when it compiles each partition, because each partition is allowed to
change independently from the other.

On the right side of the figure, partitions A and B are merged to group the logic in
blocks A and B into one partition. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of
hierarchy that contains both blocks, and set this new hierarchy block as the partition.
With the logic contained in one partition, the software can optimize the logic and
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–14 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
remove the two inverters (shown in gray), which reduces the delay for that logic path.
Removing two inverters is not a significant reduction in resource utilization because
inversion logic is readily available in Altera device architecture. However, this
example is a simple demonstration of the types of logic optimization that are
prevented by partition boundaries.

In a flat design, the Fitter can also merge logical instantiations into the same physical
device resource. With incremental compilation, logic defined in different partitions
cannot be merged to use the same physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different
partitions, the Fitter cannot merge them into one dedicated device RAM block.

This limitation is a only a concern if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
rather than during planning, if your design uses more logic than is available in the
device.

Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL megafunction can use the same PLL resource on the
device. Similarly, GXB transceiver instances can share high-speed serial interface
(HSSI) resources in the same quad as other instances. The Fitter can merge multiple
instantiations of these blocks into the same device resource, even if it requires
optimization across partitions. Therefore, there are no restrictions for PLLs and high-
speed transceiver blocks when setting up partitions.

Keep Constants in the Same Partition as Logic
Because the Quartus II software cannot optimize across a partition boundary,
constants are not propagated across partition boundaries. A signal that is constant
(1/VCC or 0/GND) in one partition cannot affect another partition.

For example, in the left diagram of Figure 12–6 shows part of a design in which
partition A defines some signals as constants (and assumes that the other input
connections come from elsewhere in the design and are not shown in the figure).
Constants such as these could appear due to parameter or generic settings or
configurations with parameters, setting a bus to a specific set of values, or could result
from optimizations that occur within a group of logic. Because the blocks are
independent, the software cannot optimize the logic in block B based on the

Figure 12–5. Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in merged partition can be removed:
Better partition assignment

A

Merged Parition

B

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–15
Design Partition Guidelines
information from block A. The right side of Figure 12–6 shows a merged partition that
groups the logic in blocks A and B. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of
hierarchy that contains both blocks, and set this new hierarchical block as the
partition.

Within the single merged partition, the Quartus II software can use the constants to
optimize and remove much of the logic in block B (shown in gray), as shown in
Figure 12–6 below.

For more information about how many input ports are fed by GND or VCC, refer to
“Partition Statistics Report” on page 12–35. For more information about port
connections, refer to “Incremental Compilation Advisor” on page 12–50.

Avoid Unconnected Partition I/O
When a port is left unconnected, optimizations might be able to remove logic driving
that port and improve results, similar to a constant connection. However, these
optimizations are not allowed across partitions in incremental compilation, because
they could create cross-partition dependence. For best results, connect ports to an
appropriate node or remove them from the partition. If you know that a port will not
be used, consider defining a wrapper module with a different port interface.

For example, in the left diagram of Figure 12–7 shows a design that has a 10-bit
function defined in partition A, but has only 5 bits connected in partition B. In a flat
design, you expect the logic for the other unused 5 bits to be removed during
synthesis. With incremental compilation, synthesis does not remove the unused logic
from partition A because partition B is allowed to change independently from
partition A. Therefore, you can later connect all 10 bits in partition B and use all 10 bits
from partition A. In this design example, if you know that you will not use the other 5
bits of partition A, you should remove the unconnected ports and replace them with
ground signals inside partition A. You can create a new wrapper file in the design
hierarchy to do this, as shown on the right side of the figure. A new partition C
contains the logic from block A, but includes only the 5 output ports required for
connection with partition B. Within this new partition C, the logic for the unused 5
bits can be removed from the design, reducing area utilization.

Figure 12–6. Keeping Constants in the Same Partition as the Logic They Feed

Connections to constants in another partition:
Poor design partition assignment

Constants in merged partition are used to optimize:
Better partition

VCC

GND

A

M
er

ge
d

Pa
rt

iti
on

A

VCC

GND

B
B

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–16 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Figure 12–7 shows a design with a 10-bit function defined in partition A, but has only
5 bits connected in partition B.

For more information about how many I/Os are unconnected, refer to “Partition
Statistics Report” on page 12–35. For more information about unconnected ports, refer
to “Incremental Compilation Advisor” on page 12–50.

Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition. If the same signal drives multiple ports of a partition,
or if two ports of a partition are directly connected, those ports are logically
equivalent. However, because the software has no information about connections
made in another partition (including the top-level partition), the compilation cannot
take advantage of the equivalence. This restriction usually results in sub-optimal
results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition, and then make the
two connections within the partition. If an output port drives an input port of the
same partition, the connection can be made internally without going through any I/O
ports. If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals
in a higher-level partition.

Figure 12–8 shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate
partition A, the RAM block is implemented as though there are two unique clocks. If
you know that the port connectivity will not change (that is, the ports will always be
driven by the same signal in the top-level partition), redefine the port interface so that

Figure 12–7. Avoiding Unconnected Partition I/O by Creating a Wrapper File

A

10-bit
Logic

Unused logic is
preserved in
partition A:
Poor design

partition
assignment

B

New partition C:
Better partition

assignment

5-bit
Logic

C

B

A

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–17
Design Partition Guidelines
there is only a single port that can drive both connections inside the partition. You can
create a wrapper file to define a partition that has fewer ports, as shown in the
diagram on the right side. With the single clock fed into the partition, the RAM can be
optimized into a single-clock RAM instead of a dual-clock RAM. Single-clock RAM
can provide better performance in the device architecture. Additionally, partition A
might use two global routing lines for the two copies of the clock signal. Partition B
can use one global line that fans out to all destinations. Using just the single port
connection prevents overuse of global routing resources.

For more information about partition ports that have the same driving signal and
ports that are directly connected together, refer to “Incremental Compilation Advisor”
on page 12–50.

Invert Clocks in Destination Partitions
For best results, clock inversion should be done in the destination logic array block
(LAB) because each LAB contains clock inversion circuitry in the device architecture.
In a flat compilation, the Quartus II software can optimize a clock inversion to
propagate it to the destination LABs regardless of where the inversion takes place in
the design hierarchy. However, clock inversion cannot propagate through a partition
boundary to take advantage of the inversion architecture in the destination LABs.

With partition boundaries as shown in the left diagram of Figure 12–9, the Quartus II
software uses logic to invert the signal in the partition that defines the inversion (the
top-level partition in this example), and then routes the signal on a global clock
resource to its destinations (in partitions A and B). The inverted clock acts as a gated
clock with high skew. A better solution is to invert the clock signal in the destination
partitions as shown on the right side of the figure. In this case, the correct logic and
routing resources can be used, and the signal does not behave like a gated clock.

Figure 12–8. Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk

wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk

wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better partition
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–18 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Figure 12–9 shows the clock signal inversion in the destination partitions.

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

Connect I/O Pin Directly to I/O Register for Packing Across Partition
Boundaries
The Quartus II software allows cross-partition register packing of I/O registers in
certain cases where your input and output pins are defined in the top-level hierarchy
(and the top-level partition), but the corresponding I/O registers are defined in other
partitions.

Input pin cross-partition register packing requires the following specific
circumstances:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

Output pin cross-partition register packing requires the following specific
circumstances:

■ The register feeds exactly one output pin.

■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/O register packing illustrate this point using Block
Design File (.bdf) schematics to describe the design logic.

Figure 12–9. Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (adding skew):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal: Better partition

Clock

Top Top

Clock

A

B

A

B

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–19
Design Partition Guidelines
Example 1—Output Register in Partition Feeding Multiple Output Pins

In this example, a subdesign contains a single register, as shown in Figure 12–10.

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the
Quartus II software can perform cross-partition register packing because the single
partition port feeds the output pin directly.

In Example 1, the top-level design instantiates the subdesign in Figure 12–10 as an
output register with more than one fan-out signal, as shown in Figure 12–11.

In this case, the Quartus II software does not perform output register packing. If there
is a Fast Output Register assignment on pin out, the software issues a warning that
the Fitter cannot pack the node to an I/O pin because the node and the I/O cell are
connected across a design partition boundary.

This type of cross-partition register packing is not allowed because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the Quartus II software must preserve the interface of design partitions.

To allow the Quartus II software to pack the register in the subdesign from
Figure 12–10 with the output pin out in Figure 12–11, restructure your HDL code so
that output registers directly connect to output pins by making one of the following
changes:

■ Place the register in the same partition as the output pin. The simplest method
is to move the register from the subdesign partition into the partition
containing the output pin. Doing so guarantees that the Fitter can optimize the

Figure 12–10. Subdesign with One Register, Designated as a Separate Partition

Figure 12–11. Top-Level Design Instantiating the Subdesign in Figure 12–10 with Two Output Pins
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–20 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
two nodes without violating partition boundaries.

■ Duplicate the register in your subdesign HDL as in Figure 12–12 so that each
register feeds only one pin, then connect the extra output pin to the new port in
the top-level design as shown in Figure 12–13. Doing so converts the
cross-partition register packing into the simplest case where each register has a
single fan-out.

Figure 12–12. Modified Subdesign from Figure 12–10 with Two Output Registers and Two Output Ports

Figure 12–13. Modified Top-Level Design from Figure 12–11 Connecting Two Output Ports to Output Pins
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–21
Design Partition Guidelines
Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in
Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register, as
shown in Figure 12–10. The top-level design in Figure 12–14 instantiates the
subdesign as an input register with the input pin inverted. The top-level design in
Figure 12–15 instantiates the subdesign as an output register with the signal inverted
before feeding an output pin.

In these cases, the Quartus II software does not perform register packing. If there is a
Fast Input Register assignment on pin in, as in Figure 12–14, or a Fast Output
Register assignment on pin out, as in Figure 12–15, the Quartus II software issues a
warning that the Fitter cannot pack the node to an I/O pin because the node and I/O
cell are connected across a design partition boundary.

This type of register packing is not allowed because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition, or the
inverter must be moved into the subdesign partition to be implemented in the
register.

To allow the Quartus II software to pack the register in the subdesign from
Figure 12–10 with the input pin in, as in Figure 12–14 or the output pin out, as in
Figure 12–15, restructure your HDL code to place the register in the same partition as
the inverter by making one of the following changes:

■ Move the register from the subdesign partition into the top-level partition
containing the pin. Doing so ensures that the Fitter can optimize the I/O register
and inverter without violating partition boundaries.

Figure 12–14. Top-Level Design Instantiating the Subdesign in Figure 12–10 as an Input Register with an Inverted Input
Pin

Figure 12–15. Top-Level Design Instantiating the Subdesign in Figure 12–10 as an Output Register Feeding an Inverted
Output Pin
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–22 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
■ Move the inverter from the top-level block into the subdesign, then connect the
subdesign directly to a pin in the top-level design. Doing so allows the Fitter to
optimize the inverter into the register implementation, so that the register is
directly connected to a pin, which enables register packing.

Do Not Use Internal Tri-States
Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs use internal tri-states in
a flat design, the tri-state logic is usually converted to OR gates or multiplexing logic. If
tri-state logic occurs on a hierarchical partition boundary, the Quartus II software
cannot convert the logic to combinational gates because the partition could be
connected to a top-level device I/O through another partition.

Figure 12–16 and Figure 12–17 show a design with partitions that are not supported
for incremental compilation due to the internal tri-state output logic on the partition
boundaries. Instead of using internal tri-state logic for partition outputs, implement
the correct logic to select between the two signals. Doing so is good practice even
when there are no partitions, because such logic explicitly defines the behavior for the
internal signals instead of relying on the Quartus II software to convert the tri-state
signals into logic.

Figure 12–16. Unsupported Internal Tri-State Signals

Figure 12–17. Merged Partition Allows Synthesis to Convert Internal Tri-State Logic to Combinational Logic

Top

Design results in Quartus II error message:
The software cannot synthesize this

design and maintain incremental functionality

Top

Merged Partition

Merged partition allows synthesis to
convert tri-state logic into

combinational logic.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–23
Design Partition Guidelines
Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is contained
in the same partition, in which case the Quartus II software can convert the internal
tri-state signals into combinational logic like in a flat design. In this example, you can
also merge all three partitions into one partition, as shown in Figure 12–17, to allow
the Quartus II software to treat the logic as internal tri-state and perform the same
type of optimization as a flat design. If possible, you should avoid using internal tri-
state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

Include All Tri-State and Enable Logic in the Same Partition
When multiple output signals use tri-state logic to drive a device output pin, the
Quartus II software merges the logic into one tri-state output pin. The Quartus II
software cannot merge tri-state outputs into one output pin if any of the tri-state logic
occurs on a partition boundary. Similarly, output pins with an output enable signal
cannot be packed into the device I/O cell if the output enable logic is part of a
different partition from the output register. To allow register packing for output pins
with an output enable signal, structure your HDL code or design partition
assignments so that the register and enable logic are defined in the same partition.

Figure 12–18 shows a design with tri-state output signals that feed a device
bidirectional I/O pin (assuming that the input connection feeds elsewhere in the
design and is not shown in the figure). In the left diagram of the figure, the tri-state
output signals appear as the outputs of two separate partitions. In this case, the
Quartus II software cannot implement the specified logic and maintain incremental
functionality. On the right side, partitions A and B are merged to group the logic from
the two blocks. With this single partition, the Quartus II software can merge the two
tri-state output signals and implement them in the tri-state logic available in the
device I/O element.

Figure 12–18. Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal partitions

Tri-state output logic within merged partition:
Better partition

Top

Merged Partition
A

B

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–24 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines
Include Bidirectional I/O Registers in the Same Partition (For Older Device
Families)
For a bidirectional partition port that feeds a bidirectional I/O pin at the top level, all
logic that forms the bidirectional I/O cell must reside in the same partition in the
Stratix II, Stratix, Cyclone® II, and Cyclone device families (this restriction does not
apply to newer devices). Additionally, as discussed in the previous two
recommendations, the I/O logic must feed the I/O pin without any intervening logic.

In Figure 12–19, all the I/O logic must be defined inside the same partition for the
Quartus II software to implement all three registers in the I/O element along with the
tri-state logic in the affected devices. The logic connected to the registers can occur in
the same partition or any other partition; only the I/O registers must be grouped with
the tri-state logic definition. The bidirectional I/O port of the partition must be
directly connected to the bidirectional device pin at the top level. The signal can go
through several partition boundaries if necessary, as long as the connection path
contains no logic.

Summary of Guidelines Related to Logic Optimization Across Partitions
To ensure that your design does not require logic optimization across partitions,
follow the guidelines in this section:

■ Include logic in the same partition for optimization and merging

■ Include constants in the same partition as logic

■ Avoid unconnected partition I/O

■ Avoid signals that drive multiple partition I/O or connect I/O together

■ Invert clocks in destination partitions

■ Connect I/O directly to I/O register for packing across partition boundaries

■ Do not use internal tri-states

■ Include all tri-state and enable logic in the same partition

■ Include bidirectional I/O registers in the same partition (in older device families)

Figure 12–19. Including All Bidirectional I/O Registers in the Same Partition (for Older Devices)

Logic
to/from

any
partition

Top

Output Enable Register

Output
Register Tri-State

Logic

Input
Register

Partition

D

D

D

Q

Q

Q

Bidirectional logic is within one partition, and I/O logic directly feeds I/O pin

Bidir.
pin
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–25
Design Partition Guidelines
Remember that these guidelines are not mandatory when implementing an
incremental compilation flow, but can improve the quality of results. When creating
source design code, follow these guidelines and organize your HDL code to support
good partition boundaries. For designs that are complete, assess whether assigning a
partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or
hierarchy, or merge partitions as required, to improve your results.

Consider a Cascaded Reset Structure
Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. In an incremental flow, the global reset signal creates a
timing dependency between the top-level partition and lower-level partitions.

For incremental compilation, it is helpful to minimize the impact of global structures.
To isolate each partition, consider adding reset synchronizers. Using cascaded reset
structures, the intent is to reduce the inter-partition fan-out of the reset signal, thereby
minimizing the effect of the global signal. Reducing the fan-out of the global reset
signal also provides more flexibility in routing the cascaded signals, and might help
recovery and removal times in some cases.

This recommendation can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, then this recommendation may not be
applicable for your design. Minimizing global structures is more relevant for high-
performance designs where meeting timing on the reset logic can be challenging.
Isolating each partition and allowing more flexibility in global routing structures is an
additional advantage in incremental flows.

If you add additional reset synchronizers to your design, latency is also added to the
reset path, so ensure that this is acceptable in your design. Additionally, parts of the
design may come out of the reset state in different clock cycles. You can balance the
latency or add hand-shaking logic between partitions, if necessary, to accommodate
these differences.

The signal is first synchronized on the chip following good synchronous design
practices, meaning that the design asynchronously resets, but synchronously releases
from reset to avoid any race conditions or metastability problems. Then, to minimize
the impact of global structures, the circuit employs a divide-and-conquer approach
for the reset structure. By implementing a cascaded reset structure, the reset paths for
each partition are independent. This structure reduces the effect of inter-partition
dependency because the inter-partition reset signals can now be treated as false paths
for timing analysis. In some cases, the reset signal of the partition can be placed on
local lines to reduce the delay added by routing to a global routing line. In other cases,
the signal can be routed on a regional or quadrant clock signal.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–26 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines for Third-Party IP Delivery
Figure 12–20 shows a cascaded reset structure.

This circuit design can help you achieve timing closure and partition independence
for your global reset signal. Evaluate the circuit and consider how it works for your
design.

Design Partition Guidelines for Third-Party IP Delivery
This section includes additional design guidelines that can improve incremental
compilation flows where exported partitions are developed independently. These
guidelines are not always required, but are usually recommended if the design
includes partitions compiled in a separate Quartus II project, such as when delivering
intellectual property (IP). A unique challenge of IP delivery for FPGAs is the fact that
the partitions developed independently must share a common set of resources. To
minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project, or a copy of the top-level design.
A common project ensures that designers have a consistent view of the top-level
design framework, as described in “Project Management in Team-Based Design
Flows” on page 12–4.

Alternatively, an IP designer can export just the post-synthesis results to be integrated
in the top-level design when the post-fitting results from the IP project are not
required. Using a post-synthesis netlist provides more flexibility to the Quartus II
Fitter so that less resource allocation is required. If a common project is not possible,
especially when the project lead plans to integrate the IP's post-fitting results, it is
important that the project lead and IP designer clearly communicate their
requirements.

Figure 12–20. Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–27
Design Partition Guidelines for Third-Party IP Delivery
Allocate Logic Resources
In an incremental compilation design flow in which designers, such as third-party IP
providers, optimize partitions and then export them to a top-level design, the
Quartus II software places and routes each partition separately. In some cases,
partitions can use conflicting resources when combined at the top level. Allocation of
logic resources requires that you to decide on a set of logic resources (including I/O,
LAB logic blocks, RAM and DSP blocks) that the IP block will ”own”. This process can
be interactive; the project lead and the IP designer might work together to determine
what resources are required for the IP block and are available in the top-level design.

You can constrain logic utilization for the IP core using design floorplan location
assignments, as described in “Introduction to Design Floorplans” on page 12–41. The
design should specify I/O pin locations with pin assignments.

You can also specify limits for Quartus II synthesis to allocate and balance resources.
This procedure can also help if device resources are overused in the individual
partitions during synthesis.

In the standard synthesis flow, the Quartus II software can perform automated
resource balancing for DSP blocks or RAM blocks and convert some of the logic into
regular logic cells to prevent overuse.

You can use the Quartus II synthesis options to control inference of megafunctions
that use the DSP or RAM blocks. You can also use the MegaWizardTM Plug-In
Manager to customize your RAM or DSP megafunctions to use regular logic instead
of the dedicated hardware blocks.

You can, in certain device families, assign a number of LAB, DSP or RAM blocks for
each partition. Use the following logic options to specify the maximum number of
logic blocks that the Quartus II software can use in the specified partition: Maximum
Number of LABs, Maximum DSP Block Usage, Maximum Number of M4K/M9K
Memory Blocks, or Maximum Number of M-RAM/M144K Memory Blocks. You can
set these options globally for all partitions in the More Analysis & Synthesis Settings
dialog box.

h For information on how to set global logic options for partitions, refer to More Analysis
& Synthesis Settings Dialog Box in Quartus II Help.

You can also set an option for a specific partition with the Assignment Editor by
selecting the assignment name, applying it to the root entity of a partition, and then
setting an integer as the value. Partition-specific assignments override global
assignments, if any. However, each partition that does not have a partition-specific
assignment can use the number of LAB, DSP, or RAM blocks set by the global
assignment. You should note that this behavior can lead to over-allocation of logic
blocks, eventually resulting in a no-fit error.

f For more information about resource balancing DSP and RAM blocks when using
Quartus II synthesis, refer to the ”Megafunction Inference Control” section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For tips
about resource balancing and reducing resource utilization, refer to the appropriate
“Resource Utilization Optimization Techniques” section in the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_asd.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_asd.htm

12–28 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines for Third-Party IP Delivery
Allocate Global Routing Signals and Clock Networks if Required
In most cases, you do not have to allocate global routing signals because the
Quartus II software finds the best solution for the global signals. However, if your
design is complex and has multiple clocks, especially for a partition developed by a
third-party IP designer, you may have to allocate global routing resources between
various partitions.

Global routing signals can cause conflicts when independent partitions are integrated
into a top-level design. The Quartus II software automatically promotes high fan-out
signals to use global routing resources available in the device. Third-party partitions
can use the same global routing resources, thus causing conflicts in the top-level
design. Additionally, LAB placement depends on whether the inputs to the logic cells
within the LAB use a global clock signal. Problems can occur if a design does not use a
global signal in a lower-level partition, but does use a global signal in the top-level
design.

If the exported IP core is small, you can reduce the potential for problems by using
constraints to promote clock and high fan-out signals to regional routing signals that
cover only part of the device, instead of global routing signals. In this case, the
Quartus II software is likely to find a routing solution in the top-level design because
there are many regional routing signals available on most Altera devices, and designs
do not typically overuse regional resources.

To ensure that an IP block can utilize a regional clock signal, you can view the
resource coverage of regional clocks in the Chip Planner, and then align LogicLock
regions that constrain partition placement with available global clock routing
resources. For example, if the LogicLock region for a particular partition is limited to
one device quadrant, that partition’s clock can use a regional clock routing type that
covers only one device quadrant. When all partition logic is available, the project lead
can compile the entire design at the top level with floorplan assignments to allow the
use of regional clocks that span only a part of the device.

If global resources are heavily used in the overall design, or the IP designer requires
global clocks for their partition, you can set up constraints to avoid signal overuse at
the top-level by assigning the appropriate type of global signals or setting a maximum
number of clock signals for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks. For example, if you have an IP core, such as a memory interface that specifies
the use of a dual regional clock, you can constrain the IP to part of the device covered
by a regional clock and change the Global Signal assignment to use a regional clock.
This type of assignment can reduce clocking congestion and conflicts.

Alternatively, partition designers can specify the number of clocks allowed in the
project using the maximum clocks allowed options in the More Fitter Settings dialog
box. Specify Maximum number of clocks of any type allowed, or use the Maximum
number of global clocks allowed, Maximum number of regional clocks allowed,
and Maximum number of periphery clocks allowed options to restrict the number of
clock resources of a particular type in your design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–29
Design Partition Guidelines for Third-Party IP Delivery
If you require more control when planning a design with integrated partitions, you
can assign a specific signal to use a particular clock network in Stratix II and newer
device families by assigning the clock control block instance called CLKCTRL. You
can make a point-to-point assignment from a clock source node to a destination node,
or a single-point assignment to a clock source node with the Global Clock CLKCTRL
Location logic option. Set the assignment value to the name of the clock control block:
CLKCTRL_G<global network number> for a global routing network, or CLKCTRL_R<regional
network number> for a dedicated regional routing network in the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options in the
More Fitter Settings dialog box.

h For information on how to disable automatic global promotion, refer to More Fitter
Settings Dialog Box in Quartus II Help.

If you are using design partition scripts for independent partitions, the Quartus II
software can automatically write the commands to pass global constraints and turn
off automatic options.

h For more information on how to generate design partition scripts, refer to Generating
Design Partition Scripts for Project Management in Quartus II Help.

Alternatively, to avoid problems when integrating partitions into the top-level design,
you can direct the Fitter to discard the placement and routing of the partition netlist
by using the post-synthesis netlist, which forces the Fitter to reassign all the global
signals for the partition when compiling the top-level design.

Assign Virtual Pins
Virtual pins map lower-level design I/Os to internal cells. If you are developing an IP
block in an independent Quartus II project, use virtual pins when the number of I/Os
on a partition exceeds the device I/O count, and to increase the timing accuracy of
cross-partition paths.

You can create a virtual pin assignment in the Assignment Editor for partition I/Os
that will become internal nodes in the top-level design. Leave the clock pins mapped
to I/O pins to ensure proper routing.

You can specify locations for the virtual pins that correspond to the placement of other
partitions, and also make timing assignments to the virtual pins to define a timing
budget, as described in the following section. Virtual pins are created automatically
from the top-level design if you use design partition scripts. The scripts place the
virtual pins to correspond with the placement of the other partitions in the top-level
design.

h For more information on how to generate design partition scripts, refer to Generating
Design Partition Scripts for Project Management in Quartus II Help.

1 Tri-state outputs cannot be assigned as virtual pins because internal tri-state signals
are not supported in Altera devices. Connect the signal in the design with regular
logic, or allow the software to implement the signal as an external device I/O pin.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_db_fitter_settings.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_db_fitter_settings.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

12–30 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Partition Guidelines for Third-Party IP Delivery
Perform Timing Budgeting if Required
If you optimize partitions independently and integrate them to the top-level design,
or compile with empty partitions, any unregistered paths that cross between
partitions are not optimized as entire paths. In these cases, the Quartus II software has
no information about the placement of the logic that connects to the I/O ports. If the
logic in one partition is placed far away from logic in another partition, the routing
delay between the logic can lead to problems in meeting timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible. Additionally, using the same top-level project
framework helps to avoid this problem by providing the software with full
information about other design partitions in the top-level design.

To ensure that the software correctly optimizes the input and output logic in any
independent partitions, you might be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between partitions, make
timing assignments on the corresponding I/O path in each partition to constrain both
ends of the path to the budgeted timing delay. Assigning a timing budget for each
part of the connection ensures that the software optimizes the paths appropriately.

When performing manual timing budgeting in a partition for I/O ports that become
internal partition connections in a top-level design, you can assign location and
timing constraints to the virtual pin that represents each connection to further
improve the quality of the timing budget. Refer to “Assign Virtual Pins” on
page 12–29 for a description of virtual pins.

1 If you are using design partition scripts, the Quartus II software can write I/O timing
budget constraints automatically for virtual pins.

h For more on how to generate design partition scripts, refer to Generating Design
Partition Scripts for Project Management in Quartus II Help.

Drive Clocks Directly
When partitions are exported from another Quartus II project, you should drive
partition clock inputs directly with device clock input pins.

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can be especially problematic with exported
partitions because the partitions have no information about gating that takes place at
the top-level design or in another partition. If a gated clock is required in a partition,
perform the gating within that partition, as described for clock inversion in “Invert
Clocks in Destination Partitions” on page 12–17.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to lower-level partitions.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–31
Checking Partition Quality
Recreate PLLs for Lower-Level Partitions if Required
If you use a PLL in your top-level design and connect it to partitions designed in
separate Quartus II projects by third-party IP designers, the IP partitions do not have
information about the multiplication, phase shift, or compensation delays for the PLL
in the top-level design. To accommodate the PLL timing, you can make appropriate
timing assignments in the projects created by IP designers to ensure that clocks are not
left unconstrained or constrained with an incorrect frequency. Alternatively, you can
duplicate the top-level PLL (or other derived clock logic) in the design file for the
project created by the IP designer to ensure that you have the correct PLL parameters
and clock delays for a complete and accurate timing analysis.

If the project lead creates a copy of the top-level project framework that includes all
the settings and constraints needed for the design, this framework should include
PLLs and other interface logic if this information is important to optimize partitions.

If you use a separate Quartus II project for an independent design block (such as
when a designer or third-party IP provider does not have access to the entire design
framework), include a copy of the top-level PLL in the lower-level partition as shown
in Figure 12–21.

In either case, the IP partition in the separate Quartus II project should contain just the
partition logic that will be exported to the top-level design, while the full project
includes more information about the top-level design. When the partition is complete,
you can export just the partition without exporting the auxiliary PLL components to
the top-level design. When you export a partition, the Quartus II software exports any
hierarchy under the specified partition into the Quartus II Exported Partition File
(.qxp), but does not include logic defined outside the partition (the PLL in this
example).

Checking Partition Quality
This section provides an overview of tools you can use to create and analyze
partitions in the Quartus II software. Take advantage of these tools to assess your
partition quality, and use the information to improve your design or assignments as
required to achieve the best results.

Figure 12–21. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins

Lower-Level
Partition

to be
Exported

Virtual
Output
Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–32 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and implementing the
incremental compilation design flow methodology. Each recommendation in the
Incremental Compilation Advisor provides an explanation, describes the effect of the
recommendation, and provides the action required to make the suggested change.

f For more information about the Incremental Compilation Advisor, refer to Incremental
Compilation Advisor Command and Example of Using the Incremental Compilation Advisor
to Identify Non-Global Ports That Are Not Registered in Quartus II Help, and the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow the guidelines in
this chapter. You can also use the Design Partition Planner to optimize design
performance by isolating and resolving failing paths on a partition-by-partition basis.

To view a design and create design partitions in the Design Partition Planner, you
must first compile the design, or perform Analysis & Synthesis. In the Design
Partition Planner, the design appears as a single top-level design block, with
lower-level instances displayed as color-specific boxes.

In the Design Partition Planner, you can show connectivity between blocks and
extract instances from the top-level design block. When you extract entities,
connection bundles are drawn between entities, showing the number of connections
existing between pairs of entities. When you have extracted a design block that you
want to set as a design partition, right-click that design block, and then click Create
Design Partition.

The Design Partition Planner also has an auto-partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. You can
right-click the design block you want to partition (such as the top-level design
hierarchy), and then click Auto-Partition Children. You can then analyze and adjust
the partition assignments as required.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/oaw/oaw_com_inc_compoa_command.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/oaw/oaw_com_inc_compoa_command.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/oaw/oaw_ex_inc_comp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/oaw/oaw_ex_inc_comp.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–33
Checking Partition Quality
Figure 12–22 shows the Design Partition Planner after making a design partition
assignment to one instance, and dragging another instance away from the top-level
block within the same partition (two design blocks in the pale blue shaded box). The
figure shows the connections between each partition and information about the size
of each design instance.

You can switch between connectivity display mode and hierarchical display mode, or
temporarily to a view-only hierarchy display. You can also remove the connection
lines between partitions and I/O banks by turning off Display connections to I/O
banks, or use the settings on the Connection Counting tab in the Bundle
Configuration dialog box to adjust how the connections are counted in the bundles.

To optimize design performance, confine failing paths within individual design
partitions so that there are no failing paths passing between partitions, as discussed in
earlier sections. In the top-level entity, child entities that contain failing paths are
marked by a small red dot in the upper right corner of the entity box.

To view the critical timing paths from a timing analyzer report, first perform a timing
analysis on your design, and then in the Design Partition Planner, click Show Timing
Data on the View menu.

h For more information about the Design Partition Planner, refer to About the Design
Partition Planner and Using the Design Partition Planner in Quartus II Help.

Figure 12–22. Design Partition Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm

12–34 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
Viewing Design Partition Planner and Floorplan Side-by-Side
You can use the Design Partition Planner together with the Chip Planner to analyze
natural placement groupings. This information can help you decide whether the
design blocks should be grouped together in one partition, or whether they will make
good partitions in the next compilation. It can also help determine whether the logic
can easily be constrained by a LogicLock region. If logic naturally groups together
when compiled without placement constraints, you can probably assign a reasonably
sized LogicLock region to constrain the placement for subsequent compilations. You
can experiment by extracting different design blocks in the Design Partition Planner
and viewing the placement results of those design blocks from the previous
compilation.

To view the Design Partition Planner and Chip Planner side-by-side, open the Design
Partition Planner, and then open the Chip Planner and select the Design Partition
Planner task. The Design Partition Planner task displays the physical locations of
design entities with the same colors as in the Design Partition Planner.

In the Design Partition Planner, you can extract instances of interest from their parents
by dragging and dropping, or with the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it physically dispersed over a noncontiguous area of the device after
compilation. Use the Design Partition Planner to analyze the design connections.
Child instances that are unsuitable to be set as separate design partitions or placed in
LogicLock regions can be returned to their parent by dragging and dropping, or with
the Collapse to Parent command.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–35
Checking Partition Quality
Figure 12–23 shows a design displayed in the Design Partition Planner and the Chip
Planner with different colors for the top-level design and the three major design
instances.

h For more information about the Design Partition Planner, refer to About the Design
Partition Planner and Using the Design Partition Planner in Quartus II Help.

Partition Statistics Report
You can view statistics about design partitions in the Partition Merge Partition
Statistics compilation report and the Statistics tab of the Design Partitions Properties
dialog box. These reports are useful when optimizing your design partitions, or when
compiling the completed top-level design in a team-based compilation flow to ensure
that partitions meet the guidelines discussed in this chapter.

The Partition Merge Partition Statistics report in the Partition Merge section of the
Compilation report lists statistics about each partition. The statistics for each partition
(each row in the table) include the number of logic cells it contains, as well as the
number of input and output pins and how many are registered. This report also lists
how many ports are unconnected, or driven by a constant VCC or GND. You can use
this information to assess whether you have followed the guidelines for partition
boundaries.

Figure 12–23. Design Partition Planner and Chip Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm

12–36 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. The
Show All Partitions button allows you to view all the partitions in the same report.
The Partition Merge Partition Statistics report also shows statistics for the Internal
Congestion: Total Connections and Registered Connections. This information
represents how many signals are connected within the partition. It then lists the
inter-partition connections for each partition, which helps to see how partitions are
connected to each other.

h For more information about the Partition Merge Reports, refer to Partition Merge
Reports in Quartus II Help.

Report Partition Timing in the TimeQuest Timing Analyzer
The Report Partitions diagnostic report and the report_partitions SDC command in
the TimeQuest Timing Analyzer produce a Partition Timing Overview and Partition
Timing Details table, which lists the partitions and the number of failing paths and
the worst case timing slack within each partition.

You can use these reports to analyze the location of the critical timing paths in the
design are in relation to partitions. If a certain partition contains many failing paths,
or failing inter-partition paths, you might be able to change your partitioning scheme
and improve timing performance.

f For more information about the TimeQuest report_timing command and reports, see
the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Check if Partition Assignments Impact the Quality of Results
You can ensure that you limit negative effect on the quality of results by following an
iterative methodology during the partitioning process. In any incremental
compilation flow where you can compile the source code for every partition during
the partition planning phase, Altera recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock region assignments.

After Analysis & Synthesis and Partition Merge, perform a placement and timing
analysis estimate with the Start Early Timing Estimate command. To run a full
compilation instead, use the Start Compilation command.

2. Record the quality of results from the Compilation report (timing slack or fMAX,
area, and any other relevant results).

3. Create design partitions following the guidelines described in this chapter.

4. Perform another Early Timing Estimate or a full compilation.

5. Record the quality of results from the Compilation report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
3 through step 5 to change your partition assignments and use a different
partitioning scheme.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_part_merge_summary.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_part_merge_summary.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–37
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
6. Even if the quality of results is acceptable, you can repeat step 3 through step 5 by
further dividing a large partition into several smaller partitions, which can
improve compilation time in subsequent incremental compilations. You can repeat
these steps until you achieve a good trade-off point (that is, all critical paths are
localized within partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

You can also remove or disable partition assignments defined in the top-level design
at any time during the design flow to compile the design as one flat compilation and
get all possible design optimizations to assess the results. To disable the partitions
without deleting the assignments, use the Ignore partition assignments during
compilation option on the Incremental Compilation page of the Settings dialog box
in the Quartus II software. The Ignore partition assignments during compilation
option disables all design partition assignments in your project and runs a full
compilation ignoring all partition boundaries and netlists. This option can be useful if
you are using partitions to reduce compilation time as you develop various parts of
the design, but can run a long compilation near the end of the design cycle to ensure
the design meets its timing requirements.

Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery

When exported partitions are compiled in a separate Quartus II project, such as when
a third-party designer is delivering IP, the project lead must transfer the top-level
project framework information and constraints to the partitions, so that each designer
has a consistent view of the constraints that apply to the entire design. If the
independent partition designers make any changes or add any constraints, they might
have to transfer new constraints back to the project lead, so that these constraints are
included in final timing sign-off of the entire design. Many assignments from the
partition are carried with the partition into the top-level design, however, SDC format
constraints for the TimeQuest Timing Analyzer are not copied into the top-level
design automatically.

Passing additional timing constraints from a partition to the top-level design must be
managed carefully. This section provides recommendations for managing the timing
constraints in a third-party IP delivery flow. Note that you can design within a single
Quartus II project or a copy of the top-level design to simplify constraint
management.

To ensure that there are no conflicts between the project lead’s top-level constraints
and those added by the third-party IP designer, use two Synopsys Design Constraint
Files (.sdc) for each separate Quartus II project: an .sdc created by the project lead that
includes project-wide constraints, and an .sdc created by the IP designer that includes
partition-specific constraints.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–38 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
This section uses the example design shown in Figure 12–24 to illustrate these
recommendations. The top-level design instantiates a lower-level design block called
module_A that is set as a design partition and developed by an IP designer in a
separate Quartus II project.

In this top-level design, there is a single clock setting called clk associated with the
FPGA input called top_level_clk. The top-level .sdc contains the following
constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]

Creating an .sdc File With Project-Wide Constraints
The .sdc with project-wide constraints for the separate Quartus II project should
contain all constraints that are not completely localized to the partition. The .sdc
should be maintained by the project lead. The project lead must ensure that these
timing constraints are delivered to the individual partition owners and that they are
syntactically correct for each of the separate Quartus II projects. This communication
can be challenging when the design is in flux and hierarchies change. The project lead
can use design partition scripts to automatically pass some of these constraints to the
separate Quartus II projects.

h For more information on how to generate design partition scripts, refer to Generating
Design Partition Scripts for Project Management in Quartus II Help.

The .sdc with project-wide constraints is used in the partition, but is not exported
back to the top-level design. The partition designer should not modify this file. If
changes are necessary, they should be communicated to the project lead, who can then
update the SDC constraints and distribute new files to all partition designers as
required.

The .sdc should include clock creation and clock constraints for any clock used by
more than one partition. These constraints are particularly important when working
with complex clocking structures, such as the following:

■ Cascaded clock multiplexers

■ Cascaded PLLs

■ Multiple independent clocks on the same clock pin

Figure 12–24. Example Design to Illustrate SDC Constraints
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–39
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
■ Redundant clocking structures required for secure applications

■ Virtual clocks and generated clocks that are consistently used for source
synchronous interfaces

■ Clock uncertainties

Additionally, the .sdc with project-wide constraints should contain all project-wide
timing exception assignments, such as the following:

■ Multicycle assignments, set_multicycle_path

■ False path assignments, set_false_path

■ Maximum delay assignments, set_max_delay

■ Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or set_output_delay
constraints that are used for ports in separate Quartus II projects, because these
represent delays external to a given partition. If the partition designer wants to set
these constraints within the separate Quartus II projects, the team must ensure that
the I/O port names are identical in all projects so that the assignments can be
integrated successfully without changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the
project-wide .sdc, because it is not completely localized in a separate Quartus II
project.

Example Step 1: Project Lead Produces .sdc with Project-Wide Constraints for
Lower-Level Partitions

The device input top_level_clk in Figure 12–24 drives the input_clk port of
module_A. To make sure the clock constraint is passed correctly to the partition, the
project lead creates an .sdc with project-wide constraints for module_A that contains
the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {INPUT_CLK}]

The designer of module_A includes this .sdc as part of the separate Quartus II project.

Creating an .sdc with Partition-Specific Constraints
The .sdc with partition-specific constraints should contain all constraints that affect
only the partition. For example, a set_false_path or set_multicycle_path constraint
for a path entirely within the partition should be in the partition-specific .sdc. These
constraints are required for correct compilation of the partition, but need not be
present in any other separate Quartus II projects.

The partition-specific .sdc should be maintained by the partition designer; it is their
responsibility to add any constraints required to properly compile and analyze their
partition.

The partition-specific .sdc is used in the separate Quartus II project and must be
exported back to the project lead for the top-level design. The project lead must use
the partition-specific constraints to properly constrain the placement, routing, or both,
if the partition logic is fit at the top level, and to ensure that final timing sign-off is
accurate. Use the following guidelines in the partition-specific .sdc to simplify these
export and integration steps:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–40 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
■ Create a hierarchy variable for the partition (such as module_A_hierarchy) and set
it to an empty string because the partition is the top-level instance in the separate
Quartus II project. The project lead modifies this variable for the top-level
hierarchy, reducing the effort of translating constraints on lower-level design
hierarchies into constraints that apply in the top-level hierarchy. Use the following
Tcl command first to check if the variable is already defined in the project, so that
the top-level design does not use this empty hierarchy path: if {![info exists
module_A_hierarchy]}.

■ Use the hierarchy variable in the partition-specific .sdc as a prefix for assignments
in the project. For example, instead of naming a particular instance of a register
reg:inst, use ${module_A_hierarchy}reg:inst. Also use the hierarchy variable as
a prefix to any wildcard characters (such as ” * ”).

■ Pay attention to the location of the assignments to I/O ports of the partition. In
most cases, these assignments should be specified in the .sdc with project-wide
constraints because the partition interface depends on the top-level design. If you
want to set I/O constraints within the partition, the team must ensure that the I/O
port names are identical in all projects so that the assignments can be integrated
successfully without changes.

■ Be careful with the derive_clocks and derive_pll_clocks commands. In most
cases, the .sdc with project-wide constraints should call these commands. Because
these commands impact the entire design, integrating them unexpectedly into the
top-level design might cause problems.

If the design team follows these recommendations, the project lead should be able to
include the .sdc with the partition-specific constraints provided by the partition
designer directly in the top-level design.

Example Step 2: Partition Designer Creates .sdc with Partition-Specific Constraints

The partition designer compiles the design with the .sdc with project-wide constraints
and might want to add some additional constraints. In this example, the designer
realizes that they must specify a false path between the register called reg_in_1 and
all destinations in this design block with the wildcard character (such as ” * ”). This
constraint applies entirely within the partition and must be exported to the top-level
design, so it qualifies for inclusion in the .sdc with partition-specific constraints. The
designer first defines the module_A_hierarchy variable and uses it when writing the
constraint as follows:

if {![info exists module_A_hierarchy]} {
set module_A_hierarchy ""

}
set_false_path -from [get_registers ${module_A_hierarchy}reg_in_1] -to
[get_registers ${module_A_hierarchy}*]

Consolidating the .sdc in the Top-Level Design
When the partition designers complete their designs, they export the results to the
project lead. The project lead receives the exported .qxp files and a copy of the .sdc
with partition-specific constraints.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–41
Introduction to Design Floorplans
To set up the top-level .sdc constraint file to accept the .sdc files from the separate
Quartus II projects, the top-level .sdc should define the hierarchy variables specified
in the partition .sdc files. List the variable for each partition and set it to the hierarchy
path, up to and including the instantiation of the partition in the top-level design,
including the final hierarchy character ”|”.

To ensure that the .sdc files are used in the correct order, the project lead can use the
Tcl Source command to load each .sdc.

Example Step 3: Project Lead Performs Final Timing Analysis and Sign-off

With these commands, the top-level .sdc file looks like the following example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 }
[get_ports {TOP_LEVEL_CLK}]
Include the lower-level SDC file
set module_A_hierarchy "module_A:inst|" # Note the final '|' character
source <partition-specific constraint file such as
..\module_A\module_A_constraints>.sdc

When the project lead performs top-level timing analysis, the false path assignment
from the lower-level module_A project expands to the following:

set_false_path -from module_A:inst|reg_in_1 -to module_A:inst|*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal
in the top-level design, and ensures that the wildcard does not affect any nodes
outside the partition that it was intended to target.

By following the guidelines in this section, constraint propagation between the
separate Quartus II projects can be managed effectively.

Introduction to Design Floorplans
A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes describe the process of mapping the
logical design hierarchy onto physical regions in the device.

In the Quartus II software, LogicLock regions can be used to constrain blocks of a
design to a particular region of the device. LogicLock regions represent an area on the
device with a user-defined or Fitter-defined size and location in the device layout.

f For more information about design floorplans and LogicLock regions, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

The Difference between Logical Partitions and Physical Regions
Design partitions are logical entities based on the design hierarchy. LogicLock regions
are physical placement assignments that constrain logic to a particular region on the
device.

It is a common misconception that logic from a design partition is always grouped
together on the device when you use incremental compilation. Actually, logic from a
partition can be placed anywhere in the device if it is not constrained to a LogicLock
region, although the Fitter can pack related logic together to improve timing
performance. A logical design partition does not refer to any physical area on the
device and does not directly control where instances are placed on the device.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

12–42 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction to Design Floorplans
If you want to control the placement of logic from a design partition and isolate it to a
particular part of the device, you can assign the logical design partition to a physical
region in the device floorplan with a LogicLock region assignment. Altera
recommends creating a design floorplan by assigning design partitions to LogicLock
regions to improve the quality of results and avoid placement conflicts in some
situations for incremental compilation. For more information, refer to “Why Create a
Floorplan?” on page 12–42.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. Actually, LogicLock regions only constrain logic to
a physical region on the device. Incremental compilation does not use LogicLock
assignments or any location assignments to preserve the placement results; it simply
reuses the results stored in the database netlist from a previous compilation.

Why Create a Floorplan?
Creating a design floorplan is usually required if you want to preserve placement for
partitions that will be exported, to avoid resource conflicts between partitions in the
top-level design. Floorplan location planning can be important for a design that uses
incremental compilation, for the following reasons:

■ To avoid resource conflicts between partitions, predominantly when
integrating partitions exported from another Quartus II project.

■ To ensure a good quality of results when recompiling individual timing-critical
partitions.

Location assignments for each partition ensure that there are no placement conflicts
between partitions. If there are no LogicLock region assignments, or if LogicLock
regions are set to auto-size or floating location, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define resource
allocation, logic placement can conflict when you integrate the partitions in the
top-level design if you reuse the placement information from the exported netlist.

Creating a floorplan is also recommended for timing-critical partitions that have little
timing margin to maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in the
same Quartus II project. The logic for partitions that are not timing-critical can be
placed anywhere in the device on each recompilation if that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are used by other partitions. A
LogicLock region provides a reasonable region to re-place logic after a change, so the
Fitter does not have to scatter logic throughout the available space in the device.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–43
Introduction to Design Floorplans
Figure 12–25 illustrates the problems that may be associated with refitting designs
that do not have floorplan location assignments. The left floorplan shows the initial
placement of a four-partition design (P1-P4) without any floorplan location
assignments. The right floorplan shows the device if a change occurs to P3. After
removing the logic for the changed partition, the Fitter must replace and reroute the
new logic for P3 in the scattered white space shown in Figure 12–25. The placement of
the post-fit netlists for other partitions forces the Fitter to implement P3 with the
device resources that have not been used.

The Fitter has a more difficult task because of more difficult physical constraints, and
as a result, compilation time often increases. The Fitter might not be able to find any
legal placement for the logic in partition P3, even if it could in the initial compilation.
Additionally, if the Fitter can find a legal placement, the quality of results often
decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

Figure 12–26 shows the initial placement of a four-partition design with floorplan
location assignments. Each partition is assigned to a LogicLock region. The second
part of the figure shows the device after partition P3 is removed. This placement
presents a much more reasonable task to the Fitter and yields better results.

Altera recommends that you create a LogicLock floorplan assignment for
timing-critical blocks with little timing margin that will be recompiled as you make
changes to the design.

Figure 12–25. Representation of Device Floorplan without Location Assignments

P1

P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

Figure 12–26. Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has 4
partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–44 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
When to Create a Floorplan
It is important that you plan early to incorporate partitions into the design, and
ensure that each partition follows partitioning guidelines. You can create floorplan
assignments at different stages of the design flow, early or late in the flow. These
guidelines help ensure better results as you begin creating floorplan location
assignments.

Early Floorplan
An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a design to allocate each partition a portion of the device resources.
Doing so allows the designer for each block to create the logic for their design
partition without conflicting with other logic. Each partition can be optimized in a
separate Quartus II project if required, and the design can still be easily integrated in
the top-level design. Even within one Quartus II project, each partition can be locked
down with a post-fit netlist, and you can be sure there is space in the device floorplan
for other partitions.

When you have compiled your complete design, or after you have integrated the first
versions of partitions developed in separate Quartus II projects, you can use the
design information and Quartus II features to tune and improve the floorplan, as
described in the following section.

Late Floorplan
A late floorplan is created or modified after the design is created, when the code is
close to complete and the design structure is likely to remain stable. Creating a late
floorplan is typically necessary only if you are starting to use incremental compilation
late in the design flow, or need to reserve space for a logic block that becomes
timing-critical but still has HDL changes to be integrated. When the design is
complete, you can take advantage of the Quartus II analysis features to check the
floorplan quality. To adjust the floorplan, you can perform iterative compilations as
required and assess the results of different assignments.

1 It may not be possible to create a good quality late floorplan if you do not create
partitions in the early stages of the design.

Design Floorplan Placement Guidelines
The following guidelines are key to creating a good design floorplan:

■ Capture correct resources in each region.

■ Use good region placement to maintain design performance compared to flat
compilation.

It is a common misconception that creating a floorplan enhances timing performance,
as compared to a flat compilation with no location assignments. The Fitter does not
usually require guidance to get optimal results for a full design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–45
Design Floorplan Placement Guidelines
Floorplan assignments can help maintain good performance when designs change
incrementally, as described in “Why Create a Floorplan?” on page 12–42. However,
poor placement assignments can often adversely affect performance results, as
compared to a flat compilation, because the assignments limit the options for the
Fitter. Investing time to find good region placement is required to match the
performance of a full flat compilation.

Use the following general procedure to create a floorplan:

1. Divide the design into partitions.

2. Assign the partitions to LogicLock regions.

3. Compile the design.

4. Analyze the results.

5. Modify the placement and size of regions, as required.

You might have to iterate through these steps several times to find the best
combination of design partitions and LogicLock regions that meet the resource and
timing goals of the design.

f For more information about performing these steps, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Assigning Partitions to LogicLock Regions
Before compiling a design with new LogicLock assignments, ensure that the partition
netlist type is set to Post-Synthesis or Source File, so that the Fitter does not reuse
previous placement results.

In most cases, you should include logic from one partition in each LogicLock region.
This organization helps to prevent resource conflicts when partitions are exported and
can lead to better performance preservation when locking down parts of a design in a
single project.

The Quartus II software is flexible and allows exceptions to this rule. For example,
you can place more than one partition in the same LogicLock region if the partitions
are tightly connected, but you do not want to merge the partitions into one larger
partition. For best results, ensure that you recompile all partitions in the LogicLock
region every time the logic in one partition changes. Additionally, if a partition
contains multiple lower-level entities, you can place those entities in different areas of
the device with multiple LogicLock regions, even if they are defined in the same
partition.

You can use the Reserved LogicLock option to ensure that you avoid conflicts with
other logic that is not locked into a LogicLock region. This option prevents other logic
from being placed in the region, and is useful if you have empty partitions at any
point during your design flow, so that you can reserve space in the floorplan. Do not
make reserved regions too large to prevent unused area because no other logic can be
placed in a region with the Reserved LogicLock option.

h For more information about LogicLock region properties, refer to the LogicLock Region
Properties Dialog Box in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm

12–46 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
How to Size and Place Regions
In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan when the design is complete, you can use locations or regions
chosen by the Fitter as a guideline. If you have compiled the full design, you can view
the location of the partition logic in the Chip Planner. Refer to “Checking Partition
Quality” on page 12–31 for information about viewing placement results for each
partition in the device floorplan. You can use the natural grouping of each
unconstrained partition as a starting point for a LogicLock region constraint. View the
placement for each partition that requires a floorplan constraint, and create a new
LogicLock region by drawing a box around the area on the floorplan then assign the
partition to the region to constrain the partition placement.

h For step-by-step information on how to create a LogicLock region, refer to Creating
and Manipulating LogicLock Regions in Quartus II Help.

Instead of creating regions based on the previous compilation results, you can start
with the Fitter results for a default auto size and floating origin location for each new
region when the design logic is complete. After compilation, lock the size and origin
location. Instead of a full compilation, you can use the Start Early Timing Estimate
command to perform a fast placement.

Alternatively, if the design logic is complete with auto sized or floating location
regions, you can specify the size based on the synthesis results and use the locations
chosen by the Fitter with the Set to Estimated Size command. Like the previous
option, start with floating origin location. After compilation, lock the origin location.
Again, instead of a full compilation, you can use the Start Early Timing Estimate
command to perform a fast placement. You can also enable the Fast Synthesis Effort
setting to reduce synthesis time.

After a compilation or early timing estimate, save the Fitter size and origin location of
the Fitter with the Set Size and Origin to Previous Fitter Results command.

h For more information on LogicLock region, refer to Creating and Manipulating
LogicLock Regions in Quartus II Help.

1 It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the
device. On average, regions with fixed size and location yield better timing
performance than auto-sized regions.

Modifying Region Size and Origin
After saving the Fitter results from an initial compilation for a late floorplan, modify
the regions using your knowledge of the design to set a specific size and location. If
you have a good understanding of how the design fits together, you can often
improve upon the regions placed in the initial compilation. In an early floorplan when
the design has not yet been created, you can use the guidelines in this section to set
the size and origin, even though there is no initial Fitter placement for a basis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–47
Design Floorplan Placement Guidelines
The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Make sure that you select the User-Defined region in the
floorplan (as opposed to the Fitter-Placed region from the last compilation) so that
you can change the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. If you find that the early
timing estimate did not result in good relative placements, try performing a full
compilation so that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also
allows the Fitter more flexibility when placing other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so
usually improves the final results because it gives the Fitter more freedom to place
additional or modified logic added to the partition during subsequent incremental
compilations. It also allows room for optimizations such as pipelining and physical
synthesis logic duplication.

Try to have each region evenly full, with the same ”fullness” that the complete design
would have without LogicLock regions. As a very rough suggestion, try to have each
region approximately 75% full.

Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. If two partitions are allocated on
an overlapping portion of the chip, each may independently claim common resources
in this region. This leads to resource conflicts when integrating results into a top-level
design. In a single project, overlapping regions give more difficult constraints to the
Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions window, drag and
drop the child region to the parent region.

I/O Connections
Consider I/O timing when placing regions. Using I/O registers can minimize I/O
timing problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/O timing might still be a concern. It is
most important for flows where each partition is compiled independently, because the
Fitter can optimize the placement for paths between partitions if the partitions are
compiled at the same time.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–48 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Design Floorplan Placement Guidelines
Place regions close to the appropriate I/O, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. It is best to
create LogicLock regions for internal logic only, and provide pin location assignments
for external device I/O pins (instead of including the I/O cells in a LogicLock region
to control placement).

LogicLock Resource Exclusions
You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or Digital Signal Processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent certain types of elements from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the Reserved property of the region is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, due to their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding
RAM or DSP elements can help to resolve no-fit errors that are caused by regions
spanning too many resources, especially for designs that are memory-intensive,
DSP-intensive, or both. Figure 12–27 shows an example of a design with an
odd-shaped region to accommodate DSP blocks for a region that does not contain
very much logic. The right side of the figure shows the result after excluding DSP
blocks from the region. The region can be placed more easily without wasting logic
resources.

Figure 12–27. LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

D
SPM
4K

 R
AM

M
51

2
R

AM

M
R

AM

Allows better shape, easier
placement, and less unused

logic resources

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

D
SP

M
4K

 R
AM

M
51

2
R

AM

M
R

AM

Exclude DSP
blocks from
LogicLock region
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–49
Design Floorplan Placement Guidelines
To view any resource exceptions, right-click in the LogicLock Regions window, and
then click LogicLock Regions Properties. In the LogicLock Regions Properties dialog
box, select the design element (module or entity) in the Members box, and then click
Edit. In the Edit Node dialog box, to set up a resource exception, click the Edit button
next to the Excluded element types box, and then turn on the design element types to
be excluded from the region. You can choose to exclude combinational logic or
registers from logic cells, or any of the sizes of TriMatrix memory blocks, or DSP
blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering
Certain Device Elements (Such as RAM or DSP Blocks)

To assign a code block to a LogicLock region, with exclusions, use the following Tcl
command:

set_logiclock_contents -region <LogicLock region name> -to <block>
-exceptions \"<keyword>:<keyword>"

■ LogicLock region name—The name of the LogicLock region to which the code block
is assigned.

■ block—A code block in a Quartus II project hierarchy, which can aslo be a design
partition.

■ <keyword>—The list of exceptions during assignment. For example, if DSP were in
the keyword list, then the named block of code would be assigned to the
LogicLock region, except for any DSP block within the code block. You can include
the following exceptions in the set_logiclock_contents command:

Keyword variables:

■ REGISTER—Any registers in the logic cells.

■ COMBINATIONAL—Any combinational elements in the logic cells.

■ SMALL_MEM—The small TriMatrix memory blocks (M512 or MLAB).

■ MEDIUM_MEM—The medium TriMatrix memory blocks (M4K or M9K).

■ LARGE_MEM—The large TriMatrix memory blocks (M-RAM or M144K).

■ DSP—Any DSP blocks.

■ VIRTUAL_PIN—Any virtual pins.

1 Resource filtering uses the optional Tcl argument -exclude_resources in the
set_logiclock_contents function. If left unspecified, no resource filter is created. In
the .qsf, resource filtering uses an extra LogicLock membership assignment called
LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qsf is used to
specify a resource filter for the alu:alu_unit entity assigned to the ALU region.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
"DSP:SMALL_MEM" -to "alu:alu_unit" -section_id ALU
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–50 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Floorplan Quality
Creating Non-Rectangular Regions
To constrain placement to non-rectangular or non-contiguous areas of the device, you
can connect multiple rectangular regions together using the Merge command.

For devices that do not support the Merge command (Arria TM GX, Cyclone,
Cyclone II, HardCopy II, MAX TM II, Stratix, Stratix II, Stratix II GX, and Stratix GX
devices), you can limit entity placement to a sub-area of a LogicLock region to create
non-rectangular constraints. In these devices, construct a LogicLock hierarchy by
creating child regions inside of parent regions, and then use the Reserved option to
control which logic can be placed inside these child regions. Setting the Reserved
option for the region prevents the Fitter from placing nodes that are not assigned to
the region inside the boundary of the region.

h For more information and examples of creating non-rectangular regions, refer to
Creating and Manipulating LogicLock Regions in Quartus II Help.

Checking Floorplan Quality
This section provides an overview of tools that you can use as you create a floorplan
in the Quartus II software. You can use these tools to assess your floorplan quality and
use the information to improve your design or assignments as required to achieve the
best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating floorplan location assignments that are presented
in this chapter. For more information, refer to “Incremental Compilation Advisor” on
page 12–32.

LogicLock Region Resource Estimates
You can view resource estimates for a LogicLock region to determine the region’s
resource coverage, and use this estimate before compilation to check region size.
Using this estimate helps to ensure adequate resources when you are sizing or
moving regions.

h For information about how to view the properties of a LogicLock region, refer to
LogicLock Region Properties Dialog Box in Quartus II Help.

LogicLock Region Properties Statistics Report
LogicLock region statistics are similar to design partition properties, but also include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region, and also lists the number of I/O connections and how many I/Os are
registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–51
Checking Floorplan Quality
h For information about the Statistics tab in the LogicLock Region Properties dialog
box, refer to LogicLock Region Properties Dialog Box in Quartus II Help.

Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
In the TimeQuest user interface, you can locate a specific path in the Chip Planner to
view its placement and perform a report timing operation (for example, report timing
for all paths with less than 0 ns slack).

h For information about how to locate paths between the TimeQuest Timing Analyzer
and the Chip Planner, refer to Locate Dialog Box in Quartus II Help.

Inter-Region Connection Bundles
The Chip Planner can display bundles of connections between LogicLock regions,
with filtering options that allow you to choose the relevant data for display. These
bundles can help you to visualize how many connections there are between each
LogicLock region to improve floorplan assignments or to change partition
assignments, if required.

h For information about how to display bundles of connections between LogicLock
regions, refer to Generate Inter-region Bundles Dialog Box in Quartus II Help.

Routing Utilization
The Chip Planner includes a feature to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, red LAB blocks indicate higher routing congestion. You can
position the mouse pointer over a LAB to display a tooltip that reports the logic and
routing utilization information.

h For information about how to how to view a color map of routing congestion in the
Chip Planner, refer to About the Chip Planner in Quartus II Help.

Ensure Floorplan Assignments Do Not Significantly Impact Quality of
Results

The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare your before and after results, and consider using another scheme
if any of the following guidelines are not met:

■ You should see only minor degradation in fMAX after the design is partitioned and
floorplan location assignments are created. There is some performance cost
associated with setting up a design for incremental compilation; approximately
3% is typical.

■ The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created.

■ The time spent in the routing stage should not significantly increase.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_db_locate_path.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm

12–52 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Recommended Design Flows and Application Examples
The amount of compilation time spent in the routing stage is reported in the Messages
window with an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease the
number of LogicLock regions, which typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

Recommended Design Flows and Application Examples
This section provides design flows for partitioning and creating a design floorplan
during common timing closure and team-based design scenarios. Each flow describes
the situation in which it should be used, and provides a step-by-step description of
the commands required to implement the flow.

Create a Floorplan for Major Design Blocks
Use this incremental compilation flow for designs when you want to assign a
floorplan location for each major block in your design. A full floorplan ensures that
partitions do not interact as they are changed and recompiled—each partition has its
own area of the device floorplan.

To create a floorplan for major design blocks, follow this general methodology:

1. In the Design Partitions window, ensure that all partitions have their netlist type
set to Source File or Post-Synthesis. If the netlist type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is set as a partition by default).

3. Run a full compilation of your design to view the initial Fitter-chosen placement of
the LogicLock regions as a guideline.

4. In the Chip Planner, view the placement results of each partition and LogicLock on
the device.

5. If required, modify the size and location of the regions in the Chip Planner. For
example, enlarge the regions to fill up the device and allow for future logic
changes.

You can also, if needed, create a new LogicLock region by drawing a box around
an area on the floorplan.

6. Run an early timing estimate with the Start Early Timing Estimate command to
estimate the timing performance of your design with the modified or new
LogicLock regions.

7. Repeat steps 5 and 6 until you are satisfied with the quality of results for your
design floorplan. Once you are satisfied with your results, run a full compilation of
your design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–53
Recommended Design Flows and Application Examples
Create a Floorplan Assignment for One Design Block with Difficult Timing
Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you do not want to create floorplan assignments for the entire design.
Instead, you can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere on the device. To create a region
for critical design block, follow these steps:

1. Divide up your design into partitions. Consider the guidelines in “Design
Partition Guidelines” on page 12–10 to determine partition boundaries. Ensure
that you isolate the timing-critical logic in a separate partition.

2. Define a LogicLock region for the timing-critical partition. Ensure that you capture
the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

■ If the design block is not complete, reserve space in the design floorplan based
on your knowledge of the design specifications, connectivity between design
blocks, and estimates of the size of the partition based on any initial
implementation numbers.

■ If the critical design block has initial source code ready, compile the design to
place the LogicLock region. Save the Fitter-determined size and origin, then
enlarge the region to provide more flexibility and allow for future design
changes.

As the rest of the design is completed, and the device fills up, the timing-critical
region has a reserved area of the floorplan. When you make changes to the design
block, the logic will be re-placed in the same part of the device, which helps ensure
good quality of results.

Create a Floorplan as the Project Lead in a Team-Based Flow
Use this approach when you have several designs that will be implemented in
separate Quartus II projects by different designers, or third-party IP designers who
want to optimize their designs independently and pass the results to the project lead.

As the project lead in this scenario, follow these steps to prepare the top-level design
for a successful team-based design methodology with early floorplan planning:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. Create a “skeleton” or framework of the design that defines the hierarchy for the
subdesigns that will be implemented by separate designers. Consider the
partitioning guidelines in this chapter while determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

4. Make design partition assignments for each major subdesign. Set the netlist type
for each partition that will be implemented in a separate Quartus II project and
later exported and integrated with the top-level design to Empty.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

12–54 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Conclusion
5. Create LogicLock regions for each partition to create a design floorplan. This
floorplan should consider the connectivity between partitions and estimates of the
size of each partition based on any initial implementation numbers and
knowledge of the design specifications. Use the guidelines described in this
chapter to choose a size and location for each LogicLock region.

6. Provide the constraints from the top-level design to partition designers using one
of the following procedures:

a. Create a copy of the top-level Quartus II project framework by checking out the
appropriate files from a source control system, using the Copy Project
command, or creating a project archive. Provide each partition designer with
the copy of the project.

b. Provide the constraints with documentation or scripts.

h To use design partition scripts to pass constraints and generate separate Quartus II
projects, refer to Generating Design Partition Scripts for Project Management in Quartus II
Help.

Conclusion
Incremental compilation can significantly improve your design productivity,
especially for large, complex designs. To take advantage of the feature, it is worth
spending time to create quality partition and floorplan assignments.

Follow the guidelines to set up your design hierarchy and source code for incremental
compilation. Keep partitions independent of each other and do not rely on any
cross-boundary logic optimizations.

Floorplan location assignments are required when design blocks are developed
independently, and are recommended for timing-critical partitions that are expected
to change. Follow the guidelines to create and modify LogicLock regions to create
good placement assignments for your design partitions.

Take advantage of the numerous Quartus II software tools to assess partition quality
and analyze the floorplan to make good LogicLock location assignments. Remember
that you do not have to follow all the guidelines exactly to implement an incremental
compilation design flow, but following the guidelines can maximize your chances of
success.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp_pro_generating_design_partition_scripts.htm

Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 12–55
Document Revision History
Document Revision History
Table 12–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 12–1. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Moved “Creating Floorplan Location Assignments With Tcl Commands—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)” from the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

■ Consolidated Design Partition Planner and Incremental Compilation Advisor information
between the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
and Best Practices for Incremental Compilation Partitions and Floorplan Assignments
handbook chapters.

July 2010 10.0.0

■ Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

■ Expanded the Merge command explanation to explain how it now accommodates cross-
partition boundary optimizations.

■ Restructured Altera recommendations for when to use a floorplan.

October 2009 9.1.0

■ Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
projects.

■ Added “Including SDC Constraints from Lower-Level Partitions for Third-Party IP
Delivery” from the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

■ Reorganized the “Recommended Design Flows and Application Examples” section.

■ Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0

■ Added I/O register packing examples from Incremental Compilation for Hierarchical and
Team-Based Designs chapter

■ Moved “Incremental Compilation Advisor” section

■ Added “Viewing Design Partition Planner and Floorplan Side-by-Side” section

■ Updated Figure 12–22

■ Chapter 8 was previously Chapter 7 in software release 8.1.

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content.

May 2007 8.0.0 ■ Initial release.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

12–56 Chapter 12: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

December 2010 Altera Corporation
Section IV. Synthesis
As programmable logic devices become more complex and require increased
performance, advanced design synthesis has become an important part of the design
flow. In the Quartus® II software you can use the integrated Analysis and Synthesis
module of the Compiler to synthesize your design files and create the project database
for future stages of the compilation flow. You can also use other EDA synthesis tools
to first synthesize your designs, and then generate EDIF netlist files or Verilog
Quartus Mapping Files (.vqm) that you can use with the Quartus II software. The
Quartus II netlist viewers allow you to visually analyze the design netlist at different
stages of synthesis and compilation. This section explains the options that are
available for each of these flows and how they are supported in the Quartus II
software.

This section includes the following chapters:

■ Chapter 13, Quartus II Integrated Synthesis

This chapter documents the integrated synthesis design flow and language
support in the Quartus II software. It explains how you can improve synthesis
results with Quartus II synthesis options and optimization techniques, and how
you can control the inference of architecture-specific megafunctions. This chapter
also explains some of the node-naming conventions used during synthesis to help
you better understand your synthesized design and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying all the
options and settings described are also provided.

■ Chapter 14, Synopsys Synplify Support

This chapter documents support for the Synopsys Synplify software in the
Quartus II software, as well as key design flows, methodologies, and techniques
for achieving good results in Altera® devices with the Synplify software.

■ Chapter 15, Mentor Graphics Precision Synthesis Support

This chapter documents support for the Mentor Graphics® Precision Synthesis
software in the Quartus II software, as well as key design flows, methodologies,
and techniques for achieving good results in Altera® devices with the Precision
Synthesis software.

■ Chapter 16, Mentor Graphics LeonardoSpectrum Support

This chapter documents key design methodologies and techniques for Altera
devices using the Mentor Graphics LeonardoSpectrum™ software and Quartus II
design flow. The LeonardoSpectrum software is a mature synthesis tool
supporting legacy devices and many current devices. Altera recommends using
the advanced Precision Synthesis software for new designs in new device families.

■ Chapter 17, Analyzing Designs with Quartus II Netlist Viewers

This chapter shows how to use the Quartus II netlist viewers to analyze your
design at various stages of the design cycle. It also provides an introduction to the
Quartus II design flow using netlist viewers, an overview of each viewer, and an
explanation of the user interface.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

IV–2 Section IV: Synthesis
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51008-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51008-10.1.0
13. Quartus II Integrated Synthesis
This chapter documents the design flow of integrated synthesis and provides
scripting techniques for applying all options and settings described in this chapter.

As programmable logic designs become more complex and require increased
performance, advanced synthesis has become an important part of the design flow.
The Altera® Quartus® II software includes advanced integrated synthesis that fully
supports VHDL, Verilog HDL, and Altera-specific design entry languages, and
provides options to control the synthesis process. With this synthesis support, the
Quartus II software provides a complete, easy-to-use solution.

This chapter contains the following sections:

■ “Design Flow” on page 13–1

■ “Language Support” on page 13–3

■ “Incremental Compilation” on page 13–20

■ “Quartus II Synthesis Options” on page 13–22

■ “Analyzing Synthesis Results” on page 13–72

■ “Analyzing and Controlling Synthesis Messages” on page 13–72

■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on page 13–77

■ “Scripting Support” on page 13–83

f For examples of Verilog HDL and VHDL code synthesized for specific logic functions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For information about coding with primitives that describe specific
low-level functions in Altera devices, refer to the Designing With Low-Level Primitives
User Guide.

Design Flow
The Quartus II Analysis & Synthesis stage of the compilation flow runs integrated
synthesis, which fully supports Verilog HDL, VHDL, and Altera-specific languages,
and major features of the SystemVerilog language. For more information, refer to
“Language Support” on page 13–3.

In the synthesis stage of the compilation flow, the Quartus II software performs logic
synthesis to optimize design logic and performs technology mapping to implement
the design logic in device resources such as logic elements (LEs) or adaptive logic
modules (ALMs), and other dedicated logic blocks. The synthesis stage generates a
single project database that integrates all the design files in a project (including any
netlists from third-party synthesis tools).
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII51008

13–2 Chapter 13: Quartus II Integrated Synthesis
Design Flow
You can use Analysis & Synthesis to perform the following compilation processes:

■ Analyze Current File—Parses the current design source file to check for syntax
errors. This command does not report on many semantic errors that require
further design synthesis. To perform this analysis, on the Processing menu, click
Analyze Current File.

■ Analysis & Elaboration—Checks a design for syntax and semantic errors and
performs elaboration to identify the design hierarchy. To perform Analysis &
Elaboration, on the Processing menu, point to Start, and then click Start
Analysis & Elaboration.

■ Analysis & Synthesis—Performs complete Analysis & Synthesis on a design,
including technology mapping. To perform Analysis & Synthesis, on the
Processing menu, point to Start, and then click Start Analysis & Synthesis.

The Quartus II integrated synthesis design and compilation flow consists of the
following steps:

1. Create a project in the Quartus II software and specify the general project
information, including the top-level design entity name.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all design files to
your Quartus II project using the Files page of the Settings dialog box.

4. Specify compiler settings that control the compilation and optimization of the
design during synthesis and fitting. For synthesis settings, refer to “Quartus II
Synthesis Options” on page 13–22.

5. Add timing constraints to specify the timing requirements.

1 To partition your design to reduce compilation time, refer to “Incremental
Compilation” on page 13–20.

6. Compile the design. To synthesize the design, on the Processing menu, point to
Start, and then click Start Analysis & Synthesis. To run a complete compilation
flow including placement, routing, creation of a programming file, and timing
analysis, click Start Compilation on the Processing menu.

7. After obtaining synthesis and placement and routing results that meet your
requirements, program or configure your Altera device.

The Quartus II software generates netlists that enable you to perform functional
simulation or gate-level timing simulation, timing analysis, and formal verification.

f For an overall summary of features in the Quartus II software, refer to the Introduction
to the Quartus II Software manual.

h For more information about Quartus II projects and the compilation flow, refer to
Managing Files in a Project and About Compilation Flows in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_view_flow.htm

Chapter 13: Quartus II Integrated Synthesis 13–3
Language Support
Figure 13–1 shows the basic design flow using Quartus II integrated synthesis.

Language Support
This section explains Quartus II integrated synthesis support for HDL, schematic
design entry, graphical state machine entry, and how to specify the Verilog HDL or
VHDL language version used in your design. This section also documents language
features such as Verilog HDL macros, initial constructs and memory system tasks, and
VHDL libraries. “Design Libraries” on page 13–12 describes how to compile and
reference design units in custom libraries, and “Using Parameters/Generics” on
page 13–16 describes how to use parameters or generics and pass them between
languages.

Figure 13–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

Notes to Figure 13–1:

(1) AHDL stands for the Altera Hardware Description Language.
(2) BDF stands for the Altera schematic Block Design File format (.bdf).
(3) The Quartus II Exported Partition File (.qxp) is a precompiled netlist that you can use as a design source file. For more information about using

.qxp as a design source file, refer to “Quartus II Exported Partition File as Source” on page 13–22.

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & Synthesis
Constraints
& Settings

Constraints
& Settings

Fitter Assembler
Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
 Placement and Routing

Simulation Files
(.vho/.vo and .sdo)

Post
Placement and Routing
Formal Verification File

(.vo)

Verilog HDL VHDL AHDL (1) BDF (2)

Configure/Program Device

.qxp file (3)System Verilog
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–4 Chapter 13: Quartus II Integrated Synthesis
Language Support
To ensure that the Quartus II software reads all associated project files, add each file to
your Quartus II project by clicking Add/Remove Files in Project on the Project menu.
You can add design files to your project. You can mix all supported languages and
netlists generated by third-party synthesis tools in a single Quartus II project.

Verilog HDL Support
The Quartus II Compiler’s Analysis & Synthesis module supports the following
Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)

■ Verilog-2001 (IEEE Standard 1364-2001)

■ SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs are supported)

1 The Quartus II software does not support Verilog-2001 libraries and configurations.

h For more information about Verilog HDL, refer to About Verilog HDL in Quartus II
Help.

The Verilog HDL code samples provided in this document follow the Verilog-2001
standard unless otherwise specified. The Quartus II Compiler uses the Verilog-2001
standard by default for files that have the extension .v, and the SystemVerilog
standard for files that have the extension .sv.

h For more information about Quartus II Verilog HDL support, refer to Quartus II
Verilog HDL Support in Quartus II Help.

You can specify a default Verilog HDL version for all files by performing the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis & Synthesis
Settings, and select Verilog HDL Input.

3. On the Verilog HDL Input page, under Verilog version, select the appropriate
Verilog HDL version and then click OK.

You can override the default Verilog HDL version for each Verilog HDL design file by
following these steps:

1. On the Project menu, click Add/Remove Files in Project.

2. On the Files page, select the appropriate file in the list, and then click Properties.

3. In the HDL Version list, select SystemVerilog_2005, Verilog_2001, or
Verilog_1995, and then click OK.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_list_support.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_list_support.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_intro.htm

Chapter 13: Quartus II Integrated Synthesis 13–5
Language Support
You can control the Verilog HDL version that compiles the design in a design file with
the VERILOG_INPUT_VERSION synthesis directive, as shown in Example 13–1. This
directive overrides the default HDL version and any HDL version specified in the File
Properties dialog box.

The variable <language version> uses one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

When the Quartus II software reads a VERILOG_INPUT_VERSION synthesis directive, the
current language version setting changes as specified until after the file or until the
next VERILOG_INPUT_VERSION directive.

1 You cannot change the language version in the middle of a Verilog HDL module.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 13–27.

h For more information about Verilog HDL synthesis attributes and directives, refer to
Verilog HDL Synthesis Attributes and Directives in Quartus II Help.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. For more information, refer to “Adding
an HDL File to a Project and Setting the HDL Version” on page 13–84.

The Quartus II software support for Verilog HDL is case-sensitive in accordance with
the Verilog HDL standard. The Quartus II software supports the compiler directive
`define, in accordance with the Verilog HDL standard.

The Quartus II software supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths. When
searching for a relative path, the Quartus II software initially searches relative to the
project directory. If the Quartus II software cannot find the file, the software then
searches relative to all user libraries, and finally, relative to the directory location of
the current file.

SystemVerilog Support
The Quartus II software supports the following SystemVerilog constructs:

■ Parameterized interfaces, generic interfaces, and modport constructs

■ Packages

■ Extern module declarations

■ Built-in data types logic, bit, byte, shortint, longint, int

■ Unsized integer literals ‘0, ‘1, ‘x, ‘z, ‘X, and ‘Z

Example 13–1. Controlling the Verilog HDL Input Version with a Synthesis Directive

// synthesis VERILOG_INPUT_VERSION <language version>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir.htm

13–6 Chapter 13: Quartus II Integrated Synthesis
Language Support
■ Structure data types using struct

■ Ports and parameters with unrestricted data types

■ Types you defined using typedef

■ Global declarations of task/functions/parameters/types (does not support global
variables)

■ Coding constructs always_comb, always_latch, always_ff

■ Continuous assignments to nodes other than nets, and procedural assignments to
nodes other than reg

■ Enumeration methods First, Last, Next(n), Prev(n), Num, and Name

■ Assignment operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=

■ Increment ++ and decrement --

■ Jump statements return, break, and continue

■ Enhanced for loop (declare loop variables inside initial condition)

1 Quartus II integrated synthesis does not support multiple loop variable
declaration.

■ Do-while loop and local loop constructs

■ Assignment patterns

■ Keywords unique and priority in case statements

■ Default values for function/task arguments

■ Closing labels

■ Extensions to directives ‘define and ‘include

■ Expression size system function $bits

■ Array query system functions $dimensions, $unpacked_dimensions, $left,
$right, $high, $low, $increment, and $size

■ Packed array (include multidimensional packed array and packed arrays of
packed structures)

■ Unpacked array (include single-valued range dimension)

■ Implicit port connections with .name and .*

■ Immediate assertions in procedural constructs

■ System task such as $fatal, $error, $warning, $info, and $display statements

■ Implicit port and argument direction for functions and tasks (Implicit port
direction in modules is not supported)

■ Declaration of time unit and time precision with timeunit and timeprecision in a
module

Quartus II integrated synthesis also parses, but otherwise ignores the SystemVerilog
assertions.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–7
Language Support
1 Designs written to comply with the Verilog-2001 standard might not compile with the
SystemVerilog setting because the SystemVerilog standard adds several new reserved
keywords.

Initial Constructs and Memory System Tasks
The Quartus II software infers power-up conditions from Verilog HDL initial
constructs. The Quartus II software also creates power-up settings for variables,
including RAM blocks. If the Quartus II software encounters non-synthesizable
constructs in an initial block, it generates an error. To avoid such errors, enclose
non-synthesizable constructs (such as those intended only for simulation) in
translate_off and translate_on synthesis directives, as described in “Translate Off
and On / Synthesis Off and On” on page 13–63. Synthesis of initial constructs enables
the power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 13–41.

1 Initial blocks do not infer power-up conditions in some third-party EDA synthesis
tools. If you convert between synthesis tools, you must set your power-up conditions
correctly.

Quartus II integrated synthesis supports the $readmemb and $readmemh system tasks to
initialize memories. Example 13–2 shows an initial construct that initializes an
inferred RAM with $readmemb.

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line. Example 13–3 shows a portion of a Memory
Initialization File (.mif) for the RAM in Example 13–2.

Example 13–2. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

Example 13–3. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–8 Chapter 13: Quartus II Integrated Synthesis
Language Support
Verilog HDL Macros
The Quartus II software fully supports Verilog HDL macros, which you can define
with the 'define compiler directive in your source code. You can also define macros
in the GUI or on the command line.

Setting a Verilog HDL Macro Default Value in the GUI

To specify a macro in the GUI, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Verilog
HDL Input.

3. Under Verilog HDL macro, type the macro name in the Name box and the value
in the Setting box.

4. Click Add.

Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the
--verilog_macro option, as shown in Example 13–4.

The command in Example 13–5 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

To specify multiple macros, you can repeat the option more than once, as in
Example 13–6.

VHDL Support
The Quartus II Compiler’s Analysis & Synthesis module supports the following
VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)

■ VHDL 1993 (IEEE Standard 1076-1993)

■ VHDL 2008 (IEEE Standard 1076-2008)

The Quartus II Compiler uses the VHDL 1993 standard by default for files that have
the extension .vhdl or .vhd.

1 The VHDL code samples provided in this chapter follow the VHDL 1993 standard.

Example 13–4. Command Syntax for Specifying a Verilog HDL Macro

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>" r

Example 13–5. Specifying a Verilog HDL Macro a = 2

quartus_map my_design --verilog_macro="a=2" r

Example 13–6. Specifying Verilog HDL Macros a = 2 and b = 3

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–9
Language Support
To specify a default VHDL version for all files, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select VHDL
Input.

3. On the VHDL Input page, under VHDL version, select the appropriate version,
and then click OK.

You can override the default VHDL version for each VHDL design file by performing
the following steps:

1. On the Project menu, click Add/Remove Files in Project.

2. On the Files page, select the appropriate file in the list, and then click Properties.

3. In the HDL version list, select VHDL_2008, VHDL_1993, or VHDL_1987, and
then click OK.

You can also specify the VHDL version that compiles the design for each design file
with the VHDL_INPUT_VERSION synthesis directive, as shown in Example 13–7. This
directive overrides the default HDL version and any HDL version specified in the File
Properties dialog box.

The variable <language version> requires one of the following values:

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

When the Quartus II software reads a VHDL_INPUT_VERSION synthesis directive, it
changes the current language version as specified until after the file or until it reaches
the next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in a VHDL design unit.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 13–27.

If you use scripts to add design files, you can use the -HDL_VERSION command to
specify the HDL version for each design file. For more information, refer to “Adding
an HDL File to a Project and Setting the HDL Version” on page 13–84.

The Quartus II software reads default values for registered signals defined in the
VHDL code and converts the default values into power-up level settings. This enables
the power-up state of the synthesized design to match, as closely as possible, the
power-up state of the original HDL code in simulation. For more information, refer to
“Power-Up Level” on page 13–41.

Example 13–7. Controlling the VHDL Input Version with a Synthesis Directive

--synthesis VHDL_INPUT_VERSION <language version>

Example 13–8. VHDL 2008—Controlling the VHDL Input Version with a Synthesis Directive

/* synthesis VHDL_INPUT_VERSION <language version> */
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–10 Chapter 13: Quartus II Integrated Synthesis
Language Support
VHDL-2008 Support
The Quartus II software supports the following VHDL 2008 constructs:

■ Block comments

■ Simplified sensitivity lists

■ Extensions to generate

■ Matching case statement

■ Matching equality/inequality operators

■ Enhanced bit string literals

■ Unconstrained elements in arrays

■ Condition operator (explicit and implicit)

VHDL Standard Libraries and Packages
The Quartus II software includes the standard IEEE libraries and several
vendor-specific VHDL libraries. For information about organizing your own design
units into custom libraries, refer to “Design Libraries” on page 13–12.

The IEEE library includes the standard VHDL packages std_logic_1164,
numeric_std, numeric_bit, and math_real. The STD library is part of the VHDL
language standard and includes the packages standard (included in every project by
default) and textio. For compatibility with older designs, the Quartus II software
also supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and std_logic_unsigned in the IEEE
library

■ Mentor Graphics® packages such as std_logic_arith in the ARITHMETIC
library

■ Altera primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 (for legacy support of MAX+PLUS® II primitives)
in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for Altera-specific
megafunctions including LCELL), and lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

1 Altera recommends that you import component declarations for Altera primitives
such as GLOBAL and DFFE from the altera_primitives_components package and not
the altera_mf_components package.

VHDL wait Constructs
The Quartus II software supports one VHDL wait until statement per process block.
However, the Quartus II software does not support other VHDL wait constructs, such
as wait for and wait on statements, or processes with multiple wait statements.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–11
Language Support
Example 13–9 is a VHDL code example of a supported wait until construct.

AHDL Support
The Quartus II Compiler’s Analysis & Synthesis module fully supports the Altera
Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc)
into a .tdf file with an AHDL include statement. Altera provides .inc files for all
megafunctions shipped with the Quartus II software.

1 The AHDL language does not support the synthesis directives or attributes described
in this chapter.

h For more information about AHDL, refer to About AHDL in the Quartus II Help.

Schematic Design Entry Support
The Quartus II Compiler’s Analysis & Synthesis module fully supports .bdf for
schematic design entry.

You can use the Quartus II Block Editor to create and edit .bdf files and open Graphic
Design Files (.gdf) imported from the MAX+PLUS II software. Use the Symbol Editor
to create and edit Block Symbol Files (.bsf) and open MAX+PLUS II Symbol Files
(.sym). You can read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them as .bdf or .bsf
files.

h For information about creating and editing schematic designs, refer to the About
Schematic Design Entry in Quartus II Help.

1 Schematic entry methods do not support the synthesis directives or attributes in this
chapter.

State Machine Editor
The Quartus II software supports graphical state machine entry. To create a new finite
state machine (FSM) design, on the File menu, click New. In the New dialog box,
expand the Design Files list, and then select State Machine File.

In the editor, you can use the State Machine Wizard to step you through the state
machine creation. Click the State Machine Wizard icon. Specify the reset information,
define the input ports, states, and transitions, and then define the output ports and
output conditions. Click Finish to create the state machine diagram.

Example 13–9. VHDL Code: Supported wait until Construct

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ged/ged_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ged/ged_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/ahdl/ahdl_intro.htm

13–12 Chapter 13: Quartus II Integrated Synthesis
Language Support
You can also create the state machine diagram with the editor GUI. Use the icons or
right-click menu options to insert new input and output signals and create states in
the schematic display. To specify transitions, select the Transition Tool, click on the
source state, and then drag the mouse to the destination state. Double-click on a
transition to specify the transition equation, with a syntax that conforms to Verilog
HDL. Double-click on a state to open the State Properties dialog box, in which you
can change the state name, specify whether it acts as the reset state, and change the
incoming and outgoing transition equations.

To view and edit state machine information in a table format, click the State Machine
Table icon.

The Quartus II software saves the state machine diagram as a State Machine File
(.smf). After defining the state machine logic, you can create a Verilog HDL or VHDL
design file by clicking the Generate HDL File icon. You can then instantiate the state
machine in your design using any design entry language.

h For more information about creating and editing state machine diagrams, and a list of
supported operators in transition equations syntax, refer to Creating and Editing State
Machines with the State Machine Editor in Quartus II Help.

Design Libraries
By default, the Quartus II software compiles all design files into the work library. If
you do not specify a design library, or if a file refers to a library that does not exist, or
if the referenced library does not contain a referenced design unit, the Quartus II
software searches the work library. This behavior allows the Quartus II software to
compile most designs with minimal setup, while creating separate custom design
libraries is optional.

To compile your design files into specific libraries (for example, when you have two
or more functionally different design entities that share the same name), you can
specify a destination library for each design file in various ways, as described in the
following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box” on page 13–13

■ “Specifying a Destination Library Name in the Quartus II Settings File or Using
Tcl” on page 13–13

When the Quartus II Compiler analyzes the file, it stores the analyzed design units in
the destination library of the file.

1 A design can contain two or more entities with the same name if the Quartus II
software compiles the entities into separate libraries.

When compiling a design instance, the Quartus II software initially searches for the
entity in the library associated with the instance (which is the work library if no other
library is specified). If the Quartus II software could not locate the entity definition,
the software searches for a unique entity definition in all design libraries. If the
Quartus II software finds more than one entity with the same name, the software
generates an error. If your design uses multiple entities with the same name, you must
compile the entities into separate libraries.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/rtl/rtl_pro_create_state.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/rtl/rtl_pro_create_state.htm

Chapter 13: Quartus II Integrated Synthesis 13–13
Language Support
In VHDL, you can associate an instance with a particular entity in several ways, as
described in “Mapping a VHDL Instance to an Entity in a Specific Library” on
page 13–14. In Verilog HDL, BDF schematic entry, AHDL, VQM and EDIF netlists,
you can use different libraries for each of the entities that have the same name, and
compile the instantiation into the same library as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box
To specify a library name for one of your design files, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Files.

3. Select the file in the File Name list.

4. Click Properties.

5. In the File Properties dialog box, select the type of design file from the Type list.

6. Type the library name in the Library field.

7. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or Using
Tcl
You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File (.qsf) or with Tcl
commands.

For example, the following assignments specify that the Quartus II software analyzes
the my_file.vhd and stores its contents (design units) in the VHDL library my_lib,
and then analyzes the Verilog HDL file my_header_file.h and stores its contents in a
library called another_lib. Refer to Example 13–10.

For more information about Tcl scripting, refer to “Scripting Support” on page 13–83.

Specifying a Destination Library Name in a VHDL File
You can use the library synthesis directive to specify a library name in your VHDL
source file. This directive takes the name of the destination library as a single string
argument. Specify the library directive in a VHDL comment before the context
clause for a primary design unit (that is, a package declaration, an entity declaration,
or a configuration), using one of the supported keywords for synthesis directives, that
is, altera, synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to “Synthesis
Directives” on page 13–27.

Example 13–10. Specifying a Destination Library Name

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–14 Chapter 13: Quartus II Integrated Synthesis
Language Support
The library directive overrides the default library destination work, the library
setting specified for the current file in the Settings dialog box, any existing QSF
setting, any setting made through the Tcl interface, or any prior library directive in
the current file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 13–11 uses the library synthesis directive to create a library called my_lib
that contains the design unit my_entity.

1 You can specify a single destination library for all the design units in a given source
file by specifying the library name in the Settings dialog box, editing the .qsf, or using
the Tcl interface. To organize the design units in a single file into different libraries,
rather than just a single library, you can use the library directive to change the
destination VHDL library in a source file.

The Quartus II software generates an error if you use the library directive in a design
unit.

Mapping a VHDL Instance to an Entity in a Specific Library
The VHDL language provides several ways to map or bind an instance to an entity in
a specific library, as described in the following subsections.

Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a
specific library, as shown in Example 13–12.

Example 13–11. Using the Library Synthesis Directive

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

Example 13–12. VHDL Code: Direct Entity Instantiation

entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–15
Language Support
Component Instantiation—Explicit Binding Instantiation

You can bind a component to an entity in several mechanisms. In an explicit binding
indication, you bind a component instance to a specific entity, as shown in
Example 13–13.

Component Instantiation—Default Binding

If you do not provide an explicit binding indication, the Quartus II software binds a
component instance to the nearest visible entity with the same name. If no such entity
is visible in the current scope, the Quartus II software binds the instance to the entity
in the library in which the component was declared. For example, if the component is
declared in a package in library MY_LIB, an instance of the component binds to the
entity in library MY_LIB. The portions of code in Example 13–14 and Example 13–15
show this instantiation method:

Example 13–13. VHDL Code: Binding Instantiation

entity entity1 is
port(...);
end entity entity1;

package components is
component entity1 is
port map (...);
end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;

Example 13–14. VHDL Code: Default Binding to the Entity in the Same Library as the Component Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in
-- library “mylib”

architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–16 Chapter 13: Quartus II Integrated Synthesis
Language Support
Using Parameters/Generics
This section describes how the Quartus II software supports parameters (known as
generics in VHDL) and how you can pass these parameters between design
languages.

You can enter default parameter values for your design in the Default Parameters
page under the Analysis & Synthesis Settings page in the Settings dialog box.
Default parameters enable you to add, change, and delete global parameters for the
current assignment. In AHDL, the Quartus II software inherits parameters, so any
default parameters apply to all AHDL instances in the design. You can also specify
parameters for instantiated modules in a .bdf. To modify parameters in a .bdf
instance, double-click on the parameter value box for the instance symbol, or
right-click on the symbol and choose Properties, and then click the Parameters tab.
For more information about the methods of GUI-based entry, the interpretation of
parameter values, and format recommendations, refer to “Setting Default Parameter
Values and BDF Instance Parameter Values” on page 13–16.

You can specify parameters for instantiated modules in your design source files with
the syntax provided for the language you choose. Some designs instantiate entities in
a different language; for example, they might instantiate a VHDL entity from a
Verilog HDL design file. You can pass parameters or generics between VHDL, Verilog
HDL, AHDL, and BDF schematic entry, and from EDIF or VQM to any of these
languages. You do not require an additional procedure to pass parameters from one
language to another. However, sometimes you must specify the type of parameter
you are passing. In those cases, you must follow certain guidelines to ensure that the
Quartus II software correctly interprets the parameter value. For more information
about parameter type rules, refer to “Passing Parameters Between Two Design
Languages” on page 13–18.

Setting Default Parameter Values and BDF Instance Parameter Values
Default parameter values and BDF instance parameter values do not have an
explicitly declared type. Usually, the Quartus II software can correctly infer the type
from the value without ambiguity. For example, the Quartus II software interprets
“ABC” as a string, 123 as an integer, and 15.4 as a floating-point value. In other cases,
such as when the instantiated subdesign language is VHDL, the Quartus II software
uses the type of the parameter,generic, or both in the instantiated entity to determine
how to interpret the value, so that the Quartus II software interprets a value of 123 as

Example 13–15. VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–17
Language Support
a string if the VHDL parameter is of a type string. In addition, you can set the
parameter value in a format that is legal in the language of the instantiated entity. For
example, to pass an unsized bit literal value from .bdf to Verilog HDL, you can use '1
as the parameter value, and to pass a 4-bit binary vector from .bdf to Verilog HDL,
you can use 4'b1111 as the parameter value.

In a few cases, the Quartus II software cannot infer the correct type of parameter
value. To avoid ambiguity, specify the parameter value in a type-encoded format in
which the first or first and second characters of the parameter indicate the type of the
parameter, and the rest of the string indicates the value in a quoted sub-string. For
example, to pass a binary string 1001 from .bdf to Verilog HDL, you cannot use the
value 1001, because the Quartus II software interprets it as a decimal value. You also
cannot use the string "1001" because the Quartus II software interprets it as an ASCII
string. You must use the type-encoded string B"1001" for the Quartus II software to
correctly interpret the parameter value. Table 13–1 provides a list of valid parameter
strings, and shows how the Quartus II software interprets these parameter strings.
Use the type-encoded format only when necessary to resolve ambiguity.

You can select the parameter type for global parameters or global constants with the
pull-down list in the Parameter tab of the Symbol Properties dialog box. If you do not
specify the parameter type, the Quartus II software interprets the parameter value
and defines the parameter type. You must specify parameter type with the pull-down
list to avoid ambiguity.

1 If you open a .bdf in the Quartus II software, the software automatically updates the
parameter types of old symbol blocks by interpreting the parameter value based on
the language-independent format. If the Quartus II software does not recognize the
parameter value type, the software sets the parameter type as untyped.

Table 13–1. Valid Parameter Strings and Interpretations

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enumeration type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type, whose content is determined
by the string (...)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–18 Chapter 13: Quartus II Integrated Synthesis
Language Support
The Quartus II software supports the following parameter types:

■ Unsigned Integer

■ Signed Integer

■ Unsigned Binary

■ Signed Binary

■ Octal

■ Hexadecimal

■ Float

■ Enum

■ String

■ Boolean

■ Char

■ Untyped/Auto

Passing Parameters Between Two Design Languages
When passing a parameter between two different languages, a design block that is
higher in the design hierarchy instantiates a lower-level subdesign block and provides
parameter information. The subdesign language (the design entity that is
instantiated) must correctly interpret the parameter. Based on the information
provided by the higher-level design and the value format, and sometimes by the
parameter type of the subdesign entity, the Quartus II software interprets the type and
value of the passed parameter.

When passing a parameter whose value is an enumerated type value or literal from a
language that does not support enumerated types to one that does (for example, from
Verilog HDL to VHDL), you must ensure that the enumeration literal is in the correct
spelling in the language of the higher-level design block (block that is higher in the
hierarchy). The Quartus II software passes the parameter value as a string literal, and
the language of the lower-level design correctly convert the string literal into the
correct enumeration literal.

If the language of the lower-level entity is SystemVerilog, you must ensure that the
enum value is in the correct case. In SystemVerilog, two enumeration literals differ in
more than just case. For example, enum {item, ITEM} is not a good choice of item
names because these names can create confusion and is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details about the
array parameter format, refer to the Parameter section in the Analysis & Synthesis
Report of a design that contains array parameters or generics.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–19
Language Support
The following code shows examples of passing parameters from one design entry
language to a subdesign written in another language. Example 13–16 shows a VHDL
subdesign that is instantiated in a top-level Verilog HDL design in Example 13–17.
Example 13–18 shows a Verilog HDL subdesign that is instantiated in a top-level
VHDL design in Example 13–19.

To use an HDL subdesign such as the one shown in Example 13–18 in a top-level .bdf
design, you must generate a symbol for the HDL file, as shown in Figure 13–2. Open
the HDL file in the Quartus II software, and then, on the File menu, point to
Create/Update, and then click Create Symbol Files for Current File.

Example 13–16. VHDL Parameterized Subdesign Entity

type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Example 13–17. Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL
Entity from Example 13–16

vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

Example 13–18. Verilog HDL Parameterized Subdesign Module

module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Example 13–19. VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 13–18

inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–20 Chapter 13: Quartus II Integrated Synthesis
Incremental Compilation
To modify parameters on a .bdf instance, double-click on the parameter value box for
the instance symbol, or right-click on the symbol and choose Properties, and then
click the Parameters tab. Right-click on the symbol and choose Update Design File
from Selected Block to pass the updated parameter to the HDL file.

Incremental Compilation
Incremental compilation manages a design hierarchy for incremental design by
allowing you to divide the design into multiple partitions. Incremental compilation
ensures that the Quartus II software resynthesizes only the updated partitions of the
design during compilation, to reduce the compilation time and the runtime memory
usage. The feature maintains node names during synthesis for all registered and
combinational nodes in unchanged partitions. You can perform incremental synthesis
by setting the Netlist Type for all design partitions to Post-Synthesis.

You can also preserve the placement and routing information for unchanged
partitions. This feature allows you to preserve performance of unchanged blocks in
your design and reduces the time required for placement and routing, which
significantly reduces your design compilation time.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

f For more information about incremental compilation, refer to Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapters in volume 1 of the Quartus II
Handbook.

Partitions for Preserving Hierarchical Boundaries
A design partition represents a portion of the design that you want to synthesize and
fit incrementally.

If you want to preserve the Optimization Technique and Restructure Multiplexers
logic options set in any entity, you must create new partitions for the particular entity
instead of using the Preserve Hierarchical Boundary logic option. If you have settings
applied to specific existing design hierarchies, particularly those created in the
Quartus II software versions before 9.0, you must create a design partition for the
design hierarchy so that synthesis can optimize the design instance independently
and preserve the hierarchical boundaries.

Figure 13–2. BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Example 13–18
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 13: Quartus II Integrated Synthesis 13–21
Incremental Compilation
The Preserve Hierarchical Boundary logic option is available only in Quartus II
software versions 8.1 and earlier. Altera recommends using design partitions if you
want to preserve hierarchical boundaries through the synthesis and fitting process,
because incremental compilation maintains the hierarchical boundaries of design
partitions.

Parallel Synthesis
Parallel Synthesis one of the Analysis & Synthesis options that reduces compilation
time for synthesis. The option enables the Quartus II software to use multiple
processors to synthesize multiple partitions in parallel.

This option is available when you perform one or more of the following tasks:

■ The number of processors allowed in a single machine is greater than 1. You
can specify the maximum number of processors allowed under Parallel
Compilation options in the Compilation Process Settings page of the Settings
dialog box.

■ Ensure that the incremental compilation feature is enabled.

■ Your design has two or more partitions.

■ You must turn on the Parallel Synthesis option.

By default, the Quartus II software enables the Parallel Synthesis option. To disable
parallel synthesis, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings, and then click More
Settings to select Parallel Synthesis.

You can also set the Parallel Synthesis option with the following Tcl command, as
shown in Example 13–20:

You can view all the interleaved messages from different partitions in the Messages
window. The Partition column in the Messages window displays the partition ID of
the partition referred to in the message. After compilation, you can sort the messages
by partition.

h For more information about displaying the Partition column, refer to About the
Messages Window in Quartus II Help.

If you use the command line, you can differentiate among the interleaved messages
by turning on the Show partition that generated the message option in the Messages
page. This option shows the partition ID in parenthesis for each message.

Example 13–20. Setting the Parallel Synthesis option with Tcl Command

set_global_assignment -name parallel_synthesis off
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm

13–22 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Quartus II Exported Partition File as Source
You can use a .qxp as a source file in incremental compilation. The .qxp contains the
precompiled design netlist exported as a partition from another Quartus II project,
and fully defines the entity. Project team members or intellectual property (IP)
providers can use a .qxp to send their design to the project lead, instead of sending the
original HDL source code. The .qxp preserves the compilation results and
instance-specific assignments. Not all global assignments can function in a different
Quartus II project. You can override the assignments for the entity in the .qxp by
applying assignments in the top-level design.

h For more information about .qxp, refer to Quartus II Exported Partition File (.qxp) in
Quartus II Help.

f For more information about exporting design partitions and using .qxp files, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Quartus II Synthesis Options
The Quartus II software offers several options to help you control the synthesis
process and achieve optimal results for your design. “Setting Synthesis Options” on
page 13–24 describes the Analysis & Synthesis Settings page of the Settings dialog
box, in which you can set the most common global settings and options, and defines
the following types of synthesis options: Quartus II logic options, synthesis attributes,
and synthesis directives.

1 When you apply a Quartus II Synthesis option globally or to an entity, the option
affects all lower-level entities in the hierarchy path, including entities instantiated
with Altera and third-party IP.

The following subsections describe the following common synthesis options in the
Quartus II software, and provide HDL examples on how to use each option:

■ Major Optimization Settings:

■ “Optimization Technique” on page 13–28

■ “Auto Gated Clock Conversion” on page 13–28

■ “PowerPlay Power Optimization” on page 13–31

■ “Restructure Multiplexers” on page 13–33

■ Settings Related to Timing Constraints:

■ “Timing-Driven Synthesis” on page 13–30

■ “Optimization Technique” on page 13–28

■ “Auto Gated Clock Conversion” on page 13–28

■ “SDC Constraint Protection” on page 13–31
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_qxp.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Quartus II Integrated Synthesis 13–23
Quartus II Synthesis Options
■ State Machine Settings and Enumerated Types:

■ “State Machine Processing” on page 13–35

■ “Manually Specifying State Assignments Using the syn_encoding Attribute”
on page 13–37

■ “Manually Specifying Enumerated Types Using the enum_encoding Attribute”
on page 13–38

■ “Safe State Machines” on page 13–39

■ Register Power-Up Settings:

■ “Power-Up Level” on page 13–41

■ “Power-Up Don’t Care” on page 13–42

■ Controlling, Preserving, Removing, and Duplicating Logic and Registers:

■ “Limiting Resource Usage in Partitions” on page 13–32

■ “Remove Duplicate Registers” on page 13–42

■ “Preserve Registers” on page 13–43

■ “Disable Register Merging/Don’t Merge Register” on page 13–43

■ “Noprune Synthesis Attribute/Preserve Fan-out Free Register Node” on
page 13–44

■ “Keep Combinational Node/Implement as Output of Logic Cell” on
page 13–45

■ “Disabling Synthesis Netlist Optimizations with dont_retime Attribute” on
page 13–46

■ “Disabling Synthesis Netlist Optimizations with dont_replicate Attribute” on
page 13–47

■ “Maximum Fan-Out” on page 13–48

■ “Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable” on page 13–49

■ “Auto Gated Clock Conversion” on page 13–28

■ “Partitions for Preserving Hierarchical Boundaries” on page 13–20

■ Megafunction Inference Options:

■ “Inferring Multiplier, DSP, and Memory Functions from HDL Code” on
page 13–50

■ “RAM Style and ROM Style—for Inferred Memory” on page 13–53

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 13–55

■ “RAM Initialization File—for Inferred Memory” on page 13–59

■ “Multiplier Style—for Inferred Multipliers” on page 13–59
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–24 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
■ Controlling Synthesis with Other Synthesis Directives:

■ “Full Case Attribute” on page 13–61

■ “Parallel Case” on page 13–62

■ “Translate Off and On / Synthesis Off and On” on page 13–63

■ “Ignore translate_off and synthesis_off Directives” on page 13–64

■ “Read Comments as HDL” on page 13–65

■ Specifying I/O-Related Assignments:

■ “Use I/O Flipflops” on page 13–66

■ “Specifying Pin Locations with chip_pin” on page 13–67

■ Setting Quartus II Logic Options in Your HDL Source Code:

■ “Using altera_attribute to Set Quartus II Logic Options” on page 13–69

■ Other Settings:

■ “Synthesis Effort” on page 13–35

■ “Synthesis Seed” on page 13–35

Setting Synthesis Options
You can set synthesis options in the Settings dialog box, or with logic options in the
Quartus II software, or you can use synthesis attributes and directives in your HDL
source code.

Analysis & Synthesis Settings Page of the Settings Dialog Box
The Analysis & Synthesis Settings page of the Settings dialog box allows you to set
global synthesis options that apply to the entire project. You can also use a
corresponding Tcl command.

The Quartus II software sets some of the advanced synthesis settings in the Physical
Synthesis Optimizations page under Compilation Process Settings.

f For more information about Physical Synthesis options, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Quartus II Logic Options
The Quartus II logic options control many aspects of the synthesis and placement and
routing process. To set logic options in the Quartus II GUI, on the Assignments menu,
click Assignment Editor. You can also use a corresponding Tcl command to set global
assignments. The Quartus II logic options enable you to set instance or node-specific
assignments without editing the source HDL code.

h For more information about using the Assignment Editor, refer to the About the
Assignment Editor in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 13: Quartus II Integrated Synthesis 13–25
Quartus II Synthesis Options
Synthesis Attributes
The Quartus II software supports synthesis attributes for Verilog HDL and VHDL,
also commonly called pragmas. These attributes are not standard Verilog HDL or
VHDL commands. Synthesis tools use attributes to control the synthesis process in a
particular manner. The Quartus II software applies the attributes in the HDL source
code, and attributes always apply to a specific design element. Some synthesis
attributes are also available as Quartus II logic options via the Quartus II GUI or
scripting. Each attribute description in this chapter indicates a corresponding setting
or a logic option that you can set in the GUI. You can specify only some attributes with
HDL synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in
the .qsf. Assignments or settings made with the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with synthesis attributes
in your HDL code. The Quartus II software generates warning messages if the
software finds invalid attributes, but does not generate an error or stop the
compilation. This behavior is necessary because attributes are specific to various
design tools, and attributes not recognized in the Quartus II software might be for a
different EDA tool. The Quartus II software lists the attributes specified in your HDL
code in the Source assignments table of the Analysis & Synthesis report.

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific
syntax for specifying attributes, but in Verilog-1995, you must embed attribute
assignments in comments. You can enter attributes in your code using the syntax in
Example 13–21 through Example 13–27, in which <attribute>, <attribute type>, <value>,
<object>, and <object type> are variables, and the entry in brackets is optional. The
examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, synthesis attributes in Verilog HDL files are
also case-sensitive.

You must use Verilog-1995 comment-embedded attributes as a suffix to (that is, placed
after) the declaration of an item and must appear before a semicolon, when a
semicolon is necessary (refer to Example 13–21).

1 You cannot use the open one-line comment in Verilog HDL when a semicolon is
necessary after the line, because it is not clear to which HDL element that the attribute
applies. For example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the Quartus II software could read the
attribute as part of the next line.

To apply multiple attributes to the same instance in Verilog-1995, separate the
attributes with spaces, as shown in Example 13–22:

Example 13–21. Specifying Synthesis Attributes in Verilog-1995

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Example 13–22. Applying Multiple Attributes to the Same Instance in Verilog-1996

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–26 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
For example, to set the maxfan attribute to 16 (for details, refer to “Maximum Fan-
Out” on page 13–48) and set the preserve attribute (for details, refer to “Preserve
Registers” on page 13–43) on a register called my_reg, use the following syntax as
shown in Example 13–23:

In addition to the synthesis keyword shown above, the Quartus II software supports
the pragma, synopsys, and exemplar keywords for compatibility with other synthesis
tools. The software also supports the altera keyword, which allows you to add
synthesis attributes that the Quartus II integrated synthesis feature recognizes and not
by other tools that recognize the same synthesis attribute.

1 Because formal verification tools do not recognize the exemplar, pragma, and altera
keywords, avoid using these attribute keywords when using formal verification.

You must use Verilog-2001 attributes as a prefix to (that is, placed before) a
declaration, module item, statement, or port connection, and as a suffix to (that is,
placed after) an operator or a Verilog HDL function name in an expression (refer to
Example 13–24).

1 Formal verification does not support the Verilog-2001 attribute syntax because the
tools do not recognize the syntax.

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog,
separate the attributes with commas, as shown in Example 13–25:

For example, to set the maxfan attribute to 16 (refer to “Maximum Fan-Out” on
page 13–48 for details) and set the preserve attribute (refer to “Preserve Registers” on
page 13–43 for details) on a register called my_reg, use the following syntax as shown
in Example 13–26:

VHDL attributes, as shown in Example 13–27, declare and apply the attribute type to
the object you specify.

Example 13–23. Setting maxfan and preserve Attribute on a Register

reg my_reg /* synthesis maxfan = 16 preserve */;

Example 13–24. Specifying Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

Example 13–25. Applying Multiple Attributes

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

Example 13–26.

(* maxfan = 16, preserve *) reg my_reg;

Example 13–27. Synthesis Attributes in VHDL

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–27
Quartus II Synthesis Options
The Quartus II software defines and applies each attribute separately to a given node.
For VHDL designs, the software declares all supported synthesis attributes in the
altera_syn_attributes package in the Altera library. You can call this library from
your VHDL code to declare the synthesis attributes, as shown in Example 13–28:

Synthesis Directives
The Quartus II software supports synthesis directives, also commonly called compiler
directives or pragmas. You can include synthesis directives in Verilog HDL or VHDL
code as comments. These directives are not standard Verilog HDL or VHDL
commands. Synthesis tools use directives to control the synthesis process in a
particular manner. Directives do not apply to a specific design node, but change the
behavior of the synthesis tool from the point in which they occur in the HDL source
code. Other tools, such as simulators, ignore these directives and treat them as
comments.

You can enter synthesis directives in your code using the syntax in Example 13–29,
Example 13–30, and Example 13–31, in which <directive> and <value> are variables,
and the entry in brackets are optional. For synthesis directives, no equal sign before
the value is necessary; this is different than the Verilog syntax for synthesis attributes.
The examples in this chapter demonstrate each syntax form.

1 Verilog HDL is case sensitive; therefore, all synthesis directives are also case sensitive.

In addition to the synthesis keyword shown above, the software supports the
pragma, synopsys, and exemplar keywords in Verilog HDL and VHDL for
compatibility with other synthesis tools. The Quartus II software also supports the
keyword altera, which allows you to add synthesis directives that only Quartus II
integrated synthesis feature recognizes, and not by other tools that recognize the same
synthesis directives.

1 Because formal verification tools ignore the exemplar, pragma, and altera keywords,
Altera recommends that you avoid using these directive keywords when you use
formal verification to prevent mismatches with the Quartus II results.

Example 13–28.

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Example 13–29. Specifying Synthesis Directives with Verilog HDL

// synthesis <directive> [<value>]
or
/* synthesis <directive> [<value>] */

Example 13–30. Specifying Synthesis Directives with VHDL

-- synthesis <directive> [<value>]

Example 13–31. Specifying Synthesis Directives with VHDL-2008

/* synthesis <directive> [<value>] */
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–28 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Optimization Technique
The Optimization Technique logic option specifies the goal for logic optimization
during compilation; that is, whether to attempt to achieve maximum speed
performance or minimum area usage, or a balance between the two. Table 13–2 lists
the settings for this logic option, which you can apply only to a design entity. You can
also set this logic option for your whole project in the Settings dialog box. If you want
to set this logic option for an entity, you must create a design partition for the entity
before setting the Optimization Technique logic option. The Quartus II software
ignores this option when set on an entity that is not a design partition.

The default setting varies by device family. The software optimizes the default setting
for best area or best speed trade-off.

Auto Gated Clock Conversion
Clock gating is a common optimization technique in ASIC designs to minimize power
consumption. You can use the Auto Gated Clock Conversion logic option to optimize
your prototype ASIC designs by converting gated clocks into clock enables when you
use FPGAs in your ASIC prototyping. The automatic conversion of gated clocks to
clock enables is more efficient than manually modifying source code. The Auto Gated
Clock Conversion logic option automatically converts qualified gated clocks (base
clocks as defined in the Synopsys Design Constraints [SDC]) to clock enables. To use
Auto Gated Clock Conversion, you must select the option from the More Analysis &
Synthesis Settings dialog box, in the Analysis & Synthesis Settings page.

The gated clock conversion occurs when all these conditions are met:

■ Only one base clock drives a gated-clock

■ For one set of gating input values, the value output of the gated clock remains
constant and does not change as the base clock changes

■ For one value of the base clock, changes in the gating inputs do not change the
value output for the gated clock

The option supports combinational gates in clock gating network.

Table 13–2. Optimization Technique Settings

Setting Description

Area The Compiler makes the design as small as possible to minimize resource usage.

Speed The Compiler chooses a design implementation that has the fastest fMAX.

Balanced (1) The Compiler maps part of the design for area and part for speed, providing better area utilization than
optimizing for speed, with a slightly slower fMAX than optimizing for speed.

Note to Table 13–2:

(1) Not all device families support the balanced optimization technique.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–29
Quartus II Synthesis Options
Figure 13–3 shows example of gated clock conversions.

1 This option does not support registers in RAM, DSP blocks, or I/O related WYSIWYG
primitives. Because the gated-clock conversion cannot trace the base clock from the
gated clock, the gated clock conversion does not support multiple design partitions
from incremental compilation in which the gated clock and base clock are not in the
same hierarchical partition. A gated clock tree, instead of every gated clock, is the
basis of each conversion. Therefore, if you cannot convert a gated clock from a root
gated clock of a multiple cascaded gated clock, the conversion of the entire gated
clock tree fails.

The Info tab in the Messages window lists all the converted gated clocks. You can
view a list of converted and non-converted gated clocks from the Compilation Report
under the Optimization Results of the Analysis & Synthesis Report. The Gated Clock
Conversion Details table lists the reasons for non-converted gated clocks.

1 This feature is available when using the TimeQuest analyzer.

h For more information about Auto Gated Clock Conversion logic option and a list of
supported devices, refer to Auto Gated Clock Conversion logic option in Quartus II Help.

Figure 13–3. Example Gated Clock Conversion

clk

ena1

clk

ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1

ena2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synth_gated_clock_conversion.htm

13–30 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Timing-Driven Synthesis
The Timing-Driven Synthesis logic option specifies whether Analysis & Synthesis
should use the design's SDC timing constraints to better optimize the circuit. When
you turn on this option, Analysis & Synthesis runs timing analysis to obtain timing
information about the netlist, and then considers the SDC timing constraints to focus
on critical portions of the design when optimizing for performance, while optimizing
non-critical portions for area. When you turn on this option, Analysis & Synthesis also
protects SDC constraints by not merging duplicate registers that have incompatible
timing constraints. For more information, refer to “SDC Constraint Protection” on
page 13–31.

When you turn on the Timing-Driven Synthesis logic option, Analysis & Synthesis
increases performance by improving logic depth on critical portions of the design,
and improving area on non-critical portions of the design. The increased performance
affects the amount of area used, specifically adaptive look-up tables (ALUTs) and
registers in the design. Depending on how much of the design is timing critical,
overall area can increase or decrease when you turn on the Timing-Driven Synthesis
logic option. Runtime and peak memory use increases slightly if you turn on the
Timing-Driven Synthesis logic option.

When you turn on the Timing-Driven Synthesis logic option, the Optimization
Technique logic option has the following affect. With Optimization Technique
Speed, Timing-Driven Synthesis optimizes timing-critical portions of the design for
performance at the cost of increasing area (logic and register utilization). With an
Optimization Technique of Balanced, Timing-Driven Synthesis also optimizes the
timing-critical portions of the design for performance, but it only allows limited area
increase. With Optimization Technique Area, Timing-Driven Synthesis only
optimizes the design for area. Timing-Driven Synthesis prevents registers with
incompatible timing constraints from merging for any Optimization Technique
setting. If your design contains multiple partitions, you can select Timing-Driven
Synthesis unique options for each partition. If you use a .qxp as a source file, or if
your design uses partitions developed in separate Quartus II projects, the software
cannot properly compute timing of paths that cross the partition boundaries.

Even with the Optimization Technique logic option set to Speed, the Timing-Driven
Synthesis option still considers the resource usage in your design when increasing
area to improve timing. For example, the Timing-Driven Synthesis option checks if a
device has enough registers before deciding to implement the shift registers in logics
instead of RAM for better timing performance.

When using incremental compilation, integrated synthesis allows each partition to
use up all the registers in a device. You can use the Maximum Number of LABs
settings to specify the number of LABs that every partition can use. If your design has
only one partition, you can also use the Maximum Number of LABs settings to limit
the number of resources that your design can use. This is useful when you add more
logic to your design.

To change the Timing-Driven Synthesis logic option, follow these steps:

1. On the Assignment menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, select or unselect Timing-Driven Synthesis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–31
Quartus II Synthesis Options
1 The option is available when using the TimeQuest analyzer. Altera recommends that
you select a specific device for timing-driven synthesis to have the most accurate
timing information. When you select auto device, timing-driven synthesis uses the
smallest device for the selected family to obtain timing information.

1 Arria® II GX, Cyclone® III, Cyclone IV, Hardcopy® III, Hardcopy IV, Stratix® III, and
Stratix IV devices turn on this feature by default.

h For more information about Timing-Driven Synthesis logic option and a list of
supported devices, refer to Timing-Driven Synthesis logic option in Quartus II Help.

SDC Constraint Protection
The SDC Constraint Protection option specifies whether Analysis & Synthesis should
protect registers from merging when they have incompatible timing constraints. For
example, two registers that are duplicates of each other but have different multicycle
constraints on them are not merged when you turn on this option. When you turn on
the Timing-Driven Synthesis option, the software detects registers with incompatible
constraints, and you do not need to turn on SDC Constraint Protection. To use the
SDC constraint protection option, you must turn on the option in the More Analysis
& Synthesis Settings dialog box, which is found in the Analysis & Synthesis
Settings page.

This feature supports Arria II GX, Arria GX, Cyclone II, Cyclone III, Cyclone IV,
HardCopy series, MAX II, Stratix II, Stratix II GX, Stratix III, and Stratix IV device
families.

PowerPlay Power Optimization
The PowerPlay Power Optimization logic option controls the power-driven
compilation setting of Analysis & Synthesis and determines how aggressively
Analysis & Synthesis optimizes the design for power.

To display the Analysis & Synthesis Settings page, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Analysis & Synthesis Settings.

h For more information about the available settings for the PowerPlay power
optimization logic option and a list of supported devices, refer to PowerPlay power
optimization (Analysis & Synthesis Settings Page) logic option in Quartus II Help.

f For more information about optimizing your design for power utilization, refer to the
Power Optimization chapter in volume 2 of the Quartus II Handbook. For information
about analyzing your power results, refer to the PowerPlay Power Analysis chapter in
volume 3 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synth_timing_driven_synthesis.htm
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm

13–32 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Limiting Resource Usage in Partitions
Resource balancing is important when performing Analysis & Synthesis. During
resource balancing, Quartus II integrated synthesis considers the amount of used and
available DSP and RAM blocks in the device, and tries to balance these resources to
prevent no-fit errors.

For DSP blocks, resource balancing converts the remaining DSP blocks to equivalent
logic if there are more DSP blocks in the design that can be placed in the device. For
RAM blocks, resource balancing converts RAM blocks to different types of RAM
blocks if there are not enough blocks of a certain type available in the device; however,
Quartus II integrated synthesis does not convert RAM blocks to logic.

1 The RAM balancing feature does not support Stratix V devices because Stratix V has
only M20K memory blocks.

By default, Quartus II integrated synthesis considers the information in the targeted
device to identify the number of available DSP or RAM blocks. However, in
incremental compilation, each partition considers the information in the device
independently and consequently assumes that the partitian has all the DSP and RAM
blocks in the device available for use, resulting in over allocation of DSP or RAM
blocks in the design, which means that the total number of DSP or RAM blocks used
by all the partitions is greater than the number of DSP or RAM blocks available in the
device. This can eventually lead to a no-fit error during the fitting process.

The following sections describe the methods to prevent a no-fit error during the fitting
process:

■ “Creating LogicLock Regions” on page 13–32

■ “Using Assignments to Limit the Number of RAM and DSP Blocks” on page 13–33

Creating LogicLock Regions
The floorplan-aware synthesis feature allows you to use LogicLock regions to define
resource allocation for DSP blocks and RAM blocks. For example, if a certain partition
is assigned to a certain LogicLock region, resource balancing takes into account that
all the DSP and RAM blocks in that partition need to fit in this LogicLock region.
Resource balancing then balances the DSP and RAM blocks accordingly.

Because floorplan-aware balancing step considers only one partition at a time, it does
not know that nodes from another partition may be using the same resources. When
using this feature, Altera recommends that you do not manually assign nodes from
different partitions to the same LogicLock region.

If you do not want the software to consider the LogicLock floorplan constraints when
performing DSP and RAM balancing, you can turn off the floorplan-aware synthesis
feature. You can turn off the Use LogicLock Constraints During Resource Balancing
option in the Analysis & Synthesis Settings page by clicking More Settings.

f For more information about using LogicLock regions to create a floorplan for
incremental compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Quartus II Integrated Synthesis 13–33
Quartus II Synthesis Options
Using Assignments to Limit the Number of RAM and DSP Blocks
For DSP and RAM block balancing, you can use assignments to limit the maximum
number of blocks that the balancer allows. You can set these assignments globally or
on individual partitions. For DSP block balancing, the Maximum DSP Block Usage
logic option allows you to specify the maximum number of DSP blocks that the DSP
block balancer assumes are available for the current partition. For RAM blocks, the
floorplan-aware logic option allows you to specify maximum resources for different
RAM types, such as Maximum Number of M4K/M9K Memory Blocks, Maximum
Number of M512 Memory Blocks, Maximum Number of M-RAM/M144K Memory
Blocks, or Maximum Number of LABs.

The partition-specific assignment overrides the global assignment, if any. However,
each partition that does not have a partition-specific assignment uses the value set by
the global assignment, or the value derived from the device size if no global
assignment exists. This can also lead to over-allocation. Therefore, Altera recommends
that you always set the assignment on each partition individually.

To select the Maximum Number <block type> Memory Blocks option or the
Maximum DSP Block Usage option globally, follow these steps:

1. On the Assignment menu, click Settings.

2. Under Category, click Analysis & Synthesis Settings.

3. In the Analysis & Synthesis Settings dialog box, click More Settings.

4. In the Name pull-down list, select the required option and set the desired value.

You can use the Assignment Editor to set this assignment on a partition by selecting
the assignment, and setting it on the root entity of a partition. You can set any positive
integer as the value of this assignment. If you set this assignment on a name other
than a partition root, then Analysis & Synthesis gives an error.

h For more information about the logic options, including a list of supported device
families, refer to Maximum DSP Block Usage logic option, Maximum Number of
M4K/M9K Memory Blocks logic option, Maximum Number of M512 Memory Blocks logic
option, Maximum Number of M-RAM/144K Memory Blocks logic option, and Maximum
Number of LABs logic option in Quartus II Help.

Restructure Multiplexers
The Restructure Multiplexers logic option restructures multiplexers to make more
efficient use of area, allowing the design to implement multiplexers with a reduced
number of LEs or ALMs.

When multiplexers from one part of your design feed multiplexers in another part of
your design, trees of multiplexers form. Multiplexers may arise in different parts of
the design through Verilog HDL or VHDL constructs such as the “if,” “case,” or “?:”
statements. Multiplexer buses occur most often as a result of multiplexing together
arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The Restructure
Multiplexers logic option identifies buses of multiplexer trees that have a similar
structure. This logic option optimizes the structure of each multiplexer bus for the
target device to reduce the overall amount of logic in your design.

Results of the multiplexer optimizations are design dependent, but area reductions as
high as 20% are possible. The option can negatively affect your design’s fMAX.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_balancing_dsp_blocks.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m4k.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m4k.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m512.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_m512.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_ram_blocks_mram.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_labs.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_labs.htm

13–34 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
Table 13–3 lists the settings for the logic option, which you can apply to an individual
node or to an entity that is a design partition. You can also specify this option for your
whole project on the Analysis & Synthesis Settings page of the Settings dialog box
by clicking More Settings and setting the option value.

After compilation, you can view multiplexer restructuring information in the
Multiplexer Restructuring Statistics report in the Multiplexer Statistics folder under
Analysis & Synthesis Optimization Results in the Analysis & Synthesis section of
the Compilation Report.

Table 13–4 describes the information in the Multiplexer Restructuring Statistics
report table for each bus of multiplexers.

h For more information about Restructure Multiplexers logic option, including a list of
supported device families, refer to Restructure Multiplexers logic option in Quartus II
Help.

f For more information about optimizing for multiplexers, refer to the Multiplexers
section of the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Table 13–3. Restructure Multiplexer Settings

Setting Description

On Enables multiplexer restructuring to minimize your design area. This setting can reduce the fMAX.

Off Disables multiplexer restructuring to avoid possible reductions in fMAX.

Auto
(Default)

Allows the Compiler to determine whether to enable the option based on your other Quartus II synthesis
settings. When the Optimization Technique option is set to Area or Balanced, Quartus II integrated synthesis
restructures all multiplexers.

When the Optimization Technique option is set to Speed, Quartus II integrated synthesis attempts to
restructure the multiplexers selectively and makes a good trade-off between area and fMAX.

Table 13–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading Description

Multiplexer Inputs The number of different inputs that are multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area
An estimate of how many logic cells are necessary to implement the bus of multiplexers
(before any multiplexer restructuring). You can use this estimate to identify any large
multiplexers in the design.

Area if Restructured An estimate of how many logic cells are necessary to implement the bus of multiplexers when
applying Multiplexer Restructuring.

Saving if Restructured An estimate of logic cells saving when applying Multiplexer Restructuring.

Registered

An indication of whether registers are present on the multiplexer outputs. Multiplexer
Restructuring uses the secondary control signals of a register (such as synchronous clear and
synchronous load) to further reduce the amount of logic required to implement the bus of
multiplexers.

Example Multiplexer
Output

The name of one of the multiplexer outputs. This name can help determine the source location
of the multiplexer bus in your design.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_mux_restructure.htm

Chapter 13: Quartus II Integrated Synthesis 13–35
Quartus II Synthesis Options
Synthesis Effort
The Synthesis Effort logic option specifies the overall synthesis effort level in the
Quartus II software. You can set the effort level to either Fast or Auto.

The Auto setting indicates standard synthesis effort. The Quartus II software attempts
to optimize your design as much as possible.

When you set the effort level to Fast, Quartus II integrated synthesis skips several
steps to ensure that synthesis runs much faster (at the cost of performance and
resource utilization). You can use the Fast synthesis effort level with the Fitter early
timing estimate feature. The early timing estimate feature gives you preliminary
timing estimates before running a full compilation, which results in a quicker iteration
time; therefore, you can save significant compilation time to get a good estimation of
the final timing of your design. When you use the Fast synthesis effort level as part of
a full compilation, Fitter runtime might increase because fast synthesis generates a
netlist that is slightly more difficult for the Fitter to route when compared to the netlist
from a normal synthesis. When you set the Synthesis Effort option to Fast,
Timing-Driven Synthesis turns off.

To set the Synthesis Effort option from the Quartus II GUI, on the Analysis &
Synthesis Settings page, click More Settings. Select Auto or Fast from the pull-down
menu in the Synthesis Effort option, and then click OK to close the Settings dialog
box.

h For more information about Synthesis Effort logic option, including a list of
supported device families, refer to Synthesis Effort logic option in Quartus II Help.

Synthesis Seed
The Synthesis Seed option specifies the seed that Synthesis uses to randomly run
synthesis in a slightly different way. You can use this seed when your design is close
to meeting requirements, to get a slightly different result. The seeds that produce the
best result for a design may change if the design changes.

To set the Synthesis Seed option from the Quartus II GUI, on the Analysis &
Synthesis Settings page, click More Settings. The default value is 1. You can specify a
positive integer value.

State Machine Processing
The State Machine Processing logic option specifies the processing style to synthesize
a state machine. Table 13–5 lists the settings for this logic option, which you can apply
to a state machine name or to a design entity that contains a state machine. You can
also set this option for your whole project on the Analysis & Synthesis Settings page
in the Settings dialog box.

Table 13–5. State Machine Processing Settings (Part 1 of 2)

Setting Description

Auto (Default) Allows the Compiler to choose what it determines to be the best encoding for the state machine.

Minimal Bits Uses the least number of bits to encode the state machine.

One-Hot Encodes the state machine in one-hot style. See the example below for details.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synthesis_effort.htm

13–36 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The default state machine encoding, which is Auto, uses one-hot encoding for FPGA
devices and minimal-bits encoding for CPLDs. These settings achieve the best results
on average, but another encoding style might be more appropriate for your design, so
this option allows you to control the state machine encoding.

f For guidelines on how to correctly infer and encode your state machine, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

For one-hot encoding, the Quartus II software does not guarantee that each state has
one bit set to one and all other bits set to zero. Quartus II integrated synthesis creates
one-hot register encoding with standard one-hot encoding and then inverts the first
bit. This results in an initial state with all zero values, and the remaining states have
two 1 values. Quartus II integrated synthesis encodes the initial state with all zeros for
the state machine power-up because all device registers power up to a low value. This
encoding has the same properties as true one-hot encoding: the software recognizes
each state by the value of one bit. For example, in a one-hot-encoded state machine
with five states, including an initial or reset state, the software uses the register
encoding shown in Example 13–32:

If you set the State Machine Processing logic option to User-Encoded in a Verilog
HDL design, the software starts with the original design values for the state constants.
For example, a Verilog HDL design can contain a declaration such as shown in
Example 13–33:

If the software infers the states S0, S1,... the software uses the encoding 4'b1010,
4'b0101,... . If necessary, the software inverts bits in a user-encoded state machine to
ensure that all bits of the reset state of the state machine are zero.

User-Encoded Encodes the state machine in the manner that you specify.

Sequential Uses a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0 and
the second 1.

Gray Uses an encoding in which the encodings for adjacent enumeration literals differ by one bit. An N-bit gray
code can represent 2N values.

Johnson

Uses an encoding similar to a gray code, in which each state has only one bit different from its
neighboring states. To generate each state, you can shift the bits of the previous state to the right by 1.
The MSB of each state is the negation of the LSB of the previous state. An N-bit Johnson code can
represent at most 2N states, but requires less logic than a gray encoding.

Table 13–5. State Machine Processing Settings (Part 2 of 2)

Setting Description

Example 13–32. Register Encoding

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

Example 13–33.

parameter S0 = 4'b1010, S1 = 4'b0101, ...
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 13: Quartus II Integrated Synthesis 13–37
Quartus II Synthesis Options
1 You can view the state machine encoding from the Compilation Report under the
State Machines of the Analysis & Synthesis Report. The State Machine Viewer only
displays a graphical representation of the state machines as interpreted from your
design.

f For more information about the State Machine Viewer, refer to the State Machine
Viewer section of the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

To assign your own state encoding with the User-Encoded setting of the State
Machine Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration literals have no
numeric values in VHDL. Use the syn_encoding synthesis attribute to apply your
encoding values. For more information, refer to “Manually Specifying State
Assignments Using the syn_encoding Attribute”.

h For information about the State Machine Processing logic option, including
supported devices, refer to State Machine Processing logic option in Quartus II Help.

Manually Specifying State Assignments Using the syn_encoding Attribute
The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine Processing” on
page 13–35. With this logic option, you can choose the value User-Encoded to use the
encoding from your HDL code. However, in standard VHDL code, you cannot specify
user encoding in the state machine description because enumeration literals have no
numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine Processing
setting, use the syn_encoding synthesis attribute to apply specific binary encodings to
the elements of an enumerated type or to specify an encoding style. The Quartus II
software can implement Enumeration Types with different encoding styles shown in
Table 13–6.

Table 13–6. syn_encoding Attribute Values

Attribute Value Enumeration Types

"default"
Use an encoding based on the number of enumeration literals in the Enumeration Type. If the number
of literals is less than five, use the "sequential" encoding. If the number of literals is more than five,
but fewer than 50, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential"
Use a binary encoding in which the first enumeration literal in the Enumeration Type has encoding 0
and the second 1

"gray"
Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson"
Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot"
The default encoding style requiring N bits, in which N is the number of enumeration literals in the
Enumeration Type.

"compact" Use an encoding with the fewest bits.

"user"
Encode each state using its value in the Verilog source. By changing the values of your state constants,
you can change the encoding of your state machine.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_smp_process_type.htm
www.altera.com/literature/hb/qts/qts_qii51013.pdf

13–38 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The syn_encoding attribute must follow the enumeration type definition, but precede
its use.

Manually Specifying Enumerated Types Using the enum_encoding
Attribute

By default, the Quartus II software one-hot encodes all enumerated types you
defined. With the enum_encoding attribute, you can specify the logic encoding for an
enumerated type and override the default one-hot encoding to improve the logic
efficiency.

1 If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the Compiler
from recognizing state machines based on the enumerated type. Instead, the Compiler
processes these state machines as regular logic with the encoding specified by the
attribute, and the Report window for the project does not list these states machines as
state machines. If you want to control the encoding for a recognized state machine,
use the State Machine Processing logic option and the syn_encoding synthesis
attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute with
the enumeration type whose encoding you want to control. The enum_encoding
attribute must follow the enumeration type definition, but precede its use. In
addition, the attribute value should be a string literal that specifies either an arbitrary
user encoding or an encoding style of "default", "sequential", "gray", "johnson", or
"one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings. The list
must contain as many encodings as the number of enumeration literals in your
enumeration type. In addition, the encodings should have the same length, and each
encoding must consist solely of values from the std_ulogic type declared by the
std_logic_1164 package in the IEEE library. In Example 13–34, the enum_encoding
attribute specifies an arbitrary user encoding for the enumeration type fruit.

Example 13–35 shows the encoded enumeration literals:

Example 13–34. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Example 13–35.

apple = "11"
orange = "01"
pear = "10"
mango = "00"
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–39
Quartus II Synthesis Options
Altera recommends that you specify an encoding style, rather than a manual user
encoding, especially when the enumeration type has a large number of enumeration
literals. The Quartus II software can implement enumeration types with the different
encoding styles as shown in Table 13–7.

In Example 13–34, the enum_encoding attribute manually specified a gray encoding
for the enumeration type fruit. You can concisely write this example by specifying
the "gray" encoding style instead of a manual encoding, as shown in Example 13–36.

Safe State Machines
The Safe State Machine logic option and corresponding syn_encoding attribute value
safe specify that the software must insert extra logic to detect an illegal state, and
force the transition of the state machine to the reset state.

A finite state machine can enter an illegal state—meaning the state registers contain a
value that does not correspond to any defined state. By default, the behavior of the
state machine that enters an illegal state is undefined. However, you can set the
syn_encoding attribute to safe or use the Safe State Machine logic option if you want
the state machine to recover deterministically from an illegal state. The software
inserts extra logic to detect an illegal state, and forces the transition of the state
machine to the reset state. You can use this logic option when the state machine enters
an illegal state. The most common cause of an illegal state is a state machine that has
control inputs that come from another clock domain, such as the control logic for a
clock-crossing FIFO, because the state machine must have inputs from another clock
domain. This option protects only state machines (and not other registers) by forcing
them into the reset state. You can use this option if your design has asynchronous
inputs. However, Altera recommends using a synchronization register chain instead
of relying on the safe state machine option.

Table 13–7. enum_encoding Attribute Values

Attribute Value Enumeration Types

"default"
Use an encoding based on the number of enumeration literals in the enumeration type. If the number
of literals are fewer than five, use the "sequential" encoding. If the number of literals are more than
five, but fewer than 50 literals, use a "one-hot" encoding. Otherwise, use a "gray" encoding.

"sequential"
Use a binary encoding in which the first enumeration literal in the enumeration type has encoding 0
and the second 1.

"gray"
Use an encoding in which the encodings for adjacent enumeration literals differ by exactly one bit. An
N-bit gray code can represent 2N values.

"johnson"
Use an encoding similar to a gray code. An N-bit Johnson code can represent at most 2N states, but
requires less logic than a gray encoding.

"one-hot"
The default encoding style requiring N bits, in which N is the number of enumeration literals in the
enumeration type.

Example 13–36. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–40 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The safe state machine value does not use any user-defined default logic from your
HDL code that corresponds to unreachable states. Verilog HDL and VHDL enable you
to specify a behavior for all states in the state machine explicitly, including
unreachable states. However, synthesis tools detect if state machine logic is
unreachable and minimize or remove the logic. Synthesis tools also remove any flag
signals or logic that indicate such an illegal state. If the state machine is implemented
as safe, the recovery logic added by Quartus II integrated synthesis forces its
transition from an illegal state to the reset state.

You can set the Safe State Machine logic option globally, or on individual state
machines. To set this logic option, on the Analysis & Synthesis Settings page, select
More Settings. In the Existing option settings list, select Safe State Machine, and
turn on this option in the Setting list.

You can set the syn_encoding safe attribute on a state machine in HDL, as shown in
Example 13–37 through Example 13–39.

If you specify an encoding style (refer to “Manually Specifying State Assignments
Using the syn_encoding Attribute” on page 13–37), separate the encoding style value
in the quotation marks with the safe value with a comma, as follows: "safe, one-
hot" or "safe, gray".

Safe state machine implementation can result in a noticeable area increase for the
design. Therefore, Altera recommends that you set this option only on the critical state
machines in the design in which the safe mode is necessary, such as a state machine
that uses inputs from asynchronous clock domains. You can also reduce the necessity
of this option by correctly synchronizing inputs coming from other clock domains.

1 If you make the safe state machine assignment on an instance that the software fails
to recognize as a state machine, or an entity that contains a state machine, the software
takes no action. You must restructure the code, so that the software recognizes and
infers the instance as a state machine.

h For more information about the Safe State Machine logic option, refer to Safe State
Machine logic option in Quartus II Help.

f For guidelines to ensure that the software correctly infers your state machine, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Example 13–37. Verilog HDL Code: a Safe State Machine Attribute

reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 13–38. Verilog-2001 and SystemVerilog Code: a Safe State Machine Attribute

(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 13–39. VHDL Code: a Safe State Machine Attribute

ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_safe_state_machine.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_safe_state_machine.htm

Chapter 13: Quartus II Integrated Synthesis 13–41
Quartus II Synthesis Options
Power-Up Level
This logic option causes a register (flipflop) to power up with the specified logic level,
either High (1) or Low (0). Registers in the core hardware power up to 0 in all Altera
devices. For the register to power up with a logic level High, the Compiler performs
an optimization referred to as NOT-gate push back on the register. NOT-gate push
back adds an inverter to the input and the output of the register, so that the reset and
power-up conditions appear to be high and the device operates as expected. The
register itself still powers up Low, but the register output inverts so the signal arriving
at all destinations is High.

The Power-Up Level option supports wildcard characters, and you can apply this
option to any register, registered logic cell WYSIWYG primitive, or to a design entity
containing registers if you want to set the power level for all registers in the design
entity. If you assign this option to a registered logic cell WYSIWYG primitive, such as
an atom primitive from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for the option to take effect. You can
also apply the option to a pin with the logic configurations described in the following
list:

■ If you turn on this option for an input pin, the option transfers to the register that
the pin drives, if all of these conditions are present:

■ No logic, other than inversion, between the pin and the register.

■ The input pin drives the data input of the register.

■ The input pin does not fan-out to any other logic.

■ If you turn on this option for an output or bidirectional pin, the option transfers to
the register that feeds the pin, if all of these conditions are present:

■ No logic, other than inversion, between the register and the pin.

■ The register does not fan-out to any other logic.

h For more information about the Power-Up Level logic option, including information
on the supported device families, refer to Power-Up Level logic option in Quartus II
Help.

Inferred Power-Up Levels
Quartus II integrated synthesis reads default values for registered signals defined in
Verilog HDL and VHDL code, and converts the default values into Power-Up Level
settings. The software also synthesizes variables with assigned values in Verilog HDL
initial blocks into power-up conditions. Synthesis of these default and initial
constructs allows synthesized behavior of your design to match, as closely as possible,
the power-up state of the HDL code during a functional simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_power_up_high.htm

13–42 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
The following register declarations all set a power-up level of VCC or a logic value “1”,
as shown in Example 13–40:

f For more information about NOT-gate push back, the power-up states for Altera
devices, and how set and reset control signals affect the power-up level, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Power-Up Don’t Care
This logic option allows the Compiler to optimize registers in the design that do not
have a defined power-up condition.

For example, your design might have a register with its D input tied to VCC, and with
no clear signal or other secondary signals. If you turn on this option, the Compiler can
choose for the register to power up to VCC. Therefore, the output of the register is
always VCC. The Compiler can remove the register and connect its output to VCC. If
you turn this option off or if you set a Power-Up Level assignment of Low for this
register, the register transitions from GND to VCC when the design starts up on the
first clock signal. Thus, the register is at VCC and you cannot remove the register.
Similarly, if the register has a clear signal, it is not removed because after the clear is
asserted, the register transitions again to GND and back to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that allows it to
remove a register, it issues a message to indicate that it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level
logic option set to either High or Low.

h For more information about Power-Up Don’t Care logic option and a list of supported
devices, refer to Power-Up Don’t Care logic option in Quartus II Help.

Remove Duplicate Registers
When you turn on the Remove Duplicate Registers logic option, the Compiler
removes registers that are identical to other registers. If two registers generate the
same logic, the Compiler removes the second register, and the first register fans out to
the destinations of the second register. Also, if the deleted register has different logic
option assignments, the Compiler ignores them.

1 Altera recommends using this option only if you want to prevent the Compiler from
removing duplicate registers. Use this option only with the Off setting. You can apply
this option to an individual register or a design entity that contains registers.

h For more information about Remove Duplicate Registers logic option and the
supported devices, refer to Remove Duplicate Registers logic option in Quartus II Help.

Example 13–40.

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_allow_power_up_dont_care.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dup_reg_extraction.htm

Chapter 13: Quartus II Integrated Synthesis 13–43
Quartus II Synthesis Options
Preserve Registers
This attribute and logic option directs the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations.
Optimizations can eliminate redundant registers and registers with constant drivers;
this option prevents a register from being reduced to a constant or merged with a
duplicate register. This option can preserve a register so you can observe the register
during simulation or with the SignalTap® II Logic Analyzer. Additionally, it can
preserve registers if you create a preliminary version of the design in which you have
not specified the secondary signals. You can also use the attribute to preserve a
duplicate of an I/O register so that you can place one copy of the I/O register in an
I/O cell and the second in the core.

1 This option cannot preserve registers that have no fan-out. To prevent the removal of
registers with no fan-out, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 13–44.

The Preserve Registers logic option prevents the software from inferring a register as
a state machine.

You can set the Preserve Registers logic option in the Quartus II GUI, or you can set
the preserve attribute in your HDL code, as shown in Example 13–41 through
Example 13–43. In these examples, the my_reg register is preserved.

1 In addition to preserve, the Quartus II software supports the syn_preserve attribute
name for compatibility with other synthesis tools.

1 The = 1 after the preserve in Example 13–41 and Example 13–42 is optional, because
the assignment uses a default value of 1 when you specify the assignment.

h For more information about the Preserve Registers logic option and the supported
devices, refer to Preserve Registers logic option in Quartus II Help.

Disable Register Merging/Don’t Merge Register
This logic option and attribute prevents the specified register from merging with
other registers and prevents other registers from merging with the specified register.
When applied to a design entity, it applies to all registers in the entity.

Example 13–41. Verilog HDL Code: syn_preserve Attribute

reg my_reg /* synthesis syn_preserve = 1 */;

Example 13–42. Verilog-2001 Code: syn_preserve Attribute

(* syn_preserve = 1 *) reg my_reg;

Example 13–43. VHDL Code: preserve Attribute

signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_preserve_register.htm

13–44 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
You can use this option to instruct the Compiler to correctly use your timing
constraints for the register during synthesis. For example, if the register has a
multicycle constraint, this option prevents the Compiler from merging other registers
into the specified register, avoiding unintended timing effects and functional
differences.

This option differs from the Preserve Register logic option because it does not prevent
the removal of a register with constant drivers or a redundant register.

You can set the Disable Register Merging logic option in the Quartus II GUI, or you
can set the dont_merge attribute in your HDL code, as shown in Example 13–44
through Example 13–46. In these examples, the my_reg register is prevented from
merging.

h For more information about the Disable Register Merging logic option and the
supported devices, refer to Disable Register Merging logic option in Quartus II Help.

Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
This synthesis attribute and corresponding logic option direct the Compiler to
preserve a fan-out-free register through the entire compilation flow. This is different
from the Preserve Registers option, which prevents a register from being reduced to a
constant or merged with a duplicate register. Standard synthesis optimizations
remove nodes that do not directly or indirectly feed a top-level output pin. This
option can retain a register so you can observe it in the Simulator or the SignalTap II
Logic Analyzer. Additionally, it can retain registers if you create a preliminary version
of the design in which you have not specified the fan-out logic of the register.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus II
GUI, or you can set the noprune attribute in your HDL code, as shown in
Example 13–47 though Example 13–49. In these examples, the my_reg register is
preserved.

1 You must use the noprune attribute instead of the logic option if the register has no
immediate fan-out in its module or entity. If you do not use the synthesis attribute, the
software removes (or “prunes”) registers with no fan-out during Analysis &
Elaboration before the logic synthesis stage applies any logic options. If the register
has no fan-out in the full design, but has fan-out in its module or entity, you can use
the logic option to retain the register through compilation.

Example 13–44. Verilog HDL Code: dont_merge Attribute

reg my_reg /* synthesis dont_merge */;

Example 13–45. Verilog-2001 and SystemVerilog Code: dont_merge Attribute

(* dont_merge *) reg my_reg;

Example 13–46. VHDL Code: dont_merge Attribute

signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dont_merge_register.htm

Chapter 13: Quartus II Integrated Synthesis 13–45
Quartus II Synthesis Options
The software supports the attribute name syn_noprune for compatibility with other
synthesis tools.

h For more information about Preserve Fan-out Free Register Node logic option and a
list of supported devices, refer to Preserve Fan-out Free Register logic option in Quartus II
Help.

Keep Combinational Node/Implement as Output of Logic Cell
This synthesis attribute and corresponding logic option direct the Compiler to keep a
wire or combinational node through logic synthesis minimizations and netlist
optimizations. A wire that has a keep attribute or a node that has the Implement as
Output of Logic Cell logic option applied becomes the output of a logic cell in the
final synthesis netlist, and the name of the logic cell remains the same as the name of
the wire or node. You can use this directive to make combinational nodes visible to the
SignalTap II Logic Analyzer.

1 The option cannot keep nodes that have no fan-out. You cannot maintain node names
for wires with tri-state drivers, or if the signal feeds a top-level pin of the same name
(in this case, the node name is changed to a name, such as <net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis & Synthesis to
ignore logic cell buffers created by the Implement as Output of Logic Cell logic
option or the LCELL primitive. If you apply this logic option to an entity, it affects all
lower-level entities in the hierarchy path.

1 To avoid unintended design optimizations, make sure the Ignore LCELL Buffers
logic option is not inherited by an entity instantiated with Altera or third-party IP that
relies on logic cell buffers for correct behavior. For example, if an IP core uses logic cell
buffers to manage high fan-out signals and inherits the Ignore LCELL Buffers logic
option, the target device may no longer function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to
override any assignments inherited from higher-level entities in the hierarchy path if
logic cell buffers created by the Implement as Output of Logic Cell logic option or
the LCELL primitive are required for correct behavior.

Example 13–47. Verilog HDL Code: syn_noprune Attribute

reg my_reg /* synthesis syn_noprune */;

Example 13–48. Verilog-2001 and SystemVerilog Code: noprune Attribute

(* noprune *) reg my_reg;

Example 13–49. VHDL Code: noprune Attribute

signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_preserve_fanout_free_node.htm

13–46 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
You can set the Implement as Output of Logic Cell logic option in the Quartus II
GUI, or you can set the keep attribute in your HDL code, as shown in Example 13–50
through Example 13–52. In these examples, the Compiler maintains the node name
my_wire.

1 In addition to keep, the Quartus II software supports the syn_keep attribute name for
compatibility with other synthesis tools.

h For more information about the Implement as Output of Logic Cell logic option and
the supported devices, refer to Implement as Output of Logic Cell logic option in
Quartus II Help.

Disabling Synthesis Netlist Optimizations with dont_retime Attribute
This attribute disables synthesis retiming optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off retiming optimizations with this option and prevent node name
changes, so that the Compiler can correctly use your timing constraints for the
register.

Example 13–50. Verilog HDL Code: keep Attribute

wire my_wire /* synthesis keep = 1 */;

Example 13–51. Verilog-2001 Code: keep Attribute

(* keep = 1 *) wire my_wire;

Example 13–52. VHDL Code: syn_keep Attribute

signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_implement_as_lcell.htm

Chapter 13: Quartus II Integrated Synthesis 13–47
Quartus II Synthesis Options
You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable retiming along with other synthesis netlist optimizations, or you can
set the dont_retime attribute in your HDL code, as shown in Example 13–53 through
Example 13–55. In these examples, the code prevents my_reg register from being
retimed.

1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog HDL) or false (VHDL). This attribute does not
have any effect when you set the attribute to 1 or true.

Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
This attribute disables synthesis replication optimizations on the register you specify.
When applied to a design entity, it applies to all registers in the entity.

You can turn off register replication (or duplication) optimizations with this option, so
that the Compiler uses your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus II
GUI to disable replication along with other synthesis netlist optimizations, or you can
set the dont_replicate attribute in your HDL code, as shown in Example 13–56
through Example 13–58. In these examples, the code prevents my_reg register from
being replicated.

Example 13–53. Verilog HDL Code: dont_retime Attribute

reg my_reg /* synthesis dont_retime */;

Example 13–54. Verilog-2001 and SystemVerilog Code: dont_retime Attribute

(* dont_retime *) reg my_reg;

Example 13–55. VHDL Code: dont_retime Attribute

signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

Example 13–56. Verilog HDL Code: dont_replicate Attribute

reg my_reg /* synthesis dont_replicate */;

Example 13–57. Verilog-2001 and SystemVerilog Code: dont_replicate Attribute

(* dont_replicate *) reg my_reg;

Example 13–58. VHDL Code: dont_replicate Attribute

signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–48 Chapter 13: Quartus II Integrated Synthesis
Quartus II Synthesis Options
1 For compatibility with third-party synthesis tools, Quartus II integrated synthesis also
supports the attribute syn_replicate. To disable replication, set syn_replicate to 0
(Verilog HDL) or false (VHDL). This attribute does not have any effect when you set
the attribute to 1 or true.

Maximum Fan-Out
This Maximum Fan-Out attribute and logic option directs the Compiler to control the
number of destinations that a node feeds. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the maximum fan-out
restriction. You can apply this option to a register or a logic cell buffer, or to a design
entity that contains these elements. You can use this option to reduce the load of
critical signals, which can improve performance. You can use the option to instruct the
Compiler to duplicate a register that feeds nodes in different locations on the target
device. Duplicating the register can enable the Fitter to place these new registers
closer to their destination logic to minimize routing delay.

To turn off the option for a given node if you set the option at a higher level of the
design hierarchy, in the Netlist Optimizations logic option, select Never Allow. If not
disabled by the Netlist Optimizations option, the software acknowledges the
maximum fan-out constraint as long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain.

■ The node does not feed itself.

■ The node feeds other logic cells, DSP blocks, RAM blocks, and/or pins through
data, address, clock enable, and other ports, but not through any asynchronous
control ports (such as asynchronous clear).

The software does not create duplicate nodes in these cases, because there is no clear
way to duplicate the node, or to avoid the small differences in timing which could
produce functional differences in the implementation (in the third condition above in
which asynchronous control signals are involved). If the constraint cannot be applied
because one of these conditions is not met, the Quartus II software issues a message to
indicate that it ignored the maximum fan-out assignment. To instruct the software not
to check node destinations for possible problems such as the third condition, you can
set the Netlist Optimizations logic option to Always Allow for a given node.

1 If you have enabled any of the Quartus II netlist optimizations that affect registers,
add the preserve attribute to any registers to which you have set a maxfan attribute.
The preserve attribute ensures that the netlist optimization algorithms, such as
register retiming, do not affect the registers.

f For details about netlist optimizations, refer to the Netlist Optimizations and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI. This option
supports wildcard characters. You can also set the maxfan attribute in your HDL code,
as shown in Example 13–59 through Example 13–61. In these examples, the Compiler
duplicates the clk_gen register, so its fan-out is not greater than 50.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 13: Quartus II Integrated Synthesis 13–49
Quartus II Synthesis Options
1 In addition to maxfan, the Quartus II software supports the syn_maxfan attribute for
compatibility with other synthesis tools.

h For more information about the Maximum Fan-Out logic option and the supported
devices, refer to Maximum Fan-Out logic option in Quartus II Help.

Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic
that feeds a register and move the logic to the register’s clock enable input port. To
solve fitting or performance issues with designs that have many clock enables, you
can turn off this option for individual registers or design entities. Turning the option
off prevents the software from using the register’s clock enable port. The software
implements the clock enable functionality using multiplexers in logic cells.

If the specific logic is not automatically moved to a clock enable input with the Auto
Clock Enable Replacement logic option, you can instruct the software to use a direct
clock enable signal. Applying the direct_enable attribute to a specific signal instructs
the software to use the clock enable port of a register to implement the signal. The
attribute ensures that the signal directly drives the clock enable port, and the signal is
not optimized or combined with any other logic.

Example 13–62 through Example 13–64 show how to set this attribute to ensure that
the signal is preserved and used directly as a clock enable.

Example 13–59. Verilog HDL Code: syn_maxfan Attribute

reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 13–60. Verilog-2001 Code: maxfan Attribute

(* maxfan = 50 *) reg clk_gen;

Example 13–61. VHDL Code: maxfan Attribute

signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_max_fanout.htm

13–50 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
1 In addition to direct_enable, the Quartus II software supports the
syn_direct_enable attribute name for compatibility with other synthesis tools.

h For more information about the Auto Clock Enable Replacement logic option and
the supported devices, refer to Auto Clock Enable Replacement logic option in Quartus II
Help.

Inferring Multiplier, DSP, and Memory Functions from HDL Code
The Quartus II Compiler automatically recognizes multipliers,
multiply-accumulators, multiply-adders, or memory functions described in HDL
code, and converts the HDL code into respective megafunction, or, may map them
directly to device atoms or memory atoms. If the software converts the HDL code into
megafunction, the software uses the Altera megafunction code when compiling your
design, even when you do not specifically instantiate the megafunction. The software
infers megafunctions to take advantage of logic that is optimized for Altera devices.
The area and performance of such logic can be better than the results from inferring
generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain architecture-specific
features, such as RAM, DSP blocks, and shift registers that provide improved
performance compared with basic logic cells.

f For details about coding style recommendations when targeting megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

The Quartus II software provides options to control the inference of certain types of
megafunctions, as described in the following subsections:

■ “Multiply-Accumulators and Multiply-Adders”

■ “Shift Registers” on page 13–51

■ “RAM and ROM” on page 13–51

■ “Resource Aware RAM, ROM, and Shift-Register Inference” on page 13–52

■ “Auto RAM to Logic Cell Conversion” on page 13–53

Example 13–62. Verilog HDL Code: direct_enable attribute

wire my_enable /* synthesis direct_enable = 1 */ ;

Example 13–63. Verilog-2001 and SystemVerilog Code: syn_direct_enable attribute

(* syn_direct_enable *) wire my_enable;

Example 13–64. VHDL Code: direct_enable attribute

attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_clock_enable_recognition.htm

Chapter 13: Quartus II Integrated Synthesis 13–51
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Multiply-Accumulators and Multiply-Adders
Use the Auto DSP Block Replacement logic option to control DSP block inference for
multiply-accumulations and multiply-adders. To disable inference, turn off this
option for the entire project on the Analysis & Synthesis Settings page of the
Settings dialog box, or turn off the option for a specific block with the Assignment
Editor. By default, the software enables this logic option for Stratix V devices.

h For more information about the Auto DSP Block Replacement logic option and the
supported devices, refer to Auto DSP Block Replacement logic option in Quartus II Help.

Shift Registers
Use the Auto Shift Register Replacement logic option to control shift register
inference. This option has three settings: Off, Auto and Always. Auto is the default
setting in which Quartus II integrated synthesis decides which shift registers to
replace or leave in registers. Placing shift registers in memory saves logic area, but can
have a negative effect on fmax. Quartus II integrated synthesis uses the optimization
technique setting, logic and RAM utilization of the design, and timing information
from Timing-Driven Synthesis to determine which shift registers are located in
memory and which are located in registers. To disable inference, turn off this option
for the entire project on the Analysis & Synthesis Settings page of the Settings dialog
box by clicking More Settings and setting the option to Off. You can also disable the
option for a specific block with the Assignment Editor. Even if you set the logic option
to On or Auto, the software might not infer small shift registers because small shift
registers do not benefit from implementation in dedicated memory. However, you can
use the Allow Any Shift Register Size for Recognition logic option to instruct
synthesis to infer a shift register even when its size is too small.

1 The registers that the software maps to the ALTSHIFT_TAPS megafunction and places
in RAM are not available in the Simulator because their node names do not exist after
synthesis.

The software turns off the Auto Shift Register Replacement logic option when you
select a formal verification tool on the EDA Tool Settings page. The software issues a
warning and lists shift registers that would have been inferred if no formal
verification tool was selected in the compilation report. To enable a megafunction for
the shift register in the formal verification flow, you can either instantiate a shift
register explicitly with the MegaWizard™ Plug-In Manager or make the shift register
into a black box in a separate entity or module.

h For more information about the Auto Shift Register Replacement logic option and
the supported devices, refer to Auto Shift Register Replacement logic option in Quartus II
Help.

RAM and ROM
Use the Auto RAM Replacement and Auto ROM Replacement logic options to
control RAM and ROM inference, respectively. To disable inference, turn off the
appropriate option for the entire project on the Analysis & Synthesis Settings page of
the Settings dialog box by clicking More Settings and setting the option to Off. You
can also disable the option for a specific block with the Assignment Editor.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_dsp_recognition.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_shift_register_recognition.htm

13–52 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
1 Although inferred shift registers are implemented in RAM blocks, you cannot turn off
the Auto RAM Replacement option to disable shift register replacement. Use the
Auto Shift Register Replacement option (refer to “Shift Registers”).

The software might not infer very small RAM or ROM blocks because very small
memory blocks can be implemented more efficiently with the registers in the logic.
However, you can use the Allow Any RAM Size for Recognition and Allow Any
ROM Size for Recognition logic options to instruct synthesis to infer a memory block
even when its size is too small.

1 The software turns off the Auto ROM Replacement logic option when you select a
formal verification tool in the EDA Tool Settings page. If you do not select a formal
verification tool, the software issues a warning and displays a report panel that lists
ROMs that would have been inferred. To enable a megafunction for the shift register
in the formal verification flow, you can either instantiate a ROM explicitly using the
MegaWizard Plug-In Manager or create a black box for the ROM in a separate entity
or module.

Although formal verification tools do not support inferred RAM blocks, because of
the importance of inferring RAM in many designs, the software turns on the Auto
RAM Replacement logic option when you select a formal verification tool in the EDA
Tool Settings page. The software automatically performs black box instance for any
module or entity that contains an inferred RAM block. The software issues a warning
and lists the black box created in the compilation report. This black box allows formal
verification tools to proceed; however, the formal verification tool cannot verify the
entire module or entire entity that contains the RAM. Altera recommends that you
explicitly instantiate RAM blocks in separate modules or entities so that the formal
verification tool can verify as much logic as possible.

h For more information about the Auto RAM Replacement and Auto ROM
Replacement logic options and their supported devices, refer to Auto RAM
Replacement logic option and Auto ROM Replacement logic option in Quartus II Help.

Resource Aware RAM, ROM, and Shift-Register Inference
The Quartus II integrated synthesis considers resource usage when inferring RAM,
ROM, and shift registers. During RAM, ROM, and shift register inferencing, synthesis
looks at the number of memories available in the current device and does not infer
more memory than is available to avoid a no-fit error. Synthesis tries to select the
memories that are not inferred in a way that aims at the smallest increase in logic and
registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource
Aware Inference for Block RAM option. You can disable this option for the entire
project in the More Analysis & Synthesis Settings dialog box, or per partition in the
Assignment Editor.

1 Stratix V devices do not support this option.

When you select the Auto setting, resource aware RAM, ROM, and shift register
inference use the resource counts from the largest device.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm

Chapter 13: Quartus II Integrated Synthesis 13–53
Inferring Multiplier, DSP, and Memory Functions from HDL Code
For designs with multiple partitions, Quartus II integrated synthesis considers one
partition at a time. Therefore, for each partition, it assumes that all RAM blocks are
available to that partition. If this causes a no-fit error, you can limit the number of
RAM blocks available per partition with the Maximum Number of M512 Memory
Blocks, Maximum Number of M4K/M9K Memory Blocks, Maximum Number of
M-RAM/M144K Memory Blocks and Maximum Number of LABs settings in the
Assignment Editor. The balancer also uses these options. For more information, refer
to “Limiting Resource Usage in Partitions” on page 13–32.

Auto RAM to Logic Cell Conversion
The Auto RAM to Logic Cell Conversion logic option allows Quartus II integrated
synthesis to convert small RAM blocks to logic cells if the logic cell implementation
gives better quality of results. The software converts only single-port or simple-dual
port RAMs with no initialization files to logic cells. You can set this option globally or
apply it to individual RAM nodes. You can enable this option by turning on the
appropriate option for the entire project in the More Analysis & Synthesis Settings
dialog box.

For Arria GX and Stratix family of devices, the software uses the following rules to
determine the placement of a RAM, either in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total number of bits
is greater than or equal to 64.

■ If the number of words is greater than or equal to 16, use a RAM block if the total
number of bits is greater than or equal to 32.

■ Otherwise, implement the RAM in logic cells.

For the Cyclone family of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM block.

■ If the number of words is greater than or equal to 16 and less than 64, use a RAM
block if the total number of bits is greater than or equal to 128.

■ Otherwise, implement the RAM in logic cells.

h For more information about the Auto RAM to Logic Cell Conversion logic options
and the supported devices, refer to Auto RAM to Logic Cell Conversion logic option in
Quartus II Help.

RAM Style and ROM Style—for Inferred Memory
These attributes specify the implementation for an inferred RAM or ROM block. You
can specify the type of TriMatrix embedded memory block, or specify the use of
standard logic cells (LEs or ALMs). The attributes are supported only for device
families with TriMatrix embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The M512, M4K, M-RAM,
MLAB, M9K, M144K and M20K values (as applicable for the target device family) indicate
the type of memory block to use for the inferred RAM or ROM. If you set the attribute
to a block type that does not exist in the target device family, the software generates a
warning and ignores the assignment. The value logic indicates that the RAM or ROM
should be implemented in regular logic rather than dedicated memory blocks. You
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_ram_to_lcell_conversion.htm

13–54 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
can set the attribute on a module or entity, in which case it specifies the default
implementation style for all inferred memory blocks in the immediate hierarchy. You
can also set the attribute on a specific signal (VHDL) or variable (Verilog HDL)
declaration, in which case it specifies the preferred implementation style for that
specific memory, overriding the default implementation style.

1 If you specify a value of logic, the memory still appears as a RAM or ROM block in
the RTL Viewer, but it is converted to regular logic during synthesis.

In addition to ramstyle and romstyle, the Quartus II software supports the
syn_ramstyle attribute name for compatibility with other synthesis tools.

Example 13–65 through Example 13–67 specify that all memory in the module or
entity my_memory_blocks should be implemented using a specific type of block.

Example 13–68 through Example 13–70 specify that the inferred memory my_ram or
my_rom should be implemented using regular logic instead of a TriMatrix memory
block.

Example 13–65. Verilog-1995 Code: Applying a romstyle Attribute to a Module Declaration

module my_memory_blocks (...) /* synthesis romstyle = "M4K" */;

Example 13–66. Verilog-2001 and SystemVerilog Code: Applying a ramstyle Attribute to a
Module Declaration

 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 13–67. VHDL Code: Applying a romstyle Attribute to an Architecture

architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Example 13–68. Verilog-1995 Code: Applying a syn_ramstyle Attribute to a Variable Declaration

reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 13–69. Verilog-2001 and SystemVerilog Code: Applying a romstyle Attribute to a
Variable Declaration

(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Example 13–70. VHDL Code: Applying a ramstyle Attribute to a Signal Declaration

type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–55
Inferring Multiplier, DSP, and Memory Functions from HDL Code
You can control the depth of an inferred memory block with the max_depth attribute.
You can also optimize the usage of the memory block with this attribute.
Example 13–71 through Example 13–73 specify the depth of the inferred memory mem
using the max_depth synthesis attribute.

The syntax for setting these attributes in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 13–25.

Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute

Setting the no_rw_check value for the ramstyle attribute, or turning off the
corresponding global Add Pass-Through Logic to Inferred RAMs logic option
indicates that your design does not depend on the behavior of the inferred RAM
when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or turn off the logic option, the Quartus II software can choose a
read-during-write behavior instead of using the read-during-write behavior of your
HDL source code.

In some cases, an inferred RAM should be mapped into regular logic cells because it
has a read-during-write behavior that is not supported by the TriMatrix memory
blocks in your target device. In other cases, the Quartus II software must insert extra
logic to mimic read-during-write behavior of the HDL source to increase the area of
your design and potentially reduce its performance. In some of these cases, you can
use the attribute to specify that the software can implement the RAM directly in a
TriMatrix memory block without using logic. You can also use the attribute to prevent
a warning message for dual-clock RAMs in the case that the inferred behavior in the
device does not exactly match the read-during-write conditions described in the HDL
code.

f For more information about recommended styles for inferring RAM and some of the
issues involved with different read-during-write conditions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Example 13–71. Verilog-1995 Code: Applying a max_depth Attribute to a Variable Declaration

reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Example 13–72. Verilog-2001 and SystemVerilog Code: Applying a max_depth Attribute to a
Variable Declaration

(* max_depth = 2048*) reg [7:0] mem [127:0];

Example 13–73. VHDL Code: Applying a max_depth Attribute to a Variable Declaration

type ram_block is array (0 to 31) of std_logic_vector (2 downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

13–56 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
To set the Add Pass-Through Logic to Inferred RAMs logic option with the
Quartus II GUI, click More Settings on the Analysis & Synthesis Settings page of the
Settings dialog box. Example 13–74 and Example 13–75 use two addresses and
normally require extra logic after the RAM to ensure that the read-during-write
conditions in the device match the HDL code. If your design does not require a
defined read-during-write condition, the extra logic is not necessary. With the
no_rw_check attribute, Quartus II integrated synthesis does not generate the extra
logic.

Example 13–74. Verilog HDL Inferred RAM Using no_rw_check Attribute

module ram_infer (q, wa, ra, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

Example 13–75. VHDL Inferred RAM Using no_rw_check Attribute

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–57
Inferring Multiplier, DSP, and Memory Functions from HDL Code
You can use a ramstyle attribute with the MLAB value, so that the Quartus II software
can infer a small RAM block and place it in an MLAB.

1 You can use this attribute in cases in which some asynchronous RAM blocks might be
coded with read-during-write behavior that does not match the Stratix III, Stratix IV,
and Stratix V architectures. Thus, the device behavior would not exactly match the
behavior that the code describes. If the difference in behavior is acceptable in your
design, use the ramstyle attribute with the no_rw_check value to specify that the
software should not check the read-during-write behavior when inferring the RAM.
When you set this attribute, Quartus II integrated synthesis allows the behavior of the
output to differ when the asynchronous read occurs on an address that had a write on
the most recent clock edge. That is, the functional HDL simulation results do not
match the hardware behavior if you write to an address that is being read. To include
these attributes, set the value of the ramstyle attribute to MLAB, no_rw_check.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–58 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 13–76 and Example 13–77 show the method of setting two values to the
ramstyle attribute with a small asynchronous RAM block, with the ramstyle
synthesis attribute set, so that the software can implement the memory in the MLAB
memory block and so that the read-during-write behavior is not important. Without
the attribute, this design requires 512 registers and 240 ALUTs. With the attribute, the
design requires eight memory ALUTs and only 15 registers.

Example 13–76. Verilog HDL Inferred RAM Using no_rw_check and MLAB Attributes

module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);

 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];

 assign data_out = mem[addr];

 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule

Example 13–77. VHDL Inferred RAM Using no_rw_check and MLAB Attributes

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS

PORT (
clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–59
Inferring Multiplier, DSP, and Memory Functions from HDL Code
h For more information about the Add Pass-Through Logic to Inferred RAMs logic
option and the supported devices, refer to Add Pass-Through Logic to Inferred RAMs
logic option in Quartus II Help.

RAM Initialization File—for Inferred Memory
The ram_init_file attribute specifies the initial contents of an inferred memory in the
form of a .mif. The attribute takes a string value containing the name of the RAM
initialization file.

1 In VHDL, you can also initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. In Verilog HDL, you can use an initial
block to specify the memory contents. Quartus II integrated synthesis automatically
converts the default value into a .mif for the inferred RAM.

Multiplier Style—for Inferred Multipliers
The multstyle attribute specifies the implementation style for multiplication
operations (*) in your HDL source code. You can use this attribute to specify whether
you prefer the Compiler to implement a multiplication operation in general logic or
dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a
preferred implementation in logic or in dedicated hardware, respectively. In Verilog
HDL, apply the attribute to a module declaration, a variable declaration, or a specific
binary expression that contains the * operator. In VHDL, apply the synthesis attribute
to a signal, variable, entity, or architecture.

1 Specifying a multstyle of "dsp" does not guarantee that the Quartus II software can
implement a multiplication in dedicated DSP hardware. The final implementation
depends on several conditions, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one or both operands are
constant.

In addition to multstyle, the Quartus II software supports the syn_multstyle
attribute name for compatibility with other synthesis tools.

Example 13–78. Verilog-1995 Code: Applying a ram_init_file Attribute

reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 13–79. Verilog-2001 Code: Applying a ram_init_file Attribute

(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

Example 13–80. VHDL Code: Applying a ram_init_file Attribute

type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm

13–60 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
When applied to a Verilog HDL module declaration, the attribute specifies the default
implementation style for all instances of the * operator in the module. For example, in
the following code examples, the multstyle attribute directs the Quartus II software
to implement all multiplications inside module my_module in the dedicated
multiplication hardware.

When applied to a Verilog HDL variable declaration, the attribute specifies the
implementation style for a multiplication operator, which has a result directly
assigned to the variable. The attribute overrides the multstyle attribute with the
enclosing module, if present. In Example 13–83 and Example 13–84, the multstyle
attribute applied to variable result directs the Quartus II software to implement a *
b in logic rather than the dedicated hardware.

When applied directly to a binary expression that contains the * operator, the attribute
specifies the implementation style for that specific operator alone and overrides any
multstyle attribute with the target variable or enclosing module. In Example 13–85,
the multstyle attribute indicates that a * b should be implemented in the dedicated
hardware.

1 You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a
binary expression.

Example 13–81. Verilog-1995 Code: Applying a multstyle Attribute to a Module Declaration

module my_module (...) /* synthesis multstyle = "dsp" */;

Example 13–82. Verilog-2001 Code: Applying a multstyle Attribute to a Module Declaration

(* multstyle = "dsp" *) module my_module(...);

Example 13–83. Verilog-2001 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 13–84. Verilog-1995 Code: Applying a multstyle Attribute to a Variable Declaration

wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 13–85. Verilog-2001 Code: Applying a multstyle Attribute to a Binary Expression

wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–61
Inferring Multiplier, DSP, and Memory Functions from HDL Code
When applied to a VHDL entity or architecture, the attribute specifies the default
implementation style for all instances of the * operator in the entity or architecture. In
Example 13–86, the multstyle attribute directs the Quartus II software to use
dedicated hardware, if possible, for all multiplications inside architecture rtl of entity
my_entity.

When applied to a VHDL signal or variable, the attribute specifies the
implementation style for all instances of the * operator, which has a result directly
assigned to the signal or variable. The attribute overrides the multstyle attribute with
the enclosing entity or architecture, if present. In Example 13–87, the multstyle
attribute associated with signal result directs the Quartus II software to implement a
* b in logic rather than the dedicated hardware.

Full Case Attribute
A Verilog HDL case statement is full when its case items cover all possible binary
values of the case expression or when a default case statement is present. A full_case
attribute attached to a case statement header that is not full forces synthesis to treat
the unspecified states as a don’t care value. VHDL case statements should be full, so
the attribute does not apply to VHDL.

f Using this attribute on a case statement that is not full avoids the latch inference
problems discussed in the Design Recommendations for Altera Devices and the Quartus II
Design Assistant chapter in volume 1 of the Quartus II Handbook.

1 Latches have limited support in formal verification tools. Make sure that you do not
infer latches unintentionally; for example, through an incomplete case statement
when using formal verification. Formal verification tools do support the full_case
synthesis attribute (with limited support for attribute syntax, as described in
“Synthesis Attributes” on page 13–25).

Using the full_case attribute might cause a simulation mismatch between the
Verilog HDL functional and the post-Quartus II simulation because unknown case
statement cases can still function as latches during functional simulation. For
example, a simulation mismatch can occur with the code in Example 13–88 when sel
is 2'b11 because a functional HDL simulation output behaves as a latch and the
Quartus II simulation output behaves as a don’t care value.

Example 13–86. VHDL Code: Applying a multstyle Attribute to an Architecture

architecture rtl of my_entity is
attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin

Example 13–87. VHDL Code: Applying a multstyle Attribute to a Signal or Variable

signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

13–62 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
1 Altera recommends making the case statement “full” in your regular HDL code,
instead of using the full_case attribute.

The case statement in Example 13–88 is not full because not all binary values for sel
are specified. Because the full_case attribute is used, synthesis treats the output as
“don’t care” when the sel input is 2'b11.

Verilog-2001 syntax also accepts the statements in Example 13–89 in the case header
instead of the comment form as shown in Example 13–88.

Parallel Case
The parallel_case attribute indicates that a Verilog HDL case statement should be
considered parallel; that is, only one case item can be matched at a time. Case items in
Verilog HDL case statements might overlap. To resolve multiple matching case items,
the Verilog HDL language defines a priority among case items in which the case
statement always executes the first case item that matches the case expression value.
By default, the Quartus II software implements the extra logic necessary to satisfy this
priority relationship.

Attaching a parallel_case attribute to a case statement header allows the Quartus II
software to consider its case items as inherently parallel; that is, at most one case item
matches the case expression value. Parallel case items simplify the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are
always parallel and this attribute does not apply.

Altera recommends that you only use this attribute when the case statement is truly
parallel. If you use the attribute in any other situation, the generated logic does not
match the functional simulation behavior of the Verilog HDL.

1 Altera recommends that you avoid using the parallel_case attribute, because you
may mismatch the Verilog HDL functional and the post-Quartus II simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your
design, you can use the SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation mismatches.

Example 13–88. Verilog HDL Code: a full_case Attribute

module full_case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];

endcase
endmodule

Example 13–89. Verilog-2001 Syntax for the full_case Attribute

(* full_case *) case (sel)
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–63
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 13–90 shows a casez statement with overlapping case items. In functional
HDL simulation, the three case items are prioritized by the bits in sel. For example,
sel[2] takes priority over sel[1], which takes priority over sel[0]. However, the
synthesized design can simulate differently because the parallel_case attribute
eliminates this priority. If more than one bit of sel is high, more than one output (a, b,
or c) is high as well, a situation that cannot occur in functional HDL simulation.

Verilog-2001 syntax also accepts the statements as shown in Example 13–91 in the
case (or casez) header instead of the comment form, as shown in Example 13–90.

Translate Off and On / Synthesis Off and On
The translate_off and translate_on synthesis directives indicate whether the
Quartus II software or a third-party synthesis tool should compile a portion of HDL
code that is not relevant for synthesis. The translate_off directive marks the
beginning of code that the synthesis tool should ignore; the translate_on directive
indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

Example 13–90. Verilog HDL Code: a parallel_case Attribute

module parallel_case (sel, a, b, c);
input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Example 13–91. Verilog-2001 Syntax

(* parallel_case *) casez (sel)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–64 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
You can use these directives to indicate a portion of code for simulation only. The
synthesis tool reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments and ignore
them. Example 13–92, Example 13–93, and Example 13–94 show these directives.

If you want to ignore only a portion of code in Quartus II integrated synthesis, you
can use the Altera-specific attribute keyword altera. For example, use the // altera
translate_off and // altera translate_on directives to direct Quartus II
integrated synthesis to ignore a portion of code that you intend only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives
The Ignore translate_off and synthesis_off Directives logic option directs Quartus II
integrated synthesis to ignore the translate_off and synthesis_off directives
described in the previous section. Turning on this logic option allows you to compile
code that you intended to be ignored by third-party synthesis tools; for example,
megafunction declarations that were treated as black boxes in other tools but can be
compiled in the Quartus II software. To set the Ignore translate_off and synthesis_off
Directives logic option, click More Settings on the Analysis & Synthesis Settings
page of the Settings dialog box.

h For more information about the Ignore translate_off and synthesis_off Directives
logic option and the supported devices, refer to Ignore translate_off and synthesis_off
Directives logic option in Quartus II Help.

Example 13–92. Verilog HDL Code: Translate Off and On

// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

Example 13–93. VHDL Code: Translate Off and On

-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

Example 13–94. VHDL 2008 Code: Translate Off and On

/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_ignore_translate_off.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_ignore_translate_off.htm

Chapter 13: Quartus II Integrated Synthesis 13–65
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Read Comments as HDL
The read_comments_as_HDL synthesis directive indicates that the Quartus II software
should compile a portion of HDL code that you commented out. This directive allows
you to comment out portions of HDL source code that are not relevant for simulation,
while instructing the Quartus II software to read and synthesize that same source
code. Setting the read_comments_as_HDL directive to on indicates the beginning of
commented code that the synthesis tool should read; setting the
read_comments_as_HDL directive to off indicates the end of the code.

1 You can use this directive with translate_off and translate_on to create one HDL
source file that includes a megafunction instantiation for synthesis and a behavioral
description for simulation.

Because formal verification tools do not recognize the read_comments_as_HDL
directive, the directive is not supported when you use formal verification.

In Example 13–95, Example 13–96, and Example 13–97, the commented code enclosed
by read_comments_as_HDL is visible to the Quartus II Compiler and is synthesized.
VHDL 2008 allows block comments, which is also supported for synthesis directives.

1 Because synthesis directives are case-sensitive in Verilog HDL, you must match the
case of the directive, as shown in the following examples.

Example 13–95. Verilog HDL Code: Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 13–96. VHDL Code: Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Example 13–97. VHDL 2008 Code: Read Block Comments as HDL

/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–66 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Use I/O Flipflops
The useioff attribute directs the Quartus II software to implement input, output, and
output enable flipflops (or registers) in I/O cells that have fast, direct connections to
an I/O pin, when possible. To improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times, you can applying the useioff
synthesis attribute. This synthesis attribute is supported using the Fast Input
Register, Fast Output Register, and Fast Output Enable Register logic options that
can also be set in the Assignment Editor.

The useioff synthesis attribute takes a boolean value and can only be applied to the
port declarations of a top-level Verilog HDL module or VHDL entity (it is ignored if
applied elsewhere). Setting the value to 1 (Verilog HDL) or TRUE (VHDL) instructs the
Quartus II software to pack registers into I/O cells. Setting the value to 0 (Verilog
HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Example 13–98 and Example 13–99, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and o_reg in the I/O
cells corresponding to the ports a, b, and o, respectively.

Example 13–98. Verilog HDL Code: the useioff Attribute

module top_level(clk, a, b, o);
 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–67
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 13–99 and Example 13–100 show that the Verilog-2001 syntax also accepts
the type of statements instead of the comment form in Example 13–98.

Specifying Pin Locations with chip_pin
The chip_pin attribute allows you to assign pin locations in your HDL source. You
can only use the attribute on the ports of the top-level entity or module in your
design. You can assign pins only to single-bit or one-dimensional bus ports in your
design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the
target device, as specified by the pin table of the device.

1 In addition to the chip_pin attribute, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools.
When using this attribute in other synthesis tools, some older device families require
an “@” symbol in front of each pin assignment. In the Quartus II software, the “@” is
optional.

Example 13–99. Verilog-2001 Code: the useioff Attribute

(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 13–100. VHDL Code: the useioff Attribute

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;

o <= o_reg;
end rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–68 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 13–101 through Example 13–103 show different ways of assigning my_pin1
to Pin C1 and my_pin2 to Pin 4 on a different target device.

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin
assignments. The order in which you declare the range of the port determines the
mapping of assignments to individual bits in the port. To leave a particular bit
unassigned, leave its corresponding pin assignment blank.

Example 13–104 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0] to
Pin_6.

Example 13–105 reverses the order of the signals in the bus, assigning my_pin[0] to
Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

Example 13–106 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves
my_pin[1] unassigned.

Example 13–101. Verilog-1995 Code: Applying Chip Pin to a Single Pin

input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 13–102. Verilog-2001 Code: Applying Chip Pin to a Single Pin

(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 13–103. VHDL Code: Applying Chip Pin to a Single Pin

entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

Example 13–104. Verilog-1995 Code: Applying Chip Pin to a Bus of Pins

input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Example 13–105. Verilog-1995 Code: Applying Chip Pin to Part of a Bus

input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 13–106. VHDL Code: Applying Chip Pin to Part of a Bus of Pins

entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–69
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Using altera_attribute to Set Quartus II Logic Options
altera_attribute allows you to apply Quartus II logic options and assignments to an
object in your HDL source code. You can set this attribute on an entity, architecture,
instance, register, RAM block, or I/O pin. You cannot set it on an arbitrary
combinational node such as a net. With altera_attribute, you can control synthesis
options from your HDL source even when the options lack a specific HDL synthesis
attribute (such as many of the logic options presented earlier in this chapter). You can
also use this attribute to pass entity-level settings and assignments to phases of the
Compiler flow that follow Analysis & Synthesis, such as Fitting.

Assignments or settings made through the Quartus II GUI, the .qsf, or the Tcl
interface take precedence over assignments or settings made with the
altera_attribute synthesis attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for other
synthesis attributes, as shown in “Synthesis Attributes” on page 13–25.

The attribute value is a single string containing a list of .qsf variable assignments
separated by semicolons, as shown in Example 13–107.

If the Quartus II option or assignment includes a target, source, and section tag, you
must use the syntax in Example 13–108 for each .qsf variable assignment:

The syntax for the full attribute value, including the optional target, source, and
section tags for two different .qsf assignments, is shown in Example 13–109.

If the assigned value of a variable is a string of text, you must use escaped quotes
around the value in Verilog HDL (as shown in Example 13–110), or double-quotes in
VHDL (as shown in Example 13–111):

Example 13–107. Variable Assignments Separated by Semicolons

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Example 13–108. Syntax for Each .qsf Variable Assignment

-name <variable> <value>
-from <source> -to <target> -section_id <section>

Example 13–109. Syntax for Fill Attribute Value

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id \
<section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>] \
[-section_id <section_2>] "

Example 13–110. Assigned Value of a Variable in Verilog HDL (With Nonexistent Variable and
Value Terms)

"VARIABLE_NAME \"STRING_VALUE\""

Example 13–111. Assigned Value of a Variable in VHDL (With Nonexistent Variable and Value
Terms)

"VARIABLE_NAME ""STRING_VALUE"""
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–70 Chapter 13: Quartus II Integrated Synthesis
Inferring Multiplier, DSP, and Memory Functions from HDL Code
To find the .qsf variable name or value corresponding to a specific Quartus II option
or assignment, you can make the option setting or assignment in the Quartus II GUI
and then note the changes in the .qsf. You can also refer to the Quartus II Settings File
Manual, which documents all variable names.

Example 13–112 through Example 13–114 use altera_attribute to set the power-up
level of an inferred register.

1 For inferred instances, you cannot apply the attribute to the instance directly.
Therefore, you must apply the attribute to one of the output nets of the instance. The
Quartus II software automatically moves the attribute to the inferred instance.

Example 13–112. Verilog-1995 Code: Applying altera_attribute to an Instance

reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH"
*/;

Example 13–113. Verilog-2001 Code: Applying altera_attribute to an Instance

(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 13–114. VHDL Code: Applying altera_attribute to an Instance

signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 13: Quartus II Integrated Synthesis 13–71
Inferring Multiplier, DSP, and Memory Functions from HDL Code
Example 13–115 through Example 13–117 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply the Altera
Attribute to a VHDL entity, you must set the attribute on its architecture rather than
on the entity itself.

You can also use altera_attribute for more complex assignments that have more
than one instance. In Example 13–119 through Example 13–121, the altera_attribute
cuts all timing paths from reg1 to reg2, equivalent to this Tcl or QSF command, as
shown in Example 13–118:

Example 13–115. Verilog-1995 Code: Applying altera_attribute to an Entity

module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 13–116. Verilog-2001 Code: Applying altera_attribute to an Entity

(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

Example 13–117. VHDL Code: Applying altera_attribute to an Entity

entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

Example 13–118.

set_instance_assignment -name CUT ON -from reg1 -to reg2 r

Example 13–119. Verilog-1995 Code: Applying altera_attribute with the -to Option

reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 13–120. Verilog-2001 and SystemVerilog Code: Applying altera_attribute with the -to
Option

reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 13–121. VHDL Code: Applying altera_attribute with the -to Option

signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–72 Chapter 13: Quartus II Integrated Synthesis
Analyzing Synthesis Results
You can specify either the -to option or the -from option in a single
altera_attribute; integrated synthesis automatically sets the remaining option to
the target of the altera_attribute. You can also specify wildcards for either option.
For example, if you specify “*” for the -to option instead of reg2 in these examples,
the Quartus II software cuts all timing paths from reg1 to every other register in this
design entity.

You can use the altera_attribute only for entity-level settings, and the assignments
(including wildcards) apply only to the current entity.

Analyzing Synthesis Results
After performing synthesis, you can check your synthesis results in the Analysis &
Synthesis section of the Compilation Report and the Project Navigator.

Analysis & Synthesis Section of the Compilation Report
The Compilation Report, which provides a summary of results for the project, appears
after a successful compilation. After Analysis & Synthesis, the Summary section of the
Compilation Report provides a summary of utilization based on synthesis data,
before Fitter optimizations have occurred. Synthesis-specific information is listed in
the Analysis & Synthesis section.

Analysis & Synthesis includes various report sections, including a list of the source
files read for the project, the resource utilization by entity after synthesis, and
information about state machines, latches, optimization results, and parameter
settings.

h For more information about each report section, refer to the Analysis & Synthesis
Summary Reports in Quartus II Help.

Project Navigator
The Hierarchy tab of the Project Navigator provides a summary of resource
information about the entities in the project. After Analysis & Synthesis, before the
Fitter begins, the Project Navigator provides a summary of utilization based on
synthesis data, before Fitter optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy tab, a tooltip
appears that shows parameter information for each instance.

Analyzing and Controlling Synthesis Messages
This section provides information about the messages generated during synthesis,
and how you can control which messages appear during compilation.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_analysis_summary.htm

Chapter 13: Quartus II Integrated Synthesis 13–73
Analyzing and Controlling Synthesis Messages
Quartus II Messages
The messages that appear during Analysis & Synthesis describe many of the
optimizations that the software performs during the synthesis stage, and provide
information about how the design is interpreted. Altera recommends checking the
messages to analyze Critical Warnings and Warnings, because these messages can
relate to important design problems. You should also read the information messages
Info and Extra Info to get more information about how the software processes your
design.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display messages
grouped by type.

h For more information about the Messages window and message suppression, refer to
About the Messages Window and About Message Suppression in Quartus II Help.

f For more information about the Messages, refer to Managing Quartus II Projects
chapter in volume 2 of the Quartus II Handbook.

You can specify the type of Analysis & Synthesis messages that you want to view by
selecting the Analysis & Synthesis Message Level option. You can specify the
display level by performing the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Click More Settings. Select the level for the Analysis & Synthesis Message Level
option.

VHDL and Verilog HDL Messages
The Quartus II software issues a variety of messages when it is analyzing and
elaborating the Verilog HDL and VHDL files in your design. These HDL messages are
a subset of all Quartus II messages that help you identify potential problems early in
the design process.

HDL messages fall into the following categories:

■ Info message—Lists a property of your design.

■ Warning message—Indicates a potential problem in your design. Potential
problems come from a variety of sources, including typos, inappropriate design
practices, or the functional limitations of your target device. Though HDL warning
messages do not always identify actual problems, Altera recommends
investigating code that generates an HDL warning. Otherwise, the synthesized
behavior of your design might not match your original intent or its simulated
behavior.

■ Error message—Indicates an actual problem with your design. Your HDL code
can be invalid due to a syntax or semantic error, or it might not be synthesizable as
written.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_view_message_suppression.htm

13–74 Chapter 13: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages
In Example 13–122, the sensitivity list contains multiple copies of the variable i. While
the Verilog HDL language does not prohibit duplicate entries in a sensitivity list, it is
clear that this design has a typing error: Variable j should be listed on the sensitivity
list to avoid a possible simulation or synthesis mismatch.

When processing the HDL code, the Quartus II software generates the following
warning message, as shown in Example 13–123:

In Verilog HDL, variable names are case-sensitive, so the variables my_reg and MY_REG
in Example 13–124 are two different variables. However, declaring variables which
have names in different cases is potentially confusing, especially if you use VHDL, in
which variables are not case-sensitive.

When processing the HDL code, the Quartus II software generates the following
informational message, as shown in Example 13–125:

In addition, the Quartus II software generates additional HDL info messages to
inform you that neither my_reg nor MY_REG are used in this small design, as shown in
Example 13–126:

Example 13–122. Generating an HDL Warning Message

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

Example 13–123.

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2):
sensitivity list contains multiple entries for "i".

Example 13–124. Generating HDL Info Messages

// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

Example 13–125.

Info: (10281) Verilog HDL information at namecase.v(3): variable name
"MY_REG" and variable name "my_reg" should not differ only in case.

Example 13–126.

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object
"my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object
"MY_REG" declared but not used
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–75
Analyzing and Controlling Synthesis Messages
The Quartus II software allows you to control how many HDL messages you can
view during the Analysis & Elaboration of your design files. You can set the HDL
Message Level to enable or disable groups of HDL messages, or you can enable or
disable specific messages, as described in the following sections.

For more information about synthesis directives and their syntax, refer to “Synthesis
Directives” on page 13–27.

Setting the HDL Message Level
The HDL Message Level specifies the types of messages that the Quartus II software
displays when it is analyzing and elaborating your design files. Table 13–8 describes
the HDL message levels.

You must address all issues reported at the Level1 setting. The default HDL message
level is Level2.

To set the HDL Message Level in the GUI, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click Analysis & Synthesis Settings.

3. Set the desired message level from the pull-down menu in the HDL Message
Level list, and then click OK.

You can override this default setting in a source file with the message_level
synthesis directive, which takes the values level1, level2, and level3, as shown in
Example 13–127 and Example 13–128.

Table 13–8. HDL Info Message Level

Level Purpose Description

Level1 High-severity messages only

If you only want to view the HDL messages that identify
likely problems with your design, select Level1. When
Level1 is selected, the Quartus II software issues a
message only if there is a high probability that it points to
an actual problem with your design.

Level2 High-severity and
medium-severity messages

If you want to view additional HDL messages that identify
possible problems with your design, select Level2. This is
the default setting.

Level3 All messages, including
low-severity messages

If you want to view all HDL info and warning messages,
select Level3. This level includes extra “LINT” messages
that suggest changes to improve the style of your HDL
code or make it easier to understand.

Example 13–127. Verilog HDL Examples of message_level Directive

// altera message_level level1
or
/* altera message_level level3 */

Example 13–128. VHDL Code: message_level Directive

-- altera message_level level2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–76 Chapter 13: Quartus II Integrated Synthesis
Analyzing and Controlling Synthesis Messages
A message_level synthesis directive remains effective until the end of a file or until
the next message_level directive. In VHDL, you can use the message_level synthesis
directive to set the HDL Message Level for entities and architectures, but not for other
design units. An HDL Message Level for an entity applies to its architectures, unless
overridden by another message_level directive. In Verilog HDL, you can use the
message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages by Module/Entity
You can enable or disable a specific HDL info or warning message with its Message
ID, which is displayed in parentheses at the beginning of the message. Enabling or
disabling a specific message overrides its HDL Message Level. This method is
different from the message suppression in the Messages window because you can
disable messages for a specific module or entity. This method applies only to the HDL
messages, and if you disable a message with this method, the message is listed as a
suppressed message in the Quartus II GUI.

To disable specific HDL messages in the GUI, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, expand Analysis & Synthesis Settings and select Advanced.

3. In the Advanced Message Settings dialog box, add the Message IDs you want to
enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and
message_off synthesis directives. These directives require a space-separated list of
Message IDs. You can enable or disable messages with these synthesis directives
immediately before Verilog HDL modules, VHDL entities, or VHDL architectures.
You cannot enable or disable a message during an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis directive
overrides its HDL Message Level or any message_level synthesis directive. The
message remains disabled until the end of the source file or until its status is changed
by another message_on or message_off directive.

Example 13–129. Verilog HDL message_off Directive for Message with ID 10000

// altera message_off 10000
or
/* altera message_off 10000 */

Example 13–130. VHDL message_off Directive for Message with ID 10000

-- altera message_off 10000
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–77
Node-Naming Conventions in Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
This section provides an overview of the conventions used by the Quartus II software
during synthesis to name the nodes created from your HDL design. This information
is useful for finding logic node names during verification and debugging of a design.
This section focuses on the conventions for Verilog HDL and VHDL code, but AHDL
and .bdf files are discussed when appropriate.

Whenever possible, Quartus II integrated synthesis uses wire or signal names from
your source code to name nodes such as LEs or ALMs. Some nodes, such as registers,
have predictable names that do not change when a design is resynthesized, although
certain optimizations can affect register names. The names of other nodes, particularly
LEs or ALMs that contain only combinational logic, can change due to logic
optimizations that the software performs.

This section discusses the following topics:

■ “Hierarchical Node-Naming Conventions”

■ “Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)”

■ “Register Changes During Synthesis” on page 13–79

■ “Preserving Register Names” on page 13–81

■ “Node-Naming Conventions for Combinational Logic Cells” on page 13–81

■ “Preserving Combinational Logic Names” on page 13–82

Hierarchical Node-Naming Conventions
To make each name in the design unique, the Quartus II software adds the hierarchy
path to the beginning of each name. The “|” separator indicates a level of hierarchy.
For each instance in the hierarchy, the software adds the entity name and the instance
name of that entity, using the “:” separator between each entity name and its instance
name. For example, if a design defines entity A with the name my_A_inst, the
hierarchy path of that entity would be A:my_A_inst. The full name of any node is
obtained by starting with the hierarchical instance path, followed by a “|”, and
ending with the node name inside that entity, using the convention shown in
Example 13–131:

For example, if entity A contains a register (DFF atom) called my_dff, its full hierarchy
name would be A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on
the Compilation Process Settings page of the Settings dialog box, click More
Settings, and then turn off Display entity name for node name. With this option
turned off, the node names use the convention in shown in Example 13–132:

Example 13–131.

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|<node_nam
e>

Example 13–132.

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–78 Chapter 13: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
In Verilog HDL and VHDL, inferred registers are named after the reg or signal
connected to the output.

Example 13–133 is an example of a register in Verilog HDL that creates a DFF
primitive called my_dff_out:

Similarly, Example 13–134 is an example of a register in VHDL that creates a DFF
primitive called my_dff_out.

In AHDL designs, DFF registers are declared explicitly rather than inferred, so the
software uses the user-declared name for the register.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design, so the software uses the name you defined for the register
or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding
examples) is also an output pin of your top-level design, the Quartus II software
cannot use that name for the register (for example, cannot use my_dff_out) because
the software requires that all logic and I/O cells have unique names. In this case,
Quartus II integrated synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 13–135 generates a register called
q~reg0:

This situation occurs only for registers driving top-level pins. If a register drives a port
of a lower level of the hierarchy, the port is removed during hierarchy flattening and
the register retains its original name, in this case, q.

Example 13–133. Verilog HDL Register

wire dff_in, my_dff_out, clk;

always @ (posedge clk)
my_dff_out <= dff_in;

Example 13–134. VHDL Register

signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

Example 13–135. Verilog HDL Register Feeding Output Pin

module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–79
Node-Naming Conventions in Quartus II Integrated Synthesis
Register Changes During Synthesis
On some occasions, you might not find registers that you expect to view in the
synthesis netlist. Registers might be removed by logic optimization, or their names
might be changed due to synthesis optimization. Common optimizations include
inference of a state machine, counter, adder-subtractor, or shift register from registers
and surrounding logic. Other common register changes occur when registers are
packed into dedicated hardware on the FPGA, such as a DSP block or a RAM block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations”

■ “State Machines”

■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions” on
page 13–80

■ “Packed Input and Output Registers of RAM and DSP Blocks” on page 13–81

■ “Preserving Register Names” on page 13–81

■ “Preserving Combinational Logic Names” on page 13–82

Synthesis and Fitting Optimizations
Registers might be removed by logic optimization during synthesis if they are not
connected to inputs or outputs in the design, or if the logic can be simplified due to
constant signal values. Register names might also be changed due to synthesis
optimizations, such as when duplicate registers are merged together to reduce
resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This
type of optimization can impact your timing assignments when registers are used as
clock dividers. If this situation occurs in your design, change the clock settings to
work on the new register name.

Synthesis netlist optimizations often change node names because registers can be
combined or duplicated to optimize the design.

f For more information about the type of optimizations performed by synthesis netlist
optimizations, refer to the Netlist Optimizations and Physical Synthesis chapter in
volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that are removed
during synthesis optimizations, and a brief reason for the removal. To generate the
Quartus II Compilation Report, follow these steps:

1. In the Analysis & Synthesis folder, open Optimization Results.

2. Open Register Statistics, and then click the Registers Removed During Synthesis
report.

3. Click Removed Registers Triggering Further Register Optimizations.

The second report contains a list of registers that caused other registers to be removed
from the design. The report provides a brief reason for the removal, and a list of
registers that were removed due to the removal of the initial register.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

13–80 Chapter 13: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
Quartus II integrated synthesis creates synonyms for registers duplicated with the
Maximum Fan-Out option (or maxfan attribute). Therefore, timing assignments
applied to nodes that are duplicated with this option are applied to the new nodes as
well.

The Quartus II Fitter can also change node names after synthesis (for example, when
the Fitter uses register packing to pack a register into an I/O element, or when logic is
modified by physical synthesis). The Fitter creates synonyms for duplicated registers
so timing analysis can use the existing node name when applying assignments.

You can instruct the Quartus II software to preserve certain nodes throughout
compilation so you can use them for verification or making assignments. For more
information, refer to “Preserving Register Names” on page 13–81.

State Machines
If a state machine is inferred from your HDL code, the registers that represent the
states are mapped into a new set of registers that implement the state machine. Most
commonly, the software converts the state machine into a one-hot form where each
state is represented by one register. In this case, for Verilog HDL or VHDL designs, the
registers are named according to the name of the state register and the states.

For example, consider a Verilog HDL state machine in which the states are parameter
state0 = 1, state1 = 2, state2 = 3, and in which the state machine register is
declared as reg [1:0] my_fsm. In this example, the three one-hot state registers are
named my_fsm.state0, my_fsm.state1, and my_fsm.state2.

In AHDL, state machines are explicitly specified with a state machine name. State
machine registers are given synthesized names based on the state machine name, but
not the state names. For example, if a state machine is called my_fsm and has four state
bits, they might be synthesized with names such as my_fsm~12, my_fsm~13, my_fsm~14,
and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
The Quartus II software infers megafunctions from Verilog HDL and VHDL code for
logic that forms adder-subtractors, shift registers, RAM, ROM, and arithmetic
functions that are placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic logic, the
combinational logic exists in the design with different names. For shift registers,
memory, and DSP functions, the registers and logic are implemented inside the
dedicated RAM or DSP blocks in the device. Thus, the registers are not visible as
separate LEs or ALMs.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 13: Quartus II Integrated Synthesis 13–81
Node-Naming Conventions in Quartus II Integrated Synthesis
Packed Input and Output Registers of RAM and DSP Blocks
Registers are packed into the input registers and output registers of RAM and DSP
blocks, so that they are not visible as separate registers in LEs or ALMs.

f For information about packing registers into RAM and DSP megafunctions, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Preserving Register Names
Altera recommends that you preserve certain register names for verification or
debugging, or to ensure that timing assignments are applied correctly. Quartus II
integrated synthesis preserves certain nodes automatically if they might be used in a
timing constraint.

Use the preserve attribute to instruct the Compiler not to minimize or remove a
specified register during synthesis optimizations or register netlist optimizations. For
details, refer to “Preserve Registers” on page 13–43.

Use the noprune attribute to preserve a fan-out-free register through the entire
compilation flow. For details, refer to “Noprune Synthesis Attribute/Preserve Fan-out
Free Register Node” on page 13–44.

Use the synthesis attribute syn_dont_merge to ensure that the registers are not merged
with other registers, and other registers are not merged with them. For details, refer to
“Disable Register Merging/Don’t Merge Register” on page 13–43.

Node-Naming Conventions for Combinational Logic Cells
Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus II software
uses wire names that are the targets of assignments, but can change the node names
due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 13–136. Quartus II integrated
synthesis uses the names c, d, e, and f for the generated combinational logic cells.

For schematic designs using a .bdf, all elements are given a name when they are
instantiated in the design and the software uses the name you defined when possible.

Example 13–136. Naming Nodes for Combinational Logic Cells in Verilog HDL

wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end

always @ (a or b)
f = ~(a | b);
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

13–82 Chapter 13: Quartus II Integrated Synthesis
Node-Naming Conventions in Quartus II Integrated Synthesis
If logic cells, such as those created in Example 13–136, are packed with registers in
device architectures such as the Stratix and Cyclone device families, those names
might not appear in the netlist after fitting. In other devices, such as newer families in
the Stratix and Cyclone series device families, the register and combinational nodes
are kept separate throughout the compilation, so these names are more often
maintained through fitting.

When logic optimizations occur during synthesis, it is not always possible to retain
the initial names as described. In some cases, synthesized names are used, which are
the wire names with a tilde (~) and a number appended. For example, if a complex
expression is assigned to wire w and that expression generates several logic cells, those
cells can have names such as w, w~1, and w~2. Sometimes the original wire name w is
removed, and an arbitrary name such as rtl~123 is created. Quartus II integrated
synthesis attempts to retain user names whenever possible. Any node name ending
with ~<number> is a name created during synthesis, which can change if the design is
changed and re-synthesized. Knowing these naming conventions helps you
understand your post-synthesis results, helping you to debug your design or create
assignments.

The software maintains combinational clock logic by ensuring nodes that might be a
clock are not changed during synthesis. The software also maintains or protects
multiplexers in clock trees, so that the TimeQuest analyzer has information about
which paths are unate, to allow complete and correct analysis of combinational clocks.
Multiplexers often occur in clock trees when the software selects between different
clocks. To help with the analysis of clock trees, the software ensures that each
multiplexer encountered in a clock tree is broken into 2:1 multiplexers, and each of
those 2:1 multiplexers is mapped into one lookup table (independent of the device
family). This optimization might result in a slight increase in area, and for some
designs a decrease in timing performance. You can turn off this multiplexer protection
with the option Clock MUX Protection under More Settings on the Analysis &
Synthesis Settings page of the Settings dialog box.

h For more information about Clock MUX Protection logic option and a list of
supported devices, refer to Clock MUX Protection logic option in Quartus II Help.

Preserving Combinational Logic Names
You can preserve certain combinational logic node names for verification or
debugging, or to ensure that timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through logic
synthesis minimizations and netlist optimizations. For details, refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 13–45.

For any internal node in your design clock network, use keep to protect the name so
that you can apply correct clock settings. Also, set the attribute for combinational
logic involved in cut and -through assignments.

1 Setting the keep attribute for combinational logic can increase the area utilization and
increase the delay of the final mapped logic because the attribute requires the
insertion of extra combinational logic. Use the attribute only when necessary.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synth_clock_mux_protection.htm

Chapter 13: Quartus II Integrated Synthesis 13–83
Scripting Support
Scripting Support
You can run procedures and make settings in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command
options, refer to the Quartus II Command-Line and Tcl API Help browser.

To run the Help browser, type the command at the command prompt shown in
Example 13–137:

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

h For more information about Tcl scripting, refer to API Functions for Tcl in Quartus II
Help.

You can specify many of the options described in this section either on an instance, at
the global level, or both.

To make a global assignment, use the Tcl command shown in Example 13–138:

To make an instance assignment, use the Tcl command shown in Example 13–139:

To set the Synthesis Effort option at the command line, use the --effort option with
the quartus_map executable, as shown in Example 13–140.

The early timing estimate feature gives you preliminary timing estimates before
running a full compilation, which results in a quicker iteration time; therefore, you
can save significant compilation time to get a good estimation of the final timing of
your design.

Example 13–137.

quartus_sh --qhelp r

Example 13–138.

set_global_assignment -name <QSF Variable Name> <Value> r

Example 13–139.

set_instance_assignment -name <QSF Variable Name> <Value>\ -to
<Instance Name> r

Example 13–140. Command Syntax for Specifying Synthesis Effort Option

quartus_map <Design name> --effort= "auto | fast" r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

13–84 Chapter 13: Quartus II Integrated Synthesis
Scripting Support
If you want to run fast synthesis with the Fitter Early Timing Estimate option, use the
command shown in Example 13–141. This command runs the full flow with timing
analysis:

For more information, refer to “Synthesis Effort” on page 13–35.

Adding an HDL File to a Project and Setting the HDL Version
To add an HDL or schematic entry design file to your project, use the Tcl assignments
shown in Example 13–142:

1 You can use any file extension for design files, as long as you specify the correct
language when adding the design file. For example, you can use .h for Verilog HDL
header files.

To specify the Verilog HDL or VHDL version, use the option shown in
Example 13–143, at the end of the VERILOG_FILE or VHDL_FILE command:

The variable <language version> takes one of the following values:

■ VERILOG_1995

■ VERILOG_2001

■ SYSTEMVERILOG_2005

■ VHDL_1987

■ VHDL_1993

■ VHDL_2008

For example, to add a Verilog HDL file called my_file.v written in Verilog-1995, use
the command shown in Example 13–144:

Example 13–141. Command Syntax for Running Fast Synthesis with Early Timing Estimate Option

quartus_sh --flow early_timing_estimate_with_synthesis <Design name> r

Example 13–142.

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

Example 13–143.

- HDL_VERSION <language version> r

Example 13–144.

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \
VERILOG_1995
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–85
Scripting Support
In Example 13–145, the syn_encoding attribute associates a binary encoding with the
states in the enumerated type count_state. In this example, the states are encoded
with the following values: zero = "11", one = "01", two = "10", three = "00".

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis tool
to use the encoding from your HDL code, instead of using the State Machine
Processing option.

The syn_encoding value "user" instructs the Quartus II software to encode each state
with its corresponding value from the Verilog HDL source code. By changing the
values of your state constants, you can change the encoding of your state machine.

In Example 13–146, the states are encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software encodes the state
machine based on the current value of the State Machine Processing logic option.

If you also specify a safe state machine (as described in “Safe State Machines” on
page 13–39), separate the encoding style value in the quotation marks from the safe
value with a comma, as follows: “safe, one-hot” or “safe, gray”.

For more information, refer to “Manually Specifying State Assignments Using the
syn_encoding Attribute” on page 13–37.

Example 13–145. Specifying User-Encoded States with the syn_encoding Attribute in VHDL

ARCHITECTURE rtl OF my_fsm IS
TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

Example 13–146. Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with
the syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:
out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–86 Chapter 13: Quartus II Integrated Synthesis
Scripting Support
Assigning a Pin
To assign a signal to a pin or device location, use the Tcl command shown in
Example 13–147:

Valid locations are pin location names. Some device families also support edge and
I/O bank locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and
EDGE_RIGHT. I/O bank locations include IOBANK_1 to IOBANK_n, in which n is the
number of I/O banks in a particular device.

Creating Design Partitions for Incremental Compilation
To create a partition, use the command shown in Example 13–148:

The <file name> is the name used for internally generated netlist files during
incremental compilation. If you create the partition in the Quartus II GUI, netlist files
are named automatically by the Quartus II software based on the instance name. If
you use Tcl to create your partitions, you must assign a custom file name that is
unique across all partitions. For the top-level partition, the specified file name is
ignored, and you can use any dummy value. To ensure the names are safe and
platform independent, file names should be unique, regardless of case. For example, if
a partition uses the file name my_file, no other partition can use the file name
MY_FILE. To make file naming simple, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The <destination> is the short hierarchy path of the entity. A short hierarchy path is the
full hierarchy path without the top-level name, for example:
"ram:ram_unit|altsyncram:altsyncram_component" (with quotation marks). For the
top-level partition, you can use the pipe (|) symbol to represent the top-level entity.

For more information about hierarchical naming conventions, refer to “Node-Naming
Conventions in Quartus II Integrated Synthesis” on page 13–77.

The <partition name> is the partition name you designate, which should be unique and
less than 1024 characters long. The name may only consist of alphanumeric
characters, as well as pipe (|), colon (:), and underscore (_) characters. Altera
recommends enclosing the name in double quotation marks (" ").

Example 13–147.

set_location_assignment -to <signal name> <location>

Example 13–148.

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–87
Scripting Support
Quartus II Synthesis Options
Table 13–9 lists the .qsf variable names and applicable values for the settings
discussed in this chapter. Use the .qsf variable name in the Tcl assignment to make the
setting along with the appropriate value.

1 Applying a Quartus II Synthesis option globally or to an entity affects all lower-level
entities in the hierarchy path, including entities instantiated with Altera and
third-party IP.

Table 13–9. Quartus II Synthesis Options (Part 1 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values

Add Pass-Through Logic to
Inferred RAMs

ADD_PASS_THROUGH_LOGIC_TO_INFERRED_
RAMS

On/Off

Allow Any RAM Size for
Recognition ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION On/Off

Allow Any ROM Size for
Recognition ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION On/Off

Allow Any Shift Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

On/Off

Allow Asynchronous Clear Usage
For Shift Register Replacement

ALLOW_ACLR_FOR_SHIFT_REGISTER_
RECOGNITION

On/Off

Allow Synchronous Control
Signals ALLOW_SYNCH_CTRL_USAGE On/Off

Analysis & Synthesis Message
Level SYNTH_MESSAGE_LEVEL Low/Medium/High

Auto Carry Chains AUTO_CARRY_CHAINS On/Off

Auto Clock Enable Replacement AUTO_CLOCK_ENABLE_RECOGNITION On/Off

Auto DSP Block Replacement AUTO_DSP_RECOGNITION On/Off

Auto Gated Clock Conversion SYNTH_GATED_CLOCK_CONVERSION On/Off

Auto Open-Drain Pins AUTO_OPEN_DRAIN_PINS On/Off

Auto RAM Block Balancing AUTO_RAM_BLOCK_BALANCING On/Off

Auto RAM to Logic Cell
Conversion AUTO_RAM_TO_LCELL_CONVERSION On/Off

Auto RAM Replacement AUTO_RAM_RECOGNITION On/Off

Auto Resource Sharing AUTO_RESOURCE_SHARING On/Off

Auto ROM Replacement AUTO_ROM_RECOGNITION On/Off

Auto Shift-Register Replacement AUTO_SHIFT_REGISTER_RECOGNITION Always/Auto/Off

Block Design Naming BLOCK_DESIGN_NAMING
Auto/Max+Plus II/

Quartus II

Carry Chain Length <device name>_CARRY_CHAIN_LENGTH <Maximum allowable
length of a chain>

Clock MUX Protection SYNTH_CLOCK_MUX_PROTECTION On/Off

Create Debugging Nodes for IP
Cores ENABLE_IP_DEBUG On/Off
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–88 Chapter 13: Quartus II Integrated Synthesis
Scripting Support
DSP Block Balancing DSP_BLOCK_BALANCING

Auto/DSP Blocks/ Logic
Elements/ Off/Simple

18-bit Multipliers/
Simple Multipliers/Width

18-bit Multipliers

Extract Verilog State Machines EXTRACT_VERILOG_STATE_MACHINES On/Off

Extract VHDL State Machines EXTRACT_VHDL_STATE_MACHINES On/Off

Force Use of Synchronous Clear
Signals FORCE_SYNCH_CLEAR On/Off

HDL Message Level HDL_MESSAGE_LEVEL Level1/Level2/ Level3

Ignore CARRY Buffers IGNORE_CARRY_BUFFERS On/Off

Ignore CASCADE Buffers IGNORE_CASCADE_BUFFERS On/Off

Ignore GLOBAL Buffers IGNORE_GLOBAL_BUFFERS On/Off

Ignore Maximum Fan-Out
Assignments IGNORE_MAX_FANOUT_ASSIGNMENTS On/Off

Ignore ROW GLOBAL Buffers IGNORE_ROW_GLOBAL_BUFFERS On/Off

Ignore translate_off and
synthesis_off directives IGNORE_TRANSLATE_OFF_AND_SYNTHESIS_OFF On/Off

Ignore Verilog Initial Constructs IGNORE_VERILOG_INITIAL_CONSTRUCTS On/Off

Iteration limit for constant Verilog
loops VERILOG_CONSTANT_LOOP_LIMIT

<Maximum limit to
infinite loops before

exhaustion of memory>

Iteration limit for non-constant
Verilog loops VERILOG_NON_CONSTANT_LOOP_LIMIT

<Maximum limit to
infinite loops before

exhaustion of memory>

Limit AHDL Integers to 32 Bits LIMIT_AHDL_INTEGERS_TO_32_BITS On/Off

Maximum DSP Block Usage (2) MAX_BALANCING_DSP_BLOCKS
<Maximum DSP Block

Usage Value>

Maximum Number of M4K/
M9K Memory Blocks MAX_RAM_BLOCKS_M4K

<Maximum memory
blocks usage>

Maximum Number of M512
Memory Blocks MAX_RAM_BLOCKS_M512

<Maximum memory
blocks usage>

Maximum Number of M-RAM/
M144K Memory Blocks MAX_RAM_BLOCKS_MRAM

<Maximum memory
blocks usage>

Maximum Number of LABs MAX_LABS
<Maximum number of

LAB usage>

NOT Gate Push-Back NOT_GATE_PUSH_BACK On/Off

Number of Inverted Registers
Reported in Synthesis Report NUMBER_OF_INVERTED_REGISTERS_REPORTED

<Maximum number of
inverted registers>

Number of Removed Registers
Reported in Synthesis Report NUMBER_OF_REMOVED_REGISTERS_REPORTED

<Maximum number of
inverted registers>

Optimization Technique <device family>_OPTIMIZATION_TECHNIQUE Area/Speed/ Balanced

Parallel Synthesis PARALLEL_SYNTHESIS On/Off

Table 13–9. Quartus II Synthesis Options (Part 2 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–89
Conclusion
Conclusion
The Quartus II software includes Verilog HDL, SystemVerilog, and VHDL language
support, as well as support for Altera-specific languages, making the synthesis
feature an easy-to-use, standalone solution for Altera designs. You can use the
synthesis options in the software or in your HDL code to better control the way your
design is synthesized, helping you improve your synthesis results. Use Quartus II
reports and messages to analyze your compilation results.

Perform WYSIWYG Primitive
Resynthesis ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP On/Off

PowerPlay Power Optimization OPTIMIZE_POWER_DURING_SYNTHESIS
Normal compilation/

Extra effort/Off

Power-Up Don’t Care (2) ALLOW_POWER_UP_DONT_CARE On/Off

Remove Duplicate Registers REMOVE_DUPLICATE_REGISTERS On/Off

Remove Redundant Logic Cells
(2) REMOVE_REDUNDANT_LOGIC_CELLS On/Off

Restructure Multiplexers MUX_RESTRUCTURE On/Off/Auto

Resource Aware Inference for
Block RAM

SYNTH_RESOURCE_AWARE_INFERENCE_FOR_
BLOCK_RAM

On/Off

Safe State Machine SAFE_STATE_MACHINE On/Off

SDC Constraint Protection SYNTH_PROTECT_SDC_CONSTRAINT On/Off

Show Parameter Settings Tables
in Synthesis Report

SHOW_PARAMETER_SETTINGS_TABLES_IN_
SYNTHESIS_REPORT

On/Off

State Machine Processing STATE_MACHINE_PROCESSING

Auto/One-Hot/
Gray/Johnson/ Minimal

Bits/ Sequential/
User-Encoded

Strict RAM Replacement STRICT_RAM_RECOGNITION On/Off

Synthesis Effort (2) SYNTHESIS_EFFORT Auto/Fast

Synthesis Seed (2) SYNTHESIS_SEED <Non-negative integer>

Timing Driven Synthesis SYNTH_TIMING_DRIVEN_SYNTHESIS On/Off

Use LogicLock Constraints during
Resource Balancing USE_LOGICLOCK_CONSTRAINTS_IN_BALANCING On/Off

Notes to Table 13–9:

(1) These settings are supported as Global and Instance settings, unless specified.
(2) This setting is only a Global setting.

Table 13–9. Quartus II Synthesis Options (Part 3 of 3) (Note 1)

Setting Name Quartus II Settings File Variable Values
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

13–90 Chapter 13: Quartus II Integrated Synthesis
Document Revision History
Document Revision History
Table 13–10 shows the revision history for this document.

Table 13–10. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Updated “Verilog HDL Support” on page 13–4 to include Verilog-2001 support.

■ Updated “VHDL-2008 Support” on page 13–10 to include the condition operator (explicit
and implicit) support.

■ Rewrote “Limiting Resource Usage in Partitions” on page 13–32.

■ Added “Creating LogicLock Regions” on page 13–32 and “Using Assignments to Limit
the Number of RAM and DSP Blocks” on page 13–33.

■ Updated “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check
Attribute” on page 13–55.

■ Updated “Auto Gated Clock Conversion” on page 13–28.

■ Added links to Quartus II Help.

July 2010 10.0.0

■ Removed Referenced Documents section.

■ Added “Synthesis Seed” on page 9–36 section.

■ Updated the following sections:

■ “SystemVerilog Support” on page 9–5

■ “VHDL-2008 Support” on page 9–10

■ “Using Parameters/Generics” on page 9–16

■ “Parallel Synthesis” on page 9–21

■ “Limiting Resource Usage in Partitions” on page 9–32

■ “Synthesis Effort” on page 9–35

■ “Synthesis Attributes” on page 9–25

■ “Synthesis Directives” on page 9–27

■ “Auto Gated Clock Conversion” on page 9–29

■ “State Machine Processing” on page 9–36

■ “Multiply-Accumulators and Multiply-Adders” on page 9–50

■ “Resource Aware RAM, ROM, and Shift-Register Inference” on page 9–52

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–53

■ “Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute” on
page 9–55

■ “Using altera_attribute to Set Quartus II Logic Options” on page 9–68

■ “Adding an HDL File to a Project and Setting the HDL Version” on page 9–83

■ “Creating Design Partitions for Incremental Compilation” on page 9–85

■ “Inferring Multiplier, DSP, and Memory Functions from HDL Code” on page 9–50

■ Updated Table 9–9 on page 9–86.

December 2009 9.1.1
■ Added information clarifying inheritance of Synthesis settings by lower-level entities,

including Altera and third-party IP

■ Updated “Keep Combinational Node/Implement as Output of Logic Cell” on page 9–46
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 13: Quartus II Integrated Synthesis 13–91
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2009 9.1.0

■ Updated the following sections:

■ “Initial Constructs and Memory System Tasks” on page 9–7

■ “VHDL Support” on page 9–9

■ “Parallel Synthesis” on page 9–21

■ “Synthesis Directives” on page 9–27

■ “Timing-Driven Synthesis” on page 9–31

■ “Safe State Machines” on page 9–40

■ “RAM Style and ROM Style—for Inferred Memory” on page 9–53

■ “Translate Off and On / Synthesis Off and On” on page 9–62

■ “Read Comments as HDL” on page 9–63

■ “Adding an HDL File to a Project and Setting the HDL Version” on page 9–81

■ Removed “Remove Redundant Logic Cells” section

■ Added “Resource Aware RAM, ROM, and Shift-Register Inference” section

■ Updated Table 9–9 on page 9–83

March 2009 9.0.0

■ Updated Table 9–9.

■ Updated the following sections:

■ “Partitions for Preserving Hierarchical Boundaries” on page 9–20

■ “Analysis & Synthesis Settings Page of the Settings Dialog Box” on page 9–24

■ “Timing-Driven Synthesis” on page 9–30

■ “Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute
Setting” on page 9–54

■ Added “Parallel Synthesis” on page 9–21

■ Chapter 9 was previously Chapter 8 in software version 8.1

Table 13–10. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

13–92 Chapter 13: Quartus II Integrated Synthesis
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51009-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51009-10.1.0
14. Synopsys Synplify Support
This chapter documents support for the Synopsys Synplify software in the
Quartus® II software, as well as key design flows, methodologies, and techniques for
achieving optimal results in Altera® devices.

This chapter includes the following topics:

■ General design flow with the Synplify and Quartus II software

■ Synplify software optimization strategies, including timing-driven compilation
settings, optimization options, and Altera-specific attributes

■ Exporting designs and constraints to the Quartus II software using NativeLink
integration

■ Guidelines for Altera megafunctions and library of parameterized module (LPM)
functions, instantiating them with the MegaWizard™ Plug-In Manager, and tips
for inferring them from hardware description language (HDL) code

■ Incremental compilation and block-based design, including the MultiPoint flow in
the Synplify Pro and Synplify Premier software

The content in this chapter applies to the Synplify, Synplify Pro, and Synplify Premier
software unless otherwise specified. This chapter includes the following sections:

■ “Altera Device Family Support”

■ “Design Flow” on page 14–2

■ “Synplify Optimization Strategies” on page 14–6

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 14–13

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 14–16

■ “Incremental Compilation and Block-Based Design” on page 14–29

1 This chapter assumes that you have set up, licensed, and are familiar with the
Synplify software.

Altera Device Family Support
The Synplify software supports active devices available in the current version of the
Quartus II software. Support for newly released device families may require an
overlay. Contact Synopsys at www.synopsys.com for more information.

The Synplify software also supports the FLEX 8000 and MAX 9000 legacy devices that
are supported only in the Altera MAX+PLUS® II software, as well as ACEX® 1K,
APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX 6000 legacy
devices that are supported by the Quartus II software version 9.0 and earlier.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51009
http://www.synopsys.com

14–2 Chapter 14: Synopsys Synplify Support
Design Flow
Design Flow
The following steps describe a basic Quartus II software design flow using the
Synplify software:

1. Create Verilog HDL or VHDL design files.

2. Set up a project in the Synplify software and add the HDL design files for
synthesis.

3. Select a target device and add timing constraints and compiler directives in the
Synplify software to help optimize the design during synthesis.

4. Synthesize the project in the Synplify software.

5. Create a Quartus II project and import the following files generated by the
Synplify software into the Quartus II software. Use the following files for
placement and routing, and for performance evaluation:

■ The technology-specific Verilog Quartus Mapping File (.vqm) netlist or EDIF
Input File (.edf) netlist for legacy devices also supported by the MAX+PLUS II
software

■ The Synopsys Constraints Format (.scf) file for TimeQuest Timing Analyzer
constraints

1 If your design uses the Classic Timing Analyzer for timing analysis in the
Quartus II software versions 10.0 and earlier, the Synplify software
generates timing constraints in the Tcl Constraints File (.tcl). If you are
using the Quartus II software versions 10.1 and later, you must use the
TimeQuest Timing Analyzer for timing analysis.

■ The .tcl to set up your Quartus II project and pass constraints

Alternatively, you can run the Quartus II software from within the Synplify
software. For more information, refer to “Running the Quartus II Software
from within the Synplify Software” on page 14–14.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–3
Design Flow
Figure 14–1 shows the recommended design flow using the Synplify and the
Quartus II software.

The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files.
However, only the Synplify Pro and Premier software support mixed synthesis,
allowing a combination of VHDL and Verilog HDL or SystemVerilog format source
files.

Specify timing constraints and attributes for a design in a SCOPE Design Constraints
File (.sdc) with the SCOPE window in the Synplify software using the standard
Synopsys Design Constraint (SDC) format, or directly in the HDL source file. You can
also define compiler directives in the HDL source file. Many of these constraints are
forward-annotated for use by the Quartus II software. See Table 14–1 on page 14–4 for
a list of the files generated by Synplify.

Figure 14–1. Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post-Place-and-Route
Simulation File

(.vho/.vo)

Quartus II Software

Yes

No
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–4 Chapter 14: Synopsys Synplify Support
Design Flow
The HDL Analyst that is included in the Synplify software is a graphical tool for
generating schematic views of the technology-independent RTL view netlist (.srs) and
technology-view netlist (.srm) files. You can use the Synplify HDL Analyst to analyze
and debug your design visually. The HDL Analyst supports cross-probing between
the RTL and Technology views, the HDL source code, the Finite State Machine (FSM)
viewer, and between the technology view and the timing report file in the Quartus II
software.

1 A separate license file is required to enable the HDL Analyst in the Synplify software.
The Synplify Pro and Premier software include the HDL Analyst.

After synthesis is complete, import the .vqm or .edf netlist to the Quartus II software
for place-and-route. Use the .tcl file generated by the Synplify software to
forward-annotate your project constraints including device selection, called the
generated .scf file to forward-annotate TimeQuest Timing Analyzer timing
constraints, and optionally to set up your project in the Quartus II software.

If area and timing requirements are satisfied, use the files generated by the Quartus II
software to program or configure the Altera device. As shown in Figure 14–1, if your
area or timing requirements are not met, you can change the constraints in the
Synplify software or the Quartus II software and rerun synthesis. Altera recommends
that you provide timing constraints in the Synplify software and any placement
constraints in the Quartus II software. Repeat the process until area and timing
requirements are met.

You can perform simulation and formal verification at various stages in the design
process. You can perform final timing analysis after placement and routing is
complete.

f For more information about how the Synplify software supports formal verification,
refer to Section V. Formal Verification in volume 3 of the Quartus II Handbook.

You can also use other options and techniques in the Quartus II software to meet area
and timing requirements, such as WYSIWYG Primitive Resynthesis, which can
perform optimizations on your .vqm netlist within the Quartus II software.

f For information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 3 of the Quartus II Handbook.

1 In some cases, you might be required to modify the source code if the area and timing
requirements cannot be met using options in the Synplify and Quartus II software.

During synthesis, the Synplify software produces several intermediate and output
files, which are listed and described in Table 14–1.

Table 14–1. Synplify Intermediate and Output Files (Part 1 of 2)

File Extensions File Description

.srs Technology-independent RTL netlist file that can be read only by the Synplify software.

.srm Technology view netlist file.

.srr (1) Synthesis Report file.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 14: Synopsys Synplify Support 14–5
Design Flow
Specifying the Output Netlist File Name and Result Format
The Result Format list specifies an .edf or .vqm netlist, depending on your device
family. The software creates an .edf output netlist file only for devices supported by
the MAX+PLUS II software. For current Altera devices, the software generates a
.vqm-formatted netlist.

To specify the output netlist directory location, name, and format for the Synplify
software, perform the following steps:

1. In the Synplify software, on the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

3. In the Results Directory box, type your output netlist file directory location.

4. In the Result File Name box, type your output netlist file name.

5. In the Results Format list, specify either .vqm for devices using the Quartus II
software or .edf for devices using the MAX+PLUS II software.

Specifying the Quartus II Software Version
You can specify your version of the Quartus II software in the Implementation
Results tab of the Implementation Options dialog box. This option ensures that the
netlist is compatible with the software version and supports the newest features.
Altera recommends using the latest version of the Quartus II software whenever
possible. If your Quartus II software version is newer than the versions available in
the Quartus Version list, check if there is a newer version of the Synplify software
available that supports the current Quartus II software version. Otherwise, select the
latest version in the list for the best compatibility.

1 The Quartus Version list is available only after selecting an Altera device.

.vqm/.edf
Technology-specific netlist in .vqm or .edf file format.

A .vqm file is created for all Altera device families supported by the Quartus II software. An .edf file is
created for devices supported by the MAX+PLUS II software.

.tcl
Forward-annotated constraints file containing constraints and assignments.

A .tcl file for the Quartus II software is created for all devices. The .tcl file contains the appropriate Tcl
commands to create and set up a Quartus II project and pass placement constraints.

.acf
Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.scf Synopsys Constraint Format file containing timing constraints for the TimeQuest Timing Analyzer.

Note to Table 14–1:

(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use the fMAX reported by the Quartus II
software after place-and-route—it is the only reliable source of timing information. This report file includes post-synthesis device resource
utilization statistics that might inaccurately predict resource usage after place-and-route. The Synplify software does not account for black box
functions nor for logic usage reduction achieved through register packing performed by the Quartus II software. Register packing combines a
single register and look-up table (LUT) into a single logic cell, reducing logic cell utilization below the Synplify software estimate. Use the device
utilization reported by the Quartus II software after place-and-route.

Table 14–1. Synplify Intermediate and Output Files (Part 2 of 2)

File Extensions File Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–6 Chapter 14: Synopsys Synplify Support
Synplify Optimization Strategies
To specify the Quartus II software version used in the Synplify software, perform the
following steps:

1. In the Synplify software, on the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

3. Specify your version of the Quartus II software in the Quartus Version list.

Alternatively, type the following command at the command line:

set_option -quartus_version <version number> r

Synplify Optimization Strategies
Combining Synplify software constraints with VHDL and Verilog HDL coding
techniques and Quartus II software options can help you obtain the results that you
require. This section provides an overview of some of the techniques you can use to
help improve the quality of your results.

f For additional design and optimization techniques, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 and the Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

f For more information about applying the attributes discussed in this section, refer to
the Altera Constraints, Attributes, and Options chapter of the Synopsys FPGA Synthesis
Reference Manual.

Using Synplify Premier to Optimize Your Design
Compared to other Synplify products, the Synplify Premier software offers additional
physical synthesis optimizations. After typical logic synthesis, the Synplify Premier
software places and routes the design and attempts to restructure the netlist based on
the physical location of the logic in the Altera device. The Synplify Premier software
forward-annotates the design netlist to the Quartus II software to perform the final
placement and routing. In the default flow, the Synplify Premier software also
forward-annotates placement information for the critical path(s) in the design, which
can improve the compilation time in the Quartus II software.

The physical location annotation file is called <design name>_plc.tcl. If you open the
Quartus II software from the Synplify Premier software user interface, the Quartus II
software automatically uses this file for the placement information.

The Physical Analyst allows you to examine the placed netlist from the Synplify
Premier software, which is similar to the HDL Analyst for a logical netlist. You can
use this display to analyze and diagnose potential problems.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 14: Synopsys Synplify Support 14–7
Synplify Optimization Strategies
Using Implementations in Synplify Pro or Premier
To create different synthesis results without overwriting the existing results, in the
Synplify Pro or Premier software, on the Project menu, click New Implementation.
For each implementation, specify the target device, synthesis options, and constraint
files. Each implementation generates its own subdirectory that contains all the
resulting files, including .vqm/.edf, .scf, and .tcl files, from a compilation of the
particular implementation. You can then compare the results of the different
implementations to find the optimal set of synthesis options and constraints for a
design.

Timing-Driven Synthesis Settings
The Synplify software supports timing-driven synthesis with user-assigned timing
constraints to optimize the performance of the design. This section explains important
timing constraints in the Synplify software.

The Quartus II NativeLink feature allows timing constraints that are applied in the
Synplify software to be forward-annotated for the Quartus II software with an .scf file
for timing-driven place and route. Refer to “Passing TimeQuest SDC Timing
Constraints to the Quartus II Software” on page 14–15 for more details about how
constraints such as clock frequencies, false paths, and multicycle paths are
forward-annotated.

1 The Synplify Synthesis Report File (.srr) contains timing reports of estimated
place-and-route delays. The Quartus II software can perform further optimizations on
a post-synthesis netlist from third-party synthesis tools. In addition, designs might
contain black boxes or intellectual property (IP) functions that have not been
optimized by the third-party synthesis software. Actual timing results are obtained
only after the design has been fully placed and routed in the Quartus II software. For
these reasons, the Quartus II post place-and-route timing reports provide a more
accurate representation of the design. Use the statistics in these reports to evaluate
design performance.

Clock Frequencies
For single-clock designs, you can specify a global frequency when using the
push-button flow. While this flow is simple and provides good results, it often does
not meet the performance requirements for more advanced designs. You can use
timing constraints, compiler directives, and other attributes to help optimize the
performance of a design. You can enter these attributes and directives directly in the
HDL code. Alternatively, you can enter attributes (not directives) into an .sdc file with
the SCOPE window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the entire design
and individual clock settings. Use the Clocks tab in the SCOPE window to specify
frequency (or period), rise times, fall times, duty cycle, and other settings. Assigning
individual clock settings, rather than over-constraining the global frequency, helps the
Quartus II software and the Synplify software achieve the fastest clock frequency for
the overall design. The define_clock attribute assigns clock constraints.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–8 Chapter 14: Synopsys Synplify Support
Synplify Optimization Strategies
Multiple Clock Domains
The Synplify software can perform timing analysis on unrelated clock domains. Each
clock group is a different clock domain and is treated as unrelated to the clocks in all
other clock groups. All clocks in a single clock group are assumed to be related, and
the Synplify software automatically calculates the relationship between the clocks.
You can assign clocks to a new clock group or put related clocks in the same clock
group with the Clocks tab in the SCOPE window, or with the define_clock attribute.

Input and Output Delays
Specify the input and output delays for the ports of a design in the Input/Output tab
of the SCOPE window, or with the define_input_delay and define_output_delay
attributes. The Synplify software does not allow you to assign the tCO and tSU values
directly to inputs and outputs. However, a tCO value can be inferred by setting an
external output delay; a tSU value can be inferred by setting an external input delay.

Equation 14–1 illustrates the relationship between tCO and the output delay:

Equation 14–2 illustrates the relationship between tSU and the input delay:

When the syn_forward_io_constraints attribute is set to 1, the Synplify software
passes the external input and output delays to the Quartus II software using
NativeLink integration. The Quartus II software then uses the external delays to
calculate the maximum system frequency.

Multicycle Paths
A multicycle path is a path that requires more than one clock cycle to propagate.
Specify any multicycle paths in the design in the Multi-Cycle Paths tab of the SCOPE
window, or with the define_multicycle_path attribute. You should specify which
paths are multicycle to prevent the Quartus II and the Synplify compilers from
working excessively on a non-critical path. Not specifying these paths can also result
in an inaccurate critical path reported during timing analysis.

False Paths
False paths are paths that should be ignored during timing analysis, or be assigned
low (or no) priority during optimization. Some examples of false paths include slow
asynchronous resets, and test logic that has been added to the design. Set these paths
in the False Paths tab of the SCOPE window, or use the define_false_path attribute.

Equation 14–1.

Equation 14–2.

tCO clock period external output delay–=

tSU clock period external input delay–=
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–9
Synplify Optimization Strategies
FSM Compiler
If the FSM Compiler is turned on, the compiler automatically detects state machines
in a design, which are then extracted and optimized. The FSM Compiler analyzes
state machines and implements sequential, gray, or one-hot encoding, based on the
number of states. The compiler also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic. Implementation is based on
the number of states, regardless of the coding style in the HDL code

If the FSM Compiler is turned off, the compiler does not optimize logic as state
machines. The state machines are implemented as coded in the HDL code. Thus, if the
coding style for a state machine is sequential, the implementation is also sequential.

Use the syn_state_machine complier directive to specify or prevent a state machine
from being extracted and optimized. To override the default encoding of the FSM
Compiler, use the syn_encoding directive.

The values for the syn_encoding directive are described in Table 14–2.

Example 14–1 shows sample VHDL code for applying the syn_encoding directive.

By default, the state machine logic is optimized for speed and area, which may be
potentially undesirable for critical systems. The safe value generates extra control
logic to force the state machine to the reset state if an invalid state is reached.

FSM Explorer in Synplify Pro and Premier
The Synplify Pro and Premier software use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement the best
encoding based on the overall design constraints. The FSM Explorer uses the FSM
Compiler to identify and extract state machines from a design. However, unlike the
FSM Compiler, which chooses the encoding style based on the number of states, the
FSM Explorer attempts several different encoding styles before choosing a specific
one. The trade-off is that the compilation requires more time to analyze the state
machine, but finds an optimal encoding scheme for the state machine.

Table 14–2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called binary, state machines
are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be free of glitches.

One-hot
Generates state machines containing one flipflop for each state. One-hot state machines typically provide
the best performance and shortest clock-to-output delays. However, one-hot implementations are usually
larger than sequential implementations.

Safe
Generates extra control logic to force the state machine to the reset state if an invalid state is reached. You
can use the safe value in conjunction with any of the other three values, which results in the state machine
being implemented with the requested encoding scheme and the generation of the reset logic.

Example 14–1. Sample VHDL Code for syn_encoding

SIGNAL current_state : STD_LOGIC_VECTOR(7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–10 Chapter 14: Synopsys Synplify Support
Synplify Optimization Strategies
Optimization Attributes and Options
The following sections describe more attributes and options that you can modify in
the Synplify software to improve your design performance.

Retiming in Synplify Pro and Premier
The Synplify Pro and Premier software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register balancing)
across combinational elements. Be aware that retimed registers incur name changes.
To retime your design, turn on Retiming in the Device tab in the Implementation
Options section, or use the syn_allow_retiming attribute.

Maximum Fan-Out
When your design has critical path nets with high fan-out, use the syn_maxfan
attribute to control the fan-out of the net. Setting this attribute for a specific net results
in the replication of the driver of the net to reduce overall fan-out. The syn_maxfan
attribute takes an integer value and applies it to inputs or registers. The syn_maxfan
attribute cannot be used to duplicate control signals. The minimum allowed value of
the attribute is 4. Using this attribute might result in increased logic resource
utilization, thus straining routing resources, which can lead to long compilation times
and difficult fitting.

If you must duplicate an output register or an output enable register, you can create a
register for each output pin by using the syn_useioff attribute. Refer to “Register
Packing” on page 14–10.

Preserving Nets
During synthesis, the compiler maintains ports, registers, and instantiated
components. However, some nets cannot be maintained to create an optimized circuit.
Applying the syn_keep directive overrides the optimization of the compiler and
preserves the net during synthesis. The syn_keep directive is a Boolean data type
value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the
value to true preserves the net through synthesis.

Register Packing
Altera devices allow register packing into I/O cells. Altera recommends allowing the
Quartus II software to make the I/O register assignments. However, you can control
register packing with the syn_useioff attribute. The syn_useioff attribute is a
Boolean data type value that can be applied to ports or entire modules. Setting the
value to 1 instructs the compiler to pack the register into an I/O cell. Setting the value
to 0 prevents register packing in both the Synplify and Quartus II software.

Resource Sharing
The Synplify software uses resource sharing techniques during synthesis, by default,
to reduce area. Turning off the Resource Sharing option on the Options tab of the
Implementation Options dialog box improves performance results for some designs.
You can also turn off the option for a specific module with the syn_sharing attribute.
If you turn off this option, be sure to check the results to verify improvement in timing
performance. If there is no improvement, turn on Resource Sharing.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–11
Synplify Optimization Strategies
Preserving Hierarchy
The Synplify software performs cross-boundary optimization by default, which
causes the design to flatten to allow optimization. You can use the syn_hier attribute
to override the default compiler settings. The syn_hier attribute applies a string value
to modules, architectures, or both. Setting the value to hard maintains the boundaries
of a module, architecture, or both, but allows constant propagation. Setting the value
to locked prevents all cross-boundary optimizations. Use the locked setting with the
partition setting to create separate design blocks and multiple output netlists for
incremental compilation, as described in “Using MultiPoint Synthesis with
Incremental Compilation” on page 14–31.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file,
set the syn_netlist_hierarchy attribute to 0.

Register Input and Output Delays
Two advanced options, define_reg_input_delay and define_reg_output_delay, can
speed up paths feeding a register, or coming from a register, by a specific number of
nanoseconds. The Synplify software attempts to meet the global clock frequency goals
for a design as well as the individual clock frequency goals (set with the define_clock
attribute). You can use these attributes to add a delay to paths feeding into or out of
registers to further constrain critical paths. You can slow down a path that is too
highly optimized by setting this attributes to a negative number.

The define_reg_input_delay and define_reg_output_delay options are useful to
close timing if your design does not meet timing goals, because the routing delay after
placement and routing exceeds the delay predicted by the Synplify software. Rerun
synthesis using these options, specifying the actual routing delay (from
place-and-route results) so that the tool can meet the required clock frequency.
Synopsys recommends that for best results, do not make these assignments too
aggressively. For example, you can increase the routing delay value, but do not also
use the full routing delay from the last compilation.

In the SCOPE constraint window, the registers panel contains the following options:

■ Register—Specifies the name of the register. If you have initialized a compiled
design, select the name from the list.

■ Type—Specifies whether the delay is an input or output delay.

■ Route—Shrinks the effective period for the constrained registers by the specified
value without affecting the clock period that is forward-annotated to the
Quartus II software.

Use the following Tcl command syntax to specify an input or output register delay in
nanoseconds.

Example 14–2. Specifying an Input or Output Register Delay Using Tcl Command Syntax

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–12 Chapter 14: Synopsys Synplify Support
Synplify Optimization Strategies
syn_direct_enable
This attribute controls the assignment of a clock-enable net to the dedicated enable
pin of a register. With this attribute, you can direct the Synplify mapper to use a
particular net as the only clock enable when the design has multiple clock enable
candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter
the syn_direct_enable directive in your source code, instead of the SCOPE
spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net
assignment to the clock-enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

I/O Standard
For certain Altera devices, specify the I/O standard type for an I/O pad in the design
with the I/O Standard panel in the Synplify SCOPE window.

Example 14–3 shows the Synplify SDC syntax for the define_io_standard constraint,
in which the delay_type must be either input_delay or output_delay.

f For details about supported I/O standards, refer to the Altera I/O Standards section in
the Synopsys FPGA Synthesis Reference Manual.

Altera-Specific Attributes
You can use the attributes described in this section with specific Altera device
features, which are forward-annotated to the Quartus II project, and are used during
place-and-route.

altera_chip_pin_lc
Use the altera_chip_pin_lc attribute to make pin assignments. This attribute applies a
string value to inputs and outputs. Use the attribute only on the ports of the top-level
entity in the design. Do not use this attribute to assign pin locations from entities at
lower levels of the design hierarchy.

1 The altera_chip_pin_lc attribute is not supported for any MAX series device.

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin
number or a list of pin numbers.

Example 14–3. Synplify SDC Syntax for the define_io_standard Constraint

define_io_standard [-disable|-enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} [<columnTclName>{<value>}...]
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–13
Exporting Designs to the Quartus II Software Using NativeLink Integration
Example 14–4 shows VHDL code for making location assignments for supported
Altera devices. Pin location assignments for these devices are written to the output .tcl
file.

1 The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and
data_out[0] is assigned to pin 15.

altera_io_powerup
Use the altera_io_powerup attribute to define the power-up value of an I/O register
that has no set or reset. This attribute applies a string value (high|low) to ports with
I/O registers. By default, the power-up value of the I/O register is set to low.

altera_io_opendrain
Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This
attribute applies a boolean data type value to outputs or bidirectional ports for
devices that support open-drain mode.

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, and allows you to run
other EDA design entry or synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software. After a design is synthesized in the
Synplify software, a .vqm or .edf netlist file, an .scf file for TimeQuest Timing
Analyzer timing constraints, and .tcl files are used to import the design into the
Quartus II software for place-and-route. You can run the Quartus II software from
within the Synplify software or as a stand-alone application. After you import the
design into the Quartus II software, you can specify different options to further
optimize the design.

1 When you are using NativeLink integration, the path to your project must not contain
empty spaces. The Synplify software uses Tcl scripts to communicate with the
Quartus II software, and the Tcl language does not accept arguments with empty
spaces in the path.

Use NativeLink integration to integrate the Synplify software and Quartus II software
with a single GUI for both synthesis and place-and-route operations. NativeLink
integration allows you to run the Quartus II software from within the Synplify
software GUI, or to run the Synplify software from within the Quartus II software
GUI.

This section explains the different NativeLink flows and provides details about how
constraints are passed to the Quartus II software, and describes the following topics:

Example 14–4. Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–14 Chapter 14: Synopsys Synplify Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
■ “Running the Quartus II Software from within the Synplify Software”

■ “Using the Quartus II Software to Run the Synplify Software” on page 14–15

■ “Running the Quartus II Software Manually With the Synplify-Generated Tcl
Script” on page 14–15

■ “Passing TimeQuest SDC Timing Constraints to the Quartus II Software” on
page 14–15

Running the Quartus II Software from within the Synplify Software
To run the Quartus II software from within the Synplify software, you must set the
QUARTUS_ROOTDIR environment variable to the Quartus II software installation
directory located in the <Quartus II system directory>\altera\ <version
number>\quartus. You must set this environment variable to use the Synplify and
Quartus II software together. Synplify also uses this variable to open the Quartus II
software in the background and obtain detailed information for Altera megafunctions
used in the design.

In the Windows operating system, set the environment variable using the Control
Panel, System options. In the Advanced tab, click Environment Variables, and create
a QUARTUS_ROOTDIR system variable.

In the Linux operating system, create an environment variable QUARTUS_ROOTDIR that
points to the <home directory>/altera <version number> location.

You can create new place and route implementations with the New P&R button in the
Synplify software GUI. Under each implementation, the Synplify Pro software creates
a place-and-route implementation called pr_<number> Altera Place and Route. To
run the Quartus II software in command-line mode after each synthesis run, use the
text box to turn on the place-and-route implementation. The results of the
place-and-route are written to a log file in the pr_<number> directory under the
current implementation directory.

You can also use the commands in the Quartus II menu to run the Quartus II software
at any time following a successful completion of synthesis. In the Synplify software,
on the Options menu, click Quartus II and then choose one of the following
commands:

■ Launch Quartus—Opens the Quartus II software GUI and creates a Quartus II
project with the synthesized output file, forward-annotated timing constraints,
and pin assignments. Use this command to configure options for the project and to
execute any Quartus II commands.

■ Run Background Compile—Runs the Quartus II software in command-line mode
with the project settings from the synthesis run. The results of the place-and-route
are written to a log file.

The <project_name>_cons.tcl file is used to set up the Quartus II project and directs the
<project_name>.tcl file to pass constraints from the Synplify software to the Quartus II
software. By default, the <project_name>.tcl file contains device, timing, and location
assignments. The <project_name>.tcl file contains the command to use the
Synplify-generated .scf constraints file with the TimeQuest Timing Analyzer.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–15
Exporting Designs to the Quartus II Software Using NativeLink Integration
Using the Quartus II Software to Run the Synplify Software
You can set up the Quartus II software to run the Synplify software for synthesis with
NativeLink integration. This feature allows you to use the Synplify software to
quickly synthesize a design as part of a standard compilation in the Quartus II
software. When you use this feature, the Synplify software does not use any timing
constraints or assignments, such as incremental compilation partitions, that you have
set in the Quartus II software.

1 For best results, Synopsys recommends that you set constraints in the Synplify
software and use a Tcl script to pass these constraints to the Quartus II software,
instead of opening the Synplify software from within the Quartus II software.

To set up the Synplify software in the Quartus II software, on the Tools menu, click
Options. In the Options dialog box, click EDA Tool Options and specify the path of
the Synplify or Synplify Pro software under Location of Executable.

h For more information about using NativeLink integration with the Synplify software
in the Quartus II software, refer to About Using the Synplify Software with the Quartus II
Software in Quartus II Help.

Running the Synplify software with NativeLink integration is supported on both
floating network and node-locked fixed PC licenses. Both types of licenses support
batch mode compilation.

Running the Quartus II Software Manually With the Synplify-Generated Tcl
Script

You can also run the Quartus II software with a Synplify-generated Tcl script. To run
the Tcl scrip to set up your project assignments, perform the following steps:

1. Ensure the .vqm/.edf, .scf, and .tcl files are located in the same directory.

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console. The Quartus II Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl r

Passing TimeQuest SDC Timing Constraints to the Quartus II Software
The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry
standard constraints format, Synopsys Design Constraints (SDC). This section
explains how timing constraints set in the Synplify software are passed to the
Quartus II software for use with the TimeQuest Timing Analyzer.

The Synplify-generated .tcl file contains constraints for the Quartus II software, such
as the device specification and any location constraints. Timing constraints are
forward-annotated in the Synopsys Constraints Format (.scf) file.

f For additional information about the TimeQuest Timing Analyzer, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/synplicity/eda_view_using_synplty.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/synplicity/eda_view_using_synplty.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

14–16 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
1 Synopsys recommends that you modify constraints using the SCOPE constraint editor
window, rather than using the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Quartus II
SDC commands and are forward-annotated to the Quartus II software in the .scf file:

■ define_clock

■ define_input_delay

■ define_output_delay

■ define_multicycle_path

■ define_false_path

All Synplify constraints described in the following sections are mapped to SDC
commands for the TimeQuest Timing Analyzer.

h For syntax and arguments for these commands, refer to the applicable subsection or
refer to Synplify Help. For a list of corresponding commands in the Quartus II
software, refer to the Quartus II Help.

Individual Clocks and Frequencies
Specify clock frequencies for individual clocks in the Synplify software with the
define_clock command. This command is passed to the Quartus II software with the
create_clock command.

Input and Output Delay
Specify input delay and output delay constraints in the Synplify software with the
define_input_delay and define_output_delay commands, respectively. These
commands are passed to the Quartus II software with the set_input_delay and
set_output_delay commands.

Multicycle Path
Specify a multicycle path constraint in the Synplify software with the
define_multicycle_path command. This command is passed to the Quartus II
software with the set_multicycle_path command.

False Path
Specify a false path constraint in the Synplify software with the define_false_path
command. This command is passed to the Quartus II software with the
set_false_path command.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions, including LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore® functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code, or by
inferring certain megafunctions from generic HDL code.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–17
Guidelines for Altera Megafunctions and Architecture-Specific Features
You can instantiate a megafunction in your HDL code with the MegaWizard Plug-In
Manager to parameterize the function, or instantiate the function using the port and
parameter definition. The MegaWizard Plug-In Manager provides a graphical
interface within the Quartus II software for customizing and parameterizing any
available megafunction for the design. For more information about the MegaWizard
Plug-In Manager flow with the Synplify software, refer to “Instantiating Altera
Megafunctions With the MegaWizard Plug-In Manager” on page 14–17 and
“Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP
Toolbench” on page 14–19.

f For more information about specific Altera megafunctions, refer to the Quartus II
Help. For more information about IP functions, refer to the appropriate IP
documentation.

The Synplify software also automatically recognizes certain types of HDL code, and
infers the appropriate megafunction when a megafunction provides optimal results.
The Synplify software provides options to control inference of certain types of
megafunctions, as described in “Inferring Altera Megafunctions from HDL Code” on
page 14–22.

f For more information about instantiating versus inferring megafunctions, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. This
chapter also provides details about using the MegaWizard Plug-In Manager in the
Quartus II software and explains the files generated by the wizard, as well as coding
style recommendations and HDL examples for inferring megafunctions in Altera
devices.

Instantiating Altera Megafunctions With the MegaWizard Plug-In Manager
This section describes how to instantiate Altera megafunctions with the MegaWizard
Plug-In Manager.

When you use the MegaWizard Plug-In Manager to set up and parameterize a
megafunction, the MegaWizard Plug-In Manager creates a VHDL or Verilog HDL
wrapper file <output file>.v|vhd that instantiates the megafunction.

The Synplify software uses the Quartus II timing and resource estimation netlist
feature to report more accurate resource utilization and timing performance
estimates, and leverages timing-driven optimization, instead of treating the
megafunction as a “black box.” Including the MegaWizard-generated megafunction
variation wrapper file in your Synplify project, gives the Synplify software complete
information about the megafunction.

1 There is an option in the MegaWizard Plug-In Manager to generate a netlist for
resource and timing estimation. This option is not recommended for the Synplify
software because the software automatically generates this information in the
background without a separate netlist. If you do create a separate netlist <output
file>_syn.v and use that file in your synthesis project, you must also include the
<output file>.v|vhd file in your Quartus II project.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

14–18 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Verify that the correct Quartus II version is specified in the Synplify software before
compiling the MegaWizard-generated file to ensure that the software uses the correct
library definitions for the megafunction. The Quartus Version setting must match the
version of the Quartus II software used to generate the customized megafunction in
the MegaWizard Plug-In Manager.

For details about how to set the Quartus II version in the Synplify software, refer to
“Specifying the Quartus II Software Version” on page 14–5.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the
installation directory location of the correct Quartus II version. The Synplify software
uses this information to launch the Quartus II software in the background. The
environment variable setting must match the version of the Quartus II software used
to generate the customized megafunction in the MegaWizard Plug-In Manager. Refer
to “Using the Quartus II Software to Run the Synplify Software” on page 14–15 for
more details.

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files
If you turn on the <output file>_inst.v option on the last page of the MegaWizard
interface, the MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file for use in your Synplify design. The instantiation template file, <output
file>_inst.v, helps to instantiate the megafunction variation wrapper file, <output
file>.v, in your top-level design. Include the megafunction variation wrapper file
<output file>.v in your Synplify project. The Synplify software includes the
megafunction information in the output .vqm netlist file. You do not need to include
the MegaWizard-generated megafunction variation wrapper file in your Quartus II
project.

Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated
VHDL Files
If you turn on the <output file>.cmp and <output file>_inst.vhd options on the last
page of the MegaWizard interface, the MegaWizard Plug-In Manager generates a
VHDL component declaration file and a VHDL instantiation template file for use in
your Synplify design. These files can help you instantiate the megafunction variation
wrapper file, <output file>.vhd, in your top-level design. Include the <output file>.vhd
in your Synplify project. The Synplify software includes the megafunction
information in the output .vqm netlist file. You do not need to include the
MegaWizard-generated megafunction variation wrapper file in your Quartus II
project.

Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
By default, the Synplify software automatically opens the Quartus II software in the
background to generate a resource and timing estimation netlist for megafunctions, as
described in the previous sections.

You may want to change this behavior to reduce run times in the Synplify software,
because generating the netlist files can take several minutes for large designs, or if the
Synplify software cannot access your Quartus II software installation to generate the
files. Changing this behavior might speed up the compilation time in the Synplify
software, but the Quality of Results (QoR) might be reduced.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–19
Guidelines for Altera Megafunctions and Architecture-Specific Features
The Synplify software directs the Quartus II software to generate information in two
ways:

■ Some megafunctions provide a “clear box” model—the Synplify software fully
synthesizes this model and includes the device architecture-specific primitives in
the output .vqm netlist file.

■ Other megafunctions provide a “grey box” model—the Synplify software reads
the resource information, but the netlist does not contain all the logic functionality.

For these functions, the Synplify software uses the logic information for resource and
timing estimation and optimization, and then instantiates the megafunction in the
output .vqm netlist file so the Quartus II software can implement the appropriate
device primitives. By default, the Synplify software uses the clear box model when
available, and otherwise uses the grey box model. To change this behavior, perform
the following steps:

1. In the Synplify software, click Implementation Options.

2. On the Device tab, specify one of the following values for the Altera Models
option:

■ On—uses the clearbox model when available and the grey box model when the
clearbox model is unavailable

■ clearbox_only—enables the clear box model, but not the grey box model

■ Off—turns off the feature entirely

Instantiating Intellectual Property With the MegaWizard Plug-In Manager
and IP Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Synplify software uses to report more accurate resource utilization and timing
performance estimates, and leverage timing-driven optimization rather than a black
box function.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager.

2. Click Next to open the IP Toolbench.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
grey box information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file in your Synplify project. Next, include
the megafunction variation wrapper file <output file>.v|vhd in the Quartus II project
along with your Synplify .vqm output netlist.

If your IP function does not include a resource and timing estimation netlist, the
Synplify software must treat the IP function as a black box. In this case, refer to the
following subsections for details about creating black boxes.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–20 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
For information about including Quartus II-specific files in your Synplify project so
they are automatically passed to the Quartus II software along with the output .vqm
file, refer to “Including Files for Quartus II Placement and Routing Only” on
page 14–22.

Instantiating Black Box IP Functions With Generated Verilog HDL Files
Use the syn_black_box compiler directive to declare a module as a black box. The
top-level design files must contain the IP port-mapping and a hollow-body module
declaration. Apply the syn_black_box directive to the module declaration in the
top-level file or a separate file included in the project so that the Synplify software
recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you
to add other directives, as discussed in “Other Synplify Software Attributes for
Creating Black Boxes” on page 14–21.

Example 14–5 shows a sample top-level file that instantiates my_verilogIP.v, which is
a simplified customized variation generated by the MegaWizard Plug-In Manager
and the IP Toolbench.

Instantiating Black Box IP Functions With Generated VHDL Files
Use the syn_black_box compiler directive to declare a component as a black box. The
top-level design files must contain the megafunction variation component declaration
and port-mapping. Apply the syn_black_box directive to the component declaration
in the top-level file. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you to add other
directives, such as the ones in the “Other Synplify Software Attributes for Creating
Black Boxes” section.

Example 14–5. Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
input clk;
output[7:0] count;
my_verilogIP verilogIP_inst (.clock (clk), .q (count));

endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;

input clock;
output[7:0] q;

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–21
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 14–6 shows a sample top-level file that instantiates my_vhdlIP.vhd, which is
a simplified customized variation generated by the MegaWizard Plug-In Manager
and the IP Toolbench.

Other Synplify Software Attributes for Creating Black Boxes
Instantiating a function as a black box does not provide visibility into the function
module for the synthesis tool. Thus, it does not take full advantage of the synthesis
tool’s timing-driven optimization. For better timing optimization, especially if the
black box does not have registered inputs and outputs, add timing models to black
boxes by adding the syn_tpd, syn_tsu, and syn_tco attributes. Refer to Example 14–7
for a Verilog HDL example.

The following additional attributes are supported by the Synplify software to
communicate details about the characteristics of the black box module within the
HDL code:

■ syn_resources—Specifies the resources used in a particular black box

Example 14–6. Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
PORT (

clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP

PORT (
clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN

vhdlIP_inst : my_vhdlIP PORT MAP (
clock => clk,
q => count

);
END rtl;

Example 14–7. Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output[3:0]z;
input[3:0]d;
input[3:0]addr;
input we
input clk

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–22 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
■ black_box_pad_pin—Prevents mapping to I/O cells

■ black_box_tri_pin—Indicates a tri-stated signal

f For more information about applying these attributes, refer to the Altera Constraints,
Attributes, and Options chapter of the Synopsys FPGA Synthesis Reference Manual.

Including Files for Quartus II Placement and Routing Only
In the Synplify software, you can add files to your project that are used only during
placement and routing in the Quartus II software. This can be useful if you have grey
or black boxes for Synplify synthesis that require the full design files to be compiled in
the Quartus II software.

To include the files for Quartus II place-and-route only, perform the following steps:

1. Add the files to the Synplify project as source files.

2. Right-click the file, and on the shortcut menu, click File options.

3. Turn on Use for Place and Route Only. You can also set the option in a script using
the -job_owner par option.

For example, the commands in Example 14–8 define files for a Synplify project that
includes a top-level design file, a grey box netlist file, an IP wrapper file, and an
encrypted IP file. With these files, the Synplify software writes an empty instantiation
of “core” in the .vqm file and uses the grey box netlist for resource and timing
estimation. The files core.v and core_enc8b10b.v are not compiled by the Synplify
software, but are copied into the place-and-route directory. The Quartus II software
compiles these files to implement the “core” IP block.

Inferring Altera Megafunctions from HDL Code
The Synplify software uses Behavior Extraction Synthesis Technology (BEST)
algorithms to infer high-level structures such as RAMs, ROMs, operators, FSMs, and
DSP multiplication operations. Then, the Synplify software keeps the structures
abstract for as long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring the
appropriate Altera megafunction when a megafunction provides optimal results. The
following sections outline some of the Synplify-specific details when inferring Altera
megafunctions. The Synplify software provides options to control inference of certain
types of megafunctions, which is also described in the following sections.

f For coding style recommendations and examples for inferring megafunctions in
Altera devices, refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

Example 14–8. Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 14: Synopsys Synplify Support 14–23
Guidelines for Altera Megafunctions and Architecture-Specific Features
Inferring Multipliers
Figure 14–2 shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two
pipeline stages after synthesis in the Synplify software. This multiplier is converted
into an ALTMULT_ADD or ALTMULT_ACCUM megafunction. For devices with DSP
blocks, the software might implement the function in a DSP block instead of regular
logic, depending on device utilization. For some devices, the software maps directly
to DSP block device primitives instead of instantiating a megafunction in the .vqm
file.

Resource Balancing

While mapping multipliers to DSP blocks, the Synplify software performs resource
balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which includes a fixed number of
embedded multipliers. If the design uses more multipliers than are available, the
Synplify software automatically maps the extra multipliers to logic elements (LEs), or
adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify
software maps the multipliers in the critical paths to DSP blocks. Next, any wide
multipliers, which might or might not be in the critical paths, are mapped to DSP
blocks. Smaller multipliers and multipliers that are not in the critical paths might then
be implemented in the logic (LEs or ALMs). This ensures that the design fits
successfully in the device.

Controlling the DSP Block Inference

You can implement multipliers in DSP blocks or in logic in Altera devices that contain
DSP blocks. You can control this implementation through attribute settings in the
Synplify software.

Signal Level Attribute

You can control the implementation of individual multipliers by using the
syn_multstyle attribute as shown in the following Verilog HDL code:

<signal_name> /* synthesis syn_multstyle = "logic" */;

where <signal_name> is the name of the signal.

1 The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

Figure 14–2. HDL Analyst View of LPM_MULT Megafunction (Unsigned 8 × 8 Multiplier with
Pipeline=2)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–24 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Table 14–3 describes the signal level attribute values that control the implementation
of the multipliers in the DSP blocks or LEs in the Synplify software.

Example 14–9 and Example 14–10 show simple Verilog HDL and VHDL code using
the syn_multstyle attribute.

Table 14–3. DSP Block Attribute Settings in the Synplify Software

Attribute Name Value Description

syn_multstyle

lpm_mult LPM function inferred and multipliers implemented in DSP blocks

logic
LPM function not inferred and multipliers implemented LEs by the Synplify
software

block_mult
DSP megafunction is inferred and multipliers are mapped directly to DSP
block device primitives (for supported devices)

Example 14–9. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp : c;

endmodule

Example 14–10. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
r : out std_logic_vector(15 downto 0);
en : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : in std_logic_vector(15 downto 0)
);

end onereg;

architecture beh of onereg is
signal temp : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
temp <= a * b;
r <= temp when en='1' else c;

end beh;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–25
Guidelines for Altera Megafunctions and Architecture-Specific Features
Inferring RAM
When a RAM block is inferred from an HDL design, the Synplify software uses an
Altera megafunction to target the device memory architecture. For some devices, the
Synplify software maps directly to memory block device primitives instead of
instantiating a megafunction in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer RAM in a
design:

■ The address line must be at least two bits wide.

■ Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports must be
synchronous.

■ Some Verilog HDL statements with blocking assignments might not be mapped to
RAM blocks, so avoid blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation to
use for an inferred RAM. You can apply the syn_ramstyle attribute globally, to a
module, or to a RAM instance, to specify registers or block_ram values. To turn off
RAM inference, set the attribute value to registers.

When inferring RAM for some Altera device families, the Synplify software generates
additional bypass logic. This logic is generated to resolve a half-cycle read/write
behavior difference between the RTL and post-synthesis simulations. The RTL
simulation shows the memory being updated on the positive edge of the clock; the
post-synthesis simulation shows the memory being updated on the negative edge of
the clock. To eliminate bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle, by which
time the update has occurred, thus eliminating the need for bypass logic.

For devices with TriMatrix memory blocks, disable the creation of glue logic by
setting the syn_ramstyle value to no_rw_check. Set syn_ramstyle to no_rw_check to
disable the creation of glue logic in dual-port mode.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–26 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 14–11 shows sample VHDL code for inferring dual-port RAM.

Example 14–11. VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we: IN STD_LOGIC;
clk: IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem: Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
data_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN

mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;

END IF;
END PROCESS;

END ram_infer;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–27
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 14–12 shows an example of the VHDL code preventing bypass logic for
inferring dual-port RAM. The extra latency behavior stems from the inferring
methodology and is not required when instantiating a megafunction.

RAM Initialization
Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to
initialize RAM memories. The Synplify compiler forward-annotates the initialization
values in the .srs (technology-independent RTL netlist) file and the mapper generates
a corresponding hexadecimal memory initialization (.hex) file. One .hex file is created
for each of the altsyncram megafunctions that are inferred in the design. The .hex file
is associated with the altsyncram instance in the .vqm file using the init_file
attribute.

Example 14–12. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we : IN STD_LOGIC;
clk : IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR(7 DOWNTO 0); --output register

BEGIN
tmp_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN

mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;
data_out <= tmp_out; --registers output preventing

 -- bypass logic generation.
END IF;

END PROCESS;
END ram_infer;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–28 Chapter 14: Synopsys Synplify Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 14–13 and Example 14–14 illustrate how RAM memories can be initialized
through HDL code, and how the corresponding .hex file is generated using Verilog
HDL.

Inferring ROM
When a ROM block is inferred from an HDL design, the Synplify software uses an
Altera megafunction to target the device memory architecture. For some devices, the
Synplify software maps directly to memory block device atoms instead of
instantiating a megafunction in the .vqm file. Follow these guidelines for the Synplify
software to successfully infer ROM in a design:

■ The address line must be at least two bits wide.

■ The ROM must be at least half full.

■ A CASE or IF statement must make 16 or more assignments using constant values
of the same width.

Inferring Shift Registers
The Synplify software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device architectures
using the ALTSHIFT_TAPS megafunction.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do
not want the components automatically mapped to shift registers, set the value to
registers. You can set the value globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design
performance.

Example 14–13. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code

initial
begin

$readmemb("mem.ini", mem);
end

always @(posedge clk)
begin

raddr_reg <= raddr;
if(we)

mem[waddr] <= data;
end

Example 14–14. Sample of .vqm Instance Containing Memory Initialization File
from Example 14–13

altsyncram mem_hex(.wren_a(we), .wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–29
Incremental Compilation and Block-Based Design
Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to part of the design while maintaining the
placement and performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on particular design
partitions and merging results with previous compilation results of other partitions.
You can perform optimization on individual subblocks and then preserve the results
before you integrate the blocks into a final design and optimize it at the top-level.

MultiPoint synthesis, which is available for certain device technologies in the
Synplify Pro and Premier software, provides an automated block-based incremental
synthesis flow. The MultiPoint feature manages a design hierarchy to let you design
incrementally and synthesize designs that take too long for synthesis of the entire
project. MultiPoint synthesis allows different netlist files to be created for different
sections of a design hierarchy and supports the Quartus II incremental compilation
methodology. This feature also ensures that only those sections of a design that have
been updated are resynthesized when the design is compiled, reducing synthesis run
time and preserving the results for the unchanged blocks. You can change and
resynthesize one section of a design without affecting other sections.

You can also partition your design and create different netlist files manually with the
Synplify software by creating a separate project for the logic in each partition of the
design. Creating different netlist files for each partition of the design also means that
each partition can be independent of the others.

Hierarchical design methodologies can improve the efficiency of your design process,
providing better design reuse opportunities and fewer integration problems when
working in a team environment. When you use these incremental synthesis
methodologies, you can take advantage of incremental compilation in the Quartus II
software. You can perform placement and routing on only the changed partitions of
the design, which reduces place-and-route time and preserves your fitting results.
Follow the guidelines in this section to help you optimize results with these
methodologies.

The following steps describe the general incremental compilation flow when using
these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design.

3. Set up your design using the MultiPoint synthesis feature or separate projects so
that a separate netlist file is created for each design partition.

4. If using separate projects, disable I/O pad insertion in the implementations for
lower-level partitions.

5. Compile and map each partition in the Synplify software, making constraints as
you would in a non-incremental design flow.

6. Import the .vqm netlist and .tcl file for each partition into the Quartus II software
and set up the Quartus II project(s) for incremental compilation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–30 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
7. Compile your design in the Quartus II software and preserve the compilation
results with the post-fit netlist in incremental compilation.

8. When you make design or synthesis optimization changes to part of your design,
resynthesize only the partition you modified to generate a new netlist and .tcl file.
Do not regenerate netlist files for the unmodified partitions.

9. Import the new netlist and .tcl file into the Quartus II software and recompile the
design in the Quartus II software with incremental compilation.

f For more information about creating partitions and using the incremental compilation
in the Quartus II software, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Separate Netlist Files for Incremental Compilation
The first stage of a hierarchical or incremental design flow is to ensure that different
parts of your design do not affect each other. Ensure that you have separate netlists
for each partition in your design so you can take advantage of incremental
compilation in the Quartus II software. If the entire design is in one netlist file,
changes in one partition might affect other partitions because of possible node name
changes when you resynthesize the design.

To ensure proper functionality of the synthesis flow, create separate netlist files only
for modules and entities. In addition, each module or entity requires its own design
file. If two different modules are in the same design file, but are defined as being part
of different partitions, incremental compilation cannot be maintained since both
partitions must be recompiled when one module is changed.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous, and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Synplify software pushes, or
bubbles, the tri-states through the hierarchy to the top-level to use the tri-state drivers
on output pins of Altera devices. Because bubbling tri-states requires optimizing
through hierarchies, lower-level tri-states are not supported with a block-based
compilation methodology. Use tri-state drivers only at the external output pins of the
device and in the top-level block in the hierarchy.

f For more detailed recommendations about designing your hierarchy and creating
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

You can generate multiple .vqm netlist files with the MultiPoint synthesis flow in the
Synplify Pro and Premier software, or by manually creating separate Synplify projects
and creating a black box for each block that you want to designate as a separate
design partition.

In the MultiPoint synthesis flow in the Synplify Pro and Premier software, you create
multiple .vqm netlist files from one easy-to-manage, top-level synthesis project. By
using the manual black box method, you have multiple synthesis projects, which
might be required for certain team-based or bottom-up designs where a single
top-level project is not desired.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 14: Synopsys Synplify Support 14–31
Incremental Compilation and Block-Based Design
After you have created multiple .vqm files using one of these two methods, you must
create the appropriate Quartus II projects to place-and-route the design.

Using MultiPoint Synthesis with Incremental Compilation
This section describes how to generate multiple .vqm files using the Synplify Pro and
Premier software MultiPoint synthesis flow. You must first set up your constraint file
and Synplify options, then apply the appropriate Compile Point settings to write
multiple .vqm files and create design partition assignments for incremental
compilation.

Set Compile Points and Create Constraint Files
The MultiPoint flow lets you segment a design into smaller synthesis units, called
Compile Points. The synthesis software treats each Compile Point as a partition for
incremental mapping, which allows you to isolate and work on each Compile Point
module as independent segments of the larger design without impacting other design
modules. A design can have any number of Compile Points, and Compile Points can
be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be another
Compile Point or a top-level design. Each block created with a Compile Point is
unaffected by critical paths or constraints on its parent or other blocks. A Compile
Point is independent, with its own individual constraints. During synthesis, any
Compile Points that have not yet been synthesized are synthesized before the top
level. Nested Compile Points are synthesized before the parent Compile Points in
which they are contained. When you apply the appropriate setting for the Compile
Point, a separate netlist is created for that Compile Point, isolating that logic from any
other logic in the design.

Figure 14–3 shows an example of a design hierarchy that is split into multiple
partitions. The top-level block of each partition can be synthesized as a separate
Compile Point.

Figure 14–3. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–32 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
In this case, modules A, B, and F are Compile Points. The top-level Compile Point
consists of the top-level block in the design (that is, block A in this example),
including the logic that is not defined under another Compile Point. In this example,
the design for top-level Compile Point A also includes the logic in one of its
subblocks, C. Because block F is defined as its own Compile Point, it is not treated as
part of the top-level Compile Point A. Another separate Compile Point B contains the
logic in blocks B, D, and E. One netlist is created for the top-level module A and
submodule C, another netlist is created for B and its submodules D and E, while a
third netlist is created for F.

Apply Compile Points to the module, or to the architecture in the Synplify Pro SCOPE
spreadsheet, or to the .sdc file. You cannot set a Compile Point in the Verilog HDL or
VHDL source code. You can set the constraints manually using Tcl or by editing the
.sdc file, or you can use one of two methods in the GUI, as described in the following
subsections.

Defining Compile Points With .tcl or .sdc Files

To set Compile Points with a .tcl or .sdc file, use the define_compile_point command,
as shown in Example 14–15.

In Example 14–15, <objname> represents any module in the design. The Compile Point
type {locked, partition} indicates that the Compile Point represents a partition for
the Quartus II incremental compilation flow.

Each Compile Point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE environment, as follows:

define_current_design {<my_module>}

Defining Compile Points in the Top-Level SCOPE Window

The following method requires that you create separate constraint files for the
top-level and lower-level Compile Points:

1. In the top-level SCOPE window, select the Compile Points tab.

2. Select the modules that you want to define as Compile Points and set Type to
locked, partition.

3. Manually create a constraint file for each module to set constraints for each
Compile Point.

Defining Compile Points by Creating a New SCOPE File

When you use the following method, the lower-level constraint file is created
automatically:

1. On the File menu, click New and select Constraint File.

2. On the Select File Type tab of the Create a New SCOPE File dialog box, select
Compile Point.

Example 14–15. The define_compile_point Command

define_compile_point [-disable] {<objname>} -type {locked, partition}
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–33
Incremental Compilation and Block-Based Design
3. Select the module you want to designate as a Compile Point and click OK. The
software automatically sets the Compile Points in the top-level constraint file and
creates a lower-level constraint file for each Compile Point.

Additional Considerations for Compile Points
To ensure that changes to a Compile Point do not affect the top-level parent module,
turn off the Update Compile Point Timing Data option in the Implementation
Options dialog box. If this option is turned on, updates to a child module can impact
the top-level module.

You can apply the syn_allowed_resources attribute to any Compile Point view to
restrict the number of resources for a particular module.

When using Compile Points with incremental compilation, be aware of the following
restrictions:

■ To use Compile Points effectively, you must provide timing constraints (timing
budgeting) for each Compile Point; the more accurate the constraints, the better
your results are. Constraints are not automatically budgeted, so manual time
budgeting is essential. Altera recommends that you register all inputs and outputs
of each partition. This avoids any logic delay penalty on signals that
cross-partition boundaries.

■ When using the Synplify attribute syn_useioff to pack registers in the I/O
Elements (IOEs) of Altera devices, these registers must be in the top-level module.
Otherwise, you must direct the Quartus II software to perform I/O register
packing instead of the syn_useioff attribute. You can use the Fast Input Register
or Fast Output Register options, or set I/O timing constraints and turn on
Optimize I/O cell register placement for timing on the Fitter Settings page of the
Settings dialog box in the Quartus II software.

■ There is no incremental synthesis support for top-level logic; any logic in the
top-level is resynthesized during every compilation in the Synplify software.

f For more information about using Compile Points and setting Synplify attributes and
constraints for both top-level and lower-level Compile Points, refer to the Synopsys
FPGA Synthesis User Guide and the Synopsys FPGA Synthesis Reference Manual in the
Synplify software.

Creating a Quartus II Project for Compile Points and Multiple .vqm Files
During compilation, the Synplify Pro and Premier software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate constraints
and design partition assignments, creating a partition for each .vqm file along with
the information to set up a Quartus II project. For details about using this Tcl script to
set up your Quartus II project and pass your constraints, refer to “Running the
Quartus II Software Manually With the Synplify-Generated Tcl Script” on page 14–15.

Depending on your design methodology, you can create one Quartus II project for all
netlists or a separate Quartus II project for each netlist. In the standard incremental
compilation design flow, you create design partition assignments and optional
LogicLock™ floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–34 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
You might require a bottom-up design flow if each partition must be optimized
separately, such as for third-party IP delivery. If you use this flow, Altera recommends
you create a design floorplan to avoid placement conflicts between each partition. To
follow this design flow in the Quartus II software, create separate Quartus II projects,
export each design partition and incorporate it into a top-level design using the
incremental compilation features to maintain placement results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Standard Incremental Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for all
partitions within the project. This method allows you to import all the partitions into
one Quartus II project and optimize all modules within the project at once, while
taking advantage of the performance preservation and compilation-time reduction
that incremental compilation offers. Figure 14–4 shows a visual representation of the
design flow for the example design in Figure 14–3 on page 14–31.

Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

Use the <lower-level compile point>.tcl files that contain the Synplify assignments for
each Compile Point. Generate multiple Quartus II projects, one for each partition and
netlist in the design. The designers in the project can optimize their own partitions
separately within the Quartus II software and export the results for their own
partitions. Figure 14–5 shows a visual representation of the design flow for the
example design in Figure 14–3 on page 14–31. You can export the optimized
subdesigns and then import them into one top-level Quartus II project using
incremental compilation to complete the design.

Figure 14–4. Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl
to import Synplify Pro assignments.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–35
Incremental Compilation and Block-Based Design
Creating Multiple .vqm Files for a Incremental Compilation Flow With
Separate Synplify Projects

This section describes how to manually generate multiple .vqm files for a incremental
compilation flow with black boxes and separate Synplify projects for each design
partition. This manual flow is supported by versions of the Synplify software without
the MultiPoint Synthesis feature.

Manually Creating Multiple .vqm Files With Black Boxes
To create multiple .vqm files manually in the Synplify software, create a separate
project for each lower-level module and top-level design that you want to maintain as
a separate .vqm file for an incremental compilation partition. Implement black box
instantiations of lower-level partitions in your top-level project.

When synthesizing the projects for the lower-level modules, perform the following
steps:

1. In the Implementation Options dialog box, turn on Disable I/O Insertion for the
target technology.

2. Read the HDL files for the modules.

1 Modules might include black box instantiations of lower-level modules that
are also maintained as separate .vqm files.

3. Add constraints with the SCOPE constraint window.

4. Enter the clock frequency to ensure that the sub-design is correctly optimized.

5. In the Attributes tab, set syn_netlist_hierarchy to 0.

When synthesizing the top-level design project, perform the following steps:

1. In the Implementation Options dialog box, turn off Disable I/O Insertion for the
target technology.

2. Read the HDL files for top-level designs.

Figure 14–5. Design Flow Using Multiple .vqm Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level Tcl file a.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Pro Assignments

 Use the lower-level
Tcl file b.tcl to Import

Synplify Pro Assignments
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–36 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
3. Create black boxes using lower-level modules in the top-level design.

4. Add constraints with the SCOPE constraint window.

5. Enter the clock frequency to ensure that the design is correctly optimized.

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

The following sections describe an example of black box implementation to create
separate .vqm files. Figure 14–3 on page 14–31 shows an example of a design
hierarchy that is split into multiple partitions.

The partition top contains the top-level block in the design (block A) and the logic that
is not defined as part of another partition. In this example, the partition for top-level
block A also includes the logic in one of its sub-blocks, block C. Because block F is
contained in its own partition, it is not treated as part of the top-level partition A.
Another separate partition, partition B, contains the logic in blocks B, D, and E. In a
team-based design, engineers can work independently on the logic in different
partitions. One netlist is created for the top-level module A and its submodule C,
another netlist is created for module B and its submodules D and E, while a third
netlist is created for module F.

To create multiple .vqm files for this design, follow these steps:

1. Generate a .vqm file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate a .vqm file for module F. Use F.v/.vhd as the source files.

3. Generate a top-level .vqm file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you use black box modules B and F, which were
optimized separately in the previous steps.

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to create a black box for the module. In Verilog
HDL, you must provide an empty module declaration for a module that is treated as a
black box.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–37
Incremental Compilation and Block-Based Design
Example 14–16 shows an example of the A.v top-level file. Follow the same procedure
for lower-level files that also contain a black box for any module beneath the current
level hierarchy.

Creating Black Boxes in VHDL

Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. Use the syn_black_box
attribute to indicate that you intend to treat the component as a black box. In VHDL,
you must have a component declaration for the black box.

1 Although VHDL is not case-sensitive, a .vqm (a subset of Verilog HDL) file is
case-sensitive. Entity names and their port declarations are forwarded to the .vqm
file. Black box names and port declarations are also passed to the .vqm file. To prevent
case-based mismatches, use the same capitalization for black box and entity
declarations in VHDL designs.

Example 14–16. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q) /* synthesis syn_black_box */ ;
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–38 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
Example 14–17 shows an example of the A.vhd top-level file. Follow this same
procedure for any lower-level files that contain a black box for any block beneath the
current level of hierarchy.

After you complete the steps described in this section, you have a netlist file for each
partition of the design. These files are ready for use with the incremental compilation
flow in the Quartus II software.

Example 14–17. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
USE synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

attribute syn_black_box of B: component is true;
attribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–39
Incremental Compilation and Block-Based Design
Creating a Quartus II Project for Multiple .vqm Files
The Synplify software creates a .tcl file for each .vqm file that provides the Quartus II
software with the appropriate constraints and information to set up a project. For
details about using the Tcl script generated by the Synplify software to set up your
Quartus II project and pass your constraints, refer to “Running the Quartus II
Software Manually With the Synplify-Generated Tcl Script” on page 14–15.

Depending on your design methodology, you can create one Quartus II project for all
netlists or a separate Quartus II project for each netlist. In the standard incremental
compilation design flow, you create design partition assignments and optional
LogicLock floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design. You might
require a bottom-up design flow where each partition must be optimized separately,
such as for third-party IP delivery.

To perform follow this design flow in the Quartus II software, create separate
Quartus II projects, export each design partition and incorporate it into a top-level
design using the incremental compilation features to maintain the results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Standard Incremental Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments for the
top-level design. This method allows you to import all of the partitions into one
Quartus II project and optimize all modules within the project at once, taking
advantage of the performance preservation and compilation time reduction offered by
incremental compilation. Figure 14–6 shows a visual representation of the design flow
for the example design in Figure 14–3 on page 14–31.

All of the constraints from the top-level project are passed to the Quartus II software
in the top-level .tcl file, but constraints made in the lower-level projects within the
Synplify software are not forward-annotated. Enter these constraints manually in
your Quartus II project.

Figure 14–6. Design Flow Using Multiple .vqm Files with One Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to import top-level
Synplify Pro assignments.

Enter any lower-level
assignments manually.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

14–40 Chapter 14: Synopsys Synplify Support
Incremental Compilation and Block-Based Design
Creating Multiple Quartus II Projects for a Bottom-Up Incremental Compilation Flow

Use the .tcl file that is created for each .vqm file by the Synplify software for each
Synplify project. This method generates multiple Quartus II projects, one for each
block in the design. The designers in the project can optimize their own blocks
separately within the Quartus II software and export the placement of their own
blocks. Figure 14–7 shows a visual representation of the design flow for the example
in Figure 14–3 on page 14–31.

Designers should create a LogicLock region to create a design floorplan for each block
to avoid conflicts between partitions. The top-level designer then imports all the
blocks and assignments into the top-level project. This method allows each block in
the design to be optimized separately and then imported into one top-level project.

Performing Incremental Compilation in the Quartus II Software
In a standard design flow using Multipoint Synthesis, the Synplify software uses the
Quartus II top-level .tcl file to ensure that the two tools databases stay synchronized.
The Tcl file creates, changes, or deletes partition assignments in the Quartus II
software for Compile Points that you create, change, or delete in the Synplify
software. However, if you create, change, or delete a partition in the Quartus II
software, the Synplify software does not change your Compile Point settings. Make
any corresponding change in your Synplify project to ensure that you create the
correct .vqm files.

1 If you use the NativeLink integration feature described in “Using the Quartus II
Software to Run the Synplify Software” on page 14–15, the Synplify software does not
use any information about design partition assignments that you have set in the
Quartus II software.

If you create netlist files with multiple Synplify projects, or if you do not use the
Synplify Pro or Premier-generated .tcl files to update constraints in your Quartus II
project, you must ensure that your Synplify .vqm netlists align with your Quartus II
partition settings.

Figure 14–7. Design Flow Using Multiple Synplify Projects and Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use the top-level
Tcl file a.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file b.tcl to Import
Synplify Assignments
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 14: Synopsys Synplify Support 14–41
Conclusion
After you have set up your Quartus II project with .vqm netlist files as separate
design partitions, set the appropriate Quartus II options to preserve your compilation
results. On the Assignments menu, click Design Partitions Window. Change the
Netlist Type to Post-Fit to preserve the previous compilation’s post-fit placement
results. If you do not make these settings, the Quartus II software does not reuse the
placement or routing results from the previous compilation.

You can take advantage of incremental compilation with your Synplify design to
reduce compilation time in the Quartus II software and preserve the results for
unchanged design blocks.

f For more information about using Quartus II incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Conclusion
Taking advantage of the Synopsys Synplify and Altera Quartus II design flows allow
you to control how your design files are prepared for the Quartus II place-and-route
process, as well as improve performance and optimize a design for use with Altera
devices.

Document Revision History
Table 14–4. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Removed Classic Timing Analyzer support.

■ Removed the “altera_implement_in_esb or altera_implement_in_eab” section.

■ Edited the “Creating a Quartus II Project for Compile Points and Multiple .vqm
Files” on page 14–33 section for changes with the incremental compilation flow.

■ Edited the “Creating a Quartus II Project for Multiple .vqm Files” on page 14–39
section for changes with the incremental compilation flow.

■ Editorial changes.

July 2010 10.0.0 ■ Minor updates for the Quartus II software version 10.0 release.

November 2009 9.1.0 ■ Minor updates for the Quartus II software version 9.1 release.

March 2009
9.0.0

■ Added new section “Exporting Designs to the Quartus II Software Using NativeLink
Integration” on page 14–14.

■ Minor updates for the Quartus II software version 9.0 release.

■ Chapter 10 was previously Chapter 9 in software version 8.1.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

14–42 Chapter 14: Synopsys Synplify Support
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this chapter.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Changed the chapter title from “Synplicity Synplify & Synplify Pro Support” to
“Synopsys Synplify Support”

■ Replaced references to Synplicity with references to Synopsys

■ Added information about Synplify Premier

■ Updated supported device list

■ Added SystemVerilog information to Figure 14–1

May 2008 8.0.0

■ Updated supported device list

■ Updated constraint annotation information for the TimeQuest Timing Analyzer

■ Updated RAM and MAC constraint limitations

■ Revised Table 9–1

■ Added new section “Changing Synplify’s Default Behavior for Instantiated Altera
Megafunctions”

■ Added new section “Instantiating Intellectual Property Using the MegaWizard
Plug-In Manager and IP Toolbench”

■ Added new section “Including Files for Quartus II Placement and Routing Only”

■ Added new section “Additional Considerations for Compile Points”

■ Removed section “Apply the LogicLock Attributes”

■ Modified Figure 9–4, 9–43, 9–47. and 9–48

■ Added new section “Performing Incremental Compilation in the Quartus II
Software”

■ Numerous text changes and additions throughout the chapter

■ Renamed several sections

■ Updated “Referenced Documents” section

Table 14–4. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51011-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51011-10.1.0
15. Mentor Graphics Precision Synthesis
Support
This chapter documents support for the Mentor Graphics® Precision RTL Synthesis
and Precision RTL Plus Synthesis software in the Quartus® II software design flow, as
well as key design methodologies and techniques for improving your results for
Altera® devices.

The topics discussed in this chapter include:

■ “Altera Device Family Support”

■ “Design Flow” on page 15–2

■ “Creating and Compiling a Project in the Precision Synthesis Software” on
page 15–4

■ “Mapping the Precision Synthesis Design” on page 15–5

■ “Synthesizing the Design and Evaluating the Results” on page 15–9

■ “Exporting Designs to the Quartus II Software Using NativeLink Integration” on
page 15–10

■ “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 15–15

■ “Incremental Compilation and Block-Based Design” on page 15–24

This chapter assumes that you have set up, licensed, and installed the Precision
Synthesis software and the Quartus II software. You must set up, license, and install
the Precision RTL Plus Synthesis software if you want to use the incremental synthesis
feature for incremental compilation and block-based design.

f To obtain and license the Precision Synthesis software, refer to the Mentor Graphics
website at www.mentor.com. To install and run the Precision Synthesis software and
to set up your work environment, refer to the Precision Synthesis Installation Guide in
the Precision Manuals Bookcase. To access the Manuals Bookcase in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Altera Device Family Support
The Precision Synthesis software supports active devices available in the current
version of the Quartus II software. Support for newly released device families may
require an overlay. Contact Mentor Graphics for more information.

The Precision Synthesis software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and FLEX
6000 legacy devices that are supported by the Quartus II software version 9.0 and
earlier.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51011
http://www.mentor.com

15–2 Chapter 15: Mentor Graphics Precision Synthesis Support
Design Flow
Design Flow
The following steps describe a basic Quartus II design flow using the Precision
Synthesis software:

1. Create Verilog HDL or VHDL design files.

2. Create a project in the Precision Synthesis software that contains the HDL files for
your design, select your target device, and set global constraints. Refer to
“Creating and Compiling a Project in the Precision Synthesis Software” on
page 15–4 for details.

3. Compile the project in the Precision Synthesis software.

4. Add specific timing constraints, optimization attributes, and compiler directives to
optimize the design during synthesis.

1 For best results, Mentor Graphics recommends specifying constraints that
are as close as possible to actual operating requirements. Properly setting
clock and I/O constraints, assigning clock domains, and indicating false
and multicycle paths guide the synthesis algorithms more accurately
toward a suitable solution in the shortest synthesis time.

5. Synthesize the project in the Precision Synthesis software. With the design analysis
and cross-probing capabilities of the Precision Synthesis software, you can identify
and improve circuit area and performance issues using prelayout timing
estimates.

6. Create a Quartus II project and import the following files generated by the
Precision Synthesis software into the Quartus II project:

■ The technology-specific EDIF (.edf) netlist or Verilog Quartus Mapping File
(.vqm) netlist

■ Synopsys Design Constraints File (.sdc) for TimeQuest Timing Analyzer
constraints

1 If your design uses the Classic Timing Analyzer for timing analysis in the
Quartus II software versions 10.0 and earlier, the Synplify software
generates timing constraints in the Tcl Constraints File (.tcl). If you are
using the Quartus II software versions 10.1 and later, you must use the
TimeQuest Timing Analyzer for timing analysis.

■ Tcl Script Files (.tcl) to set up your Quartus II project and pass constraints

You can run the Quartus II software from within the Precision Synthesis software,
or run the Precision Synthesis software using the Quartus II software. Refer to
“Running the Quartus II Software from within the Precision Synthesis Software”
on page 15–10 and “Using the Quartus II Software to Run the Precision Synthesis
Software” on page 15–12 for more information.

7. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–3
Design Flow
Figure 15–1 shows the Quartus II design flow using the Precision Synthesis software
as described in these steps, which are further described in detail in this chapter.

If your area or timing requirements are not met, you can change the constraints and
resynthesize the design in the Precision Synthesis software, or you can change the
constraints to optimize the design during place-and-route in the Quartus II software.
Repeat the process until the area and timing requirements are met.

You can use other options and techniques in the Quartus II software to meet area and
timing requirements. For example, the WYSIWYG Primitive Resynthesis option can
perform optimizations on your EDIF netlist in the Quartus II software.

f For more information about netlist optimizations, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook. For more
recommendations about how to optimize your design, refer to the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Figure 15–1. Design Flow Using the Precision Synthesis Software and Quartus II Software

VHDL Verilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Timing and Area
Requirements

Satisfied?

Forward-Annotated Projec
Configuration
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/Programming Files
(.sof/.pof)

Program/Configure Device

Quartus II Software

Quartus II Timing Constraints
in SDC format (.sdc)

System
Verilog

Design Specifications

No

Yes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

15–4 Chapter 15: Mentor Graphics Precision Synthesis Support
Creating and Compiling a Project in the Precision Synthesis Software
While simulation and analysis can be performed at various points in the design
process, final timing analysis should be performed after placement and routing is
complete.

During synthesis, the Precision Synthesis software produces several intermediate and
output files, which are described in Table 15–1.

Creating and Compiling a Project in the Precision Synthesis Software
After creating your design files, create a project in the Precision Synthesis software
that contains the basic settings for compiling the design.

To create a project, follow these steps:

1. In the Precision Synthesis software, click New Project in the Design Bar on the left
side of the GUI.

2. Specify the Project Name and the Project Folder. The implementation name of the
design corresponds to this project name.

3. Add input files to the project by clicking Add Input Files in the Design Bar. The
Precision Synthesis software automatically detects the top-level module/entity of
the design and uses it to name the current implementation directory, logs, reports,
and netlist files.

Table 15–1. Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep (1) Synthesis Area and Timing Report File.

.vqm/.edf (2)

Technology-specific netlist in .vqm or .edf file format.

By default, the Precision Synthesis software creates .vqm files for Arria series, Cyclone series, and Stratix
series devices, and creates .edf files for ACEX, APEX, FLEX, and MAX series devices. The Precision
Synthesis software can create .edf files for all Altera devices supported by the Quartus II software, but
defaults to creating .vqm files when the device is supported.

.tcl
Forward-annotated Tcl assignments and constraints file. The <project name>.tcl file is generated for all
devices. The .tcl file acts as the Quartus II Project Configuration file and is used to make basic project and
placement assignments, and to create and compile a Quartus II project.

.acf
Assignment and Configurations file for backward compatibility with the MAX+PLUS II software. For
devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported from the
MAX+PLUS II .acf file.

.sdc

Quartus II timing constraints file in Synopsys Design Constraints format.

This file is generated automatically if the device uses the TimeQuest Timing Analyzer by default in the
Quartus II software, and has the naming convention <project name>_pnr_constraints.sdc. For more
information about generating a TimeQuest constraint file, refer to “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 15–10.

Notes to Table 15–1:

(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the fMAX reported by the
Quartus II software after place-and-route for accurate post-place-and-route timing information. The area report file includes post-synthesis
device resource utilization statistics that can differ from the resource usage after place-and-route due to black boxes or further optimizations
performed during placement and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 15–9 for details.

(2) The Precision Synthesis software-generated VQM file is supported by the Quartus II software version 10.1 and later.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–5
Mapping the Precision Synthesis Design
4. In the Design Bar, click Setup Design.

5. To specify a target device family, expand Altera and select the target device and
speed grade.

6. If you want, you can set a global design frequency and/or default input and
output delays. This constrains all clock paths and I/O pins in your design. Modify
the settings for individual paths or pins that do not require such a setting.

7. On the Design Center tab, right-click the Output Files folder and click Output
Options.

8. To generate additional HDL netlists for post-synthesis simulation, select the
desired output format. The Precision Synthesis software generates a separate file
for each selected type of file: EDIF and Verilog HDL or VHDL.

9. To compile the design into a technology-independent implementation, in the
Design Bar, click Compile.

Mapping the Precision Synthesis Design
In the next steps, you set constraints and map the design to technology-specific cells.
The Precision Synthesis software maps the design by default to the fastest possible
implementation that meets your timing constraints. To accomplish this, you must
specify timing requirements for the automatically determined clock sources. With this
information, the Precision Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision Synthesis software
achieves the best results for your design when you set as many realistic constraints as
possible. Be sure to set constraints for timing, mapping, false paths, multicycle paths,
and other factors that control the structure of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the
Constraint Files section of the Project Files list. You can create this file with a text
editor, by issuing command-line constraint parameters, or by directing the Precision
Synthesis software to generate the file automatically the first time you synthesize your
design. To create a constraint file with the user interface, set constraints on design
objects (such as clocks, design blocks, or pins) in the Design Hierarchy browser. By
default, the Precision Synthesis software saves all timing constraints and attributes in
two files: precision_rtl.sdc and precision_tech.sdc. The precision_rtl.sdc file contains
constraints set on the RTL-level database (post-compilation) and the
precision_tech.sdc file contains constraints set on the gate-level database
(post- synthesis) located in the current implementation directory.

You can also enter constraints at the command line. After adding constraints at the
command line, update the .sdc file with the update constraint file command. You can
add constraints that change infrequently directly to the HDL source files with HDL
attributes or pragmas.

1 The Precision .sdc file contains all the constraints for the Precision Synthesis project.
For the Quartus II software, placement constraints are written in a .tcl file and timing
constraints for the TimeQuest Timing Analyzer are written in the Quartus II .sdc file.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–6 Chapter 15: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. For
more details and examples of attributes, refer to the Attributes chapter in the Precision
Synthesis Reference Manual. To access these manuals in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Setting Timing Constraints
The Precision Synthesis software uses timing constraints, based on the industry-
standard .sdc file format, to deliver optimal results. Missing timing constraints can
result in incomplete timing analysis and might prevent timing errors from being
detected. The Precision Synthesis software provides constraint analysis prior to
synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints in SDC
format, is generated in the Quartus II software.

1 Because the .sdc file format requires that timing constraints be set relative to defined
clocks, you must specify your clock constraints before applying any other timing
constraints.

You also can use multicycle path and false path assignments to relax requirements or
exclude nodes from timing requirements, which can improve area utilization and
allow the software optimizations to focus on the most critical parts of the design.

f For details about the syntax of Synopsys Design Constraint commands, refer to the
Precision RTL Synthesis User’s Manual and the Precision Synthesis Reference Manual. To
access these manuals in the Precision Synthesis software, click Help and select Open
Manuals Bookcase.

Setting Mapping Constraints
Mapping constraints affect how your design is mapped into the target Altera device.
You can set mapping constraints in the user interface, in HDL code, or with the
set_attribute command in the constraint file.

Assigning Pin Numbers and I/O Settings
The Precision Synthesis software supports assigning device pin numbers, I/O
standards, drive strengths, and slew-rate settings to top-level ports of the design. You
can set these timing constraints with the set_attribute command, the GUI, or by
specifying synthesis attributes in your HDL code. These constraints are
forward-annotated in the <project name>.tcl file that is read by the Quartus II software
during place-and-route and do not affect synthesis.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–7
Mapping the Precision Synthesis Design
You can use the set_attribute command in the Precision Synthesis software .sdc file
format to specify pin number constraints, I/O standards, drive strengths, and slow
slew-rate settings. Table 15–2 describes the format to use for entries in the Precision
Synthesis software constraint file.

You can also specify these options in the GUI. To specify a pin number or other I/O
setting in the Precision Synthesis GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy Browser.

2. Under Ports, expand Inputs or Outputs.

1 You also can assign I/O settings by right-clicking the pin in the Schematic
Viewer.

3. Right-click the desired pin name and select Set Input Constraints under Inputs or
Set Output Constraints under Outputs.

4. Type the desired pin number on the Altera device in the Pin Number box in the
Port Constraints dialog box.

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew rate setting
using the DRIVE and SLOW SLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to make these
assignments. Example 15–1 and Example 15–2 show code samples that make a pin
assignment in your HDL code.

You can use the same syntax to assign the I/O standard using the IOSTANDARD
attribute, drive strength using the attribute DRIVE, and slew rate using the
SLEW attribute.

1 For more details about attributes and how to set these attributes in your HDL code,
refer to the Precision Synthesis Reference Manual. To access this manual, in the Precision
Synthesis software, click Help and select Open Manuals Bookcase.

Table 15–2. Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive strength set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

Example 15–1. Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 15–2. VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is “P10”;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–8 Chapter 15: Mentor Graphics Precision Synthesis Support
Mapping the Precision Synthesis Design
Assigning I/O Registers
The Precision Synthesis software performs timing-driven I/O register mapping by
default. You can force a register to the device’s IO element (IOE) using the Complex
I/O constraint. This option does not apply if you turn off I/O pad insertion. Refer to
“Disabling I/O Pad Insertion” on page 15–8 for more information.

To force an I/O register into the device’s IOE using the GUI, follow these steps:

1. After compiling the design, expand Ports in the Design Hierarchy browser.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name, point to Map Input
Register to IO or Map Output Register to IO, for input or output respectively,
and click True.

1 You also can make the assignment by right-clicking on the pin in the Schematic
Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision
Synthesis software can move an internal register to an I/O register without any
restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal
register to an I/O register only when the register exists in the top-level of the
hierarchy. If the register is buried in the hierarchy, you must flatten the hierarchy so
that the buried registers are moved to the top-level of the design.

Disabling I/O Pad Insertion
The Precision Synthesis software assigns I/O pad atoms (device primitives used to
represent the I/O pins and I/O registers) to all ports in the top-level of a design by
default. In certain situations, you might not want the software to add I/O pads to all
I/O pins in the design. The Quartus II software can compile a design without I/O
pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

Preventing the Precision Synthesis Software from Adding I/O Pads
If you are compiling a subdesign as a separate project, I/O pins cannot be primary
inputs or outputs of the device; therefore, the I/O pins should not have an I/O pad
associated with them. To prevent the Precision Synthesis software from adding I/O
pads, perform the following steps:

1. On the Tools menu, click Set Options. The Options dialog box appears.

2. On the Optimization page, turn off Add IO Pads.

3. Click Apply.

These steps add the following command to the project file:

setup_design -addio=false
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–9
Synthesizing the Design and Evaluating the Results
Preventing the Precision Synthesis Software from Adding an I/O Pad on an
Individual Pin
To prevent I/O pad insertion on an individual pin when you are using a black box,
such as DDR or a phase-locked loop (PLL), at the external ports of the design, perform
the following steps:

1. After compiling the design, in the Design Hierarchy browser, expand Ports.

2. Under Ports, expand Inputs or Outputs.

3. Under Inputs or Outputs, right-click the desired pin name and click Set Input
Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn off Insert Pad.

1 You also can make this assignment by right-clicking the pin in the Schematic Viewer
or by attaching the nopad attribute to the port in the HDL source code.

Controlling Fan-Out on Data Nets
Fan-out is defined as the number of nodes driven by an instance or top-level port.
High fan-out nets can cause significant delays that result in an unroutable net. On a
critical path, high fan-out nets can cause longer delays in a single net segment that
result in the timing constraints not being met. To prevent this behavior, each device
family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Quartus II software automatically routes high fan-out signals on global
routing lines in the Altera device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the
Precision Synthesis software also allows you to override the library default value on a
global or individual net basis. You can override the library value by setting a
max_fanout attribute on the net.

Synthesizing the Design and Evaluating the Results
To synthesize the design for the target device, click Synthesize in the Precision
Synthesis Design Bar. During synthesis, the Precision Synthesis software optimizes
the compiled design, and then writes out netlists and reports to the implementation
subdirectory of your working directory after the implementation is saved, using the
following naming convention:

<project name>_impl_<number>

f After synthesis is complete, you can evaluate the results for area and timing. The
Precision RTL Synthesis User’s Manual on the Mentor Graphics website describes
different results that can be evaluated in the software.

There are several schematic viewers available in the Precision Synthesis software: RTL
schematic, Technology-mapped schematic, and Critical Path schematic. These
analysis tools allow you to quickly and easily isolate the source of timing or area
issues, and to make additional constraint or code changes to optimize the design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–10 Chapter 15: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
Obtaining Accurate Logic Utilization and Timing Analysis Reports
Historically, designers have relied on post-synthesis logic utilization and timing
reports to determine the amount of logic their design requires, the size of the device
required, and how fast the design runs. However, today’s FPGA devices provide a
wide variety of advanced features in addition to basic registers and look-up tables
(LUTs). The Quartus II software has advanced algorithms to take advantage of these
features, as well as optimization techniques to increase performance and reduce the
amount of logic required for a given design. In addition, designs can contain black
boxes and functions that take advantage of specific device features. Because of these
advances, synthesis tool reports provide post-synthesis area and timing estimates, but
you should use the place-and-route software to obtain final logic utilization and
timing reports.

Exporting Designs to the Quartus II Software Using NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools, which allows you to run
other EDA design entry/synthesis, simulation, and timing analysis tools
automatically from within the Quartus II software.

After a design is synthesized in the Precision Synthesis software, the
technology-mapped design is written to the current implementation directory as an
EDIF netlist file, along with a Quartus II Project Configuration File and a
place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Quartus II project for your EDIF or VQM
netlist. This script makes basic project assignments, such as assigning the target
device specified in the Precision Synthesis software. If you select an Arria GX,
Stratix III, Cyclone III, or newer device, the constraints are written in SDC format to
the <project name>_pnr_constraints.sdc file by default, which is used by the Fitter and
the TimeQuest Timing Analyzer in the Quartus II software.

Use the following Precision Synthesis software command before compilation to
generate the <project name>_pnr_constraints.sdc:

setup_design -timequest_sdc

With this command, the file is generated after the synthesis.

Running the Quartus II Software from within the Precision Synthesis
Software

The Precision Synthesis software also has a built-in place-and-route environment that
allows you to run the Quartus II Fitter and view the results in the Precision Synthesis
GUI. This feature is useful when performing an initial compilation of your design to
view post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are available.

After you specify an Altera device as the target, set the options for the Quartus II
software. On the Tools menu, click Set Options. On the Integrated Place and Route
page, under Quartus II Modular, specify the path to the Quartus II executables in the
Path to Quartus II installation tree box.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–11
Exporting Designs to the Quartus II Software Using NativeLink Integration
To automate the place-and-route process, click Run Quartus II in the Quartus II
Modular window of the Precision Synthesis toolbar. The Quartus II software uses the
current implementation directory as the Quartus II project directory and runs a full
compilation in the background (that is, the user interface does not appear).

Two primary Precision Synthesis software commands control the place-and-route
process. Use the setup_place_and_route command to set the place-and-route
options. Start the process with the place_and_route command.

Precision Synthesis software uses individual Quartus II executables, such as analysis
and synthesis (quartus_map), Fitter (quartus_fit), and the TimeQuest Timing
Analyzer (quartus_sta) for improved runtime and memory utilization during place
and route. This flow is referred to as the Quartus II Modular flow option in the
Precision Synthesis software. By default, the Precision Synthesis software generates a
Quartus II Project Configuration File (.tcl file) for current device families. Timing
constraints that you set during synthesis are exported to the Quartus II
place-and-route constraints file <project name>_pnr_constraints.sdc.

After you compile the design in the Quartus II software from within the Precision
Synthesis software, you can invoke the Quartus II GUI manually and then open the
project using the generated Quartus II project file. You can view reports, run analysis
tools, specify options, and run the various processing flows available in the Quartus II
software.

f For more information about running the Quartus II software from within the
Precision Synthesis software, refer to the Altera Quartus II Integration chapter in the
Precision Synthesis Reference Manual. To access this manual in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Running the Quartus II Software Manually Using the Precision Synthesis-
Generated Tcl Script

You can run the Quartus II software using a Tcl script generated by the Precision
Synthesis software. To run the Tcl script generated by the Precision Synthesis software
to set up your project and start a full compilation, perform the following steps:

1. Ensure the .edf or .vqm file, .tcl files, and .sdc file are located in the same directory.
The files should be located in the implementation directory by default.

2. In the Quartus II software, on the View menu, point to Utility Windows and click
Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r
4. On the File menu, click Open Project. Browse to the project name and click Open.

5. Compile the project in the Quartus II software.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–12 Chapter 15: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
Using the Quartus II Software to Run the Precision Synthesis Software
With NativeLink integration, you can set up the Quartus II software to run the
Precision Synthesis software. This feature allows you to use the Precision Synthesis
software to synthesize a design as part of a standard compilation. When you use this
feature, the Precision Synthesis software does not use any timing constraints or
assignments, such as incremental compilation partitions, that you have set in the
Quartus II software.

h For detailed information about using NativeLink integration with the Precision
Synthesis software, refer to Using the NativeLink Feature with Other EDA Tools in the
Quartus II Help.

Passing Constraints to the Quartus II Software
The place-and-route constraints script forward-annotates timing constraints that you
made in the Precision Synthesis software. This integration allows you to enter these
constraints once in the Precision Synthesis software, and then pass them
automatically to the Quartus II software.

Refer to the introductory text in the section “Exporting Designs to the Quartus II
Software Using NativeLink Integration” on page 15–10 for information on how to
ensure the Precision Synthesis software targets the TimeQuest Timing Analyzer.

The following constraints are translated by the Precision Synthesis software and are
applicable to the TimeQuest Timing Analyzer:

■ create_clock

■ set_input_delay

■ set_output_delay

■ set_max_delay

■ set_min_delay

■ set_false_path

■ set_multicycle_path

create_clock
You can specify a clock in the Precision Synthesis software, as shown in Example 15–3.

Example 15–3. Specifying a Clock using create_clock

create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>} -domain \
<ClockDomain> <pin>
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_using_nativelink.htm

Chapter 15: Mentor Graphics Precision Synthesis Support 15–13
Exporting Designs to the Quartus II Software Using NativeLink Integration
The period is specified in units of nanoseconds (ns). If no clock domain is specified,
the clock belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (related) clocks. If no <clock_name> is provided, the default
name virtual_default is used. The <edge_list> sets the rise and fall edges of the clock
signal over an entire clock period. The first value in the list is a rising transition,
typically the first rising transition after time zero. The waveform can contain any even
number of alternating edges, and the edges listed should alternate between rising and
falling. The position of any edge can be equal to or greater than zero but must be
equal to or less than the clock period.

If -waveform <edge_list> is not specified and -period <period in ns> is specified, the
default waveform has a rising edge of 0.0 and a falling edge of <period_value>/2.

The Precision Synthesis software maps the clock constraint to the TimeQuest
create_clock setting in the Quartus II software.

The Quartus II software supports only clock waveforms with two edges in a clock
cycle. If the Precision Synthesis software finds a multi-edge clock, it issues an error
message when you synthesize your design in the Precision Synthesis software.

set_input_delay
This port-specific input delay constraint is specified in the Precision Synthesis
software, as shown in Example 15–4.

This constraint is mapped to the set_input_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The input pin name for the assignment can be
an input pin name of a time group. The software can use the clock_fall option to
specify delay relative to the falling edge of the clock.

1 Although the Precision Synthesis software allows you to set input delays on pins
inside the design, these constraints are not sent to the Quartus II software, and a
message is displayed.

set_output_delay
This port-specific output delay constraint is specified in the Precision Synthesis
software, as shown in Example 15–5.

This constraint is mapped to the set_output_delay setting in the Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be
the reference clocks for this assignment. The output pin name for the assignment can
be an output pin name of a time group.

Example 15–4. Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay

Example 15–5. Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall -add_delay
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–14 Chapter 15: Mentor Graphics Precision Synthesis Support
Exporting Designs to the Quartus II Software Using NativeLink Integration
1 Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Quartus II software.

set_max_delay and set_min_delay
The maximum delay for a point-to-point timing path constraint is specified in the
Precision Synthesis software, as shown in Example 15–6. The minimum delay for a
point-to-point timing path constraint is shown in Example 15–7.

The set_max_delay and set_min_delay commands specify that the maximum and
minimum respectively, required delay for any start point in <from_node_list> to any
endpoint in <to_node_list> must be less than or greater than <delay_value>. Typically,
you use these commands to override the default setup constraint for any path with a
specific maximum or minimum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The
-from and -to parameters specify the source (start point) and the destination
(endpoint) of the timing path, respectively. The source list (<from_node_list>) cannot
include output ports, and the destination list (<to_node_list>) cannot include input
ports. If you include more than one node on a list, you must enclose the nodes in
quotes or in braces ({ }).

If you specify a clock in the source list, you must specify a clock in the destination list.
Applying set_max_delay or set_min_delay setting between clocks applies the
exception from all registers or ports driven by the source clock to all registers or ports
driven by the destination clock. Applying exceptions between clocks is more efficient
than applying them for specific node-to-node, or node-to-clock paths. If you want to
specify pin names in the list, the source must be a clock pin and the destination must
be any non-clock input pin to a register. Assignments from clock pins, or to and from
cells, apply to all registers in the cell or for those driven by the clock pin.

set_false_path
The false path constraint is specified in the Precision Synthesis software, as shown in
Example 15–8.

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in
the list can be represented using wildcards such as * and ?.

In a place-and-route Tcl constraints file, this false path setting in the Precision
Synthesis software is mapped to a set_false_path setting. The Quartus II software
supports setup, hold, rise, or fall options for this assignment.

Example 15–6. Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 15–7. Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 15–8. Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–15
Guidelines for Altera Megafunctions and Architecture-Specific Features
The node lists for this assignment represents top-level ports and/or nets connected to
instances (end points of timing assignments).

Any false path setting in the Precision Synthesis software can be mapped to a setting
in the Quartus II software with a through path specification.

set_multicycle_path
This multicycle path constraint is specified in the Precision Synthesis software, as
shown in Example 15–9.

The node list can contain clocks, ports, instances, and pins. Multiple elements in the
list can be represented using wildcards such as * and ?. Paths without multicycle path
definitions are identical to paths with multipliers of 1. To add one additional cycle to
the datapath, use a multiplier value of 2. The option start indicates that source clock
cycles should be considered for the multiplier. The option end indicates that
destination clock cycles should be considered for the multiplier. The default is to
reference the end clock.

In the place-and-route Tcl constraints file, the multicycle path setting in the Precision
Synthesis software is mapped to a set_multicycle_path setting. The Quartus II
software supports the rise or fall options on this assignment.

The node lists represent top-level ports and/or nets connected to instances (end
points of timing assignments). The node lists can contain wildcards (such as *); the
Quartus II software automatically expands all wildcards.

Any multicycle path setting in Precision Synthesis software can be mapped to a
setting in the Quartus II software with a -through specification.

Guidelines for Altera Megafunctions and Architecture-Specific
Features

Altera provides parameterizable megafunctions, including the LPMs, device-specific
Altera megafunctions, IP available as Altera MegaCore functions, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use
megafunctions and IP functions by instantiating them in your HDL code or by
inferring certain megafunctions from generic HDL code.

If you want to instantiate a megafunction such as a PLL in your HDL code, you can
instantiate and parameterize the function using the port and parameter definitions, or
you can customize a function with the MegaWizard™ Plug-In Manager. Altera
recommends using the MegaWizard Plug-In Manager, which provides a graphical
interface within the Quartus II software for customizing and parameterizing any
available megafunction for the design. “Instantiating Altera Megafunctions Using the
MegaWizard Plug-In Manager” and “Instantiating Intellectual Property With the
MegaWizard Plug-In Manager and IP Toolbench” on page 15–17 describe the
MegaWizard Plug-In Manager flow with the Precision Synthesis software.

Example 15–9. Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from <from_node_list> \
-reset_path
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–16 Chapter 15: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
f For more information about specific Altera megafunctions and IP functions, refer to
the Altera IP and Megafunctions website.

The Precision Synthesis software automatically recognizes certain types of HDL code
and infers the appropriate function. The Precision Synthesis software provides
options to control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 15–19.

f For a detailed discussion about instantiating functions versus inferring functions to
target Altera architecture-specific features, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook. This chapter also provides
details on using the MegaWizard Plug-In Manager in the Quartus II software and
explains the files generated by the wizard, as well as coding style recommendations
and HDL examples for inferring functions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager

This section describes how to instantiate Altera megafunctions with the MegaWizard
Plug-In Manager, and how to generate the files that are included in the Precision
Synthesis project for synthesis.

You can run the stand-alone version of the MegaWizard Plug-In Manager by typing
the following command at a command prompt:

qmegawiz r

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation template
file <output file>_inst.v and a hollow-body black box module declaration <output
file>_bb.v for use in your Precision Synthesis design. Incorporate the instantiation
template file, <output file>_inst.v, into your top-level design to instantiate the
megafunction wrapper file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your
Precision Synthesis project to describe the port connections of the black box. Adding
the megafunction wrapper file <output file>.v in your Precision Synthesis project is
optional, but you must add it to your Quartus II project along with the Precision
Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.v in your
Precision Synthesis project and then right-click the file in the input file list, and select
Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 15: Mentor Graphics Precision Synthesis Support 15–17
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
VHDL Files
The MegaWizard Plug-In Manager generates a VHDL component declaration file
<output file>.cmp and a VHDL instantiation template file <output file>_inst.vhd for
use in your Precision Synthesis design. Incorporate the component declaration and
instantiation template into your top-level design to instantiate the megafunction
wrapper file, <output file>.vhd.

Adding the megafunction wrapper file <output file>.vhd in your Precision Synthesis
project is optional, but you must add the file to your Quartus II project along with the
Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the megafunction wrapper file <output file>.vhd in
your Precision Synthesis project and then right-click the file in the input file list, and
select Properties. In the Input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is turned on, the Precision Synthesis
software excludes the file from compilation and copies the file to the appropriate
directory for use by the Quartus II software during place-and-route.

Instantiating Intellectual Property With the MegaWizard Plug-In Manager
and IP Toolbench
Many Altera IP functions include a resource and timing estimation netlist that the
Precision Synthesis software can use to synthesize and optimize logic around the IP
efficiently. As a result, the Precision Synthesis software provides better timing
correlation, area estimates, and Quality of Results (QoR) than a black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the MegaWizard Plug-In Manager.

2. Click Next to open the IP Toolbench.

3. Click Set Up Simulation, which sets up all the EDA options.

4. Turn on the Generate netlist option to generate a netlist for resource and timing
estimation and click OK.

5. Click Generate to generate the netlist file.

The Quartus II software generates a file <output file>_syn.v. This netlist contains the
“grey box” information for resource and timing estimation, but does not contain the
actual implementation. Include this netlist file into your Precision Synthesis project as
an input file. Then include the megafunction wrapper file <output file>.v|vhd in the
Quartus II project along with your EDIF or VQM output netlist.

1 The generated “grey box” netlist file, <output file>_syn.v, is always in Verilog HDL
format, even if you select VHDL as the output file format.

1 There is currently no grey box support for SOPC Builder systems in the MegaWizard
Plug-In Manager. For information about creating a grey box netlist file from the
command line, search Altera's Knowledge Database. Alternatively, you can use a
black box approach as described in “Instantiating Black Box IP Functions With
Generated Verilog HDL Files”.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–18 Chapter 15: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Instantiating Black Box IP Functions With Generated Verilog HDL Files
You can use the syn_black_box or black_box compiler directives to declare a module
as a black box. The top-level design files must contain the IP port mapping and a
hollow-body module declaration. You can apply the directive to the module
declaration in the top-level file or a separate file included in the project so that the
Precision Synthesis software recognizes the module is a black box.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 15–10 shows a sample top-level file that instantiates my_verilogIP.v, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Instantiating Black Box IP Functions With Generated VHDL Files
You can use the syn_black_box or black_box compiler directives to declare a
component as a black box. The top-level design files must contain the megafunction
variation component declaration and port mapping. Apply the directive to the
component declaration in the top-level file.

1 The syn_black_box and black_box directives are supported only on module or entity
definitions.

Example 15–10. Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output[7:0] q;
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–19
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 15–11 shows a sample top-level file that instantiates my_vhdlIP.vhd, which
is a simplified customized variation generated by the MegaWizard Plug-In Manager
and IP Toolbench.

Inferring Altera Megafunctions from HDL Code
The Precision Synthesis software automatically recognizes certain types of HDL code
and maps arithmetical and relational operators, and memory (RAM and ROM), to
efficient technology-specific implementations. This functionality allows
technology-specific resources to implement these structures by inferring the
appropriate Altera function to provide optimal results. In some cases, the Precision
Synthesis software has options that you can use to disable or control inference.

f For coding style recommendations and examples for inferring technology-specific
architecture in Altera devices, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Manuals Bookcase. To access these manuals, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

Multipliers
The Precision Synthesis software detects multipliers in HDL code and maps them
directly to device atoms to implement the multiplier in the appropriate type of logic.
The Precision Synthesis software also allows you to control the device resources that
are used to implement individual multipliers, as described in the following section.

Example 15–11. Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

15–20 Chapter 15: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
Controlling DSP Block Inference for Multipliers

By default, the Precision Synthesis software uses DSP blocks available in Stratix series
devices to implement multipliers. The default setting is AUTO, which allows the
Precision Synthesis software to map to logic look-up tables (LUTs) or DSP blocks,
depending on the size of the multiplier. You can use the Precision Synthesis GUI or
HDL attributes to direct mapping to only logic elements or to only DSP blocks.

The options for multiplier mapping in the Precision Synthesis software are described
in Table 15–3.

Setting the Use Dedicated Multiplier Option
To set the Use Dedicated Multiplier option in the Precision Synthesis GUI, compile
the design, and then in the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

Setting the dedicated_mult Attribute
To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 15–3, as shown in
Example 15–12 and Example 15–13.

The dedicated_mult attribute can be applied to signals and wires; it does not work
when applied to a register. This attribute can be applied only to simple multiplier
code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during
synthesis by the Precision Synthesis software for design optimization. In such cases, if
you want to force the implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE, as shown in Example 15–14 and Example 15–15.

Table 15–3. Options for dedicated_mult Parameter to Control Multiplier Implementation in
Precision Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the
multipliers.

Example 15–12. Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 15–13. Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

Example 15–14. Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–21
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 15–16 and Example 15–17 are examples, in Verilog HDL and VHDL, of using
the dedicated_mult attribute to implement the given multiplier in regular logic in the
Quartus II software.

Multiplier-Accumulators and Multiplier-Adders
The Precision Synthesis software also allows you to control the device resources used
to implement multiply-accumulators or multiply-adders in your project or in a
particular module.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in
HDL code and infers an ALTMULT_ACCUM or ALTMULT_ADD megafunction so
that the logic can be placed in DSP blocks, or the software maps these functions
directly to device atoms to implement the multiplier in the appropriate type of logic.

Example 15–15. Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 15–16. Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b;
//synthesis attribute result dedicated_mult OFF

endmodule

Example 15–17. VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–22 Chapter 15: Mentor Graphics Precision Synthesis Support
Guidelines for Altera Megafunctions and Architecture-Specific Features
1 The Precision Synthesis software supports inference for these functions only if the
target device family has dedicated DSP blocks. Refer to “Controlling DSP Block
Inference” for more information.

f For more information about DSP blocks in Altera devices, refer to the appropriate
Altera device family handbook and device-specific documentation. For details about
which functions a given DSP block can implement, refer to the DSP Solutions Center
on the Altera website at www.altera.com.

f For more information about inferring multiply-accumulator and multiply-adder
megafunctions in HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style Guide in the
Precision Synthesis Manuals Bookcase.

Controlling DSP Block Inference
By default, the Precision Synthesis software infers the ALTMULT_ADD or
ALTMULT_ACCUM megafunction appropriately in your design. These
megafunctions allow the Quartus II software to select either logic or DSP blocks,
depending on the device utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM megafunction in a certain module or entity. The options for this
attribute are described in Table 15–4.

To control inference, use the extract_mac attribute with the appropriate value from
Table 15–4 in your HDL code, as shown in Example 15–18 and Example 15–19.

To control the implementation of the multiplier portion of a multiply-accumulator or
multiply-adder, you must use the dedicated_mult attribute.

Example 15–20 and Example 15–21 on page 15–23 use the extract_mac,
dedicated_mult, and preserve_signal attributes (in Verilog HDL and VHDL) to
implement the given DSP function in logic in the Quartus II software.

Table 15–4. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM megafunction is not inferred.

Example 15–18. Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example 15–19. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 15: Mentor Graphics Precision Synthesis Support 15–23
Guidelines for Altera Megafunctions and Architecture-Specific Features
Example 15–20. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL

module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;
else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Example 15–21. Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS

PORT(
a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS

SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);
ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–24 Chapter 15: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
RAM and ROM
The Precision Synthesis software detects memory structures in HDL code and
converts them to an operator that infers an ALTSYNCRAM or LPM_RAM_DP
megafunction, depending on the device family. The software then places these
functions in memory blocks.

The software supports inference for these functions only if the target device family
has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in HDL code,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook, and the Precision Synthesis Style Guide in the Precision Synthesis Manuals
Bookcase. To access these manuals, in the Precision Synthesis software, click Help and
select Open Manuals Bookcase.

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based
incremental design flow is often an effective design approach. In an incremental
compilation flow, you can make changes to one part of the design while maintaining
the placement and performance of unchanged parts of the design. Design iterations
can be made dramatically faster by focusing new compilations on particular design
partitions and merging results with the results of previous compilations of other
partitions. You can perform optimization on individual blocks and then integrate
them into a final design and optimize the design at the top-level.

The first step in an incremental design flow is to make sure that different parts of your
design do not affect each other. You must ensure that you have separate netlists for
each partition in your design. If the whole design is in one netlist file, changes in one
partition affect other partitions because of possible node name changes when you
resynthesize the design.

You can create different implementations for each partition in your Precision
Synthesis project, which allows you to switch between partitions without leaving the
current project file. You can also create a separate project for each partition if you
require separate projects for a team-based design flow. Alternatively, you can use the
incremental synthesis capability in the Precision RTL Plus software.

f For more information about creating partitions and using incremental compilation in
the Quartus II software, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Precision RTL Plus Incremental Synthesis
The Precision RTL Plus incremental synthesis flow for Quartus II incremental
compilation uses a partition-based approach to achieve faster design cycle time.

Using the incremental synthesis feature, you can create different netlist files for
different partitions of a design hierarchy within one partition implementation, which
makes each partition independent of the others in an incremental compilation flow.
Only the portions of a design that have been updated must be recompiled during
design iterations. You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of other partitions.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Mentor Graphics Precision Synthesis Support 15–25
Incremental Compilation and Block-Based Design
The following steps show a general flow for partition-based incremental synthesis
with Quartus II incremental compilation.

1. Create Verilog HDL or VHDL design files.

2. Determine which hierarchical blocks you want to treat as separate partitions in
your design, and designate the partitions with the incr_partition attribute. For
the syntax to create partitions, refer to “Creating Partitions with the incr_partition
Attribute” on page 15–25.

3. Create a project in the Precision RTL Plus Synthesis software and add the HDL
design files to the project.

4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using
one of these methods:

■ On the Tools menu, click Set Options. On the Optimization page, turn on
Enable Incremental Synthesis.

■ Run the following command in the Transcript Window:

setup_design -enable_incr_synth r
5. Run the basic Precision Synthesis flow of compilation, synthesis, and place-and-

route on your design. In subsequent runs, the Precision RTL Plus Synthesis
software processes only the parts of the design that have changed, resulting in a
shorter iteration than the initial run. The performance of the unchanged partitions
is preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged
partitions to Post-Fit and the changed partitions to Post-Synthesis. You can
change the netlist type during timing closure in the Quartus II software to obtain
the best QoR.

6. Import the EDIF or VQM netlist for each partition and the top-level .tcl file into the
Quartus II software, and set up the Quartus II project to use incremental
compilation.

7. Compile your Quartus II project.

8. If you want, you can change the Quartus II incremental compilation netlist type
for a partition with the Design Partitions Window. You can change the Netlist
Type to one of the following options:

■ To preserve the previous post-fit placement results, change the Netlist Type of
the partition to Post-Fit.

■ To preserve the previous routing results, set the Fitter Preservation Level of
the partition to Placement and Routing.

Creating Partitions with the incr_partition Attribute
Partitions are set using the HDL incr_partition attribute. The Precision Synthesis
software creates or deletes partitions by reading this attribute during compilation
iterations. The attribute can be attached to either the design unit definition or an
instance. Example 15–22 and Example 15–23 show how to use the attribute to create
partitions.

To delete partitions, you can remove the attribute or set the attribute value to false.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–26 Chapter 15: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
1 The Precision Synthesis software ignores partitions set in a black box.

Creating Multiple Mapped Netlist Files With Separate Precision Projects
or Implementations

This section describes how to manually generate multiple netlist files, which can be
VQM or EDIF files, for incremental compilation using black boxes and separate
Precision projects or implementations for each design partition. This manual flow is
supported in versions of the Precision software that do not include the incremental
synthesis feature. You might also use this feature if you perform synthesis in a
team-based environment without a top-level synthesis project that includes all of the
lower-level design blocks.

Example 15–22. Using incr_partition Attribute to Create a Partition in Verilog HDL

Design unit partition:

module my_block(
 input clk;
 output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 15–23. Using incr_partition Attribute to a Create Partition in VHDL

Design unit partition:

entity my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
 attribute incr_partition : boolean;
 attribute incr_partition of my_block : entity is true;
end entity my_block;

Instance partition:

component my_block is
 port(

clk : in std_logic;
data_out : out std_logic_vector(31 downto 0)
);

end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
 port map(clk, data_out);
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–27
Incremental Compilation and Block-Based Design
In the Precision Synthesis software, create a separate implementation, or a separate
project, for each lower-level module and for the top-level design that you want to
maintain as a separate netlist file. Implement black box instantiations of lower-level
modules in your top-level implementation or project.

f For more information about managing implementations and projects, refer to the
Precision RTL Synthesis User’s Manual. To access this manual, in the Precision Synthesis
software, click Help and select Open Manuals Bookcase.

When synthesizing the implementations for lower-level modules, perform these steps
in the Precision Synthesis software:

1. On the Tools menu, turn off Add IO Pads on the Optimization page under Set
Options.

1 You must turn off the Add IO Pads option while synthesizing the
lower-level modules individually. Enable the Add IO Pads option only
while synthesizing the top-level module.

2. Read the HDL files for the modules.

1 Modules can include black box instantiations of lower-level modules that
are also maintained as separate netlist files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these steps:

1. Read the HDL files for top-level designs.

2. On the Tools menu, click Set Options. On the Optimization page, turn on Add IO
Pads.

3. Create black boxes for lower-level modules in the top-level design.

4. Add constraints.

1 In a standard Quartus II incremental compilation flow, Precision Synthesis software
constraints made on lower-level modules are not passed to the Quartus II software.
Ensure that appropriate constraints are made in the top-level Precision Synthesis
project, or in the Quartus II project.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–28 Chapter 15: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
Creating Black Boxes to Create EDIF Netlists
This section describes how to create black boxes to create separate EDIF netlists.
Figure 15–2 shows an example of a design hierarchy separated into various partitions.

In Figure 15–2, the top-level partition contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In this example,
the partition for top-level block A also includes the logic in the sub-block C. Because
block F is contained in its own partition, it is not treated as part of the top-level
partition A. Another separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C, another netlist
is created for module B and its submodules D and E, while a third netlist is created for
module F. To create multiple EDIF netlist files for this design, follow these steps:

1. Generate an .edf file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the
source files.

2. Generate an .edf file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level .edf file for module A. Use A.v/.vhd and C.v/.vhd as the
source files. Ensure that you create black boxes for modules B and F, which were
optimized separately in the previous steps.

The goal is to individually synthesize and generate an .edf netlist file for each
lower-level module and then instantiate these modules as black boxes in the top-level
file. You can then synthesize the top-level file to generate the .edf netlist file for the
top-level design. Finally, both the lower-level and top-level .edf netlist files are
provided to your Quartus II project.

1 When you make design or synthesis optimization changes to part of your design,
resynthesize only the changed partition to generate the new .edf netlist file. Do not
resynthesize the implementations or projects for the unchanged partitions.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In Verilog HDL, you must
provide an empty module declaration for any module that is treated as a black box.

Figure 15–2. Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–29
Incremental Compilation and Block-Based Design
A black box for the top-level file A.v is shown in the following example. Provide an
empty module declaration for any lower-level files, which also contain a black box for
any module beneath the current level of hierarchy.

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list of files to be
read for a project is treated as a black box by the software. In VHDL, you must
provide a component declaration for the black box.

A black box for the top-level file A.vhd is shown in Example 15–25. Provide a
component declaration for any lower-level files that also contain a black box or for
any block beneath the current level of hierarchy.

Example 15–24. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
input data_in, clk, e, ld;
output [15:0] data_out;
wire [15:0] cnt_out;
B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
// Any other code in A.v goes here.

endmodule
// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.
module B (data_in, clk, ld, data_out);

input data_in, clk, ld;
output [15:0] data_out;

endmodule
module F (d, clk, e, q);

input [15:0] d;
input clk, e;
output [15:0] q;

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–30 Chapter 15: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
After you complete the steps outlined in this section, you have different EDIF netlist
files for each partition of the design. These files are ready for use with incremental
compilation in the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files
The Precision Synthesis software creates a .tcl file for each implementation, and
provides the Quartus II software with the appropriate constraints and information to
set up a project. When using incremental synthesis, the Precision RTL Plus Synthesis
software creates only a single .tcl file, <project name>_incr_partitions.tcl, to pass the
partition information to the Quartus II software. For details about using this Tcl script
to set up your Quartus II project and to pass your top-level constraints, refer to
“Running the Quartus II Software Manually Using the Precision Synthesis-Generated
Tcl Script” on page 15–11.

Example 15–25. VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
COMPONENT F PORT(

d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here
END a_arch;
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 15: Mentor Graphics Precision Synthesis Support 15–31
Incremental Compilation and Block-Based Design
Depending on your design methodology, you can create one Quartus II project for all
EDIF netlists, or a separate Quartus II project for each EDIF netlist. In the standard
incremental compilation design flow, you create design partition assignments for each
partition in the design within a single Quartus II project. This methodology provides
the best QoR and performance preservation during incremental changes to your
design. You might require a bottom-up design flow if each partition must be
optimized separately, such as for third-party IP delivery.

To follow this design flow in the Quartus II software, create separate Quartus II
projects and export each design partition and incorporate it into a top-level design
using the incremental compilation features to maintain placement results.

The following sections describe how to create the Quartus II projects for these two
design flows.

Creating a Single Quartus II Project for a Standard Incremental Compilation
Flow
Use the <top-level project>.tcl file generated for the top-level partition to create your
Quartus II project and import all the netlists into this one Quartus II project for an
incremental compilation flow. You can optimize all partitions within the single
Quartus II project and take advantage of the performance preservation and
compilation time reduction that incremental compilation provides. Figure 15–3 shows
the design flow for the example design in Figure 15–2 on page 15–28.

All the constraints from the top-level implementation are passed to the Quartus II
software in the top-level .tcl file, but any constraints made only in the lower-level
implementations within the Precision Synthesis software are not forward-annotated.
Enter these constraints manually in your Quartus II project.

Figure 15–3. Design Flow Using Multiple EDIF Files with One Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
top-level Precsion
Synthesis software

assignments.
Enter any lower level

assignments manually.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

15–32 Chapter 15: Mentor Graphics Precision Synthesis Support
Incremental Compilation and Block-Based Design
Creating Multiple Quartus II Projects for a Bottom-Up Flow
Use the .tcl files generated by the Precision Synthesis software for each Precision
Synthesis software implementation or project to generate multiple Quartus II projects,
one for each partition in the design. Each designer in the project can optimize their
block separately in the Quartus II software and export the placement of their blocks
using incremental compilation. Designers should create a LogicLock region to
provide a floorplan location assignment for each block; the top-level designer should
then import all the blocks and assignments into the top-level project. Figure 15–4
shows the design flow for the example design in Figure 15–2 on page 15–28.

Hierarchy and Design Considerations
To ensure the proper functioning of the synthesis flow, you can create separate
partitions only for modules, entities, or existing netlist files. In addition, each module
or entity must have its own design file. If two different modules are in the same
design file, but are defined as being part of different partitions, incremental synthesis
cannot be maintained because both regions must be recompiled when you change one
of the modules.

Altera recommends that you register all inputs and outputs of each partition. This
makes logic synchronous and avoids any delay penalty on signals that cross partition
boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software
pushes the tri-states through the hierarchy to the top-level to make use of the tri-state
drivers on output pins of Altera devices. Because pushing tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Figure 15–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision Synthesis
software assignments.

Use f.tcl to import
Precision Synthesis
software assignments.

Use b.tcl to import
Precision Synthesis

software assignments.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 15: Mentor Graphics Precision Synthesis Support 15–33
Conclusion
Conclusion
The Mentor Graphics Precision Synthesis software and Quartus II design flow allow
you to control how to prepare your design files for the Quartus II place-and-route
process, which allows you to improve performance and optimizes your design for use
with Altera devices. Several of the methodologies outlined in this chapter can help
you optimize your design to achieve performance goals and decrease design time.

Document Revision History
Table 15–5 shows the revision history for this document.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this chapter.

Table 15–5. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Removed Classic Timing Analyzer support.

■ Added support for .vqm netlist files.

■ Edited the “Creating Quartus II Projects for Multiple EDIF Files” on page 15–30 section for
changes with the incremental compilation flow.

■ Editorial changes.

July 2010 10.0.0 ■ Minor updates for the Quartus II software version 10.0 release

November 2009 9.1.0 ■ Minor updates for the Quartus II software version 9.1 release

March 2009 9.0.0
■ Updated list of supported devices for the Quartus II software version 9.0 release

■ Chapter 11 was previously Chapter 10 in software version 8.1

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size

■ Title changed to Mentor Graphics Precision Synthesis Support

■ Updated list of supported devices

■ Added information about the Precision RTL Plus incremental synthesis flow

■ Updated Figure 10-1 to include SystemVerilog

■ Updated “Guidelines for Altera Megafunctions and Architecture-Specific Features” on
page 10–19

■ Updated “Incremental Compilation and Block-Based Design” on page 10–28

■ Added section “Creating Partitions with the incr_partition Attribute” on page 10–29

May 2008 8.0.0

■ Removed Mercury from the list of supported devices

■ Changed Precision version to 2007a update 3

■ Added note for Stratix IV support

■ Renamed “Creating a Project and Compiling the Design” section to “Creating and
Compiling a Project in the Precision RTL Synthesis Software”

■ Added information about constraints in the Tcl file

■ Updated document based on the Quartus II software version 8.0
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

15–34 Chapter 15: Mentor Graphics Precision Synthesis Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51010-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51010-10.1.0
16. Mentor Graphics LeonardoSpectrum
Support
This chapter documents key design methodologies and techniques for Altera®
devices using the LeonardoSpectrum and Quartus II design flow.

This chapter includes the following sections:

■ “Altera Device Family Support”

■ “Design Flow” on page 16–2

■ “LeonardoSpectrum Optimization Strategies” on page 16–4

■ “Timing Analysis with the LeonardoSpectrum Software” on page 16–6

■ “Exporting Designs Using NativeLink Integration” on page 16–7

■ “Guidelines for Altera Megafunctions and LPM Functions” on page 16–8

■ “Block-Based Design with the Quartus II Software” on page 16–16

f Altera recommends using the advanced Mentor Graphics Precision RTL Synthesis
software for new designs in new device families. For more information about
Precision RTL Synthesis, refer to the Mentor Graphics Precision Synthesis Support
chapter in volume 1 of the Quartus II Handbook.

1 This chapter assumes that you have set up, licensed, and are familiar with the
LeonardoSpectrum software.

f To obtain and license the LeonardoSpectrum software, refer to the Mentor Graphics
website at www.mentor.com. For information about installing the LeonardoSpectrum
software and setting up your working environment, refer to the LeonardoSpectrum
Installation Guide and the LeonardoSpectrum User’s Manual.

Altera Device Family Support
The LeonardoSpectrum software is a mature synthesis tool supporting legacy devices
and many current devices; however, newly-released devices may not be supported.

1 Contact Mentor Graphics for more information about support for newly-released
devices.

The LeonardoSpectrum software also supports the FLEX 8000 and MAX 9000 legacy
devices that are supported only in the Altera MAX+PLUS® II software, as well as
ACEX® 1K, APEX™ II, APEX 20K, APEX 20KC, APEX 20KE, FLEX® 10K, and
FLEX 6000 legacy devices that are supported by the Quartus II software version 9.0
and earlier.
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51010

16–2 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Design Flow
Design Flow
The following steps describe a basic Quartus II software design flow using the
LeonardoSpectrum software:

1. Create Verilog HDL or VHDL design files.

2. Import the Verilog HDL or VHDL design files into the LeonardoSpectrum
software for synthesis.

3. Select a target device and add timing constraints and compiler directives to help
optimize the design during synthesis.

4. Synthesize the project in the LeonardoSpectrum software.

5. Create a Quartus II project and import the technology-specific EDIF Input File
(.edf) netlist and the Tcl Script File (.tcl) generated by the LeonardoSpectrum
software into the Quartus II software for placement and routing and performance
evaluation.

6. After obtaining place-and-route results that meet your requirements, configure or
program the Altera device.

Figure 16–1 on page 16–3 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

If your area and timing requirements are met, use the programming files generated by
the Quartus II software to program or configure the Altera device. If the area or
timing requirements are not met, change the constraints in the LeonardoSpectrum
software and rerun synthesis. Repeat the process until the area and timing
requirements are met. You can also use other Quartus II software options and
techniques to meet the area and timing requirements.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–3
Design Flow
The LeonardoSpectrum software supports both VHDL and Verilog HDL source files.
With the appropriate license, the software also supports mixed synthesis, allowing a
combination of VHDL and Verilog HDL source files. During synthesis, the
LeonardoSpectrum software produces several intermediate and output files, which
are listed and described in Table 16–1.

Figure 16–1. Recommended Design Flow Using LeonardoSpectrum and Quartus II Software

No

Functional/RTL
Simulation

Yes

Timing and Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post-Synthesis
Simulation Files

(.vho/.vo)

Forward Annotated
Timing Constraints
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)
Gate-Level
Functional
Simulation

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/
Programming
Files (.sof/.pof)

LeonardoSpectrum Software

Quartus II Software

Constraints
and Settings

Constraints
and Settings

Program/Configure Device

Verilog
HDL
(.v)

VHDL
(.vhd)

Table 16–1. LeonardoSpectrum Intermediate and Output Files

File Extension(s) File Description

.xdb Technology-independent register transfer level (RTL) netlist file that can only be read by the
LeonardoSpectrum software.

.edf Technology-specific output netlist file in electronic design interchange format (EDIF).

.tcl
Forward-annotated constraints file containing constraints and assignments.

A .tcl file for the Quartus II software is created for all devices. The .tcl file contains the appropriate
Tcl commands to create and set up a Quartus II project and pass placement constraints.

.acf
Assignment and Configurations file for backward compatibility with the MAX+PLUS II software.
For devices supported by the MAX+PLUS II software, the MAX+PLUS II assignments are imported
from the MAX+PLUS II .acf file.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–4 Chapter 16: Mentor Graphics LeonardoSpectrum Support
LeonardoSpectrum Optimization Strategies
Altera recommends that you do not use project directory names that include spaces.
Some file operations in the LeonardoSpectrum software do not work correctly if the
path name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). These constraints are
forward-annotated in the .tcl file for use with the Classic Timing Analyzer in the
Quartus II software version 10.0 and earlier.

1 The LeonardoSpectrum software does not generate a Synopsys Design Constraint
(SDC) format file for the TimeQuest Timing Analyzer. If you are using a current
version of the Quartus II software, you must convert your timing constraints to SDC
format. Altera recommends using the advanced Precision RTL Synthesis software for
new designs in new device families, instead of using the LeonardoSpectrum software.

The LeonardoInsight™ Schematic Viewer is an add-on graphical tool for schematic
views of the technology-independent RTL netlist (.xdb) and the technology-specific
gate-level results. You can use the Schematic Viewer to visually analyze and debug
the design. It also supports cross-probing between the RTL and gate-level schematics,
the design browser, and the source code in the HDLInventor™ text editor.

LeonardoSpectrum Optimization Strategies
You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. FlowTabs provide additional options, some
including multiple PowerTabs at the bottom of the screen, with more options.
Advanced optimization options in the LeonardoSpectrum software include
timing-driven synthesis, encoding style, resource sharing, and mapping I/O registers.

Timing-Driven Synthesis
The LeonardoSpectrum software supports timing-driven synthesis through
user-assigned timing constraints that optimize the performance of the design.
Constraints, such as clock frequency, can be specified globally or for individual clock
signals. The following sections describe how to set the various types of timing
constraints in the LeonardoSpectrum software.

The timing constraints described in “Global PowerTab” are set in the Constraints
FlowTab. In this FlowTab, there are PowerTabs at the bottom, such as Global and
Clock, for setting various constraints.

Global PowerTab
The Global PowerTab is the default PowerTab in the Constraints FlowTab where you
can specify the global clock frequency. The Clock Frequency setting on the Quick
Setup tab is equivalent to the Registers to Registers delay setting. You can also
specify the Input Ports to Registers, Registers to Output Ports, and Inputs to
Outputs delays that correspond to global tSU, tCO, and tPD requirements, respectively,
in the Quartus II software. The timing diagram on the Global PowerTab reflects the
settings you have made.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–5
LeonardoSpectrum Optimization Strategies
Clock PowerTab
You can set various constraints for each clock in your design. First, select the clock
name in the Clock(s) window. The clock names appear after the design is read from
the Input FlowTab. Configure settings for that particular clock and click Apply. You
can also specify the Duty Cycle, which is set to 5-% by default. The timing diagram
shows these settings.

If a clock has an Offset from the main clock, which is considered to be time “0”, this
constraint corresponds to the OFFSET_FROM_BASE_CLOCK setting in the Quartus II
software.

You can specify the pin number for the clock input pin in the Pin Location box. This
pin number is passed to the Quartus II software for place-and-route, but does not
affect synthesis in the LeonardoSpectrum software.

Input and Output PowerTabs
Configure settings for individual input or output pins in the Input and Output tabs.
First, select a name in the Input Ports or Output Ports window. The names appear
after the design is read from the Input FlowTab. Then, make the following settings for
that pin as described below.

The Arrival Time indicates that the input signal arrives a specified time after the
rising clock edge (time “0”). This setting constrains the path from the pin to the first
register by including the arrival time in the total delay, and corresponds to the
EXTERNAL_INPUT_DELAY assignment in the Quartus II software.

The Required Time indicates the maximum delay after time “0” that the output
signal should arrive at the output pin. This setting directly constrains the register to
output delay, and corresponds to the EXTERNAL_OUTPUT_DELAY assignment in the
Quartus II software.

Specify the pin number for the I/O pin in the Pin Location box. This pin number is
passed to the Quartus II software for place-and-route, but does not affect synthesis in
the LeonardoSpectrum software.

Other Constraints
The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface:

■ “Encoding Style”

■ “Resource Sharing” on page 16–6

■ “Mapping I/O Registers” on page 16–6

Encoding Style
The LeonardoSpectrum software encodes state machines during the synthesis
process. To improve performance when coding state machines, separate state machine
logic from all arithmetic functions and data paths. When encoded, a design cannot be
re-encoded later in the optimization process. You must follow a particular VHDL or
Verilog HDL coding style for the LeonardoSpectrum software to identify the state
machine.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–6 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Timing Analysis with the LeonardoSpectrum Software
Table 16–2 describes the state machine encoding styles supported by the
LeonardoSpectrum software.

The Encoding Style is created in the Input FlowTab. The setting instructs the software
to use a particular state machine encoding style for all state machines. The default
Auto encoding style implements binary or one-hot encoding, depending on the size of
enumerated types in the state machine.

f To ensure proper recognition and improve performance when coding state machines,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook for design guidelines.

Resource Sharing
You should turn on Resource Sharing in the Input FlowTab to allow optimization,
which reduces device resources.

Mapping I/O Registers
The Map I/O Registers option in the Technology FlowTab, is available for Altera
FPGAs containing I/O cells (IOC) or I/O elements (IOE). If this option is turned on,
input or output registers are moved into the device’s I/O cells for faster setup or
clock-to-output times.

Timing Analysis with the LeonardoSpectrum Software
The LeonardoSpectrum software reports successful synthesis with an information
message in the Transcript or Information window. Estimated device usage and timing
results are reported in the Device Utilization section of this window. Figure 16–2 on
page 16–7 shows an example of a LeonardoSpectrum compilation report.

Table 16–2. State Machine Encoding Styles in the LeonardoSpectrum Software

Style Description

Binary Generates state machines with the fewest possible flipflops. Binary state machines are useful for
area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded state
machines tend to be free of glitches.

One-hot
Generates state machines containing one flipflop for each state. One-hot state machines provide the best
performance and shortest clock-to-output delays. However, one-hot implementations are usually larger
than binary implementations.

Random Generates state machines using random state machine encoding. Use random state machine encoding
only when no other implementation achieves the desired results.

Auto (Default) Implements binary or one-hot encoding, depending on the size of enumerated types in the state machine.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–7
Exporting Designs Using NativeLink Integration
The LeonardoSpectrum software estimates the timing results based on timing models.
The software does not have the design’s place-and-route information in the Quartus II
software, so it cannot report accurate routing delays. Additionally, if the design
includes any black boxed Altera-specific functions, the LeonardoSpectrum software
does not report timing information for these functions.

Exporting Designs Using NativeLink Integration
You can use NativeLink® integration to integrate the LeonardoSpectrum and the
Quartus II software with a single GUI for both the synthesis and place-and-route
operations. You can run the Quartus II software from within the LeonardoSpectrum
software GUI with NativeLink integration or you can run the LeonardoSpectrum
software from within the Quartus II software GUI for device families supported in the
Quartus II software.

Generating Netlist Files
The LeonardoSpectrum software generates an .edf netlist file readable as an input file
in the Quartus II software for place-and-route. Select the .edf file option name in the
Output FlowTab. The .edf file is also generated if the Auto option is turned on in the
Output FlowTab.

Including Design Files for Black Boxed Modules
Be sure to include the MegaWizard™ Plug-In Manager-generated custom
megafunction variation design file in the Quartus II project directory, or add it to the
list of project files for place-and-route, if the design has black boxed megafunctions.

Figure 16–2. LeonardoSpectrum Compilation Report
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–8 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions
Passing Constraints with Scripts
The LeonardoSpectrum software can create a Tcl script (.tcl) file called <project
name>.tcl. This file contains commands to create a Quartus II project along with
constraints and other assignments. To output a .tcl file, turn on Write Vendor
Constraint Files in the Output FlowTab.

To create and compile a Quartus II project using the .tcl file generated from the
LeonardoSpectrum software, perform the following steps in the Quartus II software:

1. Place the .edf and .tcl files in the same directory.

2. On the View menu, point to Utility Windows, and click Tcl Console to open the
Quartus II Tcl Console.

3. At the Tcl prompt, type source <path>/<project name>.tcl.

4. On the File menu, click Open Project to open the new project.

5. On the Processing menu, click Start Compilation.

1 The LeonardoSpectrum software does not generate a Synopsys Design Constraint
(SDC) format file for the TimeQuest Timing Analyzer. If you are using a current
version of the Quartus II software, you must convert your timing constraints to SDC
format. Altera recommends using the advanced Precision RTL Synthesis software for
new designs in new device families, instead of using the LeonardoSpectrum software.

Integration with the Quartus II Software
You can launch the Quartus II software from within the LeonardoSpectrum software
with the options in the Place And Route section of the Quick Setup tab. Turn on the
Run Integrated Place and Route option to start the compilation in the Quartus II
software to show the fitting and performance results. You can also run
place-and-route in the Quartus II software by turning on Run Quartus on the
Physical FlowTab, and then clicking Run PR.

To use integrated place-and-route, on the Options menu, point to Place and Route
Path and click Tools. Specify the location of the Quartus II software executable file
(<Quartus II software installation directory>/bin).

Guidelines for Altera Megafunctions and LPM Functions
Altera provides parameterizable megafunctions ranging from simple arithmetic units,
such as adders and counters, to advanced phase-locked loop (PLL) blocks,
multipliers, and memory structures. These functions are performance-optimized for
Altera devices. Megafunctions include the library of parameterized modules (LPM),
device-specific megafunctions such as PLLs, LVDS, and digital signal processing
(DSP) blocks, intellectual property (IP) available as Altera MegaCore® functions, and
IP available through the Altera Megafunction Partners Program (AMPPsm).

1 Some IP cores require synthesis in the LeonardoSpectrum software. Refer to the user
guide for the specific IP.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–9
Guidelines for Altera Megafunctions and LPM Functions
You can infer or instantiate megafunctions in the LeonardoSpectrum software. The
LeonardoSpectrum software supports inferring some Altera megafunctions, such as
multipliers, DSP functions, and RAM and ROM blocks. The LeonardoSpectrum
software supports all Altera megafunctions through instantiation.

Instantiating Altera Megafunctions
There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The more common method, which maintains target
technology awareness, is to set up and parameterize a megafunction variation in the
MegaWizard Plug-In Manager in the Quartus II software. The megafunction wizard
creates a wrapper file that instantiates the megafunction. The less common method is
to directly instantiate the megafunction in the Verilog HDL or VHDL code. The
advantage of using the megafunction wizard method over the instantiation method is
that the megafunction wizard properly sets all the parameters. Also you do not need
the library support, which is required in the instantiation method. This is referred to
as black box methodology.

1 Altera recommends using the MegaWizard Plug-In Manager to ensure that the ports
and parameters are set correctly.

f When directly instantiating megafunctions, refer to the respective megafunction user
guide on the Altera IP and Megafunction page.

Inferring Altera Memory Elements
The LeonardoSpectrum software can infer memory blocks from Verilog HDL or
VHDL code. When the LeonardoSpectrum software detects a RAM or ROM from the
style of the RTL code at a technology-independent level, the software maps the
element to a generic module in the RTL database. During the technology-mapping
phase of synthesis, the LeonardoSpectrum software maps the generic module to the
most optimal primitive memory cells, or Altera megafunction, for the target Altera
technology.

f For more information about inferring RAM and ROM megafunctions, including
examples of VHDL and Verilog HDL code, see the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

Inferring RAM

The LeonardoSpectrum software supports RAM inference for various device families.
The following are the restrictions for the LeonardoSpectrum software to successfully
infer RAM in a design:

■ The write process must be synchronous.

■ The read process can be asynchronous or synchronous, depending on the target
Altera architecture.

■ Resets on the memory are not supported.

The Stratix series and Cyclone series devices support the RAM primitive altsyncram
with a minimum RAM size of two bits, and a minimum RAM address width of
one bit.

To disable RAM inference, set the extract_ram and infer_ram variables to false.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

16–10 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions
To enter the value false when performing synthesis in the user interface with the
Advanced FlowTabs, on the Tools menu, click Variable Editor, or add the set
extract_ram false and set infer_ram false commands to your synthesis script.

Inferring ROM

You can implement ROM behavior in HDL source code with CASE statements or
specify the ROM as a table. The LeonardoSpectrum software infers both synchronous
and asynchronous ROM, depending on the target Altera device. For example,
memory for Stratix series devices must be synchronous to be inferred.

To disable ROM inference, set the extract_rom variable to false. To enter the value
false when performing synthesis in the user interface with the Advanced FlowTabs,
on the Tools menu, click Variable Editor, or add the set extract_rom false
commands to your synthesis script.

Inferring Multipliers and DSP Functions
Some Altera devices include dedicated DSP blocks optimized for DSP applications.
The following Altera megafunctions are used with DSP block modes:

■ LPM_MULT

■ ALTMULT_ACCUM

■ ALTMULT_ADD

You can instantiate these megafunctions in the design or direct the LeonardoSpectrum
software to infer the appropriate megafunction by recognizing a multiplier,
multiplier-accumulator (MAC), or multiplier-adder in the design. The Quartus II
software maps the functions to the DSP blocks in the device during place-and-route.

f For more information about inferring multipliers and DSP functions, including
examples of VHDL and Verilog HDL code, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Simple Multipliers
The LPM_MULT megafunction implements the DSP block in the simple multiplier
mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage.

■ Signed and unsigned arithmetic is supported.

Multiplier Accumulators
The ALTMULT_ACCUM megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage.

■ The output registers are required for the accumulator.

■ The input and pipeline registers are optional.

■ Signed and unsigned arithmetic is supported.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–11
Guidelines for Altera Megafunctions and LPM Functions
1 If the design requires input registers to be used as shift registers, use the black box
method to instantiate the ALTMULT_ACCUM megafunction.

Multiplier Adders
The LeonardoSpectrum software can infer multiplier adders and map them to either
the two-multiplier adder mode or the four-multiplier adder mode of the DSP blocks.
The LeonardoSpectrum software maps the HDL code to the correct ALTMULT_ADD
function.

The following functionality is supported in these modes:

■ The DSP block includes registers for the input and output stages, and an
intermediate pipeline stage.

■ Signed and unsigned arithmetic is supported, but support for the Verilog HDL
signed construct is limited.

Controlling DSP Block Inference
Device features, such as dedicated DSP blocks, multipliers, multiply-accumulators,
and multiply-adders can be implemented in DSP blocks or in logic. You can control
this implementation through attribute settings in the LeonardoSpectrum software.

As described in Table 16–3, attribute settings in the LeonardoSpectrum software
control the implementation of the multipliers in DSP blocks or logic at the signal block
(or module), and project level.

Global Attribute
You can set the extract_mac global attribute to control the implementation of
multipliers in DSP blocks for the entire project. You can set this attribute with the
following script command:

set extract_mac <value>

Table 16–3. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software (Note 1)

Level Attribute Name Value Description

Global extract_mac (2)
TRUE All multipliers in the project are mapped to DSP blocks.

FALSE All multipliers in the project are mapped to logic.

Module extract_mac (3)
TRUE Multipliers inside the specified module are mapped to DSP blocks.

FALSE Multipliers inside the specified module are mapped to logic.

Signal dedicated_mult

ON LPM is inferred and multipliers are implemented in DSP block.

OFF
LPM is inferred, but multipliers are implemented in logic by the Quartus II
software.

LCELL
LPM is not inferred, and multipliers are implemented in logic by the
LeonardoSpectrum software.

AUTO
LPM is inferred, but the Quartus II software automatically maps the multipliers
to either logic or DSP blocks based on the Quartus II software place-and-route.

Notes to Table 16–3:

(1) The extract_mac attribute takes precedence over the dedicated_mult attribute.
(2) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for all modules.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–12 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions
Module Level Attributes
You can control the implementation of multipliers inside a module or component by
setting the extract_mac attribute in the Verilog HDL source code. Setting this
attribute for a module affects only the multipliers inside that module. Use the
following command:

//synthesis attribute <module name> extract_mac <value>

The Verilog HDL and VHDL code samples in Example 16–1 and Example 16–2 show
how to use the extract_mac attribute.

Example 16–1. Using Module Level Attributes in Verilog HDL Code

module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE
// Port Declaration
input [15:0] dataa;
input [15:0] datab;
input [15:0] datac;
input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] mult0_result;
wire [31:0] mult1_result;

// Implementation
// Each of these can go into one of the 4 mults in a
// DSP block
assign mult0_result = dataa * `signed datab;
//synthesis attribute mult0_result preserve_signal TRUE

assign mult1_result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (mult0_result + mult1_result);

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–13
Guidelines for Altera Megafunctions and LPM Functions
Signal Level Attributes
You can control the implementation of individual LPM_MULT multipliers with the
dedicated_mult attribute, as shown in the following example:

//synthesis attribute <signal_name> dedicated_mult <value>

1 The dedicated_mult attribute is only applicable to signals or wires; it is not applicable
to registers.

Table 16–4 describes the supported values for the dedicated_mult attribute.

Example 16–2. Using Module Level Attributes in VHDL Code

library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

entity mult_acc is
 generic (size : integer := 4) ;
 port (
 a: in std_logic_vector (size-1 downto 0) ;
 b: in std_logic_vector (size-1 downto 0) ;
 clk : in std_logic;

accum_out: inout std_logic_vector (2*size downto 0)
) ;
 attribute extract_mac : boolean;
 attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

architecture synthesis of mult_acc is
 signal a_int, b_int : signed (size-1 downto 0);
 signal pdt_int : signed (2*size-1 downto 0);
 signal adder_out : signed (2*size downto 0);

begin
 a_int <= signed (a);
 b_int <= signed (b);
 pdt_int <= a_int * b_int;
 adder_out <= pdt_int + signed(accum_out);
 process (clk)
 begin
 if (clk'event and clk = '1') then
 accum_out <= std_logic_vector (adder_out);
 end if;
 end process;
end synthesis ;

Table 16–4. Values for the dedicated_mult Attribute (Part 1 of 2)

Value Description

ON LPM is inferred and multipliers are implemented in the DSP block.

OFF
LPM is inferred and multipliers are synthesized, implemented in logic, and optimized by the Quartus II software.
(1)

LCELL
LPM is not inferred and multipliers are synthesized, implemented in logic, and optimized by the
LeonardoSpectrum software. (1)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–14 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Guidelines for Altera Megafunctions and LPM Functions
1 Some signals for which the dedicated_mult attribute is set may be removed during
synthesis by the LeonardoSpectrum software due to design optimization. In such
cases, if you want to force the implementation, you can preserve the signal from being
removed during synthesis by setting the preserve_signal attribute to true.

The extract_mac attribute must be set to false for the module or project level when
using the dedicated_mult attribute.

Example 16–3 and Example 16–4 are samples of Verilog HDL and VHDL codes,
respectively, using the dedicated_mult attribute.

AUTO
LPM is inferred, but the Quartus II software maps the multipliers automatically to either the DSP block or logic
based on resource availability.

Note to Table 16–4:

(1) Although both dedicated_mult=OFF and dedicated_mult=LCELLS result in logic implementations, the optimized results in these two cases may
differ.

Table 16–4. Values for the dedicated_mult Attribute (Part 2 of 2)

Value Description

Example 16–3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult (AX, AY, BX, BY, m, n, o, p);
input [7:0] AX, AY, BX, BY;
output [15:0] m, n, o, p;
wire [15:0] m_i = AX * AY; // synthesis attribute m_i dedicated_mult ON
// synthesis attribute m_i preserve_signal TRUE
//Note that the preserve_signal attribute prevents
// signal m_i from being removed during synthesis
wire [15:0] n_i = BX * BY; // synthesis attribute n_i dedicated_mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o_i dedicated_mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p_i dedicated_mult
LCELL
// since n_i , o_i , p_i signals are not preserved,
// they may be removed during synthesis based on the design
assign m = m_i;
assign n = n_i;
assign o = o_i;
assign p = p_i;
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–15
Guidelines for Altera Megafunctions and LPM Functions
Guidelines for Using DSP Blocks
In addition to the guidelines mentioned earlier in this section, use the following
guidelines when designing with DSP blocks in the LeonardoSpectrum software:

■ To access all the control signals for the DSP block, such as sign A, sign B, and
dynamic addnsub, use the black box technique.

■ While performing signed operations, ensure that the specified data width of the
output port matches the data width of the expected result. Otherwise, the sign bit
might be lost or data might be incorrect because the sign is not extended. For
example, if the data widths of input A and B are width_a and width_b, respectively,
the maximum data width of the result can be (width_a + width_b +2) for the
four-multipliers adder mode. Thus, the data width of the output port should be
less than or equal to (width_a + width_b +2).

■ While using the accumulator, the data width of the output port should be equal to
or greater than (width_a + width_b). The maximum width of the accumulator can
be (width_a + width_b + 16). Accumulators wider than this are implemented in
logic.

Example 16–4. Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_signed.all;
ENTITY mult is

PORT(AX,AY,BX,BY: IN
std_logic_vector (17 DOWNTO 0);
m,n,o,p: OUT
std_logic_vector (35 DOWNTO 0));
attribute dedicated_mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n_i, o_i, p_i : unsigned (35 downto 0);
attribute dedicated_mult of m_i:signal is "ON";
attribute dedicated_mult of n_i:signal is "OFF";
attribute dedicated_mult of o_i:signal is "AUTO";
attribute dedicated_mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n_i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_i <= unsigned (BX) * unsigned (AY);

m <= std_logic_vector(m_i);
n <= std_logic_vector(n_i);
o <= std_logic_vector(o_i);
p <= std_logic_vector(p_i);
end struct;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–16 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
■ If the design uses more multipliers than are available in a particular device, the
Quartus II software may issue a no fit error. In such cases, use the attribute settings
in the LeonardoSpectrum software to control the mapping of multipliers in your
design to DSP blocks or logic.

Block-Based Design with the Quartus II Software
The incremental compilation design flow with LogicLock™ constraints enables users
to design, optimize, and lock down a design one section at a time. You can
independently create and implement each logic module into a hierarchical or
team-based design. With this method, you can preserve the performance of each
module during system integration and have more control over the placement of your
design. To maximize the benefits of the incremental compilation in the Quartus II
software, you can partition a new design into a hierarchy of netlist files during
synthesis in the LeonardoSpectrum software.

You can create different netlist files with the LeonardoSpectrum software for different
sections of a design hierarchy. Having different netlist files means that each section is
independent of the others. When synthesizing the entire project, only portions of a
design that have been updated must be resynthesized when you compile the design.
You can make changes, optimize, and resynthesize your section of a design without
affecting other sections.

f For more information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook. For more information about the LogicLock feature, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

Hierarchy and Design Considerations
You must plan your design’s structure and partitioning carefully to use incremental
compilation and LogicLock features effectively. Optimal hierarchical design practices
include partitioning the blocks at functional boundaries, registering the boundaries of
each block, minimizing the I/O between each block, separating timing-critical blocks,
and keeping the critical path within one hierarchical block.

f For more recommendations for hierarchical design partitioning, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can apply the LogicLock
option in the LeonardoSpectrum software only to modules, entities, or netlist files. In
addition, each module or entity should have its own design file. It is difficult to
maintain incremental synthesis if two different modules are in the same design file,
but are defined as being part of different regions, because both regions must be
recompiled when you change one of the modules or entities.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–17
Block-Based Design with the Quartus II Software
If you use boundary tri-states in a lower-level block, the LeonardoSpectrum software
pushes, or bubbles, the tri-states through the hierarchy to the top-level to take
advantage of the tri-state drivers on the output pins of the Altera device. Because
bubbling tri-states require optimizing through hierarchies, lower-level tri-states are
not supported with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in the
hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across boundaries,
preventing you from making LogicLock assignments to the flattened blocks. Altera
recommends preserving the hierarchy when compiling the design. In the Optimize
command of your script, use the Hierarchy Preserve command, or in the user
interface, specify Preserve in the Hierarchy section of the Optimize FlowTab.

If you are compiling your design with a script, you can use an alternative method for
preventing optimization across boundaries. In this case, use the Auto hierarchy
setting and set the auto_dissolve attribute to false on the instances or views that
you want to preserve (that is, the modules with LogicLock assignments) using the
following syntax:

set_attribute -name auto_dissolve -value false \
.work.<block1>.INTERFACE

This alternative method flattens your design according to the auto_dissolve limits,
but does not optimize across boundaries where you apply the attribute.

f For more details about LeonardoSpectrum attributes and hierarchy levels, refer to the
LeonardoSpectrum documentation in the Help menu.

Creating a Design with Multiple .edf Files
The first stage of a hierarchical design flow is to generate multiple .edf files, which
allows you to take advantage of the incremental compilation flow in the Quartus II
software. If the whole design is in one .edf file, changes in one block affect other
blocks because of possible node name changes. You can generate multiple .edf files
either by using the LogicLock option in the LeonardoSpectrum software, or by
manually using a black box methodology on each block that you want to include in a
LogicLock region.

After you create multiple .edf files with one of these methods, you must create the
appropriate Quartus II project(s) to place-and-route the design.

Generating Multiple .edf Files Using the LogicLock Option
This section describes how to generate multiple .edf files using the LogicLock option
in the LeonardoSpectrum software.

When synthesizing a top-level design that includes LogicLock regions, perform the
following general steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or click Run Flow.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–18 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
To set the correct constraints and compile the design, perform the following steps in
the LeonardoSpectrum software:

1. On the Tools menu, switch to the Advanced FlowTab instead of the Quick Setup
tab.

2. Set the target technology and speed grade for the device on the Technology
FlowTab.

3. Open the input source files on the Input FlowTab.

4. Click Read on the Input FlowTab to read the source files, but not begin
optimization.

5. Click the Module PowerTab located at the bottom of the Constraints FlowTab.

6. Select a module to be placed in a LogicLock region in the Modules section.

7. Turn on LogicLock.

8. Type the desired LogicLock region name under LogicLock.

9. Click Apply.

10. Repeat steps 6-9 for any other modules that you want to place in LogicLock
regions.

1 In some cases, you are prompted to save your LogicLock and other
non-global constraints in a Constraints File (.ctr) when you click anywhere
off the Constraints FlowTab. The default name is <project name>.ctr. This
file is added to your Input file list, and must be manually included later if
you recreate the project.

The command written into the LeonardoSpectrum Information or
Transcript Window is the Tcl command that is written into the .ctr file. The
format of the “path” for the module specified in the command should be
work.<module>.INTERFACE. To ensure that you do not see an optimized
version of the module, do not perform a Run Flow on the Quick Setup tab
prior to setting LogicLock constraints. Always use the Read command, as
described in step 4.

11. Make any other settings as required on the Constraints FlowTab.

12. Select Preserve in the Hierarchy section of the Optimize FlowTab to ensure that
the hierarchy names are not flattened during optimization.

13. Make any other settings as required on the Optimize FlowTab.

14. Run your synthesis flow with each FlowTab, or click Run Flow.

Synthesis creates an .edf file for each module that has a LogicLock assignment in the
Constraints FlowTab. You can now use these files with the incremental compilation
flow in the Quartus II software.

1 You might occasionally see multiple .edf files and LogicLock commands for the same
module. An “unfolded” version of a module is created when you instantiate a module
more than once and the boundary conditions of the instances are different. For
example, if you apply a constant to one instance of the block, it might be optimized to
eliminate unneeded logic. In this case, the LeonardoSpectrum software must create a
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–19
Block-Based Design with the Quartus II Software
separate module for each instantiation (unfolding). If this unfolding occurs, you see
more than one .edf file, and each .edf file has a LogicLock assignment to the same
LogicLock region. When you import the .edf files to the Quartus II software, the .edf
files created from the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the LogicLock
methodology must be performed separately for each .edf file.

Creating a Quartus II Project for Multiple .edf Files Including LogicLock
Regions
The LeonardoSpectrum software creates .tcl files that provide the Quartus II software
with the appropriate LogicLock assignments, creating a region for each .edf file along
with the information to set up a Quartus II project.

The .tcl file contains the commands shown in Example 16–5 for each LogicLock
region. This example is for module taps where the name taps_region is typed as the
LogicLock region name in the Constraints FlowTab in the LeonardoSpectrum
software.

These commands create a LogicLock region with auto-size and floating-origin
properties. This flexible LogicLock region allows the Quartus II Compiler to select the
size and location of the region.

f For more information about Tcl commands, refer to the Tcl Scripting chapter in
volume 2 of the Quartus II Handbook.

You can use the following methods to import the .edf file and corresponding .tcl file
into the Quartus II software:

■ Use the .tcl file that is created for each .edf file by the LeonardoSpectrum software.
This method allows you to generate multiple Quartus II projects, one for each
block in the design. Each designer in the project can optimize their block
separately in the Quartus II software and preserve their results. Altera
recommends this method for bottom-up incremental and hierarchical design
methodologies because it allows each block in the design to be treated separately.
Each block can be brought into one top-level project with the import function.

or

■ Use the <top-level project>.tcl file that contains the assignments for all blocks in the
project. This method allows the top-level designer to import all the blocks into one
Quartus II project. You can optimize all modules in the project at once in a
top-down design flow. If additional optimization is required for individual blocks,
each designer can use their .edf file to create a separate project at that time. You
must then add new assignments to the top-level project using the import function.

Example 16–5. Tcl File for Module Taps with taps_region as LogicLock Region Name

project add_assignment {taps} {taps_region} {} {}
{LL_AUTO_SIZE} {ON}

project add_assignment {taps} {taps_region} {} {}
{LL_STATE} {FLOATING}

project add_assignment {taps} {taps_region} {} {}
{LL_MEMBER_OF} {taps_region}
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

16–20 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
In both methods, use the following steps to create the Quartus II project, import the
appropriate LogicLock assignments, and compile the design:

1. Place the .edf and .tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console to open the
Quartus II Tcl Console.

3. At the Tcl prompt, type source <path>/<project name>.tcl r.

4. To open the newly completed project, on the File menu, click Open Project.
Browse to and select the project name, and click Open.

f For more information about importing a design using incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook. For more information about importing
LogicLock assignments, see the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

Generating Multiple .edf Files Using Black Boxes
This section describes how to manually generate multiple .edf files using the black
box technique. The manual flow, which was supported in older versions of the
LeonardoSpectrum software, is discussed here because some designers want more
control over the project for each submodule.

To create multiple .edf files in the LeonardoSpectrum software, create a separate
project for each module and top-level design that you want to maintain as a separate
.edf file. Implement black box instantiations of lower-level modules in your top-level
project.

When synthesizing the projects for the lower-level modules and the top-level design,
use the following general guidelines:

For lower-level modules:

■ Turn off Map IO Registers for the target technology on the Technology FlowTab.

■ Read the HDL files for the modules. Modules may include black box instantiations
of lower-level modules that are also maintained as separate .edf files.

■ Add constraints.

■ Turn off Add I/O Pads on the Optimize FlowTab.

For the top-level design:

■ Turn on Map IO Registers if you want to implement input and/or output
registers in the IOEs for the target technology on the Technology FlowTab.

■ Read the HDL files for the top-level design.

■ Black box lower-level modules in the top-level design.

■ Add constraints (clock settings should be made at this time).

The following sections describe examples of black box modules in a block-based and
team-based design flow.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–21
Block-Based Design with the Quartus II Software
In Figure 16–3, the top-level module A is assigned to one engineer (designer 1), while
two engineers work on the lower levels of the design. Designer 2 works on module B
and its submodules D and E, while designer 3 works on module C and its submodule
F.

One netlist is created for the top-level module A, another netlist is created for
module B and its submodules D and E, and another netlist is created for module C
and its submodule F. To create multiple .edf files, perform the following steps:

1. Generate an .edf file for module C. Use C.v and F.v as the source files.

2. Generate an .edf file for module B. Use B.v, D.v, and E.v as the source files.

3. Generate a top-level .edf file A.v for module A. Ensure that your black box
modules B and C were optimized separately in steps 1 and 2.

Black Box Methodology in Verilog HDL
Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the software. In Verilog HDL, you must
also provide an empty module declaration for the module that you plan to treat as a
black box.

Figure 16–3. Block-Based and Team-Based Design Example

D

Designer 1

F

Designer 2 Designer 3

E

A

CB
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–22 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
Example 16–6 shows an example of the A.v top-level file. If any of your lower-level
files also contain a black-boxed lower-level file in the next level of hierarchy, follow
the same procedure.

1 Previous versions of the LeonardoSpectrum software require the attribute statement
//exemplar attribute U1 NOOPT TRUE, which instructs the software to treat the
instance U1 as a black box. This attribute is no longer required, although it is still
supported in the software.

Black Boxing in VHDL
Any design block that is not defined in the project, or included in the list of files to be
read for a project, is treated as a black box by the LeonardoSpectrum software. In
VHDL, a component declaration is required for the black box.

Example 16–6. Verilog HDL Top-Level File Black Boxing Example

module A (data_in,clk,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B U1 (.data_in (data_in),.clk (clk), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for
blackboxing.

module B (data_in,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

endmodule

module C (d,clk,e,q);
input d, clk, e;
output [15:0] q;

endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–23
Block-Based Design with the Quartus II Software
Example 16–7 shows an example of the A.vhd top-level file. If any of your lower-level
files also contain a black-boxed lower-level file in the next level of hierarchy, follow
the same procedure.

Example 16–7. VHDL Top-Level File Black Boxing Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
e => e,
ld => ld,
data_out => cnt_out

);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => reg_a_out

);

-- Any other code in A.vhd goes here

END a_arch;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–24 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
1 Previous versions of the LeonardoSpectrum software require the attribute statement
noopt of C: component is TRUE, which instructs the software to treat the component
C as a black box. This attribute is no longer required, although it is still supported in
the software.

After you have completed the steps outlined in this section, you have a different .edf
netlist file for each block of code. You can now use these files for the incremental
compilation flow in the Quartus II software.

Creating a Quartus II Project for Multiple .edf Files
The LeonardoSpectrum software creates a .tcl file for each .edf file, which provides
the Quartus II software with the information to set up a project.

There are two different methods for importing each .edf file and corresponding .tcl
file into the Quartus II software:

■ Use the .tcl file that is created for each .edf file by the LeonardoSpectrum software.
This method generates multiple Quartus II projects, one for each block in the
design. Each designer in the project can optimize their block separately in the
Quartus II software and preserve their results. Designers should create a
LogicLock region for each block; the top-level designer should then import all the
blocks and assignments into the top-level project. Altera recommends this method
for bottom-up incremental and hierarchical design methodology because it allows
each block in the design to be treated separately; each block can be imported into
one top-level project.

or

■ Use the <top-level project>.tcl file that contains the information to set up the
top-level project. This method allows the top-level designer to create LogicLock
regions for each block and bring all the blocks into one Quartus II project.
Designers can optimize all modules in the project at once in a top-down design
flow. If additional optimization is required for individual blocks, each designer
creates a separate Quartus II project with each .edf file. New assignments must
then be added to the top-level project manually or through the import function.

f For more information about importing designs using incremental compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter
in volume 1 of the Quartus II Handbook. For more information about importing
LogicLock regions, refer to the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

With both methods, use the following steps to create the Quartus II project and
compile the design:

1. Place the .edf and .tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console. The
Quartus II Tcl Console appears.

3. At a Tcl prompt, type source <path>/<project name>.tcl r.

4. On the File menu, click Open Project. In the New Project window, browse to and
select the project name. Click Open.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–25
Block-Based Design with the Quartus II Software
5. To create LogicLock assignments, on the Assignments menu, click LogicLock
Regions Window. Use the LogicLock Regions window to create LogicLock
regions.

6. On the Processing menu, click Start Compilation.

Incremental Synthesis Flow
If you make changes to one or more submodules, you can manually create new
projects in the LeonardoSpectrum software to generate a new .edf file when there are
changes to the source files. Alternatively, you can use incremental synthesis to
generate a new netlist for the changed submodule(s). To perform incremental
synthesis in the LeonardoSpectrum software, use the script described in this section to
reoptimize and generate a new .edf file for only the affected modules using the
LeonardoSpectrum top-level project. This method applies only when you are using
the LogicLock option in the LeonardoSpectrum software.

Modifications Required for the LogicLock_Incremental.tcl Script File
There are three sets of entries in the file that must be modified before beginning
incremental synthesis. The variables in the .tcl file are surrounded by angle brackets
(< >).

1. Add the list of source files that are included in the project. You can enter the full
path to the file or just the file name if the files are located in the working directory.

2. Indicate which modules in the design have changed. These modules are the .edf
files that are regenerated by the LeonardoSpectrum software and contain a
LogicLock assignment in the original compilation.

1 Determine the LeonardoSpectrum software path for each module by
looking at the .ctr file that contains the LogicLock assignments from the
original project. Each LogicLock assignment is applied to a particular
module in the design.

3. Enter the target device family using the appropriate device keyword. The device
keyword is displayed on the Transcript or Information window when you select a
target Technology and click Load Library or Apply on the Technology FlowTab.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

16–26 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Block-Based Design with the Quartus II Software
Example 16–8 shows the LogicLock_Incremental.tcl file for the incremental synthesis
flow. You must modify the .tcl file before you can use it for your project.

Running the Tcl Script File in LeonardoSpectrum
After you modify the Tcl script, as described in “Modifications Required for the
LogicLock_Incremental.tcl Script File” on page 16–25, you can compile your design
using the script.

You can run the script in batch mode at the command-line prompt using the following
command:

spectrum -file <Tcl_file> r
To run the script from the GUI, on the File menu, click Run Script, then browse to
your .tcl file and click Open.

Example 16–8. LogicLock_Interface.tcl Script File for Incremental Synthesis

##
LogicLock Incremental Synthesis Flow
##

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules
that had LogicLock assignments and separate EDIF netlist files in the
first pass and had their source code modified)

set list_of_modified_modules {.work.<block2>.INTERFACE .work.<block1>.INTERFACE}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_touch $module

}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt $module

}

Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 16: Mentor Graphics LeonardoSpectrum Support 16–27
Conclusion
The LogicLock incremental design flow uses module-based design to help you
preserve performance of modules and have control over placement. By tagging the
modules that require separate .edf files, you can make multiple .edf files for use with
the Quartus II software from a single LeonardoSpectrum software project.

Conclusion
Taking advantage of the Mentor Graphics LeonardoSpectrum software and the
Quartus II design flow allows you to control how your design files are prepared for
the Quartus II place-and-route process, as well as to improve performance and
optimize a design for use with Altera devices. The methodologies outlined in this
chapter can help optimize a design to achieve performance goals and save design
time with the LeonardoSpectrum software. For the best results with new designs in
new device families, Altera recommends migrating to the advanced Mentor Graphics
Precision RTL Synthesis software.

Document Revision History
Table 16–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this chapter.

Table 16–5. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Removed support for the Classic Timing Analyzer.

■ Editorial changes.

July 2010 10.0.0

■ Updated supported devices.

■ Removed Referenced Documents section.

■ Minor updates for the version 10.0 release.

November 2009 9.1.0
■ Minor updates for the Quartus II software version 9.1 release.

■ Removed Table 12–3, Inferring RAM Summary.

March 2009 9.0.0
■ No change to content.

■ Chapter 12 was previously Chapter 11 in software release 8.1.

November 2008 8.1.0
■ Changed to 8-1/2” x 11” page size.

■ Updated Table 12–3.

May 2008 8.0.0 Updated date and part number and added hypertext links.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

16–28 Chapter 16: Mentor Graphics LeonardoSpectrum Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 1: Design
December 2010

QII51013-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII51013-10.0.1
17. Analyzing Designs with Quartus II
Netlist Viewers
This chapter describes how you can use the Quartus® II netlist viewers to analyze and
debug your designs. As FPGA designs grow in size and complexity, the ability to
analyze, debug, optimize, and constrain your design is critical. Often, with today’s
advanced designs, several design engineers are involved in coding and synthesizing
different design blocks, making it difficult to analyze and debug the design. The
Quartus II RTL Viewer, State Machine Viewer, and Technology Map Viewer provide
powerful ways to view your initial and fully mapped synthesis results during the
debugging, optimization, and constraint entry processes.

This chapter contains the following sections:

■ “Introduction to the User Interface” on page 17–6

■ “Navigating the Schematic View” on page 17–22

■ “Filtering in the Schematic View” on page 17–33

■ “Probing to a Source Design File and Other Quartus II Windows” on page 17–39

■ “Probing to the Netlist Viewers from Other Quartus II Windows” on page 17–40

■ “Viewing a Timing Path” on page 17–41

■ “Other Features in the Schematic Viewer” on page 17–42

The first section in this chapter, “When to Use the Netlist Viewers: Analyzing Design
Problems”, describes examples of using the netlist viewers to analyze your design at
various stages of the design cycle. The sections following this section provide an
introduction to the Quartus II design flow using the netlist viewers, an overview of
each viewer, and an explanation of the user interface. These sections describe the
following tasks:

■ How to navigate and filter schematics

■ How to probe to and from other windows in the Quartus II software

■ How to view a timing path from the Timing Analyzer report

When to Use the Netlist Viewers: Analyzing Design Problems
You can use the netlist viewers to analyze and debug your design. This section
provides simple examples of how to use the RTL Viewer, State Machine Viewer, and
Technology Map Viewer to analyze problems encountered in the design process.

The following sections contain information about how the netlist viewers display
your design:

■ “Quartus II Design Flow with the Netlist Viewers” on page 17–2

■ “RTL Viewer Overview” on page 17–4

■ “State Machine Viewer Overview” on page 17–5
and Synthesis

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51013

17–2 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Quartus II Design Flow with the Netlist Viewers
■ “Technology Map Viewer Overview” on page 17–5

Using the RTL Viewer is a good way to view your initial synthesis results to
determine whether you have created the necessary logic, and that the logic and
connections have been interpreted correctly by the software. You can use the
RTL Viewer and State Machine Viewer to check your design visually before
simulation or other verification processes. Catching design errors at this early stage of
the design process can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace
through the netlist and ensure that the connections and logic in your design are as
expected. You can also view state machine transitions and transition equations with
the State Machine Viewer. Viewing your design helps you find and analyze the source
of design problems. If your design looks correct in the RTL Viewer, you know to focus
your analysis on later stages of the design process and investigate potential timing
violations or issues in the verification flow itself.

You can use the Technology Map Viewer to look at the results at the end of synthesis
and technology mapping by running the netlist viewer after performing Analysis and
Synthesis. If you have compiled your design through the Fitter stage, you can view
your post-mapping netlist in the Technology Map Viewer (Post-Mapping) and your
post-fitting netlist in the Technology Map Viewer. If you perform only Analysis and
Synthesis, both the netlist viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the
source of a particular signal, which can help you debug your design. Use the
navigation techniques described in this chapter to search easily through your design.
You can trace back from a point of interest to find the source of the signal and ensure
the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist
and make assignments when optimizing your design. This functionality is useful, for
example, when making a multicycle clock timing assignment between two registers in
your design. Start at an I/O port and trace forward or backward through the design
and through levels of hierarchy to find nodes that interest you, or locate a specific
register by visually inspecting the schematic.

You can use the RTL Viewer, State Machine Viewer, and Technology Map Viewer in
many other ways throughout the design, debugging, and optimization stages.
Viewing the design netlist is a powerful way to analyze design problems. This chapter
shows you how to use the various features of the netlist viewers to increase your
productivity when analyzing a design.

Quartus II Design Flow with the Netlist Viewers
When you first open one of the netlist viewers after compiling the design, a
preprocessor stage runs automatically before the netlist viewer opens. If you close the
netlist viewer and open it again later without recompiling the design, the netlist
viewer opens immediately without performing the preprocessing stage.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–3
Quartus II Design Flow with the Netlist Viewers
Figure 17–1 shows how the netlist viewers fit into the basic Quartus II design flow.

To use a netlist viewer, and before the netlist viewer can run the preprocessor and
open the design, compile your design with the following minimum compilation:

■ To open the RTL Viewer or State Machine Viewer, first perform Analysis and
Elaboration.

■ To open the Technology Map Viewer or the Technology Map Viewer
(Post-Mapping), first perform Analysis and Synthesis.

1 If you open one of the netlist viewers without first compiling the design with the
appropriate minimum compilation stage, the netlist viewer does not appear. Instead,
the Quartus II software issues an error message instructing you to run the necessary
compilation stage and restart the netlist viewer.

The netlist viewers display the results of the last successful compilation. Therefore, if
you make a design change that causes an error during Analysis and Elaboration, you
cannot view the netlist for the new design files, but you can still see the results from
the last successfully compiled version of the design files. If you receive an error
during compilation and you have not yet successfully run the appropriate
compilation stage for your project, the netlist viewer cannot be displayed; in this case,
the Quartus II software issues an error message when you try to open the netlist
viewer.

1 If the netlist viewer is open when you start a new compilation, the netlist viewer
closes automatically. You must open the netlist viewer again to view the new design
netlist after compilation completes successfully.

Figure 17–1. Quartus II Design Flow Including the RTL Viewer and Technology Map Viewer
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–4 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
RTL Viewer Overview
RTL Viewer Overview
The Quartus II RTL Viewer allows you to view a register transfer level (RTL)
graphical representation of your Quartus II integrated synthesis results or your
third-party netlist file in the Quartus II software.

You can view results after Analysis and Elaboration when your design uses any
supported Quartus II design entry method, including Verilog HDL Design Files (.v),
SystemVerilog Design Files (.sv), VHDL Design Files (.vhd), AHDL Text Design Files
(.tdf), schematic Block Design Files (.bdf), or schematic Graphic Design Files (.gdf)
imported from the MAX+PLUS® II software. You can also view the hierarchy of atom
primitives (such as device logic cells and I/O ports) when your design uses a
synthesis tool to generate a Verilog Quartus Mapping File (.vqm) or Electronic Design
Interchange Format (.edf) netlist file. For a flow diagram, refer to Figure 17–1.

The Quartus II RTL Viewer displays a schematic view of the design netlist after
Analysis and Elaboration or netlist extraction is performed by the Quartus II software,
but before technology mapping and any synthesis or fitter optimization algorithms
occur. This view is not the final design structure because optimizations have not yet
occurred. This view most closely represents your original source design. If you
synthesized your design with the Quartus II integrated synthesis, this view shows
how the Quartus II software interpreted your design files. If you are using a
third-party synthesis tool, this view shows the netlist written by your synthesis tool.

When displaying your design, the RTL Viewer optimizes the netlist to maximize
readability in the following ways:

■ Logic with no fan-out (its outputs are unconnected) and logic with no fan-in (its
inputs are unconnected) are removed from the display.

■ Default connections such as VCC and GND are not shown.

■ Pins, nets, wires, module ports, and certain logic are grouped into buses where
appropriate.

■ Constant bus connections are grouped.

■ Values are displayed in hexadecimal format.

■ NOT gates are converted to bubble inversion symbols in the schematic.

■ Chains of equivalent combinational gates are merged into a single gate. For
example, a 2-input AND gate feeding a 2-input AND gate is converted to a single
3-input AND gate.

■ State machine logic is converted into a state diagram, state transition table, and
state encoding table, which are displayed in the State Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to generate an
RTL netlist. To analyze the design and generate an RTL netlist, on the Processing
menu, point to Start and click Start Analysis & Elaboration. You can also perform a
full compilation on any process that includes the initial Analysis and Elaboration
stage of the Quartus II compilation flow.

To run the RTL Viewer, on the Tools menu, point to Netlist Viewers and click RTL
Viewer.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–5
State Machine Viewer Overview
You can set the RTL Viewer preprocessing to run during a full compilation, which
allows you to launch the RTL Viewer after Analysis and Synthesis has completed, but
while the Fitter is still running. In this case, you do not have to wait for the Fitter to
finish before viewing the schematic. This technique is useful for a large design that
requires a substantial amount of time in the place-and-route stage.

To set the RTL Viewer preprocessing to run during compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process Settings and
turn on Run RTL Viewer preprocessing during compilation. By default, this option
is turned off.

State Machine Viewer Overview
The State Machine Viewer presents a high-level view of finite state machines in your
design. The State Machine Viewer provides a graphical representation of the states
and their related transitions, as well as a state transition table that displays the
condition equation for each of the state transitions, and encoding information for each
state.

To run the State Machine Viewer, on the Tools menu, point to Netlist Viewers and
click State Machine Viewer. To open the State Machine Viewer for a particular state
machine, double-click the state machine instance in the RTL Viewer or right-click the
state machine instance and click Hierarchy Down.

Technology Map Viewer Overview
The Quartus II Technology Map Viewer provides a technology-specific, graphical
representation of your design after Analysis and Synthesis or after the Fitter has
mapped your design into the target device. The Technology Map Viewer shows the
hierarchy of atom primitives (such as device logic cells and I/O ports) in your design.
For supported families, you can also view internal registers and look-up tables (LUTs)
inside logic cells (LCELLs) and registers in I/O atom primitives. For more
information, refer to “Viewing Contents of Atom Primitives” on page 17–23.

1 Where possible, the port names of each hierarchy are maintained throughout
synthesis; however, port names might change or be removed from the design. For
example, if a port is unconnected or driven by GND or VCC, it is removed during
synthesis. When a port name changes, the port is assigned a related user logic name in
the design or a generic port name such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis, fitting, or
timing analysis. To run the Technology Map Viewer for a Quartus II project, on the
Processing menu, point to Start and click Start Analysis & Synthesis to synthesize
and map the design to the target technology. At this stage, the Technology Map
Viewer shows the same post-mapping netlist as the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process that includes
the synthesis stage in the compilation flow.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–6 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
If you have completed the Fitter stage, the Technology Map Viewer shows the
changes made to your netlist by the Fitter, such as physical synthesis optimizations,
while the Technology Map Viewer (Post-Mapping) shows the post-mapping netlist. If
you have completed the Timing Analysis stage, you can locate timing paths from the
Timing Analyzer report in the Technology Map Viewer (for more information, refer to
“Viewing a Timing Path” on page 17–41). For a flow diagram, refer to Figure 17–1 on
page 17–3.

To run the Technology Map Viewer, on the Tools menu, point to Netlist Viewers and
click Technology Map Viewer, or select Technology Map Viewer from the
Applications toolbar.

To run the Technology Map Viewer (Post-Mapping), on the Tools menu, point to
Netlist Viewers and click Technology Map Viewer (Post-Mapping).

Introduction to the User Interface
The RTL Viewer and Technology Map Viewer each consist of three main parts:

■ The schematic view

■ The Netlist Navigator pane

■ The Find pane

The schematic view displays a graphical representation of the internal structure of
your design; the Netlist Navigator pane displays a representation of the project
hierarchy; and the Find pane allows you to find and locate specific design elements in
the schematic view.

Figure 17–2 shows the RTL Viewer and indicates these three parts, along with other
elements of the user interface. Both the netlist viewers also contain a toolbar that
provides tools to use in the schematic view.

You can have only one RTL Viewer, one Technology Map Viewer, one Technology
Map Viewer (Post-Mapping), and one State Machine Viewer window open at the
same time, although each window can show multiple pages. For example, you cannot
have two RTL Viewer windows open at the same time. The netlist viewer window has
characteristics similar to other “child” windows in the Quartus II software; it can be
resized and moved, minimized or maximized, tiled or cascaded, and moved in front
of or behind other windows.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–7
Introduction to the User Interface
Figure 17–2 shows the schematic view and the Netlist Navigator pane of the RTL
Viewer.

Schematic View
The schematic view is shown on the right side of the RTL Viewer and Technology
Map Viewer. It contains a schematic representing the design logic in the netlist. This
view is the main screen for viewing your gate-level netlist in the RTL Viewer and your
technology-mapped netlist in the Technology Map Viewer.

Schematic Symbols
The symbols for nodes in the schematic represent elements of your design netlist.
These elements include input and output ports, registers, logic gates, Altera®
primitives, high-level operators, and hierarchical instances.

Figure 17–3 shows an example of an RTL Viewer schematic for a 3-bit synchronous
loadable counter. Example 17–1 shows the Verilog HDL code that produced this
schematic. This example includes multiplexers and a group of registers (Table 17–1) in
a bus along with an ADDER operator (Table 17–3 on page 17–13) inferred by the
counting function in the HDL code.

Figure 17–2. RTL Viewer

RTL Viewer Toolbar

Netlist Navigator Pane

Find Pane

Edit
Toolbar

View
Toolbar

Tool
Toolbar

Page
Toolbar

Schematic View
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–8 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
The schematic in Figure 17–3 displays wire connections between nodes with a thin
black line and bus connections with a thick black line.

Figure 17–3. Example Schematic Diagram in the RTL Viewer

Example 17–1. Code Sample for Counter Schematic Shown in Figure 17–3

module counter (input [2:0] data, input clk, input load, output [2:0]
result);

reg [2:0] result_reg;
always @ (posedge clk)

if (load)
result_reg <= data;

else
result_reg <= result_reg + 1;

assign result = result_reg;
endmodule
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–9
Introduction to the User Interface
Figure 17–4 shows a portion of the corresponding Technology Map Viewer schematic
with a compiled design that targets a Stratix® device. In this schematic, you can see
the LCELL (logic cell) device-specific primitives that represent the counter function,
labeled with their post-synthesis node names. The REGOUT port represents the output
of the register in the LCELL; the COMBOUT port represents the output of the
combinational logic in the LUT of the LCELL. The hexadecimal number in
parentheses below each LCELL primitive represents the LUT mask, which is a
hexadecimal representation of the logic function of the LCELL.

Table 17–1 lists and describes the primitives and basic symbols that you can display in
the schematic view of the RTL Viewer and Technology Map Viewer. Table 17–3 on
page 17–13 lists and describes the additional higher-level operator symbols used in
the RTL Viewer schematic view.

Figure 17–4. Example Schematic Diagram in the Technology Map Viewer
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–10 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
1 The logic gates and operator primitives appear only in the RTL Viewer. Logic in the
Technology Map Viewer is represented by atom primitives, such as registers and
LCELLs.

Table 17–1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description

I/O Ports
An input, output, or bidirectional port in the current level of hierarchy. A device input, output, or
bidirectional pin when viewing the top-level hierarchy. The symbol can also represent a bus.
Only one wire is shown connected to the bidirectional symbol, representing the input and output
paths.

Input symbols appear on the left-most side of the schematic. Output and bidirectional symbols
appear on the right-most side of the schematic.

I/O Connectors
An input or output connector, representing a net that comes from another page of the same
hierarchy (refer to “Partitioning the Schematic into Pages” on page 17–30). To go to the page
that contains the source or the destination, right-click on the net and choose the page from the
menu (refer to “Following Nets Across Schematic Pages” on page 17–31).

Hierarchy Port Connector
A connector representing a port relationship between two different hierarchies. A connector
indicates that a path passes through a port connector in a different level of hierarchy.

OR, AND, XOR Gates

An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle (bubble
symbol) on an input or output port indicates the port is inverted.

MULTIPLEXER
A multiplexer primitive with a selector port that selects between port 0 and port 1. A multiplexer
with more than two inputs is displayed as an operator (refer to “Operator Symbols in the RTL
Viewer Schematic View” on page 17–13).

BUFFER
A buffer primitive. The figure shows the tri-state buffer, with an inverted output enable port.
Other buffers without an enable port include LCELL, SOFT, CARRY, and GLOBAL. The NOT gate
and EXP expander buffers use this symbol without an enable port and with an inverted output
port.

CARRY_SUM
A CARRY_SUM buffer primitive with the following ports:

■ SI – SUM IN

■ SO – SUM OUT

■ CI – CARRY IN

■ CO – CARRY OUT
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–11
Introduction to the User Interface
LATCH
A latch primitive with the following ports:

■ D – data input

■ ENA – latch enable input

■ Q – data output

■ PRE – preset

■ CLR – clear

DFFE/DFFEA/DFFEAS A DFFE (data flipflop with clock enable) primitive, with the same ports as a latch and a clock
trigger. The other flipflop primitives are similar:

■ DFFEA (data flipflop with enable and asynchronous load) primitive with additional ALOAD
asynchronous load and ADATA data signals

■ DFFEAS (data flipflop with enable and synchronous and asynchronous load), which has
ASDATA as the secondary data port

Atom Primitive
An atom primitive. The symbol displays the atom name, the port names, and the atom type. The
blue shading indicates an atom primitive for which you can view the internal details. For more
information, refer to “Viewing Contents of Atom Primitives” on page 17–23.

Other Primitive Any primitive that does not fall into the previous categories. Primitives are low-level nodes that
cannot be expanded to any lower hierarchy. The symbol displays the port names, the primitive
or operator type, and its name.

The figure shows an LCELL WYSIWYG primitive, with DATAA to DATAD and COMBOUT port
connections. This type of LCELL primitive is found in the Technology Map Viewer for
technology-specific atom primitives when the contents of the atom primitive cannot be viewed.
The RTL Viewer contains similar primitives if the source design is a VQM or EDIF netlist.

Instance
An instance in the design that does not correspond to a primitive or operator (generally a
user-defined hierarchy block). The symbol displays the port name and the instance name.

For more information about opening the schematic for the lower-level hierarchy, refer to
“Traversing and Viewing the Design Hierarchy” on page 17–22.

Encrypted Instance

A user-defined encrypted instance in the design. The symbol displays the instance name. You
cannot open the schematic for the lower-level hierarchy, because the source design is
encrypted.

State Machine Instance

A finite state machine instance in the design. For more information, refer to “State Machine
Viewer” on page 17–16.

Table 17–1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–12 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
Table 17–2 lists and describes the symbol used only in the State Machine Viewer.

RAM

A synchronous memory instance with registered inputs and optionally registered outputs. The
symbol shows the device family and the type of memory block. This figure shows a true
dual-port memory block in a Stratix M-RAM block.

Logic Cloud

A combinational logic cloud in the design. For more information, refer to “Grouping
Combinational Logic into Logic Clouds” on page 17–26.

Constant

A constant signal value that is highlighted in gray and displayed in hexadecimal format by
default throughout the schematic. To change the format, refer to “Changing the Constant Signal
Value Formatting” on page 17–28.

Table 17–1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description

Table 17–2. Symbol Available Only in the State Machine Viewer

Symbol Description

State Node
The node representing a state in a finite state machine. State transitions are
indicated with arcs between state nodes. The double circle border indicates the
state connects to logic outside the state machine, and a single circle border
indicates the state node does not feed outside logic.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–13
Introduction to the User Interface
Table 17–3 lists and describes the additional higher level operator symbols used in the
RTL Viewer schematic view.

Table 17–3. Operator Symbols in the RTL Viewer Schematic View (Part 1 of 2)

Symbol Description

An adder operator:

OUT = A + B

A multiplier operator:

OUT = A ¥ B

A divider operator:

OUT = A / B

Equals

A left shift operator:

OUT = (A << COUNT)

A right shift operator:

OUT = (A >> COUNT)

A modulo operator:

OUT = (A % B)

A less than comparator:

OUT = (A < B : A > B)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–14 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
Selecting an Item in the Schematic View
To select an item in the schematic view, ensure that the Selection Tool is enabled in the
netlist viewer toolbar (this tool is enabled by default). Click an item in the schematic
view to highlight it in red.

Select multiple items by pressing the Shift or Ctrl key while selecting with your
mouse. You can also select all nodes in a region by selecting a rectangular box area
with your mouse cursor when the Selection Tool is enabled. To select nodes in a box,
left-click at one corner of the area you want to select and drag the mouse to the
diagonally opposite corner. By default, this highlights and selects all nodes in the
selected area (instances, primitives, and pins), but not the nets. The Viewer Options
dialog box provides an option to select nets. To include nets, right-click in the
schematic and click Viewer Options. Under Net Selection, turn on the Select entire
net when segment is selected option.

If you enable the Enable auto hierarchy expansion option, items selected in the
schematic view are automatically selected in the Netlist Navigator pane (for more
information about how to enable the auto hierarchy expansion option, refer to
“Netlist Navigator Pane” on page 17–15). The folder then expands automatically if it
is required to show the selected entry; however, the folder does not collapse
automatically when you are not using or you have deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the item is
highlighted in red but none of the connecting nets are highlighted. When you select a
net (wire or bus) in the schematic view, all connected nets are highlighted in red. The
selected nets are highlighted across all hierarchy levels and pages. Net selection can
be useful when navigating a netlist because you see the net highlighted when you
traverse between hierarchy levels or pages.

A multiplexer:

OUT = DATA [SEL]

The data range size is 2sel range size

A selector:

A multiplexer with one-hot select input and more than two input signals

A binary number decoder:

OUT = (binary_number (IN) == x)

for x = 0 to x = 2(n+1) - 1

Table 17–3. Operator Symbols in the RTL Viewer Schematic View (Part 2 of 2)

Symbol Description
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–15
Introduction to the User Interface
In some cases, when you select a net that connects to nets in other levels of the
hierarchy, these connected nets are also highlighted in the current hierarchy. If you
prefer that these nets not be highlighted, use the Viewer Options dialog box option to
highlight a net only if the net is in the current hierarchy. Right-click in the schematic
and click Viewer Options. In the Net Selection section, turn on the Limit selections
to current hierarchy option.

Moving and Panning in the Schematic View
When the schematic view page is larger than the portion currently displayed, you can
use the scroll bars at the bottom and right side of the schematic view to see other areas
of the page.

You can also use the Hand Tool to “grab” the schematic page and drag it in any
direction. Enable the Hand Tool with the toolbar button. Click and drag to move
around the schematic view without using the scroll bars.

In addition to the scroll bars and Hand Tool, you can use the middle-mouse or wheel
button to move and pan in the schematic view. Click the middle-mouse or wheel
button once to enable the feature. Move the mouse or scroll the wheel to move around
the schematic view. Click the middle-mouse or wheel button again to turn the feature
off.

Netlist Navigator Pane
The Netlist Navigator pane displays the entire netlist in a tree format based on the
hierarchical levels of the design. In each level, similar elements are grouped into
subcategories. You can use the Netlist Navigator pane to traverse through the design
hierarchy to view the logic schematic for each level. You can also select an element in
the netlist navigator to highlight in the schematic view.

1 Nodes inside atom primitives are not listed in the Netlist Navigator pane.

For each module in the design hierarchy, the Netlist Navigator pane displays the
applicable elements listed in Table 17–4. Click the “+” icon to expand an element.

Table 17–4. Netlist Navigator Pane Elements (Part 1 of 2)

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines State machine instances in the design that can be viewed in the State Machine Viewer.

Primitives

Low-level nodes that cannot be expanded to any lower hierarchy level. These primitives include:

■ Registers and gates that you can view in the RTL Viewer when using Quartus II integrated synthesis

■ Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM or EDIF from
third-party synthesis software

In the Technology Map Viewer, you can view the internal implementation of certain atom primitives, but
you cannot traverse into a lower-level of hierarchy.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–16 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
State Machine Viewer
The State Machine Viewer displays a graphical representation of the state machines in
your design. You can open the State Machine Viewer in any of the following ways:

■ On the Tools menu, point to Netlist Viewers and click State Machine Viewer.

■ Double-click a state machine instance in the RTL Viewer

■ Right-click a state machine instance in the RTL Viewer and click Hierarchy Down.

■ Select a state machine instance in the RTL Viewer, and on the Project menu, point
to Hierarchy and click Down.

Pins

The I/O ports in the current level of hierarchy.

■ Pins are device I/O pins when viewing the top hierarchy level and are I/O ports of the design when
viewing the lower-levels.

■ When a pin represents a bus or an array of pins, expand the pin entry in the list view to see individual
pin names.

Nets Nets or wires connecting the nodes. When a net represents a bus or array of nets, expand the net entry in
the tree to see individual net names.

Logic Clouds A group of related combinational logics of a particular source. You can automatically or manually group
combinational logics or ungroup logic clouds in your design.

Table 17–4. Netlist Navigator Pane Elements (Part 2 of 2)

Elements Description
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–17
Introduction to the User Interface
Figure 17–5 shows an example of the State Machine Viewer for a simple state
machine.

State Diagram View
The state diagram view appears at the top of the State Machine Viewer. It contains a
diagram of the states and state transitions.

The nodes that represent each state are arranged horizontally in the state diagram
view with the initial state (the state node that receives the reset signal) in the left-most
position. Nodes that connect to logic outside of the state machine instance are
represented by a double circle. The state transition is represented by an arc with an
arrow pointing in the direction of the transition.

When you select a node in the state diagram view, and turn on the Highlight Fan-in
or Highlight Fan-out command from the View menu or the State Machine Viewer
toolbar, the respective fan-in or fan-out transitions from the node are highlighted in
red.

1 An encrypted block with a state machine displays encoding information in the state
encoding table, but does not display a state transition diagram or table.

Figure 17–5. The State Machine Viewer

State Machine Selection Box

State Diagram View

State Machine
Viewer Toolbar

Back/Forward Display
Toolbar

Highlight
Fan-in/Fan-out

Toolbar

View
Toolbar

Tool
Toolbar

State Transition Tab

State Encoding Table Tab
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–18 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
State Transition Table
The state transition table on the Transitions tab at the bottom of the State Machine
Viewer displays the condition equation for each state transition. Each row in the table
represents a transition (each arc in the state diagram view). The table has the
following columns:

■ Source State—the name of the source state for the transition

■ Destination State—the name of the destination state for the transition

■ Condition—the condition equation that causes the transition from source state to
destination state

To see all of the transitions to and from each state name, click the appropriate column
heading to sort on that column.

The text in each column is left-aligned by default; to change the alignment and to
make it easier to see the relevant part of the text, right-click the column and click
Align Right. To revert to left alignment, click Align Left.

Click in any cell in the table to select it. To select all cells, right-click in the cell and
click Select All; or, on the Edit menu, click Select All. To copy selected cells to the
clipboard, right-click the cells and click Copy Table; or, on the Edit menu, point to
Copy and click Copy Table. You can paste the table into any text editor as
tab-separated columns.

State Encoding Table
The state encoding table on the Encoding tab at the bottom of the State Machine
Viewer displays encoding information for each state transition.

To view state encoding information in the State Machine Viewer, you must synthesize
your design with the Start Analysis & Synthesis command. If you have only
elaborated your design with the Start Analysis & Elaboration command, the
encoding information is not displayed.

Selecting an Item in the State Machine Viewer
You can select and highlight each state node and transition in the State Machine
Viewer. To select a state transition, click the arc that represents the transition.

When you select a node or transition arc in the state diagram view, the matching state
node or equation conditions in the state transition table are highlighted; conversely,
when you select a state node or equation condition in the state transition table, the
corresponding state node or transition arc is highlighted in the state diagram view.

Switching Between State Machines
A design may contain multiple state machines. To choose which state machine to
view, use the State Machine selection box located at the top of the State Machine
Viewer. Click in the drop-down box and select the necessary state machine.

Global Options
The Options dialog box allows you to customize the following settings:

■ Display Settings
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–19
Introduction to the User Interface
■ Colors

■ Fonts

■ Tracing

■ Customize View

■ Shortcut Commands

Display Settings
If you want to customize the display settings for your preferred viewing, you can
direct the RTL Viewer and Technology Map Viewer to adjust the settings in the
schematic view. To adjust the display settings, on the Tools menu, click Options.
Under Display Settings, you can select the options to customize your display.

You can divide the schematic representation of a large design into multiple pages.
Dividing the display of the schematic into multiple pages does not affect your design,
and only controls the number of elements per page. Under Display Settings, the
Nodes per page option allows you to specify the number of nodes displayed per
page. The default value is 50 nodes; however, you can view from one to 1,000 nodes
per page. The Ports per page option allows you to specify the number of ports (or
pins) displayed per page. The default value is 1,000 ports (or pins); the range is 1 to
2,000 ports (or pins). The netlist viewers partition your design into a new page if
either the number of nodes or the number of ports exceeds the limit you specified.
Occasionally, the number of ports displayed on the page might exceed the limit you
specified, depending on the configuration of nodes on the page. If you turned on the
Display boundary around hierarchy levels option and the total number of nodes or
ports in the hierarchy exceeds the value you specified for the Nodes per page or Ports
per page options, the netlist viewers display the boundary as a hierarchy port
connector (refer to Table 17–1 on page 17–10).

To display net names in your schematic, turn on the Show Net Name option. If you
turn on this option, the schematic view refreshes automatically to display the net
names. To show node names in the schematic view, turn on the Show node name
option. To change the value formatting, select the necessary format in the Constant
signal format list.

To view highlighting around the design element in range of the mouse pointer, turn
on the Enable rollover option. To more easily navigate through your design hierarchy,
you can direct the netlist viewers to automatically expand the hierarchy list in Netlist
Navigator pane and highlight the design element you selected in the schematic view.
This automatic expansion and selection of corresponding design elements is useful
when you have a complex schematic that spans multiple display pages in the netlist
viewers. To use the automatic expansion and selection feature, turn on the Enable
auto hierarchy expansion option.

To enable the radial menu, turn on the Enable radial menu option. The radial menu is
an octagonal menu with eight commands from which you can choose. This menu
provides a quick way to perform any of the commands with a single click whenever
you are in the schematic view.

To open the radial menu, right-click and hold anywhere in the schematic view and
wait for the menu to appear. By default, the menu appears after 0.2 seconds. The
radial menu appears with the mouse pointer always at the center point. The center
point of the menu is a non-trigger boundary in which no command is started.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–20 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Introduction to the User Interface
To invoke the necessary command, hold down the right mouse button, drag the
mouse onto the command, and then press the left mouse button. If you decide not to
trigger any command after the radial menu appears, press the Esc key or drag the
pointer back into the center point and release the mouse button.

To change the delay time before the radial menu appears, select the necessary interval
time in the drop-down list for Delay showing radial menu for. The default delay is
0.2 seconds.

Figure 17–6 shows the radial menu.

Tracing
If you want to filter information from the schematic view of your design to isolate
specific design elements for further inspection, or if you want to expand specific
design elements, you can direct the RTL Viewer and the Technology Map Viewer to
adjust the elements the viewers show in the schematic view. To adjust the filtering and
expansion settings in the RTL Viewer and Technology Map Viewer, on the Tools
menu, click Options. Under Tracing, you can select the options to control filtering and
expansion settings.

For all filtering commands, the netlist viewers stop tracing through the netlist when
they reach one of the following objects:

■ A pin

Figure 17–6. Radial Menu
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–21
Introduction to the User Interface
■ A specified number of filtering levels, counting from the selected node or port

■ A register

To specify the number of filtering levels, set the Number of filtering levels option to
specify the number of levels to expand. You can specify a value from one to 100.

To enable the Stop filtering at register option, turn on the Stop filtering at register
option. You can filter across hierarchies when you turn on the Filter across hierarchy
option.

By default, the filtered schematic shows all possible connections between the nodes
shown in the schematic. To remove the connections that are not directly part of the
path that was traced to generate a filtered netlist, turn off the Show all connections
between nodes option.

To set the amount of logic you want to expand, set the Number of expansion levels
option to specify the number of levels to expand. You can specify a range from one to
100 levels. You can also set the Stop expanding at register option to specify whether
netlist expansion should stop when a register is reached.

Customize View
If you want to customize the schematic display for better viewing and to speed up
your debugging process, you can direct the RTL Viewer and the Technology Map
Viewer to remove fan-out free nodes, show simplify logic, group or ungroup related
nodes, and group combinational logic into a logic cloud. To adjust the options that
control the schematic display in the RTL Viewer and the Technology Map Viewer, on
the Tools menu, click Options. Under Customize View, you can select the options to
customize your view. These options are also available in the Customize View tab of
the RTL/Technology Map Viewer Options dialog box. To open the dialog box,
right-click in the schematic and click Viewer Options.

1 When you change settings, the list of previously viewed pages is cleared. The settings
are revision-specific, so different revisions can have different settings.

To remove fan-out free registers from your schematic display, turn on the Remove
registers without fan-out option. To remove all single-input nodes and merge a chain
of equivalent combinational gates that have direct connections (without inversion in
between) into a single multiple-input gate, turn on the Show simplified logic option.

To group all related nodes into a single node, turn on the Group all related nodes
option. You can manually group or ungroup any nodes by right-clicking the selected
nodes in the schematic and selecting Group Related Nodes or Ungroup Selected
Nodes. To group combinational logic into logic clouds, turn on the Group
combinational logic into logic cloud option.

1 Customize Logic and Customize Group options are available for the RTL Viewer,
whereas only the Customize Group option is available for the Technology Map
Viewer.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–22 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
Shortcut Commands
You can choose eight commands to appear on the radial menu from a list of 18
available commands. To customize the command list on the menu, first launch the
RTL Viewer or the Technology Map Viewer. On the Tools menu, select Options. On
the Shortcut Commands category list, drag and drop the icon under Shortcut buttons
into any region under Shortcut commands popup. You can click the icon under
Shortcut buttons to see its description.

Navigating the Schematic View
This section describes methods to navigate through the pages and hierarchy levels in
the schematic view of the RTL Viewer and the Technology Map Viewer.

Traversing and Viewing the Design Hierarchy
You can open different hierarchy levels in the schematic view from the Netlist
Navigator pane (refer to “Netlist Navigator Pane” on page 17–15), or the Hierarchy
Up and Hierarchy Down commands (Shortcut menu) in the schematic view.

Use the Hierarchy Down command to go down in an instance’s hierarchy, and open a
lower-level schematic showing the internal logic of the instance. Use the
Hierarchy Up command to go up in hierarchy or collapse a lower-level hierarchy, and
open the parent higher level hierarchy. When the Selection Tool is selected, the
appropriate option is available when your mouse pointer is located over an area of the
schematic view that has a corresponding lower or higher level hierarchy.

The mouse pointer changes as it moves over different areas of the schematic to
indicate whether you can move up, down, or both up and down in the hierarchy
(Figure 17–7). To open the next hierarchy level, right-click in that area of the schematic
and click Hierarchy Down or Hierarchy Up, as appropriate, or double-click in that
area of the schematic.

Flattening the Design Hierarchy
You can flatten the design hierarchy to view the design without hierarchical
boundaries. To flatten the hierarchy from the current level and all lower-level
hierarchies of the current design hierarchy, right-click in the schematic and click
Flatten Netlist. To flatten the entire design, choose Flatten Netlist from the top-level
schematic of the design.

Viewing the Contents of a Design Hierarchy in the Current Schematic
You can use the Display Content and Hide Content (Shortcut menu) commands to
show or hide a lower hierarchy level for a specific instance in the schematic for the
current hierarchy level.

Figure 17–7. Mouse Pointers Indicate How to Traverse Hierarchy
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–23
Navigating the Schematic View
To display the lower hierarchy netlist of an instance on the same schematic as the
remaining logic in the currently viewed netlist, right-click the selected instance and
click Display Content.

To hide all of the lower hierarchy logic of a hierarchy box into a closed instance,
right-click the selected instance and click Hide Content.

Viewing Contents of Atom Primitives
In the Technology Map Viewer, you can view the contents of certain device atom
primitives to see their underlying implementation details. For logic cell (LCELL)
atoms in Arria® GX, Cyclone® series, MAX® II, and Stratix series of devices, you can
view LUTs, registers, and logic gates. For I/O atoms in the Arria GX, Cyclone series,
HardCopy® IV, and Stratix series of devices, you can view registers and logic gates.

In addition, you can view the implementation of RAM and DSP blocks in certain
devices in the RTL Viewer or Technology Map Viewer. You can view the
implementation of RAM blocks in the Arria GX, Cyclone series, and Stratix series of
devices. You can view the implementation of DSP blocks only in Arria GX and Stratix
series of devices.

If you can view the contents of an atom instance, the internal contents are shown in
blue in the schematic view (Figure 17–8).

To view the contents of one or more atom primitive instances, select the necessary
atom instances. Right-click a selected instance and click Display Content. You can
also double-click the necessary atom instance to view the contents. Figure 17–9 shows
an expanded version of the instance in Figure 17–8.

Figure 17–8. Instance That Can Be Expanded to View Internal Contents

Figure 17–9. Internal Contents of the Atom Instance in Figure 17–8.

Hierarchical BoundaryInstance Name

Port Relationship
Between Boundaries
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–24 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
To hide the contents (and revert to the compact format), select and right-click the atom
instance or instances, and click Hide Content.

1 In the schematic view, the internal details in an atom instance cannot be selected as
individual nodes. Any mouse action on any of the internal details is treated as a
mouse action on the atom instance.

Viewing the Properties of Instances and Primitives
You can view the properties of an instance or primitive using the Properties dialog
box. To view the properties of an instance or primitive in the RTL Viewer or
Technology Map Viewer, right-click the node and click Properties.

The Properties dialog box contains the following information about the selected node:

■ The parameter values of an instance.

■ The active level of the port (for example, active high or active low). An active low
port is denoted with an exclamation mark “!”.

■ The port’s constant value (for example, VCC or GND). Table 17–5 describes the
possible value of a port.

In the LUT of a logic cell (LCELL), the Properties dialog box contains the following
additional information:

■ The schematic of the LCELL

■ The Truth Table representation of the LCELL

■ The Karnaugh map representation of the LCELL

Viewing LUT Representations in the Technology Map Viewer
You can view different representations of a LUT by right-clicking the selected LUT
and clicking Properties. This feature is supported for the Arria GX, Cyclone series,
MAX II, and Stratix series of devices only. You can view the LUT representations in
the following three tabs in the Properties dialog box:

■ The Schematic tab (Figure 17–10) shows the equivalent gate representations of the
LUT.

■ The Truth Table tab (Figure 17–11) shows the truth table representations.

■ The Karnaugh Map tab (Figure 17–12) shows the Karnaugh map representations
of the LUT. The Karnaugh map supports up to 6 input LUTs.

Table 17–5. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–25
Navigating the Schematic View
For more information about the Ports tab, refer to “Viewing the Properties of
Instances and Primitives” on page 17–24.

Figure 17–10. Schematic Tab

Figure 17–11. Truth Table Tab
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–26 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
Grouping Combinational Logic into Logic Clouds
The following sections describe how to group combinational logic into logic clouds.

1 For the definition of a logic cloud, refer to Table 17–1 on page 17–10.

Logic Clouds in the RTL Viewer
You can automatically group all combinational logic nodes in your design into logic
clouds. For more information about how to group combinational logic clouds, refer to
“Customize View” on page 17–21. Figure 17–13 and Figure 17–14 show the schematic
before and after the combinational logic grouping operation in the RTL Viewer.

Figure 17–12. Karnaugh Map Tab
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–27
Navigating the Schematic View
Logic Clouds in the Technology Map Viewer
In the Technology Map Viewer, the Group combinational logic into logic clouds
option is supported for Cyclone II, HardCopy, and Stratix II devices only. For more
information about how to group combinational logic clouds, refer to “Customize
View” on page 17–21.

Figure 17–13. Schematic Before Combinational Logic Grouping

Figure 17–14. Schematic After Combinational Logic Grouping
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–28 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
Grouping and Ungrouping Logic Clouds
To group logic nodes into a logic cloud manually, right-click the selected node or
input port and click Group source logic into logic cloud. To ungroup a logic cloud
manually, right-click the selected logic cloud and click Ungroup source logic from
logic cloud. You can also ungroup a logic cloud manually by double-clicking the
selected logic cloud. These options are not available if the nodes cannot be grouped.

Changing the Constant Signal Value Formatting
The constant signal value is highlighted in gray in the schematic view. By default, the
value is displayed in hexadecimal format, but you can also choose binary or decimal
format. For more information about changing the value formatting, refer to “Display
Settings” on page 17–19.

Changing the format affects all constant signal values throughout the schematic. For
descriptions of constant signal values in the schematic, refer to Table 17–3 on
page 17–13.

Zooming and Magnification
You can control the magnification of your schematic on the View menu, with the
Zoom Tool in the toolbar, or the Ctrl key and mouse wheel button, as described in this
section.

By default, the netlist viewer displays most pages sized to fit in the window. If the
schematic page is very large, the schematic is displayed at the minimum zoom level,
and the view is centered on the first node. Click Zoom In to view the image at a larger
size, and click Zoom Out to view the image (when the entire image is not displayed)
at a smaller size. The Zoom command allows you to specify a magnification
percentage (100% is considered the normal size for the schematic symbols).

The Fit Selection in Window command zooms in on the selected nodes in a schematic
to fit in the window. Use the Selection Tool to select one or more nodes (instances,
primitives, pins, and nets), then click Fit Selection in Window to enlarge the area
covered by the selection. This feature is helpful when you want to see a particular
element in a large schematic. After you select a node, you can easily zoom in to view
the particular node. You can temporarily enlarge a portion of the schematic with the
magnifying glass tool in the toolbar.

You can also use the Zoom Tool on the netlist viewer toolbar to control magnification
in the schematic view. When you select the Zoom Tool in the toolbar, clicking in the
schematic zooms in and centers the view on the location you clicked. Right-click in
the schematic to zoom out and center the view on the location you clicked. When you
select the Zoom Tool, you can also zoom in to a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to
show the selected area.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–29
Navigating the Schematic View
Alternatively, you can specify the magnification percentage by right-clicking the
necessary area and dragging the mouse to the right to zoom in or to the left to zoom
out with the Zoom Tool. You will see a red line with the zoom percentage above it.
The zoom percentage is proportional to the length of the green line (Figure 17–15).
Release the mouse button at the necessary zoom percentage.

By default, the netlist viewers maintain the zoom level when filtering on the
schematic (refer to “Filtering in the Schematic View” on page 17–33). To change the
behavior so that the zoom level is always reset to “Fit in Window,” on the Tools menu,
click Options. In the Category list, select Netlist Viewers, and turn off Maintain
zoom level.

Schematic Debugging and Tracing Using the Bird’s Eye View
Viewing the entire schematic can be useful when debugging and tracing through a
large netlist. The Quartus II software allows you to quickly navigate to a specific
section of the schematic using the Bird’s Eye View feature, which is available in the
RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest. Select the necessary area by
clicking and dragging the indicator or right-clicking to form a rectangular box around
the necessary area. You can also click and drag the rectangular box to move around
the schematic. To open the Bird’s Eye View, on the View menu, click Bird’s Eye View,
or click on the Bird’s Eye View icon in the toolbar (Figure 17–16).

Figure 17–15. Dragging the Mouse Pointer to Change Zoom Percentage

Figure 17–16. Bird’s Eye View Icon
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–30 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
Figure 17–17 shows the Bird’s Eye View window in the schematic diagram.

Partitioning the Schematic into Pages
For large design hierarchies, the RTL Viewer and Technology Map Viewer partition
your netlist into multiple pages in the schematic view. For more information about
controlling how much of the design is visible on each page, refer to “Display Settings”
on page 17–19.

When a hierarchy level is partitioned into multiple pages, the title bar for the
schematic window indicates which page is displayed and how many total pages exist
for this level of hierarchy (shown in the format:
Page <current page number> of <total number of pages>), as shown in Figure 17–18.

Figure 17–17. Bird’s Eye View Window

Bird’s Eye View

Figure 17–18. RTL Viewer Title Bars Indicating Page Number Information

First Page of Hierarchy

Hierarchy Level Consists of 2 Pages
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–31
Navigating the Schematic View
When you change the number of nodes or ports per page, the change applies only to
new pages that are shown or opened in the netlist viewer. To refresh the current page
so that it displays the changed number of nodes or ports, click the Refresh button on
the toolbar.

Moving Between Schematic Pages
To move to another schematic page, on the View menu, click Previous Page or Next
Page, or click the Previous Page icon or the Next Page icon on the netlist viewer
toolbar.

To go to a particular page of the schematic, on the Edit menu, click Go To, or
right-click in the schematic view and click Go To. In the Page list, select the necessary
page number. You can also go to a particular page by selecting the necessary page
number from the pull-down list on the top right of the netlist viewer.

Moving Back and Forward Through Schematic Pages
To return to the previous view after changing the page view, click Back on the View
menu, or click the Back icon on the netlist viewer toolbar. To go to the next view, click
Forward on the View menu, or click the Forward icon on the netlist viewer toolbar.

1 You can go forward only if you have not made any changes to the view since going
back. Use the Back and Forward commands to switch between page views. These
commands do not undo an action, such as selecting a node.

Following Nets Across Schematic Pages
Input and output connectors indicate nodes that connect across pages of the same
hierarchy. Right-click a connector to display a menu of commands that trace the net
through the pages of the hierarchy.

1 After you right-click to follow a connector port, the netlist viewer opens a new page,
which centers the view on the particular source or destination net using the same
zoom factor as the previous page. To trace a specific net to the new page of the
hierarchy, Altera recommends that you first select the necessary net, which highlights
it in red, before you right-click to traverse pages.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–32 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Navigating the Schematic View
Input Connectors

Figure 17–19 shows an example of the menu that appears when you right-click an
input connector. The From command opens the page containing the source of the
signal. The Related commands, if applicable, open the specified page containing
another connection fed by the same source.

Output Connectors

Figure 17–20 shows an example of the menu that appears when you right-click an
output connector. The To command opens the specified page that contains a
destination of the signal.

Go to Net Driver
To locate the source of a particular net in the schematic view, right-click the net, point
to Go to Net Driver and click Current page, Current hierarchy, or Across hierarchies.
Table 17–6 lists the Go to Net Driver commands.

The schematic view opens the correct page of the schematic, if required, and adjusts
the centering of the page so that you can see the net source. The schematic shows the
default page for the net driver. The view is unfiltered, so no filtering results are kept.

Figure 17–19. Input Connector Shortcut Menu

Figure 17–20. Output Connector Shortcut Menu

Signal source is on page 2

Other connections fed by the
source is on this page

Destinations of the output
connector are on these pages

Table 17–6. Go to Net Driver Commands

Command Action

Current page Locates the source or driver on the current page of the schematic only.

Current hierarchy Locates the source in the current level of hierarchy, even if the source is located on another page of
the netlist schematic.

Across hierarchies Locates the source across hierarchies until the software reaches the source at the top hierarchy level.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–33
Filtering in the Schematic View
Filtering in the Schematic View
Filtering allows you to filter out nodes and nets in your netlist to view only the logic
elements of interest to you.

You can filter your netlist by selecting hierarchy boxes, nodes, ports of a node, nets, or
states in a state machine that are part of the path you want to see. The following filter
commands are available:

■ Sources—Displays the sources of the selection

■ Destinations—Displays the destinations of the selection

■ Sources & Destinations—Displays the sources and destinations of the selection

■ Selected Nodes and Nets—Displays only the selected nodes and nets with the
connections between them

■ Between Selected Nodes—Displays nodes and connections in the path between
the selected nodes

■ Bus Index—Displays the sources or destinations for one or more indices of an
output or input bus port

To filter your netlist, select a hierarchy box, node, port, net, or state node, right-click in
the window, point to Filter and click the appropriate filter command. The netlist
viewer generates a new page showing the netlist that remains after filtering.

When filtering in a state diagram in the State Machine Viewer, sources and
destinations refer to the previous and next transition states or paths between
transition states in the state diagram. The transition table and encoding table also
reflect the filtering.

You can go back to the netlist page before it was filtered using the Back command, as
described in “Moving Back and Forward Through Schematic Pages” on page 17–31.

1 When viewing a filtered netlist, clicking an item in the Netlist Navigator pane causes
the schematic view to display an unfiltered view of the appropriate hierarchy level.
You cannot use the Netlist Navigator pane to select items or navigate in a filtered
netlist.

Filter Sources Command
To filter out all but the source of the selected item, right-click the item, point to Filter,
and click Sources. The selected object type determines what is displayed, as listed in
Table 17–7 and shown in Figure 17–21.

Table 17–7. Selected Objects Determine Filter Sources Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the sources of the node’s input ports. For an example, refer to Figure 17–21.

Net Shows the sources that feed the net.

Input port of a node Shows only the input source nodes that feed this port.

Output port of a node Shows only the selected node.

State node in a state machine Shows the states that feed the selected state (previous transition states).
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–34 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Filtering in the Schematic View
Filter Destinations Command
To filter out all but the destinations of the selected node or port as outlined in
Table 17–8 and shown in Figure 17–21, right-click the node or port, point to Filter, and
click Destinations.

Filter Sources and Destinations Command
The Sources & Destinations command is a combination of the Sources and
Destinations filtering commands, in which the filtered page shows the sources and
the destinations of the selected item. To select this option, right-click the necessary
object, point to Filter, and click Sources & Destinations. Refer to the example in
Figure 17–21.

Table 17–8. Selected Objects Determine Filter Destinations Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the destinations of the node’s output ports. For an example, refer to
Figure 17–21.

Net Shows the destinations fed by the net.

Input port of a node Shows only the selected node.

Output port of a node Shows only the fan-out destination nodes fed by this port.

State node in a state machine Shows the states that are fed by the selected states (next transition states).

Figure 17–21. Sources, Destinations, and Sources and Destinations Filtering for inst4

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

Sources & Destinations

Sources

Destinations

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Selected Node
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–35
Filtering in the Schematic View
Filter Between Selected Nodes Command
To show the nodes in the path between two or more selected nodes or hierarchy
boxes, right-click the necessary object, point to Filter, and click Between Selected
Nodes. For this option, selecting a port of a node is the same as selecting the node. For
an example, refer to Figure 17–22.

Figure 17–22. Between Selected Nodes Filtering Between inst2 and inst3

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Between Selected Nodes

Selected Nodes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–36 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Filtering in the Schematic View
Filter Selected Nodes and Nets Command
To create a filtered page that shows only the selected nodes, nets, or both, and, if
applicable, the connections between the selected nodes, nets, or both, right-click the
necessary object, point to Filter, and click Selected Nodes & Nets. Figure 17–23 shows
a schematic with several nodes selected.

Figure 17–23. Using Selected Nodes and Nets to Select Nodes
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–37
Filtering in the Schematic View
Figure 17–24 shows the schematic after filtering. If you select a net, the filtered page
shows the immediate sources and destinations of the selected net.

Filter Bus Index Command
To show the path related to a specific index of a bus input or output port in the RTL
Viewer, right-click the port, point to Filter, and click Bus Index. The Select Bus Index
dialog box allows you to select the indices of interest.

Filter Command Processing
The options to control filtering are available in the Tracing tab of the RTL/Technology
Map Viewer Options dialog box. Right-click in the schematic view and click Viewer
Options to open the dialog box. For more information about filter command
processing, refer to “Tracing” on page 17–20.

Filtering Across Hierarchies
The filtering commands display nodes in all hierarchies by default. When the filtered
path passes through levels of hierarchy on the same schematic page, green hierarchy
boxes group the logic and show the hierarchy boundaries. A green rectangular
symbol that appears on the border represents the port relationship between two
different hierarchies (Figure 17–25 and Figure 17–26).

For more information about how to control filtering, refer to “Tracing” on page 17–20.

For more information about how to disable the box hierarchy display, refer to
“Display Settings” on page 17–19.

1 Netlists of the same hierarchy displayed over more than one page are not grouped
with a box. Filtering and expanding on a blue atom primitive does not trace the
underlying netlist, even when Filter across hierarchy is enabled.

Figure 17–24. Selected Nodes and Nets Filtering on Figure 17–23 Schematic

New Schematic Created After Applying Selected Nodes and Nets Filtering
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–38 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Filtering in the Schematic View
Figure 17–25 and Figure 17–26 show examples of filtering across hierarchical
boundaries. Figure 17–25 shows a smaller example of an input port of the taps
instance after the Sources filter is applied, in which the input port of the lower-level
hierarchical block connects directly to an input pin of the design. The name of the
instance appears in the green border and as a tooltip when you move your mouse
pointer over the instance.

Figure 17–26 shows a larger example of an input port of an instance after the Sources
filter is applied, in which the source comes from input pins that are fed through
another level of hierarchy.

Expanding a Filtered Netlist
After a netlist is filtered, some ports might not have connections displayed because
their connections are not part of the main path through the netlist. Two expansion
features, immediate expansion and the Expand command, allow you to add the fan-in
or fan-out signals of these ports to the schematic display of a filtered netlist.

You can immediately expand any port whose connections are not displayed. When
you double-click that port in the filtered schematic, one level of logic is expanded.

Figure 17–25. Filtering Across Hierarchical Boundaries

Figure 17–26. Filtering Across Hierarchical Boundaries

Sources command applied to an input port of an instance in which the source comes from input pins
that are fed through another level of hierarchy
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–39
Probing to a Source Design File and Other Quartus II Windows
To expand more than one level of logic, right-click the port and click the Expand
command. This command expands logic from the selected port by the amount
specified in Viewer Options. To set these options, right-click in the schematic view
and click Viewer Options. In the Expansion section, set the Number of expansion
levels option to specify the number of levels to expand (the default value is 3 and the
range is 1 to 15 levels). You can also set the Stop expanding at register option (which
is turned on by default) to specify whether netlist expansion should stop when a
register is reached. These options are also available under Tracing in the Options
dialog box (refer to “Tracing” on page 17–20).

You can select multiple nodes to expand when you use the Expand command. If you
select ports that are located on multiple schematic pages, only the ports on the
currently viewed page appear in the expanded schematic.

In the State Machine Viewer, the Expand command has the following three options:

■ Sources—Displays the states that feed the selected states (previous transition
states)

■ Destinations—Displays the states that are fed by the selected states (next
transition states)

■ Sources & Destinations—Displays the previous and next transition states

The state transition table and state encoding table also reflect the changes to the filter.

The expansion feature works across hierarchical boundaries if the filtered page
containing the port you want to expand was generated with the Filter across
hierarchy option turned on (for details about this option, refer to “Filtering in the
Schematic View” on page 17–33). When viewing timing paths in the Technology Map
Viewer, the Expand command always works across hierarchical boundaries because
filtering across hierarchy is always turned on for these schematics (for details about
these schematics, refer to “Viewing a Timing Path” on page 17–41).

Reducing a Filtered Netlist
In some cases, removing logic from a filtered schematic or state diagram makes the
schematic view easier to read and minimizes distracting logic in the schematic that
you do not need to view.

To reduce elements in the filtered schematic or state diagram view, right-click the
node or nodes you want to remove and click Reduce.

Probing to a Source Design File and Other Quartus II Windows
The RTL Viewer, Technology Map Viewer, and State Machine Viewer allows you to
cross-probe to the source design file and to various other windows in the Quartus II
software. You can select one or more hierarchy boxes, nodes, nets, state nodes, or state
transition arcs that interest you in the netlist viewer and locate the corresponding
items in another applicable Quartus II software window. You can then view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the netlist viewer in another window, right-click the items of
interest in the schematic or state diagram, point to Locate, and click the appropriate
command. The following commands are available:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–40 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Probing to the Netlist Viewers from Other Quartus II Windows
■ Locate in Assignment Editor

■ Locate in Pin Planner

■ Locate in Timing Closure Floorplan

■ Locate in Chip Planner

■ Locate in Resource Property Editor

■ Locate in RTL Viewer

■ Locate in Technology Map Viewer

■ Locate in Design File

The options available for locating an item depend on the type of node and whether it
exists after placement and routing. If a command is enabled in the menu, it is
available for the selected node. You can use the Locate in Assignment Editor
command for all nodes, but assignments might be ignored during placement and
routing if they are applied to nodes that do not exist after synthesis.

The netlist viewer automatically opens another window for the appropriate editor or
floorplan and highlights the selected node or net in the newly opened window. You
can switch back to the netlist viewer by selecting it in the Window menu or by closing,
minimizing, or moving the new window.

1 When probing to a logic cloud in the RTL Viewer, a message box appears, prompting
you to ungroup the logic cloud or allow it to remain grouped.

Moving Selected Nodes to Other Quartus II Windows
You can drag selected nodes from the netlist viewers to the Text Editor, Block Editor,
Pin Planner, SignalTap® II Embedded Logic Analyzer, and Waveform Editor windows
in the Quartus II software. Whenever you see the drag-and-drop pointer on the
selected node in the netlist viewers, it means that the node can be dragged to other
child windows in the Quartus II software.

To tap a node from the schematic in the Technology Map Viewer to an open
SignalTap II Embedded Logic Analyzer window or to a new SignalTap II file (.stp),
right-click the selected node in the schematic diagram or in the netlist navigator, and
then click Add Node to SignalTap II Logic Analyzer. If the node cannot be tapped,
the option is unavailable.

Probing to the Netlist Viewers from Other Quartus II Windows
You can cross-probe to the RTL Viewer and Technology Map Viewer from other
windows in the Quartus II software. You can select one or more nodes or nets in
another window and locate them in one of the netlist viewers.

You can locate nodes between the RTL Viewer, State Machine Viewer, and Technology
Map Viewer, and you can locate nodes in the RTL Viewer and Technology Map
Viewer from the following Quartus II software windows:

■ Project Navigator

■ Timing Closure Floorplan
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–41
Viewing a Timing Path
■ Chip Planner

■ Resource Property Editor

■ Node Finder

■ Assignment Editor

■ Messages Window

■ Compilation Report

■ TimeQuest Timing Analyzer (supports the Technology Map Viewer only)

To locate elements in the netlist viewer from another Quartus II window, select the
node or nodes in the appropriate window; for example, select an entity in the Entity
list on the Hierarchy tab in the Project Navigator, or select nodes in the Timing
Closure Floorplan, or select node names in the From or To column in the Assignment
Editor. Next, right-click the selected object, point to Locate, and click Locate in RTL
Viewer or Locate in Technology Map Viewer. After you click this command, the
netlist viewer opens, or is brought to the foreground if the netlist viewer is already
open.

1 The first time the window opens after a compilation, the preprocessor stage runs
before the netlist viewer opens.

The netlist viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you right-click the object,
point to Filter, and click Selected Nodes & Nets using Filter Across Hierarchy. If the
nodes cannot be found in the netlist viewer, a message box displays the message:
Can’t find requested location.

Viewing a Timing Path
To see a visual representation of a timing path, cross-probe from a report panel in the
TimeQuest analyzer.

To take advantage of this feature, you must complete a full compilation of your
design, including the timing analyzer stage. To see the timing results for your design,
on the Processing menu, click Compilation Report. On the left side of the
Compilation Report, select Timing Analyzer or TimeQuest Timing Analyzer. When
you select a detailed report, the timing information is listed in a table format on the
right side of the Compilation Report; each row of the table represents a timing path in
the design. You can also view timing paths in TimeQuest analyzer report panels. To
view a particular timing path in the Technology Map Viewer or RTL Viewer,
right-click the appropriate row in the table, point to Locate, and click Locate in
Technology Map Viewer or Locate in RTL Viewer.

To locate a path, on the Tasks pane, in the Custom Reports folder, double-click Report
Timing. In the Report Timing dialog box, make any necessary settings, and then click
the Report Timing button. After the TimeQuest analyzer generates the report,
right-click on the node in the table and select Locate Path. In the Technology Map
Viewer, the schematic page displays the nodes along the timing path with a summary
of the total delay.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–42 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer
When you locate the timing path from the TimeQuest analyzer to the Technology Map
Viewer, the interconnect and cell delay associated with each node is displayed on top
of the schematic symbols. The total slack of the selected timing path is displayed in
the Page Title section of the schematic. If the nodes are grouped in a logic cloud, the
delay information displayed with the logic cloud is the total sum delay of the grouped
nodes. The delay information for each node in the logic cloud is displayed in a tooltip.
Move the mouse pointer over the logic cloud to see the tooltip. For more information
about tooltips, refer to “Tooltips” on page 17–42.

Figure 17–27 shows a portion of a timing path represented in the Technology Map
Viewer.

In the RTL Viewer, the schematic page displays the nodes in the paths between the
source and destination registers with a summary of the total delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the post-fitting
nodes might not exist in the RTL Viewer netlist. Therefore, the internal delay numbers
are not displayed in the RTL Viewer as they are in the Technology Map Viewer, and
the timing path might not be displayed exactly as it appears in the timing analysis
report. If multiple paths exist between the source and destination registers, the RTL
Viewer might display more than just the timing path. There are also some cases in
which the path cannot be displayed, such as paths through state machines, encrypted
intellectual property (IP), or registers that are created during the fitting process. In
cases where the timing path displayed in the RTL Viewer might not be the correct
path, the compiler issues messages.

Other Features in the Schematic Viewer
This section describes other features in the schematic view that enhance usability and
help you analyze your design.

Tooltips
A tooltip is displayed whenever the mouse pointer is held over an element in the
schematic. The tooltip contains useful information about a node, net, logic cloud,
input port, or output port. Table 17–9 lists the information contained in the tooltip for
each type of node.

The tooltip information for an instance (the first row in Table 17–9) includes a list of
the primitives found in that level of hierarchy and the number of each primitive
contained in the current instance. The number includes all hierarchical blocks below
the current instance in the hierarchy. This information lets you estimate the size and
complexity of a hierarchical block without navigating into the block.

Figure 17–27. Timing Path Schematic in the Technology Map Viewer
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–43
Other Features in the Schematic Viewer
The tooltip information for atom primitives in the Technology Map Viewer (the
second row in Table 17–9) shows the equation for the design atom. The equations are
an expanded version of the equations you can view in the Equations window in the
Timing Closure Floorplan. Advanced users can use these equations to analyze the
design implementation in detail.

h For more information about understanding equations, refer to the Quartus II Help.

To copy tooltips into the clipboard for use in other applications, right-click the
necessary node or netlist and click Copy Tooltip.

To turn off tooltips or change the duration of time that a tooltip appears in the view, in
the main Quartus II window, select Options. In the Tooltip Settings pane, turn on the
Enable tooltips option.

The Show names in tooltip for option specifies the number of seconds to display the
names of assigned nodes and pins in a tooltip when the pointer is over the assigned
nodes and pins. Selecting Unlimited displays the tooltip as long as the pointer
remains over the node or pin. Selecting 0 turns off tooltips. The default value is 5
seconds.

The Delay showing tooltip for option specifies the number of seconds you must hold
the mouse pointer over assigned nodes and pins before the tooltip displays the names
of the assigned nodes and pins. Selecting 0 displays the tooltip immediately when the
pointer is over an assigned node or pin. Selecting Unlimited prevents the display of
tooltips. The default value is 1 second.

Table 17–9. Tooltip Information (Part 1 of 2)

Tooltip Format Description Example Tooltips

Instance

Format: <instance name>, <instance type>

<primitive type>, <number of primitives>...

<primitive type>, <number of primitives>

Atom Primitive

Format: <instance name>, <primitive name> (<LUT Mask
Value>)

{(r | c <Register or Combinational equation>)}
...

An r (as in the first example) represents the equation for a
register, and a c (as in the second example) represents the
equation for combinational logic.

Primitive Format:<primitive name>, <primitive type>

Pin Format: <pin name>, <pin type>

Connector Format: <connector name>

Net Format: <net name>, fan-out = <number of fan-out
signals>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–44 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Other Features in the Schematic Viewer
Finding Design Elements in the Netlist Viewers
You can narrow the range of the search process by setting the following options in the
Find pane:

■ Click Browse in the Find pane to specify the hierarchy level of the search. In the
Select Hierarchy Level dialog box, select the particular instance you want to
search.

■ Turn on the Include subentities option to include child hierarchies of the parent
instance during the search.

■ Click Options to open the Find Options dialog box. Turn on Instances, Nodes,
Pins, or any combination of the three to further refine the parameters of the search.

When you click the List button, a progress bar appears below the Find box.

Output Port Format: fan-out = <number of fan-out signals>

Input Port

The information displayed depends on the type of source
net. The examples of the tooltips shown represent the
following types of source nets:

(1) Single net

(2) Individual nets, part of the same bus net

(3) Combination of different bus nets

(4) Constant inputs

(5) Combination of single net and constant input

(6) Bus net

Source from—refers to the source net name that connects
to the input port.

Destination Index—refers to the bit(s) at the destination
input port to which the source net is connected (not
applicable for single nets).

State Machine Node Format: <node name>

State Machine
Transition Arc

This information is displayed when you hold your mouse
over the arrow on the arc representing the transition
between two states.

Format: (<equation for transition between states>)

Table 17–9. Tooltip Information (Part 2 of 2)

Tooltip Format Description Example Tooltips

(1)

(2)

(3)

(4)

(5)

(6)
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–45
Other Features in the Schematic Viewer
All results that match the criteria you set are listed in a table. When you double-click
an item in the table, the related node is highlighted in red in the schematic view.

Exporting and Copying a Schematic Image
You can export the schematic view of the RTL Viewer or Technology Map Viewer into
various image formats. This allows you to include the schematic in project
documentation or share it with other project members. The currently supported
formats are JPEG File Interchange Format (.jpg), Portable Network Graphics (.png),
Graphics Interchange Format (.gif), and Windows Bitmap (.bmp). To export the
schematic view, on the File menu, click Export. In the Export dialog box, type a file
name and location and select the necessary file type. The default file name is based on
the current instance name; the default file type is .jpg. However, for pages that use
filtering, expanding, or reducing operations, the default name is
Filter<number of export operation>.jpg.

1 Nodes grouped as logic clouds are not shown in the exported or copied schematic
image; the logic clouds are shown instead.

You can copy the entire image or a portion of the image. To copy the entire image,
right-click on the schematic, point to Copy, and then click Full Image. To copy a
portion of the image, right-click on the schematic, point to Copy, and then click Partial
Image. The cursor changes to a “+” sign to indicate that you can draw a box shape.
Drag the mouse pointer around the portion of the schematic you want to copy. When
you release the mouse button, the partial image is copied to the clipboard.

1 Occasionally, due to the design size and objects selected, an image is too large to copy
to the clipboard. In this case, the Quartus II software displays an error message.

To export or copy a schematic that is too large to copy in one piece, split the design
into multiple pages to export or to copy smaller portions of the design. For more
information about controlling how much of your design is shown on each schematic
page, refer to “Partitioning the Schematic into Pages” on page 17–30. As an
alternative, use the Partial Image feature to copy a portion of the image.

Printing
To print your schematic page, on the File menu, click Print. You can print each
schematic page onto one page, or you can print selected parts of your schematic onto
one page with the Selection option. To control how much of your design is shown on
each schematic page, refer to “Partitioning the Schematic into Pages” on page 17–30.

You cannot print the Netlist Navigator pane in the RTL Viewer and Technology Map
Viewer and the table view of the State Machine Viewer. You can use the State Machine
Viewer Copy command to copy the table to a text editor and print from the text editor.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

17–46 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Conclusion
Conclusion
The Quartus II RTL Viewer, State Machine Viewer, and Technology Map Viewer allow
you to explore and analyze your initial synthesis netlist, post-synthesis netlist, or
post-fitting and physical synthesis netlist. The netlist viewers provide a number of
features in the Netlist Navigator pane and schematic view to help you quickly trace
through your netlist and find specific hierarchies or nodes of interest. These
capabilities can help you debug, optimize, and constrain your design more efficiently
to increase your productivity.

Document Revision History
Table 17–10 shows the revision history for this chapter.

Table 17–10. Document Revision History

Date Document
Version Changes

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0
■ Updated screenshots

■ Updated chapter for the Quartus II software version 10.0, including major user interface
changes

November 2009 9.1.0
■ Updated devices

■ Minor text edits

March 2009 9.0.0

■ Chapter 13 was formerly Chapter 12 in version 8.1.0

■ Updated Figure 13–2, Figure 13–3, Figure 13–4, Figure 13–14, and Figure 13–30

■ Added “Enable or Disable the Auto Hierarchy List” on page 13–15

■ Updated “Find Command” on page 13–44

November 2008 8.1.0 Changed page size to 8.5” × 11”

May 2008 8.0.0

■ Added Arria GX support

■ Updated operator symbols

■ Updated information about the radial menu feature

■ Updated zooming feature

■ Updated information about probing from schematic to SignalTap II Analyzer

■ Updated constant signal information

■ Added .png and .gif to the list of supported image file formats

■ Updated several figures and tables

■ Added new sections “Enabling and Disabling the Radial Menu”, “Changing the Time
Interval”, “Changing the Constant Signal Value Formatting”, “Logic Clouds in the RTL
Viewer”, “Logic Clouds in the Technology Map Viewer”, “Manually Group and Ungroup
Logic Clouds”, “Customizing the Shortcut Commands”

■ Renamed several sections

■ Removed section “Customizing the Radial Menu”

■ Moved section “Grouping Combinational Logic into Logic Clouds”

■ Updated document content based on the Quartus II software version 8.0
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

Chapter 17: Analyzing Designs with Quartus II Netlist Viewers 17–47
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

17–48 Chapter 17: Analyzing Designs with Quartus II Netlist Viewers
Document Revision History
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

December 2010 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 10.1.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such third-
party software products and its use in the Quartus II 10.1 software release. To the
extent that the software products described in this handbook are derived from third-
party software, no third party warrants the software, assumes any liability regarding
use of the software, or undertakes to furnish you any support or information relating
to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER WHICH
THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND THIRD-PARTY
LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO THE USE OF
SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN THE
SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V2-10.1.0

Quartus II Handbook Version 10.1 Volume 2: Design
Implementation and Optimization

Quartus II Handbook Version 10.1 Volume 2: Design
Implementation and Optimization

http://www.altera.com

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

December 2010 Altera Corporation
Contents
Chapter Revision Dates . xvii

Section I. Scripting and Constraint Entry

Chapter 1. Constraining Designs
Constraining Designs with the Quartus II GUI . 1–1

Global Constraints . 1–2
Node, Entity, and Instance-Level Constraints . 1–3
Probing Between Components of the Quartus II GUI . 1–4
SDC and the TimeQuest Timing Analyzer . 1–4

Constraining Designs with Tcl . 1–4
Quartus II Settings Files and Tcl . 1–5
Timing Analysis with Synopsys Design Constraints and Tcl . 1–8

A Fully Iterative Scripted Flow . 1–9
Document Revision History . 1–9

Chapter 2. Command-Line Scripting
Benefits of Command-Line Executables . 2–1
Introductory Example . 2–2

Command-Line Scripting Help . 2–3
Command-Line Option Details . 2–4
Option Precedence . 2–5

Compilation with quartus_sh --flow . 2–7
Text-Based Report Files . 2–7

Makefile Implementation . 2–9
The MegaWizard Plug-In Manager . 2–11

Command-Line Support . 2–12
Module and Wizard Names . 2–13

Ports and Parameters . 2–14
Invalid Configurations . 2–15
Strategies to Determine Port and Parameter Values . 2–15

Optional Files . 2–15
Parameter File . 2–16
Working Directory . 2–17
Variation File Name . 2–17

Command-Line Scripting Examples . 2–17
Create a Project and Apply Constraints . 2–17
Check Design File Syntax . 2–18
Create a Project and Synthesize a Netlist Using Netlist Optimizations . 2–19
Archive and Restore Projects . 2–20
Perform I/O Assignment Analysis . 2–20
Update Memory Contents Without Recompiling . 2–20
Create a Compressed Configuration File . 2–21
Fit a Design as Quickly as Possible . 2–21
Fit a Design Using Multiple Seeds . 2–22
Regenerating Megafunctions After Updating the Quartus II Software . 2–23
The QFlow Script . 2–23

Document Revision History . 2–24
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

iv Contents
Chapter 3. Tcl Scripting
Introduction . 3–1

What is Tcl? . 3–2
Quartus II Tcl Packages . 3–2

Loading Packages . 3–3
Quartus II Tcl API Help . 3–3

Command-Line Options: -t, -s, and --tcl_eval . 3–6
Run a Tcl Script . 3–6
Interactive Shell Mode . 3–6
Evaluate as Tcl . 3–6

Using the Quartus II Tcl Console Window . 3–7
End-to-End Design Flows . 3–7
Creating Projects and Making Assignments . 3–8

HardCopy Device Design . 3–8
Compiling Designs . 3–9

The flow Package . 3–9
Compile All Revisions . 3–9

Reporting . 3–9
Creating .csv Files for Excel . 3–11

Timing Analysis . 3–12
Automating Script Execution . 3–12

Execution Example . 3–13
Controlling Processing . 3–14
Displaying Messages . 3–14

Other Scripting Features . 3–14
Natural Bus Naming . 3–15
Short Option Names . 3–15
Using Collection Commands . 3–15

The foreach_in_collection Command . 3–16
The get_collection_size Command . 3–16

Using the post_message Command . 3–16
Accessing Command-Line Arguments . 3–17

Using the cmdline Package . 3–17
Using the Quartus II Tcl Shell in Interactive Mode . 3–19
Using the tclsh Shell . 3–20
Tcl Scripting Basics . 3–20

Hello World Example . 3–20
Variables . 3–20
Substitutions . 3–21

Variable Value Substitution . 3–21
Nested Command Substitution . 3–21
Backlash Substitution . 3–21

Arithmetic . 3–21
Lists . 3–22
Arrays . 3–22
Control Structures . 3–23
Procedures . 3–24
File I/O . 3–25
Syntax and Comments . 3–25
External References . 3–26

Document Revision History . 3–26
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents v
Chapter 4. Managing Quartus II Projects
Managing Your Quartus II Projects . 4–1

File Association . 4–2
Editing Text-Based Designs with the Quartus II Text Editor . 4–2
Creating Assignments . 4–3

Quartus II Settings File . 4–3
Preserving QSF Format . 4–3
Quartus II Default Settings File . 4–3

Creating Timing Assignments . 4–4
Creating Revisions . 4–4

Managing Project Revisions . 4–4
Creating New Copies of Your Design . 4–5
Archiving and Restoring Projects . 4–5

Exporting and Importing Version-Compatible Database Files . 4–6
Migrating to a New Version of the Quartus II Software . 4–7
Saving the Database in a Version-Compatible Format . 4–7
Quartus II Project Platform Migration . 4–8

File Names and Hierarchies . 4–8
Specifying Libraries . 4–10
Quartus II Search Path Precedence Rules . 4–11
Quartus II-Generated Files for Third-Party EDA Tools . 4–12
Migrating Database Files Between Platforms . 4–13

Working with Messages . 4–13
Messages Window . 4–13
Message Suppression . 4–13

Managing Projects in a Team-Based Design Environment . 4–15
Scripting Support . 4–16

Managing Revisions . 4–16
Creating Revisions . 4–16
Setting the Current Revision . 4–16
Getting a List of Revisions . 4–17
Deleting Revisions . 4–17

Archiving Projects . 4–17
Restoring Archived Projects . 4–18
Importing and Exporting Version-Compatible Databases . 4–18
Specifying Libraries Using Scripts . 4–19

Conclusion . 4–20
Document Revision History . 4–20

Section II. I/O and PCB Tools

Chapter 5. I/O Management
Understanding Altera Pin Terminology . 5–1

Package Pins . 5–2
Pads . 5–3
I/O Banks . 5–3
VREF Groups . 5–4

I/O Planning Overview . 5–5
Selecting a Device . 5–7
Working with Third-Party PCB Tools . 5–7

Performing Early I/O Planning with the Pin Planner . 5–8
Instantiating or Importing IP Cores in the Pin Planner . 5–9
Adding and Connecting Nodes . 5–9
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

vi Contents
Setting Up and Creating the Top-Level Design File . 5–10
Importing and Exporting Pin Assignments . 5–12

Importing and Exporting Assignments with the Quartus II Software . 5–12
Importing and Exporting Assignments with Third-Party PCB Tools . 5–12

Creating Pin-Related Assignments . 5–13
Creating Pin Assignments With the Pin Planner . 5–14

Finding Compatible Pin Locations with the Pin Finder . 5–15
Verifying Pin Migration Compatibility . 5–15
Viewing Simultaneous Switching Noise (SSN) Results . 5–17
Creating Location Assignments . 5–17
Creating Exclusive I/O Group Assignments . 5–18
Changing the Slew Rate and Drive Strength . 5–18
Assigning Locations for Differential Pins . 5–19

Creating Pin Assignments with the Chip Planner . 5–20
Creating Pin Assignments with Tcl Scripts . 5–20
Creating Pin Assignments in HDL Code . 5–20

Synthesis Attributes . 5–21
chip_pin and useioff . 5–21
altera_attribute . 5–22

Creating Pin Assignments with Low-Level I/O Primitives . 5–22
Validating Pin Assignments . 5–23

Validating Pin Assignments with the Live I/O Check Feature . 5–24
Validating Pin Assignments with I/O Assignment Analysis . 5–25

Running I/O Assignment Analysis without Design Files . 5–26
Running I/O Assignment Analysis with Design Files . 5–28
Optimizing I/O Assignment Analysis with Output Enable Group
Logic Option Assignments . 5–29

Validating Pin Assignments with Full Compilation . 5–31
Performing I/O Timing Analysis . 5–32

Enabling and Configuring Advanced I/O Timing . 5–33
Defining Overall Board Trace Models . 5–33
Customizing the Board Trace Model in the Pin Planner . 5–34
Configuring Board Trace Models . 5–34
Specifying Near-End vs Far-End Timing Analysis . 5–36
Understanding Advanced I/O Timing Analysis Reports . 5–36

Adjusting I/O Timing and Power with Capacitive Loading . 5–37
Incorporating PCB Design Tools . 5–37
Scripting Support . 5–38

Running I/O Assignment Analysis . 5–38
Generating a Mapped Netlist . 5–38
Reserving Pins . 5–38
Creating Location Assignments . 5–39
Creating Exclusive I/O Group Assignments . 5–39
Changing the Slew Rate and Drive Strength . 5–39

Conclusion . 5–40
Document Revision History . 5–40

Chapter 6. Simultaneous Switching Noise (SSN) Analysis and Optimizations
Definitions . 6–1
Understanding SSN . 6–2
SSN Estimation Tools . 6–5
SSN Analysis Overview . 6–5

Performing Early Pin-Out SSN Analysis . 6–6
Performing Early Pin-Out SSN Analysis with the ESE Tool . 6–6
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents vii
Performing Early Pin-Out SSN Analysis with the SSN Analyzer . 6–7
Performing Final Pin-Out SSN Analysis . 6–8

Design Factors Affecting SSN Results . 6–8
Optimizing Your Design for SSN Analysis . 6–8

Optimizing Pin Placements for Signal Integrity . 6–9
Specifying Board Trace Model Settings . 6–10
Defining PCB Layers and PCB Layer Thickness . 6–11
Specifying Signal Breakout Layers . 6–13
Creating I/O Assignments . 6–14
Decreasing Pessimism in SSN Analysis . 6–14
Excluding Pins as Aggressor Signals . 6–15

Performing SSN Analysis and Viewing Results . 6–15
Understanding the SSN Reports . 6–15

Summary Report . 6–16
Output Pins and Input Pins Reports . 6–16
Unanalyzed Pins Report . 6–16
Confidence Metric Details Report . 6–16

Viewing SSN Analysis Results in the Pin Planner . 6–16
Decreasing Processing Time for SSN Analysis . 6–17
Scripting Support . 6–17

Optimizing Pin Placements for Signal Integrity . 6–18
Defining PCB Layers and PCB Layer Thickness . 6–18
Specifying Signal Breakout Layers . 6–19
Decreasing Pessimism in SSN Analysis . 6–19
Performing SSN Analysis . 6–19

Conclusion . 6–20
Document Revision History . 6–20

Chapter 7. Signal Integrity Analysis with Third-Party Tools
Introduction . 7–1
I/O Model Selection: IBIS or HSPICE . 7–3
FPGA to Board Signal Integrity Analysis Flow . 7–4

Create I/O and Board Trace Model Assignments . 7–5
Output File Generation . 7–6
Customize the Output Files . 7–6
Set Up and Run Simulations in Third-Party Tools . 7–7
Interpret Simulation Results . 7–7

Simulation with IBIS Models . 7–7
Elements of an IBIS Model . 7–8
Creating Accurate IBIS Models . 7–8

Download IBIS Models . 7–9
Generate Custom IBIS Models with the IBIS Writer . 7–9

Design Simulation Using the Mentor Graphics HyperLynx Software . 7–10
Configuring LineSim to Use Altera IBIS Models . 7–12
Integrating Altera IBIS Models into LineSim Simulations . 7–13
Running and Interpreting LineSim Simulations . 7–15

Simulation with HSPICE Models . 7–16
Supported Devices and Signaling . 7–17
Accessing HSPICE Simulation Kits . 7–17
The Double Counting Problem in HSPICE Simulations . 7–17

Defining the Double Counting Problem . 7–18
The Solution to Double Counting . 7–19

HSPICE Writer Tool Flow . 7–20
Applying I/O Assignments . 7–20
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

viii Contents
Enabling HSPICE Writer . 7–20
Enabling HSPICE Writer Using Assignments . 7–21
Naming Conventions for HSPICE Files . 7–21
Invoking HSPICE Writer . 7–21
Invoking HSPICE Writer from the Command Line . 7–22
Customizing Automatically Generated HSPICE Decks . 7–22

Running an HSPICE Simulation . 7–23
Interpreting the Results of an Output Simulation . 7–23
Interpreting the Results of an Input Simulation . 7–24
Viewing and Interpreting Tabular Simulation Results . 7–24
Viewing Graphical Simulation Results . 7–24
Making Design Adjustments Based on HSPICE Simulations . 7–26
Sample Input for I/O HSPICE Simulation Deck . 7–28

Header Comment . 7–28
Simulation Conditions . 7–29
Simulation Options . 7–29
Constant Definition . 7–30
Buffer Netlist . 7–31
Drive Strength . 7–31
I/O Buffer Instantiation . 7–31
Board Trace and Termination . 7–32
Stimulus Model . 7–32
Simulation Analysis . 7–33

Sample Output for I/O HSPICE Simulation Deck . 7–33
Header Comment . 7–33
Simulation Conditions . 7–34
Simulation Options . 7–35
Constraint Definition . 7–36
I/O Buffer Netlist . 7–36
Drive Strength . 7–37
Slew Rate and Delay Chain . 7–37
I/O Buffer Instantiation . 7–38
Board and Trace Termination . 7–38
Double-Counting Compensation Circuitry . 7–39
Simulation Analysis . 7–40

Advanced Topics . 7–40
PVT Simulations . 7–40
Hold Time Analysis . 7–41
I/O Voltage Variations . 7–41
Correlation Report . 7–41

Conclusion . 7–42
Document Revision History . 7–42

Chapter 8. Mentor Graphics PCB Design Tools Support
FPGA-to-PCB Design Flow . 8–2

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA . 8–3
Setting Up the Quartus II Software . 8–4

Generating a .pin File . 8–5
Generating an .fx File . 8–6
Creating a Backup .qsf . 8–6

FPGA-to-Board Integration with the I/O Designer Software . 8–6
I/O Designer Database Wizard . 8–7
Updating Pin Assignments from the Quartus II Software . 8–11
Sending Pin Assignment Changes to the Quartus II Software . 8–14
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents ix
Protecting Assignments in the Quartus II Software . 8–15
Generating Symbols for the DxDesigner Software . 8–15

Setting Up the I/O Designer Software to Work with the DxDesigner Software 8–16
Creating Symbols with the Symbol Wizard . 8–17
Exporting Symbols to the DxDesigner Software . 8–19

Scripting Support . 8–19
FPGA-to-Board Integration with the DxDesigner Software . 8–20

DxDesigner Project Settings . 8–21
DxDesigner Symbol Wizard . 8–23

Conclusion . 8–25
Document Revision History . 8–25

Chapter 9. Cadence PCB Design Tools Support
Product Comparison . 9–2
FPGA-to-PCB Design Flow . 9–3

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA . 9–5
Setting Up the Quartus II Software . 9–5

Generating a .pin File . 9–5
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software 9–6

Creating Symbols . 9–6
Cadence Allegro PCB Librarian Part Developer Tool . 9–8

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software 9–12
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software 9–13

Creating a Cadence Allegro Design Entry CIS Project . 9–13
Generating a Part . 9–14
Splitting a Part . 9–16
Instantiating a Symbol in a Design Entry CIS Schematic . 9–18
Altera Libraries for the Cadence Allegro Design Entry CIS Software . 9–18

Conclusion . 9–20
Document Revision History . 9–20

Chapter 10. Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Quartus II Software Settings . 10–1

Device and Pins Options Dialog Box Settings . 10–2
Configuration Page Settings . 10–2
Unused Pin Page Settings . 10–2
Dual-Purpose Pins Page Settings . 10–3
Voltage Page Settings . 10–3
Error Detection CRC Page Settings . 10–3

Voltage Page Settings . 10–3
Reviewing Device Pin-Out Information in the Fitter Report . 10–4
Reviewing Compilation Error and Warning Messages . 10–5
Running the HardCopy Design Readiness Check . 10–6
Using Additional Quartus II Software Features . 10–6
Using Additional Quartus II Software Tools . 10–6

Pin Planner . 10–6
SSN Analyzer . 10–7

Conclusion . 10–7
Document Revision History . 10–7
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

x Contents
Section III. Area, Timing, Power, and Compilation Time Optimization

Chapter 11. Design Optimization Overview
Introduction . 11–1
Physical Implementation . 11–1

Trade-Offs and Limitations . 11–1
Preserving Results and Enabling Teamwork . 11–2
Reducing Area . 11–2
Reducing Critical Path Delay . 11–3
Reducing Power Consumption . 11–3
Reducing Runtime . 11–3

Using Quartus II Tools . 11–4
Design Analysis . 11–4
Advisors . 11–4
Design Space Explorer . 11–5

Conclusion . 11–5
Document Revision History . 11–5

Chapter 12. Reducing Compilation Time
Compilation Time Optimization Techniques . 12–1

Compilation Time Advisor . 12–2
Strategies to Reduce the Overall Compilation Time . 12–2

Using Parallel Compilation with Multiple Processors . 12–2
Using Incremental Compilation . 12–4
Using the Smart Compilation Setting . 12–4
Using Rapid Recompile . 12–4

Reducing Synthesis Time and Synthesis Netlist Optimization Time . 12–5
Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time 12–5
Use Appropriate Coding Style to Reduce Synthesis Time . 12–6
Using Early Timing Estimation . 12–6

Reducing Placement Time . 12–7
Fitter Effort Setting . 12–7
Placement Effort Multiplier Settings . 12–7
Final Placement Optimization Levels . 12–7
Physical Synthesis Effort Settings . 12–8
Limit to One Fitting Attempt . 12–8
Preserving Placement, Incremental Compilation, and LogicLock Regions 12–8

Reducing Routing Time . 12–8
Identifying Routing Congestion in the Chip Planner . 12–9
Placement Effort Multiplier Setting . 12–9
Preserving Routing with Incremental Compilation . 12–9

Reducing Static Timing Analysis Time . 12–9
Setting Process Priority . 12–10

Conclusion . 12–10
Document Revision History . 12–10

Chapter 13. Area and Timing Optimization
Optimizing Your Design . 13–1

Initial Compilation: Required Settings . 13–2
Device Settings . 13–3
I/O Assignments . 13–3
Timing Requirement Settings . 13–3
Device Migration Settings . 13–5
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents xi
Partitions and Floorplan Assignments for Incremental Compilation . 13–5
Initial Compilation: Optional Fitter Settings . 13–6

Optimize Hold Timing . 13–6
Limit to One Fitting Attempt . 13–7
Optimize Multi-Corner Timing . 13–7
Fitter Effort Setting . 13–8

Design Assistant . 13–9
Design Analysis . 13–10

Error and Warning Messages . 13–10
Ignored Timing Constraints . 13–10
Resource Utilization . 13–10
I/O Timing (Including tPD) . 13–11
Register-to-Register Timing . 13–12

Timing Analysis with the TimeQuest Timing Analyzer . 13–12
Tips for Analyzing Failing Paths . 13–14
Tips for Analyzing Failing Clock Paths that Cross Clock Domains . 13–14

Global Routing Resources . 13–15
Resource Utilization Optimization Techniques (LUT-Based Devices) . 13–15

Using the Resource Optimization Advisor . 13–16
Resolving Resource Utilization Issues Summary . 13–16
I/O Pin Utilization or Placement . 13–16

Use I/O Assignment Analysis . 13–16
Modify Pin Assignments or Choose a Larger Package . 13–16

Logic Utilization or Placement . 13–17
Optimize Synthesis for Area, Not Speed . 13–17
Restructure Multiplexers . 13–18
Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting 13–18
Use Register Packing . 13–18
Remove Fitter Constraints . 13–20
Change State Machine Encoding . 13–20
Flatten the Hierarchy During Synthesis . 13–21
Retarget Memory Blocks . 13–21
Use Physical Synthesis Options to Reduce Area . 13–22
Retarget or Balance DSP Blocks . 13–22
Optimize Source Code . 13–23
Use a Larger Device . 13–24

Routing . 13–24
Set Auto Packed Registers to Sparse or Sparse Auto . 13–24
Set Fitter Aggressive Routability Optimizations to Always . 13–24
Increase Placement Effort Multiplier . 13–24
Increase Router Effort Multiplier . 13–25
Remove Fitter Constraints . 13–25
Optimize Synthesis for Area, Not Speed . 13–26
Optimize Source Code . 13–26
Use a Larger Device . 13–26

Timing Optimization Techniques (LUT-Based Devices) . 13–27
Debugging Timing Failures in the TimeQuest Analyzer . 13–27
Timing Optimization Advisor . 13–29
I/O Timing Optimization . 13–30

Improving Setup and Clock-to-Output Times Summary . 13–30
Timing-Driven Compilation . 13–31
Fast Input, Output, and Output Enable Registers . 13–31
Programmable Delays . 13–32
Use PLLs to Shift Clock Edges . 13–33
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

xii Contents
Use Fast Regional Clock Networks and Regional Clocks Networks . 13–33
Change How Hold Times are Optimized for MAX II Devices . 13–34

Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 13–34
Improving Register-to-Register Timing Summary . 13–34
Physical Synthesis Optimizations . 13–35
Turn Off Extra-Effort Power Optimization Settings . 13–37
Optimize Synthesis for Speed, Not Area . 13–37
Flatten the Hierarchy During Synthesis . 13–38
Set the Synthesis Effort to High . 13–38
Change State Machine Encoding . 13–38
Duplicate Logic for Fan-Out Control . 13–38
Prevent Shift Register Inference . 13–39
Use Other Synthesis Options Available in Your Synthesis Tool . 13–39
Fitter Seed . 13–39
Set Maximum Router Timing Optimization Level . 13–40
Optimize Source Code . 13–40

LogicLock Assignments . 13–41
Hierarchy Assignments . 13–42

Location Assignments and Back-Annotation . 13–42
Metastability Analysis and Optimization Techniques . 13–43

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs) . 13–43
Use Dedicated Inputs for Global Control Signals . 13–43
Reserve Device Resources . 13–44
Pin Assignment Guidelines and Procedures . 13–44

Control Signal Pin Assignments . 13–45
Output Enable Pin Assignments . 13–45
Estimate Fan-In When Assigning Output Pins . 13–45
Outputs Using Parallel Expander Pin Assignments . 13–45

Resolving Resource Utilization Problems . 13–46
Resolving Macrocell Usage Issues . 13–47
Resolving Routing Issues . 13–47
Using LCELL Buffers to Reduce Required Resources . 13–48

Timing Optimization Techniques (Macrocell-Based CPLDs) . 13–49
Improving Setup Time . 13–50
Improving Clock-to-Output Time . 13–51
Improving Propagation Delay (tPD) . 13–51
Improving Maximum Frequency (fMAX) . 13–52
Optimizing Source Code—Pipelining for Complex Register Logic . 13–53

Other Optimization Resources . 13–53
Design Space Explorer . 13–53
Other Optimization Advisors . 13–53

Scripting Support . 13–53
Initial Compilation Settings . 13–54
Resource Utilization Optimization Techniques (LUT-Based Devices) . 13–55
I/O Timing Optimization Techniques (LUT-Based Devices) . 13–56
Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 13–56

Duplicate Logic for Fan-Out Control . 13–57
Conclusion . 13–57
Document Revision History . 13–57

Chapter 14. Power Optimization
Power Dissipation . 14–2
Design Space Explorer . 14–3
Power-Driven Compilation . 14–4
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents xiii
Power-Driven Synthesis . 14–4
Power-Driven Fitter . 14–9
Area-Driven Synthesis . 14–11
Gate-Level Register Retiming . 14–11

Design Guidelines . 14–12
Clock Power Management . 14–12

LAB-Wide Clock Enable Example . 14–14
Reducing Memory Power Consumption . 14–14

Memory Power Reduction Example . 14–16
Pipelining and Retiming . 14–17
Architectural Optimization . 14–18
I/O Power Guidelines . 14–19
Dynamically Controlled On-Chip Terminations . 14–21
Power Optimization Advisor . 14–21

Power Optimization Advisor Example . 14–22
Conclusion . 14–24

Document Revision History . 14–24

Chapter 15. Analyzing and Optimizing the Design Floorplan
Chip Planner Overview . 15–1

Starting the Chip Planner . 15–2
Chip Planner Toolbar . 15–3
Chip Planner Tasks, Layers, and Editing Modes . 15–3
Locate History Window . 15–4

LogicLock Regions . 15–4
Creating LogicLock Regions . 15–5

Creating LogicLock Regions with the Project Navigator . 15–5
Creating LogicLock Regions with the Chip Planner . 15–5

Placing LogicLock Regions . 15–5
Placing Device Resources into LogicLock Regions . 15–6
LogicLock Regions Window . 15–6
Assigning LogicLock Region Content . 15–7
Hierarchical (Parent and Child) LogicLock Regions . 15–8
Reserved LogicLock Region . 15–8
Creating Non-Rectangular LogicLock Regions . 15–8
Excluded Resources . 15–9
Additional Quartus II LogicLock Design Features . 15–10

Analysis and Synthesis Resource Utilization by Entity . 15–10
Quartus II Revisions Feature . 15–10
LogicLock Assignment Precedence . 15–10
Virtual Pins . 15–11

Using LogicLock Regions in the Chip Planner . 15–12
Viewing Connections Between LogicLock Regions in the Chip Planner . 15–12
Using LogicLock Regions with the Design Partition Planner . 15–12

Design Floorplan Analysis Using the Chip Planner . 15–13
Chip Planner Floorplan Views . 15–13

Bird’s Eye View . 15–13
Properies Window . 15–14

Viewing Architecture-Specific Design Information . 15–14
Viewing Available Clock Networks in the Device . 15–15
Viewing Critical Paths . 15–16
Viewing Routing Congestion . 15–17
Viewing I/O Banks . 15–18
Generating Fan-In and Fan-Out Connections . 15–18
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

xiv Contents
Generating Immediate Fan-In and Fan-Out Connections . 15–19
Highlight Routing . 15–20
Show Delays . 15–21
Exploring Paths in the Chip Planner . 15–21

Locate Path from the Timing Analysis Report to the Chip Planner . 15–21
Analyzing Connections for a Path . 15–22

Viewing Assignments in the Chip Planner . 15–22
Viewing Routing Channels for a Path in the Chip Planner . 15–24
Delay Information Table . 15–25
Viewing High-Speed and Low-Power Tiles in the Chip Planner . 15–25

Scripting Support . 15–26
Initializing and Uninitializing a LogicLock Region . 15–27
Creating or Modifying LogicLock Regions . 15–27
Obtaining LogicLock Region Properties . 15–27
Assigning LogicLock Region Content . 15–27
Save a Node-Level Netlist for the Entire Design into a Persistent Source File 15–28
Setting LogicLock Assignment Priority . 15–28
Assigning Virtual Pins . 15–28

Conclusion . 15–28
Document Revision History . 15–29

Chapter 16. Netlist Optimizations and Physical Synthesis
WYSIWYG Primitive Resynthesis . 16–1
Performing Physical Synthesis Optimizations . 16–3

Automatic Asynchronous Signal Pipelining . 16–5
Physical Synthesis for Combinational Logic . 16–6
Physical Synthesis for Registers—Register Duplication . 16–6
Physical Synthesis for Registers—Register Retiming . 16–7

Preserving Your Physical Synthesis Results . 16–10
Physical Synthesis Options for Fitting . 16–11

Applying Netlist Optimization Options . 16–12
Scripting Support . 16–12

Synthesis Netlist Optimizations . 16–13
Physical Synthesis Optimizations . 16–13
Incremental Compilation . 16–14
Back-Annotating Assignments . 16–14

Conclusion . 16–14
Document Revision History . 16–14

Section IV. Engineering Change Management

Chapter 17. Engineering Change Management with the Chip Planner
Engineering Change Orders . 17–2

Performance Preservation . 17–2
Compilation Time . 17–3
Verification . 17–3
Change Modification Record . 17–3

ECO Design Flow . 17–4
The Chip Planner Overview . 17–5

Opening the Chip Planner . 17–5
The Chip Planner Tasks and Layers . 17–6

Performing ECOs with the Chip Planner (Floorplan View) . 17–6
Creating, Deleting, and Moving Atoms . 17–7
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Contents xv
Check and Save Netlist Changes . 17–7
Performing ECOs in the Resource Property Editor . 17–7

Logic Elements . 17–7
Logic Element Schematic View . 17–8
Logic Element Properties . 17–8
Modes of Operation . 17–9
Sum and Carry Equations . 17–9
sload and sclr Signals . 17–9
Register Cascade Mode . 17–9
Cell Delay Table . 17–9
Logic Element Connections . 17–10
Delete a Logic Element . 17–10

Adaptive Logic Modules . 17–10
Adaptive Logic Module Schematic . 17–11
Adaptive Logic Module Properties . 17–11
Adaptive Logic Module Connections . 17–12

FPGA I/O Elements . 17–12
Stratix V I/O Elements . 17–12
Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements . 17–14
Arria II GX, Stratix III, and Stratix IV I/O Elements . 17–15
Cyclone and Cyclone II I/O Elements . 17–16
Cyclone III I/O Elements . 17–17
MAX II I/O Elements . 17–18

FPGA RAM Blocks . 17–19
FPGA DSP Blocks . 17–20

Change Manager . 17–21
Complex Changes in the Change Manager . 17–21
Managing SignalProbe Signals . 17–21
Exporting Changes . 17–21

Scripting Support . 17–22
Common ECO Applications . 17–22

Adjust the Drive Strength of an I/O with the Chip Planner . 17–22
Modify the PLL Properties With the Chip Planner . 17–23
PLL Properties . 17–24

Adjusting the Duty Cycle . 17–25
Adjusting the Phase Shift . 17–25
Adjusting the Output Clock Frequency . 17–26
Adjusting the Spread Spectrum . 17–26

Modify the Connectivity between Resource Atoms . 17–26
Post ECO Steps . 17–27
Conclusion . 17–27
Document Revision History . 17–28

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

xvi Contents
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

December 2010 Altera Corporation
Chapter Revision Dates
The chapters in this document, Quartus II Handbook Version 10.1 Volume 2: Design
Implementation and Optimization, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Constraining Designs
Revised: December 2010
Part Number: QII52001-10.0.1

Chapter 2. Command-Line Scripting
Revised: December 2010
Part Number: QII52002-10.1.0

Chapter 3. Tcl Scripting
Revised: December 2010
Part Number: QII52003-10.1.0

Chapter 4. Managing Quartus II Projects
Revised: December 2010
Part Number: QII52012-10.1.0

Chapter 5. I/O Management
Revised: December 2010
Part Number: QII52013-10.0.1

Chapter 6. Simultaneous Switching Noise (SSN) Analysis and Optimizations
Revised: December 2010
Part Number: QII52018-10.0.1

Chapter 7. Signal Integrity Analysis with Third-Party Tools
Revised: December 2010
Part Number: QII53020-10.0.1

Chapter 8. Mentor Graphics PCB Design Tools Support
Revised: December 2010
Part Number: QII52015-10.0.1

Chapter 9. Cadence PCB Design Tools Support
Revised: December 2010
Part Number: QII52014-10.0.1

Chapter 10. Reviewing Printed Circuit Board Schematics with the Quartus II Software
Revised: December 2010
Part Number: QII52019-10.0.1

Chapter 11. Design Optimization Overview
Revised: December 2010
Part Number: QII52021-10.0.2

Chapter 12. Reducing Compilation Time
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

xviii Chapter Revision Dates
Revised: December 2010
Part Number: QII52022-10.1.0

Chapter 13. Area and Timing Optimization
Revised: December 2010
Part Number: QII52005-10.1.0

Chapter 14. Power Optimization
Revised: December 2010
Part Number: QII52016-10.0.1

Chapter 15. Analyzing and Optimizing the Design Floorplan
Revised: December 2010
Part Number: QII52006-10.1.0

Chapter 16. Netlist Optimizations and Physical Synthesis
Revised: December 2010
Part Number: QII52007-10.0.1

Chapter 17. Engineering Change Management with the Chip Planner
Revised: December 2010
Part Number: QII52017-10.1.0
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

December 2010 Altera Corporation
Section I. Scripting and Constraint Entry
As a result of the increasing complexity of today’s FPGA designs and the demand for
higher performance, designers must make a large number of complex timing and
logic constraints to meet their performance requirements. After you create a project
and design, you can use the Quartus® II software Assignment Editor and other GUI
features to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to constrain designs, how to take advantage of Quartus II
modular executables, how to develop and run Tcl scripts to perform a wide range of
functions, and how to manage the Quartus II projects.

This section includes the following chapters:

■ Chapter 1, Constraining Designs

This chapter discusses the ways to constrain designs in the Quartus II software,
including the tools avaliable in the Quartus II software GUI, as well as Tcl
scripting flows.

■ Chapter 2, Command-Line Scripting

This chapter discusses Quartus II command-line executables, which provide
command-line control over each step of the design flow. Each executable includes
options to control commonly used software settings. Each executable also
provides detailed, built-in help describing its function, available options, and
settings.

■ Chapter 3, Tcl Scripting

This chapter discusses developing and running Tcl scripts in the Quartus II
software to allow you to perform a wide range of functions, such as compiling a
design or automating common tasks. This chapter includes sample Tcl scripts for
automating the Quartus II software. You can modify these example scripts for use
with your own designs.

■ Chapter 4, Managing Quartus II Projects

This chapter discusses the best ways to manage Quartus II projects. This chapter
also discusses how to migrate your projects from one computing platform to
another; create and compare revisions; and copy, archive and restore projects.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

I–2 Section I: Scripting and Constraint Entry
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52001-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52001-10.0.1
1. Constraining Designs
This chapter discusses the various tools and methods for constraining and
re-constraining Quartus II designs in different design flows, both with the Quartus II
GUI and with Tcl to facilitate a scripted flow.

Constraints, sometimes known as assignments or logic options, control the way the
Quartus II software implements a design for an FPGA. Constraints are also central in
the way that the TimeQuest Timing Analyzer and the PowerPlay Power Analyzer
inform synthesis, placement, and routing. There are several types of constraints:

■ Global design constraints and software settings, such as device family selection,
package type, and pin count.

■ Entity-level constraints, such as logic options and placement assignments.

■ Instance-level constraints.

■ Pin assignments and I/O constraints.

User-created constraints are contained in one of two files: the Quartus II Settings File
(.qsf) or, in the case of timing constraints, the Synopsys Design Constraints file (.sdc).
Constraints and assignments made with the Device dialog box, Settings dialog box,
Assignment Editor, Chip Planner, and Pin Planner are contained in the Quartus II
Settings File. The .qsf file contains project-wide and instance-level assignments for the
current revision of the project in Tcl syntax. You can create separate revisions of your
project with different settings, and there is a separate .qsf file for each revision.

The TimeQuest Timing Analyzer uses industry-standard Synopsys Design
Constraints, also using Tcl syntax, that are contained in Synopsys Design Constraints
(.sdc) files. The TimeQuest Timing Analyzer GUI is a tool for making timing
constraints and viewing the results of subsequent analysis.

There are several ways to constrain a design, each potentially more appropriate than
the others, depending on your tool chain and design flow. You can constrain designs
for compilation and analysis in the Quartus II software using the GUI, as well as using
Tcl syntax and scripting. By combining the Tcl syntax of the .qsf files and the .sdc files
with procedural Tcl, you can automate iteration over several different settings,
changing constraints and recompiling.

Constraining Designs with the Quartus II GUI
In the Quartus II GUI, the New Project Wizard, Device dialog box, and Settings
dialog box allow you to make global constraints and software settings. The
Assignment Editor and Pin Planner are spreadsheet-style interfaces for constraining
your design at the instance or entity level. The Assignment Editor and Pin Planner
make constraint types and values available based on global design characteristics
such as the targeted device. These tools help you verify that your constraints are valid
before compilation by allowing you to pick only from valid values for each constraint.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52001

1–2 Chapter 1: Constraining Designs
Constraining Designs with the Quartus II GUI
The TimeQuest Timing Analyzer GUI allows you to make timing constraints in SDC
format and view the effects of those constraints on the timing in your design. Before
running the TimeQuest timing analyzer, you must specify initial timing constraints
that describe the clock characteristics, timing exceptions, and external signal arrival
and required times. The Quartus II Fitter optimizes the placement of logic in the
device to meet your specified constraints.

h For more information about timing constraints and the TimeQuest Timing Analyzer,
refer to About TimeQuest Timing Analysis in Quartus II Help.

Global Constraints
Global constraints affect the entire Quartus II project and all of the applicable logic in
the design. Many of these constraints are simply project settings, such as the targeted
device selected for the design. Synthesis optimizations and global timing and power
analysis settings can also be applied with globally. Global constraints are often made
when running the New Project Wizard, or in the Device dialog box or the Settings
dialog box, early project development.

The following are the most common types of global constraints:

■ Target device specification

■ Top-level entity of your design, and the names of the design files included in the
project

■ Operating temperature limits and conditions

■ Physical synthesis optimizations

■ Analysis and synthesis options and optimization techniques

■ Verilog HDL and VHDL language versions used in your project

■ Fitter effort and timing driven compilation settings

■ .sdc files for the TimeQuest timing analyzer to use during analysis as part of a full
compilation flow

Settings that direct compilation and analysis flows in the Quartus II software are also
stored in the Quartus II Settings File for your project, including the following global
software settings:

■ Early Timing Estimate mode

■ Settings for EDA tool integration such as third-party synthesis tools, simulation
tools, timing analysis tools, and formal verification tools.

■ Settings and settings file specifications for the Quartus II Assembler, SignalTap II
Logic Analyzer, PowerPlay power analyzer, and SSN Analyzer.

Global constraints and software settings stored in the Quartus II settings file are
specific to each revision of your design, allowing you to control the operation of the
software differently for different revisions. For example, different revisions can
specify different operating temperatures and different devices, so that you can
compare results.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

Chapter 1: Constraining Designs 1–3
Constraining Designs with the Quartus II GUI
Only the valid assignments made in the Assignment Editor are saved in the
Quartus II Settings File, which is located in the project directory. When you make a
design constraint, the new assignment is placed on a new line at the end of the file.

When you create or update a constraint in the GUI, the Quartus II software displays
the equivalent Tcl command in the System tab of the Messages window. You can use
the displayed messages as references when making assignments using Tcl commands.

h For more information about specifying initial global constraints and software settings,
refer to Setting up and Running a Compilation in Quartus II Help.

f For more information about how the Quartus II software uses Quartus II Settings
Files, refer to the Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

Node, Entity, and Instance-Level Constraints
Node, entity, and instance-level constraints constrain a particular segment of the
design hierarchy, as opposed to the entire design. In the Quartus II software GUI,
most instance-level constraints are made with the Assignment Editor, Pin Planner,
and Chip Planner. Both the Assignment Editor and Pin Planner aid you in correctly
constraining your design, both passively, through device-and-assignment-determined
pick lists, and actively, through live I/O checking.

You can assign logic functions to physical resources on the device, using location
assignments with the Assignment Editor or the Chip Planner. Node, entity, and
instance-level constraints take precedence over any global constraints that affect the
same sections of the design hierarchy. You can edit and view all node and entity-level
constraints you created in the Assignment Editor, or you can filter the assignments by
choosing to view assignments only for specific locations, such as DSP blocks.

The Pin Planner provides a graphical representation of the target device, which allows
you to easily plan, view, create, and edit pin assignments in terms of where the pins
actually exist on the targeted device package. With the Pin Planner, you can visually
identify I/O banks, VREF groups, edges, and differential pin pairings to assist you in
the pin planning process. You can verify the legality of new and existing pin
assignments with the live I/O check feature and view the results in the Live I/O
Check Status window.

The Chip Planner allows you to view the device from a variety of different
perspectives, and you can make precise assignments to specific floorplan locations.
With the Chip Planner, you can adjust existing assignments to device resources, such
as pins, logic cells, and LABs using drag and drop features and a graphical interface.
You can also view equations and routing information, and demote assignments by
dragging and dropping assignments to various regions in the Regions window.

h For more information about the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help. For more information about the Chip Planner, refer to About
the Chip Planner in Quartus II Help. For more information about the Pin Planner, refer
to About the Pin Planner in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_view_pin_plan.htm

1–4 Chapter 1: Constraining Designs
Constraining Designs with Tcl
Probing Between Components of the Quartus II GUI
The Assignment Editor, Chip Planner, and Pin Planner let you locate nodes and
instances in the source files for your design in other Quartus II viewers. You can select
a cell in the Assignment Editor spreadsheet and locate the corresponding item in
another applicable Quartus II software window, such as the Chip Planner. To locate an
item from the Assignment Editor in another window, right-click the item of interest in
the spreadsheet, point to Locate, and click the appropriate command.

You can also locate nodes in the Assignment Editor and other constraint tools from
other windows within the Quartus II software. First, select the node or nodes in the
appropriate window. For example, select an entity in the Entity list in the Hierarchy
tab in the Project Navigator, or select nodes in the Chip Planner. Next, right-click the
selected object, point to Locate, and click Locate in Assignment Editor. The
Assignment Editor opens, or it is brought to the foreground if it is already open.

h For more information about the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help. For more information about the Chip Planner, refer to About
the Chip Planner in Quartus II Help. For more information about the Pin Planner, refer
to About the Pin Planner in Quartus II Help.

SDC and the TimeQuest Timing Analyzer
You can make individual timing constraints for individual entities, nodes, and pins
with the Constraints menu of the TimeQuest Timing Analyzer. The TimeQuest Timing
Analyzer GUI provides easy access to timing constraints, and reporting, without
requiring knowledge of SDC syntax. As you specify commands and options in the
GUI, the corresponding SDC or Tcl command appears in the Console. This lets you
know exactly what constraint you have added to your Synopsys Design Constraints
file, and also enables you to learn SDC syntax for use in scripted flows. The GUI also
provides enhanced graphical reporting features.

Individual timing assignments override project-wide requirements. You can also
assign timing exceptions to nodes and paths to avoid reporting of incorrect or
irrelevant timing violations. The TimeQuest timing analyzer supports point-to-point
timing constraints, wildcards to identify specific nodes when making constraints, and
assignment groups to make individual constraints to groups of nodes.

h For more information about timing constraints and the TimeQuest Timing Analyzer,
refer to About TimeQuest Timing Analysis in Quartus II Help.

Constraining Designs with Tcl
Because .sdc files and .qsf files are both in Tcl syntax, you can modify these files to be
part of a scripted constraint and compilation flow. With Quartus II Tcl packages, Tcl
scripts can open projects, make the assignments procedurally that would otherwise be
specified in a .qsf file, compile a design, and compare compilation results against
known goals and benchmarks for the design. Such a script can further automate the
iterative process by modifying design constraints and recompiling the design.

h For more information about controlling the Quartus II software with Tcl, refer to
About Quartus II Tcl Scripting in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_view_pin_plan.htm

Chapter 1: Constraining Designs 1–5
Constraining Designs with Tcl
Quartus II Settings Files and Tcl
QSF files use Tcl syntax, but, unmodified, are not executable scripts. However, you
can embed QSF constraints in a scripted iterative compilation flow, where the script
that automates compilation and custom results reporting also contains the design
constraints. Example 1–1 shows an example QSF file with boilerplate comments
removed.

Example 1–1 shows the way that the set_global_assignment Quartus II Tcl command
makes all global constraints and software settings, with set_location_assignment
constraining each I/O node in the design to a physical pin on the device.

Example 1–1. Quartus II Settings File

set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING \
-section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2
set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

1–6 Chapter 1: Constraining Designs
Constraining Designs with Tcl
However, after you initially create the Quartus II Settings File for your design, you
can export the contents to a procedural, executable Tcl (.tcl) file. You can then use that
generated script to restore certain settings after experimenting with other constraints.
You can also use the generated Tcl script to archive your assignments instead of
archiving the Quartus II Settings file itself.

To export your constraints as an executable Tcl script, on the Project menu, click
Generate Tcl File for Project. Example 1–2 shows the constraints in Example 1–1
converted to an executable Tcl script.

Example 1–2. Generated Tcl Script for a Quartus II Project (Part 1 of 2)

Quartus II: Generate Tcl File for Project
File: chiptrip.tcl
Generated on: Tue Jun 08 13:08:48 2010

Load Quartus II Tcl Project package
package require ::quartus::project

set need_to_close_project 0
set make_assignments 1

Check that the right project is open
if {[is_project_open]} {

if {[string compare $quartus(project) "chiptrip"]} {
puts "Project chiptrip is not open"
set make_assignments 0

}
} else {

Only open if not already open
if {[project_exists chiptrip]} {

project_open -revision chiptrip chiptrip
} else {

project_new -revision chiptrip chiptrip
}
set need_to_close_project 1

}

Make assignments
if {$make_assignments} {
set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING \
-section_id Top
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 1: Constraining Designs 1–7
Constraining Designs with Tcl
After setting initial values for variables to control constraint creation and whether or
not the project needs to be closed at the end of the script, the generated script checks
to see if a project is open. If a project is open but it is not the correct project, in this
case, chiptrip, the script prints Project chiptrip is not open to the console and
does nothing else.

If no project is open, the script determines if chiptrip exists in the current directory. If
the project exists, the script opens the project. If the project does not exist, the script
creates a new project and opens the project.

The script then creates the constraints. After creating the constraints, the script writes
the constraints to the Quartus II Settings File and then closes the project.

set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2
set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc

Commit assignments
export_assignments

Close project
if {$need_to_close_project} {

project_close
}

}

Example 1–2. Generated Tcl Script for a Quartus II Project (Part 2 of 2)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

1–8 Chapter 1: Constraining Designs
Constraining Designs with Tcl
Timing Analysis with Synopsys Design Constraints and Tcl
Timing constraints used in analysis by the Quartus II TimeQuest Timing Analyzer are
stored in .sdc files. Because they use Tcl syntax, the constraints in .sdc files can be
incorporated into other scripts for iterative timing analysis. Example 1–3 shows a
basic .sdc file for the chiptrip project.

Similar to the constraints in the Quartus II Settings File, you can make the SDC
constraints in Example 1–3 part of an executable timing analysis script, as shown in
example Example 1–4.

Example 1–3. Initial .sdc file for the chiptrip Project

--

set_time_unit ns
set_decimal_places 3

--
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1

clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]

Example 1–4. Tcl Script Making Basic Timing Constraints and Performing Mult-Corner Timing Analysis

project_open chiptrip
create_timing_netlist

#
Create Constraints
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1

clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]

#
Perform timing analysis for several different sets of operating conditions
#
foreach_in_collection oc [get_available_operating_conditions] {
 set_operating_conditions $oc
 update_timing_netlist

 report_timing -setup -npaths 1
 report_timing -hold -npaths 1
 report_timing -recovery -npaths 1
 report_timing -removal -npaths 1
 report_min_pulse_width -nworst 1
}

delete_timing_netlist
project_close
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 1: Constraining Designs 1–9
A Fully Iterative Scripted Flow
The script in Example 1–4 opens the project, creates a timing netlist, then constrains
the two clocks in the design and applies input and output delay constraints. The clock
settings and delay constraints are identical to those in the .sdc file shown in
Example 1–3. The next section of the script updates the timing netlist for the
constraints and performs multi-corner timing analysis on the design.

A Fully Iterative Scripted Flow
You can use the ::quartus::flow Tcl package and other packages in the Quartus II Tcl
API to add flow control to modify constraints and recompile your design in an
automated flow. You can combine your timing constraints with the other constraints
for your design, and embed them in an executable Tcl script that also iteratively
compiles your design as different constraints are applied.

Each time such a modified generated script is run, it can modify the .qsf file and .sdc
file for your project based on the results of iterative compilations, effectively replacing
these files for the purposes of archiving and version control using industry-standard
source control methods and practices.

This type of scripted flow can include automated compilation of a design,
modification of design constraints, and recompilation of the design, based on how
you foresee results and pre-determine next-step constraint changes in response to
those results.

h For more information about the Quartus II Tcl API, refer to API Functions for Tcl in
Quartus II Help. For more information about controlling the Quartus II software with
Tcl scripts, refer to About Quartus II Tcl Scripting in Quartus II Help.

Document Revision History
Table 1–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 1–1. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0 Rewrote chapter to more broadly cover all design constraint methods. Removed procedural
steps and user interface details, and replaced with links to Quartus II Help.

November 2009 9.1.0
■ Added two notes.

■ Minor text edits.

March 2009 9.0.0

■ Revised and reorganized the entire chapter.

■ Added section “Probing to Source Design Files and Other Quartus II Windows” on
page 1–2.

■ Added description of node type icons (Table 1–3).

■ Added explanation of wildcard characters.

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated Quartus II software 8.0 revision and date.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

1–10 Chapter 1: Constraining Designs
Document Revision History
f Take an online survey to provide feedback about this handbook chapter.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52002-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52002-10.1.0
2. Command-Line Scripting
FPGA design software that easily integrates into your design flow saves time and
improves productivity. The Altera® Quartus® II software provides you with a
command-line executable for each step of the FPGA design flow to make the design
process customizable and flexible.

The benefits provided by command-line executables include:

■ Command-line control over each step of the design flow

■ Easy integration with scripted design flows including makefiles

■ Reduced memory requirements

■ Improved performance

The command-line executables are also completely compatible with the Quartus II
GUI, allowing you to use the exact combination of tools that you prefer.

This chapter describes how to take advantage of Quartus II command-line
executables, and provides several examples of scripts that automate different
segments of the FPGA design flow. This chapter includes the following topics:

■ “Benefits of Command-Line Executables”

■ “Introductory Example” on page 2–2

■ “Compilation with quartus_sh --flow” on page 2–7

■ “The MegaWizard Plug-In Manager” on page 2–11

■ “Command-Line Scripting Examples” on page 2–17

Benefits of Command-Line Executables
The Quartus II command-line executables provide control over each step of the
design flow. Each executable includes options to control commonly used software
settings. Each executable also provides detailed, built-in help describing its function,
available options, and settings.

Command-line executables allow for easy integration with scripted design flows. You
can easily create scripts in any language with a series of commands. These scripts can
be batch-processed, allowing for integration with distributed computing in server
farms. You can also integrate the Quartus II command-line executables in
makefile-based design flows. These features enhance the ease of integration between
the Quartus II software and other EDA synthesis, simulation, and verification
software.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52002

2–2 Chapter 2: Command-Line Scripting
Introductory Example
Command-line executables add flexibility without sacrificing the ease-of-use of the
Quartus II GUI. You can use the Quartus II GUI and command-line executables at
different stages in the design flow. For example, you might use the Quartus II GUI to
edit the floorplan for the design, use the command-line executables to perform
place-and-route, and return to the Quartus II GUI to perform debugging with the
Chip Editor.

Command-line executables reduce the amount of memory required during each step
in the design flow. Because each executable targets only one step in the design flow,
the executables themselves are relatively compact, both in file size and the amount of
memory used when running. This memory usage reduction improves performance,
and is particularly beneficial in design environments where computer networks or
workstations are heavily used with reduced memory.

h For a complete list of the Quartus II command-line executables, refer to Using the
Quartus II Executables in Shell Scripts in Quartus II Help.

Introductory Example
The following introduction to command-line executables demonstrates how to create
a project, fit the design, and generate programming files.

The tutorial design included with the Quartus II software is used to demonstrate this
functionality. If installed, the tutorial design is found in the
<Quartus II directory>/qdesigns/fir_filter directory.

Before making changes, copy the tutorial directory and type the four commands
shown in Example 2–1 at a command prompt in the new project directory.

1 The <Quartus II directory>/quartus/bin directory must be in your PATH environment
variable.

The quartus_map filtref --source=filtref.bdf --family=CYCLONE command
creates a new Quartus II project called filtref with filtref.bdf as the top-level file. It
targets the Cyclone® device family and performs logic synthesis and technology
mapping on the design files.

The quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz command performs
fitting on the filtref project. This command specifies an EP1C12Q240C6 device and
the Fitter attempts to meet a global fMAX requirement of 80 MHz and a global tSU
requirement of 8 ns.

The quartus_asm filtref command creates programming files for the filtref project.

The quartus_sta filtref command performs basic timing analysis on the filtref
project using the Quartus II TimeQuest Timing Analyzer, reporting worst-case setup
slack, worst-case hold slack, and other measurements.

Example 2–1. Introductory Example

quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12F256C6 --fmax=80MHz r
quartus_asm filtref r
quartus_sta filtref r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_about_execs_scripts_makes.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_about_execs_scripts_makes.htm

Chapter 2: Command-Line Scripting 2–3
Introductory Example
f The TimeQuest Timing Analyzer employs Synopsys Design Constraints to fully
analyze the timing of your design. For more information about using all of the
features of the quartus_sta executable, refer to the TimeQuest Timing Analyzer Quick
Start Tutorial.

You can put the four commands from Example 2–1 into a batch file or script file, and
run them. For example, you can create a simple UNIX shell script called compile.sh,
which includes the code shown in Example 2–2.

Edit the script as necessary and compile your project.

Command-Line Scripting Help
Help for command-line executables is available through different methods. You can
access help built in to the executables with command-line options. You can use the
Quartus II Command-Line and Tcl API Help browser for an easy graphical view of
the help information.

To use the Quartus II Command-Line and Tcl API Help browser, type the following
command:

quartus_sh --qhelp r
This command starts the Quartus II Command-Line and Tcl API Help browser, a
viewer for information about the Quartus II Command-Line executables and Tcl API
(Figure 2–1).

Example 2–2. UNIX Shell Script: compile.sh

#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=Cyclone
PART=EP1C12F256C6
FMAX=80MHz
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --fmax=$FMAX
quartus_asm $PROJECT
quartus_sta $PROJECT
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf

2–4 Chapter 2: Command-Line Scripting
Introductory Example
Use the -h option with any of the Quartus II Command-Line executables to get a
description and list of supported options. Use the --help=<option name> option for
detailed information about each option.

Command-Line Option Details
Command-line options are provided for many common global project settings and for
performing common tasks. You can use either of two methods to make assignments to
an individual entity. If the project exists, open the project in the Quartus II GUI,
change the assignment, and close the project. The changed assignment is updated in
the Quartus II Settings File. Any command-line executables that are run after this
update use the updated assignment. For more information refer to “Option
Precedence” on page 2–5. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II project,
choose this method.

f For more information about the Quartus II Tcl scripting API, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information about
Quartus II project settings and assignments, refer to the QSF Reference Manual.

Figure 2–1. Quartus II Command-Line and Tcl API Help Browser
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Chapter 2: Command-Line Scripting 2–5
Introductory Example
Option Precedence
If you use command-line executables, you must be aware of the precedence of various
project assignments and how to control the precedence. Assignments for a particular
project exist in the Quartus II Settings File for the project. Assignments for a project
can also be made with command-line options. Project assignments are reflected in
compiler database files that hold intermediate compilation results and reflect
assignments made in the previous project compilation.

All command-line options override any conflicting assignments found in the
Quartus II Settings File or the compiler database files. There are two command-line
options to specify whether the Quartus II Settings File or compiler database files take
precedence for any assignments not specified as command-line options.

1 Any assignment not specified as a command-line option or found in the Quartus II
Settings File or compiler database file is set to its default value.

The file precedence command-line options are --read_settings_files and
--write_settings_files.

By default, the --read_settings_files and --write_settings_files options are
turned on. Turning on the --read_settings_files option causes a command-line
executable to read assignments from the Quartus II Settings File instead of from the
compiler database files. Turning on the --write_settings_files option causes a
command-line executable to update the Quartus II Settings File to reflect any
specified options, as happens when you close a project in the Quartus II GUI.

If you use command-line executables, be aware of the precedence of various project
assignments and how to control the precedence. Assignments for a particular project
can exist in three places:

■ The Quartus II Settings File for the project

■ The result of the last compilation, in the /db directory, which reflects the
assignments that existed when the project was compiled

■ Command-line options

Table 2–1 lists the precedence for reading assignments depending on the value of the
--read_settings_files option.

Table 2–1. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)

1. Command-line options

2. Quartus II Settings File

3. Project database (db directory, if it exists)

4. Quartus II software defaults

--read_settings_files = off

1. Command-line options

2. Project database (db directory, if it exists)

3. Quartus II software defaults
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–6 Chapter 2: Command-Line Scripting
Introductory Example
Table 2–2 lists the locations to which assignments are written, depending on the value
of the --write_settings_files command-line option.

Example 2–3 assumes that a project named fir_filter exists, and that the analysis and
synthesis step has been performed (using the quartus_map executable).

The first command, quartus_fit fir_filter --fmax=80MHz, runs the quartus_fit
executable and specifies a global fMAX requirement of 80 MHz.

The second command, quartus_sta fir_filter, runs timing analysis for the results
of the previous fit.

The third command uses the UNIX mv command to copy the report file output from
quartus_sta to a file with a new name, so that the results are not overwritten by
subsequent timing analysis.

The fourth command reruns the Fitter with a global fMAX requirement of 100 MHz. By
specifying the --write_settings_files=off option, the command-line executable
does not update the Quartus II Settings File to reflect the changed fMAX requirement.
The compiler database files reflect the changed fMAX requirement. If the
--write_settings_files=off option is not specified, the command-line executable
updates the Quartus II Settings File to reflect the 100-MHz global fMAX requirement.

The fifth command reruns timing analysis, and the sixth command renames the report
file, so that it is not overwritten by subsequent timing anlysis.

Use the options --read_settings_files=off and --write_settings_files=off
(where appropriate) to optimize the way that the Quartus II software reads and
updates settings files. Example 2–4 shows how to avoid unnecessary reading and
writing.

In Example 2–4, the quartus_asm executable does not read or write settings files
because they do not change any settings in the project.

Table 2–2. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) Quartus II Settings File and compiler database

--write_settings_files = off Compiler database

Example 2–3. Write Settings Files

quartus_fit fir_filter --fmax=80MHz r
quartus_sta fir_filter r
mv fir_filter_sta.rpt fir_filter_1_sta.rpt r
quartus_fit fir_filter --fmax=100MHz --write_settings_files=off r
quartus_sta fir_filter r
mv fir_filter_sta.rpt fir_filter_2_sta.rpt r

Example 2–4. Avoiding Unnecessary Reading and Writing

quartus_map filtref --source=filtref --part=EP1C12F256C6 r
quartus_fit filtref --fmax=100MHz --read_settings_files=off r
quartus_asm filtref --read_settings_files=off --write_settings_files=off r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 2: Command-Line Scripting 2–7
Compilation with quartus_sh --flow
Compilation with quartus_sh --flow
Figure 2–2 shows a typical Quartus II FPGA design flow.

Use the quartus_sh executable with the --flow option to perform a complete
compilation flow with a single command. (For information about specialized flows,
type quartus_sh --help=flow r at a command prompt.) The --flow option supports
the smart recompile feature and efficiently sets command-line arguments for each
executable in the flow.

The following example runs compilation, timing analysis, and programming file
generation with a single command:

quartus_sh --flow compile filtref r

Text-Based Report Files
Each command-line executable creates a text report file when it is run. These files
report success or failure, and contain information about the processing performed by
the executable.

Figure 2–2. Typical Design Flow

Programmer
quartus_pgm

TimeQuest
Timing Analyzer
quartus_sta

Analysis &
Synthesis

quartus_map

Design Assistant
quartus_drc

Quartus II Shell
quartus_sh

Programming File
Converter
quartus_cpf

EDA Netlist Writer
quartus_eda

Compiler Database
quartus_cdb

Verilog Design Files (.v), VHDL Design Files (.vhd),
Verilog Quartus Mapping Files (.vqm), Text Design
Files (.tdf), Block Design Files (.bdf) & EDIF netlist
files (.edf)

Output files for EDA tools
including Verilog Output
Files (.vo), VHDL Output
Files (.vho), VQM Files &
Standard Delay Format
Output Files (.sdo)

SignalTap II Logic
Analyzer

quartus_stp

PowerPlay Power
Analyzer

quartus_pow

Fitter
quartus_fit

Assembler
quartus_asm
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–8 Chapter 2: Command-Line Scripting
Text-Based Report Files
Report file names contain the revision name and the short-form name of the
executable that generated the report file: <revision>.<executable>.rpt. For example,
using the quartus_fit executable to place and route a project with the revision name
design_top generates a report file named design_top.fit.rpt. Similarly, using the
quartus_sta executable to perform timing analysis on a project with the revision
name fir_filter generates a report file named fir_filter.sta.rpt.

h As an alternative to parsing text-based report files, you can use the ::quartus::report
Tcl package. For more information about this package, refer to ::quartus::report in
Quartus II Help.

You can use command-line executables in scripts that control a design flow that uses
other software in addition to the Quartus II software. For example, if your design flow
uses other synthesis or simulation software, and you can run the other software at a
command prompt, you can include it in a single script. The Quartus II command-line
executables include options for common global project settings and operations, but
you must use a Tcl script or the Quartus II GUI to set up a new project and apply
individual constraints, such as pin location assignments and timing requirements.
Command-line executables are very useful for working with existing projects, for
making common global settings, and for performing common operations. For more
flexibility in a flow, use a Tcl script, which makes it easier to pass data between
different stages of the design flow and have more control during the flow.

f For more information about Tcl scripts, refer to the Tcl Scripting chapter in volume 2 of
the Quartus II Handbook, or About Quartus II Tcl Scripting in Quartus II Help.

For example, your script could run other synthesis software, then place-and-route the
design in the Quartus II software, then generate output netlists for other simulation
software. Example 2–5 shows how to do this with a UNIX shell script for a design that
targets a Cyclone II device.

Example 2–5. Script for End-to-End Flow (Part 1 of 2)

#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl

If your Quartus II project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject

Use the quartus_sta executable to do fast and slow-model
timing analysis
quartus_sta myproject --model=slow
quartus_sta myproject --model=fast

Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim --format=verilog
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_report_ver_2.1.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 2: Command-Line Scripting 2–9
Text-Based Report Files
Makefile Implementation
You can use the Quartus II command-line executables in conjunction with the make
utility to automatically update files when other files they depend on change. The file
dependencies and commands used to update files are specified in a text file called a
makefile.

To facilitate easier development of efficient makefiles, the following “smart action”
scripting command is provided with the Quartus II software:

quartus_sh --determine_smart_action r
Because assignments for a Quartus II project are stored in the Quartus II Settings File
(.qsf), including it in every rule results in unnecessary processing steps. For example,
updating a setting related to programming file generation (which requires re-running
only quartus_asm) modifies the Quartus II Settings File, requiring a complete
recompilation if the Quartus II Settings File is included in every rule.

The smart action command determines the earliest command-line executable in the
compilation flow that must be run based on the current Quartus II Settings File, and
generates a change file corresponding to that executable. For a given command-line
executable named quartus_<executable>, the change file is named with the format
<executable>.chg. For example, if quartus_map must be re-run, the smart action
command creates or updates a file named map.chg. Thus, rather than including the
Quartus II Settings File in each makefile rule, include only the appropriate change file.

Example 2–6 uses change files and the smart action command. You can copy and
modify it for your own use. A copy of this example is included in the help for the
makefile option, which is available by typing:

quartus_sh --help=makefiles r

Perform the simulation with the ModelSim software
vlib cycloneii_ver
vlog -work cycloneii_ver /opt/quartusii/eda/sim_lib/cycloneii_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneii_ver -t 1ps work.my_project

Example 2–5. Script for End-to-End Flow (Part 2 of 2)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–10 Chapter 2: Command-Line Scripting
Text-Based Report Files
Example 2–6. Sample Makefile (Part 1 of 2)

###
Project Configuration:

Specify the name of the design (project), the Quartus II Settings
File (.qsf), and the list of source files used.
###

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

###
Main Targets
#
all: build everything
clean: remove output files and database
###
all: smart.log $(PROJECT).asm.rpt $(PROJECT).sta.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
sta: smart.log $(PROJECT).sta.rpt
smart: smart.log
###
Executable Configuration
###

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
STA_ARGS =

###
Target implementations
###

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
$(STAMP) asm.chg
$(STAMP) sta.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).sta.rpt: sta.chg $(PROJECT).fit.rpt
quartus_sta $(STA_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 2: Command-Line Scripting 2–11
The MegaWizard Plug-In Manager
A Tcl script is provided with the Quartus II software to create or modify files that are
specified as dependencies in the make rules, assisting you in makefile development.
Complete information about this Tcl script and how to integrate it with makefiles is
available by running the following command:

quartus_sh --help=determine_smart_action r

The MegaWizard Plug-In Manager
The MegaWizard™ Plug-In Manager provides a GUI-based flow to configure
megafunction and IP variation files. However, you can use command-line options for
the qmegawiz executable to modify, update, or create variation files without using the
GUI. This capability is useful in a fully scripted design flow, or in cases where you
want to generate variation files without using the wizard GUI flow.

The MegaWizard Plug-In Manager has three functions:

■ Providing an interface for you to select the output file or files

■ Running a specific MegaWizard Plug-In

■ Creating output files (such as variation files, symbol files, and simulation netlist
files)

Each MegaWizard Plug-In provides a user interface for configuring the variation, and
performs validation and error checking of your selected ports and parameters. When
you create or update a variation with the GUI, the parameters and values are entered
through the GUI provided by the Plug-In. When you create a Plug-In variation with
the command line, you provide the parameters and values as command-line options.

Example 2–7 shows how to create a new variation file at a system command prompt.

When you use qmegawiz to update an existing variation file, the module or wizard
name is not required.

###
Project initialization
###

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:
$(STAMP) fit.chg

sta.chg:
$(STAMP) sta.chg

asm.chg:
$(STAMP) asm.chg

Example 2–6. Sample Makefile (Part 2 of 2)

Example 2–7. MegaWizard Plug-In Manager Command-Line Executable

qmegawiz [options] [module=<module name>|wizard=<wizard name>] [<param>=<value> ...
<port>=<used|unused> ...] [OPTIONAL_FILES=<optional files>] <variation file name>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–12 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
If a megafunction changes between software versions, the variation files must be
regenerated. To do this, use qmegawiz -silent <variation file name>. For
example, if your design contains a variation file called myrom.v, type the following
command:

qmegawiz -silent myrom.v r
For more information on updating megafunction variation files as part of a scripted
flow, refer to “Regenerating Megafunctions After Updating the Quartus II Software”
on page 2–23.

Table 2–3 describes the supported options.

For information about specifying the module name or wizard name, refer to “Module
and Wizard Names” on page 2–13.

For information about specifying ports and parameters, refer to “Ports and
Parameters” on page 2–14.

For information about generating optional files, refer to “Optional Files” on
page 2–15.

For information about specifying the variation file name, refer to “Variation File
Name” on page 2–17.

Command-Line Support
Only the MegaWizard Plug-Ins listed in Table 2–4 support creation and update in
command-line mode. For Plug-Ins not listed in the table, you must use the
MegaWizard Plug-In Manager GUI for creation and updates.

Table 2–3. qmegawiz Options

Option Description

-silent
Run the MegaWizard Plug-In Manager in command-line mode, without displaying the
GUI.

-f:<param file> A file that contains all options for the qmegawiz command. Refer to “Parameter File” on
page 2–16.

-p:<working directory> Sets the default working directory. Refer to“Working Directory” on page 2–17.

Table 2–4. MegaWizard Plug-Ins with Command Line Support (Part 1 of 2)

MegaWizard Plug-In Wizard Name Module Name

alt2gxb ALT2GXB alt2gxb

alt4gxb ALTGX alt4gxb

altasmi_parallel ALTASMI_PARALLEL altasmi_parallel

altclkctrl ALTCLKCTRL altclkctrl

altddio_bidir ALTDDIO_BIDIR altddio_bidir

altddio_in ALTDDIO_IN altddio_in

altddio_out ALTDDIO_OUT altddio_out

altecc_decoder
ALTECC

altecc_decoder

altecc_encoder altecc_encoder

altfp_abs ALTFP_ABS altfp_abs
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 2: Command-Line Scripting 2–13
The MegaWizard Plug-In Manager
Module and Wizard Names
You must specify the wizard or module name, shown in Table 2–4, as a command-line
option when you create a variation file. Use the option module=<module name> to
specify the module, or use the option wizard=<wizard name> to specify the wizard.
If there are spaces in the wizard or module name, enclose the name in double quotes,
for example:

wizard="RAM: 2-PORT"

altfp_add_sub ALTFP_ADD_SUB altfp_add_sub

altfp_compare ALTFP_COMPARE altfp_compare

altfp_convert ALTFP_CONVERT altfp_convert

altfp_div ALTFP_DIV altfp_div

altfp_exp ALTFP_EXP altfp_exp

altfp_inv_sqrt ALTFP_INV_SQRT altfp_inv_sqrt

altfp_inv ALTFP_INV altfp_inv

altfp_log ALTFP_LOG altfp_log

altfp_matrix_inv ALTFP_MATRIX_INV altfp_matrix_inv

altfp_matrix_mult ALTFP_MATRIX_MULT altfp_matrix_mult

altfp_mult ALTFP_MULT altfp_mult

altfp_sincos ALTFP_SINCOS altfp_sincos

altfp_sqrt ALTFP_SQRT altfp_sqrt

altiobuf_bidir

ALTIOBUF

altiobuf_bidir

altiobuf_in altiobuf_in

altiobuf_out altiobuf_out

altlvds_rx
ALTLVDS

altlvds_rx

altlvds_tx altlvds_tx

altmult_accum ALTMULT_ACCUM (MAC) altmult_accum

altmult_complex ALTMULT_COMPLEX altmult_complex

altotp ALTOTP altotp

altpll_reconfig ALTPLL_RECONFIG altpll_reconfig

altpll ALTPLL altpll

altremote_update ALTREMOTE_UPDATE altremote_update

altshift_taps ALTSHIFT_TAPS altshift_taps

altsyncram

RAM: 2-PORT

altsyncramRAM: 1-PORT

ROM: 1-PORT

alttemp_sense ALTTEMP_SENSE alttemp_sense

alt_c3gxb ALT_C3GXB alt_c3gxb

dcfifo
FIFO

dcfifo

scfifo scfifo

Table 2–4. MegaWizard Plug-Ins with Command Line Support (Part 2 of 2)

MegaWizard Plug-In Wizard Name Module Name
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–14 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
When there is a one-to-one mapping between the MegaWizard Plug-In and the
wizard name and the module name, you can use either the wizard option or the
module option.

When there are multiple wizard names that correspond to one module name, you
should use the wizard option to specify one wizard.

When there are multiple module names that correspond to one wizard name, you
should use the module option to specify one module. For example, use the module
option if you create a FIFO because one wizard is common to both modules. However,
you should use the wizard option if you create a RAM, because one module is
common to three wizards.

If you edit or update an existing variation file, the wizard or module option is not
necessary, because information about the wizard or module is already in the variation
file.

Ports and Parameters
Ports and parameters for each MegaWizard Plug-In are described in Quartus II Help,
and in the Megafunction User Guides on the Altera website. You should use these
references to determine appropriate values for each port and parameter required for a
particular variation configuration. Refer to “Strategies to Determine Port and
Parameter Values” for more information. You do not have to specify every port and
parameter supported by a Plug-In. The MegaWizard Plug-In Manager uses default
values for any port or parameter you do not specify.

Specify ports as used or unused, for example:

<port>=used
<port>=unused

You can specify port names in any order. Grouping does not matter. Separate port
configuration options from each other with spaces.

Specify a value for a parameter with the equal sign, for example:

<parameter>=<value>

You can specify parameters in any order. Grouping does not matter. Separate
parameter configuration options from each other with spaces. You can specify port
names and parameter names in upper or lower case; case does not matter.

All MegaWizard Plug-Ins allow you to specify the target device family with the
INTENDED_DEVICE_FAMILY parameter, as shown in the following example:

qmegawiz wizard=<wizard> INTENDED_DEVICE_FAMILY="Cyclone III" <file>

You must specify enough ports and parameters to create a legal configuration of the
Plug-In. When you use the GUI flow, each MegaWizard Plug-In performs validation
and error checking for the particular ports and parameters you choose. When you use
command-line options to specify ports and parameters, you must ensure that the
ports and parameters you use are complete and valid for your particular
configuration.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-ip.jsp

Chapter 2: Command-Line Scripting 2–15
The MegaWizard Plug-In Manager
For example, when you use a RAM Plug-In to configure a RAM to be 32 words deep,
the Plug-In automatically configures an address port that is five bits wide. If you use
the command-line flow to configure a RAM that is 32 words deep, you must use one
option to specify the depth of the RAM, then calculate the width of the address port
and specify that width with another option.

Invalid Configurations
If the combination of default and specified ports and parameters is not complete to
create a legal configuration of the Plug-In, qmegawiz generates an error message that
indicates what is missing and what values are supported. If the combination of
default and specified ports and parameters results in an illegal configuration of the
Plug-In, qmegawiz generates an error message that indicates what is illegal, and
displays the legal values.

Strategies to Determine Port and Parameter Values
For simple Plug-In variations, it is often easy to determine appropriate port and
parameter values with the information in Quartus II Help and other megafunction
documentation. For example, determining that a 32-word-deep RAM requires an
address port that is five bits wide is straightforward. For complex Plug-In variations,
an option in the GUI might affect multiple port and parameter settings, so it can be
difficult to determine a complete set of ports and parameters. In this case, you should
use the GUI to generate a variation file that includes the ports and parameters for
your desired configuration. Open the variation file in a text editor and use the port
and parameter values in the variation file as command-line options.

Optional Files
In addition to the variation file, the MegaWizard Plug-In Manager can generate other
files, such as instantiation templates, simulation netlists, and symbols for graphic
design entry. Use the OPTIONAL_FILES parameter to control whether the MegaWizard
Plug-In Manager generates optional files. Table 2–5 lists valid arguments for the
OPTIONAL_FILES parameter.

Specify a single optional file, for example:

OPTIONAL_FILES=<argument>

Table 2–5. Arguments for the OPTIONAL_FILES Parameter

Argument Description

INST Controls the generation of the <variation>_inst.v file.

INC Controls the generation of the <variation>.inc file.

CMP Controls the generation of the <variation>.cmp file.

BSF Controls the generation of the <variation>.bsf file.

BB Controls the generation of the <variation>_bb.v file.

SIM_NETLIST Controls the generation of the simulation netlist file, wherever there is wizard support.

SYNTH_NETLIST Controls the generation of the synthesis netlist file, wherever there is wizard support.

ALL Generates all applicable optional files.

NONE Disables the generation of all optional files.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–16 Chapter 2: Command-Line Scripting
The MegaWizard Plug-In Manager
Specify multiple optional files separated by a vertical bar character, for example:

OPTIONAL_FILES=<argument 1>|...|<argument n>

If you prefix an argument with a dash (for example, -BB), it is excluded from the
generated optional files. If any of the optional files exist when you run qmegawiz and
they are excluded in the OPTIONAL_FILES parameter (with the NONE argument, or
prefixed with a dash), they are deleted.

You can combine the ALL argument with other excluded arguments to generate “all
files except <excluded files>.” You can combine the NONE argument with other included
arguments to generate “no files except <files>.”

When you combine multiple arguments, they are processed from left to right, and
arguments evaluated later have precedence over arguments evaluated earlier.
Therefore, the ALL or NONE argument should be the first in a combination of multiple
arguments. When ALL is the first argument, all optional files are generated before
exclusions are processed (deleted). When NONE is the first argument, none of the
optional files are generated (in other words, any that exist are deleted), then any files
you subsequently specify are generated.

Table 2–6 shows examples for the OPTIONAL_FILES parameter and describes the result
of each example.

The qmegawiz command accepts the ALL argument combined with other included file
arguments, for example, ALL|BB, but that combination is equivalent to ALL because
first all optional files are generated, then the file <variation>_bb.v is generated (again).
Additionally, the software accepts the NONE argument combined with other excluded
file arguments, for example, NONE|-BB, but that combination is equivalent to NONE
because no optional files are generated (any that exist are deleted), then the file
<variation>_bb.v is deleted if it exists.

Parameter File
You can put all parameter values and port values in a file, and pass the file name as an
argument to qmegawiz with the -f:<parameter file> option. For example, the following
command specifies a parameter file named rom_params.txt:

qmegawiz -silent module=altsyncram -f:rom_params.txt myrom.v r

Table 2–6. Examples of Different Optional File Arguments

Example Values for
OPTIONAL_FILES Description

BB The optional file <variation>_bb.v is generated, and no optional files are deleted

BB|INST
The optional file <variation>_bb.v is generated, then the optional file <variation>_inst.v is
generated, and no optional files are deleted.

NONE No optional files are generated, and any existing optional files are deleted.

NONE|INC|BSF
Any existing optional files are deleted, then the optional file <variation>.inc is generated, then
the optional file <variation>.bsf is generated.

ALL|-INST All optional files are generated, then <variation>_inst.v is deleted if it exists.

-BB The optional file <variation>_bb.v is deleted if it exists.

-BB|INST
The optional file <variation>_bb.v is deleted if it exists, then the optional file <variation>_inst.v
is generated.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 2: Command-Line Scripting 2–17
Command-Line Scripting Examples
The rom_params.txt parameter file can include options similar to the following:

RAM_BLOCK_TYPE=M4K DEVICE_FAMILY=Stratix WIDTH_A=5 WIDTHAD_A=5
NUMWORDS_A=32 INIT_FILE=rom.hex OPERATION_MODE=ROM

1 If you use the -f option and the -p option together, the MegaWizard Plug-In Manager
sources the parameter file in a directory specified with the -p option, or in a directory
relative to that directory. For example, if you specify C:\project\work with the -p
option and work\params.txt with the -f option, the MegaWizard Plug-In Manager
attempts to source the file params.txt in C:\project\work\work.

Working Directory
You can change the working directory that qmegawiz uses when it generates files. By
default, the working directory is the current directory when you execute the qmegawiz
command. Use the -p option to specify a different working directory, for example:

-p:<working directory>

You can specify the working directory with an absolute or relative path. Specify an
alternative working directory any time you do not want files generated in the current
directory. The alternative working directory can be useful if you generate multiple
variations in a batch script, and keep generated files for the different Plug-In
variations in separate directories.

Variation File Name
The language used for a variation file depends on the file extension of the variation
file name. The MegaWizard Plug-In Manager creates HDL output files in a language
based on the file name extension. Therefore, you must always specify a complete file
name, including file extension, as the last argument to the qmegawiz command.
Table 2–7 shows the file extension that corresponds to supported HDL types.

Command-Line Scripting Examples
This section presents various examples of command-line executable use.

Create a Project and Apply Constraints
The command-line executables include options for common global project settings
and commands. To apply constraints such as pin locations and timing assignments,
run a Tcl script with the constraints in it. You can write a Tcl constraint file yourself, or
generate one for an existing project. From the Project menu, click Generate Tcl File for
Project.

Table 2–7. Variation File Extensions

Variation File HDL Type Required File Extension

Verilog HDL .v

VHDL .vhd

AHDL .tdf
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–18 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
Example 2–8 creates a project with a Tcl script and applies project constraints using
the tutorial design files in the <Quartus II installation directory>/qdesigns/fir_filter/
directory.

Save the script in a file called setup_proj.tcl and type the commands illustrated in
Example 2–9 at a command prompt to create the design, apply constraints, compile
the design, and perform fast-corner and slow-corner timing analysis. Timing analysis
results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

Type the following commands to create the design, apply constraints, and compile the
design, without performing timing analysis:

quartus_sh -t setup_proj.tcl r
quartus_sh --flow compile filtref r
The quartus_sh --flow compile command performs a full compilation, and is
equivalent to clicking the Start Compilation button in the toolbar.

Check Design File Syntax
The UNIX shell script example shown in Example 2–10 assumes that the Quartus II
software fir_filter tutorial project exists in the current directory. You can find the
fir_filter project in the <Quartus II directory>/qdesigns/fir_filter directory unless the
Quartus II software tutorial files are not installed.

Example 2–8. Tcl Script to Create Project and Apply Constraints

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other assignments could follow
project_close

Example 2–9. Script to Create and Compile a Project

quartus_sh -t setup_proj.tcl r
quartus_map filtref r
quartus_fit filtref r
quartus_asm filtref r
quartus_sta filtref --model=fast --export_settings=off r
mv filtref_sta.rpt filtref_sta_1.rpt r
quartus_sta filtref --export_settings=off r
mv filtref_sta.rpt filtref_sta_2.rpt r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 2: Command-Line Scripting 2–19
Command-Line Scripting Examples
The --analyze_file option performs a syntax check on each file. The script checks
the exit code of the quartus_map executable to determine whether there is an error
during the syntax check. Files with syntax errors are added to the FILES_WITH_ERRORS
variable, and when all files are checked, the script prints a message indicating syntax
errors. When options are not specified, the executable uses the project database
values. If not specified in the project database, the executable uses the Quartus II
software default values. For example, the fir_filter project is set to target the Cyclone
device family, so it is not necessary to specify the --family option.

Create a Project and Synthesize a Netlist Using Netlist Optimizations
This example creates a new Quartus II project with a file top.edf as the top-level
entity. The --enable_register_retiming=on and --enable_wysiwyg_resynthesis=on
options allow the technology mapper to optimize the design using gate-level register
retiming and technology remapping.

h For more information about register retiming, WYSIWYG primitive resynthesis, and
other netlist optimization options, refer to Quartus II Help.

The --part option tells the technology mapper to target an EP20K600EBC652-1X
device. To create the project and synthesize it using the netlist optimizations described
above, type the command shown in Example 2–11 at a command prompt.

Example 2–10. Shell Script to Check Design File Syntax

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done
if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Example 2–11. Creating a Project and Synthesizing a Netlist Using Netlist Optimizations

quartus_map top --source=top.edf --enable_register_retiming=on
--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1X r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–20 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
Archive and Restore Projects
You can archive or restore a Quartus II project with a single command. This makes it
easy to take snapshots of projects when you use batch files or shell scripts for
compilation and project management. Use the --archive or --restore options for
quartus_sh as appropriate. Type the command shown in Example 2–12 at a command
prompt to archive your project.

The archive file is automatically named <project name>.qar. If you want to use a
different name, rename the archive after it has been created. This command
overwrites any existing archive with the same name.

To restore a project archive, type the command shown in Example 2–13 at a command
prompt.

The command restores the project archive to the current directory and overwrites
existing files.

f For more information about archiving and restoring projects, refer to the Managing
Quartus II Projects chapter in volume 2 of the Quartus II Handbook.

Perform I/O Assignment Analysis
You can perform I/O assignment analysis with a single command. I/O assignment
analysis checks pin assignments to ensure they do not violate board layout guidelines.
I/O assignment analysis does not require a complete place and route, so it is a quick
way to ensure your pin assignments are correct. The command shown in
Example 2–14 performs I/O assignment analysis for the specified project and
revision.

Update Memory Contents Without Recompiling
You can use two commands to update the contents of memory blocks in your design
without recompiling. Use the quartus_cdb executable with the --update_mif option
to update memory contents from .mif or .hexout files. Then, rerun the assembler with
the quartus_asm executable to regenerate the .sof, .pof, and any other programming
files.

Example 2–12. Archiving a Project

quartus_sh --archive <project name> r

Example 2–13. Restoring a Project Archive

quartus_sh --restore <archive name> r

Example 2–14. Performing I/O Assignment Analysis

quartus_fit --check_ios <project name> --rev=<revision name> r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 2: Command-Line Scripting 2–21
Command-Line Scripting Examples
Example 2–15 shows these two commands.

Example 2–16 shows the commands for a DOS batch file for this example. You can
paste the following lines into a DOS batch file called update_memory.bat.

Type the following command at a command prompt:

update_memory.bat <project name> <revision name> r

Create a Compressed Configuration File
You can create a compressed configuration file in two ways. The first way is to run
quartus_cpf with an option file that turns on compression. The second way is to run
quartus_cpf with a Conversion Setup File (.cof).

To create an option file that turns on compression, type the following command at a
command prompt:

quartus_cpf -w <filename>.opt r
This interactive command guides you through some questions, then creates an option
file based on your answers. Use the --option option to quartus_cpf to specify the
option file you just created. For example, the following command creates a
compressed .pof that targets an EPCS64 device:

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 <file>.sof <file>.pof r
Alternatively, you can use the Convert Programming Files utility in the Quartus II
software to create a conversion setup file. Configure any options you want, including
compression, then save the conversion setup. Use the following command to run the
conversion setup you specified.

quartus_cpf <file>.cof r

Fit a Design as Quickly as Possible
This example assumes that a project called top exists in the current directory, and that
the name of the top-level entity is top. The --effort=fast option causes the Fitter to
use the fast fit algorithm to increase compilation speed, possibly at the expense of
reduced fMAX performance. The --one_fit_attempt=on option restricts the Fitter to
only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the command
shown in Example 2–17 at a command prompt.

Example 2–15. Commands to Update Memory Contents Without Recompiling

quartus_cdb --update_mif <project name> [--rev=<revision name>]r
quartus_asm <project name> [--rev=<revision name>]r

Example 2–16. Batch file to Update Memory Contents Without Recompiling

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

Example 2–17. Fitting a Project Quickly

quartus_fit top --effort=fast --one_fit_attempt=on r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

2–22 Chapter 2: Command-Line Scripting
Command-Line Scripting Examples
Fit a Design Using Multiple Seeds
This shell script example assumes that the Quartus II software tutorial project called
fir_filter exists in the current directory (defined in the file fir_filter.qpf). If the tutorial
files are installed on your system, this project exists in the <Quartus II
directory>/qdesigns<quartus_version_number> /fir_filter directory. Because the
top-level entity in the project does not have the same name as the project, you must
specify the revision name for the top-level entity with the --rev option. The --seed
option specifies the seeds to use for fitting.

A seed is a parameter that affects the random initial placement of the Quartus II Fitter.
Varying the seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each
fitting attempt and copies the complete project to the new directory so that the results
are available for viewing and debugging after the script has completed.

Example 2–18 is designed for use on UNIX systems using sh (the shell).

1 Use the Design Space Explorer (DSE) included with the Quartus II software script (by
typing quartus_sh --dse r at a command prompt) to improve design performance
by performing automated seed sweeping.

h For more information about the DSE, type quartus_sh --help=dse r at a command
prompt, or refer to Design Space Explorer in Quartus II Help.

Example 2–18. Shell Script to Fit a Design Using Multiple Seeds

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

else
ERROR_SEEDS="$ERROR_SEEDS $seed"

fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 2: Command-Line Scripting 2–23
Command-Line Scripting Examples
Regenerating Megafunctions After Updating the Quartus II Software
Some megafunction variations may reqiure regeneration when you update your
installation of the Quartus II software. Read the release notes for the Quartus II
software and any new documentation for the IP functions used in your design to
determine if regeneration is necessary.

If regeneration is necessary, you can use a Tcl script to run the qmegawiz executable
to update each function, allowing you to avoid regenerating each function in the
Megawizard Plug-In Manager GUI.

Wizard-generated files are identified in the Source Files Used report panel (contained
in <project name>.map.rpt) in the File Type column as “Auto-Found
Wizard-Generated File”. In a Tcl script, use the commands in the ::quartus::report
package from the Quartus II Tcl API to recover the list of files. Use the qexec
command in a loop to run qmegawiz for each variation file:

qexec “qmegawiz -silent <variation file name>”

For example, if your script determines that your design contains a variation file called
myrom.v, in one iteration of the loop in your script, a combination of strings and
variables passed to the qexec command would be equivalent to the following
command:

qexec “qmegawiz -silent myrom.v”

If your design flow incorporates parameter files, those can be included in the
qmegawiz call in the same way you would include them from a command prompt:

qexec “qmegawiz -silent -f:<parameter file>.txt <variation file name>”

h For more information about the ::quartus::report Tcl package, refer to ::quartus::report
in Quartus II Help.

f For more information about the Quartus II Tcl scripting API, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

The QFlow Script
A Tcl/Tk-based graphical interface called QFlow is included with the command-line
executables. You can use the QFlow interface to open projects, launch some of the
command-line executables, view report files, and make some global project
assignments. The QFlow interface can run the following command-line executables:

■ quartus_map (Analysis and Synthesis)

■ quartus_fit (Fitter)

■ quartus_sta (TimeQuest timing analyzer)

■ quartus_asm (Assembler)

■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Quartus II
software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_report_ver_2.1.htm

2–24 Chapter 2: Command-Line Scripting
Document Revision History
1 The QFlow script is located in the <Quartus II directory>/common/tcl/apps/qflow/
directory.

Document Revision History
Table 2–8 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 2–8. Document Revision History

Date Version Changes

December 2012 10.1.0

Template update.

Added section on using a script to regenerate megafunction variations.

Removed references to the Classic Timing Analyzer (quartus_tan).

Removed Qflow illustration.

July 2010 10.0.0 Updated script examples to use quartus_sta instead of quartus_tan, and other minor
updates throughout document.

November 2009 9.1.0 Updated Table 2–1 to add quartus_jli and quartus_jbcc executables and descriptions, and
other minor updates throughout document.

March 2009 9.0.0 No change to content.

November 2008 8.1.0

Added the following sections:

■ “The MegaWizard Plug-In Manager” on page 2–11

■ “Command-Line Support” on page 2–12

■ “Module and Wizard Names” on page 2–13

■ “Ports and Parameters” on page 2–14

■ “Invalid Configurations” on page 2–15

■ “Strategies to Determine Port and Parameter Values” on page 2–15

■ “Optional Files” on page 2–15

■ “Parameter File” on page 2–16

■ “Working Directory” on page 2–17

■ “Variation File Name” on page 2–17

■ “Create a Compressed Configuration File” on page 2–21

■ Updated “Option Precedence” on page 2–5 to clarify how to control precedence

■ Corrected Example 2–5 on page 2–8

■ Changed Example 2–1, Example 2–2, Example 2–4, and Example 2–7 to use the
EP1C12F256C6 device

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0
■ Updated “Referenced Documents” on page 2–20.

■ Updated references in document.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52003-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52003-10.1.0
3. Tcl Scripting
Introduction
Developing and running Tcl scripts to control the Altera® Quartus® II software allows
you to perform a wide range of functions, such as compiling a design or writing
procedures to automate common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments, define
design constraints, make device assignments, run compilations, perform timing
analysis, import LogicLock™ region assignments, use the Quartus II Chip Editor, and
access reports. You can automate your Quartus II assignments using Tcl scripts so that
you do not have to create them individually. Tcl scripts also facilitate project or
assignment migration. For example, when using the same prototype or development
board for different projects, you can automate reassignment of pin locations in each
new project. The Quartus II software can also generate a Tcl script based on all the
current assignments in the project, which aids in switching assignments to another
project.

The Quartus II software Tcl commands follow the EDA industry Tcl application
programming interface (API) standards for using command-line options to specify
arguments. This simplifies learning and using Tcl commands. If you encounter an
error using a command argument, the Tcl interpreter gives help information showing
correct usage.

This chapter includes sample Tcl scripts for automating the Quartus II software. You
can modify these example scripts for use with your own designs. You can find more
Tcl scripts in the Design Examples section of the Support area of Altera’s website.

This chapter includes the following topics:

■ “Quartus II Tcl Packages” on page 3–2

■ “Quartus II Tcl API Help” on page 3–3

■ “Command-Line Options: -t, -s, and --tcl_eval” on page 3–6

■ “End-to-End Design Flows” on page 3–7

■ “Creating Projects and Making Assignments” on page 3–8

■ “Compiling Designs” on page 3–9

■ “Reporting” on page 3–9

■ “Timing Analysis” on page 3–12

■ “Automating Script Execution” on page 3–12

■ “Other Scripting Features” on page 3–14

■ “Using the Quartus II Tcl Shell in Interactive Mode” on page 3–19

■ “Using the tclsh Shell” on page 3–20

■ “Using the tclsh Shell” on page 3–20
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52003

3–2 Chapter 3: Tcl Scripting
Quartus II Tcl Packages
■ “Tcl Scripting Basics” on page 3–20

What is Tcl?
Tcl (pronounced “tickle”) is a popular scripting language that is similar to many shell
scripting and high-level programming languages. It provides support for control
structures, variables, network socket access, and APIs. Tcl is the EDA
industry-standard scripting language used by Synopsys, Mentor Graphics®, and
Altera software. It allows you to create custom commands and works seamlessly
across most development platforms. For a list of recommended literature on Tcl, refer
to “External References” on page 3–26.

You can create your own procedures by writing scripts containing basic Tcl
commands, user-defined procedures, and Quartus II API functions. You can then
automate your design flow, run the Quartus II software in batch mode, or execute the
individual Tcl commands interactively in the Quartus II Tcl interactive shell.

If you are unfamiliar with Tcl scripting, or are a Tcl beginner, refer to “Tcl Scripting
Basics” on page 3–20 for an introduction to Tcl scripting.

The Quartus II software, beginning with version 4.1, supports Tcl/Tk version 8.4,
supplied by the Tcl DeveloperXchange at tcl.activestate.com.

Quartus II Tcl Packages
The Quartus II Tcl commands are grouped in packages by function. Table 3–1
describes each Tcl package.

Table 3–1. Tcl Packages (Part 1 of 2)

Package Name Package Description

backannotate Back annotate assignments

chip_planner Identify and modify resource usage and routing with the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device database

flow Compile a project, run command-line executables and other common flows

incremental compilation Manipulate design partitions and LogicLock regions, and settings related to incremental
compilation

insystem_memory_edit Read and edit memory contents in Altera devices

insystem_source_probe interact with the In-System Sources and Probes tool in an Altera device

jtag Control the JTAG chain

logic_analyzer_interface Query and modify the logic analyzer interface output pin state

misc Perform miscellaneous tasks

project Create and manage projects and revisions, make any project assignments including timing
assignments

rapid_recompile Manipulate Quartus II Rapid Recompile features

report Get information from report tables, create custom reports

rtl Traversing and querying the RTL netlist of your design

sdc Specifies constraints and exceptions to the TimeQuest Timing Analyzer
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://tcl.activestate.com/

Chapter 3: Tcl Scripting 3–3
Quartus II Tcl API Help
By default, only the minimum number of packages is loaded automatically with each
Quartus II executable. This keeps the memory requirement for each executable as low
as possible. Because the minimum number of packages is automatically loaded, you
must load other packages before you can run commands in those packages.

Because different packages are available in different executables, you must run your
scripts with executables that include the packages you use in the scripts. For example,
if you use commands in the sdc_ext package, you must use the quartus_sta
executable to run the script because the quartus_sta executable is the only one with
support for the timing package.

The following command prints lists of the packages loaded or available to load for an
executable, to the console:

<executable name> --tcl_eval help r
For example, type the following command to list the packages loaded or available to
load by the quartus_fit executable:

quartus_fit --tcl_eval help r

Loading Packages
To load a Quartus II Tcl package, use the load_package command as follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described in Table 3–2
on page 3–4), but you can easily alternate between different versions of a Quartus II
Tcl package with the load_package command.

f For additional information about these and other Quartus II command-line
executables, refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

Quartus II Tcl API Help
Access the Quartus II Tcl API Help reference by typing the following command at a
system command prompt:

quartus_sh --qhelp r
This command runs the Quartus II Command-Line and Tcl API help browser, which
documents all commands and options in the Quartus II Tcl API. It includes detailed
descriptions and examples for each command.

sdc_ext Altera-specific SDC commands

simulator Configure and perform simulations

sta Contains the set of Tcl functions for obtaining advanced information from the Quartus II
TimeQuest Timing Analyzer

stp Run the SignalTap® II Logic Analyzer

Table 3–1. Tcl Packages (Part 2 of 2)

Package Name Package Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–4 Chapter 3: Tcl Scripting
Quartus II Tcl API Help
Quartus II Tcl help allows easy access to information about the Quartus II Tcl
commands. To access the help information, type help at a Tcl prompt, as shown in
Example 3–1.

Using the -tcl option with help displays an introduction to the Quartus II Tcl API
that focuses on how to get help for Tcl commands (short help and long help) and Tcl
packages.

f The Tcl API help is also available in Quartus II online help. Search for the command or
package name to find details about that command or package.

Table 3–2 summarizes the help options available in the Tcl environment.

Example 3–1. Help Output

tcl> help
--

Available Quartus II Tcl Packages:

Loaded Not Loaded
---------------------------- -----------------------
::quartus::misc ::quartus::device
::quartus::old_api ::quartus::backannotate
::quartus::project ::quartus::flow
::quartus::timing_assignment ::quartus::logiclock
::quartus::timing_report ::quartus::report

* Type "help -tcl"
to get an overview on Quartus II Tcl usages.

Table 3–2. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not loaded.

help -tcl
To view a list of commands used to load Tcl packages and access command-line
help.

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package that includes the list of available
Tcl commands. For convenience, you can omit the ::quartus:: package prefix,
and type help -pkg <package name> r.

If you do not specify the -version option, help for the currently loaded package
is displayed by default. If the package for which you want help is not loaded, help
for the latest version of the package is displayed by default.

Examples:

help -pkg ::quartus::project r
help -pkg project r
help -pkg project -version 1.0 r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–5
Quartus II Tcl API Help
<command_name> -h

or

<command_name> -help

To view short help for a Quartus II Tcl command for which the package is loaded.

Examples:

project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If <version> is not
specified, the latest version of the package is loaded by default.

Example:

package require ::quartus::project 1.0 r
This command is similar to the load_package command.

The advantage of using load_package is that you can alternate freely between
different versions of the same package.

Type <package name> [-version <version number>]r to load a Quartus II
Tcl package with the specified version. If the -version option is not specified, the
latest version of the package is loaded by default.

Example:

load_package ::quartus::project -version 1.0 r

help -cmd <command_name>
[-version <version>]

or

<command_name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help requires that the associated Tcl package is
loaded.

If you do not specify the -version option, help for the currently loaded package
is displayed by default.

If the package for which you want help is not loaded, help for the latest version of
the package is displayed by default.

Examples:

project_open -long_help r

help -cmd project_open r

help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus
To view help on the predefined global Tcl array that can be accessed to view
information about the Quartus II executable that is currently running.

quartus_sh --qhelp

To launch the Tk viewer for Quartus II command-line help and display help for the
command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Table 3–2. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–6 Chapter 3: Tcl Scripting
Quartus II Tcl API Help
Command-Line Options: -t, -s, and --tcl_eval
Table 3–3 lists three command-line options you can use with executables that support
Tcl.

Run a Tcl Script
Running an executable with the -t option runs the specified Tcl script. You can also
specify arguments to the script. Access the arguments through the argv variable, or
use a package such as cmdline, which supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus II directory>/common/tcl/packages
directory.

For example, to run a script called myscript.tcl with one argument, Stratix, type the
following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix r

1 Beginning with version 4.1, the Quartus II software supports the argv variable. In
previous software versions, script arguments are accessed in the quartus(args)
global variable.

Refer to “Accessing Command-Line Arguments” on page 3–17 for more information.

Interactive Shell Mode
Running an executable with the -s option starts an interactive Tcl shell. For example,
to open the Quartus II TimeQuest Timing Analyzer executable in interactive shell
mode, type the following command:

quartus_sta -s r
Commands you type in the Tcl shell are interpreted when you click Enter. You can run
a Tcl script in the interactive shell with the following command:

source <script name> r
If a command is not recognized by the shell, it is assumed to be an external command
and executed with the exec command.

Evaluate as Tcl
Running an executable with the --tcl_eval option causes the executable to
immediately evaluate the remaining command-line arguments as Tcl commands. This
can be useful if you want to run simple Tcl commands from other scripting languages.

Table 3–3. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

-t <script file> [<script args>] Run the specified Tcl script with optional arguments.

-s Open the executable in the interactive Tcl shell mode.

--tcl_eval <tcl command>
Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–7
End-to-End Design Flows
For example, the following command runs the Tcl command that prints out the
commands available in the project package.

quartus_sh --tcl_eval help -pkg project r

Using the Quartus II Tcl Console Window
You can run Tcl commands directly in the Quartus II Tcl Console window. On the
View menu, click Utility Windows. By default, the Tcl Console window is docked in
the bottom-right corner of the Quartus II GUI. Everything typed in the Tcl Console is
interpreted by the Quartus II Tcl shell.

1 The Quartus II Tcl Console window supports the Tcl API used in the Quartus II
software version 3.0 and earlier for backward compatibility with older designs and
EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and messages
written to stdout and stderr also are shown in the Quartus II Tcl Console window.

End-to-End Design Flows
You can use Tcl scripts to control all aspects of the design flow, including controlling
other software if it includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language
functionality with tool-specific commands. For example, the Quartus II Tcl interpreter
supports all core Tcl commands, and adds numerous commands specific to the
Quartus II software. You can include commands in one Tcl script to run another script,
which allows you to combine or chain together scripts to control different tools.
Because scripts for different tools must be executed with different Tcl interpreters, it is
difficult to pass information between the scripts unless one script writes information
into a file and another script reads it.

Within the Quartus II software, you can perform many different operations in a
design flow (such as synthesis, fitting, and timing analysis) from a single script,
making it easy to maintain global state information and pass data between the
operations. However, there are some limitations on the operations you can perform in
a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include
operations found in the Start section of the Processing menu in the Quartus II GUI,
and are also documented with the execute_flow Tcl command. If you can make
settings in the Quartus II software and run a flow to get your desired result, you can
make the same settings and run the same flow in any command-line executable.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–8 Chapter 3: Tcl Scripting
Creating Projects and Making Assignments
Creating Projects and Making Assignments
A benefit of the Tcl scripting API is that you can easily create a script that makes all
the assignments for an existing project. You can use the script at any time to restore
your project settings to a known state. From the Project menu, click Generate Tcl File
for Project to automatically generate a .tcl file with all of your assignments. You can
source this file to recreate your project, and you can edit the file to add other
commands, such as compiling the design. The file is a good starting point to learn
about project management commands and assignment commands.

f Refer to “Interactive Shell Mode” on page 3–6 for information about sourcing a script.
Scripting information for all Quartus II project settings and assignments is located in
the QSF Reference Manual.

Example 3–2 shows how to create a project, make assignments, and compile the
project. It uses the fir_filter tutorial design files in the qdesigns installation directory.
Run this script in the fir_filter directory, with the quartus_sh executable.

1 The assignments created or modified while a project is open are not committed to the
Quartus II Settings Files (.qsf) unless you explicitly call export_assignments or
project_close (unless -dont_export_assignments is specified). In some cases, such
as when running execute_flow, the Quartus II software automatically commits the
changes.

HardCopy Device Design

f For information about using a scripted design flow for HardCopy II designs, refer to
the Script-Based Design for HardCopy II Devices chapter of the HardCopy Handbook. A
separate chapter in the HardCopy Handbook called Timing Constraints for HardCopy II
Devices also contains information about script-based design for HardCopy II devices,
with an emphasis on timing constraints.

Example 3–2. Create and Compile a Project

load_package flow

Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
compile the project
execute_flow -compile
project_close
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/hrd/hc_h51028.pdf
http://www.altera.com/literature/hb/hrd/hc_h51028.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/hrd/hc_h51025.pdf

Chapter 3: Tcl Scripting 3–9
Compiling Designs
Compiling Designs
You can run the Quartus II command-line executables from Tcl scripts. Use the
included flow package to run various Quartus II compilation flows, or run each
executable directly.

The flow Package
The flow package includes two commands for running Quartus II command-line
executables, either individually or together in standard compilation sequence. The
execute_module command allows you to run an individual Quartus II command-line
executable. The execute_flow command allows you to run some or all of the modules
in commonly-used combinations. Use the flow package instead of using system calls
to run Quartus II executables from scripts.

Another way to run a Quartus II executable from Tcl environment is with the qexec
Tcl command, a Quartus II implementation of the Tcl exec command. For example, to
run Quartus II Analysis and Synthesis on a given project, use:

qexec "quartus_map <project_name>" r
When you use the qexec command to compile a design, assignments made in the Tcl
script (or from the Tcl shell) are not exported to the project database and settings file
before compilation. Use the export_assignments command or compile the project
with commands in the flow package to ensure assignments are exported to the project
database and settings file.

You can also run executables directly in a Tcl shell, using the same syntax as at the
system command prompt. For example, to run the Quartus II technology mapper on a
given project, type the following at the Tcl shell prompt:

quartus_map <project_name> r

Compile All Revisions
You can use a simple Tcl script to compile all revisions in your project. Save the script
shown in Example 3–3 in a file called compile_revisions.tcl and type the following to
run it:

quartus_sh -t compile_revisions.tcl <project name> r

Reporting
It is sometimes necessary to extract information from the Compilation Report to
evaluate results. The Quartus II Tcl API provides easy access to report data so you do
not have to write scripts to parse the text report files.

Example 3–3. Compile All Revisions

load_package flow
project_open [lindex $quartus(args) 0]
set original_revision [get_current_revision]
foreach revision [get_project_revisions] {

set_current_revision $revision
execute flow -compile

}
set_current_revision $original_revision
project_close
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–10 Chapter 3: Tcl Scripting
Reporting
If you know the exact cell or cells you want to access, use the get_report_panel_data
command and specify the row and column names (or x and y coordinates) and the
name of the appropriate report panel. You can often search for data in a report panel.
To do this, use a loop that reads the report one row at a time with the
get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report
one row at a time, you can start with row 1 to skip the row with column headings. The
get_number_of_rows command returns the number of rows in the report panel,
including the column heading row. Because the number of rows includes the column
heading row, your loop should continue as long as the loop index is less than the
number of rows, as illustrated in Example 3–5.

Report panels are hierarchically arranged and each level of hierarchy is denoted by
the string “||“ in the panel name. For example, the name of the Fitter Settings report
panel is Fitter||Fitter Settings because it is in the Fitter folder. Panels at the highest
hierarchy level do not use the “||” string. For example, the Flow Settings report panel
is named Flow Settings.

The code in Example 3–4 prints a list of all report panel names in your project. You can
run this code with any executable that includes support for the report package.

Example 3–4. Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–11
Reporting
Example 3–5 prints the number of failing paths in each clock domain in your design.
It uses a loop to access each row of the Timing Analyzer Summary report panel. Clock
domains are listed in the column named Type with the format Clock Setup:'<clock
name>'. Other summary information is listed in the Type column as well. If the Type
column matches the pattern “Clock Setup*”, the script prints the number of failing
paths listed in the column named Failed Paths. You can run this script example with
any executable that supports the report package.

Creating .csv Files for Excel
The Microsoft Excel software is sometimes used to view or manipulate timing
analysis results. You can create a .csv file to import into Excel with data from any
Quartus II report. Example 3–6 shows a simple way to create a .csv file with data from
a timing analysis panel in the report. You could modify the script to use
command-line arguments to pass in the name of the project, report panel, and output
file to use. You can run this script example with any executable that supports the
report package.

Example 3–5. Print Number of Failing Paths per Clock

load_package report
project_open my-project
load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]

Get the column indices for the Type and Failed Paths columns
set type_column [get_report_panel_column_index -name \

$report_panel_name "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]

Go through each line in the report panel
for {set i 1} {$i < $num_rows} {incr i} {

Get the row of data, then the type of summary
information in the row, and the number of failed paths
set report_row [get_report_panel_row -name \
$report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–12 Chapter 3: Tcl Scripting
Timing Analysis
Timing Analysis
The Quartus II software includes a comprehensive Tcl APIs for the TimeQuest Timing
Analyzer in the sta, sdc, and sdc_ext packages. This section includes introductory
scripting information about the TimeQuest Tcl API.

The Quartus II TimeQuest Timing Analyzer includes support for SDC commands in
the sdc package.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook for detailed information about how to perform timing analysis with the
Quartus II TimeQuest Timing Analyzer.

Automating Script Execution
You can configure scripts to run automatically at various points during compilation.
Use this capability to automatically run scripts that perform custom reporting, make
specific assignments, and perform many other tasks.

The following three global assignments control when a script is run automatically:

■ PRE_FLOW_SCRIPT_FILE —before a flow starts

■ POST_MODULE_SCRIPT_FILE —after a module finishes

■ POST_FLOW_SCRIPT_FILE —after a flow finishes

A module is another term for a Quartus II executable that performs one step in a flow.
For example, two modules are Analysis and Synthesis (quartus_map), and timing
analysis (quartus_sta).

A flow is a series of modules that the Quartus II software runs with predefined
options. For example, compiling a design is a flow that typically consists of the
following steps (performed by the indicated module):

Example 3–6. Create .csv Files from Reports

load_package report
project_open my-project

load_report

This is the name of the report panel to save as a CSV file
set panel_name "Timing Analyzer||Clock Setup: 'clk'"
set csv_file "output.csv"

set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {

set row_data [get_report_panel_row -name $panel_name \
-row $i]

puts $fh [join $row_data ","]
}

close $fh
unload_report
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 3: Tcl Scripting 3–13
Automating Script Execution
1. Analysis and synthesis (quartus_map)

2. Fitter (quartus_fit)

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In addition,
many commands in the Processing menu of the Quartus II GUI correspond to this
design flow.

To make an assignment automatically run a script, add an assignment with the
following form to your project’s .qsf file:

set_global_assignment -name <assignment name> <executable>:<script
name>

The Quartus II software runs the scripts as shown in Example 3–7.

The first argument passed in the argv variable (or quartus(args) variable) is the
name of the flow or module being executed, depending on the assignment you use.
The second argument is the name of the project and the third argument is the name of
the revision.

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is
automatically run after every executable in a flow. You can use a string comparison
with the module name (the first argument passed in to the script) to isolate script
processing to certain modules.

Execution Example
Example 3–8 illustrates how automatic script execution works in a complete flow,
assuming you have a project called top with a current revision called rev_1, and you
have the following assignments in the .qsf file for your project.

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the
following command to be run before compilation begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus II software starts compilation with analysis and synthesis,
performed by the quartus_map executable. After the analysis and synthesis finishes,
the POST_MODULE_SCRIPT_FILE assignment causes the following command to run:

quartus_sh -t next.tcl quartus_map top rev_1

Example 3–7.

<executable> -t <script name> <flow or module name> <project name> <revision name>

Example 3–8.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–14 Chapter 3: Tcl Scripting
Other Scripting Features
Then, the Quartus II software continues compilation with the Fitter, performed by the
quartus_fit executable. After the Fitter finishes, the POST_MODULE_SCRIPT_FILE
assignment runs the following command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the
compilation is over, the POST_FLOW_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t last.tcl compile top rev_1

Controlling Processing
The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every module.
Because the same script is run after every module, you might have to include some
conditional statements that restrict processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, you should include
a conditional test like the one shown in Example 3–9. It checks the flow or module
name passed as the first argument to the script and executes code when the module is
quartus_sta.

Displaying Messages
Because of the way the Quartus II software runs the scripts automatically, you must
use the post_message command to display messages, instead of the puts command.
This requirement applies only to scripts that are run by the three assignments listed in
“Automating Script Execution” on page 3–12.

1 Refer to “Using the post_message Command” on page 3–16 for more information
about this command.

Other Scripting Features
The Quartus II Tcl API includes other general-purpose commands and features
described in this section.

Example 3–9. Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]

if [string match "quartus_sta" $module] {

Include commands here that are run
after timing analysis
Use the post-message command to display
messages
post_message "Running after timing analysis"

}

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–15
Other Scripting Features
Natural Bus Naming
The Quartus II software supports natural bus naming. Natural bus naming means
that square brackets used to specify bus indexes in HDL do not have to be escaped to
prevent Tcl from interpreting them as commands. For example, one signal in a bus
named address can be identified as address[0] instead of address\[0\]. You can take
advantage of natural bus naming when making assignments, as in Example 3–10.

The Quartus II software defaults to natural bus naming. You can turn off natural bus
naming with the disable_natural_bus_naming command. For more information
about natural bus naming, type the following at a Quartus II Tcl prompt:

enable_natural_bus_naming -h r

Short Option Names
You can use short versions of command options, as long as they are unambiguous. For
example, the project_open command supports two options: -current_revision and
-revision. You can use any of the following abbreviations of the -revision option:
-r, -re, -rev, -revi, -revis, and -revisio. You can use an option as short as -r
because in the case of the project_open command no other option starts with the
letter r. However, the report_timing command includes the options -recovery and
-removal. You cannot use -r or -re to shorten either of those options, because the
abbreviation would not be unique to only one option.

Using Collection Commands
Some Quartus II Tcl functions return very large sets of data that would be inefficient
as Tcl lists. These data structures are referred to as collections. The Quartus II Tcl API
uses a collection ID to access the collection. There are two Quartus II Tcl commands
for working with collections, foreach_in_collection and get_collection_size. Use
the set command to assign a collection ID to a variable.

h For information about which Quartus II Tcl commands return collection IDs, refer to
foreach_in_collection in Quartus II Help.

Example 3–10. Natural Bus Naming

set_location_assignment -to address[10] Pin_M20
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm

3–16 Chapter 3: Tcl Scripting
Other Scripting Features
The foreach_in_collection Command
The foreach_in_collection command is similar to the foreach Tcl command. Use it
to iterate through all elements in a collection. Example 3–11 prints all instance
assignments in an open project.

The get_collection_size Command
Use the get_collection_size command to get the number of elements in a collection.
Example 3–12 prints the number of global assignments in an open project.

Using the post_message Command
To print messages that are formatted like Quartus II software messages, use the
post_message command. Messages printed by the post_message command appear in
the System tab of the Messages window in the Quartus II GUI, and are written to
standard at when scripts are run. Arguments for the post_message command include
an optional message type and a required message string.

The message type can be one of the following:

■ info (default)

■ extra_info

■ warning

■ critical_warning

■ error

If you do not specify a type, Quartus II software defaults to info.

When you are using the Quartus II software in Windows, you can color code
messages displayed at the system command prompt with the post_message
command. Add the following line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

Example 3–11. Using Collection Commands

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

Information about each assignment is
returned in a list. For information
about the list elements, refer to Help
for the get-all-instance-assignments command.
set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

Example 3–12. get_collection_size Command

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–17
Other Scripting Features
Example 3–13 shows how to use the post_message command.

Accessing Command-Line Arguments
Many Tcl scripts are designed to accept command-line arguments, such as the name of
a project or revision. The global variable quartus(args) is a list of the arguments
typed on the command-line following the name of the Tcl script. Example 3–14 shows
code that prints all of the arguments in the quartus(args) variable.

If you copy the script in the previous example to a file named print_args.tcl, it
displays the following output when you type the command shown in Example 3–15
at a command prompt.

Using the cmdline Package
You can use the cmdline package included with the Quartus II software for more
robust and self-documenting command-line argument passing. The cmdline package
supports command-line arguments with the form -<option> <value>.

Example 3–16 uses the cmdline package.

Example 3–13. post_message command

post_message -type warning "Design has gated clocks"

Example 3–14. Simple Command-Line Argument Access

set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

Example 3–15. Passing Command-Line Arguments to Scripts

quartus_sh -t print_args.tcl my_project 100MHz r
The value at index 0 is my_project
The value at index 1 is 100MHz

Example 3–16. cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {

{ "project.arg" "" "Project name" }
{ "frequency.arg" "" "Frequency" }

}
set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–18 Chapter 3: Tcl Scripting
Other Scripting Features
If you save those commands in a Tcl script called print_cmd_args.tcl you see the
following output when you type the command shown in Example 3–23 at a command
prompt.

Virtually all Quartus II Tcl scripts must open a project. Example 3–18 opens a project,
and you can optionally specify a revision name. The example checks whether the
specified project exists. If it does, the example opens the current revision, or the
revision you specify.

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3–19.

Example 3–17. Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz r
The project name is my_project
The frequency is 100MHz

Example 3–18. Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]

Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {

if {[string equal "" $optshash(revision)]} {

There is no revision name specified, so default
to the current revision
project_open $optshash(project) -current_revision

} else {

There is a revision name specified, so open the
project with that revision
project_open $optshash(project) -revision \

$optshash(revision)
}

} else {
puts "Project $optshash(project) does not exist"
exit 1

}
The rest of your script goes here

Example 3–19. Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–19
Using the Quartus II Tcl Shell in Interactive Mode
Using the Quartus II Tcl Shell in Interactive Mode
This section presents an example of using the quartus_sh interactive shell to make
some project assignments and compile the finite impulse response (FIR) filter tutorial
project. This example assumes that you already have the FIR filter tutorial design files
in a project directory.

To begin, type the following at the system command prompt to run the interactive Tcl
shell:

quartus_sh -s r
Create a new project called fir_filter, with a revision called filtref by typing the
following command at a Tcl prompt:

project_new -revision filtref fir_filter r

1 If the project file and project name are the same, the Quartus II software gives the
revision the same name as the project.

Because the revision named filtref matches the top-level file, all design files are
automatically picked up from the hierarchy tree.

Next, set a global assignment for the device with the following command:

set_global_assignment -name family Cyclone r

h To learn more about assignment names that you can use with the -name option, refer
to Quartus II Help.

1 For assignment values that contain spaces, the value should be enclosed in quotation
marks.

To quickly compile a design, use the ::quartus::flow package, which properly
exports the new project assignments and compiles the design using the proper
sequence of the command-line executables. First, load the package:

load_package flow r
It returns the following:

1.0

To perform a full compilation of the FIR filter design, use the execute_flow command
with the -compile option:

exectue_flow -compile r
This command compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and quartus_sta.
This sequence of events is the same as selecting Start Compilation from the
Processing menu in the Quartus II GUI.

When you are finished with a project, close it using the project_close command as
shown in Example 3–20.

Example 3–20.

project_close r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–20 Chapter 3: Tcl Scripting
Using the tclsh Shell
To exit the interactive Tcl shell, type exit r at a Tcl prompt.

Using the tclsh Shell
On the UNIX and Linux operating systems, the tclsh shell included with the
Quartus II software is initialized with a minimal PATH environment variable. As a
result, system commands may not be available within the tclsh shell because certain
directories are not in the PATH environment variable. To include other directories in
the path searched by the tclsh shell, set the QUARTUS_INIT_PATH environment variable
before running the tclsh shell. Directories in the QUARTUS_INIT_PATH environment
variable are searched by the tclsh shell when you execute a system command.

Tcl Scripting Basics
The core Tcl commands support variables, control structures, and procedures.
Additionally, there are commands for accessing the file system and network sockets,
and running other programs. You can create platform-independent graphical
interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell.
You can also create scripts (including the examples in this chapter) in files and run
them with the Quartus II executables or with the tclsh shell.

Hello World Example
The following shows the basic “Hello world” example in Tcl:

puts "Hello world" r
Use double quotation marks to group the words hello and world as one argument.
Double quotation marks allow substitutions to occur in the group. Substitutions can
be simple variable substitutions, or the result of running a nested command,
described in “Substitutions” on page 3–21. Use curly braces {} for grouping when you
want to prevent substitutions.

Variables
Use the set command to assign a value to a variable. You do not have to declare a
variable before using it. Tcl variable names are case-sensitive. Example 3–21 assigns
the value 1 to the variable named a.

To access the contents of a variable, use a dollar sign before the variable name.
Example 3–22 prints "Hello world" in a different way.

Example 3–21. Assigning Variables

set a 1

Example 3–22. Accessing Variables

set a Hello
set b world
puts "$a $b"
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–21
Tcl Scripting Basics
Substitutions
Tcl performs three types of substitution:

■ Variable value substitution

■ Nested command substitution

■ Backslash substitution

Variable Value Substitution
Variable value substitution, as shown in Example 3–22, refers to accessing the value
stored in a variable by using a dollar sign (“$”) before the variable name.

Nested Command Substitution
Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in
square brackets. The Tcl interpreter evaluates nested commands, starting with the
innermost nested command, and commands nested at the same level from left to
right. Each nested command result is substituted in the outer command.
Example 3–23 sets a to the length of the string foo.

Backlash Substitution
Backslash substitution allows you to quote reserved characters in Tcl, such as dollar
signs (“$”) and braces (“[]”). You can also specify other special ASCII characters like
tabs and new lines with backslash substitutions. The backslash character is the Tcl line
continuation character, used when a Tcl command wraps to more than one line.
Example 3–24 shows how to use the backslash character for line continuation.

Arithmetic
Use the expr command to perform arithmetic calculations. Using curly braces (“{ }”)
to group the arguments of this command makes arithmetic calculations more efficient
and preserves numeric precision. Example 3–25 sets b to the sum of the value in the
variable a and the square root of 2.

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT), and
comparison operators such as < (less than), > (greater than), and == (equal to).

Example 3–23. Command Substitution

set a [string length foo]

Example 3–24. Backslash Substitution

set this_is_a_long_variable_name [string length "Hello \
world."]

Example 3–25. Arithmetic with the expr Command

set a 5
set b [expr { $a + sqrt(2) }]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–22 Chapter 3: Tcl Scripting
Tcl Scripting Basics
Lists
A Tcl list is a series of values. Supported list operations include creating lists,
appending lists, extracting list elements, computing the length of a list, sorting a list,
and more. Example 3–26 sets a to a list with three numbers in it.

You can use the lindex command to extract information at a specific index in a list.
Indexes are zero-based. You can use the index end to specify the last element in the
list, or the index end-<n> to count from the end of the list. Example 3–27 prints the
second element (at index 1) in the list stored in a.

The llength command returns the length of a list. Example 3–28 prints the length of
the list stored in a.

The lappend command appends elements to a list. If a list does not already exist, the
list you specify is created. The list variable name is not specified with a dollar sign.
Example 3–29 appends some elements to the list stored in a.

Arrays
Arrays are similar to lists except that they use a string-based index. Tcl arrays are
implemented as hash tables. You can create arrays by setting each element
individually or by using the array set command. To set an element with an index of
Mon to a value of Monday in an array called days, use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This example sets the
array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

Example 3–30 shows how to access the value for a particular index.

Example 3–26. Creating Simple Lists

set a { 1 2 3 }

Example 3–27. Accessing List Elements

puts [lindex $a 1]

Example 3–28. List Length

puts [llength $a]

Example 3–29. Appending to a List

lappend a 4 5 6

Example 3–30. Accessing Array Elements

set day_abbreviation Mon
puts $days($day_abbreviation)
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–23
Tcl Scripting Basics
Use the array names command to get a list of all the indexes in a particular array. The
index values are not returned in any specified order. Example 3–31 shows one way to
iterate over all the values in an array.

Arrays are a very flexible way of storing information in a Tcl script and are a good
way to build complex data structures.

Control Structures
Tcl supports common control structures, including if-then-else conditions and for,
foreach, and while loops. The position of the curly braces as shown in the following
examples ensures the control structure commands are executed efficiently and
correctly. Example 3–32 prints whether the value of variable a positive, negative, or
zero.

Example 3–33 uses a for loop to print each element in a list.

Example 3–34 uses a foreach loop to print each element in a list.

Example 3–31. Iterating Over Arrays

foreach day [array names days] {
puts "The abbreviation $day corresponds to the day \

name $days($day)"
}

Example 3–32. If-Then-Else Structure

if { $a > 0 } {
puts "The value is positive"

} elseif { $a < 0 } {
puts "The value is negative"

} else {
puts "The value is zero"

}

Example 3–33. For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a $i]"
}

Example 3–34. foreach Loop

set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–24 Chapter 3: Tcl Scripting
Tcl Scripting Basics
Example 3–35 uses a while loop to print each element in a list.

You do not have to use the expr command in boolean expressions in control structure
commands because they invoke the expr command automatically.

Procedures
Use the proc command to define a Tcl procedure (known as a subroutine or function
in other scripting and programming languages). The scope of variables in a procedure
is local to the procedure. If the procedure returns a value, use the return command to
return the value from the procedure. Example 3–36 defines a procedure that
multiplies two numbers and returns the result.

Example 3–37 shows how to use the multiply procedure in your code. You must
define a procedure before your script calls it.

You should define procedures near the beginning of a script. If you want to access
global variables in a procedure, use the global command in each procedure that uses
a global variable. Example 3–38 defines a procedure that prints an element in a global
list of numbers, then calls the procedure.

Example 3–35. while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

Example 3–36. Simple Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}

Example 3–37. Using a Procedure

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

Example 3–38. Accessing Global Variables

proc print_global_list_element { i } {
global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 3: Tcl Scripting 3–25
Tcl Scripting Basics
File I/O
Tcl includes commands to read from and write to files. You must open a file before
you can read from or write to it, and close it when the read and write operations are
done. To open a file, use the open command; to close a file, use the close command.
When you open a file, specify its name and the mode in which to open it. If you do not
specify a mode, Tcl defaults to read mode. To write to a file, specify w for write mode
as shown in Example 3–39.

Tcl supports other modes, including appending to existing files and reading from and
writing to the same file.

The open command returns a file handle to use for read or write access. You can use
the puts command to write to a file by specifying a filehandle, as shown in
Example 3–40.

You can read a file one line at a time with the gets command. Example 3–41 uses the
gets command to read each line of the file and then prints it out with its line number.

Syntax and Comments
Arguments to Tcl commands are separated by white space, and Tcl commands are
terminated by a newline character or a semicolon. As shown in “Substitutions” on
page 3–21, you must use backslashes when a Tcl command extends more than one
line.

Tcl uses the hash or pound character (#) to begin comments. The # character must
begin a comment. If you prefer to include comments on the same line as a command,
be sure to terminate the command with a semicolon before the # character.
Example 3–42 is a valid line of code that includes a set command and a comment.

Example 3–39. Open a File for Writing

set output [open myfile.txt w]

Example 3–40. Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

Example 3–41. Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {

Process the line of text here
puts "$line_num: $line"
incr line_num

}
close $input

Example 3–42. Comments

set a 1;# Initializes a
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

3–26 Chapter 3: Tcl Scripting
Document Revision History
Without the semicolon, it would be an invalid command because the set command
would not terminate until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that
are difficult to track down. Example 3–43 causes an error because of unbalanced curly
braces.

External References

f For more information about using Tcl, refer to the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch

■ Tcl and the TK Toolkit, John Ousterhout

■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison

■ Quartus II Tcl example scripts at www.altera.com/support/examples/tcl/tcl.html

■ Tcl Developer Xchange at tcl.activestate.com

Document Revision History
Table 3–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Example 3–43. Unbalanced Braces in Comments

if { $x > 0 } {
if { $y > 0 } {

code here
}

Table 3–4. Document Revision History

Date Version Changes

December 2010 10.1.0
Template update

Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 Minor updates throughout document.

November 2009 9.1.0

■ Removed LogicLock example.

■ Added the incremental_compilation, insystem_source_probe, and rtl packages to Table 3-
1 and Table 3-2.

■ Added quartus_map to table 3-2.

March 2009 9.0.0

■ Removed the “EDA Tool Assignments” section

■ Added the section “Compile All Revisions” on page 3–9

■ Added the section “Using the tclsh Shell” on page 3–20

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://tcl.activestate.com/
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/support/examples/tcl/tcl.html

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52012-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52012-10.1.0
4. Managing Quartus II Projects
This chapter discusses how to create and manage projects, and how to migrate them
from one computing platform to another.

Today’s larger and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project lifecycle. Designers
must track their project changes to ensure efficient design coordination.

This chapter discusses the following topics:

■ “Managing Your Quartus II Projects” on page 4–1

■ “Exporting and Importing Version-Compatible Database Files” on page 4–6

■ “Managing Projects in a Team-Based Design Environment” on page 4–15

■ “Scripting Support” on page 4–16

Managing Your Quartus II Projects
To help you manage your FPGA designs, the Quartus® II software provides tools that
assist you with your design tasks, including creating a project, creating assignments,
managing revisions, and archiving projects.

A Quartus II project contains all your design files, setting files, and other files
necessary for the successful compilation of your design.

h For more information about creating and opening a project, adding files to and
removing files from a project, modifying project settings, saving project changes, and
specifying the top-level entity, refer to Managing Files in a Project in Quartus II Help.

For more information about libraries, refer to “Specifying Libraries” on page 4–10.

1 On the General page of the Options dialog box, you can also specify a default
directory that automatically stores all project files.

After you create a new project, the Quartus II software automatically generates
various project files necessary for successful compilation, including the Quartus II
Project File (.qpf) and Quartus II Settings File (.qsf).

h For more information about the .qpf and .qsf, refer to Quartus II Project File (.qpf) and
Quartus II Setting File (.qsf) in Quartus II Help.

f For a list of supported Quartus II project files and design file types, refer to
Introduction to the Quartus II Software manual.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52012
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_qpf.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_qsf.htm
www.altera.com/literature/manual/intro_to_quartus2.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm

4–2 Chapter 4: Managing Quartus II Projects
Managing Your Quartus II Projects
File Association
Quartus II project files are files associated with a Quartus II project, but are not design
files in the project hierarchy. Most project files do not contain design logic. The
Quartus II software supports project files such as .qpf, Quartus II IP File (.qip), and
.qsf, among others.

Design files are files that contain logic for a Quartus II project. The Compiler compiles
the Quartus II design files. The Quartus II software also supports designs created
from EDIF Input Files (.edf) or Verilog Quartus Mapping Files (.vqm) generated by
EDA design entry and synthesis tools. You can also create Verilog HDL or VHDL
designs in the Quartus II software and EDA design entry tools and either generate
EDIF Input Files (.edf) and Verilog Quartus Mapping File (.vqm), or use the Verilog
HDL or VHDL design files directly in Quartus II projects. The Quartus II software also
supports use of Quartus II Exported Partition Files (.qxp) as source files containing
entities you can add to your design.

The Quartus II software sets file type association when you run the Quartus II
software version 9.1 or earlier; however, in the Quartus II software versions 10.0 and
later, the Quartus II software sets file type association after installation, which can be
overwritten if you run prior versions of the Quartus II software after installing
Quartus II software versions 10.0 and later. If your files are associated with a different
version of the Quartus II software, and you want to associate the files with the
Quartus II software version 10.0, you can manually associate the files to the Quartus II
software version 10.0.

Example 4–1 shows how to associate files with the current version of the Quartus II
software manually:

Editing Text-Based Designs with the Quartus II Text Editor
You can use any text editor with the Quartus II software; however, the Quartus II Text
Editor allows you to take advantage of features available only in the Quartus II
software, error location, and predefined templates to help you with coding.

The Quartus II software provides templates that allow you to insert predefined code
directly into your design file; you can choose from several design languages, and you
can directly add TimeQuest analyzer design constraints and megafunction
information. You can also create and save your own templates.

h For more information about editing Quartus II Text Editor files, refer to Editing
Quartus II Text Editor Files in Quartus II Help. For more information about text editors,
refer to About the Quartus II Text Editor in Quartus II Help. For more information about
the Quartus II Text Editor options and setting a preferred text editor, refer to Setting
Quartus II Text Editor Options in Quartus II Help.

f For more information about the Quartus II language template feature, refer to the
“Quartus II Language Templates” section in the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

Example 4–1. Command to Associate Files

<path to installation directory>\quartus\bin\qreg.exe --file_assoc r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ted/ted_view_edit.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ted/ted_pro_set_options.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ted/ted_pro_set_options.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ted/ted_pro_edit_files.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/design/ted/ted_pro_edit_files.htm
www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 4: Managing Quartus II Projects 4–3
Managing Your Quartus II Projects
Creating Assignments
Assignments control a variety of different functions of the Quartus II software and are
an important part of an efficient and effective design. When used in conjunction with
a good design practices, assignments can help you successfully compile your design.
You can create assignments with different editors and dialog boxes in the Quartus II
software or with Tcl scripts. Assignments are logic functions you assign to a physical
resource on the device, or compilation resources you assign to logic functions.

Quartus II Settings File
As you create assignments in the Quartus II software, you can choose either to store
the assignments in memory temporarily or write the assignment out to the .qsf with
the Update assignments to disk during design processing only option located on the
Processing page of the Options dialog box. You can open the Options dialog box by
clicking Options on the Tools menu. If you turn on the Update assignments to disk
during design processing only option, the Quartus II software stores all assignments
in memory and writes to the .qsf when a compilation starts or when you save or close
the project. The performance of the software improves when you save assignments in
memory. You can view this performance improvement when the Quartus II software
stores the project files on a remote data disk.

f For more information about the .qsf, refer to the Quartus II Settings File Manual.

Preserving QSF Format
When you create new assignments, the Quartus II software appends the assignments
to the end of the .qsf. If you modify an assignment, the corresponding line in the .qsf
changes to maintain the order of assignments in the .qsf, unless you add and remove
project source files, or when you add, remove, and exclude members from an
assignment group. In these cases, the Quartus II software appends all assignments to
the end of the .qsf. For example, if you add a new design file to the project, the
Quartus II software appends the list of all your design files to the end of the .qsf.

The Quartus II software preserves all spaces and tabs for all unmodified assignments
and comments. When you create a new assignment or modify an existing assignment
in the GUI, the Quartus II software writes the assignment with the default formatting.

Quartus II Default Settings File
You can ensure consistent results when defaults change between versions of the
Quartus II software with the assignment_defaults.qdf, located in the bin or bin64
directory of the Quartus II installation path.

The Quartus II software reads assignments from various files and stores the
assignments in memory. The Quartus II software reads settings files in the following
order and assignments in subsequent files take precedence over earlier ones:

1. assignment_defaults.qdf from <Quartus II Installation directory>/bin or bin64

2. assignment_defaults.qdf from the project directory

3. <revision name>_assignment_defaults.qdf from the project directory

4. <revision name>.qsf from the project directory
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

4–4 Chapter 4: Managing Quartus II Projects
Managing Your Quartus II Projects
As the Quartus II software reads each new file, if an existing assignment from an
existing project file matches, following rules of case sensitivity, multivalued fields,
and other rules, the Quartus II software replaces the old value with a new value. For
example, if the first file has an assignment A=1, and the second file has A=2, the
software replaces assignment A=1 with assignment A=2.

Creating Timing Assignments
If you create timing assignments with the TimeQuest Timing Analyzer, the Quartus II
software creates a Synopsys Design Constraints File (.sdc) that contains your SDC
commands.

f For more information about TimeQuest analyzer and SDC constraints, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Creating Revisions
In the Quartus II software, a revision is a set of assignments and settings. A project
may have multiple revisions, and each revision has its own set of assignments and
settings. You can create multiple revisions in a project, and you can create a unique
revision based on an existing revision. Creating a unique revision allows you to
optimize a design for different results; creating a revision based on an existing
revision allows you to try new settings and assignments and then compare the
revisions.

Creating a revision of your design allows you to create a new set of assignments and
settings for a set of design files without losing your previous assignments and
settings. You can perform the following tasks with revisions:

■ Create a revision not based on a previous revision. Creating a unique revision
allows you to optimize a design for different fundamental reasons, such as to
optimize by area in one revision and then optimize for fMAX in another revision.
When you create a unique revision, the Quartus II software uses all default
settings.

■ Create a revision based on an existing revision, but try new settings and
assignments in the new revision. A new revision includes all the assignments and
settings in the existing revision.You can revert from the new revision to the
original revision. You can compare revisions manually, or with features in the
Quartus II software.

Managing Project Revisions
The Revisions dialog box manages your revisions by allowing you to create and
delete a revision, specify the current revision, and compare revisions.

Each time you create a new revision of a project, the Quartus II software creates a new
.qsf and adds the name of the new revision to the list of revisions in the .qsf. The
name of a new .qsf matches the revision name.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 4: Managing Quartus II Projects 4–5
Managing Your Quartus II Projects
You can compare the compilation results of multiple revisions side by side with the
Compare Revisions dialog box. The Compare Revisions dialog box compares the
compilation results of each revision in three categories:

■ Analysis & Synthesis

■ Fitter

■ TimeQuest Timing Analyzer

In addition to viewing the compilation results of each revision, you can also compare
the assignments for each revision. Comparing the compilation results and
assignments for each revision allows you to gain a better understanding of how
different optimization options affect your design.

h For more information about creating, deleting, specifying, and comparing revisions,
refer to Managing Project Revisions in Quartus II Help.

Creating New Copies of Your Design
If your design requires that you have two separate copies of your project, rather than
just a separate revision, you can create a second copy of your project with the Copy
Project command. For example, if you have a design that is compatible with a 32-bit
data bus and you require a new copy of your design to interface with a 64-bit data
bus, you may want a separate copy of the project.

The Quartus II software provides utilities to copy and save different copies of your
project. Creating a copy of your project with the Copy Project command directs the
Quartus II software to copy all your design files, your .qsf, and all your associated
revisions.

If you are creating a new copy of a project that contains an .edf or a .vqm from a
third-party EDA synthesis tool, first create a copy of your project and then replace any
.edf or .vqm files with the newly generated .edf or .vqm.

h For more information about the Copy Project command, refer to Copy Project Dialog
Box in Quartus II Help.

Archiving and Restoring Projects
To share large projects between engineers or to transfer your project to a new version
of the Quartus II software, you can archive your project. Archiving your project
creates a single compressed Quartus II Archive File (.qar) that contains all your
design, project, and settings files. The .qar contains all the .qdf files required to
compile your design and restore the original compilation results. When you restore
the archive in a different version of the Quartus II software, you must include the .qdf
in the archive to preserve previous compilation results. For more information about
the .qdf, refer to “Quartus II Default Settings File” on page 4–3.

1 You can copy files listed in the Source Control file set for the Archiver with the Copy
Project command. If you cannot find your source file in the Source Control file set,
add the source file to your project before copying.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/arc/arc_com_copy_project.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/arc/arc_com_copy_project.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/rev/rev_pro_create.htm

4–6 Chapter 4: Managing Quartus II Projects
Exporting and Importing Version-Compatible Database Files
h For more information about archiving a project and restoring an archived project,
refer to About Archiving Projects and Archiving Projects in Quartus II Help.

Exporting and Importing Version-Compatible Database Files
The Quartus II software generates version-compatible database files that are a
representation of the internal database files. The Quartus II software allows you to
export and import version-compatible database files for a project to use compilation
databases in different versions of the Quartus II software. If you export
version-compatible database files for a project, you can import these files in a future
version of the Quartus II software. By importing version-compatible database files
and rerunning timing analysis, you can check a project's fitting and timing results in
newer versions of the Quartus II software.

Version-compatible databases allows you to use the same project database when you
upgrade to a newer version of the Quartus II software, eliminating the need to
recompile your project, which saves design time.

Figure 4–1 shows the Quartus II software version-compatible database structure.

h For more information about exporting and importing version-compatible database
files, including device support, refer to Exporting and Importing Version-Compatible
Database Files in Quartus II Help.

If you require the database files to reproduce the compilation results in the same
Quartus II software version, you can use the command-line option to archive a full
compilation database. For more information, refer to “Archiving and Restoring
Projects” on page 4–5.

Figure 4–1. Quartus II Version-Compatible Database Structure

Quartus II Project (Version 1)

Quartus II Project (Revision A) Settings A

Quartus II Project (Revision B) Settings B

Quartus II Project (Version 2)

Quartus II Project (Revision A) Settings C

Quartus II Project (Revision B) Settings D

Quartus II Project

filtref.v
filtref.vwf
filtref.asf

filtref.v
filtref_2.vwf
filtref_2.qsf
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/arc/arc_view_archiving.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/bak/bak_pro_exporting_db.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/bak/bak_pro_exporting_db.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/arc/arc_pro_archive.htm

Chapter 4: Managing Quartus II Projects 4–7
Exporting and Importing Version-Compatible Database Files
Migrating to a New Version of the Quartus II Software
To migrate your design to a newer version of the Quartus II software, follow these
steps:

1. On the File menu, click Open Project and browse to select the Quartus II project
file to open the older version of the Quartus II software project.

2. On the Project menu, click Copy Project to create a new copy of the project. The
older version closes and the copied project opens.

3. Before exporting the database, you must run Analysis and Synthesis for the new
version. On the Project menu, click Export Database. By default, the Quartus II
software exports the database to the export_db directory of the copied project. You
can also create a new directory.

4. Open the copied project from the new version of the Quartus II software. The
Quartus II software deletes the existing database but not the exported database.

5. On the Project menu, click Import Database. By default, the Quartus II software
selects the directory that contains the exported database you just created. Select
the exported database and the Quartus II software imports the version-compatible
database files.

Saving the Database in a Version-Compatible Format
To save the database in a version-compatible format during a full compilation, follow
these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on the Export version compatible database option.

4. Browse to the directory in which you want to save the database.

5. Click OK.

You can also export a project database as version-compatible database files during a
full compilation.

h For more information about importing and exporting version-compatible databases,
refer to Exporting and Importing Version-Compatible Database Files in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/bak/bak_pro_exporting_db.htm

4–8 Chapter 4: Managing Quartus II Projects
Exporting and Importing Version-Compatible Database Files
Quartus II Project Platform Migration
When moving your project from one computing platform to another, you must
consider the following cross-platform issues:

■ “File Names and Hierarchies”

■ “Specifying Libraries”

■ “Quartus II Search Path Precedence Rules”

■ “Quartus II-Generated Files for Third-Party EDA Tools”

■ “Migrating Database Files Between Platforms”

File Names and Hierarchies
To ensure a successful migration across platforms, consider the following differences
between operating systems when naming source files, especially when interacting
with the operating systems from the command prompt or a Tcl script:

■ Some operating system file systems are case sensitive. When writing scripts,
ensure that you specify paths exactly, even if the current operating system is not
case sensitive. Use lowercase letters when naming files.

■ Use a character set common to all the used platforms.

■ Do not change the forward-slash (/) and back-slash (\) path separators in the .qsf
because the Quartus II software changes all back-slash (\) path separators to
forward-slashes (/).

■ Observe the shortest file name length limit of the different operating systems you
are using.

1 Altera recommends that you avoid using spaces in the name of the project
directory. You can rename the directory with a symbol such as the
underscore (_) as a place holder instead of spaces (for example,
“my_design” instead of “my design”).
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 4: Managing Quartus II Projects 4–9
Exporting and Importing Version-Compatible Database Files
You can specify files and directories inside a Quartus II project as paths relative to the
project directory. For example, for a project titled foo_design with a directory
structure shown in Figure 4–2, specify the source files as: top.v, foo_folder/foo1.v,
foo_folder/foo2.v, and foo_folder/bar_folder/bar1.vhdl.

If the .qsf is in a directory that is separate from the source files, you can specify paths
using the relative and absolute paths and libraries options.

Relative Paths

If the source files are very near to the Quartus II project directory, you can express
relative paths using the .. notation. For example, in the directory structure shown in
Figure 4–3, you can specify top.v as ../source/top.v and foo1.v as
../source/foo_folder/foo1.v.

Figure 4–2. All Inclusive Project Directory Structure

Figure 4–3. Quartus II Project Directory Separate from Design Files

foo_design

foo1.v

bar_folder

bar1.vhdl

foo_design.qsf

top.v

foo_folder

foo2.v

foo_design

foo_design.qsf

top.v

foo1.v

bar_folder

bar1.vhdl

quartus

source

foo_folder

foo2.v
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

4–10 Chapter 4: Managing Quartus II Projects
Exporting and Importing Version-Compatible Database Files
1 When you copy a directory structure to a different platform, ensure that all the
subdirectories are in the same hierarchical structure and relative path as in the
original platform.

Specifying Libraries
You can specify the directory containing source files as a library that the Quartus II
software searches when you compile your project. A Quartus II library is a directory
containing your Quartus II project design files. You can specify the following libraries
in the Quartus II software:

■ Project libraries—Apply to a specific project

■ Global libraries—Apply to all projects

1 The project directory takes precedence over the project libraries.

All files in your libraries are relative to the libraries. For example, if you specify the
user_lib1 directory as a project library and you want to add the /user_lib1/foo1.v file
to the library, you can specify the foo1.v file in the .qsf as foo1.v. The Quartus II
software searches the file in directories that the Quartus II software specifies as
libraries.

h For more information about libraries , refer to Libraries Page (Settings Dialog Box) in
Quartus Help.

Specifying Project Libraries

To specify project libraries from the GUI, on the Assignments menu, click Settings
and select Libraries. Type the name of the directory in the Project Library name box,
or browse to the name of the directory. The .qsf of the current revision stores project
libraries.

You can also specify project libraries in the Libraries page in the General category in
the Options dialog box.

Specifying Global Libraries

To specify global libraries from the GUI, on the Tools menu, click Options and select
Libraries. Type the name of the directory in the Global Library name box, or browse
to the name of the directory. The quartus2.ini file stores global libraries.

To specify libraries from the GUI, on the Assignments menu, click Settings and select
Libraries.

For Windows, the Quartus II software searches for the quartus2.ini file in the
following directories and order:

1. USERPROFILE, for example, C:\Documents and Settings\<user name>

2. Directory specified by the TMP environmental variable

3. Directory specified by the TEMP environmental variable

4. Root directory, for example, C:\

For Linux, the Quartus II software creates the file in the altera.quartus directory
under the <home> directory.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_tab_user_lib.htm

Chapter 4: Managing Quartus II Projects 4–11
Exporting and Importing Version-Compatible Database Files
1 If the altera.quartus directory does not exist, the Quartus II software creates the file in
the <home> directory.

1 Whenever you specify a directory name in the GUI or in Tcl, the Quartus II software
maintains the directory name you use in the .qsf rather than resolved to an absolute
path.

If the directory is outside of the project directory, the path returned in the dialog box is
an absolute path. You can use the Browse button in either the Settings dialog box or
the Options dialog box to select a directory. You can change the absolute path to a
relative path by editing the absolute path displayed in the library name field to create
a relative path before you click Add to put the directory in the Libraries list.
Alternatively, you can also select from the Libraries list and double-click to edit the
path.

When copying projects that specify project libraries, you must either copy your
project library files along with the project directory or ensure that your project library
files exist in the target platform.

Quartus II Search Path Precedence Rules
If two files have the same file name, the Quartus II software’s search path precedence
rules determine the found file. The Quartus II software resolves relative paths by
searching for the file in the following directories and order:

1. The project directory.

2. The project’s database (db) directory.

3. Project libraries are searched in the order specified by the SEARCH_PATH setting
of the .qsf for the current revision.

1 Altera recommends that you use the SEARCH_PATH assignment to define
the project libraries. You can have multiple SEARCH_PATH assignments.
However, you can specify only one source directory for each
SEARCH_PATH assignment. For more information about SEARCH_PATH
assignments, refer to Example 4–18 on page 4–19.

4. Global user libraries are searched in the order specified by the SEARCH_PATH
setting on the Global User Libraries page in the Options dialog box.

5. The Quartus II software libraries directory, for example,
<Quartus II Software Installation directory>\libraries. For more information about
libraries, refer to “Specifying Libraries Using Scripts” on page 4–19.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

4–12 Chapter 4: Managing Quartus II Projects
Exporting and Importing Version-Compatible Database Files
Quartus II-Generated Files for Third-Party EDA Tools
The project archive and copy features in the Quartus II software do not include
Quartus II generated files for third-party EDA tools such as:

■ Verilog Output Files (.vo)

■ VHDL Output Files (.vho)

■ Standard Delay Format Output Files (.sdo) output netlist files

■ Stamp model files

■ PartMiner XML-Format Files (.xml)

■ IBIS Output Files (.ibs)

When you archive your design project, you can save the database in a
version-compatible format during a full compilation and include the
version-compatible database files in your project archive.

1 Version-compatible databases may not be available for all device families because the
archive does not include the compilation database. If you require the database files to
reproduce the compilation results in the same Quartus II software version, you can
use the command-line option to archive a full database. For more information, refer to
“Archiving and Restoring Projects” on page 4–5.

For more information about saving the database in a version-compatible format and
archiving projects, refer to “Saving the Database in a Version-Compatible Format” on
page 4–7 and “Archiving Projects” on page 4–17.

To copy your project to another platform, you can regenerate the output netlist or
output files by following these steps:

1. Import the version-compatible database. For more information, refer to
“Migrating to a New Version of the Quartus II Software” on page 4–7.

2. From the Tools menu, run the TimeQuest analyzer.

3. Run the EDA Netlist Writer.

To restore your project, you can regenerate the output netlist or output files by
performing the following steps:

1. Restore your design project. For more information about restoring an archived
project, refer to “Archiving and Restoring Projects” on page 4–5.

2. Import the version-compatible database. For more information about migrating to
a new version, refer to “Migrating to a New Version of the Quartus II Software” on
page 4–7.

3. From the Processing menu, run the TimeQuest analyzer.

4. Run the EDA Netlist Writer.

1 When you create version-compatible databases, you do not need to
recompile your design as you move across platforms.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 4: Managing Quartus II Projects 4–13
Exporting and Importing Version-Compatible Database Files
Migrating Database Files Between Platforms
There is nothing inherent in the file format and syntax of the exported
version-compatible database files that might cause problems when migrating the files
to other platforms. However, the contents of the database can cause problems for
platform migration. For example, using the absolute paths in version-compatible
database files generated by the Quartus II software can cause problems for migration.
Altera recommends that you change the absolute paths to relative paths before
migrating files whenever possible.

Working with Messages
The Quartus II software generates various types of messages, including Information,
Warning, Extra Info, Critical Warning, and Error messages. Some messages include
information about software status during a compilation and alert you to possible
problems with your design. The Messages box in the Quartus II GUI displays
messages, and these messages are written to stdout when you use command-line
executables. In both cases, Quartus II report files write messages.

You can right-click a message in the Message window to get help for the message,
locate the source of the message of your design, and manage messages.

Messages provide useful information if you take time to review them after each
compilation. The following sections describe the Quartus II software features to help
you manage messages.

Messages Window
The Messages window displays nine message tabs, enabling you to review all
messages of a certain type. The Info, Extra Info, Warning, Critical Warning, and
Error tabs display messages by type.

h For more information about the Messages window and message tabs, refer to About
the Messages Window in Quartus II Help. For more information about managing
messages in the Messages window, refer to Managing Messages in the Messages Window
in Quartus II Help.

Message Suppression
You can use message suppression to reduce the number of messages after a
compilation by preventing individual messages and entire categories of messages
from displaying. For example, if you review a particular message and determine that
your design is not the cause of the message, you can suppress the message for
subsequent compilations. Message suppression saves time because you see only new
messages during subsequent compilations.

Adding a suppressed message creates a suppression rule. Suppressing exact selected
messages adds patterns that are exact strings to the suppression rules. Suppressing all
similar messages adds patterns with wildcards to the suppression rules.

Furthermore, you can suppress all messages of a particular type in a particular stage
of the compilation flow. On the Tools menu, click Options. In the Category list, select
Suppression in the Messages section.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_com_msw.htm

4–14 Chapter 4: Managing Quartus II Projects
Exporting and Importing Version-Compatible Database Files
Suppressing individual messages is controlled in two locations in the Quartus II GUI.
You can right-click on a message in the Messages window and choose commands in
the Suppress sub-menu entry. To open the Message Suppression Manager, right-click
in the Messages window. From the Suppress sub-menu, click Message Suppression
Manager. For more information about the Message Suppression Manager, refer to
“Message Suppression Manager” on page 4–15.

Message Suppression Methods

You can use the following methods to create suppression rules:

■ Suppress Exact Selected Messages

■ Suppress All Similar Messages

■ Suppress All Flagged Messages

If you suppress a message with the Suppress Exact Selected Messages option, the
Quartus II software suppresses only messages that match the exact text during
subsequent compilations. The Suppress All Similar Messages option behaves like a
wildcard pattern on variable fields in messages and the Suppress All Flagged
Messages option only suppresses flagged messages.

Example 4–2 shows an example of suppressing common Info type of messages:

This Info type of message is common during synthesis. The Quartus II software
displays the message for each processed source file with varying information about
the number of design units, entities, and source file name.

Example 4–3 shows an example of this message in Help:

Choosing to suppress all similar messages effectively replaces the variable parts of
that message (<number>, <number>, and <name>) with wildcards.

Example 4–4 shows the suppression rule to suppress common Info type of messages:

The Quartus II software suppresses all messages that match the pattern.

Example 4–2. Example of Suppressing Common Info Type Message

Info: Found 1 design units, including 1 entities, in source file mult.v.

Example 4–3. Example of Suppressing Common Info Type Message

Found <number> design units, including <number> entities, in source file <name>.

Example 4–4. Suppression Rule to Suppress Common Info Type of Messages

Info: Found * design units, including * entities, in source file *.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 4: Managing Quartus II Projects 4–15
Managing Projects in a Team-Based Design Environment
Message Suppression Details and Limitations

The following rules describe which messages that you can suppress and how to
suppress them:

■ You cannot suppress error messages or messages with information about Altera
legal agreements.

■ Suppressing a message also suppresses all its submessages, if any.

■ Suppressing a submessage causes the Quartus II software to suppress matching
submessages only if the parent messages are the same.

■ You cannot create your own custom wildcards to suppress messages.

■ You must use the Quartus II GUI to manage message suppression, including
choosing messages to suppress. The Quartus II software surpresses these
messages during compilation in the GUI and when using command-line
executables.

■ The Quartus II software surpresses the messages on a per-revision basis, not for an
entire project. The Quartus II software stores information about which messages to
suppress in a file called <revision>.srf. If you create a revision based on a
suppressed messages revision, the Quartus II software copies the suppression
rules file to the new revision. You cannot make all revisions in one project using
the same suppression rules file.

■ You cannot remove messages or modify message suppression rules while a
compilation is running.

Message Suppression Manager

You can use the Message Suppression Manager to view and suppress messages, view
and delete suppression rules, and view suppressed messages. The Message
Suppression Manager has three tabs labeled Suppressible Messages, Suppression
Rules, and Suppressed Messages.

h For more information about the Message Suppression Manager, refer to About Message
Suppression in Quartus II Help.

Managing Projects in a Team-Based Design Environment
The Quartus II software provides several methods to help you manage efficient
design coordination across multiple designers and design iterations. You can use the
following features to preserve and track project changes:

■ Creating Revisions

■ Managing Different Design Versions

■ Creating Version-Compatible Databases

■ Archiving Projects

h For more information about creating revisions, managing different design versions,
creating version-compatible databases, and archiving projects in a team-based design
environment, refer to About Project Management in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_view_message_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/msw/msw_view_message_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/save/arc/arc_about_arc_rev_bak.htm

4–16 Chapter 4: Managing Quartus II Projects
Scripting Support
The Quartus II software supports top-down incremental compilation flows. With
top-down compilation, one designer or project lead compiles the entire design in the
software. Different designers or IP providers can design and verify different parts of
the design, and the project lead can add design entities to the project as they are
completed. However, the project lead compiles and optimizes the top-level project as
a whole. Completed parts of the design can have fitting results and performance fixed
as other parts of the design change.

f For more information about incremental compilation for team-based design, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook. For more information about best practices for
incremental compilation partitions and floorplan assignments, refer to Best Practices
for Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1 of
the Quartus II Handbook.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For more information about
scripting command options, refer to the Quartus II Command-Line and Tcl API Help
browser.

Example 4–5 shows the command to run the Help browser:

Managing Revisions
You can use the following commands to create and manage revisions. For more
information about managing revisions, including creating and deleting revisions,
setting the current revision, and getting a list of revisions, refer to “Creating
Revisions” on page 4–4.

Creating Revisions
The -based_on and -set_current options are optional. You can also use
-copy_results option to copy results from the “based_on” revision.

Example 4–6 shows a Tcl command to create a new revision called speed_ch, based on
a revision called chiptrip, and sets the new revision as the current revision:

Setting the Current Revision
The -force option enables you to open the revision that you specify under revision
name and overwrite the compilation database if the database version is incompatible.

Example 4–5. Command to Run the Help Browser

quartus_sh --qhelp r

Example 4–6. Creating Revisions Command

create_revision speed_ch -based_on chiptrip -set_current
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

www.altera.com/literature/hb/qts/qts_qii51015.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf
www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 4: Managing Quartus II Projects 4–17
Scripting Support
Example 4–7 shows the Tcl command to specify the current revision:

Getting a List of Revisions
Example 4–8 shows the Tcl command to get a list of revisions in the opened project:

Deleting Revisions
Example 4–9 shows the Tcl command to delete a revision:

Archiving Projects
You can archive projects with a Tcl command or a command run at the system
command prompt.

Example 4–10 shows the Tcl command to create a project archive with the default
settings, overwriting the existing specified archived file:

You can change default settings with the project_archive command with options
such as:

■ -all_revisions

■ -include_libraries

■ -include_outputs

■ -use_file_set <file_set>

■ -version_compatible_database

1 For new device families, a version-compatible database might not be available
because the archive does not include the compilation database. If you require the
database files to reproduce the compilation results in the same Quartus II software
version, you can use the -use_file_set full_db command-line option to archive a
full database. For more information, refer to “Archiving and Restoring Projects” on
page 4–5.

Example 4–7. Specifying the Current Revision Command

set_current_revision -force <revision name>

Example 4–8. Getting a List of Revisions in an Opened Project Command

get_project_revisions <project_name>

Example 4–9. Deleting a Revision Command

delete_revision <revision name>

Example 4–10. Creating a Project Archive with the Default Settings Command

project_archive archive.qar -overwrite r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

4–18 Chapter 4: Managing Quartus II Projects
Scripting Support
Example 4–11 shows the command to create a project archive called top:

You can overwrite the existing archive file with the -overwrite option.

Restoring Archived Projects
You can restore archived projects with a Tcl command or with a command run at a
command prompt. For more information about restoring archived projects, refer to
“Archiving and Restoring Projects” on page 4–5.

Example 4–12 shows the Tcl command to restore the project archive named
archive.qar in the restored subdirectory and overwrite existing files:

Example 4–13 shows the command to restore a project archive:

Importing and Exporting Version-Compatible Databases
You can import and export version-compatible databases with either a Tcl command
or a command run at a command prompt. For more information about importing and
exporting version-compatible databases, refer to “Exporting and Importing
Version-Compatible Database Files” on page 4–6.

1 The flow and database_manager packages contain commands to manage
version-compatible databases.

Example 4–14 shows the Tcl command to import or export version-compatible
databases from the database_manager package.

Example 4–15 shows the Tcl commands from the flow package to import or export
version-compatible databases. If you use the flow package, you must specify the
database directory variable name.

Example 4–11. Creating a Project Archive Command

quartus_sh --archive top r

Example 4–12. Restoring a Project Archive Command

project_restore archive.qar -destination restored -overwrite r

Example 4–13. Restoring a Project Archive Command

quartus_sh --restore archive.qar r

Example 4–14. Importing and Exporting Version-Compatible Databases Command

export_database <directory> r
import_database <directory> r

Example 4–15. Importing and Exporting Version-Compatible Databases from the flow Package
Command

set_global_assignment -name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 4: Managing Quartus II Projects 4–19
Scripting Support
Example 4–16 shows the Tcl commands to generate version-compatible databases
after every compilation.

Example 4–17 shows the quartus_cdb and the quartus_sh executables to manage
version-compatible databases:

Specifying Libraries Using Scripts
In Tcl, use commands in the ::quartus::project package to specify project libraries.
To specify project libraries, use the set_global_assignment command.

Example 4–18 shows the typical usage of the set_global_assignment command:

To report any project libraries specified for a project and any global libraries specified
for the current installation of the Quartus II software, use the get_global_assignment
and get_user_option Tcl commands.

Example 4–19 shows that the Tcl script outputs the user paths and global libraries for
an open Quartus II project:

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

h For more information about Tcl scripting, refer to the API Functions for Tcl in
Quartus II Help.

Example 4–16. Generating Version-Compatible Databases After Every Compilation Command

set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB ON
set_global_assignment-name VER_COMPATIBLE_DB_DIR <directory>

Example 4–17. quartus_cdb and quartus_sh Executable

quartus_cdb <project> -c <revision>--export_database=<directory> r
quartus_cdb <project> -c <revision> --import_database=<directory>r
quartus_sh –flow export_database <project> -c \ <revision> r
quartus_sh –flow import_database <project> -c \ <revision> r

Example 4–18. Commands to Specify Project Libraries Using the SEARCH_PATH Assignment

set_global_assignment -name SEARCH_PATH "../other_dir/library1"
set_global_assignment -name SEARCH_PATH "../other_dir/library2"
set_global_assignment -name SEARCH_PATH "../other_dir/library3"

Example 4–19. Commands to Report Specified Project Libraries

get_global_assignment -name SEARCH_PATH
get_user_option -name SEARCH_PATH
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

4–20 Chapter 4: Managing Quartus II Projects
Conclusion
Conclusion
Designers often try different settings and versions of their designs throughout the
development process. The Quartus II project revisions facilitate the creation and
management of different assignments and settings. Project archives are useful to save
your results, or pass designs between different members of a team. In addition,
understanding how to migrate your projects from one computing platform to another,
controlling messages, and reducing compilation time are important as well. The
Quartus II software facilitates efficient management of your design to accommodate
today’s sophisticated FPGA designs.

Document Revision History
Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Removed Figure 4–1, Figure 4–6, Table 4–2.

■ Moved “Hiding Messages” to Help. Moved information in “Message Suppression
Manager” on page 4–15 to Help.

■ Removed references about the set_user_option command in “Specifying Libraries
Using Scripts” on page 4–19.

■ Removed Classic Timing Analyzer references.

July 2010 10.0.0

■ Major reorganization done to this chapter.

■ Updated “Working with Messages” on page 4–17. Added a link to Help. Removed
Figure 4–2 on page 4–7, Figure 4–11 on page 23, and Figure 4–12 on page.

■ Updated “Specifying Libraries” on page 4–14 section. Changed “User Libraries” to
“Libraries”. Removed “Reducing Compilation Time” on page 4–26.

■ Added “Managing Projects in a Team-Based Design Environment” on page 4–22 and “File
Association” on page 4–2.

■ Updated Figure 4–1 on page 4–6, Figure 4–2 on page 4–8, Figure 4–6 on page 4–18,
Figure 4–6 on page 4–19, and Figure 4–7 on page 4–21.

November 2009 9.1.0

■ Updated “Creating a New Project” on page 4–4, “Archiving a Project” on page 4–9,
“Restoring an Archived Project” on page 4–11.

■ Added “Quartus II Text Editor” on page 4–2, “Reducing Compilation Time” on page 4–32.

■ Updated Table 4–1 on page 4–10, Table 4–2 on page 4–20.

■ Updated Figure 4–4 on page 4–9, Figure 4–7 on page 4–19.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 4: Managing Quartus II Projects 4–21
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

April 2009 9.0.0 Updated to fix “Document Revision History” for version 9.0.0.

March 2009 9.0.0

■ Updated “Managing Quartus II Projects” on page 4–1, “Creating a New Project” on
page 4–2, “Using Revisions with Your Design” on page 4–3, “Creating and Deleting
Revisions” on page 4–4, “Creating New Copies of Your Design” on page 4–6, “Version-
Compatible Databases” on page 4–11, “Quartus II Project Platform Migration” on
page 4–12, “Filenames and Hierarchies” on page 4–12, “Quartus II Search Path
Precedence Rules” on page 4–15, “Quartus II-Generated Files for Third-Party EDA Tools”
on page 4–15, “Migrating Database Files between Platforms” on page 4–16, “Message
Suppression” on page 4–20, “Quartus II Settings File” on page 4–24, “Quartus II Default
Settings File” on page 4–25, “Managing Revisions” on page 4–26, “Archiving Projects”
on page 4–26 and “Archiving Projects with the Quartus II Archive Project Feature” on
page 4–7, “Importing and Exporting Version-Compatible Databases” on page 4–27,
“Specifying Libraries Using Scripts” on page 4–28, “Conclusion” on page 4–30.

■ Updated Figure 4–1, Figure 4–7, Figure 4–8, and Figure 4–11.

■ Updated Table 4–1 and Table 4–2.

■ Updated Example 4–3, Example 4–4, Example 4–5, and Example 4–6.

Table 4–1. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

4–22 Chapter 4: Managing Quartus II Projects
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

December 2010 Altera Corporation
Section II. I/O and PCB Tools
This section provides an overview of the I/O planning process, Altera FPGA pin
terminology, as well as the various methods for importing, exporting, creating, and
validating pin-related assignments using the Quartus® II software. This section also
describes ways to use the Quartus II software to analyze signal integrity, including
simultaneous switching noise, as well as interfaces with third-party PCB design tools.

This section includes the following chapters:

■ Chapter 5, I/O Management

This chapter provides an overview of the I/O planning process, Altera FPGA pin
terminology, and the various methods for importing, exporting, creating, and
validating pin-related assignments.

■ Chapter 6, Simultaneous Switching Noise (SSN) Analysis and Optimizations

This chapter describes the tools in the Quartus II software that allow you to
estimate the SSN performance of your design both early in the design cycle and
when your PCB is complete.

■ Chapter 7, Signal Integrity Analysis with Third-Party Tools

This chapter is intended for logic designers and board designers, and describes
simulation and how to adjust designs to improve board-level timing and signal
integrity. Also included is information about how to create accurate models of
your design with the Quartus II software for use in simulation software.

■ Chapter 8, Mentor Graphics PCB Design Tools Support

This chapter discusses how the Quartus II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide a
completely cyclical FPGA-to-board integration design workflow.

■ Chapter 9, Cadence PCB Design Tools Support

This chapter addresses how the Quartus II software interacts with the Cadence
Allegro Design Entry HDL software and the Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS)
to provide a complete FPGA-to-board integration design workflow.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

II–2 Section II: I/O and PCB Tools
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52013-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52013-10.0.1
5. I/O Management
The process of managing I/O assignments involves more than fitting design pins into
a package. The increasing complexity of I/O standards and pin placement guidelines
are just some of the factors that influence pin-related assignments. Both I/O
capabilities of the target device and board layout guidelines influence pin location
and other types of assignments. Therefore, it is necessary to begin I/O planning and
PCB development even before starting to design for the target device.

Altera provides many resources for I/O planning. This chapter provides information
on how to make create assignments, how to enter I/O interface information in the Pin
Planner, how to create I/O-based top-level HDL files, how to validate your pin
assignments, and how to generate a valid pin-out file for use with third-party PCB
tools. You can consult the device-specific pin connection guidelines available on the
Altera® website for your board layout. You can also benefit from the Pin Advisors
available in the Quartus® II software.

f For more information about the Altera resources available for I/O planning, refer to
the I/O Management, Board Development Support, and Signal Integrity Analysis
Resource Center of the Altera website.

f For more information about PCB designs for Altera high-speed FPGAs, refer to
AN 315: Guidelines for Designing High-Speed FPGA PCBs, and the Board Design
Resource Center of the Altera website.

This chapter includes the following topics:

■ “Understanding Altera Pin Terminology” on page 5–1

■ “I/O Planning Overview” on page 5–5

■ “Performing Early I/O Planning with the Pin Planner” on page 5–8

■ “Importing and Exporting Pin Assignments” on page 5–12

■ “Creating Pin-Related Assignments” on page 5–13

■ “Validating Pin Assignments” on page 5–23

■ “Performing I/O Timing Analysis” on page 5–32

■ “Incorporating PCB Design Tools” on page 5–37

Understanding Altera Pin Terminology
Altera devices are available in a variety of package types. To describe pin terminology,
this chapter uses a wire bond ball-grid array (BGA) package in its examples. On the
top surface of the silicon die, there is a ring of bond pads that connect to the silicon to
the I/O pins. In a wire bond BGA package, the device is placed in the package and
copper wires connect the bond pads to the solder balls of the package. Figure 5–1
shows a cross section of a wire bond BGA package.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/technology/signal/board-design-guidelines/sgl-bdg-index.html
http://www.altera.com/technology/signal/board-design-guidelines/sgl-bdg-index.html
http://www.altera.com/support/software/io-board/sof-qts-io.html
http://www.altera.com/support/software/io-board/sof-qts-io.html
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52013

5–2 Chapter 5: I/O Management
Understanding Altera Pin Terminology
f For more information about the BGA packages available for each Altera device, refer
to the Altera Device Package Information Data Sheet.

Package Pins
The pins of a BGA package are small solder balls arranged in a grid pattern on the
bottom of the package. In the Quartus II software, the package pins are identified with
pin numbers. The pin numbers are determined by pin locations using a coordinate
system, with letters and numbers identifying the row and column of the pins,
respectively.

Figure 5–2 shows the coordinate system used to identify pin locations. The top row of
pins is labeled A and continues alphabetically as you move down. The left-most
column of pins is labeled 1 and increments by one as you move right. For example,
pin number B4 represents the pin located in row B and column 4. The letters I, O, Q, S,
X, and Z are never used in pin numbers. If the device contains more rows than letters
of the alphabet, the alphabet is repeated, prefixed with the letter A.

f For more information about the pin numbers for your Altera device, refer to the
Pin-Out Files for Altera Devices page of the Altera website.

Figure 5–1. Wire Bond BGA

Solder Ball Layer

Package

Wire Silicon Die Bond Pad

Figure 5–2. Row and Column Labeling

1 2 3 4 5 6 7 ...

...

A
B
C
D
E
F
G

Altera
Device Package

(Top View)

Column

Row
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-dp.jsp
http://www.altera.com/literature/ds/dspkg.pdf

Chapter 5: I/O Management 5–3
Understanding Altera Pin Terminology
Pads
Package pins are connected to pads located on the perimeter of the top metal layer of
the silicon die (refer to Figure 5–1). Figure 5–3 shows the numbering scheme for pads
on the device. Each pad is identified by a pad ID, which is numbered starting at 0, and
increments by one in a counterclockwise direction around the device.

To prevent signal integrity issues, the Quartus II software uses pin placement rules to
validate your pin placements and pin-related assignments. You must understand the
pad locations to which your pins were assigned, because some pin placement rules
describe pad placement restrictions. For example, to ensure signal integrity, in certain
devices there is a restriction on the number of I/O pins supported by a VREF pad.
There are also restrictions on the number of pads between single-ended input or
output pins and a differential pin. The Quartus II software performs pin placement
analysis, and if pins are not placed according to the pin placement rules, the design
compilation fails and the Quartus II software reports an error.

f For more information about pin placement guidelines, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

I/O Banks
I/O pins are organized into I/O banks designed to facilitate various supported I/O
standards. Each I/O bank is numbered and has its own voltage source pins, called
VCCIO pins, to offer the highest I/O performance. Depending on the device and I/O
standards for the pins in the I/O bank, the specified voltage of the VCCIO pin is
between 1.5 V and 3.3 V. Each I/O bank can support multiple pins with different I/O
standards, however the pins must use the same VCCIO signal.

Figure 5–4 shows the I/O banks of a Stratix® II device. The pins in the I/O banks on
the left and right side support high-speed I/O standards such as LVDS, whereas the
pins on the top and bottom I/O banks support all single-ended I/O standards,
including data strobe signaling (DQS). Pins belonging to the same I/O bank must use
the same VCCIO signal.

Figure 5–3. Pad Number Ordering

29 28 27 ...

...

0

1

2

3

Altera
Silicon Die
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html

5–4 Chapter 5: I/O Management
Understanding Altera Pin Terminology
f For more information about the capabilities of each I/O bank, refer to the appropriate
device handbook available on the Literature and Technical Documentation page of the
Altera website.

VREF Groups
A VREF group is a group of pins that includes one dedicated VREF pin as required by
voltage-referenced I/O standards. A VREF group is made up of a small number of
pins, as compared to the I/O bank, to maintain the signal integrity of the VREF pin.
One or more VREF groups exist in an I/O bank. The pins in a VREF group share the
same VCCIO and VREF voltages.

Figure 5–4. Stratix II I/O Banks (Note 1), (2), (3), (4)

Notes to Figure 5–4:

(1) This figure shows a top view of the silicon die that corresponds to a reverse view for flip chip packages.
It is a graphical representation only.

(2) Depending on the size of the device, different device members have a different number of VREF groups. For more
information, refer to the pin list and the Quartus II software for exact locations.

(3) Banks 9 through 12 are enhanced phase-locked loop (PLL) external clock output banks.
(4) Horizontal I/O banks feature serializer/deserializer (SERDES) and dynamic phase alignment (DPA) circuitry for

high-speed differential I/O standards. For more information about differential I/O standards, refer to the High-Speed
Differential I/O Interfaces with DPA in Stratix II and Stratix II GX Devices chapter in volume 2 of the Stratix II Device
Handbook.

Bank 3 Bank 4Bank 11 Bank 9

PLL11 PLL5

PLL7

PLL1

PLL2

PLL4

PLL3

PLL10

I/O banks 3, 4, 9 & 11 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 9 & 11.

I/O banks 7, 8, 10 & 12 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 10 & 12.

I/O banks 1, 2, 5 & 6 support LVTTL, LVCMOS,
2.5-V, 1.8-V, 1.5-V, SSTL-2, SSTL-18 Class I, LVDS,
HyperTransport, differential SSTL-2 and differential
SSTL-18 Class I standards for both input and output

operations. HSTL, SSTL-18 Class II, differential
HSTL and differential SSTL-18 Class II standards are

only supported for input operations.

VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3 VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4

Bank 8 Bank 7Bank 12 Bank 10

PLL12 PLL6

PLL8 PLL9
VREF4B8 VREF3B8 VREF2B8 VREF1B8 VREF0B8 VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7

VR
EF

3B
2

VR
EF

2B
2

VR
EF

1B
2

VR
EF

0B
2

Ba
nk

 2

VR
EF

3B
1

VR
EF

2B
1

VR
EF

1B
1

VR
EF

0B
1

Ba
nk

 1

VR
EF

1B
5

VR
EF

2B
5

VR
EF

3B
5

VR
EF

4B
5

Ba
nk

 5

VR
EF

1B
6

VR
EF

2B
6

VR
EF

3B
6

VR
EF

4B
6

Ba
nk

 6

VR
EF

4B
2

VR
EF

0B
5

VR
EF

4B
1

VR
EF

0B
6

DQS4T DQS3T DQS2T DQS1T DQS0T

DQS4B DQS3B DQS2B DQS1B DQS0BDQS8B DQS7B DQS6B DQS5B

DQS8T DQS7T DQS6T DQS5T

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input
clock operations.
Differential HSTL and
differential SSTL standards
are supported for both input
and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input
clock operations.
Differential HSTL and
differential SSTL standards
are supported for both input
and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/hb/stx2/stx2_sii52005.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52005.pdf

Chapter 5: I/O Management 5–5
I/O Planning Overview
f For more information about I/O banks, VREF groups, and supported I/O standards,
refer to the appropriate device handbook available on the Literature and Technical
Documentation page of the Altera website.

I/O Planning Overview
The most important step in I/O planning is to create, modify, complete, and validate
pin-related assignments. The Quartus II software includes the Pin Planner and the
I/O assignment analysis feature to assist you in I/O planning. The method you use to
create I/O assignments depends on your design requirements. Figure 5–5 shows the
recommended design flow for creating I/O assignments for a design. I/O planning
for your design in the Quartus II software can include the following tasks:

■ Selecting a device that meets your logic and I/O requirements, based on the
supported I/O standards for the device, I/O bank structure, supply voltage
requirements such as VREF and VCCIO requirements in I/O banks, available pins for
user I/O, power supply requirements, and other design requirements.

■ Preparing your design files. Design files contain the top-level ports or top-level
interface information; if you do not have the design files, you can use the Early
I/O Planning flow (refer to Figure 5–5) to generate a top-level HDL wrapper file.

■ Importing any existing assignments from a Tcl Script File (.tcl), Comma-Separated
Value File (.csv), or Quartus II Settings File (.qsf).

■ Creating, modifying, and completing all pin-related assignments, including pin
location assignments, I/O standard assignments, output loading assignments for
output and bidirectional pins, slew rate assignments, current strength
assignments.

■ Validating your pin-related assignments. You can perform preliminary I/O
assignment validation while creating the assignments with the live I/O check
feature; you can perform a more a thorough validation with the I/O assignment
analysis feature; and finally you can perform complete I/O assignment validation
by running the Fitter with timing constraints.

■ Generating a validated Pin-Out File (.pin) for third-party PCB tools.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html

5–6 Chapter 5: I/O Management
I/O Planning Overview
Figure 5–5. Quartus II Software I/O Planning Flow

Notes to Figure 5–5:

(1) Use the live I/O check feature in the Pin Planner to validate pin assignments as you create them.
(2) To create the FPGA Xchange file (.fx), on the Processing menu, point to Start and click EDA Netlist Writer. The .pin is created at the <project_dir>

level. The .fx is created at the <project_dir/board/.../> level.
(3) You must complete your design files and constraints before you begin full compilation. To learn how to create I/O timing constraints, refer to The

Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.
(4) For more information, refer to the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Pin-Out File

.pin

Run I/O Assignment Analysis

Import Pin
Assignment

Create Quartus II Project, Select Device,
and Perform Analysis & Synthesis

Create and Modify Pin-Related Assignments

Early I/O Planning

Validate
Assignments?

Run Full
Compilation?

Yes

Yes

No No (2)

No No

No

PCB Tool

Pin Planner
(Recommended)

 (1)

Tcl Floorplan
Editor

Pin Assignments
Fully Validated

Run full compilation
(Fitter) with I/O Timing

constraints to verify
I/O Timing (3)

Perform Timing
Optimization (4)

.fx

Design Files (if Available)

In Pin Planner, Create, Import, or
Edit Megafunctions or

IP MegaCores

Analyze, Synthesize,
and Merge Partitions

Configure Megafunction or
IP MegaCore Nodes
and/or User Nodes

Create Top-Level Design File

Assignment
Editor

Early I/O
Planning

Flow?

No

Import
Assignments?

Use Import menu
to import .qsf, .tcl,

and .csv files

Yes

Yes

Yes

Timing
Passed?

Yes

Change Pin
Assignments?

Yes
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 5: I/O Management 5–7
I/O Planning Overview
Selecting a Device
Before you begin I/O planning or I/O assignment analysis you must first select a
device family that has an appropriate I/O structure, supports the correct I/O
standards, has enough available pins for user I/O, supports the correct clocking
schemes and options, and has an appropriate I/O bank structure for your design.
Then, you must choose an appropriate device from a supported device family for
your design.

f For more information, refer to the various device handbooks available on the
Literature and Technical Documentation page of the Altera website.

h For more information about selecting a device in the Quartus II software, refer to
Setting Up and Running a Compilation in Quartus II Help.

Working with Third-Party PCB Tools
If you have not designed your PCB, the recommended I/O planning flow (refer to
Figure 5–5) indicates that you should first create and validate your I/O assignments
in the Quartus II software, and then export them to the PCB tool. If your PCB is
partially designed, Figure 5–6 shows the recommend I/O planning flow to ensure
that your pin assignments are valid. First, you create your device assignments in your
PCB tool and then import them into the Quartus II software for validation.

1 Currently, only the Mentor Graphics® I/O Designer PCB tool and the Cadence
Allegro PCB tool are supported in this reverse I/O planning flow.

Figure 5–6. I/O Planning Flow Using an FPGA Xchange File from a PCB Tool

Create &
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Altera
Quartus II Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://www.altera.com/literature/lit-index.html

5–8 Chapter 5: I/O Management
Performing Early I/O Planning with the Pin Planner
Performing Early I/O Planning with the Pin Planner
In design planning, typically you create design elements in an HDL such as Verilog
HDL or VHDL, or in a schematic editor such as the Quartus II Block Editor. Central to
the design is a top-level file that instantiates the next level of hierarchy and includes
port names and their direction. Example 5–1 shows a top-level file, written in Verilog
HDL, that lists the input and output ports in a design.

Top-level design files often contain interfaces for memory, high-speed I/O, device
configuration, and debugging tools. Listing the ports in an HDL or drawing them in
the schematic can be extremely time-consuming. To reduce the time spent in creating
top-level design files, you can use the Pin Planner to create a top-level design file if the
design files for your entire project are not available or are incomplete. The interfaces
between your target device and other devices are determined and documented in
design specifications. By adding the interfaces required to connect your target device
and other devices in your design directly in the Pin Planner, you can plan your I/O
assignments efficiently without design files, and generate a top-level module in
Verilog HDL or VHDL. By importing or creating MegaCore® functions or Altera
megafunctions in the Pin Planner, as well as creating or adding additional top-level
I/O information, the generated top-level design file accurately anticipates the rest of
the HDL to come.

The following sections describe the typical steps of the early I/O planning flow:

■ “Instantiating or Importing IP Cores in the Pin Planner”

■ “Adding and Connecting Nodes” on page 5–9

■ “Setting Up and Creating the Top-Level Design File” on page 5–10

Example 5–1. Top-Level Design File

module top (clk_in,
 rst,

 a,
 z,
 b,
 c_in,
 d,
 e);

input clk_in;
input rst_;
input a;
input z;
input [7:0] b;
input [7:0] c_in;
input [7:0] d;
output reg [7:0] e;

/* Instantiations of sub blocks */

endmodule
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 5: I/O Management 5–9
Performing Early I/O Planning with the Pin Planner
Instantiating or Importing IP Cores in the Pin Planner
You can use the MegaWizard™ Plug-In Manager from the Pin Planner to instantiate or
import custom IP cores to assist you in I/O planning. Adding interface information
directly in the Pin Planner allows you to assign required pins without manually
creating each pin individually.

You can create complex interfaces from the Pin Planner. Figure 5–7 shows the
megafunctions ddio_in and ddio_out in the schematic created by invoking the
MegaWizard Plug-In Manager from the Pin Planner. The ports shown in gray are
ports specified as internal ports, which are connected later in the design.

h For more information about creating or customizing IP cores with the Pin Planner,
refer to Managing Pins and Groups in the Pin Planner and Create/Import Megafunction
Dialog Box in Quartus II Help.

Adding and Connecting Nodes
After you instantiate an IP core in your design, you can set up the user nodes in the
design and customize information such as port direction and type in the Set Up
Top-Level File window. Before you create a top-level design file, you must connect
the user nodes and ports to each other and to the rest of the design. You also can add
new nodes to the design in the Set Up Top-Level File window.

The IP core nodes you specify as internal nodes in the Set Up Top-Level Design File
dialog box are declared as virtual pins when you generate the top-level design file.
The Pin Planner makes virtual pin assignments to internal nodes so that internal
nodes are not assigned to device pins during compilation. These virtual pins are not
shown in the All Pins list or Groups list in the Pin Planner because they are not actual
external ports of the design. Any new nodes you add to the design in the Set Up
Top-Level Design File dialog box are declared as ports in the top-level design file and
are shown in the All Pins list and Groups list.

Figure 5–7. Connections between Input and Output Megafunctions and User Nodes

ddio
input

ddio
output

power up
low

power up
low

ddio_out

ddio_in

inst7

inst8

INPUTinput_data[7:0]

INPUTclk

INPUTddio_out_data_h[7..0]

INPUTddio_out_data_I[7..0]

INPUTreset

OUTPUT

OUTPUT

ddio_in_data_h[7..0]

ddio_in_data_I[7..0]

OUTPUT
 output_dataout[7:0]

datain[7..0]

inclock

aclr

datain_h[7..0]

datain_i[7..0]

outclock

aclr

dataout_h[7..0]

dataout_i[7..0]

dataout[7..0]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_manage.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_create_mega.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_create_mega.htm

5–10 Chapter 5: I/O Management
Performing Early I/O Planning with the Pin Planner
Figure 5–8 shows how to make the user node connection between the reset signal and
the megafunction reset input port shown in Figure 5–7.

h For more information about connecting nodes from IP cores, refer to Generating a
Top-Level Design File Based on Pin Planner Megafunctions and User Nodes in Quartus II
Help.

Setting Up and Creating the Top-Level Design File
You can create a top-level design file after you create pin connections and add or
modify user nodes and IP core nodes with the Pin Planner. If the internal logic is
incomplete, generating the top-level design file allows you to validate your I/O
assignments and provides a basis on which to build the rest of your design.

1 You must update the top-level design file whenever you change the top-level ports of
the design, including any node changes made in the Set Up Top-Level Design File
window.

Figure 5–8. Connecting a User Node to a Megafunction Port
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_generate_toplevel_file.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_generate_toplevel_file.htm

Chapter 5: I/O Management 5–11
Performing Early I/O Planning with the Pin Planner
Example 5–2 shows a sample of a top-level HDL wrapper file representing the design
in Figure 5–7.

h For more information about generating a top-level design file, refer to Generating a
Top-Level Design File Based on Pin Planner Megafunctions and User Nodes in Quartus II
Help.

After you generate the top-level design file and compile the design, use I/O
assignment analysis as described in “Validating Pin Assignments with I/O
Assignment Analysis” on page 5–25 and continue with your design flow by
modifying or creating pin assignments with the Pin Planner.

Example 5–2. HDL Wrapper File Generated with the Early I/O Planning Flow

module top
(

reset,
input_data,
clk,
output_data,
ddio_in_dataout_h, // Internal
ddio_in_dataout_l, // Internal
ddio_out_datain_h, // Internal
ddio_out_datain_l // Internal

);

input reset;
input[7:0]input_data;
input clk;
output[7:0]output_data;

output[7:0]ddio_in_dataout_h /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
output[7:0]ddio_in_dataout_l /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
input[7:0]ddio_out_datain_h /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;
input[7:0]ddio_out_datain_l /* synthesis altera_attribute="-name VIRTUAL_PIN ON" */;

ddio_in ddio_in_inst
(

.aclr(reset),

.datain(input_data),

.inclock(clk),

.dataout_h(ddio_in_dataout_h),

.dataout_l(ddio_in_dataout_l)
);

ddio_out ddio_out_inst
(

.aclr(reset),

.datain_h(ddio_out_datain_h),

.datain_l(ddio_out_datain_l),

.outclock(clk),

.dataout(output_data)
);

endmodule
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_create_toplevel_file.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_create_toplevel_file.htm

5–12 Chapter 5: I/O Management
Importing and Exporting Pin Assignments
Importing and Exporting Pin Assignments
If you have existing pin assignments in the file formats .tcl, .csv, .qsf, .fx, or .pin from
a different Quartus II project or from third-party PCB tools, you can transfer these
assignments between the Quartus II software and other tools.

Importing and Exporting Assignments with the Quartus II Software
You can import and export pin-related assignments contained in .tcl, .csv, and .qsf
files with the Quartus II software. You can import assignments from .tcl, .csv, and .qsf
files and then view and change the assignments in the Pin Planner.

When you create pin assignments with the Pin Planner all your pin-related
assignments are written to the .qsf as Tcl commands. You can import and export .qsf
files between projects to transfer all assignments, including pin assignments.

h For more information, refer to Importing and Exporting Assignments in Quartus II Help.

f For more information about .qsf files, refer to the Managing Quartus II Projects chapter
in volume 2 of the Quartus II Handbook.

When you export pin assignments from the Pin Planner as a .csv, the row and column
headings in the exported file is in the same order and format as the columns displayed
in the All Pins list in the Pin Planner. Do not modify the row of column headings if
you plan to import the .csv file later.

When you export pin assignments as Tcl commands in a .tcl, you create a script you
can later run to add the assignments as part of a scripted compilation flow.

h For more information about importing and exporting pin assignments as .tcl and .csv
files, refer to Assigning Pins in Quartus II Help.

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook.

Importing and Exporting Assignments with Third-Party PCB Tools
After creating and validating your pin assignments, you can export device and
pin-related information from the Quartus II software to third-party PCB tools for
board development. You must generate a .pin with the Quartus II software to export
the correct pin locations and other important pin information.

The device .pin files display the pin name and pin number as well as detailed
properties about each pin. Table 5–1 describes the columns in a .pin.

Table 5–1. .pin Header Description (Part 1 of 2)

Column Name Description

Pin Name/Usage The name of the design pin, or whether the pin is GND or VCC pin

Location The pin number of the location on the device package

Dir The direction of the pin
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_logiclock_import.htm
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

Chapter 5: I/O Management 5–13
Creating Pin-Related Assignments
f For more information, refer to the Pin-Out Files for Altera Devices page of the Altera
website.

To transfer device and pin-related information between the Quartus II software and
the Mentor Graphics I/O Designer software you must generate an .fx. Importing
assignments into the I/O Designer software requires both the .fx and a .pin generated
by the Quartus II software. However, the Quartus II software requires only the .fx to
import pin assignments back from the I/O Designer software.

h For more information, refer to Importing and Exporting Assignments in Quartus II Help.

f For more information about the I/O Designer software and the DxDesigner interface,
refer to the Mentor Graphics PCB Tools Support chapter in volume 2 of the Quartus II
Handbook.

Creating Pin-Related Assignments
A pin-related assignment is any assignment applied to a top-level pin. For example, a
pin location assignment assigns a top-level port or node to a pin number (location) on
the targeted device. Other examples of pin-related assignments include assigning an
I/O standard, assigning drive strength, or assigning a slew rate to a pin.

When making pin assignments, if you do not have complete information for all the
top-level pins, you can reserve certain device pins to temporarily represent your
top-level design I/O pins until the I/O pins are defined in your design files. Reserved
pins are pins you intend to use in the future, but do not currently perform a function
in your design. Reserved pins require a unique pin name and pin location. Using
reserved pins as place holders for future design pins increases the accuracy of
I/O assignment analysis.

h For more information about reserving pins with the Pin Planner, refer to Assigning
Pins in Quartus II Help.

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to the pin

I/O Bank The I/O bank to which the pin belongs

User Assignment Y or N indicating if the location assignment for the design pin was user
assigned (Y) or assigned by the Fitter (N)

Table 5–1. .pin Header Description (Part 2 of 2)

Column Name Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_logiclock_import.htm
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/lit-dp.jsp
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

5–14 Chapter 5: I/O Management
Creating Pin Assignments With the Pin Planner
Table 5–2 describes the tools and features in the Quartus II software for creating
reserved pins and other pin-related assignments. Each tool and feature is described in
more detail in the following sections. Altera recommends that you use the Pin Planner
to create and edit pin-related assignments; however, depending on your design flow,
you may find some of the other tools useful for working with pin-related
assignments.

Creating Pin Assignments With the Pin Planner
During I/O planning, it can be cumbersome to try to correlate pin numbers with their
relative location on the package and their pin properties. The Pin Planner (refer to
Figure 5–9) is an interface for creating and editing pin-related assignments. The Pin
Planner provides an intuitive graphical representation of the target device to make it
easy to plan your I/Os, create reserved pins, and create pin location assignments.
With the Pin Planner, you can identify I/O banks, VREF groups, and differential pin
pairings to help you through the I/O planning process. When deciding on a pin
location, use the Pin Planner to gather information about available resources, as well
as the functionality of each individual pin, I/O bank, and VREF group.

Table 5–2. Overview of Quartus II Tools and Features to Create Pin-Related Assignments

Feature Overview

Pin Planner

■ Create pin location assignments to one or more node names by dragging and dropping unassigned
pins into the package view

■ Edit pin location assignments for one or more node names by dragging and dropping groups of pins
in the package view

■ Visually analyze pin resources in the package view

■ Display I/O banks, VREF groups, and differential pin pairs

■ View the function of package pins with the Pin Legend window

■ Make correct pin location decisions by referring to the Pad View window

■ Create, import, and edit IP cores for early I/O planning

■ Generate a top-level wrapper file without design files based on early I/O assignments

■ Configure board trace model assignments, instead of capacitive loading assignments, to generate
Advanced I/O Timing results

Tcl Scripts

■ Create any pin-related assignments for multiple pins

■ Store and reapply all pin-related assignments with Tcl scripts

■ Create assignments from the command line

Chip Planner

■ Create and change pin locations by dragging and dropping pins into the floorplan

■ Make correct pin location decisions by referring to the pad ID number and spacing

■ Display I/O banks, VREF groups, and differential pin pairing information

Synthesis
Attributes

■ Embed pin-related assignments with attributes in the design files to pass assignments to the
Quartus II software
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 5: I/O Management 5–15
Creating Pin Assignments With the Pin Planner
h For more information about the Pin Planner, refer to About the Pin Planner in
Quartus II Help. For more information about creating pin assignments with the Pin
Planner, refer to Assigning Pins in Quartus II Help.

Finding Compatible Pin Locations with the Pin Finder
As device pin-counts and I/O capabilities continue to increase, it becomes more
difficult to understand the capabilities of each I/O pin and to correctly assign your
design I/Os. As you edit pin assignments to help your design fit or to achieve timing
goals, you can use the tools in the Pin Planner to help you find appropriate pin
locations for your design I/O nodes.

h For more information, refer to Managing Pins and Groups in the Pin Planner in
Quartus II Help.

Verifying Pin Migration Compatibility
You can use the Pin Migration View window in Pin Planner to assist you in verifying
whether your pin assignments migrate to a different device successfully. You can
vertically migrate to a device with a different density while using the same device
package, or migrate between packages with different densities and ball counts.

Figure 5–9. Pin Planner

All Pins List

Groups List Package View
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_view_pin_plan.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_manage.htm

5–16 Chapter 5: I/O Management
Creating Pin Assignments With the Pin Planner
h For more information, refer to Viewing Pin Migration Compatibility in Quartus II Help.

When you select migration devices early in the design process, the Pin Planner
displays only the pins that are available in the current device and in all migration
devices. If you select migration devices later in your design cycle, there may be
assignments for I/O nodes in your original design that do not have corresponding
pins in a migration device. If no corresponding pin exists, the Compiler cannot honor
the assignment and an error occurs when you try to recompile the design.

The Pin Migration View window helps you identify the difference in pins that can
exist between migration devices. For example, Figure 5–10 shows the highlighted pin
AC24 existed in the target EP2S30 device, but does not exist in one of the migration
devices, resulting in a No Connect (NC).

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a
voltage reference VREFB1N2 even though the pin is an NC in one of the migration
devices. VREF standards have a higher priority than an NC, thus the migration result
display the voltage reference. Even if you do not use that pin for a port connection in
your design, you must use the VREF standard for I/O standards that require it on the
actual board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and
these same pins are I/O pins on a different device in the migration path, the
Quartus II software ensures these pins are not used for I/O. Ensure that these pins are
connected to the correct PCB plane.

Figure 5–10. Pin Migration View
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_migration_compatibility.htm

Chapter 5: I/O Management 5–17
Creating Pin Assignments With the Pin Planner
When migrating between two devices in the same package, pins that are not
connected to the smaller die may be intended to connect to VCC or GND on the larger
die. To facilitate migration, you can connect these pins to VCC or GND in your original
design because the pins are not physically connected to the smaller die.

f For more information about migration, refer to AN90: SameFrame Pin-Out Design for
FineLine BGA Packages. For more information about designing for HardCopy series
devices, refer to the Quartus II Support for HardCopy Series Devices chapter in volume 1
of the Quartus II Handbook.

Viewing Simultaneous Switching Noise (SSN) Results
You can perform and SSN analysis of your design to estimate the voltage noise for
each pin in the design. You can view the SSN results in the Pin Planner and adjust
your I/O assignments to avoid potential signal integrity issues.

h For more information about running the SSN Analyzer and viewing the results in the
Pin Planner, refer to Running the SSN Analyzer in Quartus II Help.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimization chapter in volume 2 of the Quartus II Handbook.

Creating Location Assignments
You can create the following types of location assignments for your design and its
reserved pins:

■ Pin number

■ I/O bank

■ VREF group

■ Edge

h For more information about device support for I/O bank, VREF group, and edge
location assignments, refer to I/O bank, VREF group, and edge in Quartus II Help.

You can assign your pins to a location with the Pin Planner. It is common to place a
group of pins (or bus) with compatible I/O standards in the same I/O bank or VREF
group. For example, two buses with two compatible I/O standards, such as 2.5-V and
SSTL-II Class I, can be placed in the same I/O bank.

If your design contains a large bus that exceeds the pins available in a particular I/O
bank, you can use edge location assignments to place the bus. Edge location
assignments improve the circuit board routing ability of large buses, because they are
close together near an edge. Figure 5–11 shows Altera device package edges.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_io_bank.htm
http://www.altera.com/literature/an/an090.pdf
http://www.altera.com/literature/an/an090.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_vref_group.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_edge.htm

5–18 Chapter 5: I/O Management
Creating Pin Assignments With the Pin Planner
h For more information about creating pin assignments with the Pin Planner, refer to
Assigning Pins in Quartus II Help.

Creating Exclusive I/O Group Assignments
You can create exclusive groups comprised of pins by creating and modifying the
Exclusive I/O Group logic option with the Pin Planner. When you create exclusive
I/O groups in your design and use the Quartus II software to map the signals onto
device pins, the Fitter does not place the I/O pins belonging to one exclusive group in
an I/O bank if the pins belong to another exclusive I/O group. To understand this,
consider an example in which you have a set of signals assigned exclusively to a
group called group_a, and another set of signals assigned to group_b. In both
exclusive groups you have pins with different I/O standards. When you create these
groups, the Quartus II software maps the pins of both groups in such a way that they
are placed in different I/O banks.

h For more information about creating logic option assignments with the Pin Planner,
refer to Assigning Pins in Quartus II Help.

Changing the Slew Rate and Drive Strength
As part of I/O planning you can set both the slew rate and drive strength of pins. Both
slew rate and drive strength affect the outgoing signal integrity of the pin. Depending
on your target device family, you can adjust the slew rate of a pin with either the Slew
Rate or Slow Slew Rate logic option; you can adjust the drive strength of a pin with
the Current Strength logic option. The settings you create for slew rate and drive
strength are honored during live I/O check, I/O assignment analysis, and full
compilation.

f For more information about slew rate support, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

h For more information about creating logic option assignments with the Pin Planner,
refer to Assigning Pins in Quartus II Help.

Figure 5–11. Die View and Package View of the Four Edges on an Altera Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

Chapter 5: I/O Management 5–19
Creating Pin Assignments With the Pin Planner
If you want to make changes to slew rate or drive strength after you compile your
design, you can use the Resource Property Editor to perform engineering change
orders (ECOs). ECOs allow you to compile the changes to your design, without
changing the synthesis or fitting results.

h For more information about making post-compilation changes, refer to About
Post-Compilation Changes in Quartus II Help.

f For more information about ECOs, refer to the Engineering Change Management with
the Chip Planner chapter in volume 2 of the Quartus II Handbook. For more information
about the effect of I/O settings on signal integrity on the board, refer to AN 476: Impact
of I/O Settings on Signal Integrity in Stratix III Devices.

Assigning Locations for Differential Pins
When you use the Pin Planner to assign a differential I/O standard to a single-ended
top-level pin in your design, it automatically recognizes the negative pin as part of the
differential pin pair assignment and creates the negative pin for you. The Quartus II
software writes the location assignment for the negative pin to the .qsf file; however,
the I/O standard assignment is not added to the .qsf file for the negative pin of the
differential pair.

For example, Figure 5–12 shows a design in which you have a top-level pin defined as
lvds_in to which you assign a differential I/O standard. The Pin Planner
automatically creates the differential pin, lvds_in(n), to complete the differential pin
pair.

1 If you have a single-ended clock that feeds a PLL, assign the pin only to the positive
clock pin of a differential pair in the target device. Single-ended pins that feed a PLL
and are assigned to the negative clock pin device cause the design to not fit.

h For more information about identifying and assigning differential pins with the Pin
Planner, refer to Assigning Pins in Quartus II Help.

For more information about assigning locations for differential pins in HDL code with
low-level I/O primitives, refer to“Creating Pin Assignments with Low-Level I/O
Primitives” on page 5–22.

Figure 5–12. Creating a Differential Pin Pair in the Pin Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_intro_top_level_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_intro_top_level_intro.htm
http://www.altera.com/literature/an/AN476.pdf
http://www.altera.com/literature/an/AN476.pdf

5–20 Chapter 5: I/O Management
Creating Pin Assignments with the Chip Planner
Creating Pin Assignments with the Chip Planner
The floorplan of the device shows the pins in the same order as the pads of the device.
Understanding the relative distance between a pad and related logic can help you
meet your timing requirements. You can view the floorplan of the device in the Chip
Planner and determine the distances between user I/O pads and VCC, GND, and VREF
pads to avoid signal integrity issues.

h For more information about creating pin location assignments in the Chip Planner,
refer to Working with Assignments in the Chip Planner in Quartus II Help.

f For more information about pin placement guidelines, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Creating Pin Assignments with Tcl Scripts
You can use Tcl scripts to create pin-related assignments as part of a script-based
compilation flow. You can enter individual Tcl commands in the Tcl Console window
of the Quartus II software. To run a Tcl script with the Quartus II software, type the
following command at a system prompt:

quartus_sh -t my_tcl_script.tcl r
Example 5–3 shows the set_location_assignment and set_instance_assignment Tcl
commands used to create pin-related assignments to the input pin address[10].

h For more information about creating and running Tcl scripts with the Quartus II
software, refer to Creating and Running Tcl Scripts in Quartus II Help.

f For more information about using Tcl scripts to create pin-related assignments, refer
to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook and and API
Functions for Tcl in Quartus II Help.

Creating Pin Assignments in HDL Code
You can use synthesis attributes or low-level I/O primitives to embed pin-related
assignments directly in your HDL code. When you analyze and synthesize your HDL
code, the information in the HDL code is converted into the appropriate assignments.
There are two ways to specify pin-related assignments with HDL code:

■ Using synthesis attributes for signal names that are top-level pins

■ Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output,
and differential buffers, and for setting parameters or attributes

Example 5–3. Tcl Commands to Create Pin-Related Assignments

set_location_assignment PIN M20 -to address[10] -comment"Address pin to Second FPGA"
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_assignments.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_about_creating_tcl_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

Chapter 5: I/O Management 5–21
Creating Pin Assignments in HDL Code
Synthesis Attributes
Synthesis attributes allow you to embed pin-related assignments in your HDL code.
During Analysis and Synthesis, the Quartus II software reads these synthesis
attributes and translates them into assignments. The assignments are then populated
in the Pin Planner. If you modify or delete these pin assignments in the Pin Planner
and then recompile your design, any changes made in the Pin Planner take
precedence over the assignments you made with synthesis attributes in your HDL
code. Quartus II integrated synthesis supports the chip_pin, useioff, and
altera_attribute synthesis attributes.

f For more information about integrated synthesis, synthesis attributes, and syntax,
refer to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more information about synthesis attributes supported by third-party
synthesis tools, contact your vendor.

chip_pin and useioff
Use the chip_pin and useioff synthesis attributes to create pin location assignments
and to create Fast Input Register, Fast Output Register, and Fast Output Enable
Register logic option assignments, respectively, in your HDL code. For all other
assignments, including pin-related assignments, use the altera_attribute synthesis
attribute as discussed in the “altera_attribute” section.

h For more information, refer to useioff VHDL Synthesis Attribute, useioff Verilog HDL
Synthesis Attribute, chip_pin VHDL Synthesis Attribute, and chip_pin Verilog HDL
Synthesis Attribute in Quartus II Help.

Example 5–4 and Example 5–5 use the chip_pin and useioff attributes to embed
location and Fast Input Register logic option assignments in both a Verilog HDL and
VHDL design file using the synthesis attributes.

Example 5–4. Verilog HDL Example

input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

Example 5–5. VHDL Example

entity my_entity is
port(

my_pin1: in std_logic
);

end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vhdl/vhdl_file_dir_use.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir_use.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir_use.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vhdl/vhdl_file_dir_chip.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir_chip.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir_chip.htm

5–22 Chapter 5: I/O Management
Creating Pin Assignments in HDL Code
altera_attribute
Use the altera_attribute synthesis attribute to create other pin-related assignments
in your HDL code. The altera_attribute attribute is understood only by Quartus II
integrated synthesis and supports all types of instance assignments.

h For more information, refer to altera_attribute VHDL Synthesis Attribute, and
altera_attribute Verilog HDL Synthesis Attribute in Quartus II Help.

Example 5–6 and Example 5–7 use the altera_attribute attribute to embed Fast
Input Register logic option assignments and I/O standard assignments in both a
Verilog HDL and a VHDL design file.

Creating Pin Assignments with Low-Level I/O Primitives
You can create pin-related assignments for your top-level nodes using low-level I/O
primitives, which allow you to create pin location assignments and set I/O standards,
drive strengths, slew rates, and on-chip termination (OCT) value assignments. You
can also use low-level differential I/O primitives to define both positive and negative
pins of a differential pair in the HDL code for your design.

The pin-related assignments made with primitives do not automatically appear in the
Pin Planner. When you use low-level I/O primitives to define various pin-related I/O
assignments, the assignments are honored only after you perform a full compilation.
After performing a full compilation, you can populate these assignments in the Pin
Planner by back-annotating pin assignments.

h For more information about back-annotating assignments, refer to Back-Annotating
Assignments for A Project in Quartus II Help. For more information about differential
I/O primitives, refer to Primitives in Quartus II Help.

f For more information about using low-level I/O primitives in your design, refer to
the Designing with Low-Level Primitives User Guide.

Example 5–6. Verilog HDL Example

input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER ON; -name
IO_STANDARD \"2.5 V\" " */ ;

Example 5–7. VHDL Example

entity my_entity is
port(

my_pin1: in std_logic
);

end my_entity;
architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER ON;
-- The architecture body
end rtl;
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/prim/prim_list.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://www.altera.com/literature/ug/ug_low_level.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vhdl/vhdl_file_dir_attribute.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/vlog/vlog_file_dir_attribute.htm

Chapter 5: I/O Management 5–23
Validating Pin Assignments
Validating Pin Assignments
The Quartus II software includes predefined I/O rules to guide you in pin placement
and checks your pin-related assignments against these rules during pin planning. You
must validate all pin-related assignments in your design. During a full compilation,
the Quartus II software does not report illegal pin assignments until the Fitter stage.
To preliminarily validate pin-related assignments against the predefined I/O rules,
you can use the live I/O check feature or run I/O assignment analysis after
performing analysis and synthesis. Typically, the I/O assignment analysis completes
quickly. By preliminarily validating your pin-related assignments before fully
compiling your design, you can avoid recompiling your design to fix pin-related
assignment errors, thus reducing your overall design time. To fully validate
pin-related assignments against all I/O timing checks, you must perform a full
compilation.

Table 5–3 and Table 5–4 list a subset of the I/O rule checks performed when you run
I/O assignment analysis.

f For more information about each I/O rule, including which devices support which
rules, refer to the device handbooks available on the Literature and Technical
Documentation page of the Altera website.

Table 5–3. Examples of I/O Rule Checks (Part 1 of 2)

Rule Description HDL
Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank against the number of pins
allowed in the I/O bank. No

I/O bank VCCIO voltage
compatibility

Checks that no more than one VCCIO is required for the pins assigned to the I/O
bank. No

I/O bank VREF voltage
compatibility

Checks that no more than one VREF is required for the pins assigned to the I/O
bank. No

I/O standard and location
conflicts Checks whether the pin location supports the assigned I/O standard. No

I/O standard and signal
direction conflicts

Checks whether the pin location supports the assigned I/O standard and
direction. For example, certain I/O standards on a particular pin location can
only support output pins.

No

Differential I/O standards
cannot have open drain
turned on

Checks that open drain is turned off for all pins with a differential I/O standard. No

I/O standard and drive
strength conflicts

Checks whether the drive strength assignments are within the specifications of
the I/O standard. No

Drive strength and location
conflicts Checks whether the pin location supports the assigned drive strength. No

BUSHOLD and location
conflicts

Checks whether the pin location supports BUSHOLD. For example, dedicated
clock pins do not support BUSHOLD. No

WEAK_PULLUP and location
conflicts

Checks whether the pin location supports WEAK_PULLUP (for example,
dedicated clock pins do not support WEAK_PULLUP) No

Electromigration check
Checks whether combined drive strength of consecutive pads exceeds a
certain limit. For example, the total current drive for 10 consecutive pads on a
Stratix II device cannot exceed 200 mA.

No
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html

5–24 Chapter 5: I/O Management
Validating Pin Assignments
Validating Pin Assignments with the Live I/O Check Feature
The live I/O check feature provides live I/O rule checking capability to prevent you
from creating pin placements that violate I/O fitting rules. When the live I/O check
feature is turned on, pin-related assignment error and warning messages appear
immediately in the Quartus II Messages window as you create pin-related
assignments in the Pin Planner. This feature enhances your productivity by showing
you warnings and errors as you create pin-related assignments so you can
immediately correct basic errors before you proceed to the next step in your design
flow.

The most basic I/O rules are the I/O buffer rules. The I/O buffer rules checked by the
live I/O check feature include:

■ VCCIO and VREF voltage compatibility rules

■ Electromigration (current density) rules

■ Simultaneous Switching Output (SSO) rules

PCI_IO clamp diode,
location, and I/O standard
conflicts

Checks whether the pin location along with the I/O standard assigned supports
PCI_IO clamp diode. No

SERDES and I/O pin location
compatibility check

Checks that all pins connected to a SERDES in your design are assigned to
dedicated SERDES pin locations. Yes

PLL and I/O pin location
compatibility check

Checks whether pins connected to a PLL are assigned to the dedicated PLL pin
locations. Yes

Table 5–3. Examples of I/O Rule Checks (Part 2 of 2)

Rule Description HDL
Required?

Table 5–4. SSN-Related Rules

Rule Description HDL
Required?

I/O bank can not have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in the same I/O bank
as a DPA. No

A PLL I/O bank does not support both a
single-ended I/O and a differential signal
simultaneously

Checks that there are no single-ended I/O pins present in the
PLL I/O Bank when a differential signal exists. No

Single-ended output is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended output pins are a certain distance
away from a differential I/O pin. No

Single-ended output has to be a certain
distance away from a VREF pad

Checks whether single-ended output pins are a certain distance
away from a VREF pad. No

Single-ended input is required to be a
certain distance away from a differential
I/O pin

Checks whether single-ended input pins are a certain distance
away from a differential I/O pin. No

Too many outputs or bidirectional pins in a
VREFGROUP when a VREF is used

Checks that there are no more than a certain number of outputs
or bidirectional pins in a VREFGROUP when a VREF is used. No

Too many outputs in a VREFGROUP Checks whether too many outputs are in a VREFGROUP. No
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 5: I/O Management 5–25
Validating Pin Assignments
■ I/O property compatibility rules, such as drive strength compatibility, I/O
standard compatibility, PCI_IO clamp diode compatibility, and I/O direction
compatibility

When the live I/O check feature is turned on, the Quartus II software prevents you
from assigning pins to unavailable locations. The following are examples of
unassignable locations:

■ An I/O bank or VREF group with no available pins

■ The negative pin of a differential pair if the positive pin of the differential pair is
assigned with a node name with a differential I/O standard

■ Pin locations that do not support the I/O standard assigned to the selected node
name

■ For HSTL- and SSTL-type I/O standards, VREF groups of a different VREF voltage
than the selected node name

You can turn on or turn off the live I/O check feature at any time. By default, the live
I/O check feature is turned off. When the live I/O check feature is turned on, the
Quartus II software immediately checks whether your new pin-related assignments
pass the basic I/O buffer rules. The Live I/O Check Status window displays the total
numbers of errors and warnings while you create and edit pin-related assignments.
The Messages window shows detailed messages about any errors or warnings.

Although the live I/O check feature checks all the basic I/O buffer rules, you must
run I/O assignment analysis to validate your pin-related assignments against the
complete set of I/O system rules.

h For more information about using the live I/O check feature to validate pin
assignments, refer to Assigning Pins in Quartus II Help.

Validating Pin Assignments with I/O Assignment Analysis
Performing I/O assignment analysis allows you to validate your I/O assignments
and surrounding logic for illegal assignments and violations of board layout rules
early in the design process. The I/O assignment analysis feature also checks blocks
that directly feed or are fed by resources such as a PLLs, LVDS, or gigabit transceiver
blocks. You can check the legality of pin assignments before you compile your design,
or allow the process to run automatically during compilation. If design files are
available, you can perform more thorough legality checks on the I/O pins and
surrounding logic in your design. Legality checks include proper VREF pin use, valid
pin location assignments, and acceptable mixed I/O standards. Altera recommends
that you run I/O assignment analysis each time you add or modify a pin-related
assignment.

1 If you have partial or complete design files, you must perform Analysis and Synthesis
to generate a synthesized (mapped) netlist before you can perform I/O assignment
analysis.

Performing I/O assignment analysis directs the Fitter to read assignments from your
mapped netlist and the .qsf to determine the legality of your pin-related assignments.
These pin-related assignments include pin settings such as I/O standards, drive
strength, and location assignments.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

5–26 Chapter 5: I/O Management
Validating Pin Assignments
h For more information about performing I/O assignment analysis, refer to Assigning
Pins in Quartus II Help.

Incomplete I/O assignments trigger warnings during I/O assignment analysis. You
can view the I/O Assignment Warnings report to find and resolve warnings
generated during I/O assignment analysis. For example, you may receive a warning
that some of the pins in the design are missing a drive strength or slew rate.
Single-ended output and bidirectional pins default to the non-calibrated OCT setting
if you do not assign drive strength and slew rate options to the pins, or if other OCT
options are assigned to the pins. To resolve this issue, you can either assign drive
strength or slew rate settings to the pins with the Current Strength or Slew Rate or
Slow Slew Rate logic options, or assign the Termination logic option to the pins with
a series setting. You cannot use drive strength and slew rate settings when a pin is
assigned an OCT setting.

h For more information about creating logic option assignments with the Pin Planner,
refer to Assigning Pins in Quartus II Help.

During I/O assignment analysis the Fitter automatically assigns suggested pin
locations to unassigned pins in your design, based on your design constraints, so it
can perform pin legality checks. For example, if you assign an edge location to a
group of LVDS pins, the Fitter assigns pin locations for each LVDS pin in the specified
edge location and then performs legality checks. To display the Fitter-placed pins use
the Show Fitter Placements feature in the Pin Planner. To accept these suggested pin
locations, you must back-annotate your pin assignments.

h For more information about the Show Fitter Placements feature, refer to the Show
Commands in Quartus II Help. For more information about back-annotating
assignments, refer to Back-Annotating Assignments for A Project in Quartus II Help.

The following design flows show two different circumstances in which you can use
I/O assignment analysis:

■ Use the flow shown in Figure 5–13 if the you must complete board layout before
starting the design. This flow does not require design files and checks the legality
of your pin assignments.

■ Use the flow shown in Figure 5–14 if your design is complete. This flow
thoroughly checks the legality of your pin assignments against any design files
provided.

Each flow involves creating pin assignments, running analysis, and reviewing the
report file.

Running I/O Assignment Analysis without Design Files
During the early stages of developing a device, board layout engineers may request
preliminary or final pin-outs. It is time consuming to manually check whether the
pin-outs violate any design rules. To quickly perform basic checks on the legality of
your pin assignments, you can use the Quartus II software to perform I/O assignment
analysis.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_show.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_show.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm

Chapter 5: I/O Management 5–27
Validating Pin Assignments
1 If you create pin-related assignments in Mentor Graphics I/O Designer software, you
can import an .fx into the Quartus II software.

Running I/O assignment analysis performs limited checks on pin assignments made
in a design in which you specified a device, but does not yet include any HDL design
files. For example, you can create a Quartus II project with only a target device
specified and create pin-related assignments based on circuit board layout
considerations that are already determined. Even though the Quartus II project does
not yet contain any design files, you can reserve input and output pins and create
pin-related assignments for each pin with the Pin Planner. After you assign an I/O
standard to each reserved pin, run I/O assignment analysis to ensure that there are no
I/O standard conflicts in each I/O bank. Figure 5–13 shows the work flow for
assigning and analyzing pin-outs without design files.

When you make and analyze pin-related assignments without design files, make sure
you reserve the pins you intend to use as I/O pins, so the Fitter can determine each
pin type. After performing I/O assignment analysis, correct any errors reported by
the Fitter and rerun I/O assignment analysis until all errors are corrected.

h For more information about reserving pins with the Pin Planner, refer to Assigning
Pins in Quartus II Help.

1 Without a complete design, running I/O assignment analysis performs limited checks
and cannot guarantee that your assignments do not violate design rules.

Figure 5–13. Assigning and Analyzing Pin-Outs without Design Files

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus II Project

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

5–28 Chapter 5: I/O Management
Validating Pin Assignments
Running I/O Assignment Analysis with Design Files
If you have preliminary or complete design files, you can run I/O assignment analysis
to help you determine if your design will fit. The rules checked during I/O
assignment analysis depend on the completeness of the design. If you have a
complete design, the legality of all pin-related assignments are thoroughly checked
during I/O assignment analysis. If you have a partial design, which can be just the
top-level wrapper file, the legality of those pin-related assignments for which there is
enough information are checked during I/O assignment analysis. Figure 5–14 shows
the work flow for assigning and analyzing pin-outs without design files.

If you run I/O assignment analysis on incomplete design files, you may still
encounter errors during full compilation. For example, you may assign a clock to a
user I/O pin instead of assigning it to a dedicated clock pin, or design the clock to
drive a PLL that you have not yet instantiated in the design. The checks run during
I/O assignment analysis do not account for the logic that the pin drives, and do not
check that only a dedicated clock input pin can drive the clock port of a PLL. To obtain
better coverage, analyze as much of the design as possible, especially logic that

Figure 5–14. Assigning and Analyzing Pin-Outs with Design Files

Modify & Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open a Quartus II Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus II Project & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 5: I/O Management 5–29
Validating Pin Assignments
connects to pins. For example, if your design includes PLLs or LVDS blocks, include
these MegaWizard Plug-In Manager-generated files. To assign and analyze
pin-related assignments successfully, after performing I/O assignment analysis,
correct any errors reported by the Fitter and rerun I/O assignment analysis until all
errors are corrected.

Figure 5–15 shows the compilation time benefit of performing I/O assignment
analysis before running a full compilation.

Optimizing I/O Assignment Analysis with Output Enable Group Logic Option
Assignments
Each device has a certain number of VREF pins, and each VREF pin supports a certain
number of I/O pins. A VREF pin and its supported I/O pins are called a VREF bank.
The VREF pins are used only for inputs with VREF I/O standards, such as HSTL- and
SSTL-type I/O standards. VREF outputs do not require the VREF pin. When a
voltage-referenced input is present in a VREF bank, only a certain number of outputs
can be present in that VREF bank. For example, for devices in the Stratix II flip chip
package, only 20 outputs can be present in a VREF bank when a VREF I/O standard
input is present in that bank.

f For more information about device VREF pins and their associated I/O pins, refer to
the Pin-Out Files for Altera Devices page of the Altera website.

For interfaces that use bidirectional VREF I/O pins, your design must meet the output
restriction for each I/O bank when the pins are driving in either direction. If a set of
bidirectional signals are controlled by different output enables, they are treated as
independent output enables during I/O assignment analysis, thus creating a situation
in which the Fitter may determine that your design violates VREF restrictions. To treat
the set of bidirectional signals as a single output enable group so that the Fitter does
not determine that the design violates the requirements for the maximum number of
pins driving out of a VREF group, assign the Output Enable Group logic option
assignment to the bidirectional signals. Assign an integer value for the Output Enable
Group logic option assignment and assign the same integer value to all sets of signals
that are driving in the same direction. Assigning this logic option to groups of signals
is important in the case of external memory interfaces.

Figure 5–15. Saving Compilation Time with the I/O Assignment Analysis

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-dp.jsp

5–30 Chapter 5: I/O Management
Validating Pin Assignments
For example, in the case of a DDR2 interface in a Stratix II device, the device can have
30 pins in a VREF group. Each byte lane for a ×8 DDR2 interface has one DQS pin and
eight DQ pins, for a total of nine pins per byte lane. The DDR2 interface uses SSTL-18
Class I as its I/O standard, which is a VREF I/O standard. In typical interfaces, each
byte lane has its own output enable. In this example, the DDR2 interface has four byte
lanes. Using 30 I/O pins in a VREF group, there are three byte lanes and an extra byte
lane that supports the three remaining pins. If you do not use the Output Enable
Group logic option assignment, the Fitter analyzes each byte lane as an independent
group driven by a unique output enable during I/O assignment analysis. With this
arrangement, the worst-case scenario is when the three pins are inputs, and the other
27 pins are outputs. In this case, the 27 output pins violate the 20 output pin limit.

In a DDR2 interface, all DQS and DQ pins are always driven in the same direction.
Therefore, the Fitter reports an error that is not applicable to your design. Assigning
the Output Enable Group logic option assignment to the DQS and DQ pins forces the
Fitter to check these pins as a group driven by a common output enable during I/O
assignment analysis. When you use the Output Enable Group logic option
assignment, the DQS and DQ pins are checked as all input pins or all output pins and
are not in violation of the I/O rules.

You can also use the Output Enable Group logic option assignment with pins that are
driven only at certain times. For example, the data mask signal in DDR2 interfaces is
an output signal, but it is driven only when the DDR2 is writing (bidirectional signals
are outputs). To avoid errors during I/O assignment analysis, use the Output Enable
Group logic option assignment to assign the data mask to the same value as the DQ
and DQS signals.

You can also assign the Output Enable Group logic option to VREF input pins. If the
VREF input pins are not active during the time the outputs are driving, add the VREF
input pins to the output enable group, thus removing the VREF input pins from the
VREF analysis. For example, the QVLD signal for an RLDRAM II interface is active
only during a read. During a write, the QVLD pin is not active and does not count as
an active VREF input pin in the VREF group. You can place the QVLD pins in the
same output enable group as the RLDRAM II data pins.

Understanding the I/O Assignment Analysis Report

When I/O assignment analysis is complete, you can view detailed analysis reports
and a .pin. The detailed messages in the reports help you quickly understand and
resolve pin assignment errors. Each message includes a related node name and a
description of the problem.

The Fitter section of the Compilation report contains information generated during
I/O assignment analysis, including the following reports:

■ I/O Assignment Warnings

■ Resource Section

■ I/O Rules Section

The I/O Assignment Warnings report provides a list of pins and the Fitter warnings
generated for the pins during I/O assignment analysis

The Resource Section contains reports that categorize the pins as input pins, output
pins, and bidirectional pins. You can view the utilization of each I/O bank in your
device in the I/O Bank Usage report.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 5: I/O Management 5–31
Validating Pin Assignments
The I/O Rules Section includes detailed information about the I/O rules tested
during I/O assignment analysis and contains the following reports:

■ I/O Rules Summary report

■ I/O Rules Details report

■ I/O Rules Matrix report

The I/O Rules Summary report provides a quick summary of the number of I/O rules
tested and how many applicable rules passed, failed, or were not checked due to other
failing rules.

The I/O Rules Details report provides detailed information on all I/O rules. The
Status column indicates whether applicable rules passed, failed, or could not be
checked. All rules are given a level of severity rating to indicate their level of
importance for an effective analysis.

The I/O Rules Matrix report (refer to Figure 5–16) provides a list of the I/O rules
checked by the Fitter for each pin in the design. Rules that apply to the target device
family either pass or fail for each pin. Rules marked Inapplicable are rules that do not
apply to the target device family. You can ignore any rule marked Inapplicable.

Validating Pin Assignments with Full Compilation
After performing preliminary pin assignment validation with the live I/O check
feature and running I/O assignment analysis, you must perform a final I/O timing
check of you design by performing a full compilation. To avoid costly board respins,
you must include complete design files and constraints. With timing information, the
Fitter makes intelligent placement and routing to achieve optimal timing performance
in your design. Use the TimeQuest Timing Analyzer to create timing constraints for
input, output, and bidirectional pins.

f For more information about the TimeQuest analyzer, refer to the The Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Figure 5–16. I/O Rules Matrix
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

5–32 Chapter 5: I/O Management
Performing I/O Timing Analysis
Performing I/O Timing Analysis
Timing analysis is usually run during a full compilation of your design or when you
perform an early timing estimate. You can also run timing analysis independently
after you fully compile the design. For example, if you change the slew rates or drive
strengths of some I/O pins with ECOs, you do not have to recompile the entire
design, but only run timing analysis to verify the timing of your design.

As part of I/O planning, especially with high-speed designs, take board-level signal
integrity and timing into account. When adding a device with high-speed interfaces
to a board design, the quality of the signal at the far end of the board route, as well as
the propagation delay, is vital for proper system operation

As part of I/O planning, you must understand the I/O timing results reported by the
Quartus II software after performing timing analysis on your design. If all your
design files are complete and you have fully compiled your design, all the timing
checks related to I/O timing are performed during timing analysis. Static timing
analysis is performed when you compile your design in the Quartus II software. You
must understand I/O timing and what factors affect I/O timing paths in your design.
One important factor in I/O timing results is how accurately you specify the output
loads of the output and bidirectional pins in your design. Incomplete I/O constraints
can affect your I/O timing results.

The Quartus II software supports three different methods of I/O timing analysis:

■ Advanced I/O timing using a user-defined board trace model to produce
enhanced timing reports from accurate, “board-aware”, simulation models

Advanced I/O timing allows you to configure a complete board trace model for
each I/O standard or pin used in your design. With advanced I/O timing, the
TimeQuest analyzer uses the results of simulations of the I/O buffer, package, and
board trace model to generate more accurate I/O delays and extra reports to give
insight into signal behavior at the system level. You can use these advanced timing
reports as a guide to make changes to your I/O assignments and board design to
improve timing and signal integrity.

h For more information about advanced I/O timing, including device
support, refer to About Advanced I/O Timing in Quartus II Help.

■ I/O timing using a default or user-specified capacitive load without signal
integrity analysis

The TimeQuest analyzer creates timing reports that measure tCO to an I/O pin
using a default or user-specified value for a capacitive load.

■ Full board routing simulation in third-party tools using Altera-provided or
Quartus II software-generated IBIS or HSPICE I/O models

The IBIS and HSPICE Writers the simulation model files for use by third-party
board simulation tools. The IBIS and HSPICE Writers in the Quartus II software
can export accurate simulation models for use in applications such as Mentor
Graphics HyperLynx and Synopsys HSPICE.

1 For devices that support advanced I/O timing, it is the default method of I/O timing
analysis. For all other devices, you must use a default or user-specified capacitive load
assignment to determine tCO and power measurements.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_about_adv_io_analysis.htm

Chapter 5: I/O Management 5–33
Performing I/O Timing Analysis
f For more information about advanced I/O timing support, refer to the appropriate
device handbook available on the Literature and Technical Documentation page of the
Altera website. For more information about board-level signal integrity and tips on
how to improve signal integrity in your high-speed designs, refer to the Altera Signal
Integrity Center page of the Altera website.

f For information about creating IBIS and HSPICE models with the Quartus II software
and integrating those models into HyperLynx and HSPICE simulations, refer to the
Signal Integrity Analysis with Third-Party Tools chapter in volume 2 of the Quartus II
Handbook.

Enabling and Configuring Advanced I/O Timing
With the advanced I/O timing feature, you can expand upon the basic timing and
power measurements made with the capacitive loading settings. The advanced I/O
timing feature gives you the ability to fully define not only the capacitive load, but
also any termination components and trace impedances in the board routing for any
output pin or bidirectional pin in output mode. You can configure an overall board
trace model for each I/O standard as well as customize the model for specific pins.

When you use the advanced I/O timing feature, the board trace model replaces any
capacitive load setting you made because the load is included in the model. For
timing measurements, the entire board trace model is taken into account when
calculating I/O delays. For power measurements, an effective capacitive load is used
based on the sum of the capacitive elements in the model, including the Near
capacitance, Far capacitance, and Transmission line distributed capacitance
elements of the model.

Defining Overall Board Trace Models
You can define an overall board trace model for each I/O standard in your design that
is the default model for all pins that use a particular I/O standard. After configuring
the overall board trace model, you can customize the model for specific pins using the
Board Trace Model window in the Pin Planner.

1 Custom component value changes you make to selected pins in the Pin Planner take
priority and are not affected by subsequent changes to a specific components for the
entire design. Similarly, any changes you make to specific pins do not affect the
component settings for the entire design.

When you define an overall board trace model you can specify the board trace,
termination, and capacitive load parameters for each I/O standard. The default
settings for components in the model for each I/O standard are device-specific and
match the default test model used for calculating delay without advanced I/O timing.
For differential I/O standards, the component values you set are used for both the
positive and negative signals of a differential pin pair.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53020.pdf
http://www.altera.com/literature/lit-index.html
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

5–34 Chapter 5: I/O Management
Performing I/O Timing Analysis
All the assignments for board trace models you specify are saved to the .qsf. You can
also use Tcl commands to create board trace model assignments. Example 5–8 shows
Tcl commands for specifying board trace model assignments.

h For more information about defining a board trace model for your entire design, refer
to Using Advanced I/O Timing in Quartus II Help. For more information about
configuring specific pins in your board trace model, refer to Creating Board Trace Model
Assignments in the Pin Planner in Quartus II Help. For more information about
configuring component values for a board trace model, including a complete list of
the supported unit prefixes and setting the values with Tcl scripts, refer to Board Trace
Model Quartus II Help.

f For more information about the default models used for measuring I/O delay, refer to
the appropriate device handbook available on the Literature and Technical
Documentation page of the Altera website.

Customizing the Board Trace Model in the Pin Planner
In the Pin Planner, you can view a graphical representation of the board trace model
you configured with the Board Trace Model window. Initially, the settings you create
for the overall board trace model match the settings in the Pin Planner. For differential
signals, the Board Trace Model window displays the routing and components for both
the positive and negative signals of the differential pair. Any changes you make for a
differential signal pair must be performed on the positive signal of the pair. The
settings must match between the positive and negative signals of a differential pair, so
the changes are automatically reflected in the settings for the negative signal.

When editing board trace model assignments, for numerical values, use standard unit
prefixes such as p, n, and k to represent pico, nano, and kilo, respectively. To short a
series component or have an open circuit for a parallel component, select short or
open, respectively, for the component value.

Configuring Board Trace Models
The Quartus II software provides board trace model templates for various I/O
standards in which you can fill in various parameters. Figure 5–17 shows the template
for a 2.5-V I/O standard. This model consists of near-end and far-end board
component parameters.

Modeling of the near-end of the board trace includes the elements which are close to
the device and modeling of the far-end includes the elements which are at the receiver
end of the link, closer to the receiving device. The topology represented in the
Quartus II board trace model is conceptual and does not necessarily match the board
trace component for component. For example near-end model parameters can

Example 5–8. Specifying Board Trace Models

setting the near end series resistance model of sel_p output pin to 25 ohms
set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to se1_p
Settting the far end capacitance model for sel_p output signal to 6 picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_advanced_io.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_advanced_io.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm

Chapter 5: I/O Management 5–35
Performing I/O Timing Analysis
represent device-end discrete termination and breakout traces. Far-end modeling can
represent the bulk of the board trace to discrete external memory components, and the
far end termination network. The same circuit can be analyzed with near-end
modeling of the entire board, including memory component termination, and far-end
modeling of the actual memory component.

Figure 5–18 shows the template for the LVDS I/O standard. The far-end capacitance
(Cf) represents the external-device or multiple-device capacitive load. If you have
multiple devices on the far-end, you must find the equivalent capacitance at the
far-end, taking into account all receiver capacitances. The far-end capacitance can be
the sum of all the receiver capacitances.

f For more information about the specifications for external device capacitance values,
refer to the appropriate device handbook available on the Literature and Technical
Documentation page of the Altera website.

The Quartus II software models lossless transmission lines, and does not require a
transmission-line resistance value. Only distributed inductance (L) and capacitance
(C) values are needed. The distributed L and C values of transmission lines must be
entered on a per-inch basis, and can be obtained from the PCB vendor or
manufacturer, the CAD Design tool, or a signal integrity tool such as the Mentor
Graphics Hyperlynx software.

Figure 5–17. Board Trace Model
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/lit-index.html

5–36 Chapter 5: I/O Management
Performing I/O Timing Analysis
Specifying Near-End vs Far-End Timing Analysis
With advanced I/O timing analysis, you have the option of selecting a near-end or
far-end point for your I/O timing. With near-end timing, the timing is analyzed to the
device pin. Figure 5–17 shows near-end timing ending at the vertical dashed line
separating the device I/O pin and off-chip components.

By default, advanced I/O timing analysis analyzes output I/O timing to the device
pin. When you choose a near-end endpoint, you can use the set_output_delay SDC
timing constraint to account for the delay across the board. However, when you
choose a far-end I/O timing endpoint, then advanced I/O timing analysis analyzes
timing to the external device input, at the far end of the board trace. Whether you
choose a near-end or far-end timing endpoint, the board trace models are taken into
account during timing analysis.

h For more information about calculating I/O timing to the near-end or far-end of the
board trace, refer to Using Advanced I/O Timing in Quartus II Help.

Understanding Advanced I/O Timing Analysis Reports
When you perform advanced I/O analysis, the TimeQuest analyzer creates reports
that signal integrity reports that provide board delay estimates and signal integrity
data.

The TimeQuest analyzer section of the Compilation report contains information
generated during advanced I/O timing analysis, including the following reports:

■ Board Trace Model Assignments

■ Signal Integrity Metrics

Figure 5–18. Differential Board Trace Model
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm

Chapter 5: I/O Management 5–37
Incorporating PCB Design Tools
The Board Trace Model Assignments report summarizes the board trace model
component settings for each output and bidirectional signal.

The Signal Integrity Metrics report contains all the signal integrity metrics calculated
during advanced I/O timing analysis based on the board trace model settings for each
output or bidirectional pin. The reports contain many metrics, including
measurements at both the FPGA pin and at the far-end load of board delay, steady
state voltages, and rise and fall times.

1 By default, the TimeQuest analyzer generates the Slow-Corner Signal Integrity
Metrics report. To generate a Fast-Corner Signal Integrity Metrics report you must
change the delay model.

h For more information about the reports generated during advanced I/O timing
analysis, refer to Advanced I/O Timing Reports in Quartus II Help. For more
information about the metrics calculated during advanced I/O timing analysis,
including diagrams illustrating the metrics on output waveforms, refer to Signal
Integrity Metrics in Quartus II Help. For more information about changing the delay
model, refer to the Create Timing Netlist Dialog Box in Quartus II Help.

f For information about the configuration and use of the TimeQuest analyzer, refer to
The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Adjusting I/O Timing and Power with Capacitive Loading
When calculating tCO and power for output and bidirectional pins, the TimeQuest
analyzer and the PowerPlay Power Analyzer use a bulk capacitive load. You can
adjust the value of the capacitive load per I/O standard to obtain tCO and power
measurements that more accurately reflect the behavior of the output or bidirectional
net on your PCB. Input pins ignore any capacitive load settings. You can adjust the
capacitive load settings per I/O standard, in picofarads (pF), for your entire design.
During compilation, the Compiler measures power and tCO measurements based on
your settings. You can also adjust the capacitive load on an individual pin with the
Output Pin Load logic option.

h For more information about adjusting the value of the capacitive load for your entire
design, refer to Setting Up and Running a Compilation in Quartus II Help. For more
information about adjusting the value of the capacitive load on an individual pin,
refer to Assigning Pins in Quartus II Help.

Incorporating PCB Design Tools
Signal and pin assignments are initially made by the chip designer and it is up to the
board designer to correctly transfer these assignments to the symbols in their system
circuit schematics and board layout. As the board design progresses, pin
reassignments may be requested or required to optimize the layout. These
reassignments must in turn be communicated to the chip designer, so that the new
assignments can be validated during I/O assignment analysis and processed through
an updated placement-and-routing of the device.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_sig_int_metrics_report.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_sig_int_metrics_report.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_tan_io_advanced.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_db_create_timing_netlist.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

5–38 Chapter 5: I/O Management
Scripting Support
The Quartus II software interacts with board layout tools by importing and exporting
pin information files, including the .qsf, .pin, and .fx files.

f For more information about incorporating PCB design tools, refer to the Cadence PCB
Design Tools Support and Mentor Graphics PCB Design Tools Support chapters in
volume 2 of the Quartus II Handbook.

Scripting Support
A Tcl script allows you to run procedures and determine settings described in this
chapter. You can also run some of these procedures at a command prompt.

For detailed information about specific scripting command options and Tcl API
packages, type the following command at a system command prompt to run the
Quartus II Command-Line and Tcl API Help browser:

quartus_sh --qhelp r

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook.

Running I/O Assignment Analysis
You can run I/O assignment analysis with a Tcl command or with a command-line
command.

Enter the following in the Tcl console or a Tcl script:

execute_flow -check_ios r
Type the following at a system command prompt:

quartus_fit <project name> --check_ios r
For more information about running I/O assignment analysis, refer to
“Understanding the I/O Assignment Analysis Report” on page 5–30.

Generating a Mapped Netlist
You can generate a mapped netlist with a Tcl command or with a command-line
command.

Enter the following in the Tcl console or in a Tcl script:

execute_module -tool map r
The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name> r

Reserving Pins
You can reserve pins with a Tcl command.

Use the following Tcl command to reserve a pin:
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf

Chapter 5: I/O Management 5–39
Scripting Support
set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Use one of the following valid reserved pin values:

■ "AS BIDIRECTIONAL"

■ "AS INPUT TRI-STATED"

■ "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

■ "AS OUTPUT DRIVING GROUND"

■ "AS SIGNALPROBE OUTPUT"

1 Ensure you include the quotation marks when specifying the reserved pin value.

Creating Location Assignments
You can create location assignments with a Tcl command.

Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment <location> -to <signal name> r
Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations
include pin names, such as PIN_A3. I/O bank locations include IOBANK_1 up to
IOBANK_n, in which n is the number of I/O banks in the device.

Use one of the following valid edge location values:

■ EDGE_BOTTOM

■ EDGE_LEFT

■ EDGE_TOP

■ EDGE_RIGHT

For more information about location assignments, refer to “Creating Location
Assignments” on page 5–17.

f For more information about I/O banks in your device, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Creating Exclusive I/O Group Assignments
You can create exclusive I/O group assignments with a Tcl command.

Use the following Tcl command to create an exclusive I/O group assignments:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

For more information about exclusive I/O group assignments, refer to “Creating
Exclusive I/O Group Assignments” on page 5–18.

Changing the Slew Rate and Drive Strength
You can create slew rate and drive strength assignments with a Tcl command.

Use the following Tcl commands to create an slew rate and drive strength
assignments:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html

5–40 Chapter 5: I/O Management
Conclusion
set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

For more information about slew rate and drive strength assignments, refer to
“Creating Pin Assignments with the Chip Planner” on page 5–20.

Conclusion
The Quartus II software provides many tools and features to help you with I/O
planning, including the ability to validate pin assignments in all design stages, even
before the development of your design. The ability to import and export assignments
between the Quartus II software and other PCB tools allows you to make iterative
changes efficiently. Finally, the ability to enter a board trace model and create
advanced timing reports based on how I/O signals are routed on a board truly makes
the Quartus II software board-aware.

Document Revision History
Table 5–5 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feeback about this handbook chapter.

Table 5–5. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update

July 2010 10.0.0

■ Reorganized and edited the chapter

■ Added links to Quartus II Help for procedural information previously included in the
chapter

■ Added information on rules marked Inapplicable in the I/O Rules Matrix Report

■ Added information on assigning slew rate and drive strength settings to pins to fix I/O
assignment warnings

November 2009 9.1.0
■ Reorganized entire chapter to include links to Quartus II help for procedural information

previously included in the chapter

■ Added documentation on near-end and far-end advanced I/O timing

March 2009 9.0.0

■ Updated “Pad View Window” on page 5–20

■ Added new figures:

■ Figure 5–15

■ Figure 5–16

■ Added new section “Viewing Simultaneous Switching Noise (SSN) Results” on page 5–17

■ Added new section “Creating Exclusive I/O Group Assignments” on page 5–18
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52018-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52018-10.0.1
6. Simultaneous Switching Noise (SSN)
Analysis and Optimizations
FPGA design has evolved from small programmable circuits to designs that compete
with multimillion-gate ASICs. At the same time, the I/O counts on FPGAs and logic
density requirements of designs have increased exponentially. The higher-speed
interfaces in FPGAs, including high-speed serial interfaces and memory interfaces,
require careful interface design on the PCB. Designers must address the timing and
signal integrity requirements of these interfaces early in the design cycle.
Simultaneous switching noise (SSN) often leads to the degradation of signal integrity
by causing signal distortion, thereby reducing the noise margin of a system.

Today’s complex FPGA system design is incomplete without addressing the integrity
of signals coming in to and out of the FPGA. Altera recommends that you perform
SSN analysis early in your FPGA design and prior to the layout of your PCB with
complete SSN analysis of your FPGA in the Quartus® II software. This chapter
describes the Quartus II SSN Analyzer tool and covers the following topics:

■ “Definitions”

■ “Understanding SSN” on page 6–2

■ “SSN Estimation Tools” on page 6–5

■ “SSN Analysis Overview” on page 6–5

■ “Optimizing Your Design for SSN Analysis” on page 6–8

■ “Performing SSN Analysis and Viewing Results” on page 6–15

■ “Decreasing Processing Time for SSN Analysis” on page 6–17

Definitions
The terminology used in this chapter includes the following terms:

Aggressor: An output or bidirectional signal that contributes to the noise for a victim
I/O pin

PDN: Power distribution network

QH: Quiet high signal level on a pin

QHN: Quiet high noise on a pin, measured in volts

QL: Quiet low signal level on a pin

QLN: Quiet low noise on a pin, measured in volts

SI: Signal integrity (a superset of SSN, covering all noise sources)

SSN: Simultaneous switching noise

SSO: Simultaneous switching output (which are either the output or bidirectional
pins)
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52018

6–2 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN
Victim: An input, output, or bidirectional pin that is analyzed during SSN analysis.
During SSN analysis, each pin is analyzed as a victim. If a pin is an output or
bidirectional pin, the same pin acts as an aggressor signal for other pins.

Understanding SSN
SSN is defined as a noise voltage induced onto a single victim I/O pin on a device due
to the switching behavior of other aggressor I/O pins on the device. SSN can be
divided into two types of noise: voltage noise and timing noise.

Figure 6–1 shows a system with three pins. Two of the pins (A and C) are switching,
while one pin (B) is quiet. If the pins are driven in isolation, the voltage waveforms at
the output of the buffers appear without noise interference, as shown by the solid
curves at the left of the figure. However, when the pins are switched simultaneously,
the noise generated by pins A and C switching is injected onto the other pins,
manifesting itself as a voltage noise on pin B and timing noise on pins A and C, as
shown by the dotted curves in the figure.

Voltage noise is measured as the worst-case change in voltage of a signal due to SSN.
When a signal is QH, it is measured as the change in voltage toward 0 V. When a
signal is QL, it is measured as the change in voltage toward VCC.

In the Quartus II software, only voltage noise is analyzed. Voltage noise can be caused
by SSOs under two worst-case conditions:

■ The victim pin is high and the aggressor pins (SSOs) are switching from low to
high

■ The victim pin is low and the aggressor pins (SSOs) are switching from high to low

Figure 6–1. System with Three Pins
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–3
Understanding SSN
For outputs, the noise is computed at the far-end receiver for pin B (refer to
Figure 6–2).

For inputs, the noise is computed at the FPGA bumps as shown in for pin D (refer to
Figure 6–3).

SSN can occur in any system, but the induced noise does not always result in failures.
Voltage functional errors are caused by SSN on quiet victim pins only when the
voltage values on the quiet pins change by a large enough voltage that the logic
listening to that signal reads a change in the logic value. For QH signals, a voltage
functional error occurs when noise events cause the voltage to fall below VIH.
Similarly, for QL signals, a voltage functional error occurs when noise events cause
the voltage to rise above VIL (refer to Figure 6–4). Because VIH and VIL are different for

Figure 6–2. Quiet High Output Noise Estimation

Figure 6–3. Quiet Low Input Noise Estimation
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

6–4 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Understanding SSN
different I/O standards, and because signals have different quiet voltage values, the
absolute amount of SSN, measured in volts, cannot be used to determine if a voltage
failure occurs. Instead, to quantify whether an SSN event will cause a voltage error,
the Quartus II software uses the amount of noise as a percent of signal margin when
reporting noise margins in SSN analysis (refer to Figure 6–4).

Figure 6–4 shows four noise events, two on QH signals and two on QL signals. The
two noise events on the right-side of the figure consume 50 percent of the signal
margin and do not cause voltage functional errors. However, the two noise events on
the left side of the figure consume 100 percent of the signal margin and can cause a
voltage functional error.

Figure 6–5 illustrates a synchronous voltage noise event that does not result in a
voltage functional error. Noise or glitches caused by aggressor signals are
synchronously related to the victim pin outside of the sampling window of a receiver.
The noise or glitches affect the switching time of a victim pin, but are not considered
an input threshold violation failure.

For more information about the design factors that affect the noise margins during
SSN analysis in the Quartus II software, refer to “SSN Analysis Overview”.

Figure 6–4. Reporting Noise Margins

Figure 6–5. Synchronous Voltage Noise
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–5
SSN Estimation Tools
SSN Estimation Tools
Addressing SSN early in your FPGA design and PCB layout can help you avoid costly
board respins and lost time, both of which can impact your time-to-market. Altera
provides many tools for SSN analysis and estimation, including the following tools:

■ SSN characterization reports

■ An early SSN estimation (ESE) tool

■ The SSN Analyzer in the Quartus II software

f For more information about the SSN characterization reports and the ESE tool,
including device support information, refer to the Signal Integrity Center page of the
Altera website.

h For more information about the devices for which you can run the SSN Analyzer, refer
to About the SSN Analyzer in Quartus II Help.

The ESE tool is useful for preliminary SSN analysis of your FPGA design; for more
accurate results, however, you must use the SSN Analyzer in the Quartus II software.
Table 6–1 compares some of the differences between the ESE tool and the SSN
Analyzer.

SSN Analysis Overview
You can run the SSN Analyzer at different stages in your design cycle to obtain SSN
results. The accuracy of the results depends on the completeness of your design
information. Altera recommends that you start SSN analysis early in the design cycle
to obtain preliminary results and make adjustments to your I/O assignments, and
iterate through the design cycle to finally perform a fully constrained SSN analysis
with complete information about your board.

Figure 6–6 shows the flows for both early pin-out and final pin-out SSN analysis. The
early pin-out flow assumes conservative design rules initially, and then lets you
analyze the design and iteratively apply tighter design rules until SSN analysis
indicates your design meets SSN constraints. You must define pass criteria for SSN
analysis as a percentage of signal margin in both the early pin-out flow and the final

Table 6–1. Comparison of ESE Tool and SSN Analyzer Tool

ESE Tool SSN Analyzer

Is not integrated with the Quartus II software.
Integrated with the Quartus II software, allowing you to
perform preliminary SSN analysis while making I/O
assignment changes in the Quartus II software.

QL and QH levels are computed assuming a worst-case
pattern of I/O placements.

QL and QH levels are computed based on the I/O placements
in your design.

No support for entering board information. Supports board trace models and board layer information,
resulting in a more accurate SSN analysis.

No graphical representation. Integrated with the Quartus II Pin Planner, in which an SSN
map shows the QL and QH levels on victim pins.

Good for doing an early SSN estimate. Does not require you
to use the Quartus II software.

Requires you to create a Quartus II software project and
provide the top-level port information.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm
http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

6–6 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
SSN Analysis Overview
pin-out flow. The pass criteria you define is specific to your design requirements. For
example, a pass criterion you might define is a condition that verifies you have
sufficient SSN margins in your design. You may require that the acceptable voltage
noise on a pin must be below 70% of the voltage level for that pin. The pass criteria for
the early-pin out flow may be higher than the final pin-out flow criteria, so that you
do not spend too much time optimizing the on-FPGA portions of your design when
the SSN metrics for the design may improve after the design is fully specified.

Performing Early Pin-Out SSN Analysis
In the early stages of your design cycle, before you create pin location for your design,
use the early pin-out flow (refer to Figure 6–6) to obtain preliminary SSN analysis
results. In order to obtain useful SSN results, you must define the top-level ports of
your design, but your design files do not have to be complete.

Performing Early Pin-Out SSN Analysis with the ESE Tool
If you know the I/O standards and signaling standards for your design, you can use
the ESE tool to perform an initial SSN evaluation.

f For more information about the ESE tool, refer to the Signal Integrity Center page of
the Altera website.

Figure 6–6. Pin-Out Analysis (Note 1)

Note to Figure 6–6:

(1) Pass criteria determined by customer requirements.

Create Quartus Project
Add # of I/Os & settings

Define avg breakout depth

Constrain signal via
breakout layers

Constrain pin placement
Define pass criteria

Early < 80%; Final < 50% (1)

Adjust I/O settings
(Drive strength, slew rate

Run Quartus II &
SSN Analyzer

Run Quartus II &
SSN Analyzer

Design PCB & Extract
board parameters

Run Quartus II &
SSN Analyzer

Start

Done

Design is unlikely to
pass final SSN Analysis

No

Yes

No

No

Can we further
constrain PCB?

Yes

Yes

No
Noise < early pass?

Noise < final pass?

Decrease early pass
criteria

Yes

Timing margin available?

Done

No

Yes
Noise < final pass?

Manual optimization

Early pin-out flow Final pin-out flow
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–7
SSN Analysis Overview
Performing Early Pin-Out SSN Analysis with the SSN Analyzer
If you have complete information for the top-level ports of your design, you can use
the SSN Analyzer to perform an initial SSN evaluation. Use the following steps to
perform early pin-out SSN analysis:

1. Create a project in the Quartus II software.

2. Specify your top-level design information either in schematic form or in HDL
code.

3. Perform Analysis and Synthesis.

4. Create I/O assignments, such as I/O standard assignments, for the top-level ports
in your design.

1 Do not create pin location assignments. The Fitter automatically creates
optimized pin location assignments.

5. If you do not have completed design files and timing constraints, run I/O
assignment analysis.

1 During I/O assignment analysis, the Fitter places all the unplaced pins on
the device, and checks all the I/O placement rules.

6. Run the SSN Analyzer.

f For more information about creating and managing projects, refer to the Managing
Quartus II Projects chapter in volume 2 of the Quartus II Handbook. For more about
generating a top-level design file in the Quartus II software and I/O assignment
analysis, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

In the early stages of your design cycle, you may not have complete board
information, such as board trace parameters, layer information, and the signal
breakout layers. If you run the SSN Analyzer without this specific information, it uses
default board trace models and board layer information for SSN analysis, and as a
result the SSN Analyzer confidence level is low. If the noise amounts are larger than
the pass criteria for early pin-out SSN analysis, verify whether the SSN noise
violations are true failures or false failures. For example, sometimes the SSN Analyzer
can determine whether pins are switching synchronously and use that information to
filter false positives; however, it may not be able to determine all the synchronous
groups. You can improve the SSN analysis results by adjusting your I/O assignments
and other design settings. After you optimize your design such that it meets the pass
criteria for the early pin-out flow, you can then begin to design your PCB.

For more information, refer to “Optimizing Your Design for SSN Analysis”.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf

6–8 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Design Factors Affecting SSN Results
Performing Final Pin-Out SSN Analysis
You perform final pin-out SSN analysis after you place all the pins in your design, or
the Fitter places them for you, and you have complete information about the board
trace models and PCB layers. Even if your design achieves sufficient SSN results
during early pin-out SSN analysis, you should run SSN analysis with the complete
PCB information to ensure that SSN does not cause failures in your final design.You
must specify the board parameters in the Quartus II software, including the PCB layer
thicknesses, the signal breakout layers, and the board trace models, before you can
run SSN analysis on your final assignments.

For more information, refer to “Optimizing Your Design for SSN Analysis”.

If the SSN analysis results meet the pass criteria for final pin-out SSN analysis, SSN
analysis is complete. If the SSN analysis results do not meet the pass criteria, you must
further optimize your design by changing the board and design parameters and then
rerun the SSN Analyzer. If the design still does not meet the pass criteria, reduce the
pass criteria for early pin-out SSN analysis, and restart the process. By reducing the
pass criteria for early pin-out SSN analysis, you place a greater emphasis on reducing
SSN through I/O settings and I/O placement. Changing the drive strength and slew
rate of output and bidirectional pins, as well as adjusting the placement of different
SSOs, can affect SSN results. Adjusting I/O settings and placement allows the design
to meet the pass criteria for final pin-out SSN analysis after you specify the actual PCB
board parameters.

Design Factors Affecting SSN Results
There are many factors that affect the SSN levels in your design. The two main factors
are the drive strength and slew rate settings of the output and bidirectional pins in
your design.

f For more information about the factors that contribute to SSN voltage noise in your
FPGA design and managing SSN in your system, refer to AN 472: Stratix II GX SSN
Design Guidelines, AN 508: Cyclone III Simultaneous Switching Noise (SSN) Design
Guidelines, and the Signal Integrity Center page of the Altera website.

Optimizing Your Design for SSN Analysis
The SSN Analyzer gives you flexibility to precisely define your system to obtain
accurate SSN results. The SSN Analyzer produces a voltage noise estimate for each
input, output, and bidirectional pin in the design. It allows you to estimate the SSN
levels, comprised of QLN and QHN levels, for your FPGA pins. Performing SSN
analysis helps you optimize your design for SSN during compilation.

Because the SSN Analyzer is integrated into the Quartus II software, it can
automatically set up a system topology that matches your design. The SSN Analyzer
accounts for different I/O standards and slew rate settings for each buffer in the
design and models different board traces for each signal. Also, it correctly models the
state of the unused pins in the design. The SSN Analyzer leverages any custom board
trace assignments you set up for use by the advanced I/O timing feature.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN472.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/literature/an/AN508.pdf
http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–9
Optimizing Your Design for SSN Analysis
The SSN Analyzer also models the package and vias in the design. Models for the
different packages that Altera devices support are integrated into the Quartus II
software. In the Quartus II software, you can specify different layers on which signals
break out, each with its own thickness, and then specify which signal breaks out on
which layer.

Figure 6–7 shows the circuit topology the SSN Analyzer automatically constructs.
After constructing the circuit topology, the SSN Analyzer uses a simulation-based
methodology to determine the SSN for each victim pin in the design.

Optimizing Pin Placements for Signal Integrity
You can take advantage of a built-in SSN optimization feature in the Quartus II
software with the SSN Optimization logic option.

The I/O placements in your design may be affected when you use this option. Setting
this option to Normal compilation does not affect the fMAX of your design during
compilation, however setting this option to Extra effort level may impact your design
fMAX.

1 In order to use the SSN Optimization logic option, Altera recommends that you do
not create location assignments for your pins; instead, let the Fitter place the pins
during compilation so that it places the pins to meet the timing performance of your
design. To display the Fitter-placed pins use the Show Fitter Placements feature in the
Pin Planner. To accept these suggested pin locations, you must back-annotate your pin
assignments.

Figure 6–7. Circuit Topology for SSN Analysis
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

6–10 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
Figure 6–8 shows the results of turning on the SSN Optimization logic option for a
design. The image on the left shows the placement of the pins without the SSN
Optimization logic option, and the image on the right shows the adjustments the
Fitter made to pin placements to reduce the amount of SSN in the design when the
SSN Optimization logic option is turned on.

h For more information about creating project-wide logic option assignments, refer to
Setting Up and Running the Fitter in Quartus II Help. For more information about the
Show Fitter Placements feature, refer to Show Commands in Quartus II Help. For more
information about back-annotating assignments, refer to Back-Annotating Assignments
for A Project in Quartus II Help.

f For more information about design optimization features, refer to the Area, Timing,
and Compilation Time Optimization section in volume 2 of the Quartus II Handbook.

Specifying Board Trace Model Settings
The SSN Analyzer uses circuit models to determine voltage noise during SSN
analysis. The circuit topology (refer to Figure 6–7) is incomplete without board trace
information and PCB layer information. You must describe the board trace and PCB
layer parameters in your design to accurately compute the SSN in your FPGA device.
However, if you do not specify some or all of the board trace parameters and PCB
layer information, the SSN Analyzer uses default parameters during SSN analysis.
When you use the default parameters, the SSN confidence level is low.

For more information about the default parameters used by the SSN Analyzer and
SSN confidence levels, refer to “Confidence Metric Details Report” on page 6–16.

The board trace models required for the SSN Analyzer include the board trace
termination resistors, pin loads (capacitance), and transmission line parameters. You
can define the board circuit models, which are also known as board trace models, in
the Quartus II software. The board trace model settings are shared with the models
used during advanced I/O timing.

f For more information about defining board trace models and advanced I/O timing,
refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Figure 6–8. SSN Analysis Results Before and After Using the SSN Optimization Logic Option
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_show.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_back_annotate.htm
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–11
Optimizing Your Design for SSN Analysis
You can define an overall board trace model for each I/O standard in your design; this
overall board trace model is the default model for all pins that use a particular I/O
standard. After configuring the overall board trace model, you can customize the
model for specific pins. The parameters you specify for the board trace model are also
used in during advanced I/O timing analysis with the TimeQuest Timing Analyzer. If
you already specified the board trace models as part of your advanced I/O timing
assignments, the same parameters are used during SSN analysis.

h For more information about defining a board trace model for your entire design, refer
to Using Advanced I/O Timing in Quartus II Help. For more information about
configuring specific pins in your board trace model, refer to Creating Board Trace Model
Assignments in the Pin Planner in Quartus II Help. For more information about
configuring component values for a board trace model, including a complete list of
the supported unit prefixes and setting the values with Tcl scripts, refer to Board Trace
Model in Quartus II Help.

All the assignments for board trace models you specify are saved to the .qsf. You can
also use Tcl commands to create board trace model assignments. Example 6–1 shows
Tcl commands for specifying transmission line parameters.

The best way to calculate transmission line parameters is to use a two-dimensional
solver to estimate the inductance per inch and capacitance per inch for the
transmission line. The termination resistor topology information can be obtained from
the PCB schematics. The near-end and far-end pin load (capacitance) values can be
obtained from the PCB schematic and other device data sheets. For example, if you
know that an FPGA pin is driving a DIMM, you can obtain the far-end loading
information in the data sheet for your target device.

f For more information, refer to the Device Family Data Sheet in the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Defining PCB Layers and PCB Layer Thickness
Every PCB is fabricated using a number of layers. To remove some of the pessimism
from your SSN results, Altera recommends that you create assignments describing
your PCB layers in the Quartus II software. You can specify the number of layers on
you PCB, and their thickness. The PCB layer information is used only during SSN
analysis and is not used in other processes run by the Quartus II software. If a custom
PCB breakout region is not described you can select the default thickness, which
directs the SSN Analyzer to use a single-layer PCB breakout region during SSN
analysis.

h For more information about specifying PCB layer information, refer to Running the
SSN Analyzer in Quartus II Help.

Example 6–1. Specifying Board Trace Models

set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH "3.041E-7" -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH 0.1391 -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH "1.463E-10" -to e[0]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_advanced_io.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_pro_advanced_io.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_ref_board_trace_model.htm

6–12 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
All the assignments you create for the PCB layers are saved to the .qsf. You can also
use Tcl commands to create PCB layer assignments. You can create any number of
PCB layers, however, the layers must be consecutive. Example 6–2 shows Tcl
commands for specifying PCB layer assignments.

Figure 6–9 shows the layout cross-section of a PCB in the Cadence Allegro PCB tool.
The cross-section shows the stackup information of a PCB, which tells you the
number of layers used in your PCB. The PCB shown in this example consists of
various signal and circuit layers on which FPGA pins are routed, as well as the power
and ground layers.

In this example, each of the four signal layers are a different thickness, with the depths
shown in the Thickness (MIL) column. The layer thickness for each signal layer is
computed as follows:

■ Signal Layer 1 is the L4-SIGNAL, at thickness (1.9+3.6+1.2+3+1.2+4=) 14.9 mils

■ Signal Layer 2 is the L5-SIGNAL, at thickness (0.6+6=) 6.6 mils

■ Signal Layer 3 is the L8-SIGNAL, at thickness (0.6+4+1.2+3+1.2+4=) 14 mils

■ Signal Layer 4 is the L9-SIGNAL, at thickness (0.6+6=) 6.6 mils

Example 6–2. Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3

Figure 6–9. Snapshot of Stackup of a PCB Shown in the Allegro Board Design Environment
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–13
Optimizing Your Design for SSN Analysis
Figure 6–10 shows the results in the Quartus II software after you enter these PCB
signal layers and thickness assignments.

Specifying Signal Breakout Layers
Each user I/O pin in your FPGA device can break out at different layers on your PCB.
In the Pin Planner, you can specify on which layers the I/O pins in your design break
out. The breakout layer information is used only during SSN analysis and is not used
in other processes run by the Quartus II software. To assign a pin to PCB layer, follow
these steps:

1. On the Assignments menu, click Pin Planner.

2. If necessary, perform Analysis & Elaboration, Analysis & Synthesis, or fully
compile the design to populate the Pin Planner with the node names in the design.

3. Right-click anywhere in the All Pins or Groups list, and then click Customize
Columns.

4. Select the PCB layer column and move it from the Available columns list to the
Show these columns in this order list.

5. Click OK.

6. In the PCB layer column, specify the PCB layer to which you want to connect the
signal.

7. On the File menu, click Save Project to save the changes.

1 When you create PCB breakout layer assignments in the Pin Planner, you can assign
the pin to any layer, even if you did not yet define the PCB layer.

Figure 6–10. PCB Layers Specified in the Quartus II Software
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

6–14 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Optimizing Your Design for SSN Analysis
Creating I/O Assignments
I/O assignments are required in FPGA design and are also used during SSN analysis
to estimate voltage noise. Each input, output, or bidirectional signal in your design is
assigned a physical pin location on the device using pin location assignments. Each
signal has a physical I/O buffer that has a specific I/O standard, pin location, drive
strength, and slew rate. The SSN Analyzer supports most I/O standards in a device
family, such as the LVTTL and LVCMOS I/O standards.

1 The SSN Analyzer does not support differential I/O standards, such as the LVDS I/O
standard and its variations, because differential I/O standards contribute a small
amount of SSN.

f For more information about supported I/O standards, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

f For more information about creating and managing I/O assignments, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Decreasing Pessimism in SSN Analysis
In the absence of specific timing information, the SSN Analyzer analyzes your design
under worst-case conditions. Worst-case conditions include all pins acting as
aggressor signals on all possible victim pins and all aggressor pins switching with the
worst possible timing relationship. The results of SSN analysis under worst-case
conditions are very pessimistic. You can improve the results of SSN Analysis by
creating group assignments for specific types of pins. Use the following group
assignments to decrease the pessimism in SSN analysis results:

■ Assign pins to an output enable group—All pins in an output enable group must
be either all input pins or all output pins. If all the pins in a group are always either
all inputs or all outputs, it is impossible for an output pin in the group to cause
SSN noise on an input pin in the group. You can assign pins to an output enable
group with the Output Enable Group logic option.

■ Assign pins to a synchronous group—I/O pins that are part of a synchronous
group (signals that switch at the same time) may cause SSN, but do not result in
any failures because the noise glitch occurs during the switching period of the
signal. The noise, therefore, does not occur in the sampling window of that signal.
You can assign pins to an output enable group with the Synchronous Group logic
option. For example, in your design you have a bus with 32 pins that all belong to
the same group. In a real operation, the bus switches at the same time, so any
voltage noise induced by a pin on its groupmates does not matter, because it does
not fall in the sampling window. If you do not assign the bus to a synchronous
group, the other 31 pins can act as aggressors for the first pin in that group, leading
to higher QL and QH noise levels during SSN analysis.

In some cases, the SSN Analyzer can detect the grouping for bidirectional pins by
looking at the output enable signal of the bidirectional pins. However, Altera
recommends that you explicitly specify the bidirectional groups and output groups in
your design.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–15
Performing SSN Analysis and Viewing Results
h For more information about creating logic option assignments, refer to Assigning Pins
in Quartus II Help.

Excluding Pins as Aggressor Signals
The SSN Analyzer uses the following conditions to exclude pins as aggressor signals
for a specific victim pin:

■ A pin that is a complement of the victim pin. For example, any pin that is assigned
a differential I/O standard cannot be an aggressor pin.

■ A programming pin or JTAG pin because these pins are not active in user mode.

■ Pins that have the same output enable signal as a bidirectional victim pin that the
SSN Analyzer analyzes as an input pin. Pins with the same output enable signal
also act as input pins and therefore cannot be aggressor pins at the same time. For
information about grouping bidirectional pins, refer to “Performing SSN Analysis
and Viewing Results”.

■ Pins in the same synchronous group as a victim output pin. For information about
grouping output pins, refer to “Performing SSN Analysis and Viewing Results”.

■ A pin assigned the I/O Maximum Toggle Rate logic option with a frequency
setting of zero. The SSN Analyzer does not consider pins with this setting as
aggressor pins.

h For more information about creating pin assignments with the Pin Planner, refer to
Assigning Pins in Quartus II Help.

Performing SSN Analysis and Viewing Results
You can perform SSN analysis either on your entire design, or you can limit the
analysis to specific I/O banks.

If you know the problem area for SSN is within one I/O bank and you are changing
pin assignments only in that bank, you can run SSN analysis for just that one I/O
bank to reduce analysis time.

h For more information, refer to Running the SSN Analyzer in Quartus II Help.

f For more information about I/O bank numbering, refer to the appropriate device
handbook available on the Literature and Technical Documentation page of the Altera
website.

Understanding the SSN Reports
When SSN analysis is complete, you can view detailed analysis reports. The detailed
messages in the reports help you understand and resolve SSN problems.

The SSN Analyzer section of the Compilation report contains information generated
during SSN analysis, including the following reports:

■ Summary

■ Output Pins
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm

6–16 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Performing SSN Analysis and Viewing Results
■ Input Pins

■ Unanalyzed Pins

■ Confidence Metric Details

Summary Report
The Summary report summarizes the SSN Analyzer status and rates the SSN
Analyzer confidence level as low, medium, or high. The confidence level depends on
the completeness of your board trace model assignments. The more assignments you
complete, the higher the confidence level. However, the confidence level does not
always contribute to the accuracy of the QL and QH noise levels on a victim pin. The
accuracy of QH and QL noise levels depends the accuracy of your board trace model
assignments.

Output Pins and Input Pins Reports
The Output Pins report lists all of the output pins and bidirectional pins that are
treated as output pins during SSN analysis. The Input Pins report lists all of the input
pins and bidirectional pins that are treated as inputs during SSN analysis. Both
reports list the location assignments for the pins treated as SSN outputs or inputs
during SSN analysis, the QL and QH noise in volts, and what percentage the QL and
QH margins are for the I/O standard used for that signal. The QH and QL noise
margins that fall in the critical range (> 90%) are shown in red. The QH and QL noise
margins that fall in the range of 70% to 90% are shown in gray.

Unanalyzed Pins Report
Not all pins are analyzed for SSN analysis. The following pins are not analyzed and
are reported in the Unanalyzed Pins report:

■ Pins assigned the LVDS I/O standard or any LVDS variations, such as the
mini-LVDS I/O standard

■ Pins created in the migration flow that cover power and supply pins in other
packages

■ The negative terminals of pseudo-differential I/O standards; the noise on
differential standards is reported as the differential noise and is reported on the
positive terminal

Confidence Metric Details Report
The Confidence Metric Details Report lists the values used during SSN Analysis for
unspecified I/O, board, and PCB assignments.

Viewing SSN Analysis Results in the Pin Planner
After SSN analysis completes, you can analyze the results in the Pin Planner. In the
Pin Planner you can identify the SSN hotspots in your device, as well as the QL and
QH noise levels. The QL and QH results for each pin are displayed with a different
color that represents whether the pin is below the warning threshold, below the
critical threshold, or above the critical threshold. This color representation is also
referred to as the SSN map of your FPGA device.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–17
Decreasing Processing Time for SSN Analysis
When you view the SSN map, you can customize which details to display, including
input pins, output pins, QH signals, QL signals, and noise levels. You can also adjust
the threshold levels for QH and QL noise voltages. Adjusting the threshold levels in
the Pin Planner does not change the threshold levels reported during SSN analysis
and does not change the data in any of the SSN reports.

You can also you change I/O assignments and board trace information and rerun the
SSN Analyzer to view the SSN analysis results based on those modified settings.

h For more information, refer to Show SSN Analyzer Results and Running the SSN
Analyzer in Quartus II Help.

Decreasing Processing Time for SSN Analysis
FPGA designs are getting larger in density, logic, and I/O count. The time it takes to
complete SSN analysis and other Quartus II software processes affects your
development time. Faster processing times can reduce your design cycle time. Use the
following guidelines to reduce processing time:

■ Direct the Quartus II software to use more than one processor for parallel
executables, including the SSN Analyzer

■ Perform SSN analysis after I/O assignment analysis if your design files and
constraints are complete, and you are interested in generating the SSN results
early in the design process and want to adjust I/O placements to see if you can
obtain better results

■ Perform SSN analysis after fitting if you want to view preliminary SSN results that
do not take into account complete I/O assignment and I/O timing results

■ Perform engineering change orders (ECOs) on your design, rather than
recompiling the entire design, if you want to rerun SSN analysis after changing
I/O assignments

h For more information about using parallel processors, refer to Setting Up and Running
Analysis and Synthesis and Compilation Process Settings Page in Quartus II Help. For
more information about performing I/O assignment analysis, refer to Assigning Pins
in Quartus II Help. For more information about running the Fitter, refer to Setting Up
and Running the Fitter in Quartus II Help.

f For more information about performing ECOs on your design, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Scripting Support
A Tcl script allows you to run procedures and determine settings described in this
chapter. You can also run some of these procedures at a command prompt. The
Quartus II software provides several packages to compile your design and create I/O
assignments for analysis and fitting. You can create a custom Tcl script that maps the
design and runs SSN analysis on your design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_proc_running_sia.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_show_ssn_results.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_pro_assigning_pins.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

6–18 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Scripting Support
For detailed information about specific scripting command options and Tcl API
packages, type the following command at a system command prompt to run the
Quartus II Command-Line and Tcl API Help browser:

quartus_sh --qhelp r

f For more information about Quartus II scripting support, including examples, refer to
the Tcl Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II
Handbook and API Functions for Tcl in Quartus II Help.

Optimizing Pin Placements for Signal Integrity
You can create an assignment that directs the Fitter to optimize pin placements for
signal integrity with a Tcl command.

The following Tcl command directs the Fitter to optimize pin placement for signal
integrity without affecting design fMAX:

set_global_assignment -name OPTIMIZE_SIGNAL_INTEGRITY "Normal
Compilation"

For more information, refer to “Optimizing Pin Placements for Signal Integrity” on
page 6–9.

Defining PCB Layers and PCB Layer Thickness
You can create PCB layer and thickness assignments with a Tcl command. shows Tcl
commands for specifying PCB layer assignments.

These Tcl commands specify that there are seven PCB layers in the design, each with a
different thickness. In each assignment, the letter M indicates the unit of measurement
is millimeters. When you specify PCB layer assignments with Tcl commands, you
must list the layers in consecutive order. For example, you would receive an error
during SSN Analysis if your Tcl commands created the following assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

To create assignments with the unit of measurement in mils, refer to the syntax in the
following Tcl commands. These Tcl commands specify the same settings as shown in
Figure 6–10 on page 6–13.

set_global_assignment -name PCB_LAYER_THICKNESS 14.9MIL -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 14MIL -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 4

Example 6–3. Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 0.00055372M -section_id 4
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 5
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 6
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm

Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations 6–19
Scripting Support
For more information, refer to “Defining PCB Layers and PCB Layer Thickness” on
page 6–11.

Specifying Signal Breakout Layers
You can create signal breakout layer assignments with a Tcl command. Example 6–4
shows Tcl commands for specifying signal breakout layer assignments:

When you create PCB breakout layer assignments with Tcl commands, if you do not
specify a PCB layer, or if you specify a PCB layer that does not exist, the SSN Analyzer
breaks out the signal at the bottommost PCB layer.

1 If you create a PCB layer breakout assignment to a layer that does not exist, the SSN
Analyzer will generate a warning message.

For more information, refer to “Specifying Signal Breakout Layers” on page 6–13.

Decreasing Pessimism in SSN Analysis
You can create output enable group and synchronous group assignments to help
decrease pessimism during SSN Analysis with a Tcl command.

The following Tcl command assigns the bidirectional bus DATAINOUT to an output
enable group:

set_instance_assignment -name OUTPUT_ENABLE_GROUP 1 -to DATAINOUT

The following Tcl command assigns the bus PCI_ADD_io to a synchronous group:

set_instance_assignment -name SYNCHRONOUS_GROUP 1 -to PCI_AD_io

For more information, refer to “Decreasing Pessimism in SSN Analysis” on page 6–14.

Performing SSN Analysis
You can perform SSN analysis with a command-line command. Use the quartus_si
package that is provided with the Quartus II software.

Type the following command at a system command prompt to start the SSN
Analyzer:

quartus_si <project name> r
To analyze just one I/O bank, type the following command at a system command
prompt:

quartus_si <project revision> <--bank = bank id> r

For example, to run analyze the I/O bank 2A type the following command:

quartus_si counter --bank=2A r

Example 6–4. Specifying Signal Breakout Layer Assignments

set_instance_assignment -name PCB_LAYER 10 -to e[2]
set_instance_assignment -name PCB_LAYER 3 -to e[3]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

6–20 Chapter 6: Simultaneous Switching Noise (SSN) Analysis and Optimizations
Conclusion
For more information, refer to “Performing SSN Analysis and Viewing Results” on
page 6–15.

f For more information about the quartus_si package, type quartus_si -h at a system
command prompt.

Conclusion
To assist you with SSN Analysis, you can use the fast and accurate SSN Analyzer to
help you estimate the SSN performance of your FPGA both early in the design cycle
and when your PCB is complete. The SSN methodology discussed in this chapter
gives you the tools you need to ensure your FPGA design meets your SSN
requirements.

Document Revision History
Table 6–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 6–2. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update

July 2010 10.0.0
■ Reorganized and edited the chapter

■ Added links to Quartus II Help for procedural information previously included in the
chapter

November 2009 9.1.0

■ Added “Figure 6–9 shows the layout cross-section of a PCB in the Cadence Allegro PCB
tool. The cross-section shows the stackup information of a PCB, which tells you the
number of layers used in your PCB. The PCB shown in this example consists of various
signal and circuit layers on which FPGA pins are routed, as well as the power and ground
layers.” on page 6–12

■ Updated for the Quartus II software 9.1 release

March 2009 9.0.0 Initial release
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII53020-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53020-10.0.1
7. Signal Integrity Analysis with
Third-Party Tools
Introduction
With the ever-increasing operating speed of interfaces in traditional FPGA design, the
timing and signal integrity margins between the FPGA and other devices on the
board must be within specification and tolerance before a single PCB is built. If the
board trace is designed poorly or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can potentially damage
input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing
margin between the FPGA and other devices on the printed circuit board (PCB) are
important aspects to consider to ensure proper system operation. To avoid
time-consuming redesigns and expensive board respins, the topology and routing of
critical signals must be simulated. The high-speed interfaces available on current
FPGA devices must be modeled accurately and integrated into timing models and
board-level signal integrity simulations. The tools used in the design of an FPGA and
its integration into a PCB must be “board-aware”—able to take into account
properties of the board routing and the connected devices on the board.

This chapter contains the following topics:

■ “I/O Model Selection: IBIS or HSPICE” on page 7–3

■ “FPGA to Board Signal Integrity Analysis Flow” on page 7–4

■ “Simulation with IBIS Models” on page 7–7

■ “Simulation with HSPICE Models” on page 7–16

The Quartus® II software provides methodologies, resources, and tools to ensure
good signal integrity and timing margin between Altera® FPGA devices and other
components on the board. Three types of analysis are possible with the Quartus II
software:

■ I/O timing with a default or user-specified capacitive load and no signal integrity
analysis (default)

■ The Quartus II Enable Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

■ Full board routing simulation in third-party tools using Altera-provided or
generated Input/Output Buffer Information Specification (IBIS) or HSPICE I/O
models
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53020

7–2 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Introduction
I/O timing using a specified capacitive test load requires no special configuration
other than setting the size of the load. I/O timing reports from the Quartus II
TimeQuest or the Quartus II Classic Timing Analyzer are generated based only on
point-to-point delays within the I/O buffer and assume the presence of the capacitive
test load with no other details about the board specified. The default size of the load is
based on the I/O standard selected for the pin. Timing is measured to the FPGA pin
with no signal integrity analysis details.

The Enable Advanced I/O Timing option expands the details in I/O timing reports
by taking board topology and termination components into account. A complete
point-to-point board trace model is defined and accounted for in the timing analysis.
This ability to define a board trace model is an example of how the Quartus II
software is “board-aware.”

In this case, timing and signal integrity metrics between the I/O buffer and the
defined far end load are analyzed and reported in enhanced reports generated by the
Quartus II TimeQuest Timing Analyzer.

f For more information about defining capacitive test loads or how to use the Enable
Advanced I/O Timing option to configure a board trace model, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

This chapter focuses on the third type of analysis. The Quartus II software can export
accurate HSPICE models with the built-in HSPICE Writer. You can run signal integrity
simulations with these complete HSPICE models in Synopsys HSPICE. IBIS models of
the FPGA I/O buffers are also created easily with the Quartus II IBIS Writer. You can
integrate IBIS models into any third-party simulation tool that supports them, such as
the Mentor Graphics® Hyperlynx software. With the ability to create
industry-standard model definition files quickly, you can build accurate simulations
that can provide data to help improve board-level signal integrity.

The I/O’s IBIS and HSPICE model creation available in the Quartus II software can
help prevent problems before a costly board respin is required. In general, creating
and running accurate simulations is difficult and time consuming. The tools in the
Quartus II software automate the I/O model setup and creation process by
configuring the models specifically for your design. With these tools, you can set up
and run accurate simulations quickly and acquire data that helps guide your FPGA
and board design.

The information about signal integrity in this chapter refers to board-level signal
integrity based on I/O buffer configuration and board parameters, not simultaneous
switching noise (SSN), also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an overall drop in the
voltage of the chip’s power supply. This can cause temporary glitches in the specified
level of ground or VCC for the device.

f For a more information about SSN and ways to prevent it, refer to AN 315: Guidelines
for Designing High-Speed FPGA PCBs.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/an/an315.pdf
http://www.altera.com/literature/an/an315.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–3
I/O Model Selection: IBIS or HSPICE
This chapter is intended for FPGA and board designers and includes details about the
concepts and steps involved in getting designs simulated and how to adjust designs
to improve board-level timing and signal integrity. Also included is information about
how to create accurate models from the Quartus II software and how to use those
models in simulation software.

The information in this chapter is meant for those who are familiar with the
Quartus II software and basic concepts of signal integrity and the design techniques
and components in good PCB design. Finally, you should know how to set up
simulations and use your selected third-party simulation tool.

f For information about basic signal integrity concepts and signal integrity details
pertaining to Altera FPGA devices, refer to the Altera Signal Integrity Center.

I/O Model Selection: IBIS or HSPICE
The Quartus II software can export two different types of I/O models that are useful
for different simulation situations. IBIS models define the behavior of input or output
buffers through the use of voltage-current (V-I) and voltage-time (V-t) data tables.
HSPICE models, often referred to as HSPICE decks, include complete physical
descriptions of the transistors and parasitic capacitances that make up an I/O buffer
along with all the parameter settings required to run a simulation. The HSPICE decks
generated by the Quartus II software are preconfigured with the I/O standard,
voltage, and pin loading settings for each pin in your design.

The choice of I/O model type is based on many factors. Table 7–1 shows a detailed
comparison of the two I/O model types and information and examples of situations
in which they might be used.

Table 7–1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a circuit are
described by their physical properties, such as transistor
characteristics and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model
completely describes the I/O buffer and
does not usually have to be customized.

Fully customizable—Unless connected to an arbitrary
board description, the description of the board trace
model must be customized in the model file. All
parameters of the simulation are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly after set up
correctly.

Slow—Simulations take time to set up and take longer to
run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to
the FPGA and/or board design to improve
signal integrity.

Excellent—Simulations are highly accurate, making
HSPICE simulation almost a requirement for any
high-speed design where signal integrity and timing
margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support SPICE
support HSPICE. However, Synopsys HSPICE is required
for simulations of Altera’s encrypted HSPICE models.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

7–4 Chapter 7: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow
f For more information about IBIS files created by the Quartus II IBIS Writer and IBIS
files in general, as well as links to websites with detailed information, refer to AN 283:
Simulating Altera Devices with IBIS Models.

FPGA to Board Signal Integrity Analysis Flow
Board signal integrity analysis can take place at any point in the FPGA design process
and is often performed before and after board layout. If it is performed early in the
process as part of a pre-PCB layout analysis, the models used for simulations can be
more generic and can be changed as much as required to see how adjustments
improve timing or signal integrity and help with the design and routing of the PCB.
Simulations and the resulting changes made at this stage allow you to analyze “what
if” scenarios to plan and implement your design better. To assist with early board
signal integrity analysis, you can download generic IBIS model files for each device
family and obtain HSPICE buffer simulation kits from the “Board Level Tools” section
of the EDA Tool Support Resource Center.

Typically, if board signal integrity analysis is performed late in the design, it is used
for a post-layout verification. The inputs and outputs of the FPGA are defined, and
required board routing topologies and constraints are known. Simulations can help
you find problems that might still exist in the FPGA or board design before fabrication
and assembly. In either case, a simple process flow illustrates how to create accurate
IBIS and HSPICE models from a design in the Quartus II software and transfer them
to third-party simulation tools. Figure 7–1 shows this flow.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/support/software/eda-tool-support/sof-eda-tool-support.html

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–5
FPGA to Board Signal Integrity Analysis Flow
1 This chapter is organized around the type of model, IBIS or HSPICE, that you use for
your simulations. When you understand the steps in the analysis flow, refer to the
section of this chapter that corresponds to the model type you are using.

Create I/O and Board Trace Model Assignments
If your design uses a Stratix® III, Stratix II, or Cyclone® III device, you can configure a
board trace model for output signals or for bidirectional signals in output mode and
automatically transfer its description to HSPICE decks generated by the HSPICE
Writer. This helps improve simulation accuracy.

Figure 7–1. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus II Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Configure Board Trace Models
in supported devices

(Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No
Make Adjustments to

Models or Simulation Parameters
and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O

required?

Yes

No
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–6 Chapter 7: Signal Integrity Analysis with Third-Party Tools
FPGA to Board Signal Integrity Analysis Flow
To configure a board trace model, in the Settings dialog box, in the TimeQuest
Timing Analyzer page, turn on the Enable Advanced I/O Timing option and
configure the board trace model assignment settings for each I/O standard used in
your design. You can add series or parallel termination, specify the transmission line
length, and set the value of the far-end capacitive load. You can configure these
parameters either in the Board Trace Model view of the Pin Planner, or click Device
and Pin Options in the Device page of the Settings dialog box.

f For information about how to use the Enable Advanced I/O Timing option and
configure board trace models for the I/O standards used in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

The Quartus II software can generate IBIS models and HSPICE decks without having
to configure a board trace model with the Enable Advanced I/O Timing option. In
fact, IBIS models ignore any board trace model settings other than the far-end
capacitive load. If any load value is set other than the default, the delay given by IBIS
models generated by the IBIS Writer cannot be used to account correctly for the
double counting problem. The load value mismatch between the IBIS delay and the
tCO measurement of the Quartus II software prevents the delays from being safely
added together. Warning messages displayed when the EDA Netlist Writer runs
indicate when this mismatch occurs.

Output File Generation
IBIS and HSPICE model files are not generated by the Quartus II software by default.
To generate or update the files automatically during each project compilation, select
the type of file to generate and a location where to save the file in the project settings.
These settings can also be specified with commands in a Tcl script.

The IBIS and HSPICE Writers in the Quartus II software are run as part of the EDA
Netlist Writer during normal project compilation. If either writer is turned on in the
project settings, IBIS or HSPICE files are created and stored in the specified location.
For IBIS, a single file is generated containing information about all assigned pins.
HSPICE file generation creates separate files for each assigned pin. You can run the
EDA Netlist Writer separately from a full compilation in the Quartus II software or at
the command line. However, you must fully compile the project or perform I/O
Assignment Analysis at least once for the IBIS and HSPICE Writers to have
information about the I/O assignments and settings in the design.

Customize the Output Files
The files generated by either the IBIS or HSPICE Writer are text files that you can edit
and customize easily for design or experimentation purposes. IBIS files downloaded
from the Altera website must be customized with the correct RLC values for the
specific device package you have selected for your design. IBIS files generated by the
IBIS Writer do not require this customization because they are configured
automatically with the RLC values for your selected device. HSPICE decks require
modification to include a detailed description of your board. With Enable Advanced
I/O Timing turned on and a board trace model defined in the Quartus II software,
generated HSPICE decks automatically include that model’s parameters. However,
Altera recommends that you replace that model with a more detailed model that
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–7
Simulation with IBIS Models
describes your board design more accurately. A default simulation included in the
generated HSPICE decks measures delay between the FPGA and the far-end device.
You can make additions or adjustments to the default simulation in the generated files
to change the parameters of the default simulation or to perform additional
measurements.

Set Up and Run Simulations in Third-Party Tools
When you have generated the files, you can use them to perform simulations in your
selected simulation tool. With IBIS models, you can apply them to input, output, or
bidirectional buffer entities and quickly set up and run simulations. For HSPICE
decks, the simulation parameters are included in the files. Open the files in Synopsys
HSPICE and run simulations for each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem
is accounted for, which ensures that your simulations are accurate. Simulations that
involve IBIS models created with anything other than the default loading settings in
the Quartus II software must take the change in the size of the load between the IBIS
delay and the Quartus II tCO measurement into account. Warning messages during
compilation alert you to this change.

Interpret Simulation Results
If you encounter timing or signal integrity issues with your high-speed signals after
running simulations, you can make adjustments to I/O assignment settings in the
Quartus II software. These could include such things as drive strength or I/O
standard, or making changes to your board routing or topology. After regenerating
models in the Quartus II software based on the changes you have made, rerun the
simulations to check whether your changes corrected the problem.

Simulation with IBIS Models
IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS
models describe the behavior of I/O buffers with voltage-current and voltage-time
data curves. Because of their behavioral nature, IBIS models do not have to include
any information about the internal circuit design of the I/O buffer. Most component
manufacturers, including Altera, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic device family
IBIS models from the Altera website for early design simulation or use the IBIS Writer
to create custom IBIS models for your existing design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–8 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
Elements of an IBIS Model
An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer
across minimum, typical, and maximum temperature and voltage ranges with a
specified test load. The tables and values specified in the IBIS file describe five basic
elements of the I/O buffer. Figure 7–2 highlights each of these elements in the I/O
buffer model.

The following elements correspond to each numbered block in Figure 7–2.

1. Pulldown—A voltage-current table describes the current when the buffer is
driven low based on a pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven
high based on a pull-up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when
clamping diodes for electrostatic discharge (ESD) are present. The ground clamp
voltage range is –VCC to VCC, and the power clamp voltage range is –VCC to
ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes the
rise and fall time of the buffer during a logic transition. Optional rising and falling
waveform tables can be added to more accurately describe the characteristics of
the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance
includes the parasitic capacitances of the output pad, clamp diodes (if present),
and input transistors. The package RLC is device package-specific and defines the
resistance, inductance, and capacitance of the bond wire and pin of the I/O.

f For more information about IBIS models and Altera-specific features, including links
to the official IBIS specification, refer to AN 283: Simulating Altera Devices with IBIS
Models.

Creating Accurate IBIS Models
There are two methods to obtain Altera device IBIS files for your board-level signal
integrity simulations. You can download generic IBIS models from the Altera website
or you can use the IBIS writer in the Quartus II software to create design-specific
models.

Figure 7–2. Five Basic Elements in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg

1

2

4

3

5

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–9
Simulation with IBIS Models
Download IBIS Models
Altera provides IBIS models for almost all FPGA and FPGA configuration devices.
Check the Altera IBIS Models page for information about whether models for your
selected device are available. You can use the IBIS models from the website to perform
early simulations of the I/O buffers you expect to use in your design as part of a pre-
layout analysis.

Downloaded IBIS models have the RLC package values set to one particular device in
each device family. To simulate your design with the model accurately, you must
adjust the RLC values in the IBIS model file to match the values for your particular
device package by performing the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family
you are using for your design. The .zip file contains the .ibs file along with an IBIS
model user guide and a model data correlation report.

2. Download the Package RLC Values spreadsheet for the same device family.

3. Open the spreadsheet and locate the row that describes the device package used in
your design.

4. From the package’s I/O row, copy the minimum, maximum, and typical values of
resistance, inductance, and capacitance for your device package.

5. Open the .ibs file in a text editor and locate the [Package] section of the file.

6. Overwrite the listed values copied with the values from the spreadsheet and save
the file.

The .ibs file is now customized for your device package and can be used for any
simulation. IBIS models downloaded and used for simulations in this manner are
generic. They describe only a certain set of models listed for each device on the Altera
IBIS Models page of the Altera website. To create customized models for your design,
use the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer
If you have started your FPGA design and have created custom I/O assignments,
such as drive strength settings or the enabling of clamping diodes for ESD protection,
you can use the Quartus II IBIS Writer to create custom IBIS models to accurately
reflect your assignments. IBIS models created with the IBIS Writer take I/O
assignment settings into account.

If the Enable Advanced I/O Timing option is turned off, the generated .ibs files are
based on the load value setting for each I/O standard on the Capacitive Loading page
of the Device and Pin Options dialog box in the Device dialog box. With the Enable
Advanced I/O Timing option turned on, IBIS models use an effective capacitive load
based on settings found in the board trace model on the Board Trace Model page in
the Device and Pin Options dialog box or the Board Trace Model view in the Pin
Planner. The effective capacitive load is based on the sum of the Near capacitance,
Transmission line distributed capacitance, and the Far capacitance settings in the
board trace model. Resistances and transmission line inductance values are ignored.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp
http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp
http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp

7–10 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
1 If you made any changes from the default load settings, the delay in the generated
IBIS model cannot safely be added to the Quartus II tCO measurement to account for
the double counting problem. This is because the load values between the two delay
measurements do not match. When this happens, the Quartus II software displays
warning messages when the EDA Netlist Writer runs to remind you about the load
value mismatch.

h For step-by-step instructions on how to generate IBIS models with the Quartus II
software, refer to Generating IBIS Output Files with the Quartus II Software in Quartus II
Help.

f For more information about IBIS model generation, refer to the AN 283: Simulating
Altera Devices with IBIS Models or to the Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx Software
You must integrate IBIS models downloaded from the Altera website
(www.altera.com) or created with the Quartus II IBIS Writer into board design
simulations to accurately model timing and signal integrity. The HyperLynx software
from Mentor Graphics is one of the most popular tools for design simulation. The
HyperLynx software makes it easy to integrate IBIS models into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-speed
designs, consisting of two products, LineSim and BoardSim. LineSim is an early
simulation tool. Before any board routing takes place, LineSim is used to simulate
“what if” scenarios to assist in creating routing rules and defining board parameters.
BoardSim is a post-layout tool used to analyze existing board routing. Specific nets are
selected from a board layout file and simulated in a manner similar to LineSim. With
board and routing parameters, and surrounding signal routing known, highly
accurate simulations of the final fabricated PCB are possible. This section focuses on
LineSim. Because the process of creating and running simulations is very similar for
both LineSim and BoardSim, the details of IBIS model use in LineSim applies to
simulations in BoardSim.

Simulations in LineSim are configured using a schematic GUI to create connections
and topologies between I/O buffers, route trace segments, and termination
components. LineSim provides two methods for creating routing schematics:
cell-based and free-form. Cell-based schematics are based on fixed cells consisting of
typical placements of buffers, trace impedances, and components. Parts of the
grid-based cells are filled with the desired objects to create the topology. A topology in
a cell-based schematic is limited by the available connections within and between the
cells.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/boardlevel/ibis/eda_pro_ibis_out.htm
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–11
Simulation with IBIS Models
A more robust and expandable way to create a circuit schematic for simulation is to
use the free-form schematic format in LineSim as shown in Figure 7–3. The free-form
schematic format makes it easy to place parts into any configuration and edit them as
required. This section describes the use of IBIS models with free-form schematics, but
the process is nearly identical for cell-based schematics.

When you use HyperLynx software to perform simulations, you typically perform the
following steps:

1. Create a new LineSim free-form schematic document and set up the board stackup
for your PCB using the Stackup Editor. In this editor, specify board layer
properties including layer thickness, dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic
represents all the parts of the routed net including source and destination I/O
buffers, termination components, transmission line segments, and representations
of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their
behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in
the circuit that you want to monitor during simulation. Typically, at least one
probe is attached to the pin of a destination I/O buffer. For differential signals, you
can attach a differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and
test the circuit under different drive strength conditions.

Figure 7–3. HyperLynx LineSim Free-Form Schematic Editor
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–12 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
6. Interpret the results and make adjustments. Based on the waveforms captured in
the digital oscilloscope, you can adjust anything in the circuit schematic to correct
any signal integrity issues, such as overshoot or ringing. If necessary, you can
make I/O assignment changes in the Quartus II software, regenerate the IBIS file
with the IBIS Writer, and apply the updated IBIS model to the buffers in your
HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the
results. When the operation of the net meets your design requirements, implement
changes to your I/O assignments in the Quartus II software and/or adjust your
board routing constraints, component values, and placement to match the
simulation.

f For more information about HyperLynx software, including schematic creation,
simulation setup, model usage, product support, licensing, and training, refer to
HyperLynx Help or the Mentor Graphics website at www.mentor.com.

Configuring LineSim to Use Altera IBIS Models
You must configure LineSim to find and use the downloaded or generated IBIS
models for your design. To do this, add the location of your .ibs file or files to the
LineSim Model Library search path. Then you apply a selected model to a buffer in
your schematic.

To add the Quartus II software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search path, perform
the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box appears
(Figure 7–4). The Model-library file path(s) list displays the order in which
LineSim searches file directories for model files.

Figure 7–4. LineSim Set Directories Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.mentor.com/

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–13
Simulation with IBIS Models
2. Click Edit. A dialog box appears where you can add directories and adjust the
order in which LineSim searches them (Figure 7–5).

3. Click Add

4. Browse to the default IBIS model location, <project directory>/board/ibis. Click OK.

5. Click Up to move the IBIS model directory to the top of the list. Click Generate
Model Index to update LineSim’s model database with the models found in the
added directory.

6. Click OK. The IBIS model directory for your project is added to the top of the
Model-library file path(s) list.

7. To close the Set Directories dialog box, click OK.

Integrating Altera IBIS Models into LineSim Simulations
When the location for IBIS files has been set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this, perform the
following steps:

Figure 7–5. LineSim Select Directories Dialog Box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–14 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with IBIS Models
1. Double-click a buffer symbol in your schematic to open the Assign Models dialog
box (Figure 7–6). You can also click Assign Models from the buffer symbol’s
right-click menu.

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If
you want to assign a model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears (Figure 7–7).

Figure 7–6. LineSim Assign Model Dialog Box

Figure 7–7. LineSim Select IC Model Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–15
Simulation with IBIS Models
4. To filter the list of available libraries to display only IBIS models, select .IBS. Scroll
through the Libraries list, and click the name of the library for your design. By
default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the Devices list.
If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can
also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as required for the
simulation.

9. Select and configure other buffer pins from the Pins list in the same manner.

10. Click OK when all I/O models are assigned.

Running and Interpreting LineSim Simulations
You can now run any desired simulations and make adjustments to the I/O
assignments or simulation parameters as required. For example, if you see too much
overshoot in the simulated signal at the destination buffer after running a simulation
(as shown in Figure 7–8), you could adjust the drive strength I/O assignment setting
to a lower value. Regenerate the .ibs file, and run the simulation again to verify
whether the change fixed the problem.

Figure 7–8. Example of Overshoot in HyperLynx with IBIS Models
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–16 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
If you see a discontinuity or other anomalies at the destination, such as slow rise and
fall times (as shown in Figure 7–9), adjust the termination scheme or termination
component values. After making these changes, rerun the simulation to check
whether your adjustments solved the problem. In this case, it is not necessary to
regenerate the .ibs file.

f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your design, visit the Altera Signal Integrity Center.

Simulation with HSPICE Models
HSPICE decks are used to perform highly accurate simulations by describing the
physical properties of all aspects of a circuit precisely. HSPICE decks describe I/O
buffers, board components, and all of the connections between them, as well as
defining the parameters of the simulation to be run. By their nature, to be effective,
HSPICE decks are highly customizable and require a detailed description of the
circuit under simulation. For devices that support advanced I/O timing, when Enable
Advanced I/O Timing is turned on, the HSPICE decks generated by the Quartus II
HSPICE Writer automatically include board components and topology defined in the
Board Trace Model. Configure the board components and topology in the Pin Planner
or in the Board Trace Model tab of the Device and Pin Options dialog box. All
HSPICE decks generated by the Quartus II software include compensation for the
double count problem. For more information about the double count problem, refer to
“The Double Counting Problem in HSPICE Simulations” on page 7–17. You can
simulate with the default simulation parameters built in to the generated HSPICE
decks or make adjustments to customize your simulation.

Figure 7–9. Example of Signal Integrity Anomaly in HyperLynx with IBIS Models
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20center

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–17
Simulation with HSPICE Models
Supported Devices and Signaling
Beginning with Quartus II software version 6.1 and later, the HSPICE Writer supports
the devices and signaling defined in Table 7–2. Only Stratix III, Stratix II, and
Cyclone III devices support the creation of a board trace model in the Quartus II
software for automatic inclusion in an HSPICE deck. Other devices require the board
description to be manually added to the HSPICE file.

If you are using a Stratix II device for your design, you can turn on Enable Advanced
I/O Timing and configure the board trace model for each I/O standard used in your
design. Newer families have this feature turned on by default and it cannot be turned
off. The HSPICE files include the board trace description you create in the Board Trace
Model view in the Pin Planner or the Board Trace Model tab in the Device and Pin
Options dialog box.

f For more information about the Enable Advanced I/O Timing option and
configuring board trace models for the I/O standards in your design, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Accessing HSPICE Simulation Kits
You can access the available HSPICE models at the SPICE Models for Altera Devices
web page and also with the Quartus II software’s HSPICE Writer tool. The Quartus II
software HSPICE Writer tool removes many common sources of user error from the
I/O simulation process. The HSPICE Writer tool automatically creates preconfigured
I/O simulation spice decks that only require the addition of a user board model. All
the difficult tasks required to configure the I/O modes and interpret the timing results
are handled automatically by the HSPICE Writer tool.

The Double Counting Problem in HSPICE Simulations
Simulating I/Os using accurate models is extremely helpful for finding and fixing
FPGA I/O timing and board signal integrity issues before any boards are built.
However, the usefulness of such simulations is directly related to the accuracy of the
models used and whether the simulations are set up and performed correctly. To
ensure accuracy in models and simulations created for FPGA output signals, the
timing hand-off between tCO timing in the Quartus II software and simulation-based
board delay must be taken into account. If this hand-off is not handled correctly, the
calculated delay could either count some of the delay twice or even miss counting
some of the delay entirely.

Table 7–2. HSPICE Writer Device and Signaling Support

Device Input Output Single-Ended Differential Automatic Board Trace
Model Description

Stratix III v v v v v
Stratix II GX
(non-HSSI pins) v v v v —

Stratix II v v v v v
HardCopy® II v v v v —

Cyclone III v v v v v
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/support/software/download/hspice/hsp-index.html

7–18 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Defining the Double Counting Problem
The double counting problem is inherent to the method output timing is analyzed
versus the method used for HSPICE models. The timing analyzer tools in the
Quartus II software measure delay timing for an output signal from the core logic of
the FPGA design through the output buffer ending at the FPGA pin with a default
capacitive load or a specified value for the selected I/O standard. This measurement
is the tCO timing variable as shown in Figure 7–10.

HSPICE models for board simulation measure tPD (propagation delay) from an
arbitrary reference point in the output buffer, through the device pin, out along the
board routing, and ending at the signal destination.

It is apparent immediately that if these two delays were simply added together, the
delay between the output buffer and the device pin would be counted twice in the
calculation. A model or simulation that does not account for this double count would
create overly pessimistic simulation results, because the double-counted delay can
limit I/O performance artificially. To fix the problem, it might seem that simply
subtracting the overlap between tCO and tPD would account for the double count.
However, this adjustment would not be accurate because each measurement is based
on a different load.

1 Input signals do not exhibit this problem because the HSPICE models for inputs stop
at the FPGA pin instead of at the input buffer. In this case, simply adding the delays
together produces an accurate measurement of delay timing.

Figure 7–10. Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus II tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–19
Simulation with HSPICE Models
The Solution to Double Counting
To adjust the measurements to account for the double-counting, the delay between the
arbitrary point in the output buffer selected by the HSPICE model and the FPGA pin
must be subtracted from either tCO or tPD before adding the results together. The
subtracted delay must also be based on a common load between the two
measurements. This is done by repeating the HSPICE model measurement, but with
the same load used by the Quartus II software for the tCO measurement. This second
measurement, called tTESTLOAD, is illustrated with the top circuit in Figure 7–11.

With tTESTLOAD known, the total delay for the output signal from the FPGA logic to the
signal destination on the board, accounting for the double count, is calculated as
shown in Equation 7–1.

The preconfigured simulation files generated by the HSPICE Writer in the Quartus II
software are designed to account for the double-counting problem based on this
calculation automatically. Performing accurate timing simulations is easy without
having to make adjustments for double counting manually.

Figure 7–11. Common Test Loads Used for Output Timing

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus
Test Load

HSPICE Netlist with
Quartus Test Load

HSPICE tPD
 with User

Specified Board Trace Model

Quartus II tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

Equation 7–1.

tdelay tCO tPD tTESTLOAD– +=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–20 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
HSPICE Writer Tool Flow
This section includes information to help you get started using the Quartus II
software HSPICE Writer tool. The information in this section assumes you have a
basic knowledge of the standard Quartus II software design flow, such as project and
assignment creation, compilation, and timing analysis.

f For additional information about standard design flows, refer to the appropriate
sections of the Quartus II Handbook.

Applying I/O Assignments
The first step in the HSPICE Writer tool flow is to configure the I/O standards and
modes for each of the pins in your design properly. In the Quartus II software, these
settings are represented by assignments that map I/O settings, such as pin selection,
and I/O standard and drive strength, to corresponding signals in your design.

The Quartus II software provides multiple methods for creating these assignments:

■ Using the Pin Planner

■ Using the assignment editor

■ Manually editing the .qsf file

■ By making assignments in a scripted Quartus II flow using Tcl

Enabling HSPICE Writer
You must enable the HSPICE Writer in the Settings dialog box of the Quartus II
software (Figure 7–12) to generate the HSPICE decks from the Quartus II software.

Figure 7–12. EDA Tool Settings: Board Level Options Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–21
Simulation with HSPICE Models
Enabling HSPICE Writer Using Assignments
You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable
HSPICE Writer during a full compile, include the lines shown in Example 7–1 in your
Tcl script.

As with command-line invocation, specifying the output directory is optional. If not
specified, the output directory defaults to board/hspice.

Naming Conventions for HSPICE Files
HSPICE Writer automatically generates simulation files and names them using the
following naming convention:

<device>_<pin #>_<pin_name>_<in/out>.sp

For bidirectional pins, two spice decks are produced; one with the I/O buffer
configured as an input, and the other with the I/O buffer configured as an output.

The Quartus II software supports alphanumeric pin names that contain the
underscore (_) and dash (-) characters. Any illegal characters used in file names are
converted automatically to underscores.

The contents of the HSPICE files are described in detail in “Sample Output for I/O
HSPICE Simulation Deck” on page 7–33 and “Sample Input for I/O HSPICE
Simulation Deck” on page 7–28.

Invoking HSPICE Writer
After HSPICE Writer is enabled, the HSPICE simulation files are generated
automatically each time the project is completely compiled. The Quartus II software
also provides an option to generate a new set of simulation files without having to
recompile manually. In the Processing menu, click Start EDA Netlist Writer to
generate new simulation files automatically.

1 You must perform both Analysis & Synthesis and Fitting on a design before invoking
the HSPICE Writer tool.

Example 7–1. Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_id eda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–22 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Invoking HSPICE Writer from the Command Line
If you use a script-based flow to compile your project, you can create HSPICE model
files by including the commands shown in Example 7–2 in your Tcl script (.tcl file).

The <output_directory> option specifies the location where HSPICE model files are
saved. By default, the <project directory>/board/hspice directory is used.

To invoke the HSPICE Writer tool through the command line, type the syntax shown
in Example 7–3.

<output_directory> specifies the location where the generated spice decks will be
written (relative to the design directory). This is an optional parameter and defaults to
board/hspice.

Customizing Automatically Generated HSPICE Decks
HSPICE models generated by the HSPICE Writer can be used for simulation as
generated. A default board description is included, and a default simulation is set up
to measure rise and fall delays for both input and output simulations, which
compensates for the double counting problem. However, Altera recommends that you
customize the board description to more accurately represent your routing and
termination scheme.

The sample board trace loading in the generated HSPICE model files must be
replaced by your actual trace model before you can run a correct simulation. To do
this, open the generated HSPICE model files for all pins you want to simulate and
locate the section shown in Example 7–4.

You must replace the example load with a load that matches the design of your PCB
board. This includes a trace model, termination resistors, and, for output simulations,
a receiver model. The spice circuit node that represents the pin of the FPGA package is
called pin. The node that represents the far pin of the external device is called load-in
(for output SPICE decks) and source-in (for input SPICE decks).

Example 7–2. Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_ideda_board_design_signal_integrity

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

Example 7–3. Invoke HSPICE Writer

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

Example 7–4. Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–23
Simulation with HSPICE Models
For an input simulation, you must also modify the stimulus portion of the spice file.
The section of the file that must be modified is indicated in the comment block shown
in Example 7–5.

Replace the sample stimulus model with a model for the device that will drive the
FPGA.

Running an HSPICE Simulation
Because simulation parameters are configured directly in the HSPICE model files,
running a simulation requires only that you open an HSPICE file in the HSPICE user
interface and start the simulation. The HSPICE user interface window is shown in
Figure 7–13.

Click Open and browse to the location of the HSPICE model files generated by the
Quartus II HSPICE Writer. The default location for HSPICE model files is <project
directory>/board/hspice. Select the .sp file generated by the HSPICE Writer for the
signal you want to simulate. Click OK.

To run the simulation, click Simulate. The status of the simulation is displayed in the
window and saved in an .lis file with the same name as the .sp file when the
simulation is complete. Check the .lis file if an error occurs during the simulation
requiring a change in the .sp file to fix.

Interpreting the Results of an Output Simulation
By default, the automatically generated output simulation spice decks are set up to
measure three delays for both rising and falling transitions. Two of the measurements,
tpd_rise and tpd_fall, measure the double-counting corrected delay from the FPGA
pin to the load pin. To determine the complete clock-edge to load-pin delay, add these
numbers to the Quartus II software reported default loading tCO delay.

Example 7–5. Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Figure 7–13. HSPICE User Interface Window
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–24 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are required for the double-counting compensation
process and are not required for further timing usage. Refer to “Simulation Analysis”
on page 7–33 for a description of these measurements.

Interpreting the Results of an Input Simulation
By default, the automatically generated input simulation SPICE decks are set up to
measure delays from the source’s driver pin to the FPGA’s input pin for both rising
and falling transitions. The propagation delay is reported by HSPICE measure
statements as tpd_rise and tpd_fall. To determine the complete source driver pin-
to-FPGA register delay, add these numbers to the Quartus II software reported TH and
TSU input timing numbers.

Viewing and Interpreting Tabular Simulation Results
The .lis file stores the collected simulation data in tabular form. The default
simulation configured by the HSPICE Writer produces delay measurements for rising
and falling transitions on both input and output simulations. These measurements are
found in the .lis file and named tpd_rise and tpd_fall. For output simulations, these
values are already adjusted for the double count. To determine the complete delay
from the FPGA logic to the load pin, add either of these measurements to the
Quartus II tCO delay. For input simulations, add either of these measurements to the
Quartus II tSU and tH delay values to calculate the complete delay from the far end
stimulus to the FPGA logic. Other values found in the .lis file, such as
tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and t_dblcnt_fall, are parts of
the double count compensation calculation. These values are not necessary for further
analysis.

Viewing Graphical Simulation Results
You can view the results of the simulation quickly as a graphical waveform display
using the AvanWaves viewer included with HSPICE. With the default simulation
configured by the HSPICE Writer, you can view the simulated waveforms at both the
source and destination in input and output simulations.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–25
Simulation with HSPICE Models
To see the waveforms for the simulation, in the HSPICE user interface window, click
AvanWaves. The AvanWaves viewer opens and displays the Results Browser as
shown in Figure 7–14.

The Results Browser lets you select which waveform to view quickly in the main
viewing window. If multiple simulations are run on the same signal, the list at the top
of the Results Browser displays the results of each simulation. Click the simulation
description to select which simulation to view. By default, the descriptions are
derived from the first line of the HSPICE file, so the description might appear as a line
of asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the
Types list, select Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform
appears in the main viewing window.

Figure 7–14. HSPICE AvanWaves Results Browser
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–26 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
You can zoom in and out and adjust the view as desired (Figure 7–15).

Making Design Adjustments Based on HSPICE Simulations
Based on the results of your simulations, you can make adjustments to the I/O
assignments or simulation parameters if required. For example, after you run a
simulation and see overshoot or ringing in the simulated signal at the destination
buffer as shown in the example in Figure 7–16, you can adjust the drive strength I/O
assignment setting to a lower value. Regenerate the HSPICE deck, and run the
simulation again to verify that the change fixed the problem.

Figure 7–15. AvanWaves Waveform Viewer
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–27
Simulation with HSPICE Models
If there is a discontinuity or any other anomalies at the destination as shown in the
example in Figure 7–17, adjust the board description in the Quartus II Board Trace
Model (for Stratix II, Stratix III, or Cyclone III devices) or in the generated HSPICE
model files to change the termination scheme or adjust termination component
values. After making these changes, regenerate the HSPICE files if necessary, and
rerun the simulation to verify whether your adjustments solved the problem.

Figure 7–16. Example of Overshoot in the AvanWaves Waveform Viewer
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–28 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
f For more information about board-level signal integrity and to learn about ways to
improve it with simple changes to your FPGA design, refer to the Altera Signal
Integrity Center.

Sample Input for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation spice deck for an I/O of
type input. Each section presents the simulation file one block at a time.

Header Comment
The first block of an input simulation spice deck is the header comment. The purpose
of this block is to provide an easily readable summary of how the simulation file has
been automatically configured by the Quartus II software.

This block has two main components: The first component summarizes the I/O
configuration relevant information such as device, speed grade, and so on. The
second component specifies the exact test condition that the Quartus II software
assumes for the given I/O standard. Example 7–6 shows a header comment block.

Figure 7–17. Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–29
Simulation with HSPICE Models
Simulation Conditions
The simulation conditions block loads the appropriate process corner models for the
transistors. This condition is automatically set up for the slow timing corner and is
modified only if other simulation corners are desired. Example 7–7 shows a
simulation conditions block.

Simulation Options
The simulation options block configures the simulation temperature and configures
HSPICE with typical simulation options. Example 7–8 shows a simulation options
block.

Example 7–6. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck*

* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus II’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

Example 7–7. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * TT process corner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–30 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
f For a detailed description of these options, consult your HSPICE manual.

Constant Definition
The constant definition block of the simulation file instantiates the voltage sources
that controls the configuration modes of the I/O buffer. Example 7–9 shows a constant
definition block.

Example 7–8. Simulation Options Block

* Simulation Options

.options brief=0

.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Example 7–9. Constant Definition Block

* Constant Definition

voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

■ Voltage source voeb controls the output enable of the buffer and is set to disabled
for inputs.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ The next 11 voltages sources control the I/O standard of the buffer and are
configured through a later library call.

■ vdin is not used on input pins because it is the data pin for the output buffer.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–31
Simulation with HSPICE Models
Buffer Netlist
The buffer netlist block (Example 7–10) of the simulation spice deck loads all the load
models required for the corresponding input pin.

Drive Strength
The drive strength block (Example 7–11) of the simulation SPICE deck loads the
configuration bits necessary to configure the I/O into the proper I/O standard and
drive strengths. Although these settings are not relevant to an input buffer, they are
provided to allow the SPICE deck to be modifiable to support bidirectional
simulations.

I/O Buffer Instantiation
The I/O buffer instantiation block of the simulation SPICE deck instantiates the
necessary power supplies and I/O model components that are necessary to simulate
the given I/O.

Example 7–10. Buffer Netlist Block

* IO Buffer Netlist

.include ‘vio_buffer.inc’

Example 7–11. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–32 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Example 7–12 shows I/O buffer instantiation.

Board Trace and Termination
The board trace and termination block of the simulation SPICE deck is provided only
as an example (shown in Example 7–13). Replace this block with your own board
trace and termination models.

Stimulus Model
The stimulus model block of the simulation spice deck is provided only as a place
holder example (shown in Example 7–14). Replace this block with your own stimulus
model. Options for this include an IBIS or HSPICE model, among others.

Example 7–12. I/O Buffer Instantiation

I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf

* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Example 7–13. Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

Example 7–14. Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–33
Simulation with HSPICE Models
Simulation Analysis
The simulation analysis block (Example 7–15) of the simulation file is configured to
measure the propagation delay from the source to the FPGA pin. Both the source and
end point of the delay are referenced against the 50% VCCN crossing point of the
waveform.

Sample Output for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation SPICE deck for an
I/O-type output. Each section presents the simulation file one block at a time.

Header Comment
The first block of an output simulation SPICE deck is the header comment, as shown
in Example 7–16. The purpose of this block is to provide a readable summary of how
the simulation file has been automatically configured by the Quartus II software.

This block has two main components:

■ The first component summarizes the I/O configuration relevant information such
as device, speed grade, and so on.

■ The second component specifies the exact test condition that the Quartus II
software assumes when generating tCO delay numbers. This information is used as
part of the double-counting correction circuitry contained in the simulation file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can
also be used to simulate the fast process corner as well. The fast corner conditions are
listed in the header under the notes section.

Example 7–15. Simulation Analysis Block

* Simulation Analysis Setup

* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns

* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point

.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–34 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
The final section of the header comment lists any warning messages that you must
consider when you use the SPICE decks.

Simulation Conditions
The simulation conditions block (Example 7–17) loads the appropriate process corner
models for the transistors. This condition is automatically set up for the slow timing
corner and must be modified only if other simulation corners are desired.

Example 7–16. Header Comment Block

* Quartus II HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Quartus II for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Quartus II Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner
**)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–35
Simulation with HSPICE Models
1 Two separate corners cannot be simulated at the same time. Instead, simulate the base
case using the Quartus corner as one simulation and then perform a second
simulation using the desired customer corner. The results of the two simulations can
be manually added together.

Simulation Options
The simulation options block (Example 7–18) configures the simulation temperature
and configures HSPICE with typical simulation options.

f For a detailed description of these options, consult your HSPICE manual.

Example 7–17. Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * typical-typical process corner

Example 7–18. Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–36 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Constraint Definition
The constant definition block (Example 7–19) of the output simulation SPICE deck
instantiates the voltage sources that controls the configuration modes of the I/O
buffer.

I/O Buffer Netlist
The I/O buffer netlist block (Example 7–20) loads all of the models required for the
corresponding pin. These include a model for the I/O output buffer, as well as any
loads that might be present on the pin.

Example 7–19. Constant Definition Block

* Constant Definition

voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

■ Voltage source voeb controls the output enable of the buffer.

■ vopdrain controls the open drain mode for the I/O.

■ vrambh controls the bus hold circuitry in the I/O.

■ vrpullup controls the weak pullup.

■ vpci controls the PCI clamp.

■ The next ten voltage sources control the I/O standard of the buffer and are configured through a later
library call. Stratix III and Cyclone III devices have more bits and so might have more voltage sources
listed in the constant definition block. They also have slew rate and delay chain settings.

■ vdin is connected to the data input of the I/O buffer.

■ The edge rate of the input stimulus is automatically set to the correct value by the Quartus II software.

Example 7–20. I/O Buffer Netlist Block

*IO Buffer Netlist

.include ‘hio_buffer.inc’

.include ‘lvds_input_load.inc’

.include ‘lvds_oct_load.inc’
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–37
Simulation with HSPICE Models
Drive Strength
The drive strength block (Example 7–21) of the simulation spice deck loads the
configuration bits for configuring the I/O to the proper I/O standard and drive
strength. These options are set by the HSPICE Writer tool and are not changed for
expected use.

Slew Rate and Delay Chain
Stratix III and Cyclone III devices have sections for configuring the slew rate and
delay chain settings (Example 7–22).

Example 7–21. Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

Example 7–22. Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings

.lib ‘lib/output_delay_control.lib’ no_delay

* Programmable Slew Rate Control Settings

.lib ‘lib/slew_rate_control.lib’ slow_slow
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–38 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
I/O Buffer Instantiation
The I/O buffer instantiation block (Example 7–23) of the output simulation spice deck
instantiates the necessary power supplies and I/O model components that are
necessary to simulate the given I/O.

Board and Trace Termination
The board trace and termination block (Example 7–24) of the simulation SPICE deck is
provided only as an example. Replace this block with your specific board loading
models.

Example 7–23. I/O Buffer Instantiation Block

* I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf

* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Example 7–24. Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–39
Simulation with HSPICE Models
Double-Counting Compensation Circuitry
The double-counting compensation circuitry block (Example 7–25) of the simulation
SPICE deck instantiates a second I/O buffer that is used to measure double-counting.
The buffer is configured identically to the user I/O buffer but is connected to the
Quartus II software test load. The simulated delay of this second buffer can be
interpreted as the amount of double-counting between the Quartus II software and
HSPICE Writer simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin,
consider separating the double-counting circuitry from the simulation file. In doing
so, you can perform any number of I/O simulations while referencing the delay only
once. For more information about the double-counting problem, refer to “The Double
Counting Problem in HSPICE Simulations” on page 7–17.

Example 7–25. (Part 1 of 2)Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Quartus II and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner the double counting will be automatically
* compensated by this spice deck. In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you will need to remove this section of code and manually
* account for double counting. A description of Altera’s
* recommended procedure for this process can be found in the
* Quartus II HSPICE Writer AppNote.
*

* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97

* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0
vrpullup_tl rpullup_tl 0 0

* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl

* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf

* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–40 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Simulation with HSPICE Models
Simulation Analysis
The simulation analysis block (Example 7–26) is set up to measure double-counting
corrected delays. This is accomplished by measuring the uncompensated delay of the
I/O buffer when connected to the user load, and when subtracting the simulated
amount of double-counting from the test load I/O buffer.

Advanced Topics
The information in this section describes some of the more advanced topics and
methods employed when setting up and running HSPICE simulation files.

PVT Simulations
The automatically generated HSPICE simulation files are set up to simulate the slow
process corner using low voltage, high temperature, and slow transistors. To ensure a
fully robust link, Altera recommends that you run simulations over all process
corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify
the spice decks in a two step process:

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

* Default Altera Test Load
* - 3.3V LVTTL default test condition is an open load

Example 7–26. Simulation Analysis Block

*Simulation Analysis Setup

* Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns

* Measure the propagation delay to the load pin. This value will
* include some double counting with Quartus II’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(load) val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1

* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1

* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

Example 7–25. (Part 2 of 2)Double-Counting Compensation Circuitry Block
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 7: Signal Integrity Analysis with Third-Party Tools 7–41
Simulation with HSPICE Models
1. Remove the double-counting compensation circuitry from the simulation file. This
is required as the amount of double-counting is dependant upon how the
Quartus II software calculates delays and is not based on which PVT corner is
being simulated. By default, the Quartus II software provides timing numbers
using the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE
temperature, changing the supply voltage sources, and loading the correct
transistor models.

A more detailed description of HSPICE process corners can be found in the
family-specific HSPICE model documentation. This document is available online with
the HSPICE models as described in “Accessing HSPICE Simulation Kits” on
page 7–17.

Hold Time Analysis
Altera recommends performing worst-case hold time analysis using the fast corner
models, which use fast transistors, high voltage, and low temperature. This involves
modifying the SPICE decks to select the correct temperature option, change the
supply voltage sources, and load the correct fast transistor models. The values of
these parameters are located in the header comment section of the corresponding
simulation deck files.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results
with the Quartus II software fast timing model. This requires that you change the
double-counting compensation circuitry in the simulations files to also simulate the
fast process corners, as this is what the Quartus II software uses for the fast timing
model.

1 This method of hold time analysis is recommended only for globally synchronous
buses. Do not apply this method of hold-time analysis to source synchronous buses.
This is because the source synchronous clocking scheme is designed to cancel out
some of the PVT timing effects. If this is not taken into account, the timing results will
not be accurate. Proper source synchronous timing analysis is beyond the scope of this
document.

I/O Voltage Variations
Use each of the FPGA family datasheets to verify the recommended operating
conditions for supply voltages. For current FPGA families, the maximum
recommended voltage corresponds to the fast corner, while the minimum
recommended voltage corresponds to the slow corner. These voltage
recommendations are specified at the power pins of the FPGA and are not necessarily
the same voltage that are seen by the I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect
pessimistically by including a 50-mV IR drop on the VCCPD supply when a high drive
strength standard is being used.

Correlation Report
Correlation reports for the HSPICE I/O models are located in the family-specific
HSPICE I/O buffer simulation kits. Refer to “Accessing HSPICE Simulation Kits” on
page 7–17 for additional information.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

7–42 Chapter 7: Signal Integrity Analysis with Third-Party Tools
Conclusion
Conclusion
As FPGA devices are used in more high-speed applications, it becomes increasingly
necessary to perform board-level signal integrity analysis simulations. You must run
such simulations to ensure good signal integrity between the FPGA and any
connected devices. The Quartus II software helps to simplify this process with the
ability to automatically generate I/O buffer description models easily with the IBIS
and HSPICE Writers. IBIS models can be integrated into a third-party signal integrity
analysis workflow using a tool such as Mentor Graphics HyperLynx software,
generating quick and accurate simulation results. HSPICE decks include
preconfigured simulations and only require descriptions of board routing and
stimulus models to create highly accurate simulation results using Synopsys HSPICE.
Either type of simulation helps prevent unnecessary board spins, increasing your
productivity and decreasing your costs.

Document Revision History
Table 7–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 7–3. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0 Updated device support.

November 2009 9.1.0 No change to content.

March 2009 9.0.0
■ Was volume 3, chapter 12 in the 8.1.0 release.

■ No change to content.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added information for Stratix III devices.

■ Input signals for Cyclone III devices are supported.

May 2008 8.0.0

■ Updated “Introduction” on page 12–1.

■ Updated Figure 12–1.

■ Updated Figure 12–3.

■ Updated Figure 12–13.

■ Updated “Output File Generation” on page 12–6.

■ Updated “Simulation with HSPICE Models” on page 12–17.

■ Updated “Invoking HSPICE Writer from the Command Line” on page 12–22.

■ Added “Sample Input for I/O HSPICE Simulation Deck” on page 12–29.

■ Added “Sample Output for I/O HSPICE Simulation Deck” on page 12–33.

■ Updated “Correlation Report” on page 12–41.

■ Added hyperlinks to referenced documents and websites throughout the chapter.

■ Made minor editorial updates.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52015-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52015-10.0.1
8. Mentor Graphics PCB Design Tools
Support
This chapter discusses how the Quartus® II software interacts with the Mentor
Graphics® I/O Designer software and the DxDesigner software to provide a complete
FPGA-to-board design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good and correct
PCB design practices are essential to ensure correct system operation. The PCB design
takes place concurrently with the design and programming of the FPGA. The FPGA
or ASIC designer initially creates signal and pin assignments, and the board designer
must correctly transfer these assignments to the symbols in their system circuit
schematics and board layout. As the board design progresses, Altera recommends
reassigning pins to optimize the PCB layout. Ensure that you inform the FPGA
designer of the pin reassignments so that the new assignments are included in an
updated placement and routing of the design.

The Mentor Graphics I/O Designer software allows you to take advantage of the full
FPGA symbol design, creation, editing, and back-annotation flow supported by the
Mentor Graphics tools.

This chapter covers the following topics:

■ Performing design flow between the Quartus II software, the Mentor Graphics
I/O Designer software, and the DxDesigner software

■ Setting up the Quartus II software to create the design flow files

■ Creating an I/O Designer database project to incorporate the Quartus II software
signal and pin assignment data

■ Updating signal and pin assignment changes between the I/O Designer software
and the Quartus II software

■ Generating symbols in the I/O Designer software

■ Creating symbols in the DxDesigner software from the Quartus II software output
files without the use of the I/O Designer software

This chapter is intended for board design and layout engineers who want to start the
FPGA board integration while the FPGA is still in the design phase. Alternatively, the
board designer can plan the FPGA pin-out and routing requirements in the Mentor
Graphics tools and pass the information back to the Quartus II software for placement
and routing. Part librarians can also benefit from this chapter by learning how to use
output from the Quartus II software to create new library parts and symbols.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ DxDesigner software version 2004 or later

■ Mentor Graphics I/O Designer software (optional)
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52015

8–2 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-PCB Design Flow
f To obtain and license the Mentor Graphics tools and for product information, support,
and training, refer to the Mentor Graphics website (www.mentor.com).

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera® FPGA design from the Quartus II
software, and a circuit schematic in the DxDesigner software. Figure 8–1 shows the
design flow with and without the I/O Designer software.

To perform the design flow shown in Figure 8–1, follow these steps:

1. In the Quartus II software, set up the board-level assignment settings to generate
an .fx for symbol generation.

2. Compile your design to generate the .fx and Pin-Out File (.pin). You can locate the
generated .fx and .pin files in the Quartus II project directory.

Figure 8–1. Design Flow with and Without the I/O Designer Software

Note to Figure 8–1:

(1) The Quartus II software generates the .fx in the output directory you specify in the Board-Level page of the Settings dialog box. However, the
Quartus II software and the I/O Designer software can import pin assignments from an .fx located in any directory. Altera recommends working
with a backup .fx to prevent overwriting existing assignments or importing invalid assignments.

No

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File (.fx)

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus II Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–3
FPGA-to-PCB Design Flow
3. Create a board design with the DxDesigner software and the I/O Designer
software by performing the following steps:

a. Create a new I/O Designer database based on the .fx and the .pin files.

b. In the I/O Designer software, make adjustments to signal and pin assignments.

c. Regenerate the .fx in the I/O Designer software to export the I/O Designer
software changes to the Quartus II software.

d. Generate a single or fractured symbol for use in the DxDesigner software.

e. Add the symbol to the sym directory of a DxDesigner project, or specify a new
DxDesigner project with the new symbol.

f. Instantiate the symbol in your DxDesigner schematic and export the design to
the board layout tool.

g. Back-annotate pin changes created in the board layout tool to the DxDesigner
software and back to the I/O Designer software and the Quartus II software.

4. Create a board design with the DxDesigner software without the I/O Designer
software by performing the following steps:

a. Create a new DxBoardLink symbol with the Symbol wizard and reference the
.pin from the Quartus II software in an existing DxDesigner project.

b. Instantiate the symbol in your DxDesigner schematic and export the design to
a board layout tool.

1 You can update these symbols with design changes with or without the I/O Designer
software. If you use the Mentor Graphics I/O Designer software and you change
symbols with the DxDesigner software, you must reimport the symbols into
I/O Designer to avoid overwriting your symbol changes.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software, you can extract pin assignment data and perform SSN
analysis of your design for designs targeting the Stratix III device family. You can
perform SSN analysis early in the board layout stage as part of your overall pin
planning process; however, you do not have to perform SSN analysis to generate pin
assignment data from the Quartus II software. You can use the SSN Analyzer tool in
the Quartus II software to optimize the pin assignments for better SSN performance.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook
and About the SSN Analyzer in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

www.altera.com/literature/hb/qts/qts_qii52018.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm

8–4 Chapter 8: Mentor Graphics PCB Design Tools Support
Setting Up the Quartus II Software
Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Mentor Graphics tools by generating .pin and .fx files (refer to Figure 8–2). The .pin is
an output file generated by the Quartus II Fitter that contains pin assignment
information. You can use the Quartus II Pin Planner to set and change the
assignments contained in the .pin and then transfer the assignments to the Mentor
Graphics tools. You cannot, however, import pin assignment changes from the Mentor
Graphics tools into the Quartus II software with the .pin.

The .pin lists all used and unused pins on your selected Altera device. It also provides
the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

The .fx is an input/output file generated by the Quartus II software and the I/O
Designer software that can be imported and exported from both programs. The .fx
generated by the Quartus II software lists only assigned pins and provides the
following advanced information fields for each pin on a device:

■ Pin number

■ I/O bank

■ Signal name

■ Signal direction

■ I/O standard

■ Drive strength (mA)

■ Termination enabling

■ Slew rate

■ IOB delay

■ Swap group

■ Differential pair type

The .fx generated by the I/O Designer software lists all pins, including unused pins.
In addition to the advanced information fields listed above, the .fx generated by the
Mentor Graphics I/O Designer software also includes the following information
fields:

■ Device pin name

■ Pin set

■ Pin set position
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–5
Setting Up the Quartus II Software
■ Pin set group

■ Super pin set group

■ Super pin set position

f For more information about .fx files and the information fields added by the Mentor
Graphics software, refer to FPGA Xchange-Format File (.fx) Definition in Quartus II
Help and Mentor Graphics website (www.mentor.com) respectively.

The I/O Designer software can also read from or update a Quartus II Settings File
(.qsf). The design flow uses the .qsf in a similar manner to the .fx, but does not
transfer pin swap group information between the I/O Designer software and the
Quartus II software.

1 Because the .qsf contains additional information about your project that the Mentor
Graphics I/O Designer software does not use, Altera recommends using the .fx
instead of the .qsf.

h For more information about the .qsf, refer to Quartus II Settings File (.qsf) Definition in
Quartus II Help.

Generating a .pin File
The Quartus II software automatically generates the .pin after compiling your FPGA
design or during I/O assignment analysis.

To start I/O assignment analysis, on the Processing menu, point to Start and then
click Start I/O Assignment Analysis. The Quartus II Fitter generates the .pin and
places the file in your Quartus II design directory with the name <project name>.pin.
The Quartus II software cannot import assignments from an existing .pin.

Figure 8–2 shows how to generate .pin and .fx files.

Figure 8–2. Generating .pin and .fx Files (Note 1)

Note to Figure 8–2:

(1) For more information about the full design flow, which includes the I/O Designer software, the DxDesigner software,
and the board layout tool flowchart details, refer to Figure 8–1.

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

.pin
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_qsf.htm
www.mentor.com
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/glossary/def_fpga_xchange.htm

8–6 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
f For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Generating an .fx File
You can generate an .fx in the Quartus II software for symbol generation in the
Mentor Graphics I/O Designer software.

h For more information about generating an .fx, refer to Generating FPGA
Xchange-Format Files for Use with Other EDA Tools in Quartus II Help.

Creating a Backup .qsf
To create a backup .qsf of your current pin assignments, follow these steps:

1. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

2. In the Import Assignments dialog box, browse to your project and turn on Copy
existing assignments into <project name>.qsf.bak.

3. Click OK.

f For more information about pin and signal assignment transfer, and files the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the I/O Designer Software
The Mentor Graphics I/O Designer software allows you to integrate your FPGA and
PCB designs. Pin and signal assignment changes can be made anywhere in the design
flow with either the Quartus II Pin Planner or the I/O Designer software. The
I/O Designer software facilitates moving these changes, as well as synthesis,
placement, and routing changes, between the Quartus II software, an external
synthesis tool (if used), and a schematic capture tool such as the DxDesigner software.

This section describes how to use the I/O Designer software to transfer pin and signal
assignment information to and from the Quartus II software with an .fx, and how to
create symbols for the DxDesigner software.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/boardlevel/fpgaxchange/eda_pro_gen_fpga_xchange.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/boardlevel/fpgaxchange/eda_pro_gen_fpga_xchange.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–7
FPGA-to-Board Integration with the I/O Designer Software
Figure 8–3 shows the design flow using the I/O Designer software.

f For more information about the I/O Designer software, and to obtain usage, support,
and product updates, use the Help menu in the I/O Designer software or refer to the
Mentor Graphics website (www.mentor.com).

I/O Designer Database Wizard
An .fpc file stores all I/O Designer project information. You can create a new database
incorporating information for the .fx and .pin files generated by the Quartus II
software using the I/O Designer Database Wizard. You can also create a new, empty
database and manually add the assignment information. If there is no signal or pin
assignment information currently available, you can create an empty database
containing only a selection of the target device. This action is useful if you know the
signals in your design and the pins you want to assign. You can transfer this
information at a later time to the Quartus II software for placement and routing.

Figure 8–3. Design Flow Using the I/O Designer Software (Note 1)

Notes to Figure 8–3:

(1) For more information about the full design flow including the Quartus II software flowchart details, refer to Figure 8–1
on page 8–2.

(2) These are DxDesigner software-specific steps in the design flow and are not part of the I/O Designer flow.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.mentor.com/

8–8 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
You can create an I/O Designer database with only a .pin or an .fx. However, if you
are only using a .pin, you cannot import any I/O assignment changes made in the
I/O Designer software back into the Quartus II software without first generating an
.fx. If an .fx creates the I/O Designer database, the database may not contain all the
available I/O assignment information. The .fx generated by the Quartus II software
only lists pins with assigned signals. Because the .pin lists all device pins—whether
signals are assigned to them or not—its use, along with the .fx, produces the most
complete set of information for creating the I/O Designer database.

If you skip a step in the following process, you can complete the skipped step later. To
return to a skipped step, on the Properties menu, click File. To create a new
I/O Designer database using the Database wizard, follow these steps:

1. Start the I/O Designer software. The Welcome to I/O Designer dialog box
appears. Select Wizard to create new database and click OK.

1 If the Welcome to I/O Designer dialog box does not appear, you can access
the wizard through the menu. To access the wizard, on the File menu, click
Database Wizard.

2. Click Next. The Define HDL source file page appears.

1 If no HDL files are available, or if the .fx contains your signal and pin
assignments, you can skip Step 3 and proceed to Step 4.

f For more information about creating and using HDL files in the Quartus II
software, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook, or refer to the I/O Designer Help.

3. If you have created a Verilog HDL or VHDL file in your Quartus II software
design, you can add a top-level Verilog HDL or VHDL file in the I/O Designer
software. Adding a file allows you to create functional blocks or get signal names
from your design. You must create all physical pin assignments in I/O Designer if
you are not using an .fx or a .pin. Click Next. The Database Name page appears.

4. In the Database Name page, type your database file name. Click Next. The
Database Location window appears.

5. Add a path to the new or an existing database in the Location field, or browse to a
database location. Click Next. The FPGA flow page appears.

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Quartus II 5.0, or a later version of the Quartus II
software.

8. Select the appropriate device family, device, package, and speed (if applicable),
from the corresponding menus. Click Next. The Place and route page appears.

1 The Quartus II software version selections in the Tool/Library menu may
not reflect the version of the Quartus II software currently installed in your
system even if you are using the latest version of the I/O Designer
software. The I/O Designer software uses the version number selection in
this window to identify available or obsolete devices in that particular
version of the Quartus II software. If you are unsure of the version to select,
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–9
FPGA-to-Board Integration with the I/O Designer Software
use the latest version listed in the menu. If the device you are targeting does
not appear in the device menu after making this selection, the device may
be new and not yet added to the I/O Designer software. For I/O Designer
software updates, contact Mentor Graphics or refer to their website
(www.mentor.com).

9. In the FPGAX file name field, type or browse to the backup copy of the .fx
generated by the Quartus II software.

10. In the Pin report file name field, type or browse to the .pin generated by the
Quartus II software. Click Next.

You can also select a .qsf for update. The I/O Designer software can update the
pin assignment information in the .qsf without affecting any other information in
the file.

1 You can select a .pin without selecting an .fx for import. The I/O Designer
software does not generate a .pin. To transfer assignment information to the
Quartus II software, select an additional file and file type. Altera
recommends selecting an .fx in addition to a .pin for transferring all the
assignment information in the .fx and .pin files.

1 In some versions of the I/O Designer software, the standard file picker may
incorrectly look for a .pin instead of an .fx. In this case, select All Files (*.*)
from the Save as type list and select the file from the list.

11. The Synthesis page appears. On the Synthesis page, you can specify an external
synthesis tool and a synthesis constraints file for use with the tool. If you do not
use an external synthesis tool, click Next.

f For more information about third-party synthesis tools, refer to Volume 3:
Verification of the Quartus II Handbook.

12. On the PCB Flow page, you can select an existing schematic project or create a
new project as a symbol information destination.

■ To select an existing project, select Choose existing project and click Browse
after the Project Path field. The Select project dialog box appears. Select the
project.

■ To create a new project, in the Select project dialog box, select Create new
empty project. Type the project file name in the Name field and browse to the
location where you want to save the file. Click OK.

If you have not specified a design tool to which you can send symbol information in
the I/O Designer software, click Advanced in the PCB Flow page and select your
design tool. If you select the DxDesigner software, you have the option to specify a
Hierarchical Occurrence Attributes (.oat) file to import into the I/O Designer
software. Click Next and then click Finish to create the database.

1 In I/O Designer version 2005 or later, the Update Wizard dialog box (refer to
Figure 8–7 on page 8–13) appears if you are creating the database with the Database
wizard. Use the Update Wizard dialog box to confirm creation of the I/O Designer
database using the selected .fx and .pin files.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.mentor.com/
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3.pdf

8–10 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Use the I/O Designer software and your newly created database to make pin
assignment changes, create pin swap groups, or adjust signal and pin properties in the
I/O Designer GUI (Figure 8–4).

f For more information about using the I/O Designer software and the DxDesigner
software, refer to the Mentor Graphics website (www.mentor.com) or refer to the
I/O Designer software or the DxDesigner Help.

Figure 8–4. Mentor Graphics I/O Designer Main Window
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.mentor.com/

Chapter 8: Mentor Graphics PCB Design Tools Support 8–11
FPGA-to-Board Integration with the I/O Designer Software
Updating Pin Assignments from the Quartus II Software
As the design process continues, the FPGA designer must make changes to the logic
design in the Quartus II software that places signals on different pins after
recompiling the design, or manually with the Quartus II Pin Planner. These types of
changes must be carried forward to the circuit schematic and board layout tools to
ensure that signals connect to the correct pins on the FPGA. Updating the .fx and the
.pin files in the Quartus II software facilitates this flow (Figure 8–5).

To update the .fx in your selected output directory and the .pin in your project
directory after making changes to the design, perform one of the following tasks:

■ compile, or

■ start EDA Netlist Writer.

You must rerun the I/O Assignment Analyzer whenever you make I/O changes in
the Quartus II software. To rerun the I/O Assignment Analyzer, perform one of the
following tasks:

■ on the Processing menu, click Start Compilation, or

■ on the Processing menu, click Start I/O Assignment Analysis.

f For more information about setting up the .fx and running the I/O Assignment
Analyzer, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy of the file, updating the file in the Quartus II software
overwrites any changes made to the file by the I/O Designer software. If there are
I/O Designer assignments in the .fx that you want to preserve, create a backup copy
of the file before updating it in the Quartus II software, and verify that your
I/O Designer database points to the backup copy. To point to the backup copy,
perform the steps in the following section.

Figure 8–5. Updating the I/O Designer Pin Assignments in the Design Flow (Note 1)

Note to Figure 8–5:

(1) For more information about the full design flow, which includes the Quartus II software, the DxDesigner software,
and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

.fx

.pin
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

8–12 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Whenever you update the .fx or the .pin in the Quartus II software, the I/O Designer
database imports the changes. You must set up the locations for the files in the
I/O Designer software.

1. To set up the file locations, on the File menu, click Properties. The project
Properties dialog box appears (Figure 8–6).

2. Under FPGA Xchange, click Browse to select the .fx file name and location.

3. To specify a Pin report file, under Place and Route, click Browse to select the .pin
file name and location.

After you have set up these file locations, the I/O Designer software monitors these
files for changes. If the .fx or .pin changes during the design flow, three indicators
flash red in the lower right corner of the I/O Designer GUI (refer to Figure 8–4 on
page 8–10). You can continue working or click on the indicators to open the
I/O Designer Update Wizard dialog box. If you have made changes to your design in
the Quartus II software that result in an updated .fx or .pin and the update indicators
do not flash or you have previously canceled an indicated update, manually open the
Update Wizard dialog box. To open the Update Wizard dialog box, on the File menu,
click Update.

Figure 8–6. Project Properties Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–13
FPGA-to-Board Integration with the I/O Designer Software
The I/O Designer Update Wizard dialog box lists the updated files associated with
the database (Figure 8–7).

The paths to the updated files have yellow exclamation points and the Status column
shows Not updated, indicating that the database has not yet been updated with the
newer information contained in the files. A checkmark to the left of any updated file
indicates that the file updates the database. Turn on any files you want to use to
update the I/O Designer database, and click Next. If you are not satisfied with the
database update, on the Edit menu, click Undo.

1 You can update the I/O Designer database using the .fx and the .pin files
simultaneously. Turning on the .fx and the .pin files for update causes the Update
Wizard dialog box to provide options for using assignments from one file or the other
exclusively or merging the assignments contained in both files into the I/O Designer
database. Versions of the I/O Designer software older than version 2005 merge
assignments contained in multiple files.

Figure 8–7. Update Wizard Dialog Box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

8–14 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
Sending Pin Assignment Changes to the Quartus II Software
In the same way that the FPGA designer can make adjustments that affect the PCB
design, the board designer can make changes to optimize signal routing and layout
that must be applied to the FPGA. The FPGA designer can take these required
changes back into the Quartus II software to refit the logic to match the adjustments to
the pin-out. The I/O Designer software accommodates this reverse flow as shown in
Figure 8–8.

You can make pin assignment changes directly in the I/O Designer software, or the
software can automatically update changes made in a board layout tool that are
back-annotated to a schematic entry program such as the DxDesigner software. You
must update the .fx to reflect these updates in the Quartus II software. To perform this
update in the I/O Designer software, on the Generate menu, click FPGA Xchange
File.

c If your I/O Designer database points to the .fx generated by the Quartus II software
instead of a backup copy, updating the file from the I/O Designer software overwrites
any changes made to the file by the Quartus II software. If there are assignments from
the Quartus II software in the file that you want to preserve, create a backup copy of
the file before updating it in the I/O Designer software, and verify that your
I/O Designer database points to the backup copy. To point to the backup copy,
perform the steps in “Updating Pin Assignments from the Quartus II Software” on
page 8–11.

Figure 8–8. Updating the Quartus II Pin Assignments in the Reverse Design Flow

Notes to Figure 8–8:

(1) These are software-specific steps in the design flow and are not necessary for the reverse flow steps of the design.
(2) For more information about the full design flow, which includes the complete I/O Designer software, the DxDesigner

software, and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

(2)

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
.fpc

Generate Symbolrr

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist DD Writerrr

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

(1) (1)
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–15
FPGA-to-Board Integration with the I/O Designer Software
You must import the updated .fx into the Quartus II software. To import the file,
follow these steps:

1. Start the Quartus II software and open your project.

2. On the Assignments menu, click Import Assignments.

3. In the File name box, click Browse and from the Files of type list, select FPGA
Xchange Files (*.fx).

4. Select the .fx and click Open.

5. Click OK.

Protecting Assignments in the Quartus II Software
To protect assignments in the Quartus II software, follow these steps:

1. Start the Quartus II software.

2. On the Assignments menu, click Import Assignments. The Import Assignments
dialog box appears.

3. Turn on Copy existing assignments into <project name>.qsf.bak before importing
before importing the .fx. This action automatically creates a backup copy of the
Quartus II constraints file that contains all your current pin assignments.

Generating Symbols for the DxDesigner Software
Along with circuit simulation, circuit board schematic creation is one of the first tasks
required in the design of a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The I/O Designer software allows you to create schematic symbols based on the
FPGA design exported from the Quartus II software.

Most FPGA devices contain hundreds of pins, requiring large schematic symbols that
may not fit on a single schematic page. Symbol designs in the I/O Designer software
can be split or fractured into various functional blocks, allowing multiple part
fractures on the same schematic page or across multiple pages. In the DxDesigner
software, these part fractures join together with the use of the HETERO attribute.

The I/O Designer software can generate symbols for use in various Mentor Graphics
schematic entry tools, and can import changes back-annotated by board layout tools
to update the database and feed updates back to the Quartus II software with the .fx.
This section discusses symbol creation specifically for the DxDesigner software.

You can create schematic symbols with the I/O Designer software in the following
ways:

■ Manually

■ Using the I/O Designer Symbol wizard

■ Importing previously created symbols from the DxDesigner software

The I/O Designer Symbol wizard can be used as a design base that allows you to
quickly create a symbol for manual editing at a later time. If you have created symbols
in a DxDesigner project and want to apply a different FPGA design to them, you can
manually import these symbols from the DxDesigner project. To import the symbols,
start the I/O Designer software, and on the File menu, click Import Symbol.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

8–16 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
f For more information about importing symbols from the DxDesigner software into an
I/O Designer database, refer to the I/O Designer Help.

Symbols created in the I/O Designer software are either functional, physical (PCB), or
both. Signals imported into the database, usually from Verilog HDL or VHDL files,
are the basis of a functional symbol. No physical device pins must be associated with
the signals to generate a functional symbol. This section focuses on board-level PCB
symbols with signals directly mapped to physical device pins through assignments in
either the Quartus II Pin Planner or in the I/O Designer database.

f For more information about manually creating, importing, and editing symbols in the
I/O Designer software, as well as the different types of symbols the software can
generate, refer to the I/O Designer Help.

Setting Up the I/O Designer Software to Work with the DxDesigner Software
To verify if you are set up to export symbols to a DxDesigner project, or to manually
set up the I/O Designer software to work with the DxDesigner software, you must set
the path to the DxDesigner executable, set the export type to DxDesigner, and set the
path to a DxDesigner project directory.

To set these options, follow these steps:

1. Start the I/O Designer software.

2. On the Tools menu, click Preferences. The Preferences dialog box appears.

3. Click Paths, double-click on the DxDesigner executable file path field, and click
Browse to select the location of the DxDesigner application (Figure 8–9).

4. Click Apply.

5. Click Symbol Editor and click Export. In the Export type menu, under General,
select DxDesigner/PADS-Designer (Figure 8–10).

Figure 8–9. Path Preferences Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–17
FPGA-to-Board Integration with the I/O Designer Software
6. Click Apply and click OK.

7. On the File menu, click Properties. The Properties dialog box appears.

8. Click the PCB Flow tab and click Path to a DxDesigner project directory.

9. Click OK.

If you do not have a new DxDesigner project in the Database wizard and a
DxDesigner project, you must create a new database with the DxDesigner software,
and point the I/O Designer software to this new project.

f For more information about creating and working with DxDesigner projects, refer to
the DxDesigner Help.

Creating Symbols with the Symbol Wizard
You can create, fracture, and edit FPGA symbols based on Altera devices with the
I/O Designer Symbol wizard. To create a symbol based on a selected Altera FPGA
device, follow these steps:

1. Start the I/O Designer software.

Figure 8–10. Symbol Editor Export Preferences
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

8–18 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the I/O Designer Software
2. Click Symbol Wizard in the toolbar, or on the Symbol menu, click Symbol
Wizard. The Symbol Wizard (1 of 6) page appears (Figure 8–11).

3. On page 1 of the Symbol Wizard page, in the Symbol name field, type the symbol
name. The DEVICE and PKG_TYPE fields are automatically populated with the
device and package information. Under Symbol type, click PCB. Under Use
signals, click All.

4. Click Next. The Symbol Wizard (2 of 6) page appears.

1 If the DEVICE and PKG_TYPE fields are blank or incorrect, cancel the
Symbol wizard and select the correct device information. On the File menu,
click Properties. In the Properties window, click the FPGA Flow tab and
enter the correct device information.

5. On page 2 of the Symbol Wizard page, select fracturing options for your symbol.
If you are using the Symbol wizard to edit a previously created fractured symbol,
you must turn on Reuse existing fractures to preserve your current fractures.
Select other options on this page as appropriate for your symbol.

6. Click Next. The Symbol Wizard (3 of 6) page appears.

7. Additional fracturing options are available on page 3 of the Symbol Wizard page.
After selecting the necessary options, click Next. The Symbol Wizard (4 of 6) page
appears.

8. On page 4 of the Symbol Wizard page, select the options for the appearance of the
symbols. Select the necessary options and click Next. The Symbol Wizard (5 of 6)
page appears.

Figure 8–11. Symbol Wizard
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–19
FPGA-to-Board Integration with the I/O Designer Software
9. On page 5 of the Symbol Wizard page, define what information you want to label
for the entire symbol and for individual pins. Select the necessary options and
click Next. The Symbol Wizard (6 of 6) page appears.

10. On the final page of the Symbol Wizard page, add additional signals and pins that
have not been placed in the symbol. Click Finish when you complete your
selections.

You can view your symbol and any fractures you created with the Symbol Editor
(Figure 8–12). You can edit parts of the symbol, delete fractures, or rerun the Symbol
wizard.

If assignments in the I/O Designer database are updated, the symbols created in the
I/O Designer software automatically reflect these changes. Assignment changes can
be made in the I/O Designer software, with an updated .fx from the Quartus II
software, or from a back-annotated change in your board layout tool.

Exporting Symbols to the DxDesigner Software
After you have completed your symbols, export the symbols to your DxDesigner
project. To generate all the fractures of a symbol, on the Generate menu, click All
Symbols. To generate a symbol for the currently displayed symbol in Symbol Editor,
click Current Symbol Only. The /sym directory in your DxDesigner project saves
each symbol in the database as a separate file. The symbols can be instantiated in your
DxDesigner schematics.

f For more information about working with DxDesigner projects, refer to the
DxDesigner Help.

Scripting Support
The I/O Designer software features a command line Tcl interpreter. All commands
issued through the GUI in the I/O Designer software translate into Tcl commands run
by the tool. You can view the generated Tcl commands and run scripts, or type
individual commands in the I/O Designer Console window.

Figure 8–12. The I/O Designer Symbol Editor
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

8–20 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
This scripting support section includes commands that perform some of the
operations described in this chapter.

If you want to change the .fx from which the I/O Designer software updates
assignments, type the following command at an I/O Designer Tcl prompt:

set_fpga_xchange_file <file name>

You can type the following command to update the I/O Designer database with
assignment updates made in the Quartus II software after specifying the .fx:

update_from_fpga_xchange_file

You can type the following command to update the .fx with changes made to the
assignments in the I/O Designer software for transfer back into the Quartus II
software:

generate_fpga_xchange_file

You can type the following command if you want to import assignment data from a
.pin created by the Quartus II software:

set_pin_report_file -quartus_pin <file name>

You can run the I/O Designer Symbol wizard with the following command:

symbolwizard

You can set the DxDesigner project directory path where symbols are saved with the
following command:

set_dx_designer_project -path <path>

f For more information about Tcl scripting and Tcl scripting with the Quartus II
software, refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook. For
more information about the Tcl scripting capabilities of the I/O Designer software as
well as a list of available commands, refer to the I/O Designer Help.

FPGA-to-Board Integration with the DxDesigner Software
The Mentor Graphics DxDesigner software is a design entry tool for schematic
capture. You can use it to create flat circuit schematics for all the PCB design types.
You can also use the DxDesigner software to create hierarchical schematics that
facilitate design reuse and a team-based design. You can use the DxDesigner software
in the design flow alone or in conjunction with the I/O Designer software. However,
if you use the DxDesigner software without the I/O Designer software, the design
flow is one-way, using only the .pin generated by the Quartus II software.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 8: Mentor Graphics PCB Design Tools Support 8–21
FPGA-to-Board Integration with the DxDesigner Software
You can only make signal and pin assignment changes in the Quartus II software and
these changes reflect as updated symbols in a DxDesigner schematic. You cannot
back-annotate changes made in a board layout tool or in a DxDesigner symbol to the
Quartus II software. Figure 8–13 shows the design flow without the I/O Designer
software.

f For more information about the DxDesigner software, including usage, support,
training, and product updates, refer to the Mentor Graphics website
(www.mentor.com), or choose Schematic Design Help Topics in the DxDesigner Help.

DxDesigner Project Settings
New projects in the DxDesigner software are set up to create FPGA symbols by
default. However, if you are using the I/O Designer software with the DxDesigner
software, you must enable the DxBoardLink Flow options for complete support and
compatibility with the I/O Designer software.

You can enable the DxBoardLink flow design configuration during or after creating a
new DxDesigner project.

To enable the DxBoardLink flow design configuration when creating a new
DxDesigner project, follow these steps:

1. Start the DxDesigner software.

Figure 8–13. Design Flow Without the I/O Designer Software (Note 1)

Note to Figure 8–13:

(1) For more information about the full design flow, which includes the Quartus II software, the I/O Designer software,
and the board layout tool flowchart details, refer to Figure 8–1 on page 8–2.

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.mentor.com/

8–22 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
2. On the File menu, click New and click the Project tab. The New dialog box
appears (Figure 8–14).

3. Click More. Turn on DxBoardLink (Figure 8–14).

1 To enable the DxBoardLink Flow design configuration in an existing
project, click Design Configurations in the Design Configuration toolbar
and turn on DxBoardLink (Figure 8–15).

Figure 8–14. New Project Dialog Box

Figure 8–15. DxBoardLink Design Configuration
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–23
FPGA-to-Board Integration with the DxDesigner Software
DxDesigner Symbol Wizard
You can create schematic symbols in the DxDesigner software manually or with the
Symbol wizard. The DxDesigner Symbol wizard is similar to the I/O Designer
Symbol wizard, but with fewer fracturing options.

FPGA symbols based on Altera devices can be created, fractured, and edited with the
DxDesigner Symbol wizard. To start the Symbol wizard, follow these steps:

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar, or on the File menu, click New. The New
window appears. Click the File tab and create a new file of type Symbol Wizard.

3. Type the new symbol name in the name field and click OK. The Symbol Wizard
page appears (Figure 8–16).

4. On the Wizard Task Selection page, choose to create a new symbol or modify an
existing symbol. If you are modifying an existing symbol, specify the library path
or alias, and select the existing symbol. If you are creating a new symbol, select
DxBoardLink for the symbol source. The DxDesigner block type defaults to
Module because the FPGA design does not have an underlying DxDesigner
schematic. Choose whether or not to fracture the symbol. After making your
selections, click Next. The New Symbol and Library Name page appears.

5. On the New Symbol and Library Name page, type a name for the symbol, an
overall part name for all the symbol fractures, and a library name for the new
library created for this symbol. By default, the part and library names are the same
as the symbol name. Click Next. The Symbol Parameters page appears.

Figure 8–16. Wizard Task Selection
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

8–24 Chapter 8: Mentor Graphics PCB Design Tools Support
FPGA-to-Board Integration with the DxDesigner Software
6. On the Symbol Parameters page, specify the appearance of the generated symbol
and how it matches up with the grid you have set in your DxDesigner project
schematic. After making your selections, click Next. The DxBoardLink Pin List
Import page appears (Figure 8–17).

7. On the DxBoardLink Pin List Import page, in the FPGA vendor list, select Altera
Quartus. In the Pin-Out file to import field, browse to and select the .pin from
your Quartus II design project directory. You can also select choices from the
Fracturing Scheme, Bus pin, and Power pin options. After making your selections,
click Next. The Symbol Attributes page appears.

8. On the Symbol Attributes page, select to create or modify symbol attributes for
use in the DxDesigner software. After making your selections, click Next. The Pin
Settings page appears.

9. On the Pin Settings page, make any final adjustments to pin and label location
and information. Each tabbed spreadsheet represents a fracture of your symbol.
After making your selections, click Save Symbol.

After creating the symbol, you can examine and place any fracture of the symbol in
your schematic. You can locate separate files of all the fractures you created in the
library you specified or created in the /sym directory in your DxDesigner project. You
can add the symbols to your schematics or you can manually edit the symbols or with
the Symbol wizard.

Figure 8–17. DxBoardLink Pin List Import
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 8: Mentor Graphics PCB Design Tools Support 8–25
Conclusion
1 Symbols created in the DxDesigner software can be edited and updated with newer
versions of the .pin generated by the Quartus II software. However, you cannot
fracture a symbol again because symbol fracturing is permanent. To create new
fractures for your design, create a new symbol in the Symbol wizard, and perform the
steps in “DxDesigner Symbol Wizard” on page 8–23.

f For more information about creating, editing, and instantiating component symbols
in DxDesigner, choose Schematic Design Help Topics from the Help menu in the
DxDesigner software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process that can lead to errors in the PCB netlist or
design, especially when multiple engineers are working on different parts of the
project. The design workflow available when using the Quartus II software with the
Mentor Graphics toolset assists the FPGA designer and the board designer in
preventing errors and focusing their attention on the design.

Document Revision History
Table 8–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 8–1. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ Removed Reference Document section.

■ General style editing.

■ Added a link to Help in “Performing Simultaneous Switching Noise (SSN) Analysis of
Your FPGA.”

■ Removed Figure 8–4 on page 8–9 and Figure 8–5 on page 8–11.

■ Updated “Generating an .fx File.”

November 2009 9.1.0
■ Added minor information about simultaneous switching noise (SSN) analysis on

“Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA.”

■ General style editing.

March 2009 9.0.0
■ Was chapter 6 in the 8.1.0 release.

■ Removed Figures that were numbered 6-4, 6-6, 6-7, and 6-8 in v8.1.0.

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

8–26 Chapter 8: Mentor Graphics PCB Design Tools Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52014-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52014-10.0.1
9. Cadence PCB Design Tools Support
This chapter addresses how the Quartus® II software interacts with the Cadence
Allegro Design Entry HDL software and the Cadence Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD Capture CIS) to
provide a complete FPGA-to-board integration design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good PCB design
practices are important to ensure the correct operation of your system. The PCB
design takes place concurrently with the design and programming of the FPGA. An
FPGA or ASIC designer initially creates the signal and pin assignments and the board
designer must transfer these assignments to the symbols used in their system circuit
schematics and board layout correctly. As the board design progresses, you must
perform pin reassignments to optimize the layout. You must communicate pin
reassignments to the FPGA designer to ensure the new assignments are processed
through the FPGA with updated placement and routing.

This chapter is intended for board design and layout engineers who want to begin the
FPGA board integration process while the FPGA is still in the design phase. Part
librarians can also benefit from this chapter by learning the method to use output
from the Quartus II software to create new library parts and symbols.

This chapter discusses the following topics:

■ Cadence tool description, history, and comparison.

■ The general design flow between the Quartus II software and the Cadence Allegro
Design Entry HDL software and the Cadence Allegro Design Entry CIS software.

■ Generating schematic symbols from your FPGA design for use in the Cadence
Allegro Design Entry HDL software.

■ Updating Design Entry HDL symbols when making signal and pin assignment
changes in the Quartus II software.

■ Creating schematic symbols in the Cadence Allegro Design Entry CIS software
from your FPGA design.

■ Updating symbols in the Cadence Allegro Design Entry CIS software when
making signal and pin assignment changes in the Quartus II software.

■ Using Altera-provided device libraries in the Cadence Allegro Design Entry CIS
software.

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or later

■ The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software version 15.2 or later

■ The OrCAD Capture software with the optional CIS option version 10.3 or later
(optional)
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52014

9–2 Chapter 9: Cadence PCB Design Tools Support
Product Comparison
1 These programs are very similar because the Cadence Allegro Design Entry CIS
software is based on the OrCAD Capture software. This chapter refers to the Cadence
Allegro Design Entry CIS software; however, any procedural information can also
apply to the OrCAD Capture software unless otherwise noted.

f For more information about obtaining and licensing the Cadence tools and for
product information, support, and training, refer to the Cadence website
(www.cadence.com). For more information about the OrCAD Capture software and
the CIS option, refer to the Cadence website (www.cadence.com). For more
information about Cadence and OrCAD support and training, refer to the EMA
Design Automation website (www.ema-eda.com).

Product Comparison
The Cadence and OrCAD design tools are different in their function and location of
product information. Table 9–1 lists the Cadence and OrCAD products described in
this chapter and provides information about changes, product information, and
support.

Table 9–1. Cadence and OrCAD Product Comparison

Description Cadence Allegro
Design Entry HDL

Cadence Allegro
Design Entry CIS OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History

More commonly known by its
former name, Cadence renamed all
board design tools in 2004 under
the Allegro name.

Based directly on OrCAD Capture
CIS, the Cadence Allegro Design
Entry CIS software is still developed
by OrCAD but sold and marketed by
Cadence. EMA provides support and
training.

The basis for Design Entry
CIS is still developed by
OrCAD for continued use by
existing OrCAD customers.
EMA provides support and
training for all OrCAD
products.

Vendor Design
Flow

Cadence Allegro 600 series,
formerly known as the Expert
Series, for high-end, high-speed
design.

Cadence Allegro 200 series,
formerly known as the Studio
Series, for small- to medium-level
design.

—

Information
and Support

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com

www.cadence.com

www.ema-eda.com
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

www.cadence.com
http://www.cadence.com/us/pages/default.aspx
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

Chapter 9: Cadence PCB Design Tools Support 9–3
FPGA-to-PCB Design Flow
FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera FPGA design from the Quartus II
software through a circuit schematic in the Cadence Allegro Design Entry HDL
software or the Cadence Allegro Design Entry CIS software. Figure 9–1 shows the
design flow with the Cadence Allegro Design Entry HDL software. Figure 9–2 shows
the design flow with the Cadence Allegro Design Entry CIS software.

Figure 9–1. Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design
Start PCB Design

(Allegro Design Entry HDL)

End

Quartus II Software

.pin

Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–4 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-PCB Design Flow
Figure 9–1 and Figure 9–2 show the possible design flows, depending on your tool
choice. To create FPGA symbols using the Cadence Allegro PCB Librarian Part
Developer tool, you must obtain the Cadence PCB Librarian Expert license. You can
update symbols with changes made to the FPGA design using any of these tools.

To integrate an Altera FPGA design starting in the Quartus II software through to a
circuit schematic in the Cadence Allegro Design Entry HDL software or the Cadence
Allegro Design Entry CIS software, follow these steps:

1. In the Quartus II software, compile your design to generate a Pin-Out File (.pin) to
transfer the assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your
schematic design, follow these steps:

a. Open an existing project or create a new project in the Cadence Allegro Project
Manager tool.

b. Construct a new symbol or update an existing symbol using the Cadence
Allegro PCB Librarian Part Developer tool.

c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol
or fracture it into smaller parts (optional).

d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software
schematic and transfer the design to your board layout tool.

or

If you are using the Cadence Allegro Design Entry CIS software for your
schematic design, follow these steps:

a. Generate a new part in a new or existing Cadence Allegro Design Entry CIS
project, referencing the .pin output file from the Quartus II software. You can
also update an existing symbol with a new .pin.

Figure 9–2. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout and Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–5
Setting Up the Quartus II Software
b. Split the symbol into smaller parts as necessary.

c. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic
and transfer the design to your board layout tool.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus II software, you can extract pin assignment data and perform SSN
analysis of your FPGA design for designs targeting the Stratix III device family. You
can analyze SSN in your device early in the board layout stage as part of your overall
pin planning process; however, you do not have to perform SSN analysis to generate
pin assignment data from the Quartus II software. You can use the SSN Analyzer tool
to optimize the pin assignments for better SSN performance of your device.

f For more information about the SSN Analyzer, refer to About the SSN Analyzer in
Quartus II Help and the Simultaneous Switching Noise (SSN) Analysis and Optimizations
chapter in volume 2 of the Quartus II Handbook.

Setting Up the Quartus II Software
You can transfer pin and signal assignments from the Quartus II software to the
Cadence design tools by generating the Quartus II project .pin. The .pin is an output
file generated by the Quartus II Fitter containing pin assignment information. You can
use the Quartus II Pin Planner to set and change the assignments in the .pin and then
transfer the assignments to the Cadence design tools. You cannot, however, import
pin assignment changes from the Cadence design tools into the Quartus II software
with the .pin.

The .pin lists all used and unused pins on your selected Altera device. The .pin also
provides the following basic information fields for each assigned pin on the device:

■ Pin signal name and usage

■ Pin number

■ Signal direction

■ I/O standard

■ Voltage

■ I/O bank

■ User or Fitter-assigned

f For more information about using the Quartus II Pin Planner to create or change pin
assignment details, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook.

Generating a .pin File
The Quartus II Fitter generates a .pin during a full compilation of your FPGA design,
or when performing I/O assignment analysis on your design. You can locate the .pin
in your Quartus II project directory with the name <project name>.pin.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_about_si_analyzer.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
www.altera.com/literature/hb/qts/qts_qii52018.pdf

9–6 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
f For more information about pin and signal assignment transfer and the files that the
Quartus II software can import and export, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL
Software

The Cadence Allegro Design Entry HDL software is a schematic capture tool and is
part of the Cadence 600 series design flow. Use the Cadence Allegro Design Entry
HDL software to create flat circuit schematics for all types of PCB design. The
Cadence Allegro Design Entry HDL software can also create hierarchical schematics
to facilitate design reuse and team-based design. With the Cadence Allegro Design
Entry HDL software, the design flow from FPGA-to-board is one-way, using only the
.pin generated by the Quartus II software. You can only make signal and pin
assignment changes in the Quartus II software and these changes reflect as updated
symbols in a Cadence Allegro Design Entry HDL project. For more information about
the design flow with the Cadence Allegro Design Entry HDL software, refer to
Figure 9–1 on page 9–3.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry HDL software symbol cannot be back-annotated to the Quartus II
software.

f For more information about the Cadence Allegro Design Entry HDL software and the
Cadence Allegro PCB Librarian Part Developer tool, including licensing, support,
usage, training, and product updates, refer to the Help in the software or to the
Cadence website (www.cadence.com).

Creating Symbols
In addition to circuit simulation, circuit board schematic creation is one of the first
tasks required when designing a new PCB. Schematics must understand how the PCB
works, and to generate a netlist for a board layout tool for board design and routing.
The Cadence Allegro PCB Librarian Part Developer tool allows you to create
schematic symbols based on FPGA designs exported from the Quartus II software.

You can create symbols for the Cadence Allegro Design Entry HDL project with the
Cadence Allegro PCB Librarian Part Developer tool, which is available in the Cadence
Allegro Project Manager tool. Altera recommends using the Cadence Allegro PCB
Librarian Part Developer tool to import FPGA designs into the Cadence Allegro
Design Entry HDL software.

You must obtain a PCB Librarian Expert license from Cadence to run the Cadence
Allegro PCB Librarian Part Developer tool. The Cadence Allegro PCB Librarian Part
Developer tool provides a GUI with many options for creating, editing, fracturing,
and updating symbols. If you do not use the Cadence Allegro PCB Librarian Part
Developer tool, you must create and edit symbols manually in the Symbol Schematic
View in the Cadence Allegro Design Entry HDL software.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.cadence.com/us/pages/default.aspx
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 9: Cadence PCB Design Tools Support 9–7
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
1 If you do not have a PCB Librarian Expert license, you can automatically create FPGA
symbols using the programmable IC (PIC) design flow found in the Cadence Allegro
Project Manager tool. For more information about using the PIC design flow, refer to
the Help in the Cadence design tools, or go to the Cadence website
(www.cadence.com).

Before creating a symbol from an FPGA design, you must open a Cadence Allegro
Design Entry HDL project with the Cadence Allegro Project Manager tool. If you do
not have an existing Cadence Allegro Design Entry HDL project, you can create one
with the Cadence Allegro Design Entry HDL software. The Cadence Allegro Design
Entry HDL project directory with the name <project name>.cpm contains your
Cadence Allegro Design Entry HDL projects.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol
fractures as slots, the other tools described in this chapter use different names to refer
to symbol fractures. Table 9–2 lists the symbol fracture naming conventions for each
of the tools addressed in this chapter.

Table 9–2. Symbol Fracture Naming

Cadence Allegro PCB
Librarian

Part Developer Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry
CIS Software

During symbol generation Slots — Sections

During symbol schematic instantiation — Versions Parts
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.cadence.com/us/pages/default.aspx

9–8 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
Cadence Allegro PCB Librarian Part Developer Tool
You can create, fracture, and edit schematic symbols for your designs using the
Cadence Allegro PCB Librarian Part Developer tool. Symbols designed in the
Cadence Allegro PCB Librarian Part Developer tool can be split or fractured into
several functional blocks called slots, allowing multiple smaller part fractures to exist
on the same schematic page or across multiple pages. Figure 9–3 shows how the
Cadence Allegro PCB Librarian Part Developer tool fits into the design flow.

To run the Cadence Allegro PCB Librarian Part Developer tool, you must open a
Cadence Allegro Design Entry HDL project in the Cadence Allegro Project Manager
tool. To open the Cadence Allegro PCB Librarian Part Developer tool, on the Flows
menu, click Library Management, and then click Part Developer.

Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import
and Export wizard to import your pin assignments from the Quartus II software.

1 Altera recommends using your PCB Librarian Expert license file. To point to your
PCB Librarian Expert license file, on the File menu, click Change Product and then
select the correct product license.

To access the Import and Export wizard, follow these steps:

1. On the File menu, click Import and Export.

2. Select Import ECO-FPGA, and then click Next.

Figure 9–3. Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

Notes to Figure 9–3:

(1) For more information about the full design flow flowchart, refer to Figure 9–1 on page 9–3.
(2) Grayed out steps are not part of the FPGA symbol creation or update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Synbol in Schematic

ForwFF ard to Board Laww ya out yy ToolTT

Board Layout Tool

Layout and Route FPGA

(1)

(2)
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–9
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
3. In the Select Source page of the Import and Export wizard, specify the following
settings:

a. In the Vendor list, select Altera.

b. In the PnR Tool list, select quartusII.

c. In the PR File box, browse to select the .pin in your Quartus II project directory.

d. Click Simulation Options to select simulation input files.

e. Click Next.

4. In the Select Destination dialog box, specify the following settings:

a. Under Select Component, click Generate Custom Component to create a new
component in a library,

or

Click Use standard component to base your symbol on an existing component.

1 Altera recommends creating a new component if you previously created a
generic component for an FPGA device. Generic components can cause
some problems with your design. When you create a new component, you
can place your pin and signal assignments from the Quartus II software on
this component and reuse the component as a base when you have a new
FPGA design.

b. In the Library list, select an existing library. You can select from the cells in the
selected library. Each cell represents all the symbol versions and part fractures
for a particular part. In the Cell list, select the existing cell to use as a base for
your part.

c. In the Destination Library list, select a destination library for the component.
Click Next.

d. Review and edit the assignments you import into the Cadence Allegro PCB
Librarian Part Developer tool based on the data in the .pin and then click
Finish. The location of each pin is not included in the Preview of Import Data
page of the Import and Export wizard, but input pins are on the left side of the
created symbol, output pins on the right, power pins on the top, and ground
pins on the bottom.

Editing and Fracturing Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer
tool, you can edit the symbol graphics, fracture the symbol into multiple slots, and
add or change package or symbol properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics
of a particular symbol. To edit the symbol graphics, select the symbol in the cell
hierarchy. The Symbol Pins tab appears. You can edit the preview graphic of the
symbol in the Symbol Pins tab.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–10 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate
symbol slots is useful for FPGA designs. A single symbol for most FPGA packages
might be too large for a single schematic page. Splitting the part into separate slots
allows you to organize parts of the symbol by function, creating cleaner circuit
schematics. For example, you can create one slot for an I/O symbol, a second slot for a
JTAG symbol, and a third slot for a power/ground symbol.

Figure 9–4 shows a part fractured into separate slots.

To fracture a part into separate slots, or to modify the slot locations of pins on parts
fractured in the Cadence Allegro PCB Librarian Part Developer tool, follow these
steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management.

3. Click Part Developer.

4. Click the name of the package you want to change in the cell hierarchy.

5. Click Functions/Slots. If you are not creating new slots but want to change the slot
location of some pins, proceed to Step 6. If you are creating new slots, click Add. A
dialog box appears, allowing you to add extra symbol slots. Set the number of
extra slots you want to add to the existing symbol, not the total number of desired
slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes in
each column to move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate
Symbol(s).

Figure 9–4. Splitting a Symbol into Multiple Slots (Notes 1), (2)

Notes to Figure 9–4:

(1) Figure 9–4 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices
or other configuration modes may have different sets of configuration pins, but can be fractured in a similar manner.

(2) The power/ground slot shows only a representation of power and ground pins because the device contains a large number of power and ground
pins.

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–11
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
8. Select whether to create a new symbol or modify an existing symbol in each slot.
Click OK.

The newly generated or modified slot symbols appear as separate symbols in the cell
hierarchy. Each of these symbols can be edited individually.

c The Cadence Allegro PCB Librarian Part Developer tool allows you to remap pin
assignments in the Package Pin tab of the main Cadence Allegro PCB Librarian Part
Developer window. If signals remap to different pins in the Cadence Allegro PCB
Librarian Part Developer tool, the changes reflect only in regenerated symbols for use
in your schematics. You cannot transfer pin assignment changes to the Quartus II
software from the Cadence Allegro PCB Librarian Part Developer tool, which creates
a potential mismatch of the schematic symbols and assignments in the FPGA design.
If pin assignment changes are necessary, make the changes in the Quartus II Pin
Planner instead of the Cadence Allegro PCB Librarian Part Developer tool, and
update the symbol as described in the following sections.

f For more information about creating, editing, and organizing component symbols
with the Cadence Allegro PCB Librarian Part Developer tool, refer to the Part
Developer Help.

Updating FPGA Symbols

As the design process continues, you must make logic changes in the Quartus II
software, placing signals on different pins after recompiling the design, or use the
Quartus II Pin Planner to make changes manually. The board designer can request
such changes to improve the board routing and layout. To ensure signals connect to
the correct pins on the FPGA, you must carry forward these types of changes to the
circuit schematic and board layout tools. Updating the .pin in the Quartus II software
facilitates this flow. Figure 9–5 shows this part of the design flow.

Figure 9–5. Updating the FPGA Symbol in the Design Flow

Notes to Figure 9–5:

(1) For more information about the full design flow flowchart, refer to Figure 9–1 on page 9–3.
(2) Grayed out steps are not part of the FPGA symbol update process.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–12 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool
after updating the .pin, follow these steps:

1. On the File menu, click Import and Export. The Import and Export wizard
appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The Select
Source dialog box appears.

3. Select the updated source of the FPGA assignment information. In the Vendor list,
select Altera. In the PnR Tool list, select quartusII. In the PR File field, click
browse to specify the updated .pin in your Quartus II project directory. Click
Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To
create a new component based on the updated pin assignment data, select
Generate Custom Component. Selecting Generate Custom Component replaces
the cell listed under the Specify Library and Cell name header with a new,
nonfractured cell. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination library
for the component and click Next. The Preview of Import Data dialog box
appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages
appears summarizing the changes made to the cell. To accept the changes and
update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You
can edit, fracture, and generate the updated symbols as usual from the main
Cadence Allegro PCB Librarian Part Developer window.

1 If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your
PCB Librarian Expert license file, an error message appears in red at the bottom of the
message text window of the Part Developer when you select the Import and Export
command. To point to your PCB Librarian Expert license, on the File menu, click
Change Product, and select the correct product license.

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software
To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after
saving the new symbol in the Cadence Allegro PCB Librarian Part Developer tool,
follow these steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.

4. To add the newly created symbol to your schematic, on the Component menu,
click Add. The Add Component dialog box appears.

5. Select the new symbol library location, and select the name of the cell you created
from the list of cells.

The symbol attaches to your cursor for placement in the schematic. To fracture the
symbol into slots, right-click the symbol and choose Version to select one of the slots
for placement in the schematic.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–13
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
f For more information about the Cadence Allegro Design Entry HDL software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software or go to the Cadence website (www.cadence.com).

FPGA-to-Board Integration with Cadence Allegro Design Entry CIS
Software

The Cadence Allegro Design Entry CIS software is a schematic capture tool (part of
the Cadence 200 series design flow based on OrCAD Capture CIS). Use the Cadence
Allegro Design Entry CIS software to create flat circuit schematics for all types of PCB
design. You can also create hierarchical schematics to facilitate design reuse and team-
based design using the Cadence Allegro Design Entry CIS software. With the Cadence
Allegro Design Entry CIS software, the design flow from FPGA-to-board is
unidirectional using only the .pin generated by the Quartus II software. You can only
make signal and pin assignment changes in the Quartus II software. These changes
reflect as updated symbols in a Cadence Allegro Design Entry CIS schematic project.
Figure 9–2 on page 9–4 shows the design flow with the Cadence Allegro Design Entry
CIS software.

1 Routing or pin assignment changes made in a board layout tool or a Cadence Allegro
Design Entry CIS symbol cannot be back-annotated to the Quartus II software.

f For more information about the Cadence Allegro Design Entry CIS software,
including licensing, support, usage, training, and product updates, refer to the Help
in the software, go to the Cadence (www.cadence.com) or go to the EMA Design
Automation website (www.ema-eda.com).

Creating a Cadence Allegro Design Entry CIS Project
The Cadence Allegro Design Entry CIS software has built-in support for creating
schematic symbols using pin assignment information imported from the Quartus II
software.

To create a new project in the Cadence Allegro Design Entry CIS software, follow
these steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the
Programmable Logic wizard, or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part
libraries to use, or select a blank schematic.

The Programmable Logic wizard only builds an FPGA logic design in the Cadence
Allegro Design Entry CIS software.

Your new project is in the specified location and consists of the following files:

■ OrCAD Capture Project File (.opj)

■ Schematic Design File (.dsn)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/

9–14 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Generating a Part
After you create a new project or open an existing project in the Cadence Allegro
Design Entry CIS software, you can generate a new schematic symbol based on your
Quartus II FPGA design. You can also update an existing symbol. The Cadence
Allegro Design Entry CIS software stores component symbols in OrCAD Library File
(.olb). When you place a symbol in a library attached to a project, it is immediately
available for instantiation in the project schematic.

You can add symbols to an existing library or you can create a new library specifically
for the symbols generated from your FPGA designs. To create a new library, follow
these steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design
Entry CIS software to create a default library named library1.olb. This library
appears in the Library folder in the Project Manager window of the Cadence
Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library
and select Save As. Saving the new library creates the library file.

You can now create a new symbol to represent your FPGA design in your schematic.
To generate a schematic symbol, follow these steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 9–6).

3. To specify the .pin from your Quartus II design, in the Netlist/source file type
field, click Browse.

4. In the Netlist/source file type list, select Altera Pin File.

Figure 9–6. Generate Part Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–15
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
5. Type the new part name.

6. Specify the Destination part library for the symbol. Failing to select an existing
library for the part creates a new library with a default name that matches the
name of your Cadence Allegro Design Entry CIS project.

7. To create a new symbol for this design, select Create new part. If you updated
your .pin in the Quartus II software and want to transfer any assignment changes
to an existing symbol, select Update pins on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The
symbol is for a primitive library part based only on the .pin and does not require
special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

You can locate the generated symbol in the selected library or in a new library found
in the Outputs folder of the design in the Project Manager window (Figure 9–7).
Double-click the name of the new symbol to see its graphical representation and edit
it manually using the tools available in the Cadence Allegro Design Entry CIS
software.

f For more information about creating and editing symbols in the Cadence Allegro
Design Entry CIS software, refer to the Help in the software.

Figure 9–7. Project Manager Window
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–16 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Splitting a Part
After saving a new symbol in a project library, you can fracture the symbol into
multiple parts called sections. Fracturing a part into separate sections is useful for
FPGA designs. A single symbol for most FPGA packages might be too large for a
single schematic page. Splitting the part into separate sections allows you to organize
parts of the symbol by function, creating cleaner circuit schematics. For example, you
can create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot
for a power/ground symbol. Figure 9–8 shows a part fractured into separate sections.

1 Although symbol generation in the Design Entry CIS software refers to symbol
fractures as sections, the other tools described in this chapter use different names to
refer to symbol fractures.

Figure 9–8. Splitting a Symbol into Multiple Sections (Notes 1), (2)

Notes to Figure 9–8:

(1) Figure 9–8 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other devices
or other configuration modes might have different sets of configuration pins, but can be fractured in a similar manner.

(2) The power/ground section shows only a representation of power and ground pins because the device contains a high number of power and ground
pins.

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

V
C

C
IN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 9: Cadence PCB Design Tools Support 9–17
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
To split a part into sections, select the part in its library in the Project Manager
window of the Cadence Allegro Design Entry CIS software. On the Tools menu, click
Split Part or right-click the part and choose Split Part. The Split Part Section Input
Spreadsheet appears (Figure 9–9).

Each row in the spreadsheet represents a pin in the symbol. The Section column
indicates the section of the symbol to which each pin is assigned. You can locate all
pins in a new symbol in section 1. You can change the values in the Section column to
assign pins to various sections of the symbol. You can also specify the side of a section
on the location of the pin by changing the values in the Location column. When you
are ready, click Split. A new symbol appears in the same library as the original with
the name <original part name>_Split1.

View and edit each section individually. To view the new sections of the part,
double-click the part. The Part Symbol Editor window appears and the first section of
the part displays for editing. On the View menu, click Package to view thumbnails of
all the part sections. To edit the section of the symbol, double-click the thumbnail.

f For more information about splitting parts into sections and editing symbol sections
in the Cadence Allegro Design Entry CIS software, refer to the Help in the software.

Figure 9–9. Split Part Section Input Spreadsheet
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–18 Chapter 9: Cadence PCB Design Tools Support
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
Instantiating a Symbol in a Design Entry CIS Schematic
After saving a new symbol in a library in your Cadence Allegro Design Entry CIS
project, you can instantiate the new symbol on a page in your schematic. Open a
schematic page in the Project Manager window of the Cadence Allegro Design Entry
CIS software. To add the newly created symbol to your schematic on the schematic
page, on the Place menu, click Part. The Place Part dialog box appears (Figure 9–10).

Select the new symbol library location and the newly created part name. If you select
a part that is split into sections, you can select the section to place from the Part
pop-up menu. Click OK. The symbol attaches to your cursor for placement in the
schematic. To place the symbol, click on the schematic page.

f For more information about using the Cadence Allegro Design Entry CIS software,
refer to the Help in the software.

Altera Libraries for the Cadence Allegro Design Entry CIS Software
Altera provides downloadable .olb for many of its device packages. You can add
these libraries to your Cadence Allegro Design Entry CIS project and update the
symbols with the pin assignments contained in the .pin generated by the Quartus II
software. You can use the downloaded library symbols as a base for creating custom
schematic symbols with your pin assignments that you can edit or fracture. This
method increases productivity by reducing the amount of time it takes to create and
edit a new symbol.

To use the Altera-provided libraries with your Cadence Allegro Design Entry CIS
project, follow these steps:

1. Download the library of your target device from the Download Center page found
through the Support page on the Altera website (www.altera.com).

Figure 9–10. Place Part Dialog Box
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/

Chapter 9: Cadence PCB Design Tools Support 9–19
FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
2. Create a copy of the appropriate .olb to maintain the original symbols. Place the
copy in a convenient location, such as your Cadence Allegro Design Entry CIS
project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software,
click once on the Library folder to select it. On the Edit menu, click Project or
right-click the Library folder and choose Add File to select the copy of the
downloaded .olb and add it to your project. You can locate the new library in the
list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears
(Figure 9–11).

5. In the Netlist/source file field, click Browse to specify the .pin in your Quartus II
design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For Part name, type the name of the target device the same as it appears in the
downloaded library file. For example, if you are using a device from the
CYCLONE06.OLB library, type the part name to match one of the devices in this
library such as ep1c6f256. You can rename the symbol in the Project Manager
window after updating the part.

8. Set the Destination part library to the copy of the downloaded library you added
to the project.

9. Select Update pins on existing part in library. Click OK.

10. Click Yes.

Figure 9–11. Generate Part Dialog Box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

9–20 Chapter 9: Cadence PCB Design Tools Support
Conclusion
The symbol is updated with your pin assignments. Double-click the symbol in the
Project Manager window to view and edit the symbol. On the View menu, click
Package if you want to view and edit other sections of the symbol. If the symbol in the
downloaded library is fractured into sections, you can edit each section but you
cannot further fracture the part. You can generate a new part without using the
downloaded part library if you require additional sections.

f For more information about creating, editing, and fracturing symbols in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

Conclusion
Transferring a complex, high-pin-count FPGA design to a PCB for prototyping or
manufacturing is a daunting process and can lead to errors in the PCB netlist or
design, especially when different engineers are working on different parts of the
project. The design workflow available when the Quartus II software is used with
tools from Cadence assists the FPGA designer and the board designer in preventing
such errors and focusing all attention on the design.

Document Revision History
Table 9–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 9–3. Document Revision History

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ General style editing.

■ Removed Referenced Document Section.

■ Added a link to Help in “Performing Simultaneous Switching Noise (SSN) Analysis of
Your FPGA” on page 9–5.

November 2009 9.1.0

■ Added “Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA” on
page 9–5.

■ General style editing.

■ Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

March 2009 9.0.0
■ Chapter 9 was previously Chapter 7 in the 8.1 software release.

■ No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size.

May 2008 8.0.0 Updated references.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52019-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52019-10.0.1
10. Reviewing Printed Circuit Board
Schematics with the Quartus II Software
This chapter provides guidelines for reviewing printed circuit board (PCB) schematics
with the Quartus® II software. Altera FPGAs and CPLDs offer a multitude of
configurable options to allow you to implement a custom application-specific circuit
on your PCB.

Your Quartus II project provides important information specific to your
programmable logic design, which you can use in conjunction with the device
literature available on Altera's website to ensure that you implement the correct
board-level connections in your schematic.

This chapter highlights the important options in the Quartus II software, including
Settings dialog box options, the Fitter report, and Messages window to which you
should refer when creating and reviewing your PCB schematic. The Quartus II
software also provides useful tools, such as the Pin Planner and the SSN Analyzer, to
assist you during your PCB schematic review process.

The “Reviewing Quartus II Software Settings”section provides information about the
settings you can make in the Quartus II software to help you review your PCB
schematic. After verifying options in the Quartus II software, you can compile your
design and use the data generated in the Fitter report, which is described in
“Reviewing Device Pin-Out Information in the Fitter Report” on page 10–4 to verify
settings in your PCB schematic. You should also ensure that you carefully review
error and warning messages, as described in “Reviewing Compilation Error and
Warning Messages” on page 10–5.

In addition to verifying your settings in the Settings dialog box and Fitter report, and
checking messages, you can turn on additional settings, as described in “Using
Additional Quartus II Software Features” on page 10–6 and “Running the HardCopy
Design Readiness Check” on page 10–6.

Finally, Quartus II software tools, such as the Pin Planner and the SSN Analyzer,
described in “Using Additional Quartus II Software Tools” on page 10–6, help you to
verify proper I/O placement.

You should use this chapter in conjunction with Altera's device family-specific
literature.

f For more information, refer to the Schematic Review Worksheets and the Pin
Connection Guidelines pages of the Altera.com website.

Reviewing Quartus II Software Settings
The Device dialog box in the Quartus II software allows you to specify device-specific
assignments and settings. You can use the Device dialog box to specify general
project-wide options, including specific device and pin options, which help you to
implement correct board-level connections in your PCB schematic.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/support/devices/schematic-review-ws/srw-index.jsp
http://www.altera.com/literature/lit-dpcg.jsp
http://www.altera.com/literature/lit-dpcg.jsp
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52019

10–2 Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Quartus II Software Settings
The Device dialog box provides project-specific device information, including the
target device and any migration devices you specify. Using migration devices can
impact the number of available user I/O pins and internal resources, as well as
require connection of some user I/O pins to power/ground pins to support
migration.

If you want to use vertical migration, which allows you to use different devices with
the same package, you can specify your list of migration devices in the Migration
Devices dialog box. The Fitter places the pins in your design based on your targeted
migration devices, and allows you to use only I/O pins that are common to all of the
migration devices.

h For more information about the Migration Devices dialog box in the Quartus II
software, refer to Migration Devices Dialog Box in Quartus II Help.

If a migration device has pins that are power or ground, but the pins are also user I/O
pins on a different device in the migration path, the Fitter ensures that these pins are
not used as user I/O pins. You must ensure that these pins are connected to the
appropriate plane on the PCB.

If you are migrating from a smaller device with NC (no-connect) pins to a larger
device with power or ground pins in the same package, you can safely connect the
NC pins to power or ground pins to facilitate successful migration.

Device and Pins Options Dialog Box Settings
You can verify important design-specific data in the Device and Pin Options dialog
box when reviewing your PCB schematic, including options found on the
Configuration, Unused Pin, Dual-Purpose Pins, and Voltage pages.

Configuration Page Settings
The Configuration page of the Device and Pin Options dialog box specifies the
configuration scheme and configuration device for the target device. Use the
Configuration page settings to verify the configuration scheme with the MSEL pin
settings used on your PCB schematic and the I/O voltage of the configuration
scheme.

Your specific configuration settings may impact the availability of some dual-purpose
I/O pins in user mode. Refer to “Dual-Purpose Pins Page Settings” on page 10–3 for
more information.

Unused Pin Page Settings
The Unused Pin page specifies the behavior of all unused pins in your design. Use the
Unused Pin page to ensure that unused pin settings are compatible with your PCB.
For example, if you reserve all unused pins as outputs driving ground, you must
ensure that you do not connect unused I/O pins to VCC pins on your PCB.
Connecting unused I/O pins to VCC pins may result in contention that could lead to
higher than expected current draw and possible device overstress.

The Reserve all unused pins list shows available unused pin state options for the
target device. The default state for each pin is the recommended setting for each
device family.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_db_migration.htm

Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software 10–3
Reviewing Quartus II Software Settings
When you reserve a pin as output driving ground, the Fitter connects a ground signal
to the output pin internally. You should connect the output pin to the ground plane on
your PCB, although you are not required to do so. Connecting the output driving
ground to the ground plane is known as creating a virtual ground pin, which helps to
minimize simultaneous switching noise (SSN) and ground bounce effects.

Dual-Purpose Pins Page Settings
The Dual-Purpose Pins page specifies how configuration pins should be used after
device configuration completes. You can set the function of the dual-purpose pins by
selecting a value for a specific pin in the Dual-purpose pins list. Pin functions should
match your PCB schematic. The available options on the Dual-Purpose Pins page
may differ depending on the selected configuration mode.

Voltage Page Settings
The Voltage page specifies the default VCCIO I/O bank voltage and the default I/O
bank voltage for the pins on the target device. VCCIO I/O bank voltage settings made
in the Voltage page are overridden by I/O standard assignments made on I/O pins in
their respective banks. Refer to the “Reviewing Device Pin-Out Information in the
Fitter Report” on page 10–4 for more details about the I/O bank voltages for your
design.

Error Detection CRC Page Settings
The Error Detection CRC page specifies error detection cyclic redundancy check
(CRC) use for the target device. When Enable error detection CRC is turned on, the
device checks the validity of the programming data in the devices. Any changes made
in the data while the device is in operation generates an error.

Turning on the Enable open drain on CRC error pin option allows the CRC ERROR
pin to be set as an open-drain pin in some devices, which decouples the voltage level
of the CRC ERROR pin from VCCIO voltage. You must connect a pull-up resistor to
the CRC ERROR pin on your PCB if you turn on this option.

In addition to settings in the Device dialog box, you should verify settings in the
Voltage page of the Settings dialog box.

h For more information about the Device and Pins Options dialog box in the Quartus II
software, refer to Device and Pin Options Dialog Box in Quartus II Help.

Voltage Page Settings
The Voltage page, under Operating Settings and Conditions in the Settings dialog
box, allows you to specify voltage operating conditions for timing and power
analyses. Ensure that the settings in the Voltage page match the settings in your PCB
schematic, especially if the target device includes transceivers.

The Voltage page settings requirements differ depending on the settings of the
transceiver instances in the design. Refer to the Fitter report for the required settings,
and verify that the voltage settings are correctly set up for your PCB schematic.

f For more information about voltage settings, refer to the Pin Connection Guidelines
page of the Altera.com website.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-dpcg.jsp
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_db_device_pin_options.htm

10–4 Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Reviewing Device Pin-Out Information in the Fitter Report
Once you verify your settings in the Device and Settings dialog boxes, you can verify
your device pin-out with the Fitter report.

Reviewing Device Pin-Out Information in the Fitter Report
After you compile your design, you can use the reports in the Resource section of the
Fitter report to check your device pin-out in detail.

The Input Pins, Output Pins, and Bidirectional Pins reports identify all the user I/O
pins in your design and the features enabled for each I/O pin. For example, you can
find use of weak internal pull-ups, PCI clamp diodes, and on-chip termination (OCT)
pin assignments in these sections of the Fitter report. You can check the pin
assignments reported in the Input Pins, Output Pins, and Bidirectional Pins reports
against your PCB schematic to determine whether your PCB requires external
components.

These reports also identify whether you made pin assignments or if the Fitter
automatically placed the pins. If the Fitter changed your pin assignments, you should
make these changes user assignments because the location of pin assignments made
by the Fitter may change with subsequent compilations.

Figure 10–1 shows the pins the Fitter chose for the OCT external calibration resistor
connections (RUP/RDN) and the name of the associated termination block in the
Input Pins report. You should make these types of assignments user assignments.

The I/O Bank Usage report provides a high-level overview of the VCCIO and VREF
requirements for your design, based on your I/O assignments. Verify that the
requirements in this report match the settings in your PCB schematic. All unused I/O
banks, and all banks with I/O pins with undefined I/O standards, default the VCCIO
voltage to the voltage defined in the Voltage page of the Device and Pin Options
dialog box.

Figure 10–1. Resource Section Report
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software 10–5
Reviewing Compilation Error and Warning Messages
The All Package Pins report lists all the pins on your device, including unused pins,
dedicated pins and power/ground pins. You can use this report to verify pin
characteristics, such as the location, name, usage, direction, I/O standard and voltage
for each pin with the pin information in your PCB schematic. In particular, you should
verify the recommended voltage levels at which you connect unused dedicated inputs
and I/O and power pins, especially if you selected a migration device. Use the All
Package Pins report to verify that you connected all the device voltage rails to the
voltages reported.

Errors commonly reported include connecting the incorrect voltage to the predriver
supply (VCCPD) pin in a specific bank, or leaving dedicated clock input pins floating.
Unused input pins that should be connected to ground are designated as GND+ in
the Pin Name/Usage column in the All Package Pins report.

You can also use the All Package Pins report to check transceiver-specific pin
connections and verify that they match the PCB schematic. Unused transceiver pins
have the following requirements, based on the pin designation in the Fitter report:

■ GXB_GND*—Unused GXB receiver or dedicated reference clock pin. This pin
must be connected to GXB_GND through a 10k Ohm resistor.

■ GXB_NC—Unused GXB transmitter or dedicated clock output pin. This pin must
be disconnected.

Some transceiver power supply rails have dual voltage capabilities, such as
VCCA_L/R and VCCH_L/R, that depend on the settings you created for the ALTGX
MegaWizard Plug-In Manager. Because these user-defined settings overwrite the
default settings, you should use the All Package Pins report to verify that these power
pins on the device symbol in the PCB schematics are connected to the voltage required
by the transceiver. An incorrect connection may cause the transceiver to function not
as expected.

If your design includes a memory interface, the DQS Summary report provides an
overview of each DQ pin group. You can use this report to quickly confirm that the
correct DQ/DQS pins are grouped together. This section also provides information on
DLL usage.

Finally, the Fitter Device Options report summarizes some of the settings made in the
Device and Pin Options dialog box. Verify that these settings match your PCB
schematics.

Reviewing Compilation Error and Warning Messages
If your project does not compile without error or warning messages, you should
resolve the issues identified by the Compiler before signing off on your pin-out or
PCB schematic. Error messages often indicate illegal or unsupported use of the device
resources and IP.

Additionally, you should cross-reference fitting and timing analysis warnings with
the design implementation. Timing may be constrained due to nonideal pin
placement. You should investigate if you can reassign pins to different locations to
prevent fitting and timing analysis warnings. Ensure that you review each warning
and consider its potential impact on the design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

10–6 Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Running the HardCopy Design Readiness Check
Running the HardCopy Design Readiness Check
You should run the HardCopy Design Readiness Check for designs including a
HardCopy device in the migration path. This tool checks for issues that must be
addressed prior to handing off the design to the Altera HardCopy Design Center for
the HardCopy back-end process, including possible issues with device resource and
I/O usage. Verify all warning messages generated during the HardCopy Design
Readiness Check.

f For more information about the HardCopy Design Readiness Check and designing
for HardCopy devices in the Quartus II software, refer to the Quartus II Support for
HardCopy Series Devices chapter in volume 1 of the Quartus II Handbook.

Using Additional Quartus II Software Features
You can generate IBIS files, which contain models specific to your design and selected
I/O standards and options, with the Quartus II software.

Because board-level simulation is important to verify, you should check for potential
signal integrity issues. You can turn on the Board-Level Signal Integrity feature in the
EDA Tool Settings page of the Settings dialog box.

f For more information about signal integrity analysis in the Quartus II software, refer
to the Signal Integrity Analysis with Third-Party Tools chapter in volume 3 of the
Quartus II Handbook.

Additionally, using advanced I/O timing allows you to enter physical PCB
information to accurately model the load seen by an output pin. This feature
facilitates accurate I/O timing analysis.

f For more information about advanced I/O timing, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Using Additional Quartus II Software Tools
This section describes additional tools found in the Quartus II software, specifically
the Pin Planner and the SSN Analyzer, and how you can use these tools to assist you
with reviewing your PCB schematics.

Pin Planner
The Pin Planner provides a graphical representation of the target device and is a
useful visual aid that shows the device package and I/O assignments. The Pin
Planner allows you to view the I/O banks, VREF groups, edges and DQ/DQS pin
groups, which enables you to verify the expected placement of pin groups.

You can use the Pin Planner to verify the location of clock inputs, and whether they
have been placed on dedicated clock input pins, which is recommended when your
design uses PLLs.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53020.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software 10–7
Conclusion
You can also use the Pin Planner to verify the placement of dedicated SERDES pins.
SERDES receiver inputs can be placed only on DIFFIO_RX pins, while SERDES
transmitter outputs can be placed only on DIFFIO_TX pins.

The Pin Planner gives a visual indication of signal-to-signal proximity in the Pad View
window, and also provides information about differential pin pair placement, such as
the placement of pseudo-differential signals.

f For more information about the Pin Planner, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

SSN Analyzer
The SSN Analyzer supports pin planning by estimating the voltage noise caused by
the simultaneous switching of output pins on the device. Because of the importance of
the potential SSN performance for a specific I/O placement, you can use the SSN
Analyzer to analyze the effects of aggressor I/O signals on a victim I/O pin.

f For more information about the SSN Analyzer, refer to the Simultaneous Switching
Noise (SSN) Analysis and Optimizations chapter in volume 2 of the Quartus II Handbook.

Conclusion
This chapter describes guidelines and descriptions of settings to verify when
reviewing your PCB schematic with the Quartus II software. You can use settings in
the Settings dialog box; information in the Fitter report and Messages window; and
the Pin Planner and SSN Analyzer during the PCB schematic review process.

Document Revision History
Table 10–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 10–1. Document Revision History

Date Version Changes

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0 Initial release.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

10–8 Chapter 10: Reviewing Printed Circuit Board Schematics with the Quartus II Software
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

December 2010 Altera Corporation
Section III. Area, Timing, Power, and
Compilation Time Optimization
This section introduces features in the Quartus® II software that you can use to
optimize area, timing, power, and compilation time when you design for
programmable logic devices (PLDs).

This section includes the following chapters:

■ Chapter 11, Design Optimization Overview

This chapter summarizes features in the Quartus II software that you can use to
achieve the highest design performance when you design for PLDs, especially
high density FPGAs.

■ Chapter 12, Reducing Compilation Time

This chapter describes techniques for reducing the amount of time it takes to
compile and recompile your design, accelerating your design process.

■ Chapter 13, Area and Timing Optimization

This chapter describes a broad spectrum of Quartus II software features and
design techniques to reduce resource usage and improve timing performance
when designing for Altera® devices. This chapter also explains how and when to
use some of the features described in other chapters of the Quartus II Handbook.

■ Chapter 14, Power Optimization

This chapter describes the power-driven compilation feature and flow in detail, as
well as low power design techniques that can further reduce power consumption
in your design.

■ Chapter 15, Analyzing and Optimizing the Design Floorplan

You can use the Chip Planner to perform design analysis and create a design
floorplan. This chapter discusses how to analyze and optimize the design
floorplan with the Chip Planner.

■ Chapter 16, Netlist Optimizations and Physical Synthesis

This chapter explains how the physical synthesis optimizations in the Quartus II
software can improve your quality of results. This chapter also provides
information about preserving and writing out a new netlist, and provides
guidelines for applying the various options.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

III–2 Section III: Area, Timing, Power, and Compilation Time Optimization
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52021-10.0.2

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52021-10.0.2
11. Design Optimization Overview
This chapter introduces features in Altera’s Quartus® II software that you can use to
achieve the highest design performance when you design for programmable logic
devices (PLDs), especially high density FPGAs.

Introduction
Physical implementation can be an intimidating and challenging phase of the design
process. The Quartus II software provides a comprehensive environment for FPGA
designs, delivering unmatched performance, efficiency, and ease-of-use.

In a typical design flow, you must synthesize your design with Quartus II integrated
synthesis or a third-party tool, place and route your design with the Fitter, and use the
TimeQuest timing analyzer to ensure your design meets the timing requirements.
With the PowerPlay Power Analyzer, you ensure the design’s power consumption is
within limits. .

Physical Implementation
Most optimization issues involve preserving previous results, reducing area, reducing
critical path delay, reducing power consumption, and reducing runtime. The
Quartus II software includes advisors to address each of these issues and helps you
optimize your design. Run these advisors during physical implementation for advice
about your specific design.

You can reduce the time spent on design iterations by following the recommended
design practices for designing with Altera® devices. Design planning is critical for
successful design timing implementation and closure.

f For more information, refer to the Design Planning with the Quartus II Software chapter
in volume 1 of the Quartus II Handbook.

Trade-Offs and Limitations
Many optimization goals can conflict with one another, so you might need to make
trade-offs between different goals. For example, one major trade-off during physical
implementation is between resource usage and critical path timing, because certain
techniques (such as logic duplication) can improve timing performance at the cost of
increased area. Similarly, a change in power requirements can result in area and
timing trade-offs, such as if you reduce the number of high-speed tiles available, or if
you attempt to shorten high-power nets at the expense of critical path nets.

In addition, system cost and time-to-market considerations can affect the choice of
device. For example, a device with a higher speed grade or more clock networks can
facilitate timing closure at the expense of higher power consumption and system cost.
 Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52021
http://www.altera.com/literature/hb/qts/qts_qii51016.pdf

11–2 Chapter 11: Design Optimization Overview
Physical Implementation
Finally, not all designs can be realized in a hardware circuit with limited resources and
given constraints. If you encounter resource limitations, timing constraints, or power
constraints that cannot be resolved by the Fitter, consider rewriting parts of the HDL
code.

f For more information, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook.

Preserving Results and Enabling Teamwork
For some Quartus II Fitter algorithms, small changes to the design can have a large
impact on the final result. For example, a critical path delay can change by 10% or
more because of seemingly insignificant changes. If you are close to meeting your
timing objectives, you can use the Fitter algorithm to your advantage by changing the
fitter seed, which changes the pseudo-random result of the Fitter.

Conversely, if you cannot meet timing on a portion of your design, you can partition
that portion and prevent it from recompiling if an unrelated part of the design is
changed. This feature, known as incremental compilation, can reduce the Fitter
runtimes by up to 70% if the design is partitioned, such that only small portions
require recompilation at any one time.

When you use incremental compilation, you can apply design optimization options to
individual design partitions and preserve performance in other partitions by leaving
them untouched. Many optimization techniques often result in longer compilation
times, but by applying them only on specific partitions, you can reduce this impact
and complete iterations more quickly.

In addition, by physically floorplanning your partitions with LogicLock regions, you
can enable team-based flows and allow multiple people to work on different portions
of the design.

f For more information, refer to Quartus II Incremental Compilation for Hierarchical and
Team-Based Designs in volume 1 of the Quartus II Handbook and About Incremental
Compilation in Quartus II Help.

Reducing Area
By default, the Quartus II Fitter might phyically spread a design over the entire device
to meet the set timing constraints. If you prefer to optimize your design to use the
smallest area, you can change this behavior. If you require reduced area, you can
enable certain physical synthesis options to modify your netlist to create a more
area-efficient implementation, but at the cost of increased runtime and decreased
performance.

f For more information, refer to the Area and Timing Optimization and Netlist
Optimizations and Physical Synthesis chapters in volume 2 and the Recommended HDL
Coding Styles chapter in volume 1 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 11: Design Optimization Overview 11–3
Physical Implementation
Reducing Critical Path Delay
To meet complex timing requirements involving multiple clocks, routing resources,
and area constraints, the Quartus II software offers a close interaction between
synthesis, timing analysis, floorplan editing, and place-and-route processes.

By default, the Quartus II Fitter tries to meet the specified timing requirements and
stops trying when the requirements are met. Therefore, using realistic constraints is
important to successfully close timing. If you under-constrain your design, you may
get sub-optimal results. By contrast, if you over-constrain your design, the Fitter
might over-optimize non-critical paths at the expense of true critical paths. In
addition, you might incur an increased area penalty. Compilation time may also
increase because of excessively tight constraints.

If your resource usage is very high, the Quartus II Fitter might have trouble finding a
legal placement. In such circumstances, the Fitter automatically modifies some of its
settings to try to trade off performance for area.

The Quartus II Fitter offers a number of advanced options that can help you improve
the performance of your design when you properly set constraints. Use the Timing
Optimization Advisor to determine which options are best suited for your design.

If you use incremental compilation, you can help resolve inter-partition timing
requirements by locking down the results one partition at a time or by guiding the
placement of the partitions with LogicLock regions. You might be able to improve the
timing on such paths by placing the partitions optimally to reduce the length of
critical paths. Once your inter-partition timing requirements are met, use incremental
compilation to preserve the results and work on partitions that have not met timing
requirements.

In high-density FPGAs, routing accounts for a major part of critical path timing.
Because of this, duplicating or retiming logic can allow the Fitter to reduce delay on
critical paths. The Quartus II software offers push-button netlist optimizations and
physical synthesis options that can improve design performance at the expense of
considerable increases of compilation time and area. Turn on only those options that
help you keep reasonable compilation times and resource usage. Alternately, you can
modify your HDL to manually duplicate or retime logic.

Reducing Power Consumption
The Quartus II software has features that help reduce design power consumption. The
PowerPlay power optimization options control the power-driven compilation settings
for Synthesis and the Fitter.

f For more information, refer to the Power Optimization chapter in volume 2 of the
Quartus II Handbook.

Reducing Runtime
Many Fitter settings influence compilation time. Most of the default settings in the
Quartus II software are set for reduced compilation time. You can modify these
settings based on your project requirements.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

11–4 Chapter 11: Design Optimization Overview
Using Quartus II Tools
The Quartus II software supports parallel compilation in computers with multiple
processors. This can reduce compilation times by up to 15% while giving the identical
result as serial compilation.

You can also reduce compilation time with your iterations by using incremental
compilation. Use incremental compilation when you want to change parts of your
design, while keeping most of the remaining logic unchanged.

Using Quartus II Tools
The following sections describe several Quartus II tools that you can use to help
optimize your design.

Design Analysis
The Quartus II software provides tools that help with a visual representation of your
design. You can use the RTL Viewer to see a schematic representation of your design
before synthesis and place-and-route. The Technology Map Viewer provides a
schematic representation of the design implementation in the selected device
architecture after synthesis and place-and-route. It can also include timing
information.

With incremental compilation, the Design Partition Planner and the Chip Planner
allow you to partition and layout your design at a higher level. In addition, you can
perform many different tasks with the Chip Planner, including: making floorplan
assignments, implementing engineering change orders (ECOs), and performing
power analysis. Also, you can analyze your design and achieve a faster timing closure
with the Chip Planner. The Chip Planner provides physical timing estimates, critical
path display, and routing congestion view to help guide placement for optimal
performance.

f For more information, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Designs and Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapters in volume 1 and the Engineering Change Management
with the Chip Planner chapter in volume 2 of the Quartus II Handbook.

Advisors
The Quartus II software includes several advisors to help you optimize your design
and reduce compilation time. You can complete your design faster by following the
recommendations in the Compilation Time Advisor, Incremental Compilation
Advisor, Timing Optimization Advisor, Area Optimization Advisor, Resource
Optimization Advisor, and Power Optimization Advisor. These advisors give
recommendations based on your project settings and your design constraints.

h For more information about advisors, refer to Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 11: Design Optimization Overview 11–5
Conclusion
Design Space Explorer
Use the Design Space Explorer (DSE) to find optimal settings in the Quartus II
software. DSE automatically tries different combinations of netlist optimizations and
advanced Quartus II software compiler settings, and reports the best settings for your
design, based on your chosen primary optimization goal. You can try different seeds
with the DSE if you are fairly close to meeting your timing or area requirements and
find one seed that meets timing or area requirements. Finally, the DSE can run the
different compilations on multiple computers in parallel, which shortens the timing
closure process.

h For more information, refer to About Design Space Explorer in Quartus II Help.

Conclusion
The Quartus II software includes a number of features and tools that you can use to
optimize area, timing, power, and compilation time when you design for
programmable logic devices (PLDs).

Document Revision History
Table 11–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 11–1. Document Revision History

Date Version Changes

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected link

July 2010 10.0.0 Initial release. Chapter based on topics and text in Section III of volume 2.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

11–6 Chapter 11: Design Optimization Overview
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52022-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52022-10.1.0
12. Reducing Compilation Time
The Quartus® II software offers a number of features and techniques to help reduce
compilation time.

This chapter describes techniques to reduce compilation time when designing for
Altera® devices, and includes the following topics:

■ “Compilation Time Optimization Techniques”

■ “Compilation Time Advisor” on page 12–2

■ “Strategies to Reduce the Overall Compilation Time” on page 12–2

■ “Reducing Synthesis Time and Synthesis Netlist Optimization Time” on page 12–5

■ “Reducing Placement Time” on page 12–7

■ “Reducing Routing Time” on page 12–8

■ “Reducing Static Timing Analysis Time” on page 12–9

■ “Setting Process Priority” on page 12–10

Compilation Time Optimization Techniques
In long compilations, most of the time is spent in the Analysis and Synthesis and
Fitter modules. Analysis and Synthesis includes physical synthesis optimizations
done during synthesis, if you have turned on physical synthesis optimizations. The
Fitter includes two steps, placement and routing, and also includes physical synthesis
if you turned on the physical synthesis option with Normal or Extra effort levels. The
Flow Elapsed Time section of the Compilation Report shows how much time is spent
running the Analysis and Synthesis and Fitter modules. The Fitter Messages report in
the Fitter section of the Compilation Report shows the time that was spent in
placement and the time that was spent in routing.

Placement is the process of finding optimum locations for the logic in your design.
Placement includes Quartus II pre-Fitter operations, which place dedicated logic such
as clocks, PLLs, and transceiver blocks. Routing is the process of connecting the nets
between the logic in your design. There are many possible placements for the logic in
a design, and finding better placements typically uses more compilation time. Good
logic placement allows you to more easily meet your timing requirements and makes
the design easier to route.

1 The applicable messages are indicated as shown in the following example, with each
time component in two-digit format, and days shown only if applicable:

Info: Fitter placement operations ending: elapsed time =
<days:hours:mins:secs>
Info: Fitter routing operations ending: elapsed time =
<days:hours:mins:secs>
 Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52022

12–2 Chapter 12: Reducing Compilation Time
Compilation Time Optimization Techniques
While the Fitter is running (including Placement and Routing), messages similar to
the following message are displayed every hour to indicate Fitter operations are
progressing normally.

Info: Placement optimizations have been running for 4 hour(s)

Compilation Time Advisor
A Compilation Time Advisor is available in the Quartus II software, which helps you
to reduce compilation time. Run the Compilation Time Advisor on the Tools menu by
pointing to Advisors and clicking Compilation Time Advisor. You can find all the
compilation time optimizing techniques described in this section in the Compilation
Time Advisor as well.

Strategies to Reduce the Overall Compilation Time
This section discusses strategies you can use to reduce overall compilation time,
including the following topics:

■ “Using Parallel Compilation with Multiple Processors”

■ “Using Incremental Compilation” on page 12–4

■ “Using the Smart Compilation Setting” on page 12–4

■ “Using Rapid Recompile” on page 12–4

Using Parallel Compilation with Multiple Processors
The Quartus II software can run some algorithms in parallel to take advantage of
multiple processors and reduce compilation time when more than one processor is
available. Parallel compilation is turned on by default in the Quartus II software and
the software can detect if multiple processors are available. You can also specify the
maximum number of processors that the software can use if you want to reserve some
of the available processors for other tasks. The Quartus II software supports up to 16
processors. The software does not necessarily use all the processors that you specify
during a given compilation, but it never uses more than the specified number of
processors. This allows you to work on other tasks on your computer without it
becoming slow or less responsive.

If you have partitioned your design and enabled parallel compilation, the Quartus II
software can use different processors to compile those partitions simultaneously
during the Analysis and Synthesis stage. This may result is high peak memory usage
during Analysis and Synthesis.

By allowing the Quartus II software to use two processors, you can reduce the
compilation time by up to 10% on systems with two processing cores and by up to
20% on systems with four cores. With certain design flows in which timing analysis
runs alone, using multiple processors can reduce the time required for timing analysis
by an average of 10% when using two processors. This reduction can reach an average
of 15% when using four processors.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 12: Reducing Compilation Time 12–3
Compilation Time Optimization Techniques
The actual reduction in compilation time depends on the design and on the specific
settings used for compilation. For example, compilations with multi-corner
optimization turned on benefit more from using multiple processors than do
compilations that do not use multi-corner optimization. The runtime requirement is
not reduced for some other compilation goals, such as Analysis and Synthesis. The
Fitter (quartus_fit) and the Quartus II TimeQuest Timing Analyzer (quartus_sta)
stages in the compilation can, in certain cases, benefit from the use of multiple
processors. The average number of processors used for these stages is shown in the
Compilation Report, on the Flow Elapsed Time panel. A more detailed breakdown of
processor usage is also shown in the Parallel Compilation panel of the appropriate
report, such as the Fit report. This panel is only displayed if parallel compilation is
enabled.

This feature is available for Arria® series, Cyclone®, HardCopy III, HardCopy IV,
MAX® II, MAX V (limited support), and Stratix® series devices.

1 Do not consider processors with Intel Hyper-Threading to be more than one
processor. If you have a single processor with Intel Hyper-Threading enabled, you
should set the number of processors to one. Altera recommends that you do not use
the Intel Hyper-Threading feature for Quartus II compilations, as it can increase
runtimes.

The Quartus II software can detect the number of processors available on a computer
and use available processors to reduce compilation time. You can also control the
number of processors used during a compilation on a per user basis.

h For more information, refer to Processing Page (Options Dialog Box) in Quartus II Help.

h For information about how to control the number of processors used during
compilation for a specific project, refer to Compilation Process Settings Page (Settings
Dialog Box) in Quartus II Help.

Using multiple processors does not affect the quality of the fit. For a given Fitter seed
on a specific design, the fit is exactly the same, regardless of whether the Quartus II
software uses one processor or multiple processors. The only difference between
compilations using a different number of processors is the compilation time.

You can also set the number of processors available for Quartus II compilation using
the following Tcl command in your script.

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value> r
In this case, <value> is an integer from 1 to 16.

If you want the Quartus II software to detect the number of processors and use all of
them for running the compilation, use the following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/global/gl_tab_processing.htm

12–4 Chapter 12: Reducing Compilation Time
Compilation Time Optimization Techniques
Using Incremental Compilation
The incremental compilation feature can speed up design iteration time by up to 70%
for small design changes, and helps you reach design timing closure more efficiently.
Design iterations can be made faster by recompiling only a particular design partition
and merging results with previous compilation results from other partitions. You can
also use physical synthesis optimization techniques for specific design partitions
while leaving other parts of the design untouched to preserve performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files
for parts of your design that you already have synthesized and optimized so that you
update only the parts of the design that change.

In the standard incremental compilation design flow, the top-level design is divided
into partitions, which can be compiled and optimized together in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
time for each design iteration because neither synthesis nor fitting is performed for
unchanged partitions in the design.

The incremental compilation feature also facilitates team-based incremental
compilation design flows that allow designers to create and optimize design blocks
independently, when necessary, and support third-party IP integration.

f For information about the full incremental compilation flow in the Quartus II
software, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook. For information about creating
multiple netlist files in third-party tools for use with incremental compilation, refer to
the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook.

h For additional information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Using the Smart Compilation Setting
Smart compilation can reduce compilation time by skipping compiler stages that are
not required to recompile the design. This is especially useful when you perform
multiple compilation iterations during the optimization phase of the design process.
However, smart compilation uses more disk space. To turn on smart compilation, on
the Assignments menu, click Settings. In the Category list, select Compilation
Process Settings and turn on Use smart compilation.

1 Smart compilation skips entire compiler stages (such as Analysis and Synthesis) when
they are not required. This feature is different from incremental compilation, which
you can use to compile parts of your design while preserving results for unchanged
parts.

Using Rapid Recompile
The Rapid Recompile feature maximizes designer productivity when making small
engineering change order (ECO)-style design changes after a full compilation,
reducing compilation times by an average of 50%. Rapid Recompile also significantly
improves designer productivity during timing closure by preserving critical timing
during late design changes.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm

Chapter 12: Reducing Compilation Time 12–5
Compilation Time Optimization Techniques
The Rapid Recompile option can be used stand-alone or along with standard
incremental flow for compatible nodes in your design. A compatible node is a node
that can be matched to a node from previous compilation results. Rapid Recompile
allows the Quartus II software to reuse placement and routing resources of
compatible nodes from previous results with a high degree of confidence.

If you enable the Rapid Recompile feature, you will see the compile time reduction
after a full compilation. Turn on the Rapid Recompile feature in later compilations to
see further reductions. The Incremental Compilation Preservation Summary section
in the Fitter Report provides details about the placement and routing preservation for
your design.

The performance of Rapid Recompile is largely dependent on the nature of the design
change. If the Quartus II software determines that full optimization is necessary for
design performance, you may not see much compilation time reduction. For example,
if the total time taken by the Fitter is dominated by the time taken for fitter
preparation operations, using this feature may not save you a lot of compilation time.
Applying extensive, global optimizations to a small user change may be required to
obtain optimal performance. Be sure to select the right flow to achieve your end goals.

1 If you see the message Fitter has failed to locate previous placement
information during the compilation of your design, Rapid Recompile will not
provide any compile time reduction.

h For more information about this feature, refer to Incremental Compilation Page (Settings
Dialog Box) in Quartus II Help.

Reducing Synthesis Time and Synthesis Netlist Optimization Time
You can reduce synthesis time by reducing your use of netlist optimizations and by
using incremental compilation (with Netlist Type set to Post-Synthesis) without
affecting the Fitter time. For tips for reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
You can use Quartus II integrated synthesis to synthesize and optimize HDL designs,
and you can use synthesis netlist optimizations to optimize netlists that were
synthesized by third-party EDA software. When using Quartus II Integrated
Synthesis, you can also enable specific Physical Synthesis Optimizations during
Analysis and Synthesis. Using these netlist optimizations can cause the Analysis and
Synthesis module to take much longer to run. Read the Analysis and Synthesis
messages to find out how much time these optimizations take. The compilation time
spent in Analysis and Synthesis is usually small compared to the compilation time
spent in the Fitter.

If your design meets your performance requirements without synthesis netlist
optimizations, turn off the optimizations to save time. If you require synthesis netlist
optimizations to meet performance, you can optimize parts of your design hierarchy
separately to reduce the overall time spent in analysis and synthesis.

Turn off settings that are not useful. In general, if you carry over compilation settings
from a previous project, evaluate all settings and keep only those that you need.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

12–6 Chapter 12: Reducing Compilation Time
Compilation Time Optimization Techniques
Use Appropriate Coding Style to Reduce Synthesis Time
The way you code your design in HDL can effect the synthesis time. For example, if
you want to infer RAM blocks from your code, you must follow the guidelines for
inferring RAMs. If not, those blocks are implemented as registers, and if you are
trying to infer a large memory, it will use a large amount of resources within the
FPGA. This will cause routing congestion and increase compilation time drastically. In
general, if you see very high routing utilizations in some blocks, it is a good idea to
review the code for such blocks.

f For more information about coding guidelines, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Using Early Timing Estimation
The Quartus II software provides an Early Timing Estimation feature that estimates
your design’s timing results before the software performs full placement and routing.
On the Processing menu, point to Start, and click Start Early Timing Estimate to
generate initial compilation results after you have run analysis and synthesis. When
you want a quick estimate of a design’s performance before proceeding with further
design or synthesis tasks, this command can save significant compilation time. Using
this feature provides a timing estimate 2.5× faster (on average) than running a full
compilation (8.5× faster in best case), although the fit is not fully optimized or routed.
Therefore, the timing report is only an estimate. On average, the estimated delays are
within 15% of the final timing results as achieved by a full compilation.

You can specify the type of delay estimates to use with Early Timing Estimation. On
the Assignments menu, click Settings. In the Category list, select Compilation
Process Settings, and select Early Timing Estimate. On the Early Timing Estimate
page, the following options are available:

■ The Realistic option, which is the default, generates delay estimates that are likely
to be close to the results of a full compilation.

■ The Optimistic option uses delay estimates that are lower than those likely to be
achieved by a full compilation, which results in an optimistic performance
estimate.

■ The Pessimistic option uses delay estimates that are higher than those likely to be
achieved by a full compilation, which results in a pessimistic performance
estimate.

All three options offer the same reduction in compilation time.

You can view the critical paths in the design by locating these paths in the Chip
Planner from the TimeQuest Timing Report panel. Then, if necessary, you can add or
modify floorplan constraints such as LogicLock regions, or make other changes to the
design. You can then rerun the Early Timing Estimate to quickly assess the impact of
any floorplan assignments or logic changes, enabling you to try different design
variations and find the best solution.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 12: Reducing Compilation Time 12–7
Compilation Time Optimization Techniques
Reducing Placement Time
The time required to place a design depends on two factors: the number of ways the
logic in the design can be placed in the device and the settings that control how hard
the placer works to find a good placement. You can reduce the placement time in two
ways:

■ Change the settings for the placement algorithm

■ Use incremental compilation to preserve the placement for parts of the design

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, make sure that it does not increase routing time
and negate the overall time reduction.

Fitter Effort Setting
The highest fitter effort setting, Standard Fit, takes the most runtime, but does not
always yield a better result than using the default Auto Fit. For designs with very
tight timing requirements, both Auto Fit and Standard Fit use the maximum effort
during optimization. Using Auto Fit is recommended for reducing compilation time.
If you are certain that your design has only easy-to-meet timing constraints, you can
select Fast Fit for an even greater runtime savings.

Placement Effort Multiplier Settings
You can control the amount of time the Fitter spends in placement by reducing one
aspect of placement effort with the Placement Effort Multiplier option. On the
Assignments menu, click Settings. Select Fitter Settings, and click More Settings.
Under Existing Option Settings, select Placement Effort Multiplier. The default is
1.0. Legal values must be greater than 0 and can be non-integer values. Numbers
between 0 and 1 can reduce fitting time, but also can reduce placement quality and
design performance. Numbers higher than 1 increase placement time and placement
quality, but can reduce routing time for designs with routing congestion. For example,
a value of 4 increases placement time by approximately 2 to 4 times, but might result
in better placement, which can result in reduced routing time.

Final Placement Optimization Levels
The Final Placement Optimization Level option specifies whether the Fitter performs
final placement optimizations. This can be set to Always, Never, and Automatically.
Performing optimizations can improve register-to-register timing and fitting, but
might require longer compilation times. The default setting of Automatically can be
used with the Auto Fit Fitter Effort Level (also the default) to let the Fitter decide
whether these optimizations should run based on the routability and timing
requirements of the design.

Setting the Final Placement Optimization Level to Never often reduces your
compilation time, but typically affects routability negatively and reduces timing
performance.

To change the Final Placement Optimization Level, on the Assignments menu, click
Settings. The Settings dialog box appears. From the Category list, select Fitter
Settings, and then click the More Settings button. Select Final Placement
Optimization Level, and then from the list, select the required setting.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

12–8 Chapter 12: Reducing Compilation Time
Compilation Time Optimization Techniques
Physical Synthesis Effort Settings
You can use the physical synthesis options to optimize your post-synthesis netlist and
improve your timing performance. These options, which affect placement, can
significantly increase compilation time.

If your design meets your performance requirements without physical synthesis
options, turn them off to save time. You also can use the Physical synthesis effort
setting on the Physical Synthesis Optimizations page under Compilation Process
Settings in the Category list to reduce the amount of extra compilation time that these
optimizations use. The Fast setting directs the Quartus II software to use a lower level
of physical synthesis optimization that, compared to the Normal physical synthesis
effort level, can cause a smaller increase in compilation time. However, the lower level
of optimization can result in a smaller increase in design performance.

Limit to One Fitting Attempt
This option causes the software to quit after one fitting attempt option, instead of
repeating placement and routing with increased effort. For hard to fit designs,
consider increasing the Placement Effort Multiplier setting and the Limit to One
Fitting Attempt setting. This saves you time, because if the design is hard to fit and
does not result in a valid fit, the compilation stops after the first attempt..

From the Assignments menu, select Settings. On the Fitter Settings page, turn on
Limit to one fitting attempt.

f For more details about this option, refer to “Limit to One Fitting Attempt” in the Area
and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Preserving Placement, Incremental Compilation, and LogicLock Regions
Preserving information about previous placements can make future placements faster.
The incremental compilation feature provides an easy-to-use methodology for
preserving placement results. For more information, refer to “Using Incremental
Compilation” on page 12–4.

Reducing Routing Time
The time required to route a design depends on three factors: the device architecture,
the placement of the design in the device, and the connectivity between different parts
of the design. Typically, the routing time is not a significant amount of the compilation
time. If your design takes a long time to route, perform one or more of the following
actions:

■ Check for routing congestion

■ Let the placer run longer to find a more routable placement

■ Use incremental compilation to preserve routing information for parts of your
design
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 12: Reducing Compilation Time 12–9
Compilation Time Optimization Techniques
Identifying Routing Congestion in the Chip Planner
To identify areas of routing congestion in your design, open the Chip Planner. On the
Tools menu, click Chip Planner. To view the routing congestion in the Chip Planner,
click the Layers icon located next to the Task menu. Under Background Color Map,
select Routing Utilization. Routing resource usage above 90% indicates routing
congestion. You can change the connections in your design to reduce routing
congestion. If the area with routing congestion is in a LogicLock region or between
LogicLock regions, change or remove the LogicLock regions and recompile the
design. If the routing time remains the same, the time is a characteristic of the design
and the placement. If the routing time decreases, consider changing the size, location,
or contents of LogicLock regions to reduce congestion and decrease routing time.

In some cases, routing congestion may be a result of the HDL coding style used in the
design. Once you identity areas that are congested using the Chip Planner, review the
HDL code for the blocks placed in those areas to see if interconnect usage can be
reduced by code changes.

The Quartus II compilation messages contain information about average and peak
interconnect usage. In general, peak interconnect usage over 75%, or average
interconnect usage over 60%, could be an indication that it might be difficult to fit the
design. Similarly, peak interconnect usage over 90%, or average interconnect usage
over 75%, are likely to have increased chances of not getting a valid fit.

f For information about identifying areas of congested routing using the Chip Planner,
refer to the “Viewing Routing Congestion” subsection in the Analyzing and Optimizing
the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

Placement Effort Multiplier Setting
Some designs might be time consuming and difficult to route because the placement
is not optimal. In such cases, you can increase the Placement Effort Multiplier to get a
better placement. Doing so might increase the placement time, but it can reduce the
routing time, and even overall compilation time in some cases.

Preserving Routing with Incremental Compilation
Preserving the previous routing results for part of the design can reduce future
routing time. Incremental compilation provides an easy-to-use methodology that
preserves placement and routing results. For more information, refer to “Using
Incremental Compilation” on page 12–4 and the references listed in the section.

Reducing Static Timing Analysis Time
If you are performing timing-driven synthesis, the Quartus II software runs the
TimeQuest analyzer during Analysis and Synthesis. The Quartus II Fitter also runs
the TimeQuest analyzer during placement and routing. If there are incorrect
constraints in the SDC file, the Quartus II software may spend time processing
constraints unnecessarily several times. If false paths and multicycle paths in the
design are not specified completely, the TimeQuest analyzer may spend time
analyzing paths that are not relevant to your design. Also, if constraints are redefined
in the SDC files, the TimeQuest analyzer may spend additional time processing them.
In the compilation messages, look for indications about SDC constraints being
redefined, and update the constraints file to avoid this situation. Also, make sure to
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

12–10 Chapter 12: Reducing Compilation Time
Conclusion
provide the correct timing constraints to your design, because the software cannot
assume design intent, such as which paths should be considered as false paths or
multicycle paths. When you specify these assignments correctly, the TimeQuest
analyzer skips analysis for those paths, and the Fitter does not spend additional time
optimizing those paths.

Setting Process Priority
It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you also have
to run other tasks at the same time.

h For more information about setting process priority, refer to Processing Page (Options
Dialog Box) in Quartus II Help.

Conclusion
The Quartus II software provides many features to reduce compilation time and
achieve optimal results. Using the recommended techniques described in this chapter
can help you reduce compilation time.

Document Revision History
Table 12–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 12–1. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Template update.

■ Added details about peak and average interconnect usage.

■ Added new section “Reducing Static Timing Analysis Time” on page 12–9.

■ Minor changes throughout chapter.

July 2010 10.0.0 Initial release.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/global/gl_tab_processing.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/global/gl_tab_processing.htm
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52005-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52005-10.1.0
13. Area and Timing Optimization
This chapter describes techniques to reduce resource usage and improve timing
performance when designing for Altera® devices.

Good optimization techniques are essential for achieving the best results when
designing for programmable logic devices (PLDs). The optimization features
available in the Quartus® II software allow you to meet design requirements by
applying these techniques at multiple points in the design process.

This chapter also explains how and when to use some of the features described in
other chapters of the Quartus II Handbook.

This chapter includes the following topics:

■ “Optimizing Your Design”

■ “Design Analysis” on page 13–10

■ “Resource Utilization Optimization Techniques (LUT-Based Devices)” on
page 13–15

■ “Timing Optimization Techniques (LUT-Based Devices)” on page 13–27

■ “Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)” on
page 13–43

■ “Timing Optimization Techniques (Macrocell-Based CPLDs)” on page 13–49

■ “Scripting Support” on page 13–53

The application of these techniques varies from design to design. Applying each
technique does not always improve results. Settings and options in the Quartus II
software have default values that generally provide the best trade-off between
compilation time, resource utilization, and timing performance. You can adjust these
settings to determine whether other settings provide better results for your design.

When using advanced optimization settings and tools, benchmark their effect on your
results and use them only if they improve results for your design.

You can use the optimization flow described in this chapter to explore various
compiler settings and determine the techniques that provide the best results.

Optimizing Your Design
The first stage in the optimization process is to perform an initial compilation on your
design. “Initial Compilation: Required Settings” on page 13–2 provides guidelines for
some of the settings and assignments that are recommended for your initial
compilation.“Initial Compilation: Optional Fitter Settings” on page 13–6 describes
settings that you might turn on based on your design requirements. “Design
Analysis” on page 13–10 explains how to analyze the compilation results.
 Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52005

13–2 Chapter 13: Area and Timing Optimization
Optimizing Your Design
1 You can use incremental compilation in the optimization process. Incremental
compilation can preserve timing to aid in timing closure, as well as compilation time
reduction; however, it can cause a slight increase in resource utilization.

f For more details about Quartus II incremental compilation flow, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

h To view information about timing analysis results, refer to Viewing Timing Analysis
Results (TimeQuest Timing Analyzer) in Quartus II Help.

After you have analyzed the compilation results, perform the optimization stages in
the recommended order, as described in this chapter.

For LUT-based devices (FPGAs, MAX® II series devices), perform optimizations in
the following order:

1. If your design does not fit, refer to “Resource Utilization Optimization Techniques
(LUT-Based Devices)” on page 13–15 before trying to optimize I/O timing or
register-to-register timing.

2. If your design does not meet the required I/O timing performance, refer to “I/O
Timing Optimization Techniques (LUT-Based Devices)” on page 13–56 before
trying to optimize register-to-register timing.

3. If your design does not meet the required slack on any of the clock domains in the
design, refer to “Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 13–56.

For macrocell-based devices (MAX 7000 and MAX 3000 CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to“Resource Utilization Optimization Techniques
(Macrocell-Based CPLDs)” on page 13–43 before trying to optimize I/O timing or
register-to-register timing.

2. If your timing performance requirements are not met, refer to “Timing
Optimization Techniques (Macrocell-Based CPLDs)” on page 13–49.

f For device-independent techniques to reduce compilation time, refer to the
“Compilation-Time Optimization Techniques” section in the Reducing Compilation
Time chapter in volume 2 of the Quartus II Handbook.

You can use these techniques in the GUI or with Tcl commands. For more information
about scripting techniques, refer to “Scripting Support” on page 13–53.

Initial Compilation: Required Settings
This section describes the basic assignments and settings for your initial compilation.
Check the following compilation assignments before compiling the design in the
Quartus II software. Significantly varied compilation results can occur depending on
the assignments you set.

Verify the following settings:

■ “Device Settings” on page 13–3
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm

Chapter 13: Area and Timing Optimization 13–3
Optimizing Your Design
■ “I/O Assignments”

■ “Timing Requirement Settings”

■ “Device Migration Settings” on page 13–5

■ “Partitions and Floorplan Assignments for Incremental Compilation” on
page 13–5

Device Settings
Specific device assignments determine the timing model that the Quartus II software
uses during compilation. Choose the correct speed grade to obtain accurate results
and the best optimization. The device size and the package determine the device
pin-out and the number of resources available in the device.

To select the target device, on the Assignments menu, click Device.

In a Tcl script, use the following command to set the device:

set_global_assignment -name DEVICE <device> r

I/O Assignments
The I/O standards and drive strengths specified for a design affect I/O timing.
Specify I/O assignments so that the Quartus II software uses accurate I/O timing
delays in timing analysis and Fitter optimizations.

The Quartus II software can select pin locations automatically. If your pin locations
are not fixed due to PCB layout requirements, leave pin locations unconstrained. If
your pin locations are already fixed, make pin assignments to constrain the
compilation appropriately.“Resource Utilization Optimization Techniques
(Macrocell-Based CPLDs)” on page 13–43 includes recommendations for making pin
assignments that can have a large effect on your results in smaller macrocell-based
architectures.

Use the Assignment Editor and Pin Planner to assign I/O standards and pin locations.

f For more information about I/O standards and pin constraints, refer to the
appropriate device handbook. For information about planning and checking I/O
assignments, refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook.

h For information about using the Assignment Editor, refer to About the Assignment
Editor in Quartus II Help.

Timing Requirement Settings
You must use comprehensive timing requirement settings to achieve the best results
for the following reasons:

■ Correct timing assignments allow the software to work hardest to optimize the
performance of the timing-critical parts of the design and make trade-offs for
performance. This optimization can also save area or power utilization in
non-critical parts of the design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/ase/ase_intro.htm

13–4 Chapter 13: Area and Timing Optimization
Optimizing Your Design
■ The Quartus II software performs physical synthesis optimizations based on
timing requirements (refer to “Physical Synthesis Optimizations” on page 13–35
for more information).

■ Depending on the Fitter Effort setting, the Quartus II Fitter can reduce runtime
considerably if your timing requirements are being met. For a description of the
different effort levels, refer to “Fitter Effort Setting” on page 13–8

Use your real requirements to get the best results. If you apply more demanding
timing requirements than you actually need, increased resource usage, higher power
utilization, increased compilation time, or all of these may result.

The Quartus II TimeQuest Timing Analyzer checks your design against the timing
constraints. The Compilation Report and timing analysis reporting commands show
whether timing requirements are met and provide detailed timing information about
paths that violate timing requirements.

To create timing constraints for the TimeQuest analyzer, create a Synopsys Design
Constraints File (.sdc). You can also enter constraints in the TimeQuest GUI. Use the
write_sdc command, or, on the Constraints menu in the TimeQuest analyzer, click
Write SDC File to write your constraints to an .sdc file. You can add an .sdc file to
your project on the Quartus II Settings page under Timing Analysis Settings.

1 If you already have an .sdc file in your project, using the write_sdc command from
the command line or using the Write SDC File option from the TimeQuest GUI
enables you to create a new .sdc file, combining the constraints from your current .sdc
file and any new constraints added through the GUI or command window, or
overwrite the existing .sdc file with your newly applied constraints.

Ensure that every clock signal has an accurate clock setting constraint. If clocks arrive
from a common oscillator, they can be considered related. Ensure that all related or
derived clocks are set up correctly in the constraints. All I/O pins that require I/O
timing optimization must be constrained. Specify both minimum and maximum
timing constraints as applicable. If there is more than one clock or there are different
I/O requirements for different pins, make multiple clock settings and individual I/O
assignments instead of using a global constraint.

Make any complex timing assignments required in the design, including false path
and multicycle path assignments. Common situations for these types of assignments
include reset or static control signals, cases in which it is not important how long it
takes a signal to reach a destination, and paths that can operate in more than one clock
cycle. These assignments allow the Quartus II software to make appropriate trade-offs
between timing paths and can enable the Compiler to improve timing performance in
other parts of the design.

f For more information about timing assignments and timing analysis, refer to The
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook
and the Quartus II TimeQuest Timing Analyzer Cookbook. For more information about
how to specify multicycle exceptions in the TimeQuest analyzer, refer to AN 481:
Applying Multicycle Exceptions in the TimeQuest Timing Analyzer.

1 To ensure that constraints or assignments have been applied to all design nodes, you
can report all unconstrained paths in your design.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/an/an481.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf

Chapter 13: Area and Timing Optimization 13–5
Optimizing Your Design
While using the Quartus II TimeQuest analyzer, you can report all the unconstrained
paths in your design with the Report Unconstrained Paths command in the Task
pane or the report_ucp Tcl command.

Device Migration Settings
If you anticipate a change to the target device later in the design cycle, either because
of changes in the design or other considerations, plan for it at the beginning of your
design cycle. Whenever you select a target device in the Settings dialog box, you can
also list any other compatible devices you can migrate to by clicking on the Migration
Devices button on the Device dialog box. If you plan to move your design to a
HardCopy® device, make sure to select the device from the HardCopy list under
Companion device on the Device dialog box.

Selecting the migration device and companion device early in the design cycle helps
to minimize changes to the design at a later stage.

Partitions and Floorplan Assignments for Incremental Compilation
The Quartus II incremental compilation feature enables hierarchical and team-based
design flows in which you can compile parts of your design while other parts of the
design remain unchanged, or import parts of your design from separate Quartus II
projects.

Using incremental compilation for your design with good design partitioning
methodology can often help to achieve timing closure. Creating LogicLock™ regions
and using incremental compilation can help you achieve timing closure block by
block, and preserve the timing performance between iterations, which helps achieve
timing closure for the entire design.

Using incremental compilation may also help reduce compilation times.

f For more information, refer to the “Incremental Compilation” section in the Reducing
Compilation Time chapter in volume 2 of the Quartus II Handbook.

If you want to take advantage of incremental compilation for a team-based design
flow to reduce your compilation times, or to improve the timing performance of your
design during iterative compilation runs, make meaningful design partitions and
create a floorplan for your design partitions. Good assignments can improve your
results. Assignments can negatively affect a design’s results if you do not follow
Altera’s recommendations.

1 If you plan to use incremental compilation, you must create a floorplan for your
design. If you are not using incremental compilation, this step is optional.

f For guidelines about how to create partition and floorplan assignments for your
design, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf
http://www.altera.com/literature/hb/qts/qts_qii52022.pdf

13–6 Chapter 13: Area and Timing Optimization
Optimizing Your Design
Initial Compilation: Optional Fitter Settings
This section describes optional Fitter settings that can help to compile your design.
You can selectively set all the optional settings that help to improve performance.
These settings vary between designs and there is no standard set that applies to all
designs. Significantly different compilation results can occur depending on the
assignments you have set.

The following settings are optional:

■ “Optimize Hold Timing”

■ “Limit to One Fitting Attempt” on page 13–7

■ “Optimize Multi-Corner Timing” on page 13–7

■ “Fitter Effort Setting” on page 13–8

To turn on these settings, follow these steps:

1. On the Assignments menu, click Settings.

2. In the Category list, select Fitter Settings. The Fitter Settings page appears.

3. Turn on the appropriate options.

Optimize Hold Timing
The Optimize Hold Timing option directs the Quartus II software to optimize
minimum delay timing constraints. This option is available for all Altera device
families except MAX 3000 and MAX 7000 series devices. By default, the Quartus II
software optimizes hold timing for all paths for designs using devices newer than
Arria GX, Stratix III, and Cyclone III. By default, the Quartus II software optimizes
hold timing only for I/O paths and minimum TPD paths for older devices.

When you turn on Optimize Hold Timing, the Quartus II software adds delay to
paths to guarantee that the minimum delay requirements are satisfied. In the Fitter
Settings pane, if you select I/O Paths and Minimum TPD Paths (the default choice
for older devices such as Cyclone II and Stratix II family of devices if you turn on
Optimize Hold Timing), the Fitter works to meet the following criteria:

■ Hold times (tH) from device input pins to registers

■ Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins

■ Minimum clock-to-out time (tCO) from registers to output pins
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–7
Optimizing Your Design
If you select All Paths, the Fitter also works to meet hold requirements from registers
to registers, as in Figure 13–1, where a derived clock generated with logic causes a
hold time problem on another register. However, if your design has internal hold time
violations between registers, Altera recommends that you correct the problems by
making changes to your design, such as using a clock enable signal instead of a
derived or gated clock.

f For design practices that can help eliminate internal hold time violations, refer to the
Recommended Design Practices chapter in volume 1 of the Quartus II Handbook.

Limit to One Fitting Attempt
A design might fail to fit for several reasons, such as logic overuse or illegal
assignments. For most failures, the Quartus II software informs you of the problem.
However, if the design uses too much routing, the Quartus II software makes up to
two additional attempts to fit your design. Each of these fit attempts takes
significantly longer than the previous attempt.

For large designs, you might not want to wait for all three fitting attempts to be
completed. To have the Quartus II software issue an error message after the first failed
attempt, turn on Limit to one fitting attempt on the Fitter Settings page.

For instructions about how to lower the design’s routing utilization, so your design
can be made to fit into the target device if it fails to fit due to the lack of routing
resources, refer to “Routing” on page 13–24

Optimize Multi-Corner Timing
Historically, FPGA timing analysis has been performed using only worst-case delays,
which are described in the slow corner timing model. However, due to process
variation and changes in the operating conditions, delays on some paths can be
significantly smaller than those in the slow corner timing model. This can result in
hold time violations on those paths, and in rare cases, additional setup time
violations.

Also, because of the small process geometries of the Cyclone III, Stratix III, and newer
device families, the slowest circuit performance of designs targeting these devices
does not necessarily occur at the highest operating temperature. The temperature at
which the circuit is slowest depends on the selected device, the design, and the
Quartus II compilation results. Therefore, the Quartus II software provides the
Cyclone III series, Stratix III, and newer device families with three different timing
corners—Slow 85°C corner, Slow 0°C corner, and Fast 0°C corner. For other device
families, two timing corners are available—Fast 0° C and Slow 85° C corner.

Figure 13–1. Optimize Hold Timing Option Fixing an Internal Hold Time Violation
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

13–8 Chapter 13: Area and Timing Optimization
Optimizing Your Design
By default, the Fitter optimizes constraints using only the slow corner timing model.
You can turn on the Optimize multi-corner timing option to instruct the Fitter to also
optimize constraints considering all available timing corners, at the cost of a slight
increase in runtime. By optimizing for all timing corners, you can create a design
implementation that is more robust across process, temperature, and voltage
variations. While optimizing for multi-corner timing, the Fitter chooses one of the two
slow corners that is known to have more critical timing (depending on the chosen
device), along with the fast corner. This option is available only for Arria, Cyclone,
HardCopy, MAX II, MAX V, and Stratix series devices.

Using the different timing models can be important to account for process, voltage,
and temperature variations for each device. Turning this option on increases
compilation time by approximately 10%.

For designs with external memory interfaces such as DDR and QDR, Altera
recommends that you turn on the Optimize multi-corner timing setting.

Fitter Effort Setting
Fitter effort refers to the amount of effort the Quartus II software uses to fit your
design. To set the Fitter effort, on the Assignments menu, click Settings. In the
Category list, select Fitter Settings. The Fitter effort settings are Auto Fit, Standard
Fit, and Fast Fit. The default setting depends on the device family specified.

Auto Fit

The Auto Fit option (available for Arria, Cyclone, HardCopy, MAX II, MAX V, and
Stratix series devices) focuses the full Fitter effort only on those aspects of the design
that require further optimization. Auto Fit can significantly reduce compilation time
relative to Standard Fit if your design has easy-to-meet timing requirements, low
routing resource utilization, or both. However, those designs that require full
optimization generally receive the same effort as is achieved by selecting Standard
Fit. Auto Fit is the default Fitter effort setting for all devices for which this option is
available.

If you want the Fitter to attempt to exceed the timing requirements by a certain
margin instead of simply meeting them, specify a minimum slack in the Desired
worst case slack box.

1 Specifying a minimum slack does not guarantee that the Fitter achieves the slack
requirement; it only guarantees that the Fitter applies full optimization unless the
target slack is exceeded.

In some designs with multiple clocks, it might be possible to improve the timing
performance on one clock domain while reducing the performance on other clock
domains by over-constraining the most important clock. If you use this technique,
perform a sweep over multiple seeds to ensure that any performance improvements
that you see are real gains. For more information, refer to “Fitter Seed” on page 13–39.

Over-constraining the clock for which you require maximum slack, while using the
Auto Fit option, increases the chances that the Fitter is able to meet this requirement.

The Auto Fit option also causes the Quartus II Fitter to optimize for shorter
compilation times instead of maximum possible performance if the design includes
no timing assignments.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–9
Design Assistant
If your design has aggressive timing requirements or is hard to route, the placement
does not stop early and the compilation time is the same as using the Standard Fit
option.

The Auto Fit option might increase the number of routing wires used. This can lead to
an increase in the dynamic power when compared to using the Standard Fit option,
unless the Extra effort option in the PowerPlay power optimization list is also
enabled. When you turn on Extra effort, Auto Fit continues to optimize for reduction
of wire usage even after meeting the register-to-register requirement, and there is no
adverse effect on the dynamic power consumption relative to using Standard Fit. If
dynamic power consumption is a concern, select Extra effort in both the Analysis &
Synthesis Settings and the Fitter Settings pages.

f For more details, refer to the “Power Driven Compilation” section in the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Standard Fit

Use the Standard Fit option to exceed specified timing requirements and achieve the
best possible timing results and lowest routing resource utilization for your design.
The Standard Fit setting usually increases compilation time relative to Auto Fit,
because it applies full optimization, regardless of the design requirement. In designs
with no timing assignments, on average, using the Standard Fit option results in a
fMAX about 10% higher than that achieved using the Auto Fit option. In designs where
timing requirements can be easily met, using the Standard Fit option can result in
considerably longer compilation times than using the Auto Fit option.

Fast Fit

The Fast Fit option reduces the amount of optimization effort for each algorithm
employed during fitting. This option reduces the compilation time by about 50%,
resulting in a fit that has, on average, 10% lower fMAX than that achieved using the
Standard Fit setting.

Design Assistant
You can run the Design Assistant to analyze the post-fitting results of your design
during a full compilation. The Design Assistant checks rules related to gated clocks,
reset signals, asynchronous design practices, and signal race conditions. This is
especially useful during the early stages of your design, so that you can work on any
areas of concern in your design before proceeding with design optimization.

h For more information about the Design Assistant, refer to About the Design Assistant
and Analyzing Designs with the Design Assistant in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_pro_doctor.htm

13–10 Chapter 13: Area and Timing Optimization
Design Analysis
Design Analysis
The initial compilation establishes whether the design achieves a successful fit and
meets the specified timing requirements. This section describes how to analyze your
design results in the Quartus II software.

Error and Warning Messages
After compiling your design, evaluate all error and warning messages to see if any
design or setting changes are required. If changes are required, make these changes
and recompile the design before proceeding with design optimization.

To suppress messages that you have already evaluated and do not want to see again,
right-click on the message in the Messages window and click Suppress.

f For more information about message suppression, refer to the “Message Suppression”
section in the Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

Ignored Timing Constraints
The Quartus II software ignores illegal, obsolete, and conflicting constraints.

You can view a list of ignored constraints by clicking Report Ignored Constraints in
the Reports menu in the TimeQuest GUI or by typing the following command to
generate a list of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints" r
If any constraints were ignored, analyze why they were ignored. If necessary, correct
the constraints and recompile the design before proceeding with design optimization.

f For more information about the report_sdc command and its options, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Resource Utilization
Determining device utilization is important regardless of whether a successful fit is
achieved. If your compilation results in a no-fit error, resource utilization information
is important for analyzing the fitting problems in your design. If your fitting is
successful, review the resource utilization information to determine whether the
future addition of extra logic or other design changes might introduce fitting
difficulties. Also, review the resource utilization information to determine if it is
impacting timing performance.

To determine resource usage, refer to the Flow Summary section of the Compilation
Report. This section reports how many resources are used, including pins, memory
bits, digital signal processing, and phase-locked loops (PLLs). The Flow Summary
indicates whether the design exceeds the available device resources. More detailed
information is available by viewing the reports under Resource Section in the Fitter
section of the Compilation Report.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 13: Area and Timing Optimization 13–11
Design Analysis
1 For Arria series, Stratix II, Stratix III, Stratix IV, and Stratix V devices, a device with
low utilization does not necessarily have the lowest adaptive logic module (ALM)
utilization possible. For these devices, the Fitter uses adaptive look-up tables (ALUTs)
in different ALMs—even when the logic can be placed within one ALM—to achieve
the best timing and routing results. In achieving these results, the Fitter can spread
logic throughout the device. As the device fills up, the Fitter automatically searches
for logic functions with common inputs to place in one ALM. The number of
partnered ALUTs and packed registers also increases. Therefore, a design that is
reported as close to 100% full might still have space for extra logic if logic and
registers can be packed together more aggressively.

If resource usage is reported as less than 100% and a successful fit cannot be achieved,
either there are not enough routing resources or some assignments are illegal. In
either case, a message appears in the Processing tab of the Messages window
describing the problem.

If the Fitter finishes faster than the Fitter runs on similar designs, a resource might be
over-utilized or there might be an illegal assignment. If the Quartus II software seems
to run for an excessively long time compared to runs on similar designs, a legal
placement or route probably cannot be found. In the Compilation Report, look for
errors and warnings that indicate these types of problems.

For more information about how to get a quick error message on hard-to-fit designs,
refer to “Limit to One Fitting Attempt” on page 13–7 .

You can use the Chip Planner to find areas of the device that have routing congestion.
If you find areas with very high congestion, analyze the cause of the congestion.
Issues such as high fan-out nets not using global resources, an improperly chosen
optimization goal (speed versus area), very restrictive floorplan assignments, or the
coding style can cause routing congestion. After you identify the cause, modify the
source or settings to reduce routing congestion.

f For details about using the Chip Planner tool, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook and About the Chip
Planner in Quartus II Help.

I/O Timing (Including tPD)
TimeQuest analyzer supports the Synopsys Design Constraints (SDC) format for
constraining your design. When using the TimeQuest analyzer for timing analysis,
use the set_input_delay constraint to specify the data arrival time at an input port
with respect to a given clock. For output ports, use the set_output_delay command
to specify the data arrival time at an output port’s receiver with respect to a given
clock. You can use the report_timing Tcl command to generate the I/O timing
reports.

The I/O paths that do not meet the required timing performance are reported as
having negative slack and are highlighted in red in the TimeQuest analyzer Report
pane. In cases where you do not apply an explicit I/O timing constraint to an I/O pin,
the Quartus II timing analysis software still reports the Actual number, which is the
timing number that must be met for that timing parameter when the device runs in
your system.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm

13–12 Chapter 13: Area and Timing Optimization
Design Analysis
f For more information about how timing numbers are calculated, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Register-to-Register Timing
This section contains the following sections:

■ “Timing Analysis with the TimeQuest Timing Analyzer”

■ “Tips for Analyzing Failing Paths” on page 13–14

■ “Tips for Analyzing Failing Clock Paths that Cross Clock Domains” on page 13–14

Timing Analysis with the TimeQuest Timing Analyzer
If you are using the TimeQuest analyzer, analyze all valid register-to-register paths by
using appropriate constraints. Use the report_timing command to generate the
required timing reports for any register-to-register path. Your design meets timing
requirements when you do not have negative slack on any register-to-register path on
any of the clock domains.

When you select a path listed in the TimeQuest Report Timing pane, the tabs in the
corresponding path detail pane show a path summary of source and destination
registers and their timing, statistics about the path delay, detailed information about
the complete data path with all nodes in the path and the waveforms of the relevant
signals (Figure 13–2). To locate a selected path in the Chip Planner or the Technology
Map Viewer by using the shortcut menu, right-click on a path, point to Locate, and
click Locate in Chip Planner. The Chip Planner appears with the path highlighted.
Similarly, if you know that a path is not a valid path, you can set it to be a false path
using the shortcut menu.

To see the path details of any selected path, click on the Data Path tab in the path
details pane. This displays the details of the Data Arrival Path, as well as the Data
Required Path. For a graphical view of the information, click on the Waveform tab.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 13: Area and Timing Optimization 13–13
Design Analysis
You can locate critical paths in the Chip Planner from the TimeQuest timing analysis
report panel.

f For more information about how timing analysis results are calculated, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

You also can see the logic in a particular path by locating the logic in the RTL Viewer
or Technology Map Viewer. These viewers allow you to see a gate-level or
technology-mapped representation of your design netlist. To locate a timing path in
one of the viewers, right-click on a path in the report, point to Locate, and click Locate
in RTL Viewer or Locate in Technology Map Viewer. When you locate a timing path
in the Technology Map Viewer, the annotated schematic displays the same delay
information that is shown when you use the List Paths command.

f For more information about netlist viewers, refer to the Analyzing Designs with
Quartus II Netlist Viewers chapter in volume 1 of the Quartus II Handbook.

Figure 13–2. TimeQuest Analyzer GUI
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

13–14 Chapter 13: Area and Timing Optimization
Design Analysis
Tips for Analyzing Failing Paths
When you are analyzing clock path failures, examine reports and waveforms to
determine if the correct constraints are being applied, and add multicycle or false
paths as appropriate.

Focus on improving the paths that show the worst slack. The Fitter works hardest on
paths with the worst slack. If you fix these paths, the Fitter might be able to improve
the other failing timing paths in the design.

Check for particular nodes that appear in many failing paths. Look for paths that have
common source registers, destination registers, or common intermediate
combinational nodes. In some cases, the registers might not be identical, but are part
of the same bus. In the timing analysis report panels, clicking on the From or To
column headings can be helpful to sort the paths by the source or destination
registers. Clicking first on From, then on To, uses the registers in the To column as the
primary sort and From as the secondary sort. If you see common nodes, these nodes
indicate areas of your design that might be improved through source code changes or
Quartus II optimization settings. Constraining the placement for just one of the paths
might decrease the timing performance for other paths by moving the common node
further away in the device.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains
When analyzing clock path failures, check whether these paths cross between two
clock domains. This is the case if the From Clock and To Clock in the timing analysis
report are different. There can also be paths that involve a different clock in the
middle of the path, even if the source and destination register clock are the same. To
analyze these paths in more detail, right-click on the entry in the report and click List
Paths.

Expand the List Paths entry in the Messages window and analyze the largest
register-to-register requirement. Evaluate the setup relationship between the source
and destination (launch edge and latch edge) to determine if that is reducing the
available setup time. For example, the path can start at a rising edge and end at a
falling edge, which reduces the setup relationship by one half clock cycle.

Check to see if the PLL phase shift is reducing the setup requirement. You might be
able to adjust this using PLL parameters and settings.

Paths that cross clock domains are generally protected with synchronization logic (for
example, FIFOs or double-data synchronization registers) to allow asynchronous
interaction between the two clock domains. In such cases, you can ignore the timing
paths between registers in the two clock domains while running timing analysis, even
if the clocks are related.

The Fitter attempts to optimize all failing timing paths. If there are paths that can be
ignored for optimization and timing analysis, but the paths do not have constraints
that instruct the Fitter to ignore them, the Fitter tries to optimize those paths as well.
In some cases, optimizing unnecessary paths can prevent the Fitter from meeting the
timing requirements on timing paths that are critical to the design. It is beneficial to
specify all paths that can be ignored, so that the Fitter can put more effort into the
paths that must meet their timing requirements instead of optimizing paths that can
be ignored.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–15
Resource Utilization Optimization Techniques (LUT-Based Devices)
f For more details about how to ignore timing paths that cross clock domains, refer to
the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Evaluate the clock skew between the source clock and the destination clock to
determine if that is reducing the available setup time. You can check the shortest and
longest clock path reports to see what is causing the clock skew. Avoid using
combinational logic in clock paths because it contributes to clock skew. Differences in
the logic or in its routing between the source and destination can cause clock skew
problems and result in warnings during compilation.

Global Routing Resources
Global routing resources are designed to distribute high-fan-out, low-skew signals
(such as clocks) without consuming regular routing resources. Depending on the
device, these resources can span the entire chip, or some smaller portion, such as a
quadrant. The Quartus II software attempts to assign signals to global routing
resources automatically, but you might be able to make more suitable assignments
manually.

f Refer to the relevant device handbook for details about the number and types of
global routing resources available.

Check the global signal utilization in your design to ensure that appropriate signals
have been placed on global routing resources. In the Compilation Report, open the
Fitter report and click the Resource Section. Analyze the Global & Other Fast Signals
and Non-Global High Fan-out Signals reports to determine whether any changes are
required.

You might be able to reduce clock skew for high fan-out signals by placing them on
global routing resources. Conversely, you can reduce the insertion delay of low
fan-out signals by removing them from global routing resources. Doing so can
improve clock enable timing and control signal recovery/removal timing, but
increases clock skew. Use the Global Signal setting in the Assignment Editor to
control global routing resources.

Resource Utilization Optimization Techniques (LUT-Based Devices)
After design analysis, the next stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to I/O timing optimization or
register-to-register timing optimization. Ensure that you have already set the basic
constraints described in“Initial Compilation: Required Settings” on page 13–2 before
proceeding with the resource utilization optimizations discussed in this section. If a
design does not fit into a specified device, use the techniques in this section to achieve
a successful fit. After you optimize resource utilization and your design fits in the
desired target device, optimize I/O timing as described in “I/O Timing Optimization
Techniques (LUT-Based Devices)” on page 13–56. These tips are valid for all FPGA
families and the MAX II family of CPLDs.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

13–16 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
Using the Resource Optimization Advisor
The Resource Optimization Advisor provides guidance in determining settings that
optimize the resource usage. To run the Resource Optimization Advisor, on the Tools
menu, point to Advisors, and click Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about how to
optimize the resource usage (logic element, memory block, DSP block, I/O, and
routing) of your design. Some of the recommendations in these categories might
conflict with each other. Altera recommends evaluating the options and choosing the
settings that best suit your requirements.

Resolving Resource Utilization Issues Summary
Resource utilization issues can be divided into the following three categories:

■ Issues relating to I/O pin utilization or placement, including dedicated I/O blocks
such as PLLs or LVDS transceivers (refer to“I/O Pin Utilization or Placement”).

■ Issues relating to logic utilization or placement, including logic cells containing
registers and look-up tables as well as dedicated logic, such as memory blocks and
DSP blocks (refer to“Logic Utilization or Placement” on page 13–17).

■ Issues relating to routing (refer to “Routing” on page 13–24).

I/O Pin Utilization or Placement
Use the suggestions in the following sections to help you resolve I/O resource
problems.

Use I/O Assignment Analysis
On the Processing menu, point to Start and click Start I/O Assignment Analysis to
help with pin placement. The Start I/O Assignment Analysis command allows you to
check your I/O assignments early in the design process. You can use this command to
check the legality of pin assignments before, during, or after compilation of your
design. If design files are available, you can use this command to accomplish more
thorough legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location assignments,
and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential standards have
specific pin pairings, and certain I/O standards might be supported only on certain
I/O banks.

If your compilation or I/O assignment analysis results in specific errors relating to
I/O pins, follow the recommendations in the error message. Right-click on the
message in the Messages window and click Help to open the Quartus II Help topic for
this message.

Modify Pin Assignments or Choose a Larger Package
If a design that has pin assignments fails to fit, compile the design without the pin
assignments to determine whether a fit is possible for the design in the specified
device and package. You can use this approach if a Quartus II error message indicates
fitting problems due to pin assignments.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–17
Resource Utilization Optimization Techniques (LUT-Based Devices)
If the design fits when all pin assignments are ignored or when several pin
assignments are ignored or moved, you might have to modify the pin assignments for
the design or select a larger package.

If the design fails to fit because insufficient I/Os are available, a successful fit can
often be obtained by using a larger device package (which can be the same device
density) that has more available user I/O pins.

f For more information about I/O assignment analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Logic Utilization or Placement
Use the suggestions in the following subsections to help you resolve logic resource
problems, including logic cells containing registers and lookup tables (LUTs), as well
as dedicated logic such as memory blocks and DSP blocks.

Optimize Synthesis for Area, Not Speed
If your design fails to fit because it uses too much logic, resynthesize the design to
improve the area utilization. First, ensure that you have set your device and timing
constraints correctly in your synthesis tool. Particularly when area utilization of the
design is a concern, ensure that you do not over-constrain the timing requirements for
the design. Synthesis tools generally try to meet the specified requirements, which can
result in higher device resource usage if the constraints are too aggressive.

If resource utilization is an important concern, some synthesis tools offer an easy way
to optimize for area instead of speed. If you are using Quartus II integrated synthesis,
select Balanced or Area for the Optimization Technique. You can also specify this
logic option for specific modules in your design with the Assignment Editor in cases
where you want to reduce area using the Area setting (potentially at the expense of
register-to-register timing performance) while leaving the default Optimization
Technique setting at Balanced (for the best trade-off between area and speed for
certain device families) or Speed. You can also use the Speed Optimization
Technique for Clock Domains logic option to specify that all combinational logic in
or between the specified clock domain(s) is optimized for speed.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those produced by the Area setting, with better performance
results. The Area setting can give better results in some cases.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or your
synthesis software’s documentation.

The Quartus II software provides additional attributes and options that can help
improve the quality of your synthesis results.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

13–18 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
Restructure Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By
optimizing your multiplexed logic, you can achieve a more efficient implementation
in your Altera device.

h For more information about this option, refer to Restructure Multiplexers logic option in
Quartus II Help.

f For design guidelines to achieve optimal resource utilization for multiplexer designs,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting

h For information about this logic option, refer to Perform WYSIWYG Primitive
Resynthesis logic option in Quartus II Help.

1 The Balanced setting typically produces utilization results that are very similar to the
Area setting with better performance results. The Area setting can give better results
in some cases. Performing WYSIWYG resynthesis for area in this way typically
reduces register-to-register timing performance.

Use Register Packing
The Auto Packed Registers option implements the functions of two cells into one
logic cell by combining the register of one cell in which only the register is used with
the LUT of another cell in which only the LUT is used. Figure 13–3 shows register
packing and the gain of one logic cell in the design.

Figure 13–3. Register Packing
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_mux_restructure.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm

Chapter 13: Area and Timing Optimization 13–19
Resource Utilization Optimization Techniques (LUT-Based Devices)
Registers can also be packed into DSP blocks (Figure 13–4).

The following list shows the most common cases in which register packing helps to
optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register with a single
data input

■ A LUT can be implemented in the same cell as the register that is fed by the LUT

■ A LUT can be implemented in the same cell as the register that feeds the LUT

■ A register can be packed into a RAM block

■ A register can be packed into a DSP block

■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for supported device
families):

■ Auto—This is the default setting for register packing. This setting tells the Fitter to
attempt to achieve the best performance while maintaining a fit for the design in
the specified device. The Fitter combines all combinational (LUT) and sequential
(register) functions that benefit circuit speed. In addition, more aggressive
combinations of unrelated combinational and sequential functions are performed
to the extent required to reduce the area of the design to achieve a fit in the
specified device. This option is available only for Arria series, Cyclone series, and
Stratix series devices.

■ Minimize Area—Aggressively packs registers to reduce area, even at the cost of
design performance.

■ Minimize Area with Chains—Aggressively packs registers to reduce area. This
option packs registers with carry chains. It also converts registers into register
cascade chains and packs them with other logic to reduce area. This option is
available only for Arria series, Cyclone series, MAX II, and Stratix series devices.

■ Normal—Packs registers when this is not expected to adversely affect timing
results.

■ Off—Does not pack registers.

Figure 13–4. Register Packing in DSP Blocks
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–20 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
■ Sparse—In this mode, the combinational (LUT) and sequential (register) functions
are combined such that the combined logic has either a combinational output or a
sequential output, but not both. This mode is available only for Arria series,
Cyclone II, Cyclone III, Stratix II, Stratix III, Stratix IV, and Stratix V devices. This
option results in a higher logic array block (LAB) usage, but might give you better
timing performance because of reduced routing congestion.

■ Sparse Auto—In this mode, the Quartus II Fitter starts with sparse mode packing,
and then attempts to achieve best performance while maintaining a fit for the
specified device. Later optimizations are carried out in a way similar to the Auto
mode. This mode is available only for Arria series, Cyclone II, Cyclone III,
Stratix II, Stratix III, Stratix IV, and Stratix V devices.

h For more information, refer to Auto Packed Registers logic option in Quartus Help.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet may not
fit in the targeted device. This can occur when the location or LogicLock assignments
are too strict and not enough routing resources are available on the device.

In this case, use the Routing Congestion task in the Chip Planner to locate routing
problems in the floorplan, then remove any location or LogicLock region assignments
in that area. If your design still does not fit, the design is over-constrained. To correct
the problem, remove all location and LogicLock assignments and run successive
compilations, incrementally constraining the design before each compilation. You can
delete specific location assignments in the Assignment Editor or the Chip Planner. To
remove LogicLock assignments in the Chip Planner, in the LogicLock Regions
Window, or on the Assignments menu, click Remove Assignments. Turn on the
assignment categories you want to remove from the design in the Available
assignment categories list.

f For more information about the Routing Congestion task in the Chip Planner, refer to
Analyzing and Optimizing the Design Floorplan in volume 2 of the Quartus II Handbook.

Change State Machine Encoding
State machines can be encoded using various techniques. Using binary or gray code
encoding typically results in fewer state registers than one-hot encoding, which
requires one register for every state bit. If your design contains state machines,
changing the state machine encoding to one that uses the minimal number of registers
may reduce resource utilization. The effect of state machine encoding varies
depending on the way your design is structured.

If your design does not manually encode the state bits, you can specify the state
machine encoding in your synthesis tool. When using Quartus II integrated synthesis,
turn on the Minimal Bits setting for the State Machine Processing option.

h For more information, refer to State Machine Processing logic option in Quartus II Help.

You can also specify this logic option for specific modules or state machines in your
design with the Assignment Editor.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_smp_process_type.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_register_packing.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 13: Area and Timing Optimization 13–21
Resource Utilization Optimization Techniques (LUT-Based Devices)
You can also use the following Tcl command in scripts to modify the state machine
encoding.

set_global_assignment -name state_machine_processing <value>

In this case, <value> can be AUTO, ONE-HOT, MINIMAL BITS, or USER-ENCODE.

Flatten the Hierarchy During Synthesis
Synthesis tools typically provide the option of preserving hierarchical boundaries,
which can be useful for verification or other purposes. However, optimizing across
hierarchical boundaries allows the synthesis tool to perform the most logic
minimization, which can reduce area. Therefore, to achieve the best results, flatten
your design hierarchy whenever possible.

If you are using Quartus II incremental compilation, you cannot flatten your design
across design partitions. Incremental compilation always preserves the hierarchical
boundaries between design partitions. Follow Altera’s recommendations for design
partitioning, such as registering partition boundaries to reduce the effect of
cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Retarget Memory Blocks
If the design fails to fit because it runs out of device memory resources, your design
may require a certain type of memory the device does not have. For example, a design
that requires two M-RAM blocks cannot be targeted to a Stratix EP1S10 device, which
has only one M-RAM block. You might be able to obtain a fit by building one of the
memories with a different size memory block, such as an M4K memory block.

If the memory block was created with the MegaWizard™ Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the RAM block type so it targets a new
memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code, and your
synthesis software can place large shift registers into memory blocks by inferring the
ALTSHIFT_TAPS megafunction. This inference can be turned off in your synthesis
tool to cause the memory to be placed in logic instead of in memory blocks.

h For more information, refer to Auto RAM Replacement logic option, Auto ROM
Replacement logic option, and Auto Shift Register Replacement logic option in Quartus II
Help.

Depending on your synthesis tool, you can also set the RAM block type for inferred
memory blocks. In Quartus II integrated synthesis, set the ramstyle attribute to the
desired memory type for the inferred RAM blocks, or set the option to logic, to
implement the memory block in standard logic instead of a memory block.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_rom_recognition.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_shift_register_recognition.htm

13–22 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
Consider the resource utilization by hierarchy in the report file, and determine
whether there is an unusually high register count in any of the modules. Some coding
styles can prevent the Quartus II software from inferring RAM blocks from the source
code because of their architectural implementation, and forces the software to
implement the logic in flipflops. As an example, a function such as an asynchronous
reset on a register bank might make it incompatible with the RAM blocks in the
device architecture, so that the register bank is implemented in flipflops. It is often
possible to move a large register bank into RAM by slight modification of associated
logic.

f For more information about memory inference control in other synthesis tools, refer to
the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook,
or your synthesis software’s documentation. For more information about coding
styles and HDL examples that ensure memory inference, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Use Physical Synthesis Options to Reduce Area
The physical synthesis options for fitting can help you decrease the resource usage.
When you enable these settings for physical synthesis for fitting, the Quartus II
software makes placement-specific changes to the netlist that reduce resource
utilization for a specific Altera device.

1 The compilation time might increase considerably when you use physical synthesis
options.

With the Quartus II software, you can apply physical synthesis options to specific
instances, which can reduce the impact on compilation time. Physical synthesis
instance assignments allow you to enable physical synthesis algorithms for specific
portions of their design.

The following physical synthesis optimizations for fitting are available:

■ Physical synthesis for combinational logic

■ Map logic into memory

h For more information, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

Retarget or Balance DSP Blocks
A design might not fit because it requires too many DSP blocks. All DSP block
functions can be implemented with logic cells, so you can retarget some of the DSP
blocks to logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager, open the
MegaWizard Plug-In Manager and edit the function so it targets logic cells instead of
DSP blocks. The Quartus II software uses the DEDICATED_MULTIPLIER_CIRCUITRY
megafunction parameter to control the implementation.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

Chapter 13: Area and Timing Optimization 13–23
Resource Utilization Optimization Techniques (LUT-Based Devices)
DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders,
and multiply-accumulators. This inference can be turned off in your synthesis tool.
When you are using Quartus II integrated synthesis, you can disable inference by
turning off the Auto DSP Block Replacement logic option for your entire project. On
the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Settings, and turn off Auto DSP Block Replacement.
Alternatively, you can disable the option for a specific block with the Assignment
Editor.

f For more information about disabling DSP block inference in other synthesis tools,
refer to the appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

The Quartus II software also offers the DSP Block Balancing logic option, which
implements DSP block elements in logic cells or in different DSP block modes. The
default Auto setting allows DSP block balancing to convert the DSP block slices
automatically as appropriate to minimize the area and maximize the speed of the
design. You can use other settings for a specific node or entity, or on a project-wide
basis, to control how the Quartus II software converts DSP functions into logic cells
and DSP blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in megafunction variations.

h For more details about the Quartus II logic options described in this section, refer to
Auto DSP Block Replacement and DSP Block Balancing in Quartus II Help.

Optimize Source Code
If your design does not fit because of logic utilization, and the methods described in
the preceding sections do not sufficiently improve the resource utilization of the
design, modify the design at the source to achieve the desired results. You can often
improve logic significantly by making design-specific changes to your source code.
This is typically the most effective technique for improving the quality of your results.

If your design does not fit into available LEs or ALMs, but you have unused memory
or DSP blocks, check to see if you have code blocks in your design that describe
memory or DSP functions that are not being inferred and placed in dedicated logic.
You might be able to modify your source code to allow these functions to be placed
into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dsp_block_balancing_implementation.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_auto_dsp_recognition.htm

13–24 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
f For coding style guidelines, including examples of HDL code for inferring memory
and DSP functions, refer to the “Instantiating Altera Megafunctions” and the
“Inferring Multiplier and DSP Functions from HDL Code” sections of the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For
guidelines and sample HDL code for state machines, refer to the “General Coding
Guidelines” section of the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

f For additional HDL coding examples, refer to AN 584: Timing Closure Methodology for
Advanced FPGAs.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of LEs or ALMs, memory,
or DSP blocks, you might require a larger device.

Routing
Use the suggestions in the following subsections to help you resolve routing resource
problems.

Set Auto Packed Registers to Sparse or Sparse Auto
This option is useful for reducing LE or ALM count in a design. This option is
available for all Altera devices supported by the Quartus II software.

This option can be set in the Assignment Editor, or you can set this option by clicking
More Settings on the Fitter Settings page in the Settings dialog box

h For more information, refer to Auto Packed Registers in Quartus II Help.

Set Fitter Aggressive Routability Optimizations to Always
Use this option if your design does not fit due to excessive routing wire utilization.

h For more information, refer to Fitter Aggressive Routability Optimizations logic option in
Quartus II Help.

If there is a significant imbalance between placement and routing time (during the
first fitting attempt), it might be because of high wire utilization. By turning on this
option, you might be able to reduce your compilation time.

On average, this option can save up to 6% wire utilization, but can also reduce
performance by up to 4%, depending on the device.

These optimizations are used automatically when the Fitter performs more than one
fitting attempt, but turning the option on increases the optimization effort on the first
fitting attempt. This option also ensures that the Quartus II software uses maximum
optimization to reduce routability, even if the Fitter Effort is set to Auto Fit.

Increase Placement Effort Multiplier
Increasing the placement effort can improve the routability of the design, allowing the
software to route a design that otherwise requires too many routing resources.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_register_packing.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_fitter_aggressive_routability_optimization

Chapter 13: Area and Timing Optimization 13–25
Resource Utilization Optimization Techniques (LUT-Based Devices)
h For more information refer to Placement Effort Multiplier logic option in Quartus II Help.

Increased effort is used automatically when the Fitter performs more than one fitting
attempt. Setting a multiplier higher than one (before compilation) increases the
optimization effort on the first fitting attempt. The second and third fitting loops
increase the Placement Effort Multiplier to 4 and then to 16. These loops result in
increased compilation times, with possible improvement in the quality of placement.

You can modify the Placement Effort Multiplier using the following Tcl command:

set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER <value> r
<value> can be any positive, non-zero number.

Increasing placement effort is likely to reduce congestion during routing, and help fit
hard-to-route designs.

Increase Router Effort Multiplier
The Router Effort Multiplier controls how quickly the router tries to find a valid
solution. The default value is 1.0 and legal values must be greater than 0. Numbers
higher than 1 (values up to 3 are generally considered reasonable) help designs that
are difficult to route by increasing the routing effort, but do not necessarily resolve
routing congestion. Numbers closer to 0 (for example, 0.1) can reduce router runtime,
but usually reduce routing quality slightly. Experimental evidence shows that a
multiplier of 3.0 reduces overall wire usage by about 2%. There is usually no gain in
performance beyond a multiplier value of 3.

You can set the Router Effort Multiplier to a value higher than the default value for
difficult-to-route designs. To set the Router Effort Multiplier, on the Assignments
menu, click Settings, and then click Fitter Settings. Click the More Settings button.
From the options available, select Router Effort Multiplier and edit the value in the
dialog box that appears.

You can modify the Router Effort Multiplier by entering the following Tcl command:

set_global_assignment -name ROUTER_EFFORT_MULTIPLIER <value> r
<value> can be any positive, non-zero number.

Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet may not
fit the targeted device. This can occur when location or LogicLock assignments are too
strict and there are not enough routing resources.

In this case, use the Routing Congestion task in the Chip Planner to locate routing
problems in the floorplan, then remove all location and LogicLock region assignments
from that area. If the local constraints are removed, and the design still does not fit,
the design is over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally constraining
the design before each compilation. You can delete specific location assignments in
the Assignment Editor or the Chip Planner. Remove LogicLock assignments in the
Chip Planner, in the LogicLock Regions Window, or on the Assignments menu, click
Remove Assignments. Turn on the assignment categories you want to remove from
the design in the Available assignment categories list.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_placement_effort_multiplier.htm

13–26 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (LUT-Based Devices)
f For more information about the Routing Congestion task in the Chip Planner, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook. You can also refer to the Quartus II Help.

Optimize Synthesis for Area, Not Speed
In some cases, resynthesizing the design to improve the area utilization can also
improve the routability of the design. First, ensure that you have set your device and
timing constraints correctly in your synthesis tool. Ensure that you do not
over-constrain the timing requirements for the design, particularly when the area
utilization of the design is a concern. Synthesis tools generally try to meet the
specified requirements, which can result in higher device resource usage if the
constraints are too aggressive.

If resource utilization is important to improving the routing results in your design,
some synthesis tools offer an easy way to optimize for area instead of speed. If you are
using Quartus II integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and select Balanced or Area
under Optimization Technique.

You can also specify this logic option for specific modules in your design with the
Assignment Editor in cases where you want to reduce area using the Area setting
(potentially at the expense of register-to-register timing performance). You can apply
the setting to specific modules while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families) or Speed. You can also use the Speed Optimization Technique for Clock
Domains logic option to specify that all combinational logic in or between the
specified clock domain(s) is optimized for speed.

1 In the Quartus II software, the Balanced setting typically produces utilization results
that are very similar to those obtained with the Area setting, with better performance
results. The Area setting can yield better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement can result in less resource
utilization, which can improve routability.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and other synthesis tools, refer to the appropriate
chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or your
synthesis software’s documentation.

Optimize Source Code
If your design does not fit because of routing problems and the methods described in
the preceding sections do not sufficiently improve the routability of the design,
modify the design at the source to achieve the desired results. You can often improve
results significantly by making design-specific changes to your source code, such as
duplicating logic or changing the connections between blocks that require significant
routing resources.

Use a Larger Device
If a successful fit cannot be achieved because of a shortage of routing resources, you
might require a larger device.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 13: Area and Timing Optimization 13–27
Timing Optimization Techniques (LUT-Based Devices)
Timing Optimization Techniques (LUT-Based Devices)
This section contains guidelines that might help you if your design does not meet its
timing requirements.

Debugging Timing Failures in the TimeQuest Analyzer
Beginning with the Quartus II software version 10.1, a new Report Timing Closure
Recommendations task is available in the Custom Reports section of the Tasks pane
of the TimeQuest analyzer. Use this report to get more information and help on the
failing paths in your design. This feature is available for Arria II GX, Cyclone III,
Cyclone IV, Stratix III, Stratix IV, and Stratix V device families.

Selecting the Report Timing Closure Recommendations task opens the Report
Design Analysis dialog box (Figure 13–5).

When you run the Report Timing Closure Recommendations task, you get specific
recommendations about failing paths in your design and changes that you can make
to potentially fix the failing paths.

From the dialog box (Figure 13–5), you can select paths based on the clock domain,
filter by nodes on path, and choose the number of paths to analyze.

Figure 13–5. Report Design Analysis Dialog Box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–28 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
After running this command in the TimeQuest analyzer, examine the reports in the
Report Timing Closure Recommendations folder in the Report pane of the TimeQuest
analyzer GUI. Each recommendation has star symbols (*) associated with it.
Recommendations with more stars are more likely to help you close timing on your
design.

Figure 13–6 shows an example report.

The reports give you the most probable causes of failure for each path being analyzed.
The reports are organized into sections, depending on the type of issues found in the
design, such as large clock skew, restricted optimizations, unbalanced logic, skipped
optimizations, coding style that has too many levels of logic between registers, or
region or partition constraints specific to your project.

Figure 13–6. Example Report
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–29
Timing Optimization Techniques (LUT-Based Devices)
You will see recommendations that may help you fix the failing paths. For a detailed
analysis of the critical paths, run the report_timing command on specified paths. In
the Extra Fitter Information tab of the Path report panel, you will also see detailed
Fitter-related information that may help you visualize the issue and take appropriate
action if user constraints cause a specific placement.

Timing Optimization Advisor
The Timing Optimization Advisor guides you in making settings that optimize your
design to meet your timing requirements. To run the Timing Optimization Advisor,
on the Tools menu, point to Advisors, and click on Timing Optimization Advisor.
This advisor describes many of the suggestions made in this section.

When you open the Timing Optimization Advisor after compilation, you find
recommendations to improve the timing performance of your design. Some of the
recommendations in these advisors can contradict each other. Altera recommends
evaluating these options and choosing the settings that best suit the given
requirements.

The example in Figure 13–7 shows the Timing Optimization Advisor after compiling a
design that meets its frequency requirements, but requires setting changes to improve
the timing.

When you expand one of the categories in the Advisor, such as Maximum Frequency
(fmax) or I/O Timing (tsu, tco, tpd), the recommendations are divided into stages.
The stages show the order in which to apply the recommended settings. The first
stage contains the options that are easiest to change, make the least drastic changes to
your design optimization, and have the least effect on compilation time. Icons indicate
whether each recommended setting has been made in the current project. In
Figure 13–7, the checkmark icons in the list of recommendations for Stage 1 indicate

Figure 13–7. Timing Optimization Advisor

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–30 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
recommendations that are already implemented. The warning icons indicate
recommendations that are not followed for this compilation. The information icons
indicate general suggestions. For these entries, the advisor does not report whether
these recommendations were followed, but instead explains how you can achieve
better performance. Refer to the “How to use” page in the Advisor for a legend that
provides more information for each icon.

There is a link from each recommendation to the appropriate location in the
Quartus II user interface where you can change the settings. For example, consider the
Synthesis Netlist Optimizations page of the Settings dialog box or the Global
Signals category in the Assignment Editor. This approach provides the most control
over which settings are made and helps you learn about the settings in the software.
In some cases, you can also use the Correct the Settings button to automatically make
the suggested change to global settings.

For some entries in the advisor, a button appears that allows you to further analyze
your design and gives you more information. The advisor provides a table with the
clocks in the design and indicates whether they have been assigned a timing
constraint.

I/O Timing Optimization
The next stage of design optimization focuses on I/O timing. Ensure that you have
made the appropriate assignments as described in “Initial Compilation: Required
Settings” on page 13–2, and that the resource utilization is satisfactory before
proceeding with I/O timing optimization. The suggestions provided in this section
are applicable to all Altera FPGA families and to the MAX II family of CPLDs.

Because changes to the I/O paths affect the internal register-to-register timing,
complete this stage before proceeding to the register-to-register timing optimization
stage as described in the “Register-to-Register Timing Optimization Techniques
(LUT-Based Devices)” on page 13–34.

The options presented in this section address how to improve I/O timing, including
the setup delay (tSU), hold time (tH), and clock-to-output (tCO) parameters.

Improving Setup and Clock-to-Output Times Summary
Table 13–1 shows the recommended order in which to use techniques to reduce tSU
and tCO times. Checkmarks indicate which timing parameters are affected by each
technique. Reducing tSU times increases hold (tH) times.

Table 13–1. Improving Setup and Clock-to-Output Times (Note 1) (Part 1 of 2)

Technique Affects tSU Affects tCO

Ensure that the appropriate constraints are set for the failing I/Os (page 13–3) v v
Use timing-driven compilation for I/O (page 13–31) v v
Use fast input register (page 13–32) v —

Use fast output register, fast output enable register, and fast OCT register (page 13–32) — v
Decrease the value of Input Delay from Pin to Input Register or set Decrease Input Delay to
Input Register = ON v —

Decrease the value of Input Delay from Pin to Internal Cells, or set Decrease Input Delay to
Internal Cells = ON v —
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–31
Timing Optimization Techniques (LUT-Based Devices)
Timing-Driven Compilation
This option moves registers into I/O elements if required to meet tSU or tCO
assignments, duplicating the register if necessary (as in the case in which a register
fans out to multiple output locations). This option is turned on by default and is a
global setting. The option does not apply to MAX II series devices because they do not
contain I/O registers.

The Optimize IOC Register Placement for Timing option affects only pins that have
a tSU or tCO requirement. Using the I/O register is possible only if the register directly
feeds a pin or is fed directly by a pin. This setting does not affect registers with any of
the following characteristics:

■ Have combinational logic between the register and the pin

■ Are part of a carry or cascade chain

■ Have an overriding location assignment

■ Use the asynchronous load port and the value is not 1 (in device families where the
port is available)

Registers with the characteristics listed are optimized using the regular Quartus II
Fitter optimizations.

h For more information, refer to Optimize IOC Register Placement for Timing logic option in
Quartus II Help.

Fast Input, Output, and Output Enable Registers
You can place individual registers in I/O cells manually by making fast I/O
assignments with the Assignment Editor. For an input register, use the Fast Input
Register option; for an output register, use the Fast Output Register option; and for
an output enable register, use the Fast Output Enable Register option. Stratix II
devices also support the Fast OCT (on-chip termination) Register option. In MAX II
series devices, which have no I/O registers, these assignments lock the register into
the LAB adjacent to the I/O pin if there is a pin location assignment for that I/O pin.

Decrease the value of Delay from Output Register to Output Pin, or set Increase Delay to
Output Pin = OFF (page 13–33) — v
Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations
(page 13–33) v —

Use PLLs to shift clock edges (page 13–33) v v
Use the Fast Regional Clock (page 13–34) — v
For MAX II series devices, set Guarantee I/O paths to zero, Hold Time at Fast Timing Corner
to OFF, or when tSU and tPD constraints permit (page 13–34) v —

Increase the value of Delay to output enable pin or set Increase delay to output enable pin
(page 13–33) — v
Note to Table 13–1:

(1) These options may not apply to all device families.

Table 13–1. Improving Setup and Clock-to-Output Times (Note 1) (Part 2 of 2)

Technique Affects tSU Affects tCO
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimize_io_timing.htm

13–32 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
If the fast I/O setting is on, the register is always placed in the I/O element. If the fast
I/O setting is off, the register is never placed in the I/O element. This is true even if
the Optimize IOC Register Placement for Timing option is turned on. If there is no
fast I/O assignment, the Quartus II software determines whether to place registers in
I/O elements if the Optimize IOC Register Placement for Timing option is turned
on.

The four fast I/O options (Fast Input Register, Fast Output Register, Fast Output
Enable Register, and Fast OCT Register) can also be used to override the location of a
register that is in a LogicLock region, and force it into an I/O cell. If this assignment is
applied to a register that feeds multiple pins, the register is duplicated and placed in
all relevant I/O elements. In MAX II series devices, the register is duplicated and
placed in each distinct LAB location that is next to an I/O pin with a pin location
assignment.

Programmable Delays
Various programmable delay options can be used to minimize the tSU and tCO times.
For Arria, Cyclone, MAX II, MAX V, and Stratix series devices, the Quartus II
software automatically adjusts the applicable programmable delays to help meet
timing requirements. Programmable delays are advanced options to use only after
you compile a project, check the I/O timing, and determine that the timing is
unsatisfactory. For detailed information about the effect of these options, refer to the
device family handbook or data sheet.

After you have made a programmable delay assignment and compiled the design,
you can view the implemented delay values for every delay chain for every I/O pin in
the Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment
Editor. You can also view and modify the delay chain setting for the target device with
the Chip Planner and Resource Property Editor. When you use the Resource Property
Editor to make changes after performing a full compilation, recompiling the entire
design is not necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again automatically
when you recompile the design. The change management features allow you to
reapply the changes on subsequent compilations.

Although the programmable delays in newer devices are user-controllable, Altera
recommends their use for advanced users only. However, the Quartus II software
might use the programmable delays internally during the Fitter phase.

f For more details about Stratix III programmable delays, refer to the Stratix III Device
Handbook and AN 474: Implementing Stratix III Programmable I/O Delay Settings in the
Quartus II Software. For more information about using the Chip Planner and Resource
Property Editor, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

h For details about the programmable delay logic options available for Altera devices,
refer to the following Quartus II Help topics:

■ Decrease Input Delay to Input Register

■ Input Delay from Pin to Input Register
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_pad_to_input_register_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_input_register.htm
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 13: Area and Timing Optimization 13–33
Timing Optimization Techniques (LUT-Based Devices)
■ Decrease Input Delay to Internal Cells

■ Input Delay from Pin to Internal Cells

■ Decrease Input Delay to Output Register

■ Increase Delay to Output Enable Pin

■ Output Enable Pin Delay

■ Increase Delay to Output Pin

■ Delay from Output Register to Output Pin

■ Increase Input Clock Enable Delay

■ Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations

■ Increase Output Clock Enable Delay

■ Increase Output Enable Clock Enable Delay

■ Increase tzx Delay to Output Pin

Use PLLs to Shift Clock Edges
Using a PLL typically improves I/O timing automatically. If the timing requirements
are still not met, most devices allow the PLL output to be phase shifted to change the
I/O timing. Shifting the clock backwards gives a better tH at the expense of tSU, while
shifting it forward gives a better tSU at the expense of tH (refer to Figure 13–8). This
technique can be used only in devices that offer PLLs with the phase shift option.

You can achieve the same type of effect in certain devices by using the programmable
delay called Input Delay from Dual Purpose Clock Pin to Fan-Out Destinations.

h For more information, refer to Input Delay from Dual-Purpose Clock Pin to Fan-Out
Destinations in Quartus II Help.

Use Fast Regional Clock Networks and Regional Clocks Networks
Altera devices have a variety of hierarchical clock structures. These include dedicated
global clock networks (GCLKs), regional clock networks (RCLKs), fast regional clock
networks (FCLK) and periphery clock networks (PCLKs). The available resources
differ between various Altera device families.

f Refer to the appropriate device handbook to get the number of various clocking
resources available in your target device.

In general, fast regional clocks have less delay to I/O elements than regional and
global clocks, and are used for high fan-out control signals. Regional clocks provide
the lowest clock delay and skew for logic contained in a single quadrant. Placing
clocks on these low-skew and low-delay clock nets provides better tCO performance.

Figure 13–8. Shift Clock Edges Forward to Improve tSU at the Expense of tH
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_output_enable_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_core.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_output_register.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_pad_to_core_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_output_register.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_output_enable.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_oe_register.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_output.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_input_register.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_from_core_to_ce_input_register.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_delay_setting_to_zbt.htm

13–34 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
Change How Hold Times are Optimized for MAX II Devices
For MAX II series devices, you can use the Guarantee I/O paths have zero hold time
at Fast Timing Corner option to control how hold time is optimized by the Quartus II
software.

h For details, refer to Guarantee I/O Paths Have Zero Hold Time at Fast Corner logic option in
Quartus II Help.

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
The next stage of design optimization is to improve register-to-register (fMAX) timing.
The following sections provide available options if the performance requirements are
not achieved after compilation.

Coding style affects the performance of your design to a greater extent than other
changes in settings. Always evaluate your code and make sure to use synchronous
design practices.

f For more details about synchronous design practices and coding styles, refer to the
Recommended Design Practices chapter in volume 1 of the Quartus II Handbook.

1 When using the TimeQuest analyzer, register-to-register timing optimization is the
same as maximizing the slack on the clock domains in your design. You can use the
techniques described in this section to improve the slack on different timing paths in
your design.

Before optimizing your design, understand the structure of your design as well as the
type of logic affected by each optimization. An optimization can decrease
performance if the optimization does not benefit your logic structure.

Improving Register-to-Register Timing Summary
The choice of options and settings to improve the timing margin (slack) or to improve
register-to-register timing depends on the failing paths in the design. To achieve the
results that best approximate your performance requirements, apply the following
techniques and compile the design after each step:

1. Ensure that your timing assignments are complete and correct. For details, refer to
“Timing Requirement Settings” on page 13–3.

2. Ensure that you have reviewed all warning messages from your initial
compilation and check for ignored timing assignments. Refer to “Design Analysis”
on page 13–10 for details and fix any of these problems before proceeding with
optimization.

3. Apply netlist synthesis optimization options.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_guarantee_min_delay_corner_io_zero_hold_time.htm
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Chapter 13: Area and Timing Optimization 13–35
Timing Optimization Techniques (LUT-Based Devices)
Apply the following synthesis options to optimize for speed:

■ “Optimize Synthesis for Speed, Not Area” on page 13–37

■ “Flatten the Hierarchy During Synthesis” on page 13–38

■ “Set the Synthesis Effort to High” on page 13–38

■ “Change State Machine Encoding” on page 13–38

■ “Prevent Shift Register Inference” on page 13–39

■ “Use Other Synthesis Options Available in Your Synthesis Tool” on page 13–39

4. Apply the following options for physical synthesis optimization:

■ Perform physical synthesis for combinational logic

■ Perform automatic asynchronous signal pipelining

■ Perform register duplication

■ Perform register retiming

■ Perform logic to memory mapping

5. Try different Fitter seeds (page 13–39). You can omit this step if a large number of
critical paths are failing, or if the paths are failing badly.

6. Make LogicLock assignments (page 13–41) to control placement.

7. Make design source code modifications to fix areas of the design that are still
failing timing requirements by significant amounts (page 13–40).

8. Make location assignments, or as a last resort, perform manual placement by
back-annotating the design (page 13–42).

You can use the Design Space Explorer (DSE) to automate the process of running
several different compilations with different settings.

h For more information, refer to About Design Space Explorer in Quartus II Help.

If these techniques do not achieve performance requirements, additional design
source code modifications might be required (page 13–40).

Physical Synthesis Optimizations
The Quartus II software offers physical synthesis optimizations that can help improve
the performance of many designs regardless of the synthesis tool used. Physical
synthesis optimizations can be applied both during synthesis and during fitting.

Physical synthesis optimizations that occur during the synthesis stage of the
Quartus II compilation operate either on the output from another EDA synthesis tool
or as an intermediate step in Quartus II integrated synthesis. These optimizations
make changes to the synthesis netlist to improve either area or speed, depending on
your selected optimization technique and effort level.

To view and modify the synthesis netlist optimization options, on the Assignments
menu, click Settings. In the Category list, expand Compilation Process Settings and
select Physical Synthesis Optimizations.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

13–36 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
If you use a third-party EDA synthesis tool and want to determine if the Quartus II
software can remap the circuit to improve performance, you can use the Perform
WYSIWYG Primitive Resynthesis option. This option directs the Quartus II software
to unmap the LEs in an atom netlist to logic gates and then map the gates back to
Altera-specific primitives. Using Altera-specific primitives enables the Fitter to remap
the circuits using architecture-specific techniques.

h For more information, refer to Perform WYSIWYG Primitive Resynthesis logic option in
Quartus II Help.

The Quartus II technology mapper optimizes the design for Speed, Area, or
Balanced, according to the setting of the Optimization Technique option. Set this
option to Speed or Balanced.

h For more information, refer to Optimization Technique logic option in Quartus II Help.

The physical synthesis optimizations occur during the Fitter stage of the Quartus II
compilation. Physical synthesis optimizations make placement-specific changes to the
netlist that improve speed performance results for a specific Altera device.

The following physical synthesis optimizations are available during the Fitter stage
for improving performance:

■ Physical synthesis for combinational logic

■ Automatic asynchronous signal pipelining

■ Physical synthesis for registers

■ Register duplication

■ Register retiming

1 You can apply physical synthesis options on specific instances if you want the
performance gain from physical synthesis only on parts of your design.

h For more information, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

To apply physical synthesis assignments for fitting on a per instance basis, use the
Quartus II Assignment Editor. The following assignments are available as instance
assignments:

■ Perform physical synthesis for combinational logic

■ Perform register duplication for performance

■ Perform register retiming for performance

■ Perform automatic asynchronous signal pipelining

Follow these steps:

1. In the Assignment Editor, indicate the module instance you want to apply to the
specific physical synthesis setting in the To tab.

2. Select the required physical synthesis assignment in the Assignment Name tab.

3. In the Value tab, select ON.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimization_technique.htm

Chapter 13: Area and Timing Optimization 13–37
Timing Optimization Techniques (LUT-Based Devices)
4. In the Enabled tab, select Yes.

Turn Off Extra-Effort Power Optimization Settings
If PowerPlay power optimization settings are set to Extra Effort, your design
performance can be affected. If improving timing performance is more important than
reducing power use, set the PowerPlay power optimization setting to Normal.

h For more information, refer to PowerPlay Power Optimization logic option in Quartus II
Help.

f For more information about reducing power use, refer to the Power Optimization
chapter in volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed, Not Area
The manner in which the design is synthesized has a large impact on design
performance. Design performance varies depending on the way the design is coded,
the synthesis tool used, and the options specified when synthesizing. Change your
synthesis options if a large number of paths are failing, or if specific paths are failing
badly and have many levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis tools are
timing-driven and optimized to meet specified timing requirements. If you do not
specify target frequency, some synthesis tools optimize for area.

Some synthesis tools offer an easy way to instruct the tool to focus on speed instead of
area.

h For more information, refer to Optimization Technique logic option in Quartus II Help

You can also specify this logic option for specific modules in your design with the
Assignment Editor while leaving the default Optimization Technique setting at
Balanced (for the best trade-off between area and speed for certain device families) or
Area (if area is an important concern). You can also use the Speed Optimization
Technique for Clock Domains option in the Assignment Editor to specify that all
combinational logic in or between the specified clock domain(s) is optimized for
speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings. You can use
the DSE to experiment with different Quartus II synthesis options to optimize your
design for the best performance.

f For information about setting timing requirements and synthesis options in
Quartus II integrated synthesis and third-party synthesis tools, refer to the
appropriate chapter in Section III. Synthesis in volume 1 of the Quartus II Handbook, or
refer to your synthesis software documentation.

h For more information about the Design Space Explorer, refer to About Design Space
Explorer in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimize_power_during_synth.htm
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_optimization_technique.htm

13–38 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
Flatten the Hierarchy During Synthesis
Synthesis tools typically let you preserve hierarchical boundaries, which can be useful
for verification or other purposes. However, the best optimization results generally
occur when the synthesis tool optimizes across hierarchical boundaries, because
doing so often allows the synthesis tool to perform the most logic minimization,
which can improve performance. Whenever possible, flatten your design hierarchy to
achieve the best results. If you are using Quartus II incremental compilation, you
cannot flatten your design across design partitions. Incremental compilation always
preserves the hierarchical boundaries between design partitions. Follow Altera’s
recommendations for design partitioning, such as registering partition boundaries to
reduce the effect of cross-boundary optimizations.

f For more information about using incremental compilation and recommendations for
design partitioning, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Set the Synthesis Effort to High
Some synthesis tools offer varying synthesis effort levels to trade off compilation time
with synthesis results. Set the synthesis effort to high to achieve best results when
applicable.

Change State Machine Encoding
State machines can be encoded using various techniques. One-hot encoding, which
uses one register for every state bit, usually provides the best performance. If your
design contains state machines, changing the state machine encoding to one-hot can
improve performance at the cost of area.

h For more information, refer to State Machine Processing logic option in Quartus II Help.

Duplicate Logic for Fan-Out Control
Duplicating logic or registers can help improve timing in cases where moving a
register in a failing timing path to reduce routing delay creates other failing paths, or
where there are timing problems due to the fan-out of the registers. Most often, timing
failures occur not because of the high fan-out registers, but because of the location of
those registers. Duplicating registers, where source and destination registers are
physically close, can help improve slack on critical paths.

Many synthesis tools support options or attributes that specify the maximum fan-out
of a register. When using Quartus II integrated synthesis, you can set the Maximum
Fan-Out logic option in the Assignment Editor to control the number of destinations
for a node so that the fan-out count does not exceed a specified value. You can also use
the maxfan attribute in your HDL code. The software duplicates the node as required
to achieve the specified maximum fan-out.

1 Logic duplication using Maximum Fan-Out assignments normally increases resource
utilization and can potentially increase compilation time, depending on the placement
and the total resource usage within the selected device. The improvement in timing
performance that results because of Maximum Fan-Out assignments is very
design-specific.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_smp_process_type.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 13: Area and Timing Optimization 13–39
Timing Optimization Techniques (LUT-Based Devices)
If you are using Maximum Fan-Out assignments, Altera recommends benchmarking
your design with and without these assignments to evaluate whether they give the
expected improvement in timing performance. Use the assignments only when you
get improved results.

You can manually duplicate registers in the Quartus II software regardless of the
synthesis tool used. To duplicate a register, apply the Manual Logic Duplication
option to the register with the Assignment Editor.

h For more information, refer to Manual Logic Duplication logic option in Quartus II Help.

Prevent Shift Register Inference
In some cases, turning off the inference of shift registers increases performance. Doing
so forces the software to use logic cells to implement the shift register instead of
implementing the registers in memory blocks using the ALTSHIFT_TAPS
megafunction. If you implement shift registers in logic cells instead of memory, logic
utilization is increased.

Use Other Synthesis Options Available in Your Synthesis Tool
With your synthesis tool, experiment with the following options if they are available:

■ Turn on register balancing or retiming

■ Turn on register pipelining

■ Turn off resource sharing

These options can increase performance, but typically increase the resource utilization
of your design.

Fitter Seed
The Fitter seed affects the initial placement configuration of the design. Changing the
seed value changes the Fitter results, because the fitting results change whenever
there is a change in the initial conditions. Each seed value results in a somewhat
different fit, and you can experiment with several different seeds to attempt to obtain
better fitting results and timing performance.

When there are changes in your design, there is some random variation in
performance between compilations. This variation is inherent in placement and
routing algorithms—there are too many possibilities to try them all and get the
absolute best result, so the initial conditions change the compilation result.

1 Any design change that directly or indirectly affects the Fitter has the same type of
random effect as changing the seed value. This includes any change in source files,
Analysis & Synthesis Settings, Fitter Settings, or Timing Analyzer Settings. The
same effect can appear if you use a different computer processor type or different
operating system, because different systems can change the way floating point
numbers are calculated in the Fitter.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_duplicate_atom.htm

13–40 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
If a change in optimization settings slightly affects the register-to-register timing or
number of failing paths, you cannot always be certain that your change caused the
improvement or degradation, or whether it could be due to random effects in the
Fitter. If your design is still changing, running a seed sweep (compiling your design
with multiple seeds) determines whether the average result has improved after an
optimization change and whether a setting that increases compilation time has
benefits worth the increased time (such as setting the Physical Synthesis Effort to
Extra). The sweep also shows the amount of random variation to expect for your
design.

If your design is finalized, you can compile your design with different seeds to obtain
one optimal result. However, if you subsequently make any changes to your design,
you might need to perform seed sweep again.

On the Assignments menu, select Fitter Settings to control the initial placement with
the seed. You can use the DSE to perform a seed sweep easily.

You can use the following Tcl command from a script to specify a Fitter seed:

set_global_assignment -name SEED <value> r

h For more information about compiling your design with different seeds using the
Design Space Explorer (DSE seed sweep), refer to About Design Space Explorer in
Quartus II Help.

Set Maximum Router Timing Optimization Level
To improve routability in designs where the router did not pick up the optimal
routing lines, set the Router Timing Optimization Level to Maximum. This setting
determines how aggressively the router tries to meet timing requirements. Setting this
option to Maximum can increase design speed slightly at the cost of increased
compilation time. Setting this option to Minimum can reduce compilation time at the
cost of slightly reduced design speed. The default value is Normal.

h For more information, refer to Router Timing Optimization Level logic option in
Quartus II Help.

Optimize Source Code
If the methods described in the preceding sections do not sufficiently improve timing
of the design, modify your design files to achieve the desired results. Try restructuring
the design to use pipelining or more efficient coding techniques. In many cases,
optimizing the design’s source code can have a very significant effect on your design
performance. In fact, optimizing your source code is typically the most effective
technique for improving the quality of your results, and is often a better choice than
using LogicLock or location assignments.

If the critical path in your design involves memory or DSP functions, check whether
you have code blocks in your design that describe memory or functions that are not
being inferred and placed in dedicated logic. You might be able to modify your source
code to cause these functions to be placed into high-performance dedicated memory
or resources in the target device.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_router_timing_optimization_level.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 13: Area and Timing Optimization 13–41
Timing Optimization Techniques (LUT-Based Devices)
Ensure that your state machines are recognized as state machine logic and optimized
appropriately in your synthesis tool. State machines that are recognized are generally
optimized better than if the synthesis tool treats them as generic logic. In the
Quartus II software, you can check for the State Machine report under Analysis &
Synthesis in the Compilation Report. This report provides details, including the state
encoding for each state machine that was recognized during compilation. If your state
machine is not being recognized, you might have to change your source code to
enable it to be recognized.

f For coding style guidelines including examples of HDL code for inferring memory,
functions, guidelines, and sample HDL code for state machines, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

f For additional HDL coding examples. refer to AN 584: Timing Closure Methodology for
Advanced FPGAs.

LogicLock Assignments
Using LogicLock assignments to improve timing performance is only recommended
for older Altera devices, such as the MAX II family. For other device families,
especially for larger devices such as Arria and Stratix series devices, using LogicLock
assignments to improve timing performance is not recommended. For these devices,
the LogicLock feature is intended to be used for performance preservation and to
floorplan your design.

LogicLock assignments do not always improve the performance of the design. In
many cases, you cannot improve upon results from the Fitter by making location
assignments. If there are existing LogicLock assignments in your design, remove the
assignments if your design methodology permits it. Recompile the design to see if the
assignments are making the performance worse.

When making LogicLock assignments, it is important to consider how much
flexibility to give the Fitter. LogicLock assignments provide more flexibility than hard
location assignments. Assignments that are more flexible require higher Fitter effort,
but reduce the chance of design over-constraint. The following types of LogicLock
assignments are available, listed in the order of decreasing flexibility:

■ Auto size, floating location regions

■ Fixed size, floating location regions

■ Fixed size, locked location regions

f For more information about using LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

To determine what to put into a LogicLock region, refer to the timing analysis results
and analyze the critical paths in the Chip Planner. The register-to-register timing
paths in the Timing Analyzer section of the Compilation Report help you recognize
patterns.

The following sections describe cases in which LogicLock regions can help to
optimize a design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

13–42 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (LUT-Based Devices)
Hierarchy Assignments
For a design with the hierarchy shown in Figure 13–9, which has failing paths in the
timing analysis results similar to those shown in Table 13–2, mod_A is probably a
problem module. In this case, a good strategy to fix the failing paths is to place the
mod_A hierarchy block in a LogicLock region so that all the nodes are closer together in
the floorplan.

Table 13–2 shows the failing paths connecting two regions together within mod_A
listed in the timing analysis report.

Hierarchical LogicLock regions are also important if you are using an incremental
compilation flow. Place each design partition for incremental compilation in a
separate LogicLock region to reduce conflicts and ensure good results as the design
develops. You can use auto size and floating location regions to find a good design
floorplan, but fix the size and placement to achieve the best results in future
compilations.

f For more information about using incremental compilation and recommendations for
creating a design floorplan using LogicLock regions, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and Best Practices for Incremental
Compilation and Floorplan Assignments chapters in volume 1 of the Quartus II Handbook,
and Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Location Assignments and Back-Annotation
If a small number of paths are failing to meet their timing requirements, you can use
hard location assignments to optimize placement. Location assignments are less
flexible for the Quartus II Fitter than LogicLock assignments. In some cases, when you
are familiar with your design, you can enter location constraints in a way that
produces better results.

Figure 13–9. Design Hierarchy

Table 13–2. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 13: Area and Timing Optimization 13–43
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
1 Improving fitting results, especially for larger devices, such as Arria and Stratix series
devices, can be difficult. Location assignments do not always improve the
performance of the design. In many cases, you cannot improve upon the results from
the Fitter by making location assignments.

Metastability Analysis and Optimization Techniques
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that
the signal will meet its setup and hold time requirements. The mean time between
failure (MTBF) is an estimate of the average time between instances when
metastability could cause a design failure.

f For more information about metastability and MTBF, refer to the Understanding
Metastability in FPGAs white paper.

You can use the Quartus II software to analyze the average MTBF due to metastability
when a design synchronizes asynchronous signals, and optimize the design to
improve the MTBF. These metastability features are supported only for designs
constrained with the TimeQuest analyzer, and for select device families.

If the MTBF of your design is low, refer to the Metastability Optimization section in
the Timing Optimization Advisor, which suggests various settings that can help
optimize your design in terms of metastability.

f For details about the metastability features in the Quartus II software, refer to the
Managing Metastability with the Quartus II Software chapter in volume 1 of the
Quartus II Handbook. This chapter describes how to enable metastability analysis and
identify the register synchronization chains in your design, provides details about
metastability reports, and provides additional guidelines for managing metastability.

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
The following recommendations help you take advantage of the macrocell-based
architecture in the MAX 7000 and MAX 3000 devices to yield maximum speed,
reliability, and device resource utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve resource
utilization. Complete this stage before proceeding to timing optimization. First,
ensure that you have set the basic constraints described in “Initial Compilation:
Required Settings” on page 13–2. If your design is not fitting into a specified device,
use the techniques in this section to achieve a successful fit.

Use Dedicated Inputs for Global Control Signals
MAX 7000 and MAX 3000 devices have four dedicated inputs that can be used for
global register control. Because the global register control signals can bypass the logic
cell array and directly feed registers, product terms can be preserved for primary
logic. Also, because each signal has a dedicated path into the LAB, global signals also
can bypass logic and data path interconnect resources.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

13–44 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
Because the dedicated input pins are designed for high fan-out control signals and
provide low skew, always assign global signals (such as clock, clear, and output
enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals instead of
dedicated inputs. However, the following list shows the disadvantages of using
logic-generated control signals:

■ More resources are required (logic cells, interconnect).

■ More data skew is introduced.

■ If the logic-generated control signals have high fan-out, the design can be more
difficult to fit.

By default, the Quartus II software uses dedicated inputs for global control signals
automatically. You can assign control signals to dedicated input pins in one of the
following ways:

■ In the Assignment Editor, select one of the two following methods:

■ Assign pins to dedicated pin locations.

■ Assign a Global Signal setting to the pins.

■ On the Assignments menu, click Settings. On the Analysis & Synthesis Settings
page, click More Settings, and in the Existing Option settings section, select Auto
Global Register Control Signals.

■ Insert a GLOBAL primitive after the pins.

■ If you have already assigned pins for the design in the MAX+PLUS® II software,
on the Assignments menu, click Import Assignments.

Reserve Device Resources
Because pin and logic option assignments can be necessary for board layout and
performance requirements, and because full utilization of the device resources can
increase the difficulty of fitting the design, Altera recommends that you leave 10% of
the logic cells and 5% of the I/O pins unused to accommodate future design
modifications. Following the Altera-recommended device resource reservation
guidelines for macrocell-based CPLDs increases the chance that the Quartus II
software can fit the design during recompilation after changes or assignments have
been made.

Pin Assignment Guidelines and Procedures
Sometimes user-specified pin assignments are necessary for board layout. This section
discusses pin assignment guidelines and procedures.

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs.

■ Assign output enables to appropriate locations.

■ Estimate fan-in to assign output pins to the appropriate LAB.

■ Assign output pins that require parallel expanders to macrocells numbered 4 to 16.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–45
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
1 Altera recommends that you allow the Quartus II software to select pin assignments
automatically when possible. You can use the Quartus II Pin Advisor feature
(accessible from the Tools menu) for pin connection guidelines.

h For more information about the Pin Advisor, refer to Pin Advisor Command in
Quartus II Help.

Control Signal Pin Assignments
Assign speed-critical control signals to dedicated input pins. Every MAX 7000 and
MAX 3000 device has four dedicated input pins (GCLK1, OE2/GCLK2, OE1, and GCLRn).
You can assign clocks to global clock dedicated inputs (GCLK1 and OE2/GCLK2), clear to
the global clear dedicated input (GCLRn), and speed-critical output enable to global OE
dedicated inputs (OE1 and OE2/GCLK2).

Output Enable Pin Assignments
Occasionally, because the total number of required output enable pins is more than
the dedicated input pins, output enable signals must be assigned to I/O pins.

f To minimize possible fitting errors when assigning the output enable pins for
MAX 7000 and MAX 3000 devices, refer to Pin-Out Files for Altera Devices on the Altera
website (www.altera.com).

Estimate Fan-In When Assigning Output Pins
Macrocells with high fan-in can cause more placement problems for the Quartus II
Fitter than those with low fan-in. The maximum fan-in per LAB should not exceed 36
in MAX 7000 and MAX 3000 devices. Therefore, estimate the fan-in of logic (such as
an x-input AND gate) that feeds each output pin. If the total fan-in of logic that feeds
each output pin in the same LAB exceeds 36, compilation can fail. To save resources
and prevent compilation errors, avoid assigning pins that have high fan-in.

Outputs Using Parallel Expander Pin Assignments
Figure 13–10 illustrates how parallel expanders are used within a LAB. MAX 7000 and
MAX 3000 devices contain chains that can lend or borrow parallel expanders. The
Quartus II Fitter places macrocells in a location that allows them to lend and borrow
parallel expanders appropriately.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/oaw/oaw_com_pin_advisor.htm
http://www.altera.com

13–46 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
As shown in Figure 13–10, only macrocells 2 through 16 can borrow parallel
expanders. Therefore, assign output pins that might require parallel expanders to pins
adjacent to macrocells 4 through 16. Altera recommends using macrocells 4 through
16 because they can borrow the largest number of parallel expanders.

Resolving Resource Utilization Problems
Two common Quartus II compilation fitting issues cause errors: excessive macrocell
usage and lack of routing resources. Macrocell usage errors occur when the total
number of macrocells in the design exceed the available macrocells in the device.
Routing errors occur when the available routing resources are insufficient to
implement the design. Check the Message window for the compilation results.

1 Messages in the Messages window are also copied in the Report Files. Right-click on a
message and click Help for more information.

Figure 13–10. LAB Macrocells and Parallel Expander Associations

Macrocell 1

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately-preceding macrocells.

Macrocell 2 borrows up to five parallel
expanders from Macrocell 1.

Macrocell 1 cannot borrow
any parallel expanders.

Macrocell 3 borrows up to ten
parallel expanders from

Macrocells 1 and 2.

LAB A
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–47
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
Resolving Macrocell Usage Issues
Occasionally, a design requires more macrocell resources than are available in the
selected device, which results in the design not fitting. The following list provides tips
for resolving macrocell usage issues as well as tips to minimize the number of
macrocells used:

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Settings, and turn off Auto Parallel Expanders. If
the design’s clock frequency (fMAX) is not an important design requirement, turn
off parallel expanders for all or part of the project. The design usually requires
more macrocells if parallel expanders are turned on.

■ Change Optimization Technique from Speed to Area. Selecting Area instructs the
compiler to give preference to area utilization rather than speed (fMAX). On the
Assignments menu, click Settings. In the Category list, change the Optimization
Technique option in the Analysis & Synthesis Settings page.

■ Use D-type flipflops instead of latches. Altera recommends that you always use
D-type flipflops instead of latches in your design because D-type flipflops can
reduce the macrocell fan-in, and thus reduce macrocell usage. The Quartus II
software uses extra logic to implement latches in MAX 7000 and MAX 3000
designs because MAX 7000 and MAX 3000 macrocells contain D-type flipflops
instead of latches.

■ Use asynchronous clear and preset instead of synchronous clear and preset. To
reduce the product term usage, use asynchronous clear and preset in your design
whenever possible. Using other control signals such as synchronous clear
produces macrocells and pins with higher fan-out.

1 After following the suggestions in this section, if your project still does not fit the
targeted device, consider using a larger device. When upgrading to a different
density, the vertical package-migration feature of the MAX 7000 and MAX 3000
device families allows pin assignments to be maintained.

Resolving Routing Issues
Routing is another resource that can cause design fitting issues. For example, if the
total fan-in into a LAB exceeds the maximum allowed, a no-fit error can occur during
compilation. If your design does not fit the targeted device because of routing issues,
consider the following suggestions:

■ Use dedicated inputs/global signals for high fan-out signals. The dedicated inputs
in MAX 7000 and MAX 3000 devices are designed for speed-critical and high
fan-out signals. Always assign high fan-out signals to dedicated inputs/global
signals.

■ Change the Optimization Technique option from Speed to Area. This option can
resolve routing resource and macrocell usage issues. Refer to “Resolving Macrocell
Usage Issues” on page 13–47.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–48 Chapter 13: Area and Timing Optimization
Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
■ Reduce the fan-in per cell. If you are not limited by the number of macrocells used
in the design, you can use the Fan-in per cell (%) option to reduce the fan-in per
cell. The allowable values are 20–100%; the default value is 100%. Reducing the
fan-in can reduce localized routing congestion but increase the macrocell count.
You can set this logic option in the Assignment Editor or under More Settings in
the Analysis & Synthesis Settings page of the Settings dialog box.

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Options, and turn off Auto Parallel Expanders. By
turning off the parallel expanders, you give the Quartus II software more fitting
flexibility for each macrocell, allowing macrocells to be relocated. For example,
each macrocell (previously grouped together in the same LAB) can be moved to a
different LAB to reduce routing constraints.

■ Insert logic cells. Inserting logic cells reduces fan-in and shared expanders used
per macrocell, increasing routability. By default, the Quartus II software
automatically inserts logic cells when necessary. Otherwise, Auto Logic Cell can
be disabled as follows. On the Assignments menu, click Settings. In the Category
list, select Analysis & Synthesis Settings. Under More Settings, turn off Auto
Logic Cell Insertion. Refer to “Using LCELL Buffers to Reduce Required
Resources” for more information.

■ Change pin assignments. If you want to discard your pin assignments, you can let
the Quartus II Fitter ignore some or all of the assignments.

1 If you prefer reassigning pins to increase routing efficiency, refer to “Pin
Assignment Guidelines and Procedures” on page 13–44.

Using LCELL Buffers to Reduce Required Resources
Complex logic, such as multilevel XOR gates, are often implemented with more than
one macrocell. When this occurs, the Quartus II software automatically allocates
shareable expanders—or additional macrocells (called synthesized logic cells)—to
supplement the logic resources that are available in a single macrocell. You can also
break down complex logic by inserting logic cells in the project to reduce the average
fan-in and the total number of shareable expanders required. Manually inserting logic
cells can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion option, you can
manually insert logic cells. However, Altera recommends that you use the Auto Logic
Cell Insertion option unless you know which part of the design is causing the
congestion.

A good location to manually insert LCELL buffers is where a single complex logic
expression feeds multiple destinations in your design. You can insert an LCELL buffer
just after the complex expression; the Quartus II Fitter extracts this complex
expression and places it in a separate logic cell. Rather than duplicate all the logic for
each destination, the Quartus II software feeds the single output from the logic cell to
all destinations.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–49
Timing Optimization Techniques (Macrocell-Based CPLDs)
To reduce fan-in and prevent no-fit compilations caused by routing resource issues,
insert an LCELL buffer after a NOR gate (Figure 13–11). The design in Figure 13–11
was compiled for a MAX 7000AE device. Without the LCELL buffer, the design
requires two macrocells and eight shareable expanders, and the average fan-in is 14.5
macrocells. However, with the LCELL buffer, the design requires three macrocells and
eight shareable expanders, and the average fan-in is just 6.33 macrocells.

Timing Optimization Techniques (Macrocell-Based CPLDs)
After resource optimization, design optimization focuses on timing. Ensure that you
have made the appropriate assignments as described in “Initial Compilation:
Required Settings” on page 13–2, and that the resource utilization is satisfactory
before proceeding with timing optimization.

The following five timing parameters are primarily responsible for a design’s
performance:

■ Setup time (tSU)—the propagation time for input data signals

■ Hold time (tH)—the propagation time for input data signals

■ Clock-to-output time (tCO)—the propagation time for output signals

■ Pin-to-pin delays (tPD)—the time required for a signal from an input pin to
propagate through combinational logic and appear at an external output pin

■ Maximum clock frequency (fMAX)—the internal register-to-register performance

Figure 13–11. Reducing the Average Fan-In by Inserting LCELL Buffers
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–50 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (Macrocell-Based CPLDs)
This section provides guidelines to improve the timing if the timing requirements are
not met. Figure 13–12 shows the parts of the design that determine the tSU, tH, tCO, tPD,
and fMAX timing parameters.

When you are analyzing a design to improve performance, be sure to consider the two
major contributors to long delay paths:

■ Excessive levels of logic

■ Excessive loading (high fan-out)

When a MAX 7000 or MAX 3000 device signal drives more than one LAB, the
programmable interconnect array (PIA) delay increases by 0.1 ns per additional LAB
fan-out. Therefore, to minimize the added delay, concentrate the destination
macrocells into fewer LABs, minimizing the number of LABs that are driven. The
main cause of long delays in circuit design is excessive levels of logic.

Improving Setup Time
Sometimes the tSU timing reported by the Quartus II Fitter does not meet your timing
requirements. To improve the tSU timing, refer to the following guidelines:

■ Turn on the Fast Input Register option using the Assignment Editor. The Fast
Input Register option allows input pins to directly drive macrocell registers via
the fast-input path, thus minimizing the pin-to-register delay. This option is useful
when a pin drives a D-type flipflop and there is no combinational logic between
the pin and the register.

■ Reduce the amount of logic between the input and the register. Excessive logic
between the input pin and register causes more delays. To improve setup time,
Altera recommends that you reduce the amount of logic between the input pin
and the register whenever possible.

■ Reduce fan-out. The delay from input pins to macrocell registers increases when
the fan-out of the pins increases. To improve the setup time, minimize the fan-out.

Figure 13–12. Main Timing Parameters that Determine the System’s Performance

PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF

Logic Logic Logic

Input

Input Output

Clock Frequency

Setup and Hold Time Clock-to-Output Time
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–51
Timing Optimization Techniques (Macrocell-Based CPLDs)
Improving Clock-to-Output Time
To improve a design’s clock-to-output time, minimize the register-to-output-pin
delay. To improve the tCO timing, refer to the following guidelines:

■ Use the global clock. In addition to minimizing the delay from a register to an
output pin, minimizing the delay from the clock pin to the register can also
improve tCO timing. Always use the global clock for low-skew and speed-critical
signals.

■ Reduce the amount of logic between the register and output pin. Excessive logic
between the register and the output pin causes more delay. Always minimize the
amount of logic between the register and output pin for faster clock-to-output
time.

Table 13–3 shows the timing results for an EPM7064AETC100-4 device when a
combination of the Fast Input Register option, global clock, and minimal logic is
used. When the Fast Input Register option is turned on, the tSU timing is improved
(tSU decreases from 1.6 ns to 1.3 ns and from 2.8 ns to 2.5 ns). The tCO timing is
improved when the global clock is used for low-skew and speed-critical signals (tCO
decreases from 4.3 ns to 3.1 ns). However, if there is additional logic used between the
input pin and the register or the register and the output pin, the tSU and tCO delays
increase.

Improving Propagation Delay (tPD)
Achieving fast propagation delay (tPD) timing is required in many system designs.
However, if there are long delay paths through complex logic, achieving fast
propagation delays can be difficult. To improve your design’s tPD, refer to the
following guidelines:

Table 13–3. EPM7064AETC100-4 Device Timing Results

Number of
Registers

tSU
(ns)

tH
(ns)

tCO
(ns)

Global
Clock Used

Fast Input
Register
Option

D Input
Location

Q Output
Location

Additional Logic Between:

D Input
Location &

Register

Register & Q
Output

Location

1 1.3 1.2 4.3 — On LAB A LAB A — —

1 1.6 0.3 4.3 — Off LAB A LAB A — —

1 2.5 0 3.1 v On LAB A LAB A — —

1 2.8 0 3.1 v Off LAB A LAB A — —

1 3.6 0 3.1 v Off LAB A LAB A v —

1 2.8 0 7.0 v Off LAB D LAB A — v
16 with the
same D and
clock inputs

2.8 0 All
6.2 v Off LAB D LAB A, B — —

32 with the
same D and
clock inputs

2.8 0 All
6.4 v Off LAB C LAB A, B, C — —
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–52 Chapter 13: Area and Timing Optimization
Timing Optimization Techniques (Macrocell-Based CPLDs)
■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and turn on Auto Parallel Expanders. Turning on the parallel
expanders for individual nodes or sub-designs can increase the performance of
complex logic functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells (which can reduce
routability), parallel expanders can cause the Quartus II Fitter to have difficulties
finding and optimizing a fit. Additionally, the number of macrocells required to
implement the design increases and results in a no-fit error during compilation if
the device resources are limited. For more information about turning on the Auto
Parallel Expanders option, refer to “Resolving Macrocell Usage Issues” on
page 13–47.

■ Set the Optimization Technique to Speed. By default, the Quartus II software sets
the Optimization Technique option to Speed for MAX 7000 and MAX 3000
devices. Reset the Optimization Technique option to Speed only if you
previously set it to Area. On the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

Improving Maximum Frequency (fMAX)
Maintaining the system clock at or above a certain frequency is a major goal in circuit
design. For example, if you have a fully synchronous system that must run at
100 MHz, the longest delay path from the output of any register to the inputs of the
registers it feeds must be less than 10 ns. Maintaining the system clock speed can be
difficult if there are long delay paths through complex logic. Altera recommends that
you perform the following guidelines to increase your design’s clock speed (fMAX):

■ On the Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, click More Settings, and turn on Auto Parallel Expanders.
Turning on the parallel expanders for individual nodes or subdesigns can increase
the performance of complex logic functions. However, if the project’s pin or logic
cell assignments use parallel expanders placed physically together with macrocells
(which can reduce routability), parallel expanders can cause the Quartus II
compiler to have difficulties finding and optimizing a fit. Additionally, the number
of macrocells required to implement the design also increases and can result in a
no-fit error during compilation if the device’s resources are limited. For more
information about using the Auto Parallel Expanders option, refer to “Resolving
Macrocell Usage Issues” on page 13–47.

■ Use global signals or dedicated inputs. Altera MAX 7000 and MAX 3000 devices
have dedicated inputs that provide low skew and high speed for high fan-out
signals. Minimize the number of control signals in the design and use the
dedicated inputs to implement them.

■ Set the Optimization Technique to Speed. By default, the Quartus II software sets
the Optimization Technique option to Speed for MAX 7000 and MAX 3000
devices. Reset the Optimization Technique option to Speed only if you have
previously set it to Area. You can reset the Optimization Technique option. In the
Category list, select Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

■ Pipeline the design. Pipelining, which increases clock frequency (fMAX), refers to
dividing large blocks of combinational logic by inserting registers.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–53
Other Optimization Resources
Optimizing Source Code—Pipelining for Complex Register Logic
If the methods described in the preceding sections do not sufficiently improve your
results, modify the design at the source to achieve the desired results. Using
additional register stages (pipeline registers) consumes more device resources, but it
also lowers the propagation delay between registers, allowing you to maintain high
system clock speed.

f Refer to the application note AN 584: Timing Closure Methodology for Advanced FPGA
Designs for more information about pipelining registers and other examples of
optimizing source code.

Other Optimization Resources
The Quartus II software has additional resources to help you optimize your design for
resource, performance, compilation time, and power.

Design Space Explorer
The DSE automates the process of running multiple compilations with different
settings. You can use the DSE to try the techniques described in this chapter. The DSE
utility helps automate the process of finding the best set of options for your design.
The DSE explores the design space by applying various optimization techniques and
analyzing the results.

h For more information, refer to About Design Space Explorer in Quartus II Help.

Other Optimization Advisors
The Power Optimization Advisor provides guidance for reducing power
consumption. In addition, the Incremental Compilation Advisor provides suggestions
to improve your results when partitioning your design for a hierarchical or
team-based design flow using the Quartus II incremental compilation feature.

f For more information about using the Power Optimization Advisor, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook. For more information
about using the Incremental Compilation Advisor, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/an/an584.pdf
http://www.altera.com/literature/an/an584.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

13–54 Chapter 13: Area and Timing Optimization
Scripting Support
f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. Refer to the Quartus II Settings File Manual for information
about all settings and constraints in the Quartus II software. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either in an instance, or
at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> \
-to <instance name> r

1 If the <value> field includes spaces (for example, “Standard Fit”), the value must be
enclosed by straight double quotation marks.

Initial Compilation Settings
The Quartus II Settings File (.qsf) variable name is used in the Tcl assignment to make
the setting along with the appropriate value. The Type column indicates whether the
setting is supported as a global setting, an instance setting, or both.

Table 13–4 lists the .qsf file variable name and applicable values for the settings
discussed in “Initial Compilation: Required Settings” on page 13–2. Table 13–5 shows
the list of advanced compilation settings.

Table 13–4. Initial Compilation Settings

Setting Name .qsf File Variable Name Values Type

Device Setting DEVICE <device part number> Global

Use Smart Compilation SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING
OFF, IO PATHS AND MINIMUM TPD PATHS,
ALL PATHS

Global

Fitter Effort FITTER_EFFORT STANDARD FIT, FAST FIT, AUTO FIT Global

Table 13–5. Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router Effort
Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing
Optimization level ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Final Placement
Optimization FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY, NEVER Global
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 13: Area and Timing Optimization 13–55
Scripting Support
Resource Utilization Optimization Techniques (LUT-Based Devices)
Table 13–6 lists the .qsf file variable name and applicable values for the settings
discussed in “Resource Utilization Optimization Techniques (LUT-Based Devices)”
on page 13–15.

Table 13–6. Resource Utilization Optimization Settings

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1) AUTO_PACKED_REGISTERS_<device family name>

OFF, NORMAL, MINIMIZE
AREA, MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Physical Synthesis
for Combinational
Logic for Reducing
Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF
Global,
Instance

Physical Synthesis
for Mapping Logic
to Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR AREA ON, OFF
Global,
Instance

Optimization
Technique <device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED, BALANCED Global,

Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding STATE_MACHINE_PROCESSING

AUTO, ONE-HOT, MINIMAL
BITS, USER-ENCODE

Global,
Instance

Auto RAM
Replacement AUTO_RAM_RECOGNITION ON, OFF Global,

Instance

Auto ROM
Replacement AUTO_ROM_RECOGNITION ON, OFF Global,

Instance

Auto Shift Register
Replacement AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,

Instance

Auto Block
Replacement AUTO_DSP_RECOGNITION ON, OFF Global,

Instance

Number of
Processors for
Parallel Compilation

NUM_PARALLEL_PROCESSORS
Integer between 1 and 4
inclusive, or ALL Global

Note to Table 13–6:

(1) Allowed values for this setting depend on the device family that is selected.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–56 Chapter 13: Area and Timing Optimization
Scripting Support
I/O Timing Optimization Techniques (LUT-Based Devices)
Table 13–7 lists the .qsf file variable name and applicable values for the I/O timing
optimization settings.

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
Table 13–8 lists the .qsf file variable name and applicable values for the settings
discussed in “Register-to-Register Timing Optimization Techniques (LUT-Based
Devices)” on page 13–34.

Table 13–7. I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register Placement
For Timing OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable Register FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance

Table 13–8. Register-to-Register Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,

Instance

Perform Physical Synthesis
for Combinational Logic PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global,

Instance

Perform Register
Duplication PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global,

Instance

Perform Register Retiming PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global,
Instance

Perform Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_SIGNAL_PIPELI
NING ON, OFF Global,

Instance

Physical Synthesis Effort PHYSICAL_SYNTHESIS_EFFORT
NORMAL, EXTRA,
FAST

Global

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic Duplication DUPLICATE_ATOM <node name> Instance

Optimize Power during
Synthesis OPTIMIZE_POWER_DURING_SYNTHESIS

NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power during
Fitting OPTIMIZE_POWER_DURING_FITTING

NORMAL, OFF
EXTRA_EFFORT

Global
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–57
Conclusion
Duplicate Logic for Fan-Out Control
The manual logic duplication option accepts wildcards. This is an easy and powerful
duplication technique that you can use without editing your source code. You can use
this technique, for example, to make a duplicate of a large fan-out node for all of its
destinations in a certain design hierarchy, such as hierarchy_A. To make such an
assignment with Tcl, use a command similar to Example 13–1.

Conclusion
Using the recommended techniques described in this chapter can help you close
timing quickly on complex designs, reduce iterations by providing more intelligent
and better links between analysis and assignment tools, and balance multiple design
constraints including multiple clocks, routing resources, and area constraints.

The Quartus II software provides many features to achieve optimal results. Follow the
techniques presented in this chapter to efficiently optimize a design for area or timing
performance, or to reduce compilation time.

Document Revision History
Table 13–9 shows the revision history for this chapter.

Example 13–1. Duplication Technique

set_instance_assignment -name DUPLICATE_ATOM high_fanout_to_A -from \
high_fanout_node -to *hierarchy_A*

Table 13–9. Document Revision History (Part 1 of 3)

Date Version Changes

December 2010 10.1.0

■ Added links to Help

■ Updated device support

■ Added “Debugging Timing Failures in the TimeQuest Analyzer” section

■ Removed Classic Timing Analyzer references

■ Other updates throughout chapter

August 2010 10.0.1 Corrected link

July 2010 10.0.0

■ Moved Compilation Time Optimization Techniques section to new Reducing Compilation
Time chapter

■ Removed references to Timing Closure Floorplan

■ ‘Moved Smart Compilation Setting and Early Timing Estimation sections to new
Reducing Compilation Time chapter

■ Added Other Optimization Resources section

■ Removed outdated information

■ Changed references to DSE chapter to Help links

■ Linked to Help where appropriate

■ Removed Referenced Documents section
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

13–58 Chapter 13: Area and Timing Optimization
Document Revision History
November 2009 9.1.0

■ Removed unsupported Timing Closure Floorplan references

■ Removed references to unsupported device families

■ Added several notes

■ Minor text edits

March 2009 9.0.0

■ Was chapter 8 in the 8.1.0 release.

■ Updated the following sections:

■ “Timing Analysis with the TimeQuest Timing Analyzer” on page 10–14

■ “Perform WYSIWYG Resynthesis with Balanced or Area Setting” on page 10–22

■ “Use Physical Synthesis Options to Reduce Area” on page 10–26

■ “Metastability Analysis and Optimization Techniques” on page 10–32

■ “Use Fast Regional Clock Networks and Regional Clocks Networks” on page 10–39

■ “Register-to-Register Timing Optimization Techniques (LUT-Based Devices)” on
page 10–40

■ “Physical Synthesis Optimizations” on page 10–41

■ “Duplicate Logic for Fan-Out Control” on page 10–45

■ “LogicLock Assignments” on page 10–49

■ “Enable Beneficial Skew Optimization” on page 10–48

■ “Use Multiple Processors for Parallel Compilation” on page 10–65

■ Removed “Analyze Your Design for Megastability”

■ Updated Table 10–11 and Table 10–9

■ Removed Tables 8-1, 8-2, 8-3, 8-6, and 8-7 from version 8.1

Table 13–9. Document Revision History (Part 2 of 3)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 13: Area and Timing Optimization 13–59
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2008 8.1.0

■ Changed document to 8½” × 11” page size.

■ Updated the following sections:

■ “Optimizing Your Design” on page 10–2

■ “Timing Requirement Settings” on page 10–4

■ “Optimize Hold Timing” on page 10–8

■ “Limit to One Fitting Attempt” on page 10–9

■ “Auto Fit” on page 10–10

■ “Fast Fit” on page 10–11

■ “Ignored Timing Assignments” on page 10–12

■ “I/O Timing (Including tPD)” on page 10–13

■ “Register-to-Register Timing” on page 10–14

■ “Timing Analysis with the TimeQuest Timing Analyzer” on page 10–14

■ “Use I/O Assignment Analysis” on page 10–20

■ “Flatten the Hierarchy During Synthesis” on page 10–25

■ “Retarget Memory Blocks” on page 10–25

■ “Use Physical Synthesis Options to Reduce Area” on page 10–26

■ “Increase Placement Effort Multiplier” on page 10–30

■ “Metastability Analysis and Optimization Techniques” on page 10–32

■ “Synthesis Netlist Optimizations and Physical Synthesis Optimizations” on
page 10–43

■ “Incremental Compilation” on page 10–65

■ “Use Multiple Processors for Parallel Compilation” on page 10–66

■ Updated Table 10–9 on page 10–73 and Table 10–11 on page 10–75.

May 2008 8.0.0

■ Updated links

■ Updated the following sections:

■ Other Optimization Resources]

■ Setting Process Priority

■ Location Assignment and Back-Annotation

■ Fitter Effort Setting

■ Synthesis Netlist Optimizations and Physical Synthesis Optimizations

■ Fast Fit

■ Added Metastability Analysis

■ Added Enable Beneficial Skew Optimization and Analyze Your Design for Metastability

■ Removed figures from “Optimizing Source Code—Pipelining for Complex Register Logic

■ Updated Table 8-5

Table 13–9. Document Revision History (Part 3 of 3)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

13–60 Chapter 13: Area and Timing Optimization
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52016-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52016-10.0.1
14. Power Optimization
The Quartus® II software offers power-driven compilation to fully optimize device
power consumption. Power-driven compilation focuses on reducing your design’s
total power consumption using power-driven synthesis and power-driven
place-and-route. This chapter describes the power-driven compilation feature and
flow in detail, as well as low power design techniques that can further reduce power
consumption in your design. The techniques primarily target Arria® GX, Stratix® and
Cyclone® series of devices, and HardCopy® II devices. These devices utilize a low-k
dielectric material that dramatically reduces dynamic power and improves
performance. Arria series, Stratix II, Stratix III, Stratix IV, and Stratix V device families
include efficient logic structures called adaptive logic modules (ALMs) that obtain
maximum performance while minimizing power consumption. Cyclone device
families offer the optimal blend of high performance and low power in a low-cost
FPGA.

f For more information about a device-specific architecture, refer to the device
handbook, available from the Literature and Technical Documentation page on the
Altera website.

Altera provides the Quartus II PowerPlay Power Analyzer to aid you during the
design process by delivering fast and accurate estimations of power consumption.
You can minimize power consumption, while taking advantage of the industry’s
leading FPGA performance, by using the tools and techniques described in this
chapter.

f For more information about the PowerPlay Power Analyzer, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Total FPGA power consumption is comprised of I/O power, core static power, and
core dynamic power. This chapter focuses on design optimization options and
techniques that help reduce core dynamic power and I/O power. In addition to these
techniques, there are additional power optimization techniques available for
Stratix III and Stratix IV devices. These techniques include:

■ Selectable Core Voltage (available only for Stratix III devices)

■ Programmable Power Technology

■ Device Speed Grade Selection

f For more information about power optimization techniques available for Stratix III
devices, refer to AN 437: Power Optimization in Stratix III FPGAs. For more information
about power optimization techniques available for Stratix IV devices, refer to AN 514:
Power Optimization in Stratix IV FPGAs.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52016
http://www.altera.com/literature/lit-index.html
http://www.altera.com/
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

14–2 Chapter 14: Power Optimization
Power Dissipation
Power Dissipation
This section describes the sources of power dissipation in Stratix III and Cyclone III
devices. You can refine techniques that reduce power consumption in your design by
understanding the sources of power dissipation.

Figure 14–1 shows the power dissipation of Stratix III and Cyclone III devices in
different designs. All designs were analyzed at a fixed clock rate of 100 MHz and
exhibited varied logic resource utilization across available resources.

As shown in Figure 14–1, a significant amount of the total power is dissipated in
routing for both Stratix III and Cyclone III devices, with the remaining power
dissipated in logic, clock, and RAM blocks.

In Stratix and Cyclone device families, a series of column and row interconnect wires
of varying lengths provide signal interconnections between logic array blocks (LABs),
memory block structures, and digital signal processing (DSP) blocks or multiplier
blocks. These interconnects dissipate the largest component of device power.

FPGA combinational logic is another source of power consumption. The basic
building block of logic in the latest Stratix series devices is the ALM, and in
Cyclone II, Cyclone III and Cyclone IV GX devices, it is the logic element (LE).

f For more information about ALMs and LEs in Cyclone II, Cyclone III, Cyclone IV GX,
Stratix II, Stratix III, Stratix IV, and Stratix V, devices, refer to the respective device
handbook.

Figure 14–1. Average Core Dynamic Power Dissipation

Notes to Figure 14–1:

(1) 103 different designs were used to obtain these results.
(2) 96 different designs were used to obtain these results.
(3) In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

Average Core Dynamic Power Dissipation by Block
 Type in Stratix III Devices at a 12.5% Toggle Rate (1)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone III Devices at a 12.5% Toggle Rate (2)

Routing
30%

Combinational Logic
16%

Registered Logic
18%

Memory
21%

Global Clock Routing
14%

DSP Blocks
1% (3)

Multipliers
1% (3)

Routing
29%

Combinational Logic
11%

Registered Logic
23%

Memory
20%

Global Clock Routing
16%
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–3
Design Space Explorer
Memory and clock resources are other major consumers of power in FPGAs. Stratix II
devices feature the TriMatrix memory architecture. TriMatrix memory includes
512-bit M512 blocks, 4-Kbit M4K blocks, and 512-Kbit M-RAM blocks, which are
configurable to support many features. Stratix IV and Stratix III TriMatrix on-chip
memory is an enhancement based upon the Stratix II FPGA TriMatrix memory and
includes three sizes of memory blocks: MLAB blocks, M9K blocks, and M144K blocks.
Stratix III, Stratix IV, and Stratix V devices feature Programmable Power Technology,
an advanced architecture that enables a smooth trade-off between speed and power.
The core of each Stratix III, Stratix IV, and Stratix V device is divided into tiles, each of
which may be put into a high-speed or low-power mode. The primary benefit of
Programmable Power Technology is to reduce static power, with a secondary benefit
being a small reduction in dynamic power. Cyclone II devices have 4-Kbit M4K
memory blocks, and Cyclone III and Cyclone IV GX devices have 9-Kbit M9K
memory blocks.

Design Space Explorer
Design Space Explorer (DSE) is a simple, easy-to-use, design optimization utility that
is included in the Quartus II software. DSE explores and reports optimal Quartus II
software options for your design, targeting either power optimization, design
performance, or area utilization improvements. You can use DSE to implement the
techniques described in this chapter.

Figure 14–2 shows the DSE user interface. The Settings tab is divided into Project
Settings and Exploration Settings.

Figure 14–2. Design Space Explorer User Interface
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–4 Chapter 14: Power Optimization
Power-Driven Compilation
The Search for Lowest Power option, under Exploration Settings, uses a predefined
exploration space that targets overall design power improvements. This setting
focuses on applying different options that specifically reduce total design thermal
power.

By default, the Quartus II PowerPlay Power Analyzer is run for every exploration
performed by the DSE when the Search for Lowest Power option is selected. This
helps you debug your design and determine trade-offs between power requirements
and performance optimization.

h For more information about the DSE, refer to About Design Space Explorer in Quartus II
Help.

Power-Driven Compilation
The standard Quartus II compilation flow consists of Analysis and Synthesis,
placement and routing, Assembly, and Timing Analysis. Power-driven compilation
takes place at the Analysis and Synthesis and Place-and-Route stages.
Quartus II software settings that control power-driven compilation are located in the
PowerPlay power optimization list on the Analysis & Synthesis Settings page, and
the PowerPlay power optimization list on the Fitter Settings page. The following
sections describes these power optimization options at the Analysis and Synthesis
and Fitter levels.

Power-Driven Synthesis
Synthesis netlist optimization occurs during the synthesis stage of the compilation
flow. The optimization technique makes changes to the synthesis netlist to optimize
your design according to the selection of area, speed, or power optimization. This
section describes power optimization techniques at the synthesis level.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 14: Power Optimization 14–5
Power-Driven Compilation
The Analysis & Synthesis Settings page allows you to specify logic synthesis
options. The PowerPlay power optimization option is available for all devices
supported by the Quartus II software except MAX® 3000 and MAX 7000 devices.
(Figure 14–3).

Table 14–1 shows the settings in the PowerPlay power optimization list. You can
apply these settings on a project or entity level.

The Normal compilation setting is turned on by default. This setting performs
memory optimization and power-aware logic mapping during synthesis.

Figure 14–3. Analysis & Synthesis Settings Page

Table 14–1. Optimize Power During Synthesis Options

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize
power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through netlist
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through netlist
optimizations. Max performance might be impacted.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–6 Chapter 14: Power Optimization
Power-Driven Compilation
Memory blocks can represent a large fraction of total design dynamic power as
described in “Reducing Memory Power Consumption” on page 14–14. Minimizing
the number of memory blocks accessed during each clock cycle can significantly
reduce memory power. Memory optimization involves effective movement of
user-defined read/write enable signals to associated read-and-write clock enable
signals for all memory types (Figure 14–4).

Figure 14–4 shows a default implementation of a simple dual-port memory block in
which write-clock enable signals and read-clock enable signals are connected to VCC,
making both read and write memory ports active during each clock cycle. Memory
transformation effectively moves the read-enable and write-enable signals to the
respective read-clock enable and write-clock enable signals. By using this technique,
memory ports are shut down when they are not accessed. This significantly reduces
your design’s memory power consumption. For more information about clock enable
signals, refer to “Reducing Memory Power Consumption” on page 14–14. For
Stratix III, Stratix IV, and Stratix V devices, the memory transformation takes place at
the Fitter level by selecting the Normal compilation settings for the power
optimization option.

In Stratix III, Cyclone III, Cyclone IV GX, and Stratix III devices, the specified
read-during-write behavior can significantly impact the power of single-port and
bidirectional dual-port RAMs. It is best to set the read-during-write parameter to
“Don’t care” (at the HDL level), as it allows an optimization whereby the read-enable
signal can be set to the inversion of the existing write-enable signal (if one exists).
This allows the core of the RAM to shut down (that is, not toggle), which saves a
significant amount of power.

The other type of power optimization that takes place with the Normal compilation
setting is power-aware logic mapping. The power-aware logic mapping reduces
power by rearranging the logic during synthesis to eliminate nets with high toggle
rates.

The Extra effort setting performs the functions of the Normal compilation setting and
other memory optimizations to further reduce memory power by shutting down
memory blocks that are not accessed. This level of memory optimization can require
extra logic, which can reduce design performance.

Figure 14–4. Memory Transformation

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–7
Power-Driven Compilation
The Extra effort setting also performs power-aware memory balancing. Power-aware
memory balancing automatically chooses the best memory configuration for your
memory implementation and provides optimal power saving by determining the
number of memory blocks, decoder, and multiplexer circuits required. If you have not
previously specified target-embedded memory blocks for your design’s memory
functions, the power-aware balancer automatically selects them during memory
implementation.

Figure 14–5 shows an example of a 4k × 4 (4k deep and 4 bits wide) memory
implementation in two different configurations using M4K memory blocks available
in Stratix II devices. The minimum logic area implementation uses M4K blocks
configured as 4k × 1. This implementation is the default in the Quartus II software
because it has the minimum logic area (0 logic cells) and the highest speed. However,
all four M4K blocks are active on each memory access in this implementation, which
increases RAM power. The minimum RAM power implementation is created by
selecting Extra effort in the PowerPlay power optimization list. This implementation
automatically uses four M4K blocks configured as 1k × 4 for optimal power saving.
An address decoder is implemented by the RAM megafunction to select which of the
four M4K blocks should be activated on a given cycle, based on the state of the top
two user address bits. The RAM megafunction automatically implements a
multiplexer to feed the downstream logic by choosing the appropriate M4K output.
This implementation reduces RAM power because only one M4K block is active on
any cycle, but it requires extra logic cells, costing logic area and potentially impacting
design performance.

There is a trade-off between power saved by accessing fewer memories and power
consumed by the extra decoder and multiplexor logic. The Quartus II software
automatically balances the power savings against the costs to choose the lowest
power configuration for each logical RAM. The benchmark data shows that the
power-driven synthesis can reduce memory power consumption by as much as 60%
in Stratix devices.

Figure 14–5. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–8 Chapter 14: Power Optimization
Power-Driven Compilation
Memory optimization options can also be controlled by the Low_Power_Mode
parameter in the Default Parameters page of the Settings dialog box. The settings for
this parameter are None, Auto, and ALL. None corresponds to the Off setting in the
PowerPlay power optimization list. Auto corresponds to the Normal compilation
setting and ALL corresponds to the Extra effort setting, respectively. You can apply
PowerPlay power optimization either on a compiler basis or on individual entities.
The Low_Power_Mode parameter always takes precedence over the Optimize Power
for Synthesis option for power optimization on memory.

You can also set the MAXIMUM_DEPTH parameter manually to configure the memory for
low power optimization. This technique is the same as the power-aware memory
balancer, but it is manual rather than automatic like the Extra effort setting in the
PowerPlay power optimization list. You can set the MAXIMUM_DEPTH parameter for
memory modules manually in the megafunction instantiation or in the MegaWizard™
Plug-In Manager for power optimization as described in “Reducing Memory Power
Consumption” on page 14–14. The MAXIMUM_DEPTH parameter always takes
precedence over the Optimize Power for Synthesis options for power optimization
on memory optimization.

h For step-by-step instructions on how to perform power-driven synthesis, refer to
Running a Power-Optimized Compilation in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_opt_compilation.htm

Chapter 14: Power Optimization 14–9
Power-Driven Compilation
Power-Driven Fitter
The Fitter Settings page enables you to specify options for fitting (Figure 14–6). The
PowerPlay power optimization option is available for Arria GX, Arria II GX,
Cyclone II, Cyclone III, Cyclone IV, HardCopy series, Stratix II, Stratix II GX,
Stratix III, Stratix IV, and Stratix V devices.

Table 14–2 lists the settings in the PowerPlay power optimization list. These settings
can only be applied on a project-wide basis. The Extra effort setting for the Fitter
requires extensive effort to optimize the design for power and can increase the
compilation time.

Figure 14–6. Fitter Settings Page

Table 14–2. Power-Driven Fitter Option

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize power.

Normal compilation
(Default)

Low compute effort algorithms are applied to minimize power through placement and routing
optimizations as long as they are not expected to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize power through placement and routing
optimizations. Max performance might be impacted.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–10 Chapter 14: Power Optimization
Power-Driven Compilation
The Normal compilation setting is selected by default and performs DSP
optimization by creating power-efficient DSP block configurations for your DSP
functions. For Stratix III, Stratix IV, and Stratix V devices, this setting, which is based
on timing constraints entered for the design, enables the Programmable Power
Technology to configure tiles as high-speed mode or low-power mode. Programmable
Power Technology is always turned ON even when the OFF setting is selected for the
Fitter PowerPlay power optimization option. Tiles are the combination of LAB and
MLAB pairs (including the adjacent routing associated with LAB and MLAB), which
can be configured to operate in high-speed or low-power mode. This level of power
optimization does not have any affect on the fitting, timing results, or compile time.
Also, for Stratix III devices, this setting enables the memory transformation as
described in “Power-Driven Synthesis” on page 14–4.

f For more information about Stratix III power optimization, refer to AN 437: Power
Optimization in Stratix III FPGAs. For more information about Stratix IV power
optimization, refer to AN 514: Power Optimization in Stratix IV FPGAs.

The Extra effort setting performs the functions of the Normal compilation setting and
other place-and-route optimizations during fitting to fully optimize the design for
power. The Fitter applies an extra effort to minimize power even after timing
requirements have been met by effectively moving the logic closer during placement
to localize high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Value Change Dump File (.vcd) that guides the Fitter to
fully optimize the design for power, based on the signal activity of the design. The
best power optimization during fitting results from using the most accurate signal
activity information. Signal activities from full post-fit netlist (timing) simulation
provide the highest accuracy because all node activities reflect the actual design
behavior, provided that supplied input vectors are representative of typical design
operation. If you do not have a .vcd file, the Quartus II software uses assignments,
clock assignments, and vectorless estimation values (PowerPlay Power Analyzer Tool
settings) to estimate the signal activities. This information is used to optimize your
design for power during fitting. The benchmark data shows that the power-driven
Fitter technique can reduce power consumption by as much as 19% in Stratix devices.
On average, you can reduce core dynamic power by 16% with the Extra effort
synthesis and Extra effort fitting settings, as compared to the Off settings in both
synthesis and Fitter options for power-driven compilation.

1 Only the Extra effort setting in the PowerPlay power optimization list for the Fitter
option uses the signal activities (from .vcd files) during fitting. The settings made in
the PowerPlay Power Analyzer Settings page in the Settings dialog box are used to
calculate the signal activity of your design.

f For more information about .vcd files and how to create them, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

h For step-by-step instructions on how to perform power-driven fitting, refer to
Running a Power-Optimized Compilation in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_opt_compilation.htm
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 14: Power Optimization 14–11
Power-Driven Compilation
Area-Driven Synthesis
Using area optimization rather than timing or delay optimization during synthesis
saves power because you use fewer logic blocks. Using less logic usually means less
switching activity. The Quartus II integrated synthesis tool provides Speed, Balanced,
or Area for the Optimization Technique option. You can also specify this logic option
for specific modules in your design with the Assignment Editor in cases where you
want to reduce area using the Area setting (potentially at the expense of register-to-
register timing performance) while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for certain device
families). The Speed Optimization Technique can increase the resource usage of your
design if the constraints are too aggressive, and can also result in increased power
consumption.

The benchmark data shows that the area-driven technique can reduce power
consumption by as much as 31% in Stratix devices and as much as 15% in Cyclone
devices.

Gate-Level Register Retiming
You can also use gate-level register retiming to reduce circuit switching activity.
Retiming shuffles registers across combinational blocks without changing design
functionality. The Perform gate-level register retiming option in the Quartus II
software enables the movement of registers across combinational logic to balance
timing, allowing the software to trade off the delay between timing critical and
noncritical timing paths.

Retiming uses fewer registers than pipelining. Figure 14–7 shows an example of
gate-level register retiming, where the 10 ns critical delay is reduced by moving the
register relative to the combinational logic, resulting in the reduction of data depth
and switching activity.

Figure 14–7. Gate-Level Register Retiming

D Q D Q

D Q D Q

D Q

D Q

10 ns 5 ns

7 ns 8 ns

Before

After
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–12 Chapter 14: Power Optimization
Design Guidelines
1 Gate-level register retiming makes changes at the gate level. If you are using an atom
netlist from a third-party synthesis tool, you must also select the Perform WYSIWYG
primitive resynthesis option to undo the atom primitives to gates mapping (so that
register retiming can be performed), and then to remap gates to Altera primitives.
When using Quartus II integrated synthesis, retiming occurs during synthesis before
the design is mapped to Altera primitives. The benchmark data shows that the
combination of WYSIWYG remapping and gate-level register retiming techniques can
reduce power consumption by as much as 6% in Stratix devices and as much as 21%
in Cyclone devices.

f For more information about register retiming, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Design Guidelines
Several low-power design techniques can reduce power consumption when applied
during FPGA design implementation. This section provides detailed design
techniques for Cyclone II, Cyclone III, Cyclone IV GX, Stratix II, and Stratix III devices
that affect overall design power. The results of these techniques might be different
from design to design.

Clock Power Management
Clocks represent a significant portion of dynamic power consumption due to their
high switching activity and long paths. Figure 14–1 on page 14–2 shows a 14%
average contribution to power consumption for global clock routing in Stratix III
devices and 16% in Cyclone III devices. Actual clock-related power consumption is
higher than this because the power consumed by local clock distribution within logic,
memory, and DSP or multiplier blocks is included in the power consumption for the
respective blocks.

Clock routing power is automatically optimized by the Quartus II software, which
enables only those portions of the clock network that are required to feed downstream
registers. Power can be further reduced by gating clocks when they are not required.
It is possible to build clock-gating logic, but this approach is not recommended
because it is difficult to generate a glitch free clock in FPGAs using ALMs or LEs.

Arria GX, Arria II GX, Cyclone III, Cyclone IV, Stratix II, Stratix III, Stratix IV, and
Stratix V devices use clock control blocks that include an enable signal. A clock
control block is a clock buffer that lets you dynamically enable or disable the clock
network and dynamically switch between multiple sources to drive the clock
network. You can use the Quartus II MegaWizard Plug-In Manager to create this clock
control block with the ALTCLKCTRL megafunction. Arria GX, Arria II GX,
Cyclone III, Cyclone IV, Stratix II, Stratix III, Stratix IV, and Stratix V devices provide
clock control blocks for global clock networks. In addition, Stratix II, Stratix III,
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Chapter 14: Power Optimization 14–13
Design Guidelines
Stratix IV, and Stratix V devices have clock control blocks for regional clock networks.
The dynamic clock enable feature lets internal logic control the clock network. When a
clock network is powered down, all the logic fed by that clock network does not
toggle, thereby reducing the overall power consumption of the device. Figure 14–8
shows a 4-input clock control block diagram.

The enable signal is applied to the clock signal before being distributed to global
routing. Therefore, the enable signal can either have a significant timing slack (at least
as large as the global routing delay) or it can reduce the fMAX of the clock signal.

f For more information about using clock control blocks, refer to the Clock Control Block
Megafunction User Guide (ALTCLKCTRL).

Another contributor to clock power consumption is the LAB clock that distributes a
clock to the registers within a LAB. LAB clock power can be the dominant contributor
to overall clock power. For example, in Cyclone III devices, each LAB can use two
clocks and two clock enable signals, as shown in Figure 14–9. Each LAB’s clock signal
and clock enable signal are linked. For example, an LE in a particular LAB using the
labclk1 signal also uses the labclkena1 signal.

Figure 14–8. Clock Control Block Diagram

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

Figure 14–9. LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/ug/ug_altclock.pdf
http://www.altera.com/literature/ug/ug_altclock.pdf

14–14 Chapter 14: Power Optimization
Design Guidelines
To reduce LAB-wide clock power consumption without disabling the entire clock tree,
use the LAB-wide clock enable to gate the LAB-wide clock. The Quartus II software
automatically promotes register-level clock enable signals to the LAB-level. All
registers within an LAB that share a common clock and clock enable are controlled by
a shared gated clock. To take advantage of these clock enables, use a clock enable
construct in the relevant HDL code for the registered logic.

LAB-Wide Clock Enable Example
The VHDL code in Example 14–1 makes use of a LAB-wide clock enable. This
clock-gating logic is automatically turned into an LAB-level clock enable signal.

f For more information about LAB-wide control signals, refer to the Stratix II
Architecture, Cyclone III Device Family Overview, or Cyclone II Architecture chapters in
the respective device handbook.

Reducing Memory Power Consumption
The memory blocks in FPGA devices can represent a large fraction of typical core
dynamic power. Memory consumes approximately 20% of the core dynamic power in
typical Cyclone III and Stratix III device designs. Memory blocks are unlike most
other blocks in the device because most of their power is tied to the clock rate, and is
insensitive to the toggle rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that occur
within the block to execute a read or write. The circuitry controlled by the clock
consumes the same amount of power regardless of whether or not the address or data
has changed from one cycle to the next. Thus, the toggle rate of input data and the
address bus have no impact on memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory
clocking events. You can achieve this through clock network-wide gating described in
“Clock Power Management” on page 14–12, or on a per-memory basis through use of
the clock enable signals on the memory ports. Figure 14–10 shows the logical view of
the internal clock of the memory block. Use the appropriate enable signals on the
memory to make use of the clock enable signal instead of gating the clock.

Example 14–1.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

Figure 14–10. Memory Clock Enable Signal

Enable Internal Memory Clk

Clk

0

1

Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51001.pdf

Chapter 14: Power Optimization 14–15
Design Guidelines
Using the clock enable signal enables the memory only when necessary and shuts it
down for the rest of the time, reducing the overall memory power consumption. You
can use the MegaWizard Plug-In Manager to create these enable signals by selecting
the Clock enable signal option for the appropriate port when generating the memory
block function (Figure 14–11).

For example, consider a design that contains a 32-bit-wide M4K memory block in
ROM mode that is running at 200 MHz. Assuming that the output of this block is only
required approximately every four cycles, this memory block will consume 8.45 mW
of dynamic power according to the demands of the downstream logic. By adding a
small amount of control logic to generate a read clock enable signal for the memory
block only on the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory megafunction to save
power in Cyclone II, Cyclone III, Cyclone IV GX, Stratix II, Stratix III, Stratix IV, and
Stratix V devices; however, this approach might increase the number of LEs required
to implement the memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules manually in the
megafunction instantiation or in the MegaWizard Plug-In Manager (Figure 14–12).
The Quartus II software automatically chooses the best design memory configuration
for optimal power, as described in “Power-Driven Compilation” on page 14–4.

Figure 14–11. MegaWizard Plug-In Manager RAM 2-Port Clock Enable Signal Selectable Option
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–16 Chapter 14: Power Optimization
Design Guidelines
Memory Power Reduction Example
Table 14–3 shows power usage measurements for a 4K × 36 simple dual-port memory
implemented using multiple M4K blocks in a Stratix II EP2S15 device. For each
implementation, the M4K blocks are configured with a different memory depth.

Figure 14–12. MegaWizard Plug-In Manager RAM 2-Port Maximum Depth Selectable Option

Table 14–3. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–17
Design Guidelines
Figure 14–13 shows the amount of power saved using the MAXIMUM_DEPTH parameter.
For all implementations, a user-provided read enable signal is present to indicate
when read data is required. Using this power-saving technique can reduce power
consumption by as much as 60%.

As the memory depth becomes more shallow, memory dynamic power decreases
because unaddressed M4K blocks can be shut off using a decoded combination of
address bits and the read enable signal. For a 128-deep memory block, power used by
the extra LEs starts to outweigh the power gain achieved by using a more shallow
memory block depth. The power consumption of the memory blocks and associated
LEs depends on the memory configuration.

Pipelining and Retiming
Designs with many glitches consume more power because of faster switching activity.
Glitches cause unnecessary and unpredictable temporary logic switches at the output
of combinational logic. A glitch usually occurs when there is a mismatch in input
signal timing leading to unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR gate from 1 to 0,
followed a few moments later by an input change from 0 to 1 on the other input. For a
moment, both inputs become 1 (high) during the state transition, resulting in 0 (low)
at the output of the XOR gate. Subsequently, when the second input transition takes
place, the XOR gate output becomes 1 (high). During signal transition, a glitch is
produced before the output becomes stable, as shown in Figure 14–14. This glitch can
propagate to subsequent logic and create unnecessary switching activity, increasing
power consumption. Circuits with many XOR functions, such as arithmetic circuits or
cyclic redundancy check (CRC) circuits, tend to have many glitches if there are several
levels of combinational logic between registers.

Figure 14–13. Power Savings Using the MAXIMUM_DEPTH Parameter

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
w

er
 S

av
in

gs

Figure 14–14. XOR Gate Showing Glitch at the Output

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–18 Chapter 14: Power Optimization
Design Guidelines
Pipelining can reduce design glitches by inserting flipflops into long combinational
paths. Flipflops do not allow glitches to propagate through combinational paths.
Therefore, a pipelined circuit tends to have less glitching. Pipelining has the
additional benefit of generally allowing higher clock speed operations, although it
does increase the latency of a circuit (in terms of the number of clock cycles to a first
result). Figure 14–15 shows an example where pipelining is applied to break up a long
combinational path.

Pipelining is very effective for glitch-prone arithmetic systems because it reduces
switching activity, resulting in reduced power dissipation in combinational logic.
Additionally, pipelining allows higher-speed operation by reducing logic-level
numbers between registers. The disadvantage of this technique is that if there are not
many glitches in your design, pipelining can increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization. The
benchmark data shows that pipelining can reduce dynamic power consumption by as
much as 30% in Cyclone and Stratix devices.

Architectural Optimization
You can use design-level architectural optimization by taking advantage of specific
device architecture features. These features include dedicated memory and DSP or
multiplier blocks available in FPGA devices to perform memory or arithmetic-related
functions. You can use these blocks in place of LUTs to reduce power consumption.
For example, you can build large shift registers from RAM-based FIFO buffers instead
of building the shift registers from the LE registers.

The Stratix device family allows you to efficiently target small, medium, and large
memories with the TriMatrix memory architecture. Each TriMatrix memory block is
optimized for a specific function. The M512 memory blocks available in Stratix II
devices are useful for implementing small FIFO buffers, DSP, and clock domain
transfer applications. M512 memory blocks are more power-efficient than the
distributed memory structures in some competing FPGAs. The M4K memory blocks

Figure 14–15. Pipelining Example

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
DepthD Q D Q

D Q D Q D Q

Non-Pipelined

Pipelined
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–19
Design Guidelines
are used to implement buffers for a wide variety of applications, including processor
code storage, large look-up table implementation, and large memory applications.
The M-RAM blocks are useful in applications where a large volume of data must be
stored on-chip. Effective utilization of these memory blocks can have a significant
impact on power reduction in your design.

The latest Stratix and Cyclone device families have configurable M9K memory blocks
that provide various memory functions such as RAM, FIFO buffers, and ROM.

f For more information about using DSP and memory blocks efficiently, refer to the
Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

I/O Power Guidelines
Nonterminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output
swing. The voltage difference between logic-high and logic-low signals at the output
pin is equal to the VCCIO supply voltage. If the capacitive loading at the output pin is
known, the dynamic power consumed in the I/O buffer can be calculated as shown in
Equation 14–1:

In this equation, F is the output transition frequency and C is the total load
capacitance being switched. V is equal to VCCIO supply voltage. Because of the
quadratic dependence on VCCIO, lower voltage standards consume significantly less
dynamic power.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a
result, the total power consumed by a LVTTL or LVCMOS output is highly dependent
on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL, the output
load voltage swings by a small amount around some bias point. The same dynamic
power equation is used, where V is the actual load voltage swing. Because this is
much smaller than VCCIO, dynamic power is lower than for nonterminated I/O under
similar conditions. These resistively terminated I/O standards dissipate significant
static (frequency-independent) power, because the I/O buffer is constantly driving
current into the resistive termination network. However, the lower dynamic power of
these I/O standards means they often have lower total power than LVCMOS or
LVTTL for high-frequency applications. Use the lowest drive strength I/O setting that
meets your speed and waveform requirements to minimize I/O power when using
resistively terminated standards.

You can save a small amount of static power by connecting unused I/O banks to the
lowest possible VCCIO voltage of 1.2 V.

Table 14–4 shows the total supply and thermal power consumed by outputs using
different I/O standards for Stratix II devices. The numbers are for an I/O pin
transmitting random data clocked at 200 MHz with a 10 pF capacitive load.

Equation 14–1. Capacitive loading at the output pin

P 0.5 F C V2=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

14–20 Chapter 14: Power Optimization
Design Guidelines
For this configuration, nonterminated standards generally use less power, but this is
not always the case. If the frequency or the capacitive load is increased, the power
consumed by nonterminated outputs increases faster than the power of terminated
outputs.

f For more information about I/O standards, refer to the Selectable I/O Standards in
Stratix II Devices and Stratix II GX Devices chapter in volume 2 of the Stratix II Device
Handbook, the Stratix III Device I/O Features chapter in volume 1 of the Stratix III Device
Handbook, the I/O Features in Stratix IV Devices in volume 1 of the Stratix IV Device
Handbook, or the Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II
Device Handbook, the Cyclone III Device Handbook, or the Cyclone IV GX Handbook.

When calculating I/O power, the PowerPlay Power Analyzer uses the default
capacitive load set for the I/O standard in the Capacitive Loading page of the Device
and Pin Options dialog box. For Stratix II devices, if Enable Advanced I/O Timing is
turned on, I/O power is measured using an equivalent load calculated as the sum of
the near capacitance, the transmission line distributed capacitance, and the far-end
capacitance as defined in the Board Trace Model page of the Device and Pin Options
dialog box or the Board Trace Model view in the Pin Planner. Any other components
defined in the board trace model are not taken into account for the power
measurement.

For Cyclone III, Cyclone IV GX, Stratix III, Stratix IV, and Stratix V, devices, Advanced
I/O Timing, which uses the full board trace model, is always used.

f For information about using Advanced I/O Timing and configuring a board trace
model, refer to the I/O Management chapter in volume 2 of the Quartus II Handbook.

Table 14–4. I/O Power for Different I/O Standards in Stratix II Devices

Standard Total Supply Current Drawn from
VCCIO Supply (mA)

Total On-Chip Thermal Power
Dissipation (mW)

3.3-V LVTTL 2.42 9.87

2.5-V LVCMOS 1.9 6.69

1.8-V LVCMOS 1.34 4.18

1.5-V LVCMOS 1.18 3.58

3.3-V PCI 2.47 10.23

SSTL-2 class I 6.07 4.42

SSTL-2 class II 10.72 5.1

SSTL-18 class I 5.33 3.28

SSTL-18 class II 8.56 4.06

HSTL-15 class I 6.06 3.49

HSTL-15 class II 11.08 4.87

HSTL-18 class I 6.87 4.09

HSTL-18 class II 12.33 5.82
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/stx3/stx3_siii51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf

Chapter 14: Power Optimization 14–21
Design Guidelines
Dynamically Controlled On-Chip Terminations
Stratix V, Stratix IV and Stratix III FPGAs offer dynamic on-chip termination (OCT).
Dynamic OCT enables series termination (RS) and parallel termination (RT) to
dynamically turn on/off during the data transfer. This feature is especially useful
when Stratix V, Stratix IV and Stratix III FPGAs are used with external memory
interfaces, such as interfacing with DDR memories.

Compared to conventional termination, dynamic OCT reduces power consumption
significantly as it eliminates the constant DC power consumed by parallel termination
when transmitting data. Parallel termination is extremely useful for applications that
interface with external memories where I/O standards, such as HSTL and SSTL, are
used. Parallel termination supports dynamic OCT, which is useful for bidirectional
interfaces (see Figure 14–16).

The following is an example of power saving for a DDR3 interface using on-chip
parallel termination.

The static current consumed by parallel OCT is equal to the VCCIO voltage divided by
100  . For DDR3 interfaces that use SSTL-15, the static current is 1.5 V/100  = 15
mA per pin. Therefore, the static power is 1.5 V ×15 mA = 22.5 mW. For an interface
with 72 DQ and 18 DQS pins, the static power is 90 pins × 22.5 mW = 2.025 W.
Dynamic parallel OCT disables parallel termination during write operations, so if
writing occurs 50% of the time, the power saved by dynamic parallel OCT is 50% ×
2.025 W = 1.0125 W.

f For more information about dynamic OCT in Stratix IV and Stratix III devices, refer to
the Stratix III Device I/O Features chapter in the Stratix III Device Handbook and the
Stratix IV Device I/O Features chapter in the Stratix IV Device Handbook, respectively.

Power Optimization Advisor
The Quartus II software includes the Power Optimization Advisor, which provides
specific power optimization advice and recommendations based on the current
design project settings and assignments. The advisor covers many of the suggestions
listed in this chapter. The following example shows how to reduce your design power
with the Power Optimization Advisor.

Figure 14–16. Stratix III On-Chip Parallel Termination

VCCIO

GND

VREF

Zo = 50

100

Stratix III OCT

Transmitter Receiver

100
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stx3/stx3_siii51007.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf

14–22 Chapter 14: Power Optimization
Design Guidelines
Power Optimization Advisor Example
After compiling your design, run the PowerPlay Power Analyzer to determine your
design power and to see where power is dissipated in your design. Based on this
information, you can run the Power Optimization Advisor to implement
recommendations that can reduce design power. Figure 14–17 shows the Power
Optimization Advisor after compiling a design that is not fully optimized for power.

The Power Optimization Advisor shows the recommendations that can reduce power
in your design. The recommendations are split into stages to show the order in which
you should apply the recommended settings. The first stage shows mostly CAD
setting options that are easy to implement and highly effective in reducing design
power. An icon indicates whether each recommended setting is made in the current
project. In Figure 14–17, the checkmark icons for Stage 1 shows the recommendations
that are already implemented. The warning icons indicate recommendations that are
not followed for this compilation. The information icon shows the general
suggestions. Each recommendation includes the description, summary of the effect of
the recommendation, and the action required to make the appropriate setting.

Figure 14–17. Power Optimization Advisor
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–23
Design Guidelines
There is a link from each recommendation to the appropriate location in the
Quartus II user interface where you can change the setting. You can change the
Power-Driven Synthesis setting by clicking Open Settings dialog box - Analysis &
Synthesis Settings page (Figure 14–18). The Settings dialog box is shown with the
Analysis & Synthesis Settings page selected, where you can change the PowerPlay
power optimization settings.

Figure 14–18. Analysis & Synthesis Settings Page
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

14–24 Chapter 14: Power Optimization
Document Revision History
After making the recommended changes, recompile your design. The Power
Optimization Advisor indicates with green check marks that the recommendations
were implemented successfully (Figure 14–19). You can use the PowerPlay Power
Analyzer to verify your design power results.

The recommendations listed in Stage 2 generally involve design changes, rather than
CAD settings changes as in Stage 1. You can use these recommendations to further
reduce your design power consumption. Altera recommends that you implement
Stage 1 recommendations first, then the Stage 2 recommendations.

Conclusion
The combination of a smaller process technology, the use of low-k dielectric material,
and reduced supply voltage significantly reduces dynamic power consumption in the
latest FPGAs. To further reduce your dynamic power, use the design
recommendations presented in this chapter to optimize resource utilization and
minimize power consumption.

Document Revision History
Table 14–5 shows the revision history for this chapter.

Figure 14–19. Implementation of Power Optimization Advisor Recommendations

Table 14–5. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ Was chapter 11 in the 9.1.0 release

■ Updated Figures 14-2, 14-3, 14-6, 14-18, 14-19, and 14-20

■ Updated device support

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 14: Power Optimization 14–25
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2009 9.1.0

■ Updated Figure 11-1 and associated references

■ Updated device support

■ Minor editorial update

March 2009 9.0.0

■ Was chapter 9 in the 8.1.0 release

■ Updated for the Quartus II software release

■ Added benchmark results

■ Removed several sections

■ Updated Figure 14–1, Figure 14–17, Figure 14–18, and Figure 14–19

November 2008 8.1.0

■ Changed to 8½” × 11” page size

■ Changed references to altsyncram to RAM

■ Minor editorial updates

May 2008 8.0.0

■ Added support for Stratix IV devices

■ Updated Table 9–1 and 9–9

■ Updated “Architectural Optimization” on page 9–22

■ Added “Dynamically-Controlled On-Chip Terminations” on page 9–26

■ Updated “Referenced Documents” on page 9–29

■ Updated references

Table 14–5. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

14–26 Chapter 14: Power Optimization
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52006-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52006-10.1.0
15. Analyzing and Optimizing the Design
Floorplan
As FPGA designs grow larger in density, the ability to analyze the design for
performance, routing congestion, and logic placement to meet the design
requirements becomes critical. This chapter discusses how to analyze the design
floorplan with the Chip Planner.

You can perform design analysis and create and optimize the design floorplan with
the Chip Planner. To make I/O assignments, use the Pin Planner.

f For information about the Pin Planner, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

f You can use the Design Partition Planner with the Chip Planner to customize the
floorplan of your design. For more information, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapters in volume 1 of the Quartus II
Handbook.

This chapter includes the following topics:

■ “Chip Planner Overview”

■ “LogicLock Regions” on page 15–4

■ “Using LogicLock Regions in the Chip Planner” on page 15–12

■ “Design Floorplan Analysis Using the Chip Planner” on page 15–13

■ “Scripting Support” on page 15–26

h For a list of devices supported by the Chip Planner, refer to About the Chip Planner in
Quartus II Help.

Chip Planner Overview
The Chip Planner provides a visual display of chip resources. The Chip Planner can
show logic placement, LogicLock regions, relative resource usage, detailed routing
information, fan-in and fan-out connections between nodes, timing paths between
registers, delay estimates for paths, and routing congestion information.

You can also make assignment changes with the Chip Planner, such as creating and
deleting resource assignments, and you can perform post-compilation changes such
as creating, moving, and deleting logic cells and I/O atoms. With the Chip Planner,
you can view and create assignments for a design floorplan, perform power and
design analyses, and implement ECOs. With the Chip Planner and Resource Property
Editor, you can change connections between resources and make post-compilation
changes to the properties of logic cells, I/O elements, PLLs, and RAM and digital
signal processing (DSP) blocks.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52006
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

15–2 Chapter 15: Analyzing and Optimizing the Design Floorplan
Chip Planner Overview
f For details about how to implement ECOs in your design using the Chip Planner in
the Quartus II software, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Starting the Chip Planner
To start the Chip Planner, on the Tools menu, click Chip Planner (Floorplan & Chip
Editor). You can also start the Chip Planner by the following methods:

■ Click the Chip Planner icon on the Quartus II software toolbar

■ On the Shortcut menu in the following tools, click Locate and then click Locate in
Chip Planner (Floorplan and Chip Editor):

■ Design Partition Planner

■ Compilation Report

■ LogicLock Regions window

■ Technology Map Viewer

■ Project Navigator window

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

■ Report Timing panel of the TimeQuest Timing Analyzer
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–3
Chip Planner Overview
Chip Planner Toolbar
The Chip Planner provides powerful tools for design analysis with a GUI. You can
access Chip Planner commands from the View menu and the Shortcut menu, or by
clicking the icons on the toolbar. Figure 15–1 shows an example of the Chip Planner
toolbar and provides descriptions for commonly used icons.

Chip Planner Tasks, Layers, and Editing Modes
The Chip Planner models types of resource objects as unique display layers, and uses
tasks— which are predefined sets of layer settings—to control the display of
resources. The Chip Planner provides a set of default tasks, and you can create custom
tasks to customize the display for your particular needs. The Basic, Detailed, and
Floorplan Editing tasks provided with the Chip Planner are useful for general ECO
and assignment-related activities, while the Partition Planner, Power, and Routing
Congestion tasks are optimized for specific activities.

Figure 15–1. Chip Planner Toolbar

Magnifying Glass Tool

Hand Tool

Create LogicLock Region

Generate Fan-In Connections

Generate Fan-Out Connections

Generate Connections Between Nodes

Clear Unselected Connections/Paths

Expand Connections/Paths

Highlight Routing

Highlight Selection

Clear Unselected Highlights

Show Delays

Detailed Tooltip

Find

Bird’s Eye View

Layers Settings

Color Legend

Properties

Locate History

Color Legend

Change Manager

Design Partition Planner

Messages Window
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–4 Chapter 15: Analyzing and Optimizing the Design Floorplan
LogicLock Regions
The Chip Planner has two editing modes, which determine the types of operations
that you can perform. The Assignment editing mode allows you to make assignment
changes that are applied by the Fitter during the next place and route operation. The
ECO editing mode allows you to make post-compilation changes, commonly referred
to as engineering change orders (ECOs).

You should choose the editing mode appropriate for the work that you want to
perform, and a task that displays the resources that you want to view, in a level of
detail appropriate for your design.

Locate History Window
As you optimize your design floorplan, you might have to locate a path or node in the
Chip Planner many times. The Locate History window lists all the nodes and paths
you have displayed using a Locate in Chip Planner (Floorplan and Chip Editor)
command, providing easy access to the nodes and paths of interest to you.
Double-clicking a node or path in the Locate History window displays the selected
node or path in the Chip Planner.

f For more information about the Chip Planner, refer to About the Chip Planner and
Layers Settings Dialog Box in Quartus II Help. For more information about the ECO
editing mode, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

LogicLock Regions
LogicLock regions allow you to constrain resource placement in specified areas on the
device. A LogicLock region is defined by its height, width, and location; you can
specify the size or location of a region, or both, or the Quartus II software can generate
these properties automatically. The Quartus II software bases the size and location of a
region on the contents of the region and the timing requirements of the module.

You can use LogicLock regions to create a floorplan for your design. Your floorplan
can contain several LogicLock regions. Table 15–1 describes the options for creating
LogicLock regions.

Table 15–1. Types of LogicLock Regions

Properties Values Behavior

State
Floating
(default),
Locked

Allows the Quartus II software to determine the location of the region on the device. Locked
regions are areas that you define and are shown with a solid boundary in the floorplan. A locked
region must have a fixed size.

Size
Auto
(default),
Fixed

Allows the Quartus II software to determine the appropriate size of a region given its contents.
Fixed regions have a shape and size that you define.

Reserved
Off
(default),
On

Allows you to define whether the Fitter can use the resources within a region for entities that are
not assigned to the region. If the reserved property is turned on, only items assigned to the
region can be placed within its boundaries.

Origin
Any
Floorplan
Location

The origin of the LogicLock region’s placement on the floorplan. For Arria series, Stratix,
Cyclone series, MAX II, and MAX V devices, the origin is located in the lower left corner. For
other Altera® device families, the origin is located in the upper left corner.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_db_layers_settings.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–5
LogicLock Regions
1 The Quartus II software cannot automatically define the size of a region if the location
is locked. Therefore, if you want to specify the exact location of the region, you must
also specify the size.

f You can use the Design Partition Planner in conjunction with LogicLock regions to
create a floorplan for your design. For more information about using the Design
Partition Planner, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Designs and the Best Practices for Incremental Compilation Partition and
Floorplan Assignments chapters in volume 1 of the Quartus II Handbook.

Creating LogicLock Regions
You can create LogicLock Regions from the Project Navigator, the LogicLock Regions
window, or the Chip Planner.

Creating LogicLock Regions with the Project Navigator
After you perform either a full compilation or analysis and elaboration on the design,
the Quartus II software displays the hierarchy of the design. On the View menu, click
Project Navigator. With the hierarchy of the design fully expanded, right-click on any
design entity in the design, and click Create New LogicLock Region to create a
LogicLock region.

Creating LogicLock Regions with the Chip Planner
To create a LogicLock region in the Chip Planner, click the Create LogicLock Region
command on the View menu, then click and drag on the Chip Planner floorplan to
create a region of your preferred location and size.

Placing LogicLock Regions
A fixed region must contain all resources required for the design block for which you
define the region. Although the Quartus II software can automatically place and size
LogicLock regions to meet resource and timing requirements, you can manually place
and size regions to meet your design requirements, as follows:

■ Place LogicLock regions with pin assignments on the periphery of the device,
adjacent to the pins. For the Arria series, Cyclone series, MAX II, MAX V, an
Stratix series devices, you must also include the I/O block within the LogicLock
Region.

■ Floating LogicLock regions can overlap with their ancestors or descendants, but
not with other floating LogicLock regions.

■ Avoid creating fixed and locked regions that overlap.

1 If you want to import multiple instances of a module into a top-level design, you must
ensure that the device has two or more locations with exactly the same device
resources. (You can determine this from the applicable device handbook.) If the device
does not have another area with exactly the same resources, the Quartus II software
generates a fitting error during compilation of the top-level design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

15–6 Chapter 15: Analyzing and Optimizing the Design Floorplan
LogicLock Regions
Placing Device Resources into LogicLock Regions
A LogicLock region includes all device resources within its boundaries, including
memory and pins. You can assign pins to LogicLock regions; however, this placement
puts location constraints on the region. When the Quartus II software places a floating
auto-sized region, it places the region in an area that meets the requirements of the
contents of the LogicLock region.

Only one LogicLock region can claim a device resource. If a LogicLock region
boundary includes part of a device resource, the Quartus II software allocates the
entire resource to that LogicLock region.

1 Pin assignments to LogicLock regions are effective only in fixed and locked regions.
Pin assignments to floating regions do not influence the placement of the region.

LogicLock Regions Window
The LogicLock window consists of the LogicLock Regions window (Figure 15–2) and
the LogicLock Region Properties dialog box. Use the LogicLock Regions window to
create LogicLock regions and assign nodes and entities to them. The dialog box
provides a summary of all LogicLock regions in your design. In the LogicLock
Regions window, you can modify the properties of a LogicLock region such as size,
state, width, height, origin, and whether the region is a reserved region. The
LogicLock Regions window also has a recommendations toolbar at the bottom. Select
a LogicLock region from the drop-down list in the recommendations toolbar to
display the relevant suggestions to optimize that LogicLock region. You can
customize the LogicLock Regions window by dragging and dropping the columns to
change their order; you can also hide columns.

Use the LogicLock Region Properties dialog box to obtain detailed information about
your LogicLock region, such as which entities and nodes are assigned to your region
and which resources are required. The LogicLock Region Properties dialog box
shows the properties of the current selected regions. You can also modify the settings
for LogicLock regions in the LogicLock Region Properties dialog box.

To open the LogicLock Region Properties dialog box, double-click any region in the
LogicLock Regions window, or right-click the region and click Properties.

Figure 15–2. LogicLock Regions Window
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–7
LogicLock Regions
1 For designs that target Arria series, Cyclone series, Stratix series, MAX II, and MAX V
devices, the Quartus II software automatically creates a LogicLock region that
encompasses the entire device. This default region is labelled Root_region, and is
locked and fixed.

1 For Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, the origin
of the LogicLock region is located at the lower-left corner of the region. For all other
supported devices, the origin is located at the upper-left corner of the region.

Assigning LogicLock Region Content
After you have created a LogicLock region, you must assign resources to the region
using the Chip Planner, the LogicLock Regions dialog box, or a Tcl script.

You can drag selected logic displayed in the Hierarchy tab of the Project Navigator, in
the Node Finder, or in a schematic design file, and drop it into the Chip Planner or the
LogicLock Regions dialog box. Figure 15–3 shows logic that has been dragged from
the Hierarchy tab of the Project Navigator and dropped into a LogicLock region in the
Chip Planner.

You can also drag logic from the Hierarchy tab of the Project Navigator and drop the
logic in the LogicLock Regions Properties dialog box. You can also drop logic into the
Design Element Assigned column of the Contents tab of the LogicLock Region
Properties box.

Figure 15–3. Drag and Drop Logic in the Chip Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–8 Chapter 15: Analyzing and Optimizing the Design Floorplan
LogicLock Regions
You must manually assign pins to a LogicLock region. The Quartus II software does
not include pins automatically when you assign an entity to a region. The software
only obeys pin assignments to locked regions that border the periphery of the device.
For the Cyclone, Stratix, and MAX II series of devices, the locked regions must
include the I/O pins as resources.

Hierarchical (Parent and Child) LogicLock Regions
You can define a hierarchy for a group of regions by declaring parent and child
regions. The Quartus II software places a child region completely within the
boundaries of its parent region, allowing you to further constrain module locations.
Additionally, parent and child regions allow you to further improve the performance
of a module by constraining the nodes in the critical path of the module.

To make one LogicLock region a child of another LogicLock region, in the LogicLock
Regions window, select the new child region and drag and drop the new child region
into its new parent region.

1 The LogicLock region hierarchy does not have to be the same as the design hierarchy.

You can create both fixed and floating LogicLock regions within a fixed parent
LogicLock region. The location of a floating child region can float within its parent. If
a child region is fixed, its location remains locked relative to its parent’s origin. A
locked parent region’s location is locked relative to the device. If the child’s location is
locked and you change the parent’s location, the child’s origin changes, but maintains
the same placement relative to the origin of its parent. Either you or the Quartus II
software can determine a child region’s size; however, the child region must fit
entirely within the parent region. The levels of hierarchy in LogicLock regions are
unlimited, but complicated hierarchical regions might result in some LABs not being
utilized; thus, effectively increasing the resource utilization in the device.

Reserved LogicLock Region
The Quartus II software honors all entity and node assignments to LogicLock regions.
Occasionally, entities and nodes do not occupy an entire region, which leaves some of
the region’s resources unoccupied. To increase the region’s resource utilization and
performance, the Quartus II software’s default behavior fills the unoccupied resources
with other nodes and entities that have not been assigned to another region. You can
prevent this behavior by turning on Reserved on the General tab of the LogicLock
Region Properties dialog box. When you turn on this option, your LogicLock region
contains only the entities and nodes that you specifically assigned to your LogicLock
region. When you set the reserved property for a LogicLock region, the Fitter does not
place logic from the immediate parent LogicLock region in the assigned LogicLock
area, but it might place logic from other parts of your design in that area.

Creating Non-Rectangular LogicLock Regions
When you create a floorplan for your design, you may want to create non-rectangular
LogicLock regions to make some device resources accessible to design blocks outside
a LogicLock region. You might also create a non-rectangular LogicLock region to
place certain parts of your design around specific device resources to improve
performance.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–9
LogicLock Regions
To create a non-rectangular region with the Merge LogicLock Region command,
follow these steps:

1. In the Chip Planner, create two or more contiguous or non-contiguous rectangular
regions as described in “Creating LogicLock Regions” on page 15–5.

2. Arrange the regions that you have created into the locations where you want the
non-rectangular region to be.

3. Select all the individual regions that you want to merge by clicking each of them
while holding the Shift key.

4. Right-click the title bar of any of the LogicLock regions that you want to merge,
point to LogicLock Regions, and then click Merge LogicLock Region. The
individual regions that you select merge to create a single new region.

By default, the new LogicLock region has the same name as the component region
containing the greatest number of resources; however, you can rename the new
region. In the LogicLock Regions Window, the new region is shown as having a
custom shape.

Figure 15–4 illustrates two autonomous LogicLock regions combined using the Merge
LogicLock Region command to form a new non-rectangular region.

Excluded Resources
The Excluded Resources feature allows you to easily exclude specific device resources
such as DSP blocks or M4K memory blocks from a LogicLock region. For example,
you can specify resources that belong to a specific entity that are assigned to a
LogicLock region, and specify that these resources be included with the exception of
the DSP blocks. Use the Excluded Resources feature on a per-LogicLock region
member basis.

Figure 15–4. Using the Merge command to create a non-rectangular region
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–10 Chapter 15: Analyzing and Optimizing the Design Floorplan
LogicLock Regions
To exclude certain device resources from an entity, in the LogicLock Region
Properties dialog box, highlight the entity in the Design Element column, and click
Edit. In the Edit Node dialog box, under Excluded Element Types, click the Browse
button. In the Excluded Resources Element Types dialog box, you can select the
device resources you want to exclude from the entity. When you have selected the
resources to exclude, the Excluded Resources column is updated in the LogicLock
Region Properties dialog box to reflect the excluded resources.

1 The Excluded Resources feature prevents certain resource types from being included
in a region, but it does not prevent the resources from being placed inside the region
unless you set the region’s Reserved property to On. To indicate to the Fitter that
certain resources are not required inside a LogicLock region, define a resource filter.

Additional Quartus II LogicLock Design Features
To complement the LogicLock Regions window, the Quartus II software has
additional features to help you design with LogicLock regions.

Analysis and Synthesis Resource Utilization by Entity
The Compilation Report contains an Analysis and Synthesis Resource Utilization by
Entity section, which reports accurate resource usage statistics, including entity-level
information. You can use this feature when you manually create LogicLock regions.

Quartus II Revisions Feature
When you evaluate different LogicLock regions in your design, you might want to
experiment with different configurations to achieve your desired results. The
Quartus II Revisions feature allows you to organize the same project with different
settings until you find an optimum configuration.

To use the Revisions feature, on the Project menu, click Revisions. In the Revisions
dialog box, you can create and specify revisions. You can base revision on the current
design or any previously created revisions. Each revision can have an associated
description. You can use revisions to organize the placement constraints created for
your LogicLock regions.

LogicLock Assignment Precedence
You can encounter conflists during the assignment of entities and nodes to LogicLock
regions. For example, an entire top-level entity might be assigned to one region and a
node within this top-level entity assigned to another region. To resolve conflicting
assignments, the Quartus II software maintains an order of precedence for LogicLock
assignments. The following order of precedence, from highest to lowest, applies:

■ Exact node-level assignments

■ Path-based and wildcard assignments

■ Hierarchical assignments

h For more information about LogicLock assignment precedence, refer to Understanding
Assignment Priority in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/lock_ref_assignment_precedence.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/lock_ref_assignment_precedence.htm

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–11
LogicLock Regions
1 Open the Priority dialog box by selecting Priority on the General tab of the
LogicLock Regions Properties dialog box. You can change the priority of path-based
and wildcard assignments with the Up and Down buttons in the Priority dialog box.
To prioritize assignments between regions, you must select multiple LogicLock
regions and then open the Priority dialog box from the LogicLock Regions Properties
dialog box.

Virtual Pins
Usually, when you compile a design in the Quartus II software, all I/O ports are
mapped directly to pins on the targeted device. However, you may not want to map
all I/O ports to the device pins; use the Virtual Pin assignment then.

A virtual pin is an I/O element that you do not intend to connect to the chip pins. You
create a virtual pin by assigning the Virtual Pin logic option to an I/O element. When
you compile a design with some I/O elements assigned as virtual pins, those I/O
elements become mapped to a logic element and not to a pin during compilation, and
are then implemented as a LUT. You might use virtual pin assignments when you
compile a partial design, because not all the I/Os from a partial design may drive chip
pins at the top level.

The Virtual Pin assignment communicates to the Quartus II software which I/O ports
of the design module are internal nodes in the top-level design. These assignments
prevent the number of I/O ports in the lower-level modules from exceeding the total
number of available device pins. Every I/O port that you designate as a virtual pin
becomes mapped to either an LCELL or an adaptive logic module (ALM), depending
on the target device.

1 You cannot use virtual pins for bidirectional, registered I/O pins, or I/O pins with
output enable signals.

In the top-level design, you connect these virtual pins to an internal node of another
module. By making assignments to virtual pins, you can place those pins in the same
location or region on the device as that of the corresponding internal nodes in the
top-level module. You can use the Virtual Pin option when compiling a LogicLock
module with more pins than the target device allows. The Virtual Pin option can
enable timing analyses that more closely match the performance of the LogicLock
module when you integrate it into the top-level design.

Apply the following guidelines when creating virtual pins in the Quartus II software:

■ Do not declare clock pins as virtual pins

■ You should not declare nodes or signals that drive physical device pins in the
top-level design as virtual pins

1 In the Node Finder, you can set Filter Type to Pins: Virtual to display all assigned
virtual pins in the design. From the Assignment Editor, to access the Node Finder,
double-click the To field; when the arrow appears on the right side of the field, click
the arrow and select Node Finder.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–12 Chapter 15: Analyzing and Optimizing the Design Floorplan
Using LogicLock Regions in the Chip Planner
Using LogicLock Regions in the Chip Planner
You can easily edit properties of LogicLock regions, and assign resources to them, in
the Chip Planner. You can also create new LogicLock regions using the Chip Planner.

Viewing Connections Between LogicLock Regions in the Chip Planner
You can view and edit LogicLock regions using the Chip Planner. Select the Floorplan
Editing task, or any task that has the User-assigned LogicLock regions setting
enabled to manipulate LogicLock regions.

The Chip Planner shows the connections between LogicLock regions. By default, you
can view each connection as an individual line drawn between LogicLock regions.
You can choose to display connections between LogicLock regions as a single bundled
connection rather than as individual connection lines. To use this option, open the
Chip Planner and on the View menu, click Inter-region Bundles.

In the Inter-region Bundles dialog box, specify the Maximum source node to region
fanout and the Minimum Bundle Width values.

h For more information about the Inter-region Bundles dialog box, refer to Inter-region
Bundles Dialog Box in Quartus II Help.

Using LogicLock Regions with the Design Partition Planner
You can help optimize timing in a design by placing entities that share significant
logical connectivity close to each othert on the device. By default, the Fitter usually
places closely connected entities in the same area of the device; however, you can use
LogicLock regions, together with the Design Partition Planner and the Chip Planner,
to help ensure that logically connected entities retain optimal placement from one
compilation to the next.

You can view the logical connectivity between entities with the Design Partition
Planner, and the physical placement of those entities with the Chip Planner. In the
Design Partition Planner, you can identify entities that are highly interconnected, and
place those entities in a partition. In the Chip Planner, you can create LogicLock
regions and assign each partition to a LogicLock region, thereby preserving the
placement of the entities.

f For more information about using LogicLock regions with design partitions, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design and the
Best Practices for Incremental Compilation Partition and Floorplan Assignments chapters in
volume 1 of the Quartus II Handbook. For more information about using the Design
Partition Planner with the Chip Planner, refer to About the Design Partition Planner and
Using the Design Partition Planner in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_db_generate_interregion_bundles.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_about_dpp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–13
Design Floorplan Analysis Using the Chip Planner
Design Floorplan Analysis Using the Chip Planner
The Chip Planner helps you visually analyze the floorplan of your design at any stage
of your design cycle. With the Chip Planner, you can view post-compilation
placement, connections, and routing paths. You can also create LogicLock regions and
location assignments. The Chip Planner allows you to create new logic cells and I/O
atoms and to move existing logic cells and I/O atoms using the architectural floorplan
of your design. You can also see global and regional clock regions within the device,
and the connections between both I/O atoms and PLLs and the different clock
regions.

From the Chip Planner, you can launch the Resource Property Editor, which you can
use to change the properties and parameters of device resources, and modify
connectivity between certain types of device resources. The Change Manager records
any changes that you make to your design floorplan, so that you can selectively undo
changes if necessary.

f For more information about the Resource Property Editor and the Change Manager,
refer to the Engineering Change Management with the Chip Planner chapter in volume 2
of the Quartus II Handbook, and to About the Resource Property Editor and About the
Change Manager in Quartus II Help.

The following sections present Chip Planner floorplan views and design analysis
procedures which you can use with any predefined task—unless a procedure requires
a specific task or editing mode.

Chip Planner Floorplan Views
The Chip Planner uses a hierarchical zoom viewer that shows various abstraction
levels of the targeted Altera device. As you zoom in, the level of abstraction decreases,
revealing more detail about your design.

f For more information about Chip Planner floorplan views, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Bird’s Eye View
The Bird’s Eye View displays a high-level picture of resource usage for the entire chip
and provides a fast and efficient way to navigate between areas of interest in the Chip
Planner.

The Bird’s Eye View is particularly useful when the parts of your design that you
want to view are at opposite ends of the chip and you want to quickly navigate
between resource elements without losing your frame of reference.

h For more information about the Bird’s Eye View, refer to Bird’s Eye View and
Displaying Resources and Information in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_com_birds_eye.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/ape_view_property_editor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

15–14 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
Properies Window
The Properties Window displays detailed properties of the objects (such as atoms,
paths, LogicLock regions, or routing elements) currently selected in the Chip Planner.
To display the Properties Window, click Properties on the View menu in the Chip
Planner.

Viewing Architecture-Specific Design Information
With the Chip Planner, you can view the following architecture-specific information
related to your design:

■ Device routing resources used by your design—View how blocks are connected,
as well as the signal routing that connects the blocks.

■ LE configuration—View logic element (LE) configuration in your design. For
example, you can view which LE inputs are used; if the LE utilizes the register, the
look-up table (LUT), or both; as well as the signal flow through the LE.

■ ALM configuration—View ALM configuration in your design. For example, you
can view which ALM inputs are used, if the ALM utilizes the registers, the upper
LUT, the lower LUT, or all of them. You can also view the signal flow through the
ALM.

■ I/O configuration—View device I/O resource usage. For example, you can view
which components of the I/O resources are used, if the delay chain settings are
enabled, which I/O standards are set, and the signal flow through the I/O.

■ PLL configuration—View phase-locked loop (PLL) configuration in your design.
For example, you can view which control signals of the PLL are used with the
settings for your PLL.

■ Timing—View the delay between the inputs and outputs of FPGA elements. For
example, you can analyze the timing of the DATAB input to the COMBOUT output.

Figure 15–5. Properties Window
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–15
Design Floorplan Analysis Using the Chip Planner
In addition, you can modify the following device properties with the Chip Planner:

■ LEs and ALMs

■ I/O cells

■ PLLs

■ Registers in RAM and DSP blocks

■ Connections between elements

■ Placement of elements

f For more information about LEs, ALMs, and other resources of an FPGA device, refer
to the relevant device handbook.

Viewing Available Clock Networks in the Device
When you select a task with clock region layers enabled, you can display the areas of
the chip that are driven by global and regional clock networks. This global clock
display feature is available for Arria GX, Arria II, Cyclone II, Cyclone III,
HardCopy II, HardCopy III, Stratix II, Stratix II GX, Stratix III, Stratix IV, and Stratix V
device families.

Depending on the clock layers activated in the selected task, the Chip Planner
displays regional and global clocks and the regions they cover in the device, and the
connectivity between clock regions, pins, and PLLs. Clock regions appear as
rectangular overlay boxes with labels indicating the clock type and index.You can
select each clock network region by clicking on the clock region. The clock-shaped
icon at the top-left corner indicates that the region represents a clock network region.
You can change the color in which the Chip Planner displays clock regions on the
Options dialog box of the Tools menu.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–16 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
The Layer Settings dialog box lists layers for different clock region types; when the
selected device does not contain a given clock region, the option for that category is
unavailable in the dialog box. You can customize the Chip Planner’s display of clock
regions by creating a custom task with selected clock layers enabled in the Layers
Settings dialog box. Figure 15–6 shows the potential fan-in in the Chip Planner.

h For more information about displaying potential fan-ins or fan-outs relative to a clock
region, refer to Displaying Resources and Information in Quartus II Help.

Viewing Critical Paths
Critical paths are timing paths in your design that have a negative slack. These timing
paths can span from device I/Os to internal registers, registers-to-registers, or from
registers to device I/Os. The slack of a path determines its criticality; slack appears in
the timing analysis report. Design analysis for timing closure is a fundamental
requirement for optimal performance in highly complex designs. The analytical
capability of the Chip Planner helps you close timing on complex designs.

Viewing critical paths in the Chip Planner helps you understand why a specific path
is failing. You can see if any modification in the placement can reduce the negative
slack. You can display details of a path (to expand/collapse the path to/from the
connections in the path) by clicking Expand Connections/Paths in the toolbar, or by
clicking on the “+/-” on the label.

You can locate failing paths from the timing report in the TimeQuest Timing Analyzer.
To locate the critical paths, run the Report Timing task from the Custom Reports
group in the Tasks pane of the TimeQuest Timing Analyzer. From the View pane,
which lists the failing paths, right-click on any failing path or node, and select Locate
Path. From the Locate dialog box, select Chip Planner to see the failing path in the
Chip Planner.

Figure 15–6. Potential Fan-In
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–17
Design Floorplan Analysis Using the Chip Planner
1 To display paths in the floorplan, you must first make timing settings and perform a
timing analysis.

f For more information about performing static timing analysis with the Quartus II
TimeQuest Timing Analyzer, refer to The Quartus II TimeQuest Timing Analyzer chapter
in volume 3 of the Quartus II Handbook.

Viewing Routing Congestion
The Routing Congestion task allows you to determine the percentage of routing
resources in use following a compilation. This feature identifies where there is a lack
of routing resources, and helps you make design changes that might ease routing
congestion and help meet design requirements.

To view routing congestion in the Chip Planner, select the Routing Congestion task.
The Routing Utilization Settings dialog box appears whenever you select the
Routing Congestion task; this dialog box allows you to set a congestion threshold
value, and to specify the types of routing interconnects of interest (Figure 15–7).

h For more information about displaying routing congestion, refer to Displaying
Resources and Information in Quartus II Help.

The routing congestion map uses the color and shading of logic resources to indicate
relative resource utilization; darker shading represents a greater utilization of routing
resources. Areas where routing utilization exceeds the threshold value specified in the
Routing Utilization Settings dialog box appear in red. The congestion map can help
you determine whether you can modify the floorplan, or make changes to the RTL to
reduce routing congestion.

Figure 15–7. Routing Utilization Settings dialog box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_displaying_connectivity.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

15–18 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
Viewing I/O Banks
The Chip Planner can show all of the I/O banks of the device. To see the I/O bank
map of the device, turn on the I/O Banks layer in the Layers Settings dialog box.

Generating Fan-In and Fan-Out Connections
The ability to display fan-in and fan-out connections enables you to view the atoms
that fan-in to or fan-out from the selected atom. To remove the connections displayed,
use the Clear Unselected Connections/Paths icon in the Chip Planner toolbar.
Figure 15–8 shows the fan-in connections for the selected resource.

Figure 15–8. Generated Fan-In
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–19
Design Floorplan Analysis Using the Chip Planner
Generating Immediate Fan-In and Fan-Out Connections
The ability to display immediate fan-in and fan-out connections enables you to view
the resource that is the immediate fan-in or fan-out connection for the selected atom.
For example, if you select a logic resource and choose to view the immediate fan-in for
that resource, you can see the routing resource that drives the logic resource. You can
generate immediate fan-in and fan-outs for all logic resources and routing resources.
To remove the displayed connections from the screen, click the Clear Connections icon
in the toolbar. Figure 15–9 shows the immediate fan-out connections for the selected
resource.

Figure 15–9. Immediate Fan-Out Connection
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–20 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
Highlight Routing
The Highlight Routing command enables you to highlight the routing resources used
by a selected path or connection. Figure 15–10 shows the routing resources in use
between two logic elements.

Figure 15–10. Highlight Routing
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–21
Design Floorplan Analysis Using the Chip Planner
Show Delays
With the Show Delays command, you can view timing delays for connections
displayed in the Chip Planner. For example, you can view the delay between two
logic resources or between a logic resource and a routing resource. Figure 15–11
shows the delays between several logic elements.

Exploring Paths in the Chip Planner
You can use the Chip Planner to explore paths between logic elements. The following
example uses the Chip Planner to traverse paths from the Timing Analysis report.

Locate Path from the Timing Analysis Report to the Chip Planner
To locate a path from the Timing Analysis report to the Chip Planner, perform the
following steps:

1. Select the path you want to locate.

2. Right-click the path in the Timing Analysis report, point to Locate, and click
Locate in Chip Planner (Floorplan & Chip Editor).

3. To view the routing resources taken for a path you have located in the Chip
Planner, click the Highlight Routing icon in the Chip Planner toolbar, or from the
View menu, click Highlight Routing.

Figure 15–11. Show Delays
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–22 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
Analyzing Connections for a Path
To determine the connections between items in the Chip Planner, click the Expand
Connections/Paths icon on the toolbar. To add the timing delays between each
connection, click the Show Delays icon on the toolbar. Figure 15–12 shows the
connections for the selected path that are displayed in the Chip Planner. To see the
constituent delays on the selected path, click on the “+” sign next to the path delay
displayed in the Chip Planner.

Viewing Assignments in the Chip Planner
You can view location assignments by selecting the appropriate layer set in the Chip
Planner. To view location assignments, select the Floorplan Editing task or any
custom task that displays block utilization, and the Assignment editing mode. See
Figure 15–13.

Figure 15–12. Path Analysis
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–23
Design Floorplan Analysis Using the Chip Planner
The Chip Planner shows location assignments graphically, by displaying assigned
resources in a particular color (gray, by default). You can create or move an
assignment by dragging the selected resource to a new location.

You can make node and pin location assignments and assignments to LogicLock
regions and custom regions using the drag-and-drop method in the Chip Planner. The
Fitter applies the assignments that you create during the next place-and-route
operation.

h For more information about managing assignments in the Chip Planner, refer to
Working With Assignments in the Chip Planner in Quartus II Help.

Figure 15–13. Viewing Assignments in the Chip Planner
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_assignments.htm

15–24 Chapter 15: Analyzing and Optimizing the Design Floorplan
Design Floorplan Analysis Using the Chip Planner
Viewing Routing Channels for a Path in the Chip Planner
To determine the routing channels between connections, click the Highlight Routing
icon on the toolbar. Figure 15–14 shows the routing channels used for the selected
path in the Chip Planner.

f You can view and edit resources in the FPGA using the Resource Property Editor. For
more information, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

Figure 15–14. Highlight Routing
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–25
Design Floorplan Analysis Using the Chip Planner
Delay Information Table
In the Resource Property Editor, you can view the propagation delay from all inputs
to all outputs for any LE in your design. To see the delay information for an atom,
right-click the atom in the Chip Planner, click Locate, and then click Locate in
Resource Property Editor. In the Resource Property Editor, click View Delay
Information on the View menu to display the delay information. The Delay
Information Table shows you the propagation delay from all inputs to all outputs.
Figure 15–15 shows the Resource Property Editor, including the Delay Information
Table.

Timing numbers are displayed only when a direct path exists between the source
input port and the destination output port. In cases where there is no path, or the path
requires an intermediate buried timing node, the displayed cell delay appears as
“N/A.”

Viewing High-Speed and Low-Power Tiles in the Chip Planner
The Chip Planner has a predefined task, Power, which shows the power map of
Stratix III, Stratix IV, and Stratix V devices; these devices have ALMs that can operate
in either high-speed mode or low-power mode. The power mode is set during the
fitting process in the Quartus II software. These ALMs are grouped together to form
larger blocks, called “tiles.”

Figure 15–15. Delay Information Table
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

15–26 Chapter 15: Analyzing and Optimizing the Design Floorplan
Scripting Support
f To learn more about power analyses and optimizations in Stratix III devices, refer to
AN 437: Power Optimization in Stratix III FPGAs. To learn more about power analyses
and optimizations in Stratix IV devices, refer to AN 514: Power Optimization in
Stratix IV FPGAs.

When you select the Power task in the Chip Planner for Stratix III, Stratix IV, or
Stratix V devices, the Chip Planner displays low-power and high-speed tiles in
contrasting colors; yellow tiles operate in a high-speed mode, while blue tiles operate
in a low-power mode (see Figure 15–16). When you select the Power task, you can
perform all floorplanner-related functions for this task; however, you cannot edit tiles
to change the power mode.

Scripting Support
You can run procedures and specify the settings described in this chapter in a Tcl
script. You can also run some procedures at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser. To run the Help browser, type the following command at
the command prompt:

quartus_sh --qhelp r

h Information about scripting command options is also available in API Functions for Tcl
in Quartus II Help.

Figure 15–16. Viewing High-Speed and Low Power Tiles in a Stratix III Device

Yellow Tiles Operate in
High Speed Mode
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/an/AN437.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–27
Scripting Support
f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

f For information about all settings and constraints in the Quartus II software, refer to
the Quartus II Settings File Manual.

Initializing and Uninitializing a LogicLock Region
You must initialize the LogicLock data structures before creating or modifying any
LogicLock regions and before executing any of the Tcl commands listed below.

Use the following Tcl command to initialize the LogicLock data structures:

initialize_logiclock

Use the following Tcl command to uninitialize the LogicLock data structures before
closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions
Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \ <my_region-name>

1 The command in the above example sets the size of the region to auto and the state to
floating.

If you specify a region name that does not exist in the design, the command creates
the region with the specified properties. If you specify the name of an existing region,
the command changes all properties you specify and leaves unspecified properties
unchanged.

For more information about creating LogicLock regions, refer to “Creating LogicLock
Regions” on page 15–5.

Obtaining LogicLock Region Properties
Use the following Tcl command to obtain LogicLock region properties. This example
returns the height of the region named my_region:

get_logiclock -region my_region -height

Assigning LogicLock Region Content
Use the following Tcl commands to assign or change nodes and entities in a
LogicLock region. This example assigns all nodes with names matching fifo* to the
region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl command:

set_logiclock_contents -region my_region -from fifo -to ram*
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

15–28 Chapter 15: Analyzing and Optimizing the Design Floorplan
Conclusion
For more information about assigning LogicLock Region Content, refer to “Assigning
LogicLock Region Content” on page 15–7.

Save a Node-Level Netlist for the Entire Design into a Persistent Source
File

Make the following assignments to cause the Quartus II Fitter to save a node-level
netlist for the entire design into a .vqm file:

set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file
name>

Any path specified in the file name is relative to the project directory. For example,
specifying atom_netlists/top.vqm places top.vqm in the atom_netlists subdirectory
of your project directory.

A .vqm file is saved in the directory specified at the completion of a full compilation.

1 The saving of a node-level netlist to a persistent source file is not supported for
designs targeting newer devices such as Arria GX, Arria II, Cyclone III, MAX V,
Stratix III, Stratix IV, or Stratix V.

Setting LogicLock Assignment Priority
Use the following Tcl code to set the priority for a LogicLock region’s members. This
example reverses the priorities of the LogicLock region in your design.

set reverse [list]
for each member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

Assigning Virtual Pins
Use the following Tcl command to turn on the virtual pin setting for a pin called
my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

For more information about assigning virtual pins, refer to “Virtual Pins” on
page 15–11.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

Conclusion
Design floorplan analysis is a valuable method for achieving timing closure and
optimal performance in highly complex designs. With analysis capability, the
Quartus II Chip Planner helps you close timing quickly on your designs. Using the
Chip Planner together with LogicLock and Incremental Compilation enables you to
compile your designs hierarchically, preserving the timing results from individual
compilation runs. You can use LogicLock regions as part of an incremental
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 15: Analyzing and Optimizing the Design Floorplan 15–29
Document Revision History
compilation methodology to improve your productivity. You can also include a
module in one or more projects while maintaining performance and reducing
development costs and time-to-market. LogicLock region assignments give you
complete control over logic and memory placement to improve the performance of
non-hierarchical designs as well.

Document Revision History
Table 15–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 15–2. Document Revision History

Date Version Changes

December 2010 10.1.0 ■ Updated for the 10.1 release.

July 2010 10.0.0

■ Updated device support information

■ Removed references to Timing Closure Floorplan; removed “Design Analysis Using the
Timing Closure Floorplan” section

■ Added links to online Help topics

■ Added “Using LogicLock Regions with the Design Partition Planner” section

■ Updated “Viewing Critical Paths” section

■ Updated several graphics

■ Updated format of Document revision History table

November 2009 9.1.0

■ Updated supported device information throughout

■ Removed deprecated sections related to the Timing Closure Floorplan for older device
families. (For information on using the Timing Closure Floorplan with older device
families, refer to previous versions of the Quartus II Handbook, available in the Quartus II
Handbook Archive.)

■ Updated “Creating Non-Rectangular LogicLock Regions“ section

■ Added “Selected Elements Window” section

■ Updated table 12-1

May 2008 8.0.0

■ Updated the following sections:

■ “Chip Planner Tasks and Layers”

■ “LogicLock Regions”

■ “Back-Annotating LogicLock Regions”

■ “LogicLock Regions in the Timing Closure Floorplan”

■ Added the following sections:

■ “Reserve LogicLock Region”

■ “Creating Non-Retangular LogicLock Regions”

■ “Viewing Available Clock Networks in the Device”

■ Updated Table 10–1

■ Removed the following sections:

■ Reserve LogicLock Region Design Analysis Using the Timing Closure Floorplan
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

15–30 Chapter 15: Analyzing and Optimizing the Design Floorplan
Document Revision History
f Take an online survey to provide feedback about this handbook chapter.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52007-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52007-10.0.1
16. Netlist Optimizations and Physical
Synthesis
The Quartus® II software offers physical synthesis optimizations to improve your
design beyond the optimization performed in the normal course of the Quartus II
compilation flow.

Physical synthesis optimizations can help improve the performance of your design
regardless of the synthesis tool used, although the effect of physical synthesis
optimizations depends on the structure of your design.

Netlist optimization options work with the atom netlist of your design, which
describes a design in terms of Altera®-specific primitives. An atom netlist file can be
an Electronic Design Interchange Format (.edf) file or a Verilog Quartus Mapping
(.vqm) file generated by a third-party synthesis tool, or a netlist used internally by the
Quartus II software. Physical synthesis optimizations are applied at different stages of
the Quartus II compilation flow, either during synthesis, fitting, or both.

This chapter explains how the physical synthesis optimizations in the Quartus II
software can modify your design’s netlist to improve the quality of results. This
chapter also provides information about preserving compilation results through
back-annotation and writing out a new netlist, and provides guidelines for applying
the various options.

1 Because the node names for primitives in the design can change when you use
physical synthesis optimizations, you should evaluate whether your design flow
requires fixed node names. If you use a verification flow that might require fixed node
names, such as the SignalTap® II Logic Analyzer, formal verification, or the LogicLock
based optimization flow (for legacy devices), you must turn off physical synthesis
options.

WYSIWYG Primitive Resynthesis
If you use a third-party tool to synthesize your design, use the Perform WYSIWYG
primitive resynthesis option to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Quartus II software
to un-map the logic elements (LEs) in an atom netlist to logic gates, and then re-map
the gates back to Altera-specific primitives. Third-party synthesis tools generate either
an .edf or .vqm atom netlist file using Altera-specific primitives. When you turn on
the Perform WYSIWYG primitive resynthesis option, the Quartus II software can
work on different techniques specific to the device architecture during the re-mapping
process. This feature re-maps the design using the Optimization Technique specified
for your project (Speed, Area, or Balanced).

1 The Perform WYSIWYG primitive resynthesis option has no effect if you are using
Quartus II integrated synthesis to synthesize your design.
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52007

16–2 Chapter 16: Netlist Optimizations and Physical Synthesis
WYSIWYG Primitive Resynthesis
To turn on the Perform WYSIWYG primitive resynthesis option, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis and Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Turn on Perform WYSIWYG Primitive Resynthesis, and click OK.

If you want to perform WYSIWYG resynthesis on only a portion of your design, you
can use the Assignment Editor to assign the Perform WYSIWYG primitive
resynthesis logic option to a lower-level entity in your design. This logic option is
available for all Altera devices supported by the Quartus II software except MAX 3000
and MAX 7000 devices.

The results of the remapping depend on the Optimization Technique you choose. To
select an Optimization Technique, perform the following steps:

1. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

2. Under Optimization Technique, select Speed, Area, or Balanced to specify how
the Quartus II technology mapper optimizes the design. The Balanced setting is
the default for many Altera device families; this setting optimizes the timing
critical parts of the design for speed and the rest of the design for area.

3. Click OK.

f Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook for details on the Optimization Technique option.

Figure 16–1 shows the Quartus II software flow for the WYSIWYG primitive
resynthesis feature.

Figure 16–1. WYSIWYG Primitive Resynthesis
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Chapter 16: Netlist Optimizations and Physical Synthesis 16–3
Performing Physical Synthesis Optimizations
The Perform WYSIWYG primitive resynthesis option unmaps and remaps only logic
cells, also referred to as LCELL or LE primitives, and regular I/O primitives (which
may contain registers). Double data rate (DDR) I/O primitives, memory primitives,
digital signal processing (DSP) primitives, and logic cells in carry/cascade chains are
not remapped. Logic specified in an encrypted .vqm file or an .edf file, such as
third-party intellectual property (IP), is not touched.

The Perform WYSIWYG primitive resynthesis option can change node names in the
.vqm file or .edf file from your third-party synthesis tool, because the primitives in the
atom netlist are broken apart and then remapped by the Quartus II software. The
remapping process removes duplicate registers, but registers that are not removed
retain the same name after remapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never
Allow are not affected during WYSIWYG primitive resynthesis. You can use the
Assignment Editor to apply the Netlist Optimizations logic option. This option
disables WYSIWYG resynthesis for parts of your design.

1 Primitive node names are specified during synthesis. When netlist optimizations are
applied, node names might change because primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools cannot be
maintained because those attributes are not written into the atom netlist read by the
Quartus II software.

If you use the Quartus II software to synthesize, you can use the Preserve Register
(preserve) and Keep Combinational Logic (keep) attributes to maintain certain
nodes in the design.

f For more information about using these attributes during synthesis in the Quartus II
software, refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook.

Performing Physical Synthesis Optimizations
The Quartus II design flow involves separate steps of synthesis and fitting. The
synthesis step optimizes the logical structure of a circuit for area, speed, or both. The
Fitter then places and routes the logic cells to ensure critical portions of logic are close
together and use the fastest possible routing resources. While you are using this
push-button flow, the synthesis stage is unable to anticipate the routing delays seen in
the Fitter. Because routing delays are a significant part of the typical critical path
delay, the physical synthesis optimizations available in the Quartus II software take
those routing delays into consideration and focus timing-driven optimizations at
those parts of the design. This tight integration of the fitting and synthesis processes is
known as physical synthesis.

The following sections describe the physical synthesis optimizations available in the
Quartus II software, and how they can help improve your performance results.
Physical synthesis optimization options can be used with Arria series, Cyclone,
HardCopy, and Stratix series device families.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

16–4 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
If you are migrating your design to a HardCopy II device, you can target physical
synthesis optimizations to the FPGA architecture in the FPGA-first flow or to the
HardCopy II architecture in the HardCopy-first flow. The optimizations are mapped
to the other device architecture during the migration process.

1 You cannot target optimizations to both device architectures individually because
doing so results in a different post-fitting netlist for each device.

f For more information about physical synthesis optimizations, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) in Quartus II Help. For more
information about using physical synthesis with HardCopy devices, refer to the
Quartus II Support for HardCopy Series Devices chapter in volume 1 of the Quartus II
Handbook.

You can choose the physical synthesis optimization options you want for your design
during synthesis and fitting in the Physical Synthesis Optimizations page under the
Compilation Process Settings page in the Settings dialog box. The settings include
optimizations for improving performance and fitting in the selected device.

You can also set the effort level for physical synthesis optimizations. Normally,
physical synthesis optimizations increase the compilation time; however, you can
select the Fast effort level if you want to limit the increase in compilation time. When
you select the Fast effort level, the Quartus II software performs limited register
retiming operations during fitting. The Extra effort level runs additional algorithms to
get the best circuit performance, but results in increased compilation time.

To optimize performance, the following options are available:

■ Perform physical synthesis for combinational logic

■ Perform register retiming

■ Perform automatic asynchronous signal pipelining

■ Perform register duplication

To optimize for better fitting, you can choose from the following options:

■ Perform physical synthesis for combinational logic

■ Perform logic to memory mapping

To view and modify the physical synthesis optimization options, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify the options for performing physical synthesis optimizations.

Some physical synthesis options affect only registered logic and some options affect
only combinational logic. Select options based on whether you want to keep the
registers intact or not. For example, if your verification flow involves formal
verification, you might have to keep the registers intact.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 16: Netlist Optimizations and Physical Synthesis 16–5
Performing Physical Synthesis Optimizations
All Physical Synthesis optimizations write results to the Netlist Optimizations report,
which provides a list of atom netlist files that were modified, created, and deleted
during physical synthesis. To access the Netlist Optimizations report, perform the
following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Netlist Optimizations under Fitter.

Similarly, physical synthesis optimizations performed during synthesis write results
to the synthesis report. To access this report, perform the following steps:

1. On the Processing menu, click Compilation Report.

2. In the Compilation Report list, select Analysis & Synthesis.

3. In the Optimization Results folder, select Netlist Optimizations. The Physical
Synthesis Netlist Optimizations table appears, listing the physical synthesis
netlist optimizations performed during synthesis.

Nodes or entities that have the Netlist Optimizations logic option set to Never Allow
are not affected by the physical synthesis algorithms. You can use the Assignment
Editor to apply the Netlist Optimizations logic option. Use this option to disable
physical synthesis optimizations for parts of your design.

Automatic Asynchronous Signal Pipelining
The Perform automatic asynchronous signal pipelining option on the Physical
Synthesis Optimizations page in the Compilation Process Settings section of the
Settings dialog box allows the Quartus II Fitter to perform automatic insertion of
pipeline stages for asynchronous clear and asynchronous load signals during fitting
when these signals negatively affect performance. You can use this option if
asynchronous control signal recovery and removal times are not achieving their
requirements.

The Perform automatic asynchronous signal pipelining option improves
performance for designs in which asynchronous signals in very fast clock domains
cannot be distributed across the chip fast enough due to long global network delays.
This optimization performs automatic pipelining of these signals, while attempting to
minimize the total number of registers inserted.

1 The Perform automatic asynchronous signal pipelining option adds registers to nets
driving the asynchronous clear or asynchronous load ports of registers. These
additional registers add register delays (adds latency) to the reset, adding the same
number of register delays for each destination using the reset. The additional register
delays can change the behavior of the signal in the design; therefore, you should use
this option only if additional latency on the reset signals does not violate any design
requirements. This option also prevents the promotion of signals to global routing
resources.

The Quartus II software performs automatic asynchronous signal pipelining only if
Enable Recovery/Removal analysis is turned on. If you use the TimeQuest Timing
Analyzer, Enable Recovery/Removal analysis is turned on by default. Pipelining is
allowed only on asynchronous signals that have the following properties:

■ The asynchronous signal is synchronized to a clock (a synchronization register
drives the signal)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

16–6 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
■ The asynchronous signal fans-out only to asynchronous control ports of registers

The Quartus II software does not perform automatic asynchronous signal pipelining
on asynchronous signals that have the Netlist Optimization logic option set to Never
Allow.

Physical Synthesis for Combinational Logic
To optimize the design and reduce delay along critical paths, you can turn on the
Perform physical synthesis for combinational logic option, which swaps the look-up
table (LUT) ports within LEs so that the critical path has fewer layers through which
to travel. The Perform physical synthesis for combinational logic option also allows
the duplication of LUTs to enable further optimizations on the critical path.

h For more information about using the Perform physical synthesis for combinational
logic option, refer to Physical Synthesis Optimizations Page (Settings Dialog Box) and to
Setting Up and Running the Fitter in Quartus II Help.

The Perform physical synthesis for combinational logic option affects only
combinational logic in the form of LUTs. These transformations might occur during
the synthesis stage or the Fitter stage during compilation. The registers contained in
the affected logic cells are not modified. Inputs into memory blocks, DSP blocks, and
I/O elements (IOEs) are not swapped.

The Quartus II software does not perform combinational optimization on logic cells
that have the following properties:

■ Are part of a chain

■ Drive global signals

■ Are constrained to a single logic array block (LAB) location

■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for physical synthesis,
you can override these rules by setting the Netlist Optimizations logic option to
Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Duplication
The Perform register duplication option on the Physical Synthesis Optimizations
page in the Compilation Process Settings section of the Settings dialog box allows
the Quartus II Fitter to duplicate registers based on Fitter placement information. You
can also duplicate combinational logic when this option is enabled. A logic cell that
fans out to multiple locations can be duplicated to reduce the delay of one path
without degrading the delay of another. The new logic cell can be placed closer to
critical logic without affecting the other fan-out paths of the original logic cell.

h For more information about the Perform register duplication option, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) and to Setting Up and Running the
Fitter in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–7
Performing Physical Synthesis Optimizations
The Quartus II software does not perform register duplication on logic cells that have
the following properties:

■ Are part of a chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive global signals

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are driven by input pins without a tSU constraint

■ Contain registers that are driven by a register in another clock domain

■ Are considered virtual I/O pins

■ Have the Netlist Optimizations option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Retiming
The Perform Register Retiming option enables the movement of registers across
combinational logic, allowing the Quartus II software to trade off the delay between
timing-critical paths and non-critical paths. Register retiming can be done during
Quartus II integrated synthesis or during the Fitter stages of design compilation.

Figure 16–2 shows an example of register retiming in which the 10-ns critical delay is
reduced by moving the register relative to the combinational logic.

Retiming can create multiple registers at the input of a combinational block from a
register at the output of a combinational block. In this case, the new registers have the
same clock and clock enable. The asynchronous control signals and power-up level
are derived from previous registers to provide equivalent functionality. Retiming can
also combine multiple registers at the input of a combinational block to a single
register (Figure 16–3).

Figure 16–2. Register Retiming Diagram
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

16–8 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
To move registers across combinational logic to balance timing, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Specify your preferred option under Optimize for performance (physical
synthesis) and Effort level.

4. Click OK.

h For more information about the Optimize for performance (physical synthesis)
options and effort levels, refer to Physical Synthesis Optimizations Page (Settings Dialog
Box) in Quartus II Help.

If you want to prevent register movement during register retiming, you can set the
Netlist Optimizations logic option to Never Allow. You can apply this option to
either individual registers or entities in the design using the Assignment Editor.

In digital circuits, synchronization registers are instantiated on cross clock domain
paths to reduce the possibility of metastability. The Quartus II software detects such
synchronization registers and does not move them, even if register retiming is turned
on.

The following sets of registers are not moved during register retiming:

■ Both registers in a direct connection from input pin-to-register-to-register if both
registers have the same clock and the first register does not fan-out to anywhere
else. These registers are considered synchronization registers.

■ Both registers in a direct connection from register-to-register if both registers have
the same clock, the first register does not fan out to anywhere else, and the first
register is fed by another register in a different clock domain (directly or through
combinational logic). These registers are considered synchronization registers.

The Quartus II software assumes that a synchronization register chain consists of two
registers. If your design has synchronization register chains with more than two
registers, you must indicate the number of registers in your synchronization chains so
that they are not affected by register retiming. To do this, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Setting page appears.

Figure 16–3. Combining Registers with Register Retiming
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–9
Performing Physical Synthesis Optimizations
3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

4. In the Name list, select Synchronization Register Chain Length and modify the
setting to match the synchronization register length used in your design. If you set
a value of 1 for the Synchronization Register Chain Length, it means that any
registers connected to the first register in a register-to-register connection can be
moved during retiming. A value of n > 1 means that any registers in a sequence of
length 1, 2,… n are not moved during register retiming.

The Quartus II software does not perform register retiming on logic cells that have the
following properties:

■ Are part of a cascade chain

■ Contain registers that drive asynchronous control signals on another register

■ Contain registers that drive the clock of another register

■ Contain registers that drive a register in another clock domain

■ Contain registers that are driven by a register in another clock domain

1 The Quartus II software does not usually retime registers across different
clock domains; however, if you use the Classic Timing Analyzer and specify
a global fMAX requirement, the Quartus II software interprets all clocks as
related. Consequently, the Quartus II software might try to retime register-
to-register paths associated with different clocks.

To avoid this circumstance, provide individual fMAX requirements to each
clock when using Classic Timing Analysis. When you constrain each clock
individually, the Quartus II software assumes no relationship between
different clock domains and considers each clock domain to be asychronous
to other clock domains; hence no register-to-register paths crossing clock
domains are retimed.

When you use the TimeQuest Timing Analyzer, register-to-register paths
across clock domains are never retimed, because the TimeQuest Timing
Analyzer treats all clock domains as asychronous to each other unless they
are intentionally grouped.

■ Contain registers that are constrained to a single LAB location

■ Contain registers that are connected to SERDES

■ Are considered virtual I/O pins

■ Registers that have the Netlist Optimizations logic option set to Never Allow

f For more information about virtual I/O pins, refer to the Analyzing and Optimizing the
Design Floorplan chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for physical
synthesis, you can override these rules by setting the Netlist Optimizations logic
option to Always Allow on a given set of registers.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

16–10 Chapter 16: Netlist Optimizations and Physical Synthesis
Performing Physical Synthesis Optimizations
Preserving Your Physical Synthesis Results
The Quartus II software generates the same results on every compilation for the same
source code and settings on a given system, hence you do not need to preserve your
results from compilation to compilation. When you make changes to the source code
or to the settings, you usually get the best results by allowing the software to compile
without using previous compilation results or location assignments. In some cases, if
you avoid performing analysis and synthesis or quartus_map, and run the Fitter or
another desired Quartus II executable instead, you can skip the synthesis stage of the
compilation.

When you use the Quartus II incremental compilation flow, you can preserve
synthesis results for a particular partition of your design by choosing a netlist type of
post-synthesis. If you want to preserve fitting results between compilation runs,
choose a netlist type of post-fit during incremental compilation.

The rest of this section is relevant only for those designs using older devices that do
not support incremental compilation.

f For information about the incremental compilation design methodology, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook, and to About Incremental Compilation in
Quartus II Help.

You can preserve the resulting nodes from physical synthesis in older devices that do
not support incremental compilation. You might need to preserve nodes if you use the
LogicLock flow to back-annotate placement, import one design into another, or both.
For all device families that support incremental compilation, use that feature to
preserve results.

To preserve the nodes from Quartus II physical synthesis optimization options for
older devices that do not support incremental compilation (such as Max II devices),
perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Compilation Process Settings. The Compilation
Process Settings page appears.

3. Turn on Save a node-level netlist of the entire design into a persistent source
file. This setting is not available for Cyclone III, Stratix III, and newer devices.

4. Click OK.

The Save a node-level netlist of the entire design into a persistent source file option
saves your final results as an atom-based netlist in .vqm file format. By default, the
Quartus II software places the .vqm file in the atom_netlists directory under the
current project directory. To create a different .vqm file using different Quartus II
settings, in the Compilation Process Settings page, change the File name setting.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–11
Performing Physical Synthesis Optimizations
If you use the physical synthesis optimizations and want to lock down the location of
all LEs and other device resources in the design with the Back-Annotate Assignments
command, a .vqm file netlist is required. The .vqm file preserves the changes that you
made to your original netlist. Because the physical synthesis optimizations depend on
the placement of the nodes in the design, back-annotating the placement changes the
results from physical synthesis. Changing the results means that node names are
different, and your back-annotated locations are no longer valid.

You should not use a Quartus II-generated .vqm file or back-annotated location
assignments with physical synthesis optimizations unless you have finalized the
design. Making any changes to the design invalidates your physical synthesis results
and back-annotated location assignments. If you require changes later, use the new
source HDL code as your input files, and remove the back-annotated assignments
corresponding to the Quartus II-generated .vqm file.

To back-annotate logic locations for a design that was compiled with physical
synthesis optimizations, first create a .vqm file. When recompiling the design with the
hard logic location assignments, use the new .vqm file as the input source file and
turn off the physical synthesis optimizations for the new compilation.

If you are importing a .vqm file and back-annotated locations into another project that
has any Netlist Optimizations turned on, you must apply the Never Allow
constraint to make sure node names don’t change; otherwise, the back-annotated
location or LogicLock assignments are invalid.

1 For newer devices, such as the Arria, Cyclone, or Stratix series, use incremental
compilation to preserve compilation results instead of using logic back-annotation.

Physical Synthesis Options for Fitting
The Quartus II software provides physical synthesis optimization options for
improving fitting results. To access these options, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Physical Synthesis Optimizations under Compilation
Process Settings. The Physical Synthesis Optimizations page appears.

3. Under Optimize for fitting (physical synthesis for density), there are two physical
synthesis options available to improve fitting your design in the target device:
Physical synthesis for combinational logic and Perform logic to memory
mapping (Table 16–1).

h For more information about physical synthesis optimization options, refer to Physical
Synthesis Optimizations Page (Settings Dialog Box) in Quartus II Help.

Table 16–1. Physical Synthesis Optimizations Options

Option Function

Physical Synthesis for
Combinational Logic

When you select this option, the Fitter detects duplicate combinational logic and optimizes
combinational logic to improve the fit.

Perform Logic to Memory
Mapping

When you select this option, the Fitter can remap registers and combinational logic in your
design into unused memory blocks and achieves a fit.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_physical.htm

16–12 Chapter 16: Netlist Optimizations and Physical Synthesis
Applying Netlist Optimization Options
Applying Netlist Optimization Options
The improvement in performance when using netlist optimizations is design
dependent. If you have restructured your design to balance critical path delays, netlist
optimizations might yield minimal improvement in performance. You may have to
experiment with available options to see which combination of settings works best for
a particular design. Refer to the messages in the compilation report to see the
magnitude of improvement with each option, and to help you decide whether you
should turn on a given option or specific effort level.

Turning on more netlist optimization options can result in more changes to the node
names in the design; bear this in mind if you are using a verification flow, such as the
SignalTap II Logic Analyzer or formal verification that requires fixed or known node
names.

Applying all of the physical synthesis options at the Extra effort level generally
produces the best results for those options, but adds significantly to the compilation
time. You can also use the Physical synthesis effort level options to decrease the
compilation time. The WYSIWYG primitive resynthesis option does not add much
compilation time relative to the overall design compilation time.

To find the best results, you can use the Quartus II Design Space Explorer (DSE) to
apply various sets of netlist optimization options.

h For more information about DSE, refer to About Design Space Explorer in Quartus II
Help.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook and API Functions for Tcl in Quartus II Help. Refer to the
Quartus II Settings File Manual for information about all settings and constraints in the
Quartus II software. For more information about command-line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section on either an instance or
global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name> r
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dse/dse_about_dse.htm

Chapter 16: Netlist Optimizations and Physical Synthesis 16–13
Scripting Support
Synthesis Netlist Optimizations
Table 16–2 lists the Quartus II Settings File (.qsf) variable names and applicable values
for the settings discussed in “WYSIWYG Primitive Resynthesis” on page 16–1. The
.qsf file variable name is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Physical Synthesis Optimizations
Table 16–3 lists the .qsf file variable name and applicable values for the settings
discussed in “Performing Physical Synthesis Optimizations” on page 16–3. The .qsf
file variable name is used in the Tcl assignment to make the setting, along with the
appropriate value. The Type column indicates whether the setting is supported as a
global setting, an instance setting, or both.

Table 16–2. Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus II Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_
OPTIMIZATION_TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF
Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Allow Netlist
Optimizations ADV_NETLIST_OPT_ALLOWED

"ALWAYS ALLOW",
DEFAULT, "NEVER
ALLOW"

Instance

Table 16–3. Physical Synthesis Optimizations and Associated Settings (Part 1 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Physical Synthesis
for Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_
SIGNAL_PIPELINING

ON, OFF Global

Perform Register
Duplication PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don’t Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

16–14 Chapter 16: Netlist Optimizations and Physical Synthesis
Conclusion
Incremental Compilation
For information about scripting and command line usage for incremental compilation
as mentioned in “Preserving Your Physical Synthesis Results” on page 16–10, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Back-Annotating Assignments
You can use the logiclock_back_annotate Tcl command to back-annotate resources
in your design. This command can back-annotate resources in LogicLock regions, and
resources in designs without LogicLock regions.

For more information about back-annotating assignments, refer to “Preserving Your
Physical Synthesis Results” on page 16–10.

The following Tcl command back-annotates all registers in your design:

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate package.

Conclusion
Physical synthesis optimizations restructure and optimize your design netlist. You
can take advantage of these Quartus II netlist optimizations to help improve your
quality of results.

Document Revision History
Table 16–4 shows the revision history for this chapter.

Allow Netlist
Optimizations ADV_NETLIST_OPT_ALLOWED

"ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a
persistent source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF
Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Table 16–3. Physical Synthesis Optimizations and Associated Settings (Part 2 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Table 16–4. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.0.1 Template update.

July 2010 10.0.0

■ Added links to Quartus II Help in several sections.

■ Removed Referenced Documents section.

■ Reformatted Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 16: Netlist Optimizations and Physical Synthesis 16–15
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2009 9.1.0

■ Added information to “Physical Synthesis for Registers—Register Retiming”

■ Added information to “Applying Netlist Optimization Options”

■ Made minor editorial updates

March 2009 9.0.0

■ Was chapter 11 in the 8.1.0 release.

■ Updated the “Physical Synthesis for Registers—Register Retiming” and“Physical
Synthesis Options for Fitting”

■ Updated “Performing Physical Synthesis Optimizations”

■ Deleted Gate-Level Register Retiming section.

■ Updated the referenced documents

November 2008 8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0
■ Updated “Physical Synthesis Optimizations for Performance on page 11-9

■ Added Physical Synthesis Options for Fitting on page 11-16

Table 16–4. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

16–16 Chapter 16: Netlist Optimizations and Physical Synthesis
Document Revision History
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

December 2010 Altera Corporation
Section IV. Engineering Change
Management
Programmable logic can accommodate changes to a system specification late in the
design cycle. Last-minute design changes, commonly referred to as engineering
change orders (ECOs), are small changes to the functionality of a design after the
design has been fully compiled. This section describes how the Chip Planner feature
in the Quartus® II software supports ECOs by allowing quick and efficient changes to
your logic late in the design cycle.

This section includes the following chapter:

■ Chapter 17, Engineering Change Management with the Chip Planner

This chapter addresses the impact that ECOs have on the design cycle, discusses
the design flow for performing ECOs, and describes how you can use the Chip
Planner to perform ECOs.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

IV–2 Section IV: Engineering Change Management
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 2: Design
December 2010

QII52017-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII52017-10.1.0
17. Engineering Change Management
with the Chip Planner
Programmable logic can accommodate changes to a system specification late in the
design cycle. In a typical engineering project development cycle, the specification of
the programmable logic portion is likely to change after engineering begins or while
integrating all system elements. Last-minute design changes, commonly referred to as
engineering change orders (ECOs), are small targeted changes to the functionality of a
design after the design has been fully compiled. This chapter discusses the design
flow for making ECOs, addresses the impact that ECOs have on the design cycle, and
describes how you can use the Chip Planner to make ECOs.

The Chip Planner supports ECOs by allowing quick and efficient changes to your
logic late in the design cycle. The Chip Planner provides a visual display of your
post-place-and-route design mapped to the device architecture of your chosen FPGA
and allows you to create, move, and delete logic cells and I/O atoms.

h For a list of supported devices, refer to About the Chip Planner in Quartus® II Help.

1 In addition to making ECOs, the Chip Planner allows you to perform detailed
analysis on routing congestion, relative resource usage, logic placement, LogicLock™
regions, fan-ins and fan-outs, paths between registers, and delay estimates for paths.

f For more information about using the Chip Planner for design analysis, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

f ECOs directly apply to atoms in the target device. As such, performing an ECO relies
on your understanding of the device architecture of the target device. For more
information about the architecture of your device, refer to the appropriate device
handbook on the Literature page of the Altera website.

This chapter includes the following topics:

■ “Engineering Change Orders” on page 17–2

■ “ECO Design Flow” on page 17–4

■ “The Chip Planner Overview” on page 17–5

■ “Performing ECOs with the Chip Planner (Floorplan View)” on page 17–6

■ “Performing ECOs in the Resource Property Editor” on page 17–7

■ “Change Manager” on page 17–21

■ “Scripting Support” on page 17–22

■ “Common ECO Applications” on page 17–22

■ “Post ECO Steps” on page 17–27
Implementation and Optimization

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII52017
http://www.altera.com/literature/lit-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

17–2 Chapter 17: Engineering Change Management with the Chip Planner
Engineering Change Orders
Engineering Change Orders
In the context of an FPGA design, you can apply an ECO directly to a physical
resource on the device to modify its behavior. ECOs are typically made during the
verification stage of a design cycle. When a small change is required on a design (such
as modifying a PLL for a different clock frequency or routing a signal out to a pin for
analysis) recompilation of the entire design can be time consuming, especially for
larger designs. Because several iterations of small design changes can occur during
the verification cycle, recompilation times can quickly add up. Furthermore, a full
recompilation due to a small design change can result in the loss of previous design
optimizations. Making ECOs, instead of performing a full recompilation on your
design, limits the change only to the affected portions of logic.

This section discusses the areas in which ECOs have an impact on a system design
and how the Quartus II software can help you optimize the design in these areas. The
following topics are discussed in this section:

■ “Performance Preservation”

■ “Compilation Time”

■ “Verification”

■ “Change Modification Record”

Performance Preservation
You can preserve the results of previous design optimizations when you make
changes to an existing design with one of the following methods:

■ Incremental compilation

■ Rapid recompile

■ ECOs

Choose the method to modify your design based on the scope of the change. The
methods above are arranged from the larger scale change to the smallest targeted
change to a compiled design.

The incremental compilation feature allows you to preserve compilation results at an
RTL component or module level. After the initial compilation of your design, you can
assign modules in your design hierarchy to partitions. Upon subsequent
compilations, incremental compilation recompiles changed partitions based on the
chosen preservation levels.

The rapid recompilation feature leverages results from the latest post-fit netlist to
determine the changes required to honor modifications you have made to the source
code. If you turn on the rapid recompilation feature, the Compiler attempts to refit
only the portion of the netlist that is related to the code modification.

ECOs provide a finer granularity of control compared to the incremental compilation
and the rapid recompilation feature. All modifications are performed directly on the
architectural elements of the device. You should use ECOs for targeted changes to the
post-fit netlist.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–3
Engineering Change Orders
1 In the Quartus II software versions 10.0 and later, the software does not preserve ECO
modifications to the netlist when you recompile a design with the incremental
compilation feature turned on. You can reapply ECO changes made during a previous
compilation with the Change Manager.

f For more information about the incremental compilation feature, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Compilation Time
In the traditional programmable logic design flow, a small change in the design
requires a complete recompilation of the design. A complete recompilation of the
design consists of synthesis and place-and-route. Making small changes to the design
to reach the final implementation on a board can be a long process. Because the Chip
Planner works only on the post-place-and-route database, you can implement your
design changes in minutes without performing a full compilation.

Verification
After you make a design change, you can verify the impact on your design. To verify
that your changes do not violate timing requirements, perform static timing analysis
with the Quartus II TimeQuest Timing Analyzer after you check and save your netlist
changes in the Chip Planner.

f For more information about the TimeQuest analyzer, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Additionally, you can perform a gate-level or timing simulation of the ECO-modified
design with the post-place-and-route netlist generated by the Quartus II software.

Change Modification Record
All ECOs made with the Chip Planner are logged in the Change Manager to track all
changes. With the Change Manager, you can easily revert to the original post-fit netlist
or you can pick and choose which ECOs to apply.

Additionally, the Quartus II software provides support for multiple compilation
revisions of the same project. You can use ECOs made with the Chip Planner in
conjunction with revision support to compare several different ECO changes and
revert back to previous project revisions when required.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

17–4 Chapter 17: Engineering Change Management with the Chip Planner
ECO Design Flow
ECO Design Flow
Figure 17–1 shows the design flow for making ECOs.

For iterative verification cycles, implementing small design changes at the netlist level
can be faster than making an RTL code change. As such, making ECO changes are
especially helpful when you debug the design on silicon and require a fast
turnaround time to generate a programming file for debugging the design.

Figure 17–1. Design Flow to Support ECOs

Verilog HDL
(.v)

VHDL
(.vhdl)

AHDL
(.tdf)

Block Design
file

(.bdf)

EDIF Netlist
(.edf)

VQM Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Analysis & Synthesis

Partition Merge
Create complete netlist using

appropriate source netlists for each
partition (post-fit or post-synthesis)

Fitter

Assembler

Timing Analyzer

Program/Configuration Device

System Test and Verify

Requirements
Satisfied?

yes

no

Recreate Programming File

Change Manager
Stores netlist

modification details

Modify
Logic cells, I/O cells,

PLL, Floorplan location
assignments in Chip Planner

Analysis and Synthesis Changes

Analysis and Synthesis Changes

Make design change
in your HDL

Make ECO
at Netlist level

no

Design Partition Assignment

ECO performs
partial refit
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–5
The Chip Planner Overview
A typical ECO application occurs when you uncover a problem on the board and
isolate the problem to the appropriate nodes or I/O cells on the device. You must be
able to correct the functionality quickly and generate a new programming file. By
making small changes with the Chip Planner, you can modify the
post-place-and-route netlist directly without having to perform synthesis and logic
mapping, thus decreasing the turnaround time for programming file generation
during the verification cycle. If the change corrects the problem, no modification of
the HDL source code is necessary. You can use the Chip Planner to perform the
following ECO-related changes to your design:

■ Document the changes made with the Change Manager

■ Easily recreate the steps taken to produce design changes

■ Generate EDA simulation netlists for design verification

1 For more complex changes that require HDL source code modifications, the
incremental compilation feature can help reduce recompilation time.

The Chip Planner Overview
The Chip Planner provides a visual display of device resources. It shows the
arrangement and usage of the resource atoms in the device architecture that you are
targeting. Resource atoms are the building blocks for your device, such as ALMs, LEs,
PLLs, DSP blocks, memory blocks, or I/O elements.

The Chip Planner also provides an integrated platform for design analysis and for
making ECOs to your design after place-and-route. The toolset consists of the Chip
Planner (providing a device floorplan view of your mapped design) and two
integrated subtools—the Resource Property Editor and the Change Manager.

For analysis, the Chip Planner can show logic placement, LogicLock regions, relative
resource usage, detailed routing information, routing congestion, fan-ins and
fan-outs, paths between registers, and delay estimates for paths. Additionally, the
Chip Planner allows you to create location constraints or resource assignment
changes, such as moving or deleting logic cells or I/O atoms with the device
floorplan. For ECO changes, the Chip Planner enables you to create, move, or delete
logic cells in the post-place-and-route netlist for fast programming file generation.
Additionally, you can open the Resource Property Editor from the Chip Planner to
edit the properties of resource atoms or to edit the connections between resource
atoms. All changes to resource atoms and connections are logged automatically with
the Change Manager.

Opening the Chip Planner
To open the Chip Planner, on the Tools menu, click Chip Planner. Alternatively, click
the Chip Planner icon on the Quartus II software toolbar.

Optionally, you can open the Chip Planner by cross-probing from the shortcut menu
in the following tools:

■ Design Partition Planner

■ Compilation Report

■ LogicLock Regions window
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–6 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs with the Chip Planner (Floorplan View)
■ Technology Map Viewer

■ Project Navigator window

■ RTL source code

■ Node Finder

■ Simulation Report

■ RTL Viewer

■ Report Timing panel of the TimeQuest Timing Analyzer

The Chip Planner Tasks and Layers
The Chip Planner allows you to set up tasks to quickly implement ECO changes or
manipulate assignments for the floorplan of the device. Each task consists of an
editing mode and a set of customized layer settings.

h For more information about tasks and layers in the Chip Planner, refer to About the
Chip Planner in Quartus II Help.

f For more information about creating assignments and performing analysis with the
Chip Planner, as well as the Chip Planner floorplan views, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

For more information about making ECOs with the ECO mode, refer to “Performing
ECOs with the Chip Planner (Floorplan View)” on page 17–6.

Performing ECOs with the Chip Planner (Floorplan View)
You can manipulate resource atoms in the Chip Planner when you select the ECO
editing mode. The following ECO changes can be made with the Chip Planner
Floorplan view:

■ Create atoms

■ Delete atoms

■ Move existing atoms

1 To configure the properties of atoms, such as managing the connections between
different LEs/ALMs, use the Resource Property Editor.

For more information about editing atom resource properties, refer to “Performing
ECOs in the Resource Property Editor” on page 17–7.

To select the ECO editing mode in the Chip Planner, in the Editing Mode list at the
top of the Chip Planner, select the ECO editing mode.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_view_acv_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–7
Performing ECOs in the Resource Property Editor
Creating, Deleting, and Moving Atoms
You can use the Chip Planner to create, delete, and move atoms in the
post-compilation design.

h For more information about creating, deleting, and moving atoms, refer to Creating,
Deleting, and Moving Atoms in Quartus II Help.

Check and Save Netlist Changes
After making all the ECOs, you can run the Fitter to incorporate the changes by
clicking the Check and Save Netlist Changes icon in the Chip Planner toolbar. The
Fitter compiles the ECO changes, performs design rule checks on the design, and
generates a programming file.

Performing ECOs in the Resource Property Editor
You can view and edit the following resources with the Resource Property Editor:

■ “Logic Elements” on page 17–7

■ “Adaptive Logic Modules” on page 17–10

■ “FPGA I/O Elements” on page 17–12

■ “PLL Properties” on page 17–24

■ “FPGA RAM Blocks” on page 17–19

■ “FPGA DSP Blocks” on page 17–20

Logic Elements
An Altera® LE contains a four-input LUT, which is a function generator that can
implement any function of four variables. In addition, each LE contains a register fed
by the output of the LUT or by an independent function generated in another LE.

You can use the Resource Property Editor to view and edit any LE in the FPGA. To
open the Resource Property Editor for an LE, on the Project menu, point to Locate,
and then click Locate in Resource Property Editor in one of the following views:

■ RTL Viewer

■ Technology Map Viewer

■ Node Finder

■ Chip Planner

f For more information about LE architecture for a particular device family, refer to the
device family handbook or data sheet.

You can use the Resource Property Editor to change the following LE properties:

■ Data input to the LUT

■ LUT mask or LUT equation
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_create_atom.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/acv_pro_create_atom.htm

17–8 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Logic Element Schematic View
Figure 17–2 shows how the LE appears in the Resource Property Editor. By default,
the Quartus II software displays the used resources in blue and the unused resources
in gray.

Logic Element Properties
Figure 17–3 shows an example of the properties that can be viewed for a selected LE
in the Resource Property Editor. To view LE properties, on the View menu, click View
Properties.

Figure 17–2. Stratix LE Architecture (Note 1)

Notes to Figure 17–2:

(1) For more information about the Stratix device’s LE architecture, refer to the Stratix Device Handbook.

Figure 17–3. LE Properties
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–9
Performing ECOs in the Resource Property Editor
Modes of Operation
LUTs in an LE can operate in either normal or arithmetic mode.

When an LE is configured in normal mode, the LUT in the LE can implement a
function of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is divided into two
3-input LUTs. The first LUT generates the signal that drives the output of the LUT,
while the second LUT generates the carry-out signal. The carry-out signal can drive
only a carry-in signal of another LE.

f For more information about LE modes of operation, refer to volume 1 of the
appropriate device handbook.

Sum and Carry Equations
You can change the logic function implemented by the LUT by changing the sum and
carry equations. When the LE is configured in normal mode, you can change only the
sum equation. When the LE is configured in arithmetic mode, you can change both
the sum and the carry equations.

The LUT mask is the hexadecimal representation of the LUT equation output. When
you change the LUT equation, the Quartus II software automatically changes the LUT
mask. Conversely, when you change the LUT mask, the Quartus II software
automatically computes the LUT equation.

sload and sclr Signals
Each LE register contains a synchronous load (sload) signal and a synchronous clear
(sclr) signal. You can invert either the sload or sclr signal feeding into the LE. If the
design uses the sload signal in an LE, the signal and its inversion state must be the
same for all other LEs in the same LAB. For example, if two LEs in a LAB have the
sload signal connected, both LEs must have the sload signal set to the same value.
This is also true for the sclr signal.

Register Cascade Mode
When register cascade mode is enabled, the cascade-in port feeds the input to the
register. The register cascade mode is used most often when the design implements
shift registers. You can change the register cascade mode by connecting (or
disconnecting) the cascade in the port. However, if you create this port, you must
ensure that the source port LE is directly above the destination LE.

Cell Delay Table
The cell delay table describes the propagation delay from all inputs to all outputs for
the selected LE.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–10 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Logic Element Connections
To view the connections that feed in and out of an LE, on the View menu, click View
Port Connections. Figure 17–4 shows the LE connections in the Connectivity window.

Delete a Logic Element
To delete an LE, follow these steps:

1. Right-click the desired LE in the Chip Planner, point to Locate, and click Locate in
Resource Property Editor.

2. You must remove all fan-out connections from an LE prior to deletion. To delete
fan-out connections, right-click each connected output signal, point to Remove,
and click Fanouts. Select all of the fan-out signals in the Remove Fan-outs dialog
box and click OK.

3. To delete an atom after all fan-out connections are removed, right-click the atom in
the Chip Planner and click Delete Atom.

Adaptive Logic Modules
Each ALM contains LUT-based resources that can be divided between two adaptive
LUTs (ALUTs). With up to eight inputs to the two ALUTs, each ALM can implement
various combinations of two functions. This adaptability allows the ALM to be
completely backward-compatible with four-input LUT architectures. One ALM can
implement any function with up to six inputs and certain seven-input functions. In
addition to the ALUT-based resources, each ALM contains two programmable
registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. The ALM can efficiently implement various arithmetic functions and
shift registers with these dedicated resources.

You can implement the following types of functions in a single ALM:

■ Two independent 4-input functions

■ An independent 5-input function and an independent 3-input function

■ A 5-input function and a 4-input function, if they share one input

■ Two 5-input functions, if they share two inputs

■ An independent 6-input function

■ Two 6-input functions, if they share four inputs and share the same functions

Figure 17–4. View LE Connections
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–11
Performing ECOs in the Resource Property Editor
■ Certain 7-input functions

You can use the Resource Property Editor to change the following ALM properties:

■ Data input to the LUT

■ LUT mask or LUT equation

Adaptive Logic Module Schematic
You can view and edit any ALM atom with the Resource Property Editor by
right-clicking the ALM in the RTL Viewer, the Node Finder, or the Chip Planner, and
clicking Locate in Resource Property Editor (Figure 17–5).

f For a detailed description of the ALM, refer to the device handbooks of devices based
on an ALM architecture.

Adaptive Logic Module Properties
The properties that you can display for the ALM include an equations table that
shows the name and location of each of the two combinational nodes and two register
nodes in the ALM, the individual LUT equations for each of the combinational nodes,
and the combout, sumout, carryout, and shareout equations for each combinational
node.

Figure 17–5. ALM Schematic (Note 1)

Note to Figure 17–5:

(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 17–5, the used resources are in blue
and the unused resources are in gray.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–12 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Adaptive Logic Module Connections
On the View menu, click View Connectivity to view the input and output
connections for the ALM.

FPGA I/O Elements
Altera FPGAs that have high-performance I/O elements, including up to six registers,
are equipped with support for a number of I/O standards that allow you to run your
design at peak speeds. Use the Resource Property Editor to view, change connectivity,
and edit the properties of the I/O elements. Use the Chip Planner (Floorplan view) to
change placement, delete, and create new I/O elements.

f For a detailed description of the device I/O elements, refer to the applicable device
handbook.

You can change the following I/O properties:

■ Delay chain

■ Bus hold

■ Weak pull up

■ Slow slew rate

■ I/O standard

■ Current strength

■ Extend OE disable

■ PCI I/O

■ Register reset mode

■ Register synchronous reset mode

■ Register power up

■ Register mode

Stratix V I/O Elements
The I/O elements in Stratix® V devices contain a bidirectional I/O buffer and I/O
registers to support a complete embedded bidirectional single data rate (SDR) or
double data rate (DDR) transfer (shown in Figure 17–6).

I/O registers are composed of the input path for handling data from the pin to the
core, the output path for handling data from the core to the pin, and the output enable
path for handling the output enable signal to the output buffer. These registers allow
faster source-synchronous register-to-register transfers and resynchronization. The
input path consists of the DDR input registers, alignment and synchronization
registers, and half data rate blocks; you can bypass each block in the input path. The
input path uses the deskew delay to adjust the input register clock delay across
process, voltage, and temperature (PVT) variations.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–13
Performing ECOs in the Resource Property Editor
By default, the Quartus II software displays the used resources in blue and the unused
resources in gray.

f For more information about I/O elements in Stratix V devices, refer to the Stratix V
Device Handbook.

Figure 17–6. Stratix V Device I/O Element Structure
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/stratix-v/stx5_5v1.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_5v1.pdf

17–14 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
The I/O elements in Arria® GX, Stratix, Stratix II, and Stratix GX devices contain a
bidirectional I/O buffer, six registers, and a latch for a complete bidirectional SDR or
DDR transfer.

Figure 17–7 shows the Stratix and Stratix GX I/O element structure. The I/O element
structure contains two input registers (plus a latch), two output registers, and two
output enable registers. By default, the Quartus II software displays the used
resources in blue and the unused resources in gray.

f For more information about I/O elements in Stratix and Stratix GX devices, refer to
the Stratix Device Handbook and the Stratix GX Device Handbook.

Figure 17–7. Stratix and Stratix GX Device I/O Element and Structure
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/hb/sgx/sgx_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–15
Performing ECOs in the Resource Property Editor
Arria II GX, Stratix III, and Stratix IV I/O Elements
The I/O elements in Arria II GX, Stratix III, and Stratix IV devices contain a
bidirectional I/O buffer and I/O registers to support a complete embedded
bidirectional SDR or DDR transfer (shown in Figure 17–8). The I/O registers are
composed of the input path for handling data from the pin to the core, the output path
for handling data from the core to the pin, and the output enable path for handling the
output enable signal for the output buffer. Each path consists of a set of delay
elements that allow you to fine-tune the timing characteristics of each path for skew
management. By default, the Quartus II software displays the used resources in blue
and the unused resources in gray.

f For more information about I/O elements in Stratix III and Stratix IV devices, refer to
the Literature page of the Altera website.

f For more information about programmable I/O elements in Stratix III devices, refer to
AN 474: Implementing Stratix III Programmable I/O Delay Settings in the Quartus II
Software.

Figure 17–8. Stratix III Device I/O Element and Structure
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/an/an474.pdf
http://www.altera.com/literature/an/an474.pdf

17–16 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
Cyclone and Cyclone II I/O Elements
The I/O elements in Cyclone® and Cyclone II devices contain a bidirectional I/O
buffer and three registers for complete bidirectional single data-rate transfer.
Figure 17–9 shows the Cyclone and Cyclone II I/O element structure. The I/O
element contains one input register, one output register, and one output enable
register. By default, the Quartus II software displays the used resources in blue and
the unused resources in gray.

f For more information about I/O elements in Cyclone II and Cyclone devices, refer to
the Cyclone II Device Handbook and Cyclone Device Handbook, respectively.

Figure 17–9. Cyclone and Cyclone II Device I/O Elements and Structure
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–17
Performing ECOs in the Resource Property Editor
Cyclone III I/O Elements
The I/O elements in Cyclone III devices contain a bidirectional I/O buffer and five
registers for complete embedded bidirectional single data rate transfer. Figure 17–10
shows the Cyclone III I/O element structure. The I/O element contains one input
register, two output registers, and two output-enable registers. The two output
registers and two output-enable registers are utilized for double-data rate (DDR)
applications. You can use the input registers for fast setup times and the output
registers for fast clock-to-output times. Additionally, you can use the output-enable
(OE) registers for fast clock-to-output enable timing. You can use I/O elements for
input, output, or bidirectional data paths. By default, the Quartus II software displays
the used resources in blue and the unused resources in gray.

f For more information about I/O elements in Cyclone III devices, refer to the
Cyclone III Device Handbook.

Figure 17–10. Cyclone III Device I/O Elements and Structure
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf

17–18 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
MAX II I/O Elements
The I/O elements in MAX® II devices contain a bidirectional I/O buffer. Figure 17–11
shows the MAX II I/O element structure. You can drive registers from adjacent LABs
to or from the bidirectional I/O buffer of the I/O element. By default, the Quartus II
software displays the used resources in blue and the unused resources in gray.

f For more information about I/O elements in MAX II devices, refer to the MAX II
Device Handbook.

Figure 17–11. MAX II Device I/O Elements and Structure
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–19
Performing ECOs in the Resource Property Editor
FPGA RAM Blocks
With the Resource Property Editor, you can view the architecture of different RAM
blocks in the device, modify the input and output registers to and from the RAM
blocks, and modify the connectivity of the input and output ports. Figure 17–12
shows an M9K RAM view in a Stratix III device.

Figure 17–12. M9K RAM View in a Stratix III Device (Note 1)

Note to Figure 17–12:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 17–12, the used resources are
in blue and the unused resources are in gray.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–20 Chapter 17: Engineering Change Management with the Chip Planner
Performing ECOs in the Resource Property Editor
FPGA DSP Blocks
Dedicated hardware DSP circuit blocks in Altera devices provide performance
benefits for the critical DSP functions in your design. The Resource Property Editor
allows you to view the architecture of DSP blocks in the Resource Property Editor for
the Cyclone and Stratix series of devices. The Resource Property Editor also allows
you to modify the signal connections to and from the DSP blocks and modify the
input and output registers to and from the DSP blocks.

Figure 17–13 shows the DSP architecture in a Stratix III device.

Figure 17–13. DSP Block View in a Stratix III Device (Note 1)

Note to Figure 17–13:

(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In Figure 17–13, the used resources are
in blue and the unused resources are in red.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–21
Change Manager
Change Manager
The Change Manager maintains a record of every change you perform with the Chip
Planner, the Resource Property Editor, the SignalProbe feature, or a Tcl script. Each
row of data in the Change Manager represents one ECO.

The Change Manager allows you to apply changes, roll back changes, delete changes,
and export change records to a Text File (.txt), a Comma-Separated Value File (.csv),
or a Tcl Script File (.tcl). The Change Manager tracks dependencies between changes,
so that when you apply, roll back, or delete a change, any prerequisite or dependent
changes are also applied, rolled back, or deleted.

h For more information about the Change Manager, refer to About the Change Manager in
Quartus II Help.

Complex Changes in the Change Manager
Certain changes (including creating or deleting atoms and changing connectivity) can
appear to be self-contained, but are actually composed of multiple actions. The
Change Manager marks such complex changes with a plus icon in the Index column.

You can click the plus icon to expand the change record and show all the component
actions preformed as part of that complex change.

h For more information about complex change records and about managing changes
with the Change Manager, refer to Examples of Managing Changes With the Change
Manager in Quartus II Help.

Managing SignalProbe Signals
The SignalProbe pins that you create from the SignalProbe Pins dialog box are
recorded in the Change Manager. After you have made a SignalProbe assignment,
you can use the Change Manager to quickly disable SignalProbe assignments by
selecting Revert to Last Saved Netlist on the shortcut menu in the Change Manager.

f For more information about SignalProbe pins, refer to the Quick Design Debugging
Using SignalProbe chapter in volume 3 of the Quartus II Handbook.

Exporting Changes
You can export changes to a .txt, a .csv, or a .tcl. Tcl scripts allow you to reapply
changes that were deleted during compilation.

h For more information about exporting changes, refer to Managing Changes With the
Change Manager in Quartus II Help.

f For more information about netlist types and the Quartus II incremental compilation
feature, refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_pro_launching_eco.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_pro_launching_eco.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_ex_change_manager_usage.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_ex_change_manager_usage.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ace/eco_view_eco_overview.htm
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf

17–22 Chapter 17: Engineering Change Management with the Chip Planner
Scripting Support
Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. The Tcl commands for
controlling the Chip Planner are located in the chip_planner package of the
quartus_cdb executable.

h A comprehensive list of Tcl commands for the Chip Planner can be found in About
Quartus II Scripting in Quartus II Help.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Common ECO Applications
This section provides examples of how you might use an ECO to make a
post-compilation change to your design. To help build your system quickly, you can
use Chip Planner functions to perform the following activities:

■ Adjust the drive strength of an I/O with the Chip Planner

■ Modify the PLL properties with the Resource Property Editor (see “Modify the
PLL Properties With the Chip Planner” on page 17–23)

■ Modify the connectivity between new resource atoms with the Chip Planner and
Resource Property Editor

Adjust the Drive Strength of an I/O with the Chip Planner
To adjust the drive strength of an I/O, follow the steps in this section to incorporate
the ECO changes into the netlist of the design.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–23
Common ECO Applications
1. In the Editing Mode list at the top of the Chip Planner, select the ECO editing
mode.

2. Locate the I/O in the Resource Property Editor, as shown in Figure 17–14.

3. In the Resource Property Editor, point to the Current Strength option in the
Properties pane and double-click the value to enable the drop-down list.

4. Change the value for the Current Strength option.

5. Right-click the ECO change in the Change Manager and click Check & Save All
Netlist Changes to apply the ECO change.

1 You can change the pin locations of input or output ports with the ECO flow. You can
drag and move the signal from an existing pin location to a new location while in the
Post Compilation Editing (ECO) task in the Chip Planner. You can then click Check &
Save All Netlist Changes to compile the ECO.

Modify the PLL Properties With the Chip Planner
You use PLLs to modify and generate clock signals to meet design requirements.
Additionally, you can use PLLs to distribute clock signals to different devices in a
design, reducing clock skew between devices, improving I/O timing, and generating
internal clock signals.

Figure 17–14. I/O in the Resource Property Editor
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–24 Chapter 17: Engineering Change Management with the Chip Planner
Common ECO Applications
The Resource Property Editor allows you to view and modify PLL properties to meet
your design requirements. Using the Stratix PLL as an example, the rest of this section
describes the adjustable PLL properties and the equations as a function of the
adjustable PLL properties that govern the PLL output parameters.

Figure 17–15 shows a Stratix PLL in the Resource Property Editor.

PLL Properties
The Resource Property Editor allows you to modify PLL options, such as phase shift,
output clock frequency, and duty cycle. You can also change the following PLL
properties with the Resource Property Editor:

■ Input frequency

■ M VCO tap

■ M initial

■ M value

■ N value

■ M counter delay

■ N counter delay

Figure 17–15. PLL View in a Stratix Device
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

Chapter 17: Engineering Change Management with the Chip Planner 17–25
Common ECO Applications
■ M2 value

■ N2 value

■ SS counter

■ Charge pump current

■ Loop filter resistance

■ Loop filter capacitance

■ Counter delay

■ Counter high

■ Counter low

■ Counter mode

■ Counter initial

■ VCO tap

You can also view post-compilation PLL properties in the Compilation Report. To do
so, in the Compilation Report, select Fitter and then select Resource Section.

Adjusting the Duty Cycle
Use Equation 17–1 to adjust the duty cycle of individual output clocks.

Adjusting the Phase Shift
Use Equation 17–2 to adjust the phase shift of an output clock of a PLL.

For normal mode, Tap VCO, Initial VCO, and Period VCO are governed by the following
settings:

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are governed by the
following settings:

Equation 17–1.

Equation 17–2.

High % Counter High
Counter High Counter Low+ 

---=

Phase Shift Period VCO 0.125 Tap VCO  Initial VCO Period VCO +=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO In Clock Period N M=

Tap VCO Counter Delay M Tap VCO–=

Initial VCO Counter Initial M Initial–=

Period VCO
In Clock Period N

M Counter High Counter Low+ + 
---=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

17–26 Chapter 17: Engineering Change Management with the Chip Planner
Common ECO Applications
f For a detailed description of the settings, refer to the Quartus II Help. For more
information about Stratix device PLLs, refer to the Stratix Architecture chapter in
volume 1 of the Stratix Device Handbook. For more information about PLLs in
Arria GX, Cyclone, Cyclone II, and Stratix II devices, refer to the appropriate device
handbook.

Adjusting the Output Clock Frequency
Use Equation 17–3 to adjust the PLL output clock in normal mode.

Use Equation 17–4 to adjust the PLL output clock in external feedback mode.

Adjusting the Spread Spectrum
Use Equation 17–5 to adjust the spread spectrum for your PLL.

Modify the Connectivity between Resource Atoms
The Chip Planner and Resource Property Editor allow you to create new resource
atoms and manipulate the existing connection between resource atoms in the post-fit
netlist. These features are useful for small changes when you are debugging a design,
such as manually inserting pipeline registers into a combinational path that fails
timing, or routing a signal to a spare I/O pin for analysis. Use the following
procedure to create a new register in a Cyclone III device and route register output to
a spare I/O pin. This example illustrates how to create a new resource atom and
modify the connections between resource atoms.

To create new resource atoms and manipulate the existing connection between
resource atoms in the post-fit netlist, follow these steps:

1. Create a new register in the Chip Planner.

2. Locate the atom in the Resource Property Editor.

3. To assign a clock signal to the register, right-click the clock input port for the
register, point to Edit connection, and click Other. Use the Node Finder to assign a
clock signal from your design.

4. To tie the SLOAD input port to VCC, right-click the clock input port for the register,
point to Edit connection, and click VCC.

Equation 17–3.

Equation 17–4.

Equation 17–5.

Output Clock Frequency Input Frequency M value
N Value Counter High Counter Low+ +
---=

OUTCLK M value External Feedback Counter High External Feedback Counter Low+ +
N value Counter High Counter Low+ +

---=

% spread
M2N1
M1N2
---------------=
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf

Chapter 17: Engineering Change Management with the Chip Planner 17–27
Post ECO Steps
5. Assign a data signal from your design to the SDATA port.

6. In the Connectivity window, under the output port names, copy the port name of
the register.

7. In the Chip Planner, locate a free I/O resource and create an output buffer.

8. Locate the new I/O atom in the Resource Property Editor.

9. On the input port to the output buffer, right-click, point to Edit connection, and
click Other.

10. In the Edit Connection dialog box, type the output port name of the register you
have created.

11. Run the ECO Fitter to apply the changes by clicking Check and Save Netlist
Changes.

1 A successful ECO connection is subject to the available routing resources. You can
view the relative routing utilization by selecting Routing Utilization as the
Background Color Map in the Layers Settings dialog box of the Chip Planner. Also,
you can view individual routing channel utilization from local, row, and column
interconnects with the tooltips created when you position your mouse pointer over
the appropriate resource. Refer to the device data sheet for more information about
the architecture of the routing interconnects of your device.

Post ECO Steps
After you make an ECO change with the Chip Planner, you must perform static
timing analysis of your design with the TimeQuest analyzer to ensure that your
changes did not adversely affect the timing performance of your design.

For example, when you turn on one of the delay chain settings for a specific pin, you
change the I/O timing. Therefore, to ensure that the design still meets all timing
requirements, you should perform static timing analysis.

f For more information about performing a static timing analysis of your design, refer
to The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Conclusion
The Chip Planner allows you to analyze and modify your design floorplan. Also, ECO
changes made with the Chip Planner do not require a full recompilation, eliminating
the lengthy process of RTL modification, resynthesis, and another place-and-route
cycle. In summary, the Chip Planner speeds design verification and timing closure.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

17–28 Chapter 17: Engineering Change Management with the Chip Planner
Document Revision History
Document Revision History
Table 17–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 17–1. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Updated chapter to new template

■ Removed “The Chip Planner FloorPlan Views” section

■ Combined “Creating Atoms”, “Deleting Atoms”, and “Moving Atoms” sections, and linked
to Help.

■ Added Stratix V I/O elements in “FPGA I/O Elements” on page 17–12.

July 2010 10.0.0

■ Added information to page 17–1.

■ Added information to “Engineering Change Orders” on page 17–2.

■ Changed heading from “Performance” to “Performance Preservation” on page 17–2.

■ Updated information in “Performance Preservation” on page 17–2.

■ Changed heading from “Documentation” to “Change Modification Record” on page 17–3.

■ Changed heading from “Resource Property Editor” to “Performing ECOs in the Resource
Property Editor” on page 17–15.

■ Removed “Using Incremental Compilation in the ECO Flow” section. Preservation support
for ECOs with the incremental compilation flow has been removed in the Quartus II
software version 10.0.

■ Removed “Referenced Documents” section.

November 2009 9.1.0
■ Updated device support list

■ Made minor editorial updates

March 2009 9.0.0

■ Updated Figure 17–17.

■ Made minor editorial updates.

■ Chapter 15 was previously Chapter 13 in the 8.1.0 release.

November 2008 8.1.0

■ Corrected preservation attributes for ECOs in the section “Using Incremental Compilation
in the ECO Flow” on page 15–32.

■ Minor editorial updates.

■ Changed to 8½” x 11” page size.

May 2008 8.0.0

■ Updated device support list

■ Modified description for ECO support for block RAMs and DSP blocks

■ Corrected Stratix PLL ECO example

■ Added an application example to show modifying the connectivity between resource
atoms
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

December 2010 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 10.1.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such
third-party software products and its use in the Quartus II 10.1 software release. To
the extent that the software products described in this handbook are derived from
third-party software, no third party warrants the software, assumes any liability
regarding use of the software, or undertakes to furnish you any support or
information relating to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE
APPLICABLE ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT
UNDER WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO
THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN
THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization December 2010 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

101 Innovation Drive
San Jose, CA 95134
www.altera.com

QII5V3-10.1.0

Quartus II Handbook Version 10.1 Volume 3:
Verification

Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com

Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

December 2010 Altera Corporation
Contents
Chapter Revision Dates . xxi

Section I. Simulation

Chapter 1. Simulating Altera Designs
Design Flow . 1–2

RTL Functional Simulation Flow . 1–3
Gate-Level Timing Simulation Flow . 1–4

Simulation Netlist Files . 1–5
EDA Simulation Library Compiler . 1–8

Running the EDA Simulation Library Compiler Through the GUI . 1–8
Running the EDA Simulation Library Compiler from the Command Line . 1–9

Using the NativeLink Feature . 1–10
Setting Up the EDA Simulator Execution Path . 1–10
Configuring NativeLink Settings . 1–11
Setting Up Testbench Files Using the NativeLink Feature . 1–13

Simulating Altera IP Cores . 1–14
IP Simulation Flows . 1–15
IP Variant Directory Structure . 1–15

Synthesis Files . 1–15
Simulation Model Files . 1–16

Instantiate the IP Core . 1–17
Perform Functional Simulation . 1–18

Verilog HDL and VHDL IP Functional Simulation Models . 1–18
Simulating Altera IP Cores Using the Quartus II NativeLink Feature . 1–19
Using the EDA Simulation Library Compiler . 1–20
Running RTL Functional Simulation Using the NativeLink Feature . 1–20
Running Gate-Level Timing Simulation Using the NativeLink Feature . 1–21

Simulating Qsys and SOPC Builder System Designs . 1–21
Document Revision History . 1–22

Chapter 2. Mentor Graphics ModelSim and QuestaSim Support
Software Requirements . 2–2
Design Flow with ModelSim-Altera, ModelSim, or QuestaSim Software . 2–2
Simulation Libraries . 2–2

Precompiled Simulation Libraries in the ModelSim-Altera Software . 2–3
Simulation Library Files in the Quartus II Software . 2–3
Disabling Timing Violation on Registers . 2–3

Performing Simulation Using the ModelSim-Altera Software . 2–3
Performing Functional Simulation . 2–4

Setting Up a Quartus II Project for the ModelSim-Altera Software . 2–4
Compiling and Loading Designs with the ModelSim-Altera Software . 2–4
Performing the Simulation . 2–4

Performing Post-Synthesis Simulation . 2–4
Performing Gate-Level Timing Simulation . 2–5

Performing Simulation Using the ModelSim and QuestaSim Software . 2–5
Simulating VHDL Designs Using the GUI . 2–5

Performing Functional Simulation . 2–5
Quartus II Handbook Version 10.1 Volume 3: Verification

iv Contents
Performing Post-Synthesis Simulation . 2–6
Performing Gate-Level Simulation . 2–6

Simulating Verilog HDL Designs Using the GUI . 2–7
Performing Functional Simulation . 2–7
Performing Post-Synthesis Simulation . 2–8
Performing Gate-Level Simulation . 2–8

Simulating VHDL Designs From the Command Line . 2–8
Performing Functional Simulation . 2–9
Performing Post-Synthesis Simulation . 2–10
Performing Gate-Level Simulation . 2–11

Simulating Verilog HDL Designs from the Command Line . 2–12
Performing Functional Simulation . 2–12
Performing Post-Synthesis Simulation . 2–13
Performing Gate-Level Simulation . 2–14

Passing Parameter Information from Verilog to VHDL . 2–15
Speeding Up Simulation . 2–15

Simulating Designs that Include Transceivers . 2–15
Functional Simulation for Stratix GX Devices . 2–16

Performing Functional Simulation in VHDL (ModelSim-Altera) . 2–16
Performing Functional Simulation in VHDL (ModelSim and QuestaSim) 2–16
Performing Functional Simulation in Verilog HDL (ModelSim-Altera) . 2–17
Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim) 2–17

Gate-Level Timing Simulation for Stratix GX Devices . 2–17
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 2–17
Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim) 2–17
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera) 2–18
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and QuestaSim) 2–18

Functional Simulation for Stratix II GX Devices . 2–18
Performing Functional Simulation in VHDL (ModelSim-Altera) . 2–18
Performing Functional Simulation in VHDL (ModelSim and QuestaSim) 2–19
Performing Functional Simulation in Verilog HDL (ModelSim-Altera) . 2–19
Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim) 2–19

Gate-Level Timing Simulation for Stratix II GX Devices . 2–19
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 2–19
Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim) 2–20
Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera) 2–20
Performing Gate-Level Timing Simulation in Verilog HDL ModelSim and QuestaSim) 2–20

Functional Simulation for Stratix IV GX Devices . 2–20
Performing Functional Simulation in VHDL (ModelSim-Altera) . 2–20
Performing Functional Simulation in VHDL (ModelSim and QuestaSim) 2–21
Performing Functional Simulation in Verilog HDL (ModelSim-Altera) . 2–21
Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim) 2–21

Gate-Level Timing Simulation for Stratix IV GX Devices . 2–21
Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera) 2–21
Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim) 2–22
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera) 2–22
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and QuestaSim) 2–22

Functional Simulation for Stratix V GX Devices . 2–22
Performing Functional Simulation in VHDL (ModelSim and QuestaSim) 2–22
Performing Functional Simulation in Verilog HDL (ModelSim-Altera) . 2–23
Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim) 2–23

Transport Delays . 2–23
+transport_path_delays . 2–23
+transport_int_delays . 2–23
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents v
Using the NativeLink Feature with ModelSim-Altera, ModelSim, or QuestaSim Software 2–23
ModelSim and QuestaSim Error Message Verification . 2–24
Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power Analyzer 2–24
Viewing a Waveform from a .wlf File . 2–25
Simulating with ModelSim-Altera Waveform . 2–25
Scripting Support . 2–26

Generating a Post-Synthesis Simulation Netlist for ModelSim and QuestaSim 2–26
Tcl Commands . 2–26
Command Prompt . 2–26

Generating a Gate-Level Timing Simulation Netlist for ModelSim and QuestaSim 2–26
Tcl Commands . 2–27
Command Line . 2–27

Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition 2–27
LM_LICENSE_FILE Variable . 2–28

Conclusion . 2–29
Document Revision History . 2–29

Chapter 3. Synopsys VCS and VCS MX Support
Software Requirements . 3–1
Using the VCS or VCS MX Software in the Quartus II Design Flow . 3–1

Compiling Libraries Using the EDA Simulation Library Compiler . 3–2
Functional Simulations . 3–2

Functional Simulation for Verilog HDL Designs . 3–2
Functional Simulation for VHDL Designs . 3–3

Post-Synthesis Simulation . 3–4
Post-Synthesis Simulation for Verilog HDL Designs . 3–5
Post-Synthesis Simulation for VHDL Designs . 3–5

Gate-Level Timing Simulation . 3–6
Gate-Level Timing Simulation for Verilog HDL Designs . 3–6
Gate-Level Timing Simulation for VHDL Designs . 3–6

Disabling Timing Violation on Registers . 3–7
Performing Timing Simulation Using the Post-Synthesis Netlist . 3–7

Common VCS and VCS MX Software Compiler Options . 3–8
Using DVE . 3–8
Debugging Support Command-Line Interface . 3–8
Simulating Designs that Include Transceivers . 3–9

Functional Simulation for Stratix GX Devices . 3–9
Compiling Library Files for Functional Simulation in Verilog HDL . 3–9

Gate-Level Timing Simulation for Stratix GX Devices . 3–9
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 3–10

Functional Simulation for Stratix II GX Devices . 3–10
Compiling Library Files for Functional Simulation in Verilog HDL . 3–10

Gate-Level Timing Simulation for Stratix II GX Devices . 3–10
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 3–11

Functional Simulation for Stratix IV GX Devices . 3–11
Compiling Library Files for Functional Simulation in Verilog HDL . 3–11

Gate-Level Timing Simulation for Stratix IV GX Devices . 3–11
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 3–12

Functional Simulation for Stratix V GX Devices . 3–12
Compiling Library Files for Functional Simulation . 3–12

Transport Delays . 3–13
+transport_path_delays . 3–13
+transport_int_delays . 3–13

Using NativeLink with the VCS or VCS MX Software . 3–13
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

vi Contents
Generating a Timing .vcd File for the PowerPlay Power Analyzer . 3–13
Viewing a Waveform from a .vpd or .vcd File . 3–14
Scripting Support . 3–15

Generating a Post-Synthesis Simulation Netlist for VCS . 3–15
Tcl Commands . 3–15
Command Prompt . 3–15

Generating a Gate-Level Timing Simulation Netlist for VCS . 3–16
Tcl Commands . 3–16
Command Prompt . 3–16

Conclusion . 3–16
Document Revision History . 3–16

Chapter 4. Cadence NC-Sim Support
Software Requirements . 4–1
Simulation Flow Overview . 4–1

Operation Modes . 4–2
Quartus II Software and NC Simulation Flow Overview . 4–2
Compiling Libraries Using the EDA Simulation Library Compiler . 4–3

Functional Simulation . 4–3
Creating Libraries . 4–4

For VHDL Designs . 4–4
For Verilog HDL Designs . 4–4

Compiling Source Code . 4–5
Elaborating Your Design . 4–6
Simulating Your Design . 4–6

Post-Synthesis Simulation . 4–7
Quartus II Simulation Output Files . 4–7
Creating Libraries . 4–7
Compiling Project Files and Libraries . 4–7
Elaborating Your Design . 4–8
Simulating Your Design . 4–8

Gate-Level Timing Simulation . 4–8
Generating a Gate-Level Timing Simulation Netlist . 4–8
Disabling Timing Violation on Registers . 4–8
Creating Libraries . 4–9
Compiling Project Files and Libraries . 4–9
Elaborating Your Design . 4–9

Compiling the .sdo File (VHDL Only) in Command-Line Mode . 4–10
Compiling the .sdo File (VHDL Only) in GUI Mode . 4–10

Simulating Your Design . 4–10
Simulating Designs that Include Transceivers . 4–10

Functional Simulation for Stratix GX Devices . 4–11
Compiling Library Files for Functional Simulation in VHDL . 4–11
Compiling Library Files for Functional Simulation in Verilog HDL . 4–11

Gate-Level Timing Simulation for Stratix GX Devices . 4–11
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 4–12
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4–12

Functional Simulation for Stratix II GX Devices . 4–12
Compiling Library Files for Functional Simulation in VHDL . 4–13
Compiling Library Files for Functional Simulation in Verilog HDL . 4–13

Gate-Level Timing Simulation for Stratix II GX Devices . 4–13
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 4–14
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4–14

Functional Simulation for Stratix IV GX Devices . 4–14
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents vii
Compiling Library Files for Functional Simulation in VHDL . 4–15
Compiling Library Files for Functional Simulation in Verilog HDL . 4–15

Gate-Level Timing Simulation for Stratix IV GX Devices . 4–15
Compiling Library Files for Gate-Level Timing Simulation in VHDL . 4–16
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL 4–16

Functional Simulation for Stratix V GX Devices . 4–16
Compiling Library Files for Functional Simulation . 4–17
Compiling Library Files for Functional Simulation in VHDL . 4–17
Compiling Library Files for Functional Simulation in Verilog HDL . 4–17

Pulse Reject Delays . 4–18
-PULSE_R . 4–18
-PULSE_INT_R . 4–18

Using the NativeLink Feature with NC-Sim . 4–18
Generating a Timing VCD File for the PowerPlay Power Analyzer . 4–18
Viewing a Waveform from a .trn File . 4–19
Scripting Support . 4–20

Generating NC-Sim Simulation Output Files . 4–20
Tcl Commands . 4–20
Command Prompt . 4–21

Conclusion . 4–21
Document Revision History . 4–21

Chapter 5. Aldec Active-HDL and Riviera-PRO Support
Software Requirements . 5–1
Using Active-HDL or Riviera-PRO Software in Quartus II Design Flows . 5–1
Simulation Libraries . 5–2

Simulation Library Files in the Quartus II Software . 5–2
Disabling Timing Violation on Registers . 5–2

Compiling Libraries Using the EDA Simulation Library Compiler . 5–3
Performing Simulation Using the Active-HDL Software (GUI Mode) . 5–3

Simulating VHDL Designs . 5–3
Performing Functional Simulation . 5–3

Simulating Verilog HDL Designs . 5–4
Performing Functional Simulation . 5–4

Performing Simulation Using the Riviera-PRO Software (GUI Mode) . 5–5
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode) . . . 5–6

Simulating Verilog HDL Designs Using the Active-HDL or Riviera-PRO Software 5–7
Performing Functional Simulation . 5–7
Performing Post-Synthesis Simulation . 5–7
Performing Gate-Level Timing Simulation . 5–8

Simulating VHDL Designs Using the Active-HDL or Riviera-PRO Software 5–9
Performing Functional Simulation . 5–9
Performing Post-Synthesis Simulation . 5–10
Performing Gate-Level Timing Simulation . 5–10

Compiling System Verilog Files . 5–11
Simulating Designs that Include Transceivers . 5–11

Functional Simulation for Stratix II GX Devices . 5–11
Performing Functional Simulation in VHDL . 5–12
Performing Functional Simulation in Verilog HDL . 5–12

Gate-Level Timing Simulation for Stratix II GX Devices . 5–12
Performing Gate-Level Timing Simulation in VHDL . 5–13
Performing Gate-Level Timing Simulation in Verilog HDL . 5–13

Functional Simulation for Stratix GX Devices . 5–13
Performing Functional Simulation in VHDL . 5–13
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

viii Contents
Performing Functional Simulation in Verilog HDL . 5–14
Gate-Level Timing Simulation for Stratix GX Devices . 5–14

Performing Gate-Level Timing Simulation in VHDL . 5–14
Performing Gate-Level Timing Simulation in Verilog HDL . 5–14

Functional Simulation for Stratix IV GX Devices . 5–14
Performing Functional Simulation in VHDL . 5–15
Performing Functional Simulation in Verilog HDL . 5–15

Gate-Level Timing Simulation for Stratix IV GX Devices . 5–15
Performing Gate-Level Timing Simulation in VHDL . 5–16
Performing Gate-Level Timing Simulation in Verilog HDL . 5–16

Functional Simulation for Stratix V GX Devices . 5–16
Performing Functional Simulation in VHDL . 5–17
Performing Functional Simulation in Verilog HDL . 5–17

Transport Delays . 5–17
Using the NativeLink Feature in Active-HDL or Riviera-PRO Software . 5–18
Generating .vcd Files for the PowerPlay Power Analyzer . 5–18
Scripting Support . 5–19

Generating a Post-Synthesis Simulation Netlist for Active-HDL or Riviera-PRO 5–19
Tcl Commands . 5–19
Command Line . 5–19

Generating a Gate-Level Timing Simulation Netlist for Active-HDL or Riviera-PRO 5–20
Tcl Commands . 5–20
Command Line . 5–20

Conclusion . 5–20
Document Revision History . 5–21

Section II. Timing Analysis

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer . 6–1

Timing Netlists and Timing Paths . 6–2
The Timing Netlist . 6–2
Timing Paths . 6–3
Launch and Latch Edges . 6–4
Data and Clock Arrival Times . 6–4

Clock Setup Check . 6–5
Clock Hold Check . 6–6
Recovery and Removal Time . 6–7
Multicycle Paths . 6–9
Metastability . 6–11
Common Clock Path Pessimism Removal . 6–11
Clock-As-Data Analysis . 6–13
Multicorner Analysis . 6–15

Getting Started with the TimeQuest Analyzer . 6–16
Running the TimeQuest Analyzer . 6–17
Locating Timing Paths in Other Tools . 6–18
Recommended Flows . 6–19

Creating and Setting Up your Design . 6–20
Performing an Initial Compilation . 6–20
Specifying Timing Requirements . 6–21
Fitting and Timing Analysis with .sdc Files . 6–22
Performing a Full Compilation . 6–22
Verifying Timing . 6–22
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents ix
SDC File Precedence . 6–22
Using Tcl Commands . 6–23

Wildcard Characters . 6–24
Collection Commands . 6–24

Adding and Removing Collection Items . 6–24
Refining Collections with Wildcards . 6–25

Removing Constraints and Exceptions . 6–27
Creating Clocks and Clock Constraints . 6–27

Creating Clocks . 6–27
Creating Virtual Clocks . 6–28
Creating Multifrequency Clocks . 6–28
Creating Generated Clocks . 6–29
Automatically Detecting Clocks and Creating Default Clock Constraints . 6–30
Deriving PLL Clocks . 6–31
Creating Clock Groups . 6–33

Exclusive Clock Groups . 6–33
Asynchronous Clock Groups . 6–33

Accounting for Clock Effect Characteristics . 6–34
Clock Latency . 6–34
Clock Uncertainty . 6–34
I/O Interface Uncertainty . 6–35

Creating I/O Constraints . 6–37
Creating Delay and Skew Constraints . 6–38

Net Delay . 6–38
Advanced I/O Timing and Board Trace Model Delay . 6–38
Maximum Skew . 6–38

Creating Timing Exceptions . 6–39
Precedence . 6–39
False Paths . 6–39
Minimum and Maximum Delays . 6–39
Delay Annotation . 6–40

Timing Reports . 6–40
Document Revision History . 6–42

Chapter 7. Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Clock Requirements . 7–2

Base Clocks . 7–2
Derived Clocks . 7–3
Virtual Clocks . 7–3

Creating I/O Requirements . 7–5
Input Constraints . 7–6
Output Constraints . 7–6

Creating Timing Exceptions . 7–7
False Paths . 7–7
Minimum and Maximum Delays . 7–8

Creating Multicycle Exceptions . 7–8
Multicycle Clock Setup Check and Hold Check Analysis . 7–9

Multicycle Clock Setup . 7–10
Multicycle Clock Hold . 7–12

Examples of Basic Multicycle Exceptions . 7–14
Default Settings . 7–15
End Multicycle Setup = 2 and End Multicycle Hold = 0 . 7–17
End Multicycle Setup = 1 and End Multicycle Hold = 1 . 7–20
End Multicycle Setup = 2 and End Multicycle Hold = 1 . 7–23
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

x Contents
Start Multicycle Setup = 2 and Start Multicycle Hold = 0 . 7–26
Start Multicycle Setup = 1 and Start Multicycle Hold = 1 . 7–29
Start Multicycle Setup = 2 and Start Multicycle Hold = 1 . 7–32

Application of Multicycle Exceptions . 7–35
Same Frequency Clocks with Destination Clock Offset . 7–35
The Destination Clock Frequency is a Multiple of the Source Clock Frequency 7–37
The Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
. 7–40
The Source Clock Frequency is a Multiple of the Destination Clock Frequency 7–42
The Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
. 7–45

Document Revision History . 7–47

Chapter 8. Switching to the Quartus II TimeQuest Timing Analyzer
Benefits of Switching to the TimeQuest Analyzer . 8–1
Switching Your Design . 8–2

Open Your Compiled Design . 8–2
Create an SDC Constraints . 8–2

Create SDC Constraints Manually . 8–2
Create SDC Constraints from Existing Timing Assignments . 8–2

Start the TimeQuest Analyzer . 8–3
Differences Between the Quartus II Timing Analyzers . 8–3

Terminology . 8–3
Netlists . 8–3
Collections . 8–4

Constraints . 8–5
Constraint Files . 8–5
Constraint Entry . 8–5
Time Units . 8–6
MegaCore Functions . 8–6
Bus Name Format . 8–6
Constraint File Priority . 8–7
Constraint Priority . 8–8
Ambiguous Constraints . 8–9

Clocks . 8–10
Related and Unrelated Clocks . 8–10
Clock Offset . 8–10
Clock Latency . 8–11
Offset and Latency Example . 8–11
Clock Uncertainty . 8–13
Derived and Generated Clocks . 8–14
Automatic Clock Detection . 8–14
Hold Relationship . 8–17

Clock Objects . 8–18
Hold Multicycle . 8–18
Fitter Performance and Behavior . 8–19
Reporting . 8–20

Paths and Pairs . 8–20
Default Reports . 8–21
Netlist Names . 8–21
Non-Integer Clock Periods . 8–21
Other Features . 8–23

Timing Assignment Conversion . 8–24
Setup Relationship . 8–24
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents xi
Hold Relationship . 8–25
Clock Latency . 8–25
Clock Uncertainty . 8–25
Inverted Clock . 8–25
Not a Clock . 8–26
Default Required fMAX Assignment . 8–26
Virtual Clock Reference . 8–26
Clock Settings . 8–27
Multicycle . 8–27
Clock Enable Multicycle . 8–28
I/O Constraints . 8–28
Input and Output Delay . 8–29
tSU Requirement . 8–30
tH Requirement . 8–32
tCO Requirement . 8–34
Minimum tCO Requirement . 8–36
tPD Requirement . 8–38
Minimum tPD Requirement . 8–40
Cut Timing Path . 8–40
Maximum Delay . 8–40
Minimum Delay . 8–41
Maximum Clock Arrival Skew . 8–41
Maximum Data Arrival Skew . 8–41

Constraining Skew on an Output Bus . 8–41
Conversion Utility . 8–43

Unsupported Global Assignments . 8–43
Recommended Global Assignments . 8–43
Clock Conversion . 8–45
Instance Assignment Conversion . 8–46

PLL Phase Shift Conversion . 8–48
tCO Requirement Conversion . 8–49

Entity-Specific Assignments . 8–49
Paths Between Unrelated Clock Domains . 8–49
Unsupported Instance Assignments . 8–50
Reviewing Conversion Results . 8–50

Warning Messages . 8–50
Clocks . 8–52
Clock Transfers . 8–52
Path Details . 8–52
Unconstrained Paths . 8–52
Bus Names . 8–53
Other . 8–53

Rerunning the Conversion Utility . 8–53
Notes . 8–53

Output Pin Load Assignments . 8–53
Constraint Target Types . 8–53
DDR Constraints with the DDR Timing Wizard . 8–54
Unsupported SDC Features . 8–54
Constraint Passing and Optimization . 8–54
Clock Network Delay Reporting . 8–54
Project Management . 8–55
Conversion Utility . 8–55

tPD and Minimum tPD Requirement Conversion . 8–55
Document Revision History . 8–55
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

xii Contents
Chapter 9. Synopsys PrimeTime Support
Quartus II Settings for Generating the PrimeTime Software Files . 9–1
Files Generated for the PrimeTime Software Environment . 9–2

The Netlist . 9–2
The .sdo File . 9–2

Generating Multiple Operating Conditions with the TimeQuest Analyzer 9–3
The Tcl Script . 9–4

Generated File Summary . 9–6
Running the PrimeTime Software . 9–6

Analyzing Quartus II Projects . 9–7
Other pt_shell Commands . 9–7

PrimeTime Timing Reports . 9–7
Sample PrimeTime Software Timing Report . 9–7
Comparing Timing Reports from the Classic Timing Analyzer and the PrimeTime Software 9–8

Clock Setup Relationship and Slack . 9–9
Clock Hold Relationship and Slack . 9–12
Input Delay and Output Delay Relationships and Slack . 9–16

Static Timing Analyzer Differences . 9–18
Classic Timing Analyzer and PrimeTime Software . 9–18

Rise/Fall Support . 9–18
Minimum and Maximum Delays . 9–18
Recovery/Removal Analysis . 9–18
Encrypted Intellectual Property Blocks . 9–18
Registered Clock Signals . 9–19
Multiple Source and Destination Register Pairs . 9–19
Latches . 9–19
LVDS I/O . 9–20
Clock Latency . 9–20
Input and Output Delay Assignments . 9–20
Generated Clocks Derived from Generated Clocks . 9–20

TimeQuest Timing Analyzer and PrimeTime Software . 9–20
Encrypted Intellectual Property Blocks . 9–20
Latches . 9–21
LVDS I/O . 9–21
The TimeQuest Timing Analyzer .sdc File and PrimeTime Compatibility 9–21
Clock and Data Paths . 9–21
Inverting and Non-Inverting Propagation . 9–21
Multiple Rise/Fall Numbers For a Timing Arc . 9–21
Virtual Generated Clocks . 9–22
Generated Clocks Derived from Generated Clocks . 9–22

Conclusion . 9–22
Document Revision History . 9–22

Section III. Power Estimation and Analysis

Chapter 10. PowerPlay Power Analysis
Types of Power Analyses . 10–2
Factors Affecting Power Consumption . 10–2

Device Selection . 10–2
Environmental Conditions . 10–3

Airflow . 10–3
Heat Sink and Thermal Compound . 10–3
Junction Temperature . 10–3
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents xiii
Board Thermal Model . 10–3
Device Resource Usage . 10–3

Number, Type, and Loading of I/O Pins . 10–4
Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks 10–4
Number and Type of Global Signals . 10–4

Signal Activities . 10–4
Creating PowerPlay EPE Spreadsheets . 10–5

PowerPlay EPE File Generator Compilation Report . 10–6
PowerPlay Power Analyzer Flow . 10–7

Operating Settings and Conditions . 10–7
Signal Activities Data Sources . 10–8

Simulation Results . 10–9
Using Simulation Files in Modular Design Flows . 10–10

Complete Design Simulation . 10–11
Modular Design Simulation . 10–11
Multiple Simulations on the Same Entity . 10–12
Overlapping Simulations . 10–12
Partial Simulations . 10–13
Node Name Matching Considerations . 10–13
Glitch Filtering . 10–13
Node and Entity Assignments . 10–15

Timing Assignments to Clock Nodes . 10–16
Default Toggle Rate Assignment . 10–16
Vectorless Estimation . 10–16

Using the PowerPlay Power Analyzer . 10–16
Common Analysis Flows . 10–17

Signal Activities from Full Post-Fit Netlist (Timing) Simulation . 10–17
Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation . 10–17
Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
. 10–17
Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities 10–17
Signal Activities from User Defaults Only . 10–17

Generating a .vcd . 10–18
Generating a .vcd from ModelSim Software . 10–19
Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation . 10–19

Running the PowerPlay Power Analyzer Using the Quartus II GUI . 10–20
PowerPlay Power Analyzer Compilation Report . 10–20

Summary . 10–20
Settings . 10–20
Simulation Files Read . 10–20
Operating Conditions Used . 10–21
Thermal Power Dissipated by Block . 10–21
Thermal Power Dissipation by Block Type (Device Resource Type) . 10–21
Thermal Power Dissipation by Hierarchy . 10–21
Core Dynamic Thermal Power Dissipation by Clock Domain . 10–21
Current Drawn from Voltage Supplies . 10–21
Confidence Metric Details . 10–22
Signal Activities . 10–22
Messages . 10–22
Specific Rules for Reporting . 10–22

Scripting Support . 10–22
Running the PowerPlay Power Analyzer from the Command–Line . 10–23

Conclusion . 10–24
Document Revision History . 10–24
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

xiv Contents
Section IV. System Debugging Tools

Chapter 11. System Debugging Tools Overview
System Debugging Tools . 11–1

Analysis Tools for RTL Nodes . 11–4
Resource Usage . 11–4
Pin Usage . 11–5
Usability Enhancements . 11–6

Stimulus-Capable Tools . 11–8
In-System Sources and Probes . 11–8
In-System Memory Content Editor . 11–8
Virtual JTAG Interface Megafunction . 11–9
System Console . 11–9

Conclusion . 11–9
Document Revision History . 11–10

Chapter 12. Analyzing and Debugging Designs with the System Console
Introduction . 12–1
System Console Overview . 12–1

Finding and Referring To Services . 12–1
Accessing the Service Life Cycle . 12–2
Applying Services . 12–2

Setting Up the System Console . 12–3
Interactive Help . 12–3
Using the System Console . 12–3

Qsys and SOPC Builder Communications . 12–4
Console Commands . 12–6
Plugins . 12–8
Design Service Commands . 12–8
Data Pattern Generator Commands . 12–9
Data Pattern Checker Commands . 12–10
Programmable Logic Device (PLD) Commands . 12–10
Board Bring-Up Commands . 12–11

JTAG Debug Commands . 12–11
Clock and Reset Signal Commands . 12–12
Avalon-MM Commands . 12–12

Processor Commands . 12–14
Bytestream Commands . 12–14
Transceiver Toolkit Commands . 12–15
In-System Sources and Probes Commands . 12–20
Monitor Commands . 12–21
Dashboard Commands . 12–22

Specifying Widgets . 12–23
Customizing Widgets . 12–24
Assigning Dashboard Widget Properties . 12–24

System Console Examples . 12–27
LED Light Show Example . 12–28
Loading and Linking a Design . 12–30
JTAG Examples . 12–30

Verify JTAG Chain . 12–30
Verify Clock . 12–32

Checksum Example . 12–33
Nios II Processor Example . 12–36
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents xv
Device Support . 12–37
Conclusion . 12–37
Document Revision History . 12–37

Chapter 13. Transceiver Link Debugging Using the System Console
Transceiver Toolkit Overview . 13–1

Auto Sweep . 13–1
EyeQ . 13–2
Control Links . 13–2

Transceiver Link Debugging Design Examples . 13–2
Setting Up Tests for Link Debugging . 13–3

Custom PHY IP Core . 13–4
Low Latency PHY IP Core . 13–5
Avalon-ST Data Pattern Generator . 13–5
Data Checker . 13–6

Compiling Design Examples . 13–7
Changing Pin Assignments . 13–7

Transceiver Toolkit Link Test Setup . 13–8
Loading the Project in System Console . 13–8
Linking the Hardware Resource . 13–8
Creating the Channels . 13–9
Running the Link Tests . 13–9
Viewing Results in the EyeQ Feature . 13–10

Tcl Script in System Console . 13–11
Running Tcl Scripts . 13–12

Usage Scenarios . 13–12
Linking One Design to One Device Connected By One USB Blaster Cable 13–13
Linking Two Designs to Two Separate Devices on Same Board (JTAG Chained), Connected By One
USB Blaster Cable . 13–13
Linking Two Designs to Two Separate Devices on Separate Boards, Connected to Separate USB Blaster
Cables . 13–13
Linking Same Design on Two Separate Devices . 13–14
Linking Unrelated Designs . 13–14
Saving Your Setup As Tcl Scripts . 13–14
Verifying Channels Are Correct When Creating Link . 13–14
Using the Recommended DFE Flow . 13–15
Running Simultaneous Tests . 13–15

Conclusion . 13–16
Document Revision History . 13–16

Chapter 14. Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature . 14–1

Reserve the SignalProbe Pins . 14–2
Perform a Full Compilation . 14–2
Assign a SignalProbe Source . 14–2
Add Registers to the Pipeline Path to SignalProbe Pin . 14–3
Perform a SignalProbe Compilation . 14–3
Analyze the Results of the SignalProbe Compilation . 14–4
Performing a SignalProbe Compilation . 14–4
Understanding the Results of a SignalProbe Compilation . 14–5

Analyzing SignalProbe Routing Failures . 14–6
Scripting Support . 14–6

Make a SignalProbe Pin . 14–6
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

xvi Contents
Delete a SignalProbe Pin . 14–7
Enable a SignalProbe Pin . 14–7
Disable a SignalProbe Pin . 14–7
Perform a SignalProbe Compilation . 14–7

Script Example . 14–7
Reserving SignalProbe Pins . 14–7

Common Problems When Reserving a SignalProbe Pin . 14–7
Adding SignalProbe Sources . 14–8
Assigning I/O Standards . 14–8
Adding Registers for Pipelining . 14–8
Run SignalProbe Automatically . 14–9
Run SignalProbe Manually . 14–9
Enable or Disable All SignalProbe Routing . 14–9
Allow SignalProbe to Modify Fitting Results . 14–9

Conclusion . 14–10
Document Revision History . 14–10

Chapter 15. Design Debugging Using the SignalTap II Logic Analyzer
Hardware and Software Requirements . 15–2

Design Flow Using the SignalTap II Logic Analyzer . 15–4
SignalTap II Logic Analyzer Task Flow . 15–5

Add the SignalTap II Logic Analyzer to Your Design . 15–5
Configure the SignalTap II Logic Analyzer . 15–6
Define Trigger Conditions . 15–6
Compile the Design . 15–6
Program the Target Device or Devices . 15–6
Run the SignalTap II Logic Analyzer . 15–7
View, Analyze, and Use Captured Data . 15–7
Embedding Multiple Analyzers in One FPGA . 15–7
Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer . 15–7
Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer . 15–8

Configure the SignalTap II Logic Analyzer . 15–8
Assigning an Acquisition Clock . 15–9
Adding Signals to the SignalTap II File . 15–9

Signal Preservation . 15–10
Assigning Data Signals Using the Technology Map Viewer . 15–11
Node List Signal Use Options . 15–11
Untappable Signals . 15–12

Adding Signals with a Plug-In . 15–12
Adding Finite State Machine State Encoding Registers . 15–13

Modifying and Restoring Mnemonic Tables for State Machines . 15–14
Additional Considerations . 15–14

Specifying the Sample Depth . 15–14
Capturing Data to a Specific RAM Type . 15–15
Choosing the Buffer Acquisition Mode . 15–15

Non-Segmented Buffer . 15–16
Segmented Buffer . 15–16

Using the Storage Qualifier Feature . 15–17
Input Port Mode . 15–19
Transitional Mode . 15–20
Conditional Mode . 15–20
Start/Stop Mode . 15–22
State-Based . 15–23
Showing Data Discontinuities . 15–23
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents xvii
Disable Storage Qualifier . 15–23
Managing Multiple SignalTap II Files and Configurations . 15–23

Define Triggers . 15–25
Creating Basic Trigger Conditions . 15–25
Creating Advanced Trigger Conditions . 15–25

Examples of Advanced Triggering Expressions . 15–27
Trigger Condition Flow Control . 15–28

Sequential Triggering . 15–28
State-Based Triggering . 15–29
SignalTap II Trigger Flow Description Language . 15–32
State Labels . 15–33
Boolean_expression . 15–33
Action_list . 15–34
Resource Manipulation Action . 15–34
Buffer Control Action . 15–35
State Transition Action . 15–35
Using the State-Based Storage Qualifier Feature . 15–35

Specifying the Trigger Position . 15–39
Creating a Power-Up Trigger . 15–40

Enabling a Power-Up Trigger . 15–41
Managing and Configuring Power-Up and Runtime Trigger Conditions 15–41

Using External Triggers . 15–42
Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer 15–42

Compile the Design . 15–44
Faster Compilations with Quartus II Incremental Compilation . 15–45

Enabling Incremental Compilation for Your Design . 15–45
Using Incremental Compilation with the SignalTap II Logic Analyzer 15–45

Preventing Changes Requiring Recompilation . 15–48
Timing Preservation with the SignalTap II Logic Analyzer . 15–48
Performance and Resource Considerations . 15–48

Program the Target Device or Devices . 15–49
Run the SignalTap II Logic Analyzer . 15–50

Runtime Reconfigurable Options . 15–52
SignalTap II Status Messages . 15–55

View, Analyze, and Use Captured Data . 15–55
Capturing Data Using Segmented Buffers . 15–56
Differences in Pre-fill Write Behavior Between Different Acquisition Modes 15–57
Creating Mnemonics for Bit Patterns . 15–59
Automatic Mnemonics with a Plug-In . 15–59
Locating a Node in the Design . 15–60
Saving Captured Data . 15–61
Exporting Captured Data to Other File Formats . 15–61
Creating a SignalTap II List File . 15–61

Other Features . 15–61
Using the SignalTap II MATLAB MEX Function to Capture Data . 15–62
Using SignalTap II in a Lab Environment . 15–63
Remote Debugging Using the SignalTap II Logic Analyzer . 15–63

Equipment Setup . 15–64
Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream Security 15–64
Backward Compatibility with Previous Versions of Quartus II Software . 15–64
SignalTap II Command-Line Options . 15–65
SignalTap II Tcl Commands . 15–66

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems 15–66
Custom Triggering Flow Application Examples . 15–67
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

xviii Contents
Design Example 1: Specifying a Custom Trigger Position . 15–67
Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and
triggercond3 . 15–68

SignalTap II Scripting Support . 15–69
Conclusion . 15–69
Document Revision History . 15–70

Chapter 16. In-System Debugging Using External Logic Analyzers
Choosing a Logic Analyzer . 16–1

Required Components . 16–2
Debugging Your Design Using the LAI . 16–4
Working with LAI Files . 16–4

Configuring the File Core Parameters . 16–5
Mapping the LAI File Pins to Available I/O Pins . 16–5
Mapping Internal Signals to the LAI Banks . 16–5
Using the Node Finder . 16–6
Compiling Your Quartus II Project . 16–6
Programming Your Altera-Supported Device Using the LAI . 16–6

Controlling the Active Bank During Runtime . 16–7
Acquiring Data on Your Logic Analyzer . 16–7

Using the LAI with Incremental Compilation . 16–7
Conclusion . 16–8
Document Revision History . 16–8

Chapter 17. In-System Modification of Memory and Constants
Overview . 17–1
Updating Memory and Constants in Your Design . 17–2
Creating In-System Modifiable Memories and Constants . 17–2
Running the In-System Memory Content Editor . 17–2

Instance Manager . 17–3
Editing Data Displayed in the Hex Editor Pane . 17–3
Importing and Exporting Memory Files . 17–3
Scripting Support . 17–4
Programming the Device with the In-System Memory Content Editor . 17–4
Example: Using the In-System Memory Content Editor with the SignalTap II Logic Analyzer . . 17–4

Conclusion . 17–5
Document Revision History . 17–5

Chapter 18. Design Debugging Using In-System Sources and Probes
Overview . 18–1

Hardware and Software Requirements . 18–3
Design Flow Using the In-System Sources and Probes Editor . 18–4

Configuring the ALTSOURCE_PROBE Megafunction . 18–4
Instantiating the ALTSOURCE_PROBE Megafunction . 18–6
Compiling the Design . 18–6

Running the In-System Sources and Probes Editor . 18–7
Programming Your Device With JTAG Chain Configuration . 18–7
Instance Manager . 18–8
In-System Sources and Probes Editor Pane . 18–8

Reading Probe Data . 18–8
Writing Data . 18–9
Organizing Data . 18–9

Tcl interface for the In-System Sources and Probes Editor . 18–9
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Contents xix
Design Example: Dynamic PLL Reconfiguration . 18–13
Conclusion . 18–16
Document Revision History . 18–16

Section V. Formal Verification

Chapter 19. Cadence Encounter Conformal Support
Formal Verification Versus Simulation . 19–1
Formal Verification: What You Need to Know . 19–2

Formal Verification Design Flow . 19–2
Quartus II Integrated Synthesis . 19–3
EDA Tool Support for Quartus II Integrated Synthesis . 19–3
Synplify Pro . 19–3

RTL Coding Guidelines for Quartus II Integrated Synthesis . 19–4
Synthesis Directives and Attributes . 19–4
Stuck-at Registers . 19–5
ROM, LPM_DIVIDE, and Shift Register Inference . 19–6
RAM Inference . 19–7
Latch Inference . 19–7
Combinational Loops . 19–7
Finite State Machine Coding Styles . 19–8

Black Boxes in the Conformal LEC Flow . 19–8
Tcl Command . 19–9
GUI . 19–9

Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files 19–10
Quartus II Software Generated Files, Formal Verification Scripts, and Directories 19–11

Understanding the Formal Verification Scripts for Conformal LEC . 19–12
Conformal LEC Commands within the Quartus II Software-Generated Scripts 19–12

Comparing Designs Using Conformal LEC . 19–15
Running the Conformal LEC Software from the GUI . 19–15
Running the Conformal LEC Software From a System Command Prompt 19–16

Known Issues and Limitations . 19–16
Black Box Models . 19–18
Conformal Dofile/Script Example . 19–19
Conclusion . 19–21
Document Revision History . 19–21

Section VI. Device Programming

Chapter 20. Quartus II Programmer
Programming Flow . 20–1
Quartus II Programmer GUI . 20–3

Hardware Setup . 20–4
JTAG Settings . 20–4
JTAG Chain Debugger Tool . 20–4

JTAG Chain Debugger Example . 20–4
Other Programming Tools . 20–5

Stand-Alone Quartus II Programmer . 20–5
Programming and Configuration Modes . 20–5

Configuration Modes . 20–5
Design Security Key Programming . 20–6
Generating Secondary Programming Files . 20–7
Convert Programming Files Dialog Box . 20–7
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

xx Contents
Flash Loaders . 20–10
Scripting Support . 20–10

The jtagconfig Debugging Tool . 20–11
Conclusion . 20–11
Document Revision History . 20–11

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–2
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

December 2010 Altera Corporation
Chapter Revision Dates
The chapters in this document, Quartus II Handbook Version 10.1 Volume 3:
Verification, were revised on the following dates. Where chapters or groups of
chapters are available separately, part numbers are listed.

Chapter 1. Simulating Altera Designs
Revised: December 2010
Part Number: QII53025-10.1.0

Chapter 2. Mentor Graphics ModelSim and QuestaSim Support
Revised: December 2010
Part Number: QII53001-10.1.0

Chapter 3. Synopsys VCS and VCS MX Support
Revised: December 2010
Part Number: QII53002-10.0.1

Chapter 4. Cadence NC-Sim Support
Revised: December 2010
Part Number: QII53003-10.0.1

Chapter 5. Aldec Active-HDL and Riviera-PRO Support
Revised: December 2010
Part Number: QII53023-10.0.1

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Revised: December 2010
Part Number: QII53018-10.1.0

Chapter 7. Best Practices for the Quartus II TimeQuest Timing Analyzer
Revised: December 2010
Part Number: QII53024-10.1.0

Chapter 8. Switching to the Quartus II TimeQuest Timing Analyzer
Revised: December 2010
Part Number: QII53019-10.1.0

Chapter 9. Synopsys PrimeTime Support
Revised: December 2010
Part Number: QII53005-10.0.1

Chapter 10. PowerPlay Power Analysis
Revised: December 2010
Part Number: QII53013-10.1.0

Chapter 11. System Debugging Tools Overview
Revised: December 2010
Part Number: QII53027-10.1.0
Quartus II Handbook Version 10.1 Volume 3: Verification

xxii Chapter Revision Dates
Chapter 12. Analyzing and Debugging Designs with the System Console
Revised: December 2010
Part Number: QII53028-10.1.0

Chapter 13. Transceiver Link Debugging Using the System Console
Revised: December 2010
Part Number: QII53029-10.1.0

Chapter 14. Quick Design Debugging Using SignalProbe
Revised: December 2010
Part Number: QII53008-10.0.1

Chapter 15. Design Debugging Using the SignalTap II Logic Analyzer
Revised: December 2010
Part Number: QII53009-10.0.1

Chapter 16. In-System Debugging Using External Logic Analyzers
Revised: December 2010
Part Number: QII53016-10.1.0

Chapter 17. In-System Modification of Memory and Constants
Revised: December 2010
Part Number: QII53012-10.0.2

Chapter 18. Design Debugging Using In-System Sources and Probes
Revised: December 2010
Part Number: QII53021-10.1.0

Chapter 19. Cadence Encounter Conformal Support
Revised: December 2010
Part Number: QII53011-10.1.0

Chapter 20. Quartus II Programmer
Revised: December 2010
Part Number: QII53022-10.1.0
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

December 2010 Altera Corporation
Section I. Simulation
As the design complexity of FPGAs continues to rise, verification engineers are
finding it increasingly difficult to simulate their system-on-a-programmable-chip
(SOPC) designs in a timely manner. The verification process is now the bottleneck in
the FPGA design flow. The Quartus II software provides a wide range of features for
performing functional and timing simulation of designs in EDA simulation tools.

This section includes the following chapters:

■ Chapter 1, Simulating Altera Designs

This chapter provides guidelines to help you perform simulation for your Altera®

designs using EDA simulators and the Quartus II NativeLink feature. This chapter
also describes the process for instantiating the IP megafunctions in your design
and simulating their functional simulation models.

■ Chapter 2, Mentor Graphics ModelSim and QuestaSim Support

This chapter provides detailed instructions about how to simulate your design in
the ModelSim-Altera® software or the Mentor Graphics® ModelSim software.

■ Chapter 3, Synopsys VCS and VCS MX Support

This chapter describes how to use the Synopsys VCS and VCS MX software to
simulate designs that target Altera FPGAs.

■ Chapter 4, Cadence NC-Sim Support

This chapter describes the basic NC-Sim, NC-Verilog, and NC-VHDL functional,
post-synthesis, and gate-level timing simulations.

■ Chapter 5, Aldec Active-HDL and Riviera-PRO Support

This chapter describes how to use the Active-HDL software to simulate designs
that target Altera FPGAs.
Quartus II Handbook Version 10.1 Volume 3: Verification

I–2 Section I: Simulation
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53025-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53025-10.1.0
1. Simulating Altera Designs
This chapter provides guidelines to help simulate your Altera® designs using
third-party EDA simulators. You can simulate complex designs that include Altera or
third-party intellectual property (IP) cores. Simulation is the process of verifying the
design behavior before configuring the device.

You can use either of the following simulation tool flows:

■ Automatically create scripts to set up and launch an EDA simulator with the
Quartus® II NativeLink feature

■ Manually set up a simulation in your EDA simulator

The simulation tools Altera supports include ModelSim, ModelSim-Altera,
QuestaSim, VCS, VCS MX, NCSim, Active-HDL, and Riviera-PRO.

This chapter includes the following topics:

■ “Design Flow” on page 1–2

■ “EDA Simulation Library Compiler” on page 1–8

■ “Using the NativeLink Feature” on page 1–10

■ “Simulating Altera IP Cores” on page 1–14

■ “Simulating Qsys and SOPC Builder System Designs” on page 1–21
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53025

1–2 Chapter 1: Simulating Altera Designs
Design Flow
Design Flow
This section describes the simulation flows supported by the Quartus II software,
including RTL functional, post-synthesis, and gate-level simulation.

Figure 1–1 shows how these simulation flows fit within a typical design flow.

Figure 1–1. Altera Design Flow Incorporating Simulation

Notes to Figure 1–1:
(1) Generate Verilog Output Files (.vo),VHDL Output Files (.vho), and Standard Delay Format Output Files (.sdo) with the Quartus II Netlist Writer.
(2) Altera recommends that you use the Quartus II TimeQuest Timing Analyzer to help you verify and close timing. You also have the option to run

post-fit timing simulation, which can be slow for a large design. For more information about the TimeQuest Timing Analyzer, refer to The
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

(3) You can use the NativeLink feature to automate the process of running EDA simulations from the Quartus II software.

Optional (2)

Design Entry
(Verilog/VHDL/BDF)

Analysis & Synthesis

Fitter
(place-and-route)

Timing analysis
with the

TimeQuest Timing Analyzer

Program device

Generate simulation netlist files
(Functional) (1)

RTL functional
simulation (3)

Post-synthesis
simulation (3)

Generate simulation netlist files
(Timing) (1)

Gate-level
simulation (3)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 1: Simulating Altera Designs 1–3
Design Flow
RTL Functional Simulation Flow
RTL functional simulation allows you to simulate the behavior of your design without
timing information. Figure 1–2 shows the overall RTL functional simulation flow
supported by the Quartus II software. For information about running EDA simulation
automatically through the Quartus II software, refer to “Using the NativeLink
Feature” on page 1–10.

For information about manual simulation, refer to “Simulating Altera IP Cores
Manually” on page 1–20.

h For more information about performing functional simulation with ModelSim,
Questa, VCS, VCS-MX, NCSim, Active-HDL, and Riviera-PRO, refer to the following,
respectively, in Quartus II Help:

■ Performing a Functional Simulation with the ModelSim Software

■ Performing a Functional Simulation with the Questa Software

■ Performing a Functional Simulation with the VCS Software

■ Performing a Functional Simulation with the VCS-MX Software

■ Performing a Functional Simulation with the NCSim Software

■ Performing a Simulation of a Verilog HDL Design with the Active-HDL Software

■ Performing a Simulation of a VHDL Design with the Active-HDL Software

■ Performing an RTL Functional Simulation with the Riviera-PRO Software

Figure 1–2. : RTL Functional Simulation Flow

Notes to Figure 1–2:
(1) For more information, refer to “Using the NativeLink Feature” on page 1–10.
(2) For more information, refer to “Running RTL Functional Simulation Using the NativeLink Feature” on page 1–20.

Create a design and testbench
(may include IP)

Compile Altera
Libraries with

EDA Simulation
Library Compiler?

Yes

No
Use NativeLink

Simulation?

Specify NativeLink settings and
run Analysis and Elaboration (1)

Run RTL functional simulation
with NativeLink (2)

Run manual RTL functional
simulation with third-party tool

Manually compile
simulation librariesNo

Yes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/vcs/eda_pro_vcs_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/vcsmx/eda_pro_scir_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_view_ncsim_using.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vhdl_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_func_sim.htm

1–4 Chapter 1: Simulating Altera Designs
Design Flow
Gate-Level Timing Simulation Flow
Gate-level timing simulation allows you to simulate your design with post-fit timing
information. Figure 1–3 shows the overall gate-level timing simulation flow using the
Quartus II software. For information about running your simulation tool
automatically within the Quartus II software, refer to “Using the NativeLink Feature”
on page 1–10.

For information about manual simulation, refer to “Simulating Altera IP Cores
Manually” on page 1–20.

Figure 1–3. Gate-Level Timing Simulation Flow

Notes to Figure 1–3:

(1) For more information, refer to “Using the NativeLink Feature” on page 1–10.
(2) For more information, refer to “Running RTL Functional Simulation Using the NativeLink Feature” on page 1–20.

Create a design and testbench
(may include IP)

Compile Altera
Libraries with

EDA Simulation
Library Compiler?

Yes

No
Use NativeLink

Simulation?

Specify NativeLink settings and
run Analysis and Elaboration (1)

Run Analysis & Synthesis

Run manual gate-level timing
simulation with third-party tool

Manually compile
simulation librariesNo

Yes

Run Timing Analysis

Run manual gate-level timing
simulation with NativeLink (2)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 1: Simulating Altera Designs 1–5
Design Flow
h For more information about performing timing simulation with ModelSim, Questa,
VCS, VCS-MX, NCSim, Active-HDL, and Riviera-PRO, refer to the following,
respectively, in Quartus II Help:

■ Performing a Timing Simulation with the ModelSim Software

■ Performing a Timing Simulation with the Questa Software

■ Performing a Timing Simulation with the VCS Software

■ Performing a Timing Simulation with the VCS-MX (VHDL) Software

■ Performing a Timing Simulation with the NCSim Software

■ Performing a Simulation of a Verilog HDL Design with the Active-HDL Software

■ Performing a Simulation of a VHDL Design with the Active-HDL Software

■ Performing a Gate-Level Simulation with the Riviera-PRO Software

1 Altera recommends that you use the TimeQuest analyzer as an alternative to
gate-level timing simulation to achieve timing closure.

Simulation Netlist Files
Simulation netlist files are required to perform post-synthesis simulation or gate-level
timing simulation. These simulation netlist files are generated using the EDA Netlist
Writer.

If you are performing post-synthesis simulation, the Verilog HDL Output File (.vo) or
the VHDL Output File (.vho) is required. For the steps required to generate
post-synthesis simulation netlist files for .vo or .vho files, refer to “Generating
Post-Synthesis Simulation Netlist Files”.

If you are performing gate-level timing simulation, the .vo or .vho and the Standard
Delay Format Output File (.sdo) are required. The .sdo is used to annotate the delay
for the elements found in the .vo or .vho.

h To specify options for generating .vo, .vho, and .sdo files, refer to Specifying HDL
Output Settings in Quartus II Help.

Generating Post-Synthesis Simulation Netlist Files

If you want to generate a post-synthesis simulation netlist with just the cell delays,
you can generate an .sdo file without running the Fitter. In this case, the .sdo file
includes all timing values for only the device cells. Interconnect delays are not
included because fitting (placement and routing) was not performed. To generate the
post-synthesis netlist and the .sdo file, type the following commands at a command
prompt:

quartus_map <project name> -c <revision name> r
quartus_sta <project name> -c <revision name> --post_map r
quartus_eda <project name> -c <revision name> --simulation \
--tool= <3rd party EDA tool> --format=<HDL language> r
For more information about the -format and -tool options, type the following
command at a command prompt:

quartus_eda --help=<option> r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_specify_hdl_out.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_specify_hdl_out.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/vcs/eda_pro_vcs_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/vcsmx/eda_pro_scir_timing.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vhdl_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_gate_sim.htm

1–6 Chapter 1: Simulating Altera Designs
Design Flow
h For more information about how to generate post-synthesis simulation netlist files in
the Quartus II software, refer to Generating Simulation Netlist Files in Quartus II Help.

Generating Gate-Level Timing Simulation Netlist Files

To perform gate-level timing simulation, the EDA simulators require information
about how the design was placed into device-specific architectural blocks. The
Quartus II software provides this information in the form of .vo for Verilog HDL
designs and .vho for VHDL designs. The accompanying timing information is stored
in the .sdo, which annotates the delay for the elements found in the .vo or .vho. To
generate a gate-level timing simulation netlist in the Quartus II software, follow these
steps:

1. Configure the EDA Netlist Writer to generate functional simulation netlist. Refer
to “Generating Post-Synthesis Simulation Netlist Files”.

2. If you have not run a full compilation prior to the fitting process, perform a full
compilation. On the Processing menu, click Start Compilation.

3. On the Processing menu, point to Start and click Start EDA Netlist Writer.

During the full compilation or EDA Netlist Writer stage, the Quartus II software
produces a .vo, a .vho, and an .sdo used for gate-level timing simulations in the EDA
simulators. This netlist file is mapped to architecture-specific primitives. The timing
information for the netlist is included in the .sdo. The resulting netlist is located in the
output directory you specified in the Settings dialog box, which by default is the
<project directory>/simulation/<EDA Simulator> directory (<EDA Simulator> can be
modelsim, questasim, vcs, vcs mx, rivierapro, ncsim, or activehdl).

h For more information about how to generate a gate-level timing simulation netlist in
the Quartus II software, refer to Generating Simulation Netlist Files in Quartus II Help.

Generating Timing Simulation Netlist Files with Different Timing Models

In Stratix III and later devices, you can specify different temperature and voltage
parameters to generate the timing simulation netlist files with the Quartus II
TimeQuest Timing Analyzer. When you generate the timing simulation netlist files
(.vo, .vho, and .sdo files), different timing models for different operating conditions
are used by default. Multi-corner timing analysis is run by default during the full
compilation.

h For more information about generating timing simulation netlist files with different
timing models, refer to EDA Gate Level Simulation (Tools Menu) in Quartus II Help.

To manually generate the simulation netlist files (.vo or .vho and .sdo) for the three
different operating conditions, follow these steps:

1. Generate all available corner models at all operating conditions by typing the
following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the timing simulation netlist files for all three corners by performing

steps 1 through 3 in “Generating Gate-Level Timing Simulation Netlist Files” on
page 1–6. The output files are generated in the simulation output directory.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_com_run_gate_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_sim_gen_netlist.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_sim_gen_netlist.htm

Chapter 1: Simulating Altera Designs 1–7
Design Flow
The following examples show the timing simulation netlist files are generated for the
operating conditions of the preceding steps when Verilog HDL is selected as the
output netlist format.

First Slow Corner (slow, 1100 mV, 85° C)

■ .vo file—<revision name>.vo

■ .sdo file—<revision name>_v.sdo

The <revision_name>.vo and <revision name>_v.sdo are generated for backward
compatibility in case there are existing scripts that still use them.

■ .vo file—<revision name>_<speedgrade>_1100mv_85c_slow.vo

■ .sdo file—<revision name>_<speedgrade>_1100mv_85c_v_slow.sdo

Second Slow Corner (slow, 1100 mV, 0° C)

■ .vo file—<revision name>_<speedgrade>_1100mv_0c_slow.vo

■ .sdo file—<revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast Corner (fast, 1100 mV, 0° C)

■ .vo file—<revision name>_min_1100mv_0c_fast.vo

■ .sdo file—<revision name>_min_1100mv_0c_v_fast.sdo

For older devices, a slow-corner (worst case) timing model is used by default. There
are only two timing models available: slow-corner and fast-corner. To generate the
timing simulation netlist files using a different timing model, you must run the
TimeQuest analyzer with a different timing model before you start the EDA Netlist
Writer.

To run the TimeQuest analyzer with a best-case model, use the -fast_model option
after you create the timing netlist.

The following command enables the fast timing model:

create_timing_netlist --fast_model r
After running the TimeQuest analyzer, perform steps 1 through 3 in “Generating
Gate-Level Timing Simulation Netlist Files” on page 1–6 to generate the timing
simulation netlist file. For fast corner timing models, the -fast post fix is added to the
.vo or .vho and .sdo file (for example, my_project_fast.vo or my_project_fast.vho
and my_project_fast.sdo).

f For more information about performing multi-corner timing analysis, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

1–8 Chapter 1: Simulating Altera Designs
EDA Simulation Library Compiler
EDA Simulation Library Compiler
The EDA Simulation Library Compiler compiles Verilog HDL and VHDL simulation
libraries for all Altera devices and supported third-party simulators. You can use this
tool to automatically compile all libraries required for RTL functional and gate-level
timing simulation.

The compiled libraries are stored in the directory you specify. When you perform the
simulation, you can reuse the compiled libraries to avoid the overhead associated
with redundant library compilations.

If the compilation targets the VCS simulator, then the VCS options file
simlib_comp.vcs is generated after compilation. You can then include your design
and testbench files in the option files and invoke them with the vcs command.

Before using the EDA Simulation Library Compiler, ensure that the appropriate
simulation tools are already installed and their execution paths are specified. To
specify the path, refer to “Setting Up the EDA Simulator Execution Path” on
page 1–10.

h For more information about compiling Verilog HDL and VHDL simulation libraries
for all Altera devices and supported third-party simulators, refer to Compiling
Simulation Libraries in the Quartus II Software in Quartus II Help.

Running the EDA Simulation Library Compiler Through the GUI

1 The EDA Simulation Library Compiler does not support ModelSim-Altera because
ModelSim-Altera includes precompiled libraries.

To compile libraries with the EDA Simulation Library Compiler GUI, follow these
steps:

1. On the Tools menu, click Launch EDA Simulation Library Compiler. The EDA
Simulation Library Compiler dialog box appears.

2. In the Tool name list under EDA simulation tool, select your preferred EDA
simulator. The Executable location box displays the location of the simulation tool
you specified. This location must be set before running the EDA Simulation
Library Compiler.

3. Under Library families, select one or more device families for your design
compilation and move them to the Selected families box.

4. Under Library language, select VHDL, Verilog HDL, or both.

5. Specify the output netlist destination by editing or browsing to a directory in the
Output directory box.

You can then link to the directory so that the NativeLink feature reuses the
compiled libraries rather recompile them. Refer to step 9 under “Configuring
NativeLink Settings” on page 1–11.

6. Click Start Compilation.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_simlib_comp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_simlib_comp.htm

Chapter 1: Simulating Altera Designs 1–9
EDA Simulation Library Compiler
When the EDA Simulation Library Compiler finishes, for ModelSim, QuestaSim,
Active-HDL, Riviera-PRO, VCS MX, and NCSim, all required libraries are compiled
and stored in <output location you specified>/<verilog_libs or vhdl_libs>. The
library files (for example, modelsim.ini, cds.lib, and synopsys_sim.setup) are also
generated and stored in <output location you specified>.

When the EDA Simulation Library Compiler finishes, for VCS, the simlib_comp.vcs
file is generated. Example 1–1 shows the contents of a simple simlib_comp.vcs file.

If you manually run a simulation using the Synopsys VCS simulator, you must
include your design files and testbench file in the .synopys_sim.setup option file, as
shown in Example 1–2.

To compile all of the libraries, design files, and testbench files, type the following
command:

vcs -file simlib_comp.vcs r

Running the EDA Simulation Library Compiler from the Command Line
For Linux operating systems, you can force the EDA Simulation Library Compiler to
use the EDA simulator executables from the search path by typing the following
command at shell prompt:

export QUARTUS_INIT_PATH=$PATH

To run the EDA Simulation Library Compiler from the command line, type the
following command:

quartus_sh --simlib_comp -family <device> -tool <simulation tool name>
-tool_path <simulator executable location>

-language <language> -directory <directory> r

f For more information about the command line options and how to use them, type the
following command:

quartus_sh --help=simlib_comp r

Example 1–1.

+cli+1 -line -timescale=1ps/1ps \
-v /apps/quartus/10.1/quartus/eda/sim_lib/altera_primitives.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/220model.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/sgate.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/altera_mf.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/stratixiii_atoms.v \
+incdir+/apps/quartus/10.1/quartus/eda/sim_lib

Example 1–2.

+cli+1 -line -timescale=1ps/1ps design_file.v test_bench_file.v\
-v /apps/quartus/10.1/quartus/eda/sim_lib/altera_primitives.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/220model.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/sgate.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/altera_mf.v \
-v /apps/quartus/10.1/quartus/eda/sim_lib/stratixiii_atoms.v \
+incdir+/apps/quartus/10.1/quartus/eda/sim_lib
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

1–10 Chapter 1: Simulating Altera Designs
Using the NativeLink Feature
Using the NativeLink Feature
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools by allowing you to
launch an EDA simulator from the Quartus II software.

The Quartus II software contains all the libraries required for setting up and running a
successful simulation of Altera IP cores. If the IP core you are using supports the
Quartus II NativeLink feature, it is easy to use the NativeLink feature to set up your
simulation. However, you can also simulate Altera IP cores directly with third-party
simulators. To determine whether the NativeLink feature is supported, refer to the
applicable IP core user guide.

Setting Up the EDA Simulator Execution Path
To run an EDA simulator automatically from the Quartus II software using the
NativeLink feature, specify the path to your simulation tool by performing the
following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options.

3. Double-click the entry under Location of executable beside the name of your EDA
tool.

4. Type the path or browse to the directory containing the executables of your EDA
tool.

Table 1–1 lists the execution paths for each EDA simulator.

5. Click OK.

Table 1–1. Execution Paths for EDA Simulators

Simulator Path

ModelSim-Altera
c:\<ModelSim-Altera installation path>\win32aloem (Windows)

/<ModelSim-Altera installation path>/linuxaloem (Linux)

ModelSim
c:\<ModelSim installation path>\win32 (Windows)

/<ModelSim installation path>/bin (Linux)

QuestaSim
c:\<QuestaSim installation path>\win32 (Windows)

/<QuestaSim installation path>/bin (Linux)

VCS/VCS MX /<VCS MX installation path>/bin (Linux)

NCSim /<NCSim installation path>/tools/bin (Linux)

Active-HDL c:\<Active-HDL installation path>\bin (Windows)

Riviera-PRO c:\<Riviera-PRO installation path>\bin (Windows)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 1: Simulating Altera Designs 1–11
Using the NativeLink Feature
You can also specify the path to the simulator’s executables by typing the
set_user_option Tcl command, as follows:

set_user_option -name EDA_TOOL_PATH_MODELSIM <path to executables> r
set_user_option -name EDA_TOOL_PATH_MODELSIM_ALTERA <path to \
executables> r
set_user_option -name EDA_TOOL_PATH_QUESTASIM <path to executables> r
set_user_option -name EDA_TOOL_PATH_VCS <path to executables> r
set_user_option -name EDA_TOOL_PATH_VCS_MX <path to executables> r
set_user_option -name EDA_TOOL_PATH_NCSIM <path to executables> r
set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <path to executables> r
set_user_option -name EDA_TOOL_PATH_RIVIERAPRO <path to executables> r

Configuring NativeLink Settings
To configure NativeLink settings, follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Simulation. The Simulation page appears.

3. In the Tool name list, select your preferred EDA simulator.

4. For gate-level simulation, if you want to run simulation in your EDA simulator
automatically after Quartus II full compilation, turn on Run gate-level simulation
automatically after compilation.

5. If you have testbench files or macro scripts, enter the information under
NativeLink settings.

For more information about setting up a testbench file with NativeLink, refer to
“Setting Up Testbench Files Using the NativeLink Feature” on page 1–13.

6. If you want to run the EDA simulator in command-line mode, follow these steps:

a. On the Simulation page, click More NativeLink Settings. The More
NativeLink Settings dialog box appears.

b. Under Existing option settings, click Launch third-party EDA tool in
command-line mode.

c. In the Setting field, select On.

d. Click OK.

7. If you want to generate only the simulation script without launching the EDA
simulator during NativeLink simulation, follow these steps:

a. On the Simulation page, click More NativeLink Settings. The More
NativeLink Settings dialog box appears.

b. Under Existing option settings, click Generate third-party EDA tool
command scripts without running the EDA tool.

c. In the Setting field, select On.

d. Click OK.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

1–12 Chapter 1: Simulating Altera Designs
Using the NativeLink Feature
If you turn this option on and run NativeLink, only the simulation command
script is generated. The file names of simulation command scripts for various
simulators are as follows:

■ <project_name>_run_msim_<rtl/gate>_level_<verilog/vhdl>.do (ModelSim)

■ <project_name>_run_questasim_<rtl/gate>_level_<verilog/vhdl>.do
(QuestaSim)

■ <project_name>_sim_<rtl/gate>_<verilog/vhdl>.do (Riviera-PRO and
Active-HDL)

■ script_file.sh and <project_name>_rtl.vcs (VCS)

■ <project_name>_vcsmx_<rtl/gate>_<vhdl/verilog>.tcl (VCS MX)

■ <project_name>_ncsim_<rtl/gate>_<verilog/vhdl>.tcl (NCSim)

8. Depending on the simulator, perform the simulation by typing one of the
following commands:

do <script>.do r (ModelSim Macro File)

quartus_sh -t <script>.tcl r (Tcl Script File)

sh <script>.sh r (Shell script)

9. If you have compiled libraries using the EDA Simulation Library Compiler, follow
these steps:

a. On the Simulation page, click More EDA Netlist Writer Settings. The More
EDA Netlist Writer Settings dialog box appears.

b. Under Existing option settings, click Location of user compiled simulation
library.

c. In the Setting field, type the path that contains the user-compiled libraries that
are generated from the EDA Simulation Library Compiler. The path should be
the same as the path you have set in the Output Directory in the EDA
Simulation Library Compiler.

1 Step 9 is not applicable for Active-HDL and Riviera-PRO.

For more information about the EDA Simulation Library Compiler, refer to “EDA
Simulation Library Compiler” on page 1–8.

h For more information about using the Quartus II software with other EDA tools, refer
to About Using the Quartus II Software with Other EDA Tools in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_view_using_eda.htm

Chapter 1: Simulating Altera Designs 1–13
Using the NativeLink Feature
Setting Up Testbench Files Using the NativeLink Feature
You can use the NativeLink feature to compile your design files and testbench files,
and run an EDA simulation tool to automatically perform a simulation.

To set up the NativeLink feature for simulation, follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. The Simulation
page appears.

3. In the Tool name list, select your preferred EDA simulator.

4. Under NativeLink settings, select None, Compile test bench, or Script to
compile test bench (Table 1–2).

If you select Compile test bench, select your testbench setup from the Compile test
bench list. You can use different testbench setups to specify different test scenarios. If
there are no testbench setups entered, create a testbench setup by following these
steps:

1. Click Test Benches. The Test Benches dialog box appears.

2. Click New. The New Test Bench Settings dialog box appears.

3. In the Top level module in test bench box, type the top-level testbench entity or
module name. For example, for a Quartus II-generated VHDL testbench, type
<Vector Waveform File name>_vhd_vec_tst. The testbench name in the Test bench
name box automatically follows the top-level testbench entity or module name.

4. For gate-level simulation, turn on Use test bench to perform VHDL timing
simulation. In the Design instance name in test bench box, type the full instance
path to the top level of your FPGA design. For example, for a Quartus II-generated
VHDL testbench, type i1.

5. Under Simulation period, select Run simulation until all vector stimuli are used
or specify the end time of the simulation.

6. Under Test bench files, browse and add all of your testbench files in the File name
box. Use the Up and Down buttons to reorder your files. The script used by the
NativeLink feature compiles the files in order from top to bottom.

1 You can also specify the library name and HDL version to compile the
testbench file. The NativeLink feature compiles the testbench file to a
library name using the specified HDL version.

Table 1–2. NativeLink Testbench Settings

Setting Description

None NativeLink compiles simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and
starts simulation.

Script to compile test
bench

NativeLink compiles the simulation models and design files. The script you
provide is sourced after design files are compiled. Use this option when
you want to create your own script to compile your testbench file and
perform simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

1–14 Chapter 1: Simulating Altera Designs
Simulating Altera IP Cores
7. Click OK.

8. In the Test benches dialog box, click OK.

9. Under NativeLink settings, turn on Use script to set up simulation and browse to
your script. Your script is executed to set up and run simulation after loading the
design using the vsim command.

If you select Script to compile test bench, browse to your script and click OK.

1 You can also use the NativeLink feature in your script to compile your design files
and testbench files with customized settings.

Simulating Altera IP Cores
This section describes the process of simulating Altera IP cores in your design.

Even when the IP source code is encrypted or otherwise restricted, the Quartus II
software allows you to easily simulate designs that contain Altera IP cores. You can
customize Altera IP cores, then generate a VHDL or Verilog HDL functional
simulation model.

Altera IP cores support both Verilog HDL and VHDL simulation. The manner in
which dual-language simulation is supported for specific IP cores might differ.

For more information about IP simulation models, refer to “Simulation Model Files”
on page 1–16.

When IEEE 1364-2005 encrypted Verilog HDL simulation models are provided, they
are encrypted separately for each Altera-supported simulation vendor. You need a
simulator that is capable of VHDL/Verilog HDL co-simulation if you want to
simulate the model in a VHDL design. The IEEE 1364-2005 encrypted Verilog HDL
model is only used for Stratix V devices.

By special arrangement with Mentor Graphics®, you can simulate Altera IEEE
encrypted Verilog HDL models for your VHDL designs using the VHDL-only version
of ModelSim Altera Edition, as well as single-language VHDL versions of
ModelSim PE. Additionally, Altera IEEE encrypted Verilog models for all Mentor
Graphics simulators do not consume an additional runtime license. For example, if
you are simulating a VHDL design that contains Altera IEEE encrypted Verilog
models, no Verilog license for tools such as ModelSim SE/LNL is checked out. If your
design code is written in both Verilog HDL and VHDL, standard ModelSim license
consumption rules apply.

Some AMPPSM megafunctions might also use IP Functional Simulation (IPFS) models
for functional simulation. An IPFS model is a cycle-accurate VHDL or Verilog HDL
model produced by the Quartus II software. The model allows for fast functional
simulation of IP using industry-standard VHDL and Verilog HDL simulators.

1 IEEE encrypted Verilog models are generally faster than IPFS models.

c Use IPFS models for simulation only. Do not use them for synthesis or any other
purpose. Using these models for synthesis results in a nonfunctional design.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 1: Simulating Altera Designs 1–15
Simulating Altera IP Cores
IP Simulation Flows
The parameter editor for each IP core allows you to quickly and easily view
documentation, specify parameters, and generate simulation models and other
output files necessary to integrate the IP core into your design. When you use the
MegaWizard™ Plug-In Manager to parameterize your IP core, the Quartus II software
generates a Quartus II IP File (.qip) for inclusion in your Quartus II project. For IP
cores that use IPFS models, the Quartus II software can also generate a .vo or .vho that
contains an IPFS model. For IP cores that use IEEE encrypted Verilog HDL models or
plain-text HDL, the generated directory structure is shown in Figure 1–4 on
page 1–17.

h For a list of the RTL functional simulation library files, refer to Altera Functional
Simulation Libraries in Quartus II Help. For a list of the gate-level timing simulation
library files, refer to Altera Post-Fit Libraries in Quartus II Help.

IP Variant Directory Structure
You can use the parameter editor to help you parameterize IP cores. The location of
simulation output files varies by IP core. The following sections describe the related
output files generated by the IP generation process.

f For information about how to parameterize IP cores, refer to the appropriate IP core
user guide, available on the User Guides literature page of the Altera website.

Synthesis Files
For synthesis purposes, a <variant_name>.qip is generated in your project directory
for each IP core variation in your design. If you specify Verilog HDL or VHDL as the
output file type, an IP variant file (<variant_name>.v or <variant_name>.vhd) is
generated, respectively. The .qip is a single file that contains all synthesis information
required for processing by the Quartus II Compiler.

For some IP cores, a <variant_name> subdirectory is created in the project directory.
This directory contains files needed for synthesis, and might also contain Synopsys
Design Constraints Files (.sdc), Tcl Script Files (.tcl), and Pin Planner Files (.ppf).

To compile your design in the Quartus II software, you should add the
<variant_name>.qip files to your project, along with your design files. Additional
steps might be necessary, depending on the IP core.

f For more information, refer to the appropriate IP core user guide, available on the
User Guides literature page of the Altera website.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/lit-ug.jsp

1–16 Chapter 1: Simulating Altera Designs
Simulating Altera IP Cores
Simulation Model Files
The form and structure of simulation models that support Altera IP cores vary. IP
cores use the simulation models that are provided in the quartus/eda/sim_lib
directory of your Quartus II installation. Altera provides some of the models in this
directory as plain-text VHDL and Verilog HDL, while other models are IEEE
encrypted Verilog HDL for each of the Altera-supported EDA simulation vendors.
You can simulate the IEEE encrypted Verilog HDL models in VHDL designs if you
have a VHDL/Verilog HDL co-simulator. You can also simulate the IEEE encrypted
Verilog HDL models in any version of ModelSim, including the VHDL-only versions
of ModelSim Altera and ModelSim PE, because of the special arrangement Altera has
made with Mentor Graphics.

Depending on the specific IP core, Altera may provide simulation models in one or
more of the following formats:

■ Plain-text RTL in Verilog HDL, VHDL, or both

■ Mixed structural/RTL IPFS model in .vho and .vo

■ IEEE encrypted Verilog RTL models for each supported EDA simulation vendor

The simulation models can be generated to one or more of the following locations:

■ Your project directory—the simulation model is named <variant_name>.vo or
<variant_name>.vho

■ A directory hierarchy under your project directory—Figure 1–4 shows the
examples of directory hierarchies for simulation models.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 1: Simulating Altera Designs 1–17
Simulating Altera IP Cores
Some Altera IP cores include design examples, testbenches, simulator script
examples, and/or Quartus II project examples within one of the directory structures
in Figure 1–4.

f For core-specific information, refer to the appropriate IP core user guide, available on
the User Guides literature page of the Altera website.

Instantiate the IP Core
A fully parameterized IP core is called a variant. A .qip for each IP variant must be in
your Quartus II project. The Quartus II software may add the .qip files automatically.
For an overview about how to do this for synthesis and simulation, refer to “IP
Variant Directory Structure” on page 1–15.

f For information about instantiating IP cores, refer to the Megafunction Overview User
Guide, or the User Guide literature page of the Altera website.

Figure 1–4. Examples of Directory Hierarchies

<variant_name>_sim
This directory contains the files for simulation.

<simulation_model_files>

<variant_name>_sim
This directory contains the files for simulation.

<IP_core_name>

<simulation_model_files>

<simulation_vendor_name>

<IEEE_encrypted_Verilog_simulation_model_files>

<sub_module_name>

<simulation_model_files>

<sub_module_name>

<simulation_model_files>

<sub_module_name>

<simulation_model_files>

<vendor_name>

<IEEE_encrypted_Verilog_simulation_model_files>

<variant_name>_sim
This directory contains the files for simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/ug/ug_megafunction_overview.pdf
http://www.altera.com/literature/ug/ug_megafunction_overview.pdf
http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/lit-ug.jsp

1–18 Chapter 1: Simulating Altera Designs
Simulating Altera IP Cores
f For information about synthesis and compilation with the Quartus II software, refer
to the applicable chapters in Volume 1: Design Synthesis of the Quartus II Handbook.

Perform Functional Simulation
To perform functional simulation, in addition to adding your design files and
testbench files, you must also add the IP core variation file and other corresponding IP
simulation files and model libraries to your simulation project. For more information,
refer to “IP Variant Directory Structure” on page 1–15.

h IP cores that use device transceiver resources require the Altera transceiver libraries
for simulation. For more information, refer to Altera Functional Simulation Libraries in
Quartus II Help.

h The hard IP implementation of the PCI Express® IP core requires the PCIe libraries for
simulation. For more information, refer to Altera Functional Simulation Libraries in
Quartus II Help.

The Quartus II software includes all the simulation model libraries required for
running a successful simulation of Altera IP cores. If the IP core you are using
supports the Quartus II NativeLink feature, you can easily use the NativeLink feature
to set up your simulation. However, you can also simulate Altera IP cores directly
with third-party simulators. To determine whether the NativeLink feature is
supported, refer to the applicable IP core user guide.

Verilog HDL and VHDL IP Functional Simulation Models
Some IP cores use IP Functional Simulation (IPFS) models for functional simulation.
The IPFS models in Verilog HDL or VHDL format differ from the low-level
synthesized netlist in Verilog HDL or VHDL format generated by the Quartus II
software for post-synthesis or post place-and-route simulations. The IPFS models
generated by the Quartus II software are much faster than the low-level post-
synthesis or post place-and-route netlists of your design because they are mapped to
higher-level primitives such as adders, multipliers, and multiplexers. You can use
these IPFS models together with the rest of your design in any Altera-supported
simulator.

1 Simulator-independent IPFS primitives are located in the quartus/eda/sim_lib
directory. You must compile the files that correspond to the device you are using and
your simulation language.

f Generating an IPFS model for Altera IP cores does not require a license. However,
generating an IPFS model for AMPP megafunctions may require a license. For more
information about AMPP licensing requirements, refer to “Obtaining and Licensing
an AMPP Megafunction” in AN 343: OpenCore Evaluation of AMPP Megafunctions.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/literature/an/an343.pdf

Chapter 1: Simulating Altera Designs 1–19
Simulating Altera IP Cores
Stratix V Simulation Model Libraries

For Stratix V devices, Altera provides a set of IEEE encrypted Verilog RTL models for
use in both VHDL and Verilog HDL designs. In general, the RTL models simulate
faster than IPFS models.

h For more information about IEEE encrypted Verilog RTL models and for a list of IEEE
encrypted libraries for Stratix V devices, refer to Guidelines for Compiling Stratix V
Libraries in Quartus II Help.

In addition to Stratix V libraries, the altera_lnsim library which contains the altera_pll
model, currently only supports Stratix V devices. New device-independent models
will be added to the altera_lnsim library in later software releases. The altera_lnsim
library is provided only in SystemVerilog, but the version in the
quartus/eda/sim_lib/mentor directory can be simulated in all versions (6.6 c or later)
of Mentor Graphics simulators.

f For more information about the ALTERA_PLL megafunction, refer to the Altera
Phase-Locked Loop (ALTERA_PLL) Megafunction User Guide.

To use the Stratix V (and the altera_lnsim) libraries in VHDL, compile the VHDL
wrappers and Verilog HDL files into the same library.

If your design uses a mix of VHDL and Verilog HDL that references Altera simulation
models, you should use the Altera Verilog HDL models with the Verilog HDL portion
of your design and the Altera VHDL models with the VHDL portion of your design.
You can do this by specifying, mapping, and searching the Verilog HDL and VHDL
files of your simulator. For instructions about how to compile models into logical
libraries and how to map logical libraries to physical libraries, refer to your EDA
simulator’s documentation.

Simulating Altera IP Cores Using the Quartus II NativeLink Feature
The Quartus II NativeLink feature eases the tasks of setting up and running a
simulation. The NativeLink feature launches the supported simulator of your choice
from within the Quartus II software. The NativeLink feature also automates the
compilation and simulation of testbenches.

For more information about using the NativeLink feature to simulate Altera IP cores,
refer to “Using the NativeLink Feature” on page 1–10. For more information about the
RTL functional simulation flow, refer to Figure 1–2 on page 1–3.

Before running a NativeLink simulation, you must specify the NativeLink settings
and perform analysis and elaboration, as described in the following section.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm

1–20 Chapter 1: Simulating Altera Designs
Simulating Altera IP Cores
Perform Analysis and Elaboration on Your Design

To perform Analysis and Elaboration on your design, on the Quartus II Processing
menu, point to Start, then click Start Analysis & Elaboration.

If you are using the Quartus II NativeLink feature and your Quartus II project
contains IP cores that require IPFS models for simulation, you do not have to
manually add the IPFS models to the Quartus II project for these IP cores. When the
Quartus II NativeLink feature launches the third-party simulator tool and starts the
simulation, it automatically adds the IPFS model files required for simulation if they
are present in the Quartus II project directory.

You can now perform functional simulation in your third-party simulator.

Run Simulation with the Quartus II NativeLink Feature

For more information about using the NativeLink feature to simulate Altera IP cores,
refer to “Using the NativeLink Feature” on page 1–10.

Using the EDA Simulation Library Compiler
If you do not use the NativeLink feature, you must compile the simulation libraries
with the EDA Simulation Library Compiler or manually. The EDA Simulation Library
Compiler compiles all required libraries automatically.

For more information about the EDA Simulation Library Compiler, refer to “EDA
Simulation Library Compiler” on page 1–8.

Simulating Altera IP Cores Manually

You can alternatively simulate Altera IP cores in your third-party simulator by adding
its variation file to your simulation project. If the IP core requires IPFS model files, do
not add the IP core variation file to your simulation project. Instead, add its IPFS
model files (either Verilog HDL or VHDL) to your simulation project.

If your IP core generates any other type of simulation models as described in “IP
Variant Directory Structure” on page 1–15, you must compile all of the IP simulation
files (including the appropriate Altera simulation model library files) along with your
design and testbench.

To properly compile, load, and simulate the IP cores, you must first compile the
libraries in your simulation tool.

h For a list of library files, refer to Altera Functional Simulation Libraries in Quartus II
Help.

Running RTL Functional Simulation Using the NativeLink Feature
To run RTL functional simulation using the NativeLink feature, follow these steps:

1. Configure the NativeLink settings. Refer to “Configuring NativeLink Settings” on
page 1–11.

2. On the Processing menu, point to Start and click Start Analysis & Elaboration to
perform an Analysis and Elaboration. This command collects all your file name
information and builds your design hierarchy in preparation for simulation.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

Chapter 1: Simulating Altera Designs 1–21
Simulating Qsys and SOPC Builder System Designs
3. On the Tools menu, point to Run EDA Simulation Tool and click EDA RTL
Simulation to automatically run the EDA simulator, compile all necessary design
files, and complete a simulation.

Running Gate-Level Timing Simulation Using the NativeLink Feature
To run a gate-level timing simulation using the NativeLink feature, follow these steps:

1. Configure the EDA Netlist Writer settings. Refer to “Generating Post-Synthesis
Simulation Netlist Files” on page 1–5.

2. Configure the NativeLink settings. Refer to “Configuring NativeLink Settings” on
page 1–11.

3. On the Processing menu, click Start Compilation to perform Quartus II full
compilation, including generation of an EDA netlist file.

4. On the Tools menu, point to Run EDA Simulation Tool and click EDA Gate Level
Simulation to automatically run the EDA simulator, compile all necessary design
files, and complete a simulation.

1 If you have turned on Run gate-level simulation automatically after
compilation while configuring NativeLink settings, you can skip step 4.

Simulating Qsys and SOPC Builder System Designs

c Altera’s Qsys system integration tool is now available as beta for evaluation in the
Quartus II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

You can use the Qsys system integration tool or SOPC Builder in the Quartus II
software to create your system and generate simulation models for functional
simulation. You can also use SOPC Builder to generate system-level testbenches that
help you debug your system design.

If your design uses the Nios II processor, you must first initialize any memories that
contain software prior to simulation. You can create Memory Initialization Files (.mif)
for this purpose with the Nios II Software Build Tools.

f For more information about SOPC Builder, refer to the SOPC Builder User Guide. For
more information about using bus functional models (BFMs) to simulate Avalon®
standard interfaces in your system, refer to Avalon Verification IP Suite User Guide.

f For more information about simulating Qsys designs, refer to the Creating a System
with Qsys chapter of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
mysupport.altera.com
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/qts/qsys_intro.pdf

1–22 Chapter 1: Simulating Altera Designs
Document Revision History
f For more information about simulating designs that contain a Nios II processor, refer
to AN 351: Simulating Nios II Embedded Processors Designs.

Document Revision History
Table 1–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 1–3. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Title changed from “Simulating Designs with EDA Tools”

■ Merged content from “Simulating Altera IP in Third-Party Simulation Tools”
chapter to “Simulating Altera IP Cores” on page 1–14

■ Added new section “IP Variant Directory Structure” on page 1–15

■ Added new section “Simulating Qsys and SOPC Builder System Designs” on
page 1–21

■ Added information about simulating designs with Stratix V devices

■ Updated chapter to new template

July 2010 10.0.0

■ Linked to Quartus II Help where appropriate

■ Removed Referenced Documents section

■ Removed Creating Testbench Files

■ Added VCS and QuestaSim as third-party simulation tools

■ Updated “Running the EDA Simulation Library Compiler Through the GUI” on
page 1–18

■ Updated “Setting Up the EDA Simulator Execution Path” on page 1–19

■ Updated “Configuring NativeLink Settings” on page 1–20

■ Updated “Setting Up Testbench Files Using the NativeLink Feature” on page 1–22

November 2009 9.1.0 Initial release
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/an/an351.pdf

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53001-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53001-10.1.0
2. Mentor Graphics ModelSim and
QuestaSim Support
This chapter provides detailed instructions about how to simulate your design in the
ModelSim-Altera® software, Mentor Graphics® ModelSim software, and Mentor
Graphics QuestaSim software.

An Altera Quartus® II software subscription includes the ModelSim-Altera Starter
Edition, which is a a no-cost entry-level version of the ModelSim-Altera Subscription
Edition software. The ModelSim-Altera Subscription Edition software offers support
for all Altera devices. Both versions are available on PC and Linux platforms. You can
use the ModelSim-Altera software to perform functional, post-synthesis, and
gate-level timing simulations for either Verilog HDL or VHDL designs that target an
Altera FPGA.

1 In this chapter, ModelSim refers to ModelSim SE, PE, DE, and QuestaSim.
ModelSim-Altera refers to ModelSim-Altera Starter Edition and ModelSim-Altera
Subscription Edition software.

This chapter includes the following topics:

■ “Software Requirements” on page 2–2

■ “Design Flow with ModelSim-Altera, ModelSim, or QuestaSim Software” on
page 2–2

■ “Simulation Libraries” on page 2–2

■ “Performing Simulation Using the ModelSim-Altera Software” on page 2–3

■ “Performing Simulation Using the ModelSim and QuestaSim Software” on
page 2–5

■ “Simulating Designs that Include Transceivers” on page 2–15

■ “Using the NativeLink Feature with ModelSim-Altera, ModelSim, or QuestaSim
Software” on page 2–23

■ “Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power
Analyzer” on page 2–24

■ “Viewing a Waveform from a .wlf File” on page 2–25

■ “Simulating with ModelSim-Altera Waveform” on page 2–25

■ “Scripting Support” on page 2–26

■ “Software Licensing and Licensing Setup in ModelSim-Altera Subscription
Edition” on page 2–27
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53001

2–2 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Software Requirements
Software Requirements
To simulate your design using the ModelSim-Altera, ModelSim, and QuestaSim
software, you must first set up the Altera libraries. These libraries are installed with
the Quartus II software.

f For more information about installing the software and directories created during the
Quartus II software installation, refer to the Altera Software Installation and Licensing
manual.

Design Flow with ModelSim-Altera, ModelSim, or QuestaSim Software
You can perform the following types of simulations using the ModelSim-Altera,
ModelSim, or QuestaSim software:

■ Functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

1 Some versions of ModelSim and QuestaSim support SystemVerilog, PSL assertions,
SystemC, and more. For more information about the features supported in the
different versions of ModelSim and QuestaSim, refer to Mentor Graphics literature or
your salesperson.

1 The VHDL version of ModelSim-Altera and other single-language VHDL versions of
ModelSim cannot simulate designs that target the Stratix V device family if you are
using transceivers.

You need a version of ModelSim that supports VHDL/Verilog co-simulation to
simulate designs that use Stratix V transceivers.

f For more information about the Quartus II software design flow, refer to the “PLD
Design Flow” section in the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

f For additional documentation about ModelSim-Altera, refer to the ModelSim-Altera
Help that ships with the product. Click the Help button on the ModelSim-Altera
toolbar.

Simulation Libraries
Simulation model libraries are required to run a simulation whether you are running
a functional simulation, post-synthesis simulation, or gate-level timing simulation. In
general, running a functional simulation requires the functional simulation model
libraries, while running a post-synthesis or gate-level timing simulation requires the
gate-level timing simulation model libraries. Unless you are using ModelSim-Altera,
you must compile the necessary library files before you can run the simulation. The
ModelSim-Altera software has the Altera libraries pre-compiled and built in. Do not
compile these libraries again.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–3
Performing Simulation Using the ModelSim-Altera Software
There are a few exceptions in which you must compile gate-level timing simulation
library files to perform functional simulation. For example, some Altera
megafunctions require gate-level libraries to perform a functional simulation using
third-party simulators.

Precompiled Simulation Libraries in the ModelSim-Altera Software
Precompiled libraries for both functional and gate-level simulations are provided for
the ModelSim-Altera software. You should not compile these library files before
running a simulation.

The precompiled libraries provided in <ModelSim Altera path>/altera> must be
compatible with the version of the Quartus II software that is used to create the
simulation netlist. To check whether the precompiled libraries are compatible with
your version of the Quartus II software, refer to the <ModelSim Altera
path>/altera/version.txt file. This file shows which version and build of the Quartus II
software was used to create the precompiled libraries.

h For a list of precompiled library names for all functional and gate-level simulation
models, refer to ModelSim-Altera Precompiled Libraries in Quartus II Help.

Simulation Library Files in the Quartus II Software
In ModelSim and QuestaSim, no precompiled libraries are available. You must
compile the necessary libraries to perform functional or gate-level simulation.

h For a list of all functional simulation library files in the Quartus II directory, refer to
Altera Functional Simulation Libraries in Quartus II Help. For a list of all post-synthesis
and post-fit (gate-level) library files in the Quartus II directory, refer to Altera Post-Fit
Libraries in Quartus II Help. For a list of logical library names to compile for
simulation models, refer to Libraries For Altera Simulation Models in Quartus II Help.

Disabling Timing Violation on Registers
In certain situations, a timing violation can be ignored and you can disable timing
violations on registers (for example, timing violations that occur in internal
synchronization registers used for asynchronous clock domain crossing).

By default, the x_on_violation_option logic option is On, which means simulation
shows “x” whenever a timing violation occurs. To disable showing the timing
violation on certain registers, set the x_on_violation_option logic option to Off on
those registers. The following Quartus II Tcl command disables timing violation on
registers. This Tcl command is also stored in the .qsf file.

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name>

Performing Simulation Using the ModelSim-Altera Software
You can perform simulation of Verilog HDL or VHDL designs with the
ModelSim-Altera software at three levels: functional, post-synthesis, and gate-level.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_ref_msim_precomp_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_msim_alt_lib.htm

2–4 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim-Altera Software
For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

Performing Functional Simulation
Functional simulation verifies code syntax and design functionality. The following
sections describe how to perform functional simulation in the ModelSim-Altera
software for a Verilog HDL or VHDL design.

1 The ModelSim-Altera software includes precompiled simulation libraries for
Altera-provided models. You should not create simulation libraries and compile
simulation models for the pre-compiled Altera libraries.

Setting Up a Quartus II Project for the ModelSim-Altera Software
The first steps in performing a simulation are starting the ModelSim-Altera software,
changing to your project/simulation directory, and creating libraries for your design.

h For more information, refer to Setting Up a Project with the ModelSim-Altera Software in
Quartus II Help.

Compiling and Loading Designs with the ModelSim-Altera Software

h For information about compiling and loading your design files and testbench files,
refer to Mapping to Libraries and Compiling Design Files with the ModelSim-Altera
Software in Quartus II Help.

Performing the Simulation

h For information about performing a functional simulation with the ModelSim-Altera
software, refer to Performing a Functional Simulation with the ModelSim-Altera Software
in Quartus II Help.

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the
ModelSim-Altera software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

1 The ModelSim-Altera software includes precompiled simulation libraries. You should
not create simulation libraries and compile simulation models.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_alt_msim_map_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_alt_msim_map_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_setup_proj.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_func_sim.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–5
Performing Simulation Using the ModelSim and QuestaSim Software
h For information about performing a post-synthesis simulation with the
ModelSim-Altera software, refer to Performing a Timing Simulation with the
ModelSim-Altera Software in Quartus II Help.

Performing Gate-Level Timing Simulation
Gate-level timing simulation is an important step in ensuring that the device
functionality is correct and meets all timing requirements following place and route.
You can create the gate-level netlist in the Quartus II software and use the netlist to
perform gate-level timing simulation with the ModelSim-Altera software.

f Before running gate-level timing simulation, generate gate-level timing simulation
netlist files. For more information, refer to the “Generating Gate-Level Timing
Simulation Netlist Files” section in the Simulating Altera Designs chapter in volume 3
of the Quartus II Handbook.

1 The ModelSim-Altera software includes precompiled simulation libraries. It is not
necessary to create simulation libraries and compile simulation models.

h For information about performing a gate-level simulation with the ModelSim-Altera
software, refer to Performing a Timing Simulation with the ModelSim-Altera Software in
Quartus II Help.

f For additional documentation about ModelSim-Altera, refer to the ModelSim-Altera
Help that ships with the product. Click the Help button on the ModelSim-Altera
toolbar.

Performing Simulation Using the ModelSim and QuestaSim Software
You can perform simulation of Verilog HDL or VHDL designs with the ModelSim and
QuestaSim software at three levels: functional, post-synthesis, and gate-level.

You can perform the simulation through the GUI or from the command line. The
following sections provide instructions to perform the simulation through the GUI
and from the command line. You can proceed to the specific section that meets your
needs.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

Simulating VHDL Designs Using the GUI
This section provides information about performing functional, post-synthesis, and
gate-level simulations of VHDL designs using the GUI.

Performing Functional Simulation
This section provides information about compiling simulation models and
performing a functional simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_timing_sim.htm
http://quartushelp.altera.com/10.1/mergedProjects/eda/simulation/modelsim/eda_pro_msim_timing_sim.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–6 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim and QuestaSim Software
Compiling Simulation Models into Simulation Libraries

h For more information about how to compile simulation models into simulation
libraries if you are not using the EDA Simulation Library Compiler, refer to Compiling
Libraries and Design Files with the ModelSim Software in Quartus II Help.

h For more information about targeting a Stratix V device, refer to Guidelines for
Compiling Stratix V Libraries in Quartus II Help.

1 The altera_mf_components.vhd and altera_mf.vhd model files should be compiled
into the altera_mf library. The 220pack.vhd and 220model.vhd model files should be
compiled into the lpm library.

Performing the Simulation

h For information about simulating VHDL designs using the GUI, refer to Performing a
Functional Simulation with the ModelSim Software and Performing a Functional Simulation
with the QuestaSim Software in Quartus II Help.

h To see all of the functional simulation library files, refer to Altera Functional Simulation
Libraries in Quartus II Help.

Performing Post-Synthesis Simulation
You can perform post-synthesis simulation to verify that design functionality is
preserved after synthesis. You can create the post-synthesis netlist in the Quartus II
software and use the netlist to perform post-synthesis simulation with the ModelSim
and QuestaSim software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.

h For information about performing a post-synthesis simulation using the GUI, refer to
Performing a Timing Simulation with the ModelSim Software and Performing a Timing
Simulation with the QuestaSim Software in Quartus II Help.

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim and
QuestaSim software.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_func_sim.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_timing_sim.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–7
Performing Simulation Using the ModelSim and QuestaSim Software
f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

h For information about performing a gate-level simulation using the GUI, refer to
Performing a Timing Simulation with the ModelSim Software and Performing a Timing
Simulation with the QuestaSim Software in Quartus II Help.

Simulating Verilog HDL Designs Using the GUI
This section provides information about performing functional, post-synthesis, and
gate-level simulations of Verilog HDL designs using the GUI.

Performing Functional Simulation
This section provides information about compiling simulation models and
performing a functional simulation.

Compiling Simulation Models into Simulation Libraries

h For more information about how to compile simulation models into simulation
libraries if you are not using the EDA Simulation Library Compiler, refer to Compiling
Libraries and Design Files with the ModelSim Software in Quartus II Help.

h For more information about targeting a Stratix V device, refer to Guidelines for
Compiling Stratix V Libraries in Quartus II Help.

1 The PCIe file is required only if you are using the PCIe hard IP.

1 The altera_mf.v model files should be compiled into the altera_mf_ver library. The
220model.v model files should be compiled into the lpm_ver library.

Performing the Simulation

h For information about performing a functional simulation using the GUI, refer to
Performing a Functional Simulation with the ModelSim Software and Performing a
Functional Simulation with the QuestaSim Software in Quartus II Help.

h To see all of the functional simulation library files, refer to Altera Functional Simulation
Libraries in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_msim_alt_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_msim_alt_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_timing_sim.htm

2–8 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim and QuestaSim Software
Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that design functionality is preserved
after synthesis. Create the post-synthesis netlist in the Quartus II software and use the
netlist to perform post-synthesis simulation with the ModelSim and QuestaSim
software.

f Before running post-synthesis simulation, generate post-synthesis simulation netlist
files. For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.

h For information about performing a post-synthesis simulation using the GUI, refer to
Performing a Timing Simulation with the ModelSim Software and Performing a Timing
Simulation with the QuestaSim Software in Quartus II Help.

Performing Gate-Level Simulation
Gate-level simulation is a very important step in ensuring that the FPGA device’s
functionality is still correct and meets all required timing requirements after the
design was placed and routed. You can create the gate-level netlist in the Quartus II
software and use the netlist to perform gate-level simulation with the ModelSim and
QuestaSim software.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.

f Before running gate-level simulation, generate gate-level timing simulation netlist
files. For more information, refer to the “Generating Gate-Level Timing Simulation
Netlist Files” section in the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

h For information about performing a gate-level simulation using the GUI, refer to
Performing a Timing Simulation with the ModelSim Software and Performing a Timing
Simulation with the QuestaSim Software in Quartus II Help.

Simulating VHDL Designs From the Command Line
This section provides information about performing functional, post-synthesis, and
gate-level simulations of VHDL designs from the command line.

Simulating VHDL designs from the ModelSim and QuestaSim command line gives
you more flexibility and control in compiling the libraries and loading and simulating
the VHDL design files. All simulation commands are Tcl commands that can be
included in the *.do file. Using the *.do file allows you to run simulation in batch
mode. You have to execute only the *.do file, and the ModelSim and QuestaSim tool
automatically executes all commands in the *.do script macro file.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/questa/eda_pro_questa_timing_sim.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msimfull_timing_sim.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–9
Performing Simulation Using the ModelSim and QuestaSim Software
Performing Functional Simulation
Function simulation verifies code syntax and design functionality.

Type the following commands to perform a functional simulation for VHDL designs
with one of the libraries (lib1) listed in the Altera Functional Simulation Libraries in
Quartus II Help.

To create and compile Altera libraries, type the following commands:

vlib <lib1> r
vmap <lib1> <lib1> r
vcom -work <lib1> <lib1>.vhd r
vlib <lib2> r
vmap <lib2> <lib2> r
vcom -work <lib2> <lib2>.vhd r
To create the work library and compile the design and testbench files, type the
following commands:

vlib work r
vmap work work r
vcom -work work <design_file1>.vhd <design file2>.vhd <testbench \
file>.vhd r
To load the design, type the following command:

vsim -L work -L <lib1> -L <lib2> work.<testbench module name> r
To add signals to the waveform viewer and run the simulation, type the following
commands:

add wave * r
run r

Example
Create and compile Altera libraries

vlib altera_mf
vmap altera_mf altera_mf
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vlib lpm
vmap lpm lpm
vcom -work lpm 220pack.vhd 220model.vhd

Create work library and compile design files and testbench file

vlib work
vmap work work
vcom -work work top_level.vhd adder.vhd testbench.vhd

Load design

vsim -L work -L altera_mf -L lpm work.testbench

add signals to the waveform viewer and run simulation

add wave *
run

h For more information about targeting a Stratix V device, refer to Guidelines for
Compiling Stratix V Libraries in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm

2–10 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim and QuestaSim Software
Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that design functionality is preserved
after synthesis. Create the post-synthesis netlist in the Quartus II software and use the
netlist to perform post-synthesis simulation with the ModelSim and QuestaSim
software. Before running post-synthesis simulation, generate post-synthesis
simulation netlist files.

f For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

f You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.

Type the following commands to perform a post-synthesis simulation for VHDL
designs with one of the libraries (lib1) listed in Altera Post-Fit Libraries in Quartus II
Help.

To create and compile Altera libraries, type the following commands:

vlib <lib1> r
vmap <lib1> <lib1> r
vcom -work <lib1> <lib1>.vhd r
vlib <lib2> r
vmap <lib2> <lib2>r
vcom -work <lib2> <lib2>.vhd r
To create the work library and compile design and testbench files, type the following
commands:

vlib work r
vmap work work r
vcom -work work <output_netlist>.vho <testbench file>.vhd r
To load the design, type the following command:

vsim +transport_int_delays +transport_path_delays -L work -L \ <lib1>
-L <lib2> work.<testbench module name> r
To add signals to the waveform viewer and run simulation, type the following
commands:

add wave * r
run r

Example
Create and compile Altera libraries

vlib altera
vmap altera altera
vcom -work altera altera_primitives_components.vhd \
altera_primitives.vhd
vlib stratixiii
vmap stratixiii stratixiii
vcom -work stratixiii stratixiii.atoms.vhd stratixiii_components.vhd

Create work library and compile design files and testbench file

vlib work
vmap work work
vcom -work work top_level.vho testbench.vhd
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–11
Performing Simulation Using the ModelSim and QuestaSim Software
Load design

vsim +transport_int_delays +transport_path_delays -L work -L \ altera
-L stratixiii work.testbench

add signals to the waveform viewer and run simulation

add wave *
run

Performing Gate-Level Simulation
The steps for gate-level timing simulation are almost same as the steps for
post-synthesis simulation.

The only difference is that the .sdo file must be back-annotated for gate level-timing
simulation.

For VHDL designs, add the -sdftyp option for back-annotating.

Example
vsim +transport_int_delays +transport_path_delays -sdftyp \ <instance
path to design>= <path to SDO file> -L work -L stratixiii -L \ altera
work.testbench

You do not have to set the value (minimum, average, maximum) for the *.sdo file,
because the Quartus II EDA Netlist Writer generates the *.sdo file using the same
value for the triplet (minimum, average, and maximum timing values).

If your design under test is instantiated in the testbench file under the i1 label, the
<design instance> should be "i1" (for example, /i1=<my design>.sdo).

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–12 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim and QuestaSim Software
Simulating Verilog HDL Designs from the Command Line
This section provides information about performing functional, post-synthesis, and
gate-level simulations of Verilog HDL designs from the command line.

Simulating Verilog HDL designs from the ModelSim and QuestaSim command line
gives you more flexibility and control in compiling the libraries and loading and
simulating the Verilog HDL design files. All simulation commands are Tcl commands
that can be included in the *.do file. Using the *.do file allows you to run simulation in
batch mode. You have to execute only the *.do file, and the ModelSim and QuestaSim
tool automatically executes all commands in the *.do script macro file.

Performing Functional Simulation
Functional simulation verifies code syntax and design functionality.

Type the following commands to perform a functional simulation for Verilog HDL
designs with one of the libraries (lib1) listed in Altera Functional Simulation Libraries in
Quartus II Help.

To create and compile Altera libraries, type the following commands:

vlib <lib1> r
vmap <lib1> <lib1> r
vlog -work <lib1> <lib1>.v r
vlib <lib2> r
vmap <lib2> <lib2> r
vlog -work <lib2> <lib2>.v r
To create the work library and compile design and testbench files, type the following
commands:

vlib work r
vmap work work r
vlog -work work <design_file1>.v <design file2>.v <testbench file>.v r
To load the design, type the following command:

vsim -L work -L <lib1> -L <lib2> work.<testbench module name> r
To add signals to the waveform viewer and run simulation, type the following
commands:

add wave * r
run r

Example
Create and compile Altera libraries

vlib altera_mf_ver
vmap altera_mf_ver altera_mf_ver
vlog -work altera_mf_ver altera_mf.v
vlib lpm_ver
vmap lpm_ver lpm_ver
vlog -work lpm_ver 220model.v

Create work library and compile design files and testbench file

vlib work
vmap work work
vlog -work work top_level.v adder.v testbench.v

Load design

vsim -L work -L altera_mf_ver -L lpm_ver work.testbench
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–13
Performing Simulation Using the ModelSim and QuestaSim Software
add signals to the waveform viewer and run simulation

add wave *
run

h For more information about targeting a Stratix V device, refer to Guidelines for
Compiling Stratix V Libraries in Quartus II Help.

Performing Post-Synthesis Simulation
Perform post-synthesis simulation to verify that design functionality is preserved
after synthesis. Create the post-synthesis netlist in the Quartus II software and use the
netlist to perform post-synthesis simulation with the ModelSim and QuestaSim
software. Before running post-synthesis simulation, generate post-synthesis
simulation netlist files.

f For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.

Type the following commands to perform a post-synthesis simulation for Verilog
HDL designs with one of the libraries (lib1) listed in Altera Post-Fit Libraries in
Quartus II Help.

To create and compile Altera libraries, type the following commands:

vlib <lib1> r
vmap <lib1> <lib1> r
vlog -work <lib1> <lib1>.v r
vlib <lib2> r
vmap <lib2> <lib2> r
vlog -work <lib2> <lib2>.v r
To create the work library and compile design and testbench files, type the following
commands:

vlib work r
vmap work work r
vlog -work work <output_netlist>.vo <testbench file>.v r
To load the design, type the following command:

vsim -t ps +transport_int_delays +transport_path_delays -L work -L \
<lib1> -L <lib2> work.<testbench module name> r
To add signals to the waveform viewer and run the simulation, type the following
commands:

add wave * r
run r

Example
Create and compile Altera libraries
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

2–14 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Performing Simulation Using the ModelSim and QuestaSim Software
vlib altera_ver
vmap altera_ver altera_ver
vlog -work altera_ver altera_primitives.v
vlib stratixiii_ver

vmap stratixiii_ver stratixiii_ver
vlog -work stratixiii_ver stratixiii_atoms.v

Create work library and compile design files and testbench file

vlib work
vmap work work
vlog -work work top_level.vo testbench.v

Load design

vsim +transport_int_delays +transport_path_delays -L work -L
altera_ver -L stratixiii_ver work.testbench

#add signals to the waveform viwer and run simulation

add wave *
run

Performing Gate-Level Simulation
The steps for gate-level timing simulation are almost same as the steps for
post-synthesis simulation.

The only difference is that the .sdo file must be back-annotated for gate level-timing
simulation.

For Verilog HDL designs, the back-annotating process is done within the
output_netlist.vo script. Therefore, you are not required to back-annotate the SDO file
again.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–15
Simulating Designs that Include Transceivers
Passing Parameter Information from Verilog to VHDL
You must use in-line parameters to pass values from Verilog HDL to VHDL. Using the
defparam construct will cause an error in simulation. In the example below:

lpm_add_sub_component (
.dataa (dataa),
.datab (datab),
.result (sub_wire0)
);
defparam
lpm_add_sub_component.lpm_direction = "ADD",
lpm_add_sub_component.lpm_hint =
"ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",
lpm_add_sub_component.lpm_type = "LPM_ADD_SUB",
lpm_add_sub_component.lpm_width = 12;

You will see the following error message:

** Error: (vsim-3043)
/apps2/home/users/bhlee/SPR_ADOQS/ADOQS10000935_IN_LINE_PARAMETER/lpm_
add_sub1.v(67): Unresolved reference to 'lpm_add_sub_component' in
lpm_add_sub_component.lpm_direction.

Region: /IN_LINE_PARAMETER_vlg_vec_tst/i1/b2v_inst

This megafunction instantiation has been modified to use in-line parameters:

lpm_add_sub#(12,"SIGNED","ADD",0,"LPM_ADD_SUB","ONE_INPUT_IS_CONSTANT=
NO,CIN_USED=NO")
lpm_add_sub_component (

.dataa (dataa),

.datab (datab),

.result (sub_wire0)
);

1 The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

Speeding Up Simulation
By default, the ModelSim and QuestaSim software runs in a debug-optimized mode.
To run the ModelSim and QuestaSim software in speed-optimized mode, add the
following two vlog command line switches:

vlog -fast -05

In this mode, module boundaries are flattened and loops are optimized. This
eliminates levels of debugging hierarchy, which may result in faster simulation. This
switch is not supported in the ModelSim-Altera simulator.

Simulating Designs that Include Transceivers
If your design includes an Arria GX, Arria II GX, Cyclone IV, HardCopy IV,
Stratix GX, Stratix II GX, Stratix IV, or Stratix V transceiver, you must compile
additional library files to perform functional or gate-level timing simulations.

1 You cannot perform post-synthesis or post-fit (gate-level) simulation if you are
targeting the Stratix V device family.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–16 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Simulating Designs that Include Transceivers
h For Stratix V, you must compile the libraries listed in Guidelines for Compiling Stratix V
Libraries in Quartus II Help.

Performing simulation with transceivers in Arria II, Cyclone IV, HardCopy IV, and
Stratix IV device families are very similar. You have to replace only stratixiigx_atoms
and stratixiigx_hssi_atoms model files with arriaii_atoms and arriaii_hssi_atoms
model files for Arria II devices, cycloneiv_atoms and cycloneiv_hssi_atoms model
files for Cyclone IV devices, and stratixiv_atoms and stratixiv_hssi_atoms model files
for Stratix IV devices.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

f If your design contains PCI Express® hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

1 The VHDL version of ModelSim-Altera and other single language VHDL versions of
ModelSim cannot simulate designs that target the Stratix V device family.

You need a version of ModelSim that supports VHDL/Verilog co-simulation to
simulate designs that use Stratix V transceivers.

Functional Simulation for Stratix GX Devices
To perform a functional simulation of your design that instantiates the ALTGXB
megafunction, which enables the gigabit transceiver block on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. If you are using
ModelSim and QuestaSim, you must create these libraries to perform a simulation.

Performing Functional Simulation in VHDL (ModelSim-Altera)
To perform functional simulation for Stratix GX devices in VHDL, type
the following commands:

vcom -work <my_design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my_testbench> r

Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix GX devices in VHDL, type the following
commands:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r
vcom -work <my_design>.vhd <my_testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my testbench> r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–17
Simulating Designs that Include Transceivers
Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform functional simulation for Stratix GX devices in Verilog HDL, type the
following commands:

vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb work.<my
testbench> r

Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix GX devices in Verilog HDL, type the
following commands:

vlib work_ver r
vlib lpm_ver r
vlib altera_mf_ver r
vlib sgate_ver r
vlib altgxb_ver r
vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work altgxb_ver stratixgx_mf.v r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L sgate_ver-L altgxb_ver work.<my testbench> r

Gate-Level Timing Simulation for Stratix GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim and QuestaSim, you must create these libraries to perform a
simulation.

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix GX devices in VHDL, type the
following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps - +transport_int_delays+transport_path_delaysr

Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
To perform gate-level timing simulation for Stratix GX devices in VHDL, type the
following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–18 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Simulating Designs that Include Transceivers
Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix GX devices in Verilog HDL, type
the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and
QuestaSim)
To perform gate-level timing simulation for Stratix GX devices in Verilog HDL, type
the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixgx_ver stratixgx_atoms.v r
vlog -work stratixgx_gxb_ver stratixgx_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver \
-L stratixgx_gxb_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Functional Simulation for Stratix II GX Devices
To perform functional simulation of your design that instantiates the ALT2GXB
megafunction, which enables the gigabit transceiver block on Stratix II GX devices,
compile the stratixiigx_hssi model file into the stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. If you
are using ModelSim and QuestaSim, you must create these libraries to perform a
simulation.

Generate a functional simulation netlist by turning on Generate Simulation Model in
the Simulation Library tab of the ALT2GXB MegaWizard Plug-In Manager. The
<alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated in the current
project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

Performing Functional Simulation in VHDL (ModelSim-Altera)
To perform functional simulation for Stratix II GX devices in VHDL, type the
following commands:

vcom -work work <alt2gxb entity name>.vho r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–19
Simulating Designs that Include Transceivers
Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix II GX devices in VHDL, type the
following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work work <alt2gxb entity name>.vho r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my testbench>
r

Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform functional simulation for Stratix II GX devices in Verilog HDL, type the
following commands:

vlog -work work <alt2gxb module name>.vo r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my testbench> r

Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix II GX devices in Verilog HDL, type the
following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v r
vlog -work work <alt2gxb module name>.vo r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my testbench> r

Gate-Level Timing Simulation for Stratix II GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx
and stratixiigx_hssi libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. If you
are using ModelSim and QuestaSim, you must create these libraries to perform a
simulation.

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix II GX devices in VHDL, type the
following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–20 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Simulating Designs that Include Transceivers
Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
To perform gate-level timing simulation for Stratix II GX devices in VHDL, type the
following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera)
To perform gate-level timing simulation for Stratix II GX devices in Verilog HDL, type
the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiigx_ver \
-L stratixiigx_hssi_ver work.<my testbench> -t ps \
+transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL ModelSim and
QuestaSim)
To perform gate-level timing simulation for Stratix II GX devices in Verilog HDL, type
the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiigx_ver stratixiigx_atoms.v r
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiigx_ver \
-L stratixiigx_hssi_ver work.<my testbench> -t ps \
+transport_int_delays +transport_path_delays r

Functional Simulation for Stratix IV GX Devices
To perform a functional simulation of your design that instantiates the ALTGX
megafunction, which enables the gigabit transceiver block on Stratix IV devices,
compile the stratixiv_hssi model file into the altgx library.

1 The stratixiv_hssi model file references the lpm and sgate libraries. If you are using
ModelSim and QuestaSim, you must create these libraries to perform a simulation.

Performing Functional Simulation in VHDL (ModelSim-Altera)
To perform functional simulation for Stratix IV devices in VHDL, type the following
commands:

vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench>r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–21
Simulating Designs that Include Transceivers
Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix IV devices in VHDL, type the following
commands:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiv_hssi \
stratixiv_hssi_atoms.vhd stratixiv_hssi_components.vhd r
vcom -work <my design>.vhd <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench>
r

Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
To perform functional simulation for Stratix IV devices in Verilog HDL, type the
following commands:

vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L \
stratixiv_hssi_ver work.<my testbench> r

Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)
To perform functional simulation for Stratix IV devices in Verilog HDL, type the
following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work straixiv_hssi_ver stratixiv_hssi_atoms.v r
vlog -work <my design>.v <my testbench>.v r
vsim -L lpm_ver -L sgate_ver-L stratixiv_hssi_ver work.<my testbench> r

Gate-Level Timing Simulation for Stratix IV GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver by compiling the stratixiv_atoms and stratixiv_hssi_atoms model files
into the stratixiv and stratixiv_hssi libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. If you are
using ModelSim and QuestaSim, you must create these libraries to perform a
simulation.

Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix IV devices in VHDL, type the
following commands:

vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps - +transport_int_delays +transport_path_delays r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–22 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Simulating Designs that Include Transceivers
Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
To perform gate-level timing simulation for Stratix IV devices in VHDL, type the
following commands:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiv stratixiv_atoms.vhd stratixiv_components.vhd r
vcom -work stratixiv_hssi stratixiv_hssi_atoms.vhd \
stratixiv_hssi_components.vhd r
vcom -work <my design>.vho <my testbench>.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi \
-sdftyp <design instance>=<path to .sdo file>.sdo work.<my testbench> \
-t ps +transport_int_delays +transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
To perform gate-level timing simulation for Stratix IV devices in Verilog HDL, type
the following commands:

vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver -L \
stratixiv_hssi_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and
QuestaSim)
To perform gate-level timing simulation for Stratix IV devices in Verilog HDL, type
the following commands:

vlog -work lpm_ver 220model.v r
vlog -work altera_mf_ver altera_mf.v r
vlog -work sgate_ver sgate.v r
vlog -work stratixiv_ver stratixiv_atoms.v r
vlog -work stratixiv_hssi_ver stratixiv_hssi_atoms.v r
vlog -work <my design>.vo <my testbench>.v r
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver \
-L stratixiv_hssi_ver work.<my testbench> -t ps +transport_int_delays \
+transport_path_delays r

Functional Simulation for Stratix V GX Devices
To perform a functional simulation of your design that instantiates the Custom PHY
megafunction, which enables the gigabit transceiver block on Stratix V devices,
compile the stratixv_hssi model file.

1 The stratixiv_hssi model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation using ModelSim and QuestaSim.

1 The transceiver module from the MegaWizard Plug-In Manager is created in
Interfaces/Transceiver PHY. Select Custom PHY.

Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
For information about how to perform functional simulation for Stratix V devices in
VHDL, refer to “Performing Functional Simulation” on page 2–9.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–23
Using the NativeLink Feature with ModelSim-Altera, ModelSim, or QuestaSim Software
Performing Functional Simulation in Verilog HDL (ModelSim-Altera)

h For information about how to perform functional simulation for Stratix V devices in
Verilog HDL, refer to Performing a Functional Simulation with the ModelSim-Altera
Software and Guidelines for Compiling Stratix V Libraries in Quartus II Help.

Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)
For information about how to perform functional simulation for Stratix V devices in
Verilog HDL, refer to “Performing Functional Simulation” on page 2–12.

Transport Delays
By default, the ModelSim and QuestaSim software filters out all pulses that are
shorter than the propagation delay between primitives. Turning on the transport
delay options in the ModelSim and QuestaSim software prevents the simulation tool
from filtering out these pulses. Use the following options to ensure that all signal
pulses are seen in the simulation results.

+transport_path_delays
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive.

+transport_int_delays
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives.

1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the ModelSim-Altera
Command Reference installed with the ModelSim and QuestaSim software.

The following ModelSim and QuestaSim software command shows the command
line syntax to perform a gate-level timing simulation with the device family library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

Using the NativeLink Feature with ModelSim-Altera, ModelSim, or
QuestaSim Software

The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
ModelSim and QuestaSim within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_pro_compiling_sv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/modelsim/eda_pro_msim_func_sim.htm

2–24 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
ModelSim and QuestaSim Error Message Verification
ModelSim and QuestaSim Error Message Verification
ModelSim and QuestaSim error and warning messages are tagged with a vsim or vcom
code. To determine the cause and resolution for a vsim or vcom error or warning, use
the verror command.

For example, ModelSim and QuestaSim may display the following error message:

** Error:
C:/altera_trn/DUALPORT_TRY/simulation/modelsim/DUALPORT_TRY.vho(31):
(vcom-1136) Unknown identifier "stratixiii".

In this case, type the following command:

verror 1136 r
At that point, the error message appears as follows:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

Generating a Timing Value Change Dump (.vcd) File for the PowerPlay
Power Analyzer

To generate a timing Value Change Dump (* .vcd) file for the PowerPlay Power
Analyzer, you must first generate a *.vcd script file in the Quartus II software and run
the *.vcd script file from the ModelSim, QuestaSim, or ModelSim-Altera software to
generate a timing *.vcd file. This timing *.vcd file can then be used by PowerPlay for
power analysis. The following instructions show you step-by-step how to generate a
timing *.vcd file.

To generate timing VCD Scripts in the Quartus II software, perform the following
steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings and select
Simulation. The Simulation page appears.

3. Choose the appropriate third-party simulation tool (ModelSim, QuestaSim, or
ModelSim-Altera) in the Tool name list. Turn on the Generate Value Change
Dump (VCD) file script option.

4. To generate the *.vcd script file, perform a full compilation.

To generate a timing *.vcd file in the ModelSim-Altera, ModelSim, or QuestaSim
software, perform the following steps:

1. In the ModelSim-Altera, ModelSim, or QuestaSim software, before simulating
your design, source the <revision_name>_dump_all_vcd_nodes.tcl script. To
source the Tcl script, run the following command before running the vsim
command. For example:

source <revision_name>_dump_all_vcd_nodes.tcl r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–25
Viewing a Waveform from a .wlf File
2. Continue to run the simulation as usual until the end of the simulation. Exit the
ModelSim-Altera, ModelSim, or QuestaSim software. If you do not exit the
software, the ModelSim and QuestaSim software may end the writing process of
the timing *.vcd files improperly, resulting in a corrupted timing *.vcd file.

f For more information about using the timing *.vcd file for power estimation, refer to
the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .wlf File
A .wlf file is automatically generated when your simulation is done. The .wlf file is
used for generating the waveform view through ModelSim-Altera, ModelSim, or
QuestaSim.

To view a waveform from a .wlf file through ModelSim-Altera, ModelSim, or
QuestaSim, perform the following steps:

1. Type vsim on the command line. The ModelSim/QuestaSim or ModelSim-Altera
dialog box appears.

2. On the File menu, click Datasets. The Datasets Browser dialog box appears.

3. Click Open and browse to the directory that contains your .wlf file.

4. Select the .wlf file and click Open, then click OK.

5. Click Done.

6. In the Object browser, select the signals that you want to observe.

7. On the Add menu, click Wave and then click Selected Signals.

You cannot view a waveform from a .vcd file in ModelSim-Altera, ModelSim, or
QuestaSim directly. The .vcd file must first be converted to a .wlf file.

1. Use the vcd2wlf command to convert the file. For example, type the following on a
command-line:

vcd2wlf <example>.vcd <example>.wlf r
2. After you convert the .vcd file to a .wlf file, follow the procedures for viewing a

waveform from a .wlf file through ModelSim and QuestaSim.

You can also convert your .wlf file to a .vcd file by using the wlf2vcd command.

Simulating with ModelSim-Altera Waveform
You can use the ModelSim-Altera Waveform Editor as a simple method to create
design stimulus for simulation. You can create this design stimulus via interactive
manipulation of waveforms from the wave window in ModelSim-Altera. With the
ModelSim-Altera waveform editor, you can create and edit waveforms, drive
simulation directly from created waveforms, and save created waveforms into a
stimulus file.

For more information, refer to the Generating Stimulus with Waveform Editor chapter in
the ModelSim SE User’s Manual available on the ModelSim website (model.com).
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://model.com/

2–26 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Scripting Support
Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at the command line prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For more information about command line scripting, refer to the Command Line
Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the Quartus II
Help command line and Tcl API help browser. To access this information, type the
following command to start a help browser:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for ModelSim and
QuestaSim

You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at the command-line prompt. The following
example assumes that you are selecting ModelSim and QuestaSim (Verilog HDL
output from the Quartus II software).

Tcl Commands
Use the following Tcl commands to set the output format to Verilog HDL, the
simulation tool to ModelSim and QuestaSim for Verilog HDL, and to generate a
functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "ModelSim (Verilog)" r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r
or

set_global_assignment-name EDA_SIMULATION_TOOL "QuestaSim (Verilog)" r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Prompt
Use the following command to generate a simulation output file for the ModelSim
and QuestaSim simulator. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=ModelSim --functional r
or

quartus_eda <project name> --simulation=on --format=<format> \
--tool=QuestaSim --functional r

Generating a Gate-Level Timing Simulation Netlist for ModelSim and
QuestaSim

Use the Quartus II software to generate a gate-level timing simulation netlist with Tcl
commands or with a command at the command prompt.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www/literature/hb/qts/qts_qii52002.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–27
Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition
Tcl Commands
Use one of the following Tcl commands:

■ set_global_assignment -name EDA_SIMULATION_TOOL \ "ModelSim-Altera
(Verilog)" r
or

set_global_assignment -name EDA_SIMULATION_TOOL \ "QuestaSim-Altera
(Verilog)" r

■ set_global_assignment -name EDA_SIMULATION_TOOL \ "ModelSim-Altera
(VHDL)" r
or

set_global_assignment -name EDA_SIMULATION_TOOL \ "QuestaSim-Altera
(VHDL)" r

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim (Verilog)" r
or

set_global_assignment -name EDA_SIMULATION_TOOL \
"QuestaSim (Verilog)" r

■ set_global_assignment -name EDA_SIMULATION_TOOL \
"ModelSim (VHDL)" r
or

set_global_assignment -name EDA_SIMULATION_TOOL \
"QuestaSim (VHDL)" r

Command Line
Generate a simulation output file for the ModelSim and QuestaSim simulator by
specifying VHDL or Verilog HDL for the format by typing the following command at
the command prompt:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=ModelSim r
or

quartus_eda <project name> --simulation=on --format=<format> \
--tool=QuestaSim r

Software Licensing and Licensing Setup in ModelSim-Altera
Subscription Edition

License the ModelSim-Altera Subscription Edition software subscription with a
parallel port FIXEDPC license, or a network FLOATNET or FLOATPC license. Each
Altera software subscription includes a license for both VHDL and Verilog HDL. The
ModelSim-Altera Subscription Edition software supports both VHDL and Verilog
HDL, but the software does not support mixed language simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

2–28 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition
1 The USB software guard is not supported by versions earlier than Mentor Graphics
ModelSim software 5.8d.

You can obtain a license for the ModelSim-Altera Subscription Edition software from
the Altera website at www.altera.com. Get licensing information for the
Mentor Graphics ModelSim software directly from Mentor Graphics. Refer to
Figure 2–1 for the set-up process.

1 For ModelSim-Altera software versions prior to 5.5b, use the PCLS utility included
with the software to set up the license.

For the Quartus II software version 8.1 and later, the no-cost entry level of the
ModelSim-Altera software does not require a license file. However, you must request
a license file to use the ModelSim-Altera Subscription Edition software.

LM_LICENSE_FILE Variable
Altera recommends setting the LM_LICENSE_FILE environment variable to the location
of the license file. For example, the value for the LM_LICENSE_FILE environment
variable should point to <path to license file>\license.dat.

f For more information about setting up the license for ModelSim-Altera Subscription
Edition software, refer to the Altera Software Installation and Licensing manual.

Figure 2–1. ModelSim-Altera Subscription Edition Software Licensing Set Up Process

Initial Installation

Set the LM_LICENSE_FILE Variable

yes

no

Is the ModelSim-Altera
software properly licensed?

yes

no

Using
the ModelSim-Altera

Starter Edition
software?

Start

End
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 2: Mentor Graphics ModelSim and QuestaSim Support 2–29
Conclusion
Conclusion
Using the ModelSim, QuestaSim, and ModelSim-Altera simulation software within
the Altera FPGA design flow enables Altera software users to easily and accurately
perform functional simulations, post-synthesis simulations, and gate-level
simulations on their designs. Proper verification of designs at the functional,
post-synthesis, and post place-and-route stages using the ModelSim, QuestaSim, and
ModelSim-Altera software helps ensure design functionality and success and,
ultimately, a quick time-to-market.

Document Revision History
Table 2–1 shows the revision history for this chapter.

Table 2–1. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.1.0

■ Changed to new document template

■ Referenced Simulating Altera Designs chapter

■ Added new section, “Simulating with ModelSim-Altera Waveform” on page 2–25

■ Removed Stratix V compilation information and linked to Quartus II Help

July 2010 10.0.0

■ Removed simulation library tables and linked to Quartus II Help

■ Added other links to Quartus II Help and ModelSim-Altera Help where appropriate
and removed redundant information

■ Added QuestaSim support

■ Added Stratix V simulation information

■ Minor editorial changes throughout

■ Removed Referenced Documents section

November 2009
9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter

■ Added Stratix IV transceiver simulation section

■ Reformatted transceiver simulation sections

■ Text edits throughout chapter

March 2009
9.0.0

Added the following sections:

■ “Compile Libraries Using the EDA Simulation Library Compiler” on page 2–17

■ “Generate Simulation Script from EDA Netlist Writer” on page 2–77

■ “Viewing a Waveform from a .wlf File” on page 2–78

Updated the following:

■ Table 2–1, Table 2–2, Table 2–5, Table 2–6, Table 2–7, Table 2–8, Table 2–9,
Table 2–10

■ Figure 2–4 on page 2–81

■ All sections titled “Loading the Design”
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

2–30 Chapter 2: Mentor Graphics ModelSim and QuestaSim Support
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2008
8.1.0

Updated the following:

■ Table 2–2, Table 2–3, Table 2–4, Table 2–5, Table 2–6

■ Removed --zero_ic_delays from quartus_sta option in “Generate
Post-Synthesis Simulation Netlist Files” on page 2–11

■ Removed steps to include the library when the simulation is run in VHDL mode from
all procedures; this is no longer necessary

■ Added information about the Altera Simulation Library Compiler throughout the
chapter

■ Added “Compile Libraries Using the Altera Simulation Library Compiler” on
page 2–15

■ Added “Disabling Simulation” on page 2–72

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0

Updated the following:

■ “Altera Design Flow with ModelSim-Altera or ModelSim Software” on page 2–3

■ “Simulation Libraries” on page 2–4

■ “Simulation Netlist Files” on page 2–11

■ “Perform Simulation Using ModelSim-Altera Software” on page 2–15

■ “Perform Simulation Using ModelSim Software” on page 2–33

■ “Simulating Designs that Include Transceivers” on page 2–57

■ “Using the NativeLink Feature with ModelSim-Altera or ModelSim Software” on
page 2–63

■ “Generating a Timing VCD File for PowerPlay” on page 2–68

Table 2–1. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53002-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53002-10.0.1
3. Synopsys VCS and VCS MX Support
This chapter describes how to use the Synopsys VCS and VCS MX software to
simulate designs that target Altera® FPGAs. This chapter provides step-by-step
instructions about how to perform functional simulations, post-synthesis simulations,
and gate-level timing simulations.

1 Verilog HDL design simulation is the same in both the VCS and VCS MX software. In
this chapter, VCS MX is used in VHDL design simulation examples.

This chapter includes the following topics:

■ “Software Requirements”

■ “Using the VCS or VCS MX Software in the Quartus II Design Flow” on page 3–1

■ “Common VCS and VCS MX Software Compiler Options” on page 3–8

■ “Using DVE” on page 3–8

■ “Debugging Support Command-Line Interface” on page 3–8

■ “Simulating Designs that Include Transceivers” on page 3–9

■ “Transport Delays” on page 3–13

■ “Using NativeLink with the VCS or VCS MX Software” on page 3–13

■ “Generating a Timing .vcd File for the PowerPlay Power Analyzer” on page 3–13

■ “Viewing a Waveform from a .vpd or .vcd File” on page 3–14

■ “Scripting Support” on page 3–15

Software Requirements
To simulate your design using the Synopsys VCS or VCS MX software, you must first
set up the Altera libraries. These libraries are installed with the Quartus® II software.

f For more information about installing the software and the directories created during
the Quartus II software installation, refer to the Altera Software Installation and
Licensing manual.

Using the VCS or VCS MX Software in the Quartus II Design Flow
You can perform the following types of simulations using the VCS and VCS MX
software:

■ Functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53002
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

3–2 Chapter 3: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow
f Refer to the “PLD Design Flow” section in the Simulating Designs with EDA Tools
chapter in volume 3 of the Quartus II Handbook for the Quartus II software design flow.

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler is used to compile Verilog HDL and VHDL
simulation libraries for all Altera devices and supported third-party simulators. You
can compile all libraries required by functional and gate-level timing simulations.

f For more information, refer to the “EDA Simulation Library Compiler” section in the
Simulating Designs with EDA Tools chapter in volume 3 of the Quartus II Handbook.

Functional Simulations
Functional simulations verify the functionality of the design before synthesis,
placement, and routing. These simulations are independent of any Altera FPGA
architecture implementation. After the HDL designs are verified to be functionally
correct, the next step is to synthesize the design and use the Quartus II software to
place-and-route the design in an Altera device.

To functionally simulate an Altera FPGA design in the VCS or VCS MX software that
uses Altera intellectual property (IP) megafunctions or a library of parameterized
modules (LPM) functions, you must include certain libraries during the compilation.

h For a list of the functional simulation library files in the Quartus II directory, refer to
Altera Functional Simulation Libraries in Quartus II Help.

Functional Simulation for Verilog HDL Designs
The following VCS command performs a functional simulation for Verilog HDL
designs with one of the libraries listed in Altera Functional Simulation Libraries in
Quartus II Help:

vcs -R <testbench>.v <design name>.v –v <altera_library1>.v -v <altera_library2>.v r
If you have already generated the option file (simlib_comp.vcs) from “Compiling
Libraries Using the EDA Simulation Library Compiler” on page 3–2, type the
following command:

vcs -f simlib_comp.vcs r
Be sure to include the design files and testbench files in simlib_comp.vcs.

Alternatively, you can use the following commands to perform functional simulation
for Verilog HDL designs:

Create Libraries Directories
mkdir <Directory_to_store_compiled_altera_library1>
mkdir <Directory_to_store_compiled_altera_library2>

Create Work Directory
mkdir <Directory_to_store_compiled_design_and_testbench_files>

Compilation
(Before this step, make sure the mapped file "synopsys_sim.setup" was created.)
Libraries Compilation
vlogan -work <altera_library1_name> <altera_library1>.v
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

Chapter 3: Synopsys VCS and VCS MX Support 3–3
Using the VCS or VCS MX Software in the Quartus II Design Flow
vlogan -work <altera_library2_name> <altera_library2>.v

Design and Test bench files Compilation
vlogan -work <work_library_name> <design>.v <testbench>.v

Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>

Run Simulation
simv -gui

The synopsys_sim.setup file contains the following mapping commands to map the
libraries:

<altera_library1_name> : <Directory_to_store_compiled_altera_library1>
<altera_library2_name> : <Directory_to_store_compiled_altera_library2>
<work_library_name> : <Directory_to_store_compiled_design_and_testbench_files>

1 The altera_mf.v model files should be compiled into the altera_mf_ver library. The
220model.v model files should be compiled into the lpm_ver library.

If you are targeting a Stratix V device, compile the following files in the
quartus/eda/sim_lib/synopsys directory:

stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models.

1 Compile stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.v
stratixv_hssi_atoms.v
stratixv_pcie_hip_atoms.v

1 The PCIe® files are required only if you are using the PCIe HIP.

Functional Simulation for VHDL Designs
For VHDL designs, you need to use VCS MX software to perform all three types of
simulations. The following commands are for performing a functional simulation for
VHDL designs with one of the libraries listed in Altera Functional Simulation Libraries
in Quartus II Help:

Create Libraries Directories
mkdir <Directory_to_store_compiled_altera_library1>
mkdir <Directory_to_store_compiled_altera_library2>

Create Work Directory
mkdir <Directory_to_store_compiled_design_and_testbench_files>

Compilation
(Before this step, make sure the mapped file "synopsys_sim.setup" is created.)
Libraries Compilation
vhdlan -work <altera_library1_name> <altera_library1>.vhd
vhdlan -work <altera_library2_name> <altera_library2>.vhd
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

3–4 Chapter 3: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow
Design and Test bench files Compilation
vhdlan -work <work_library_name> <design>.vhd <testbench>.vhd

Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation

simv -gui

The synopsys_sim.setup file contains the following mapping commands to map the
libraries:

<altera_library1_name> : <Directory_to_store_compiled_altera_library1>
<altera_library2_name> : <Directory_to_store_compiled_altera_library2>
<work_library_name> : <Directory_to_store_compiled_design_and_testbench_files>

1 The altera_mf.v model files should be compiled into the altera_mf_ver library. The
220model.v model files should be compiled into the lpm_ver library.

1 If you have generated the Altera libraries with the EDA Simulation Library Compiler,
ignore the steps # Create Libraries Directories and # Libraries Compilation.

If you are targeting a Stratix V device, compile the following files in the
quartus/eda/sim_lib/synopsys directory:

stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation. You need a co-simulation license from Synopsys to use these models.

1 Compile these encrypted Verilog files before you compile any VHDL files.

1 Compile stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.vhd
stratixv_components.vhd
stratixv_hssi_components.vhd
stratixv_hssi_atoms.vhd
stratixv_pcie_components.vhd
stratixv_pcie_hip_atoms.vhd

1 The PCIe files are required only if you are using the PCIe HIP.

Post-Synthesis Simulation
A post-synthesis simulation verifies the functionality of a design after synthesis has
been performed. You can create a post-synthesis netlist in the Quartus II software and
use this netlist to perform a post-synthesis simulation in the VCS or VCS MX
software. When the post-synthesis version of the design has been verified, the next
step is to place-and-route the design in the target architecture using the Quartus II
software.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 3: Synopsys VCS and VCS MX Support 3–5
Using the VCS or VCS MX Software in the Quartus II Design Flow
f For more information, refer to the “Generating Post-Synthesis Simulation Netlist
Files” section in the Simulating Altera Designs chapter in volume 3 of the Quartus II
Handbook.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.

Post-Synthesis Simulation for Verilog HDL Designs
The following VCS command shows the command-line syntax used to perform a
post-synthesis simulation with the appropriate device family library listed in Altera
Functional Simulation Libraries in Quartus II Help.

vcs -R <testbench> <post synthesis netlist> -v <altera_library1> r
If you have already generated the option file (simlib_comp.vcs) as described in
“Compiling Libraries Using the EDA Simulation Library Compiler” on page 3–2,
modify the simlib_comp.vcs file to add the testbench and post synthesis netlist, and
then type the following command:

vcs -f simlib_comp.vcs r
Be sure to include the post synthesis netlist file and testbench files in
simlib_comp.vcs.

Alternatively, you can use the following commands to perform Post-Synthesis
simulation for Verilog HDL designs:

Create Libraries Directories
mkdir <Directory_to_store_compiled_altera_library1>
mkdir <Directory_to_store_compiled_altera_library2>
Create Work Directory
mkdir <Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>
Compilation
(Before this step, make sure that mapped file "synopsys_sim.setup" is created.)
Libraries Compilation
vlogan -work <altera_library1_name> <altera_library1>.v
vlogan -work <altera_library2_name> <altera_library2>.v
Design and Test bench files Compilation
vlogan -work <work_library_name> <post_synthesis_netlist>.vo <test_bench>.v
Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation
simv -gui

The synopsys_sim.setup file contains the following commands to map the libraries:

<altera_library1_name> : <Directory_to_store_compiled_altera_library1>
<altera_library2_name> : <Directory_to_store_compiled_altera_library2>
<work_library_name> :

<Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>

Post-Synthesis Simulation for VHDL Designs
The following VCS MX commands show the command-line syntax used to perform a
post-synthesis simulation with the appropriate device family library listed in Altera
Post-Fit Libraries in Quartus II Help.

Create Libraries Directories
mkdir <Directory_to_store_compiled_altera_library1>
mkdir <Directory_to_store_compiled_altera_library2>
Create Work Directory
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://quartushelp.altera.com/10.0/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

3–6 Chapter 3: Synopsys VCS and VCS MX Support
Using the VCS or VCS MX Software in the Quartus II Design Flow
mkdir <Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>
Compilation
#(Before this step, make sure that mapped file "synopsys_sim.setup" is created.)
Libraries Compilation
vhdlan -work <altera_library1_name> <altera_library1>.vhd
vhdlan -work <altera_library2_name> <altera_library2>.vhd
Design and Test bench files Compilation
vhdlan -work <work_library_name> <post_synthesis_netlist>.vho <test_bench>.vhd
Eleboration
vcs -debug_all <work_library_name>.<testbench_top_level_module>
Run Simulation
simv -gui

The synopsys_sim.setup file contains the following commands to map the libraries:

<altera_library1_name> : <Directory_to_store_compiled_altera_library1>
<altera_library2_name> : <Directory_to_store_compiled_altera_library2>
<work_library_name> :

<Directory_to_store_compiled_post_synthesis_netlist_and_testbench_files>

1 If you have generated the Altera libraries as described in “Compiling Libraries Using
the EDA Simulation Library Compiler” on page 3–2, ignore the steps # Create
Libraries Directories and # Libraries Compilation.

Gate-Level Timing Simulation
A gate-level timing simulation verifies the functionality and timing of the design after
place-and-route. You can create a post-fit netlist in the Quartus II software and use
this netlist to perform a gate-level timing simulation in the VCS or VCS MX software.

f For information about how to generate a gate-level timing simulation netlist, refer to
the “Generating Gate-Level Timing Simulation Netlist Files” section in the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

h For a list of the gate-level timing simulation library files in the Quartus II directory,
refer to Altera Post-Fit Libraries in Quartus II Help.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.

Gate-Level Timing Simulation for Verilog HDL Designs
For gate-level timing simulation, follow the steps in “Post-Synthesis Simulation for
Verilog HDL Designs” on page 3–5.

You do not have to specify the Standard Delay Output File (*.sdo) file because it is
already specified in the Verilog Output File (*.vo) file. However, the *.sdo file must be
in the same directory as the simulator executable file simv generated by VCS.

Gate-Level Timing Simulation for VHDL Designs
For gate-level timing simulation, follow the steps in “Post-Synthesis Simulation for
VHDL Designs” on page 3–5.

For VHDL, the *.sdo file must be specified in the simv command as follows:

simv -xlrm -gui -sdf typ:<testbench module name>/<design instnace
name>.sdo r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

Chapter 3: Synopsys VCS and VCS MX Support 3–7
Using the VCS or VCS MX Software in the Quartus II Design Flow
1 Adding the -xlrm switch avoids the errors that occur when the timing arcs in SDO do
not match Altera VHDL simulation models as per the IEEE VITAL ASIC standard.
However, adding this switch reduces timing accuracy, as it may cause some SDO
delays to be ignored. Therefore, Altera recommends generating the Verilog HDL
simulation output netlist (.vo) if you want to perform gate-level timing simulation.

Disabling Timing Violation on Registers
In certain situations, the timing violations can be ignored and you can disable the “X”
propagation that happens when there are timing violations on registers (for example,
timing violations that occur in internal synchronization registers used for
asynchronous clock-domain crossing).

By default, the x_on_violation_option logic option that applies to all registers in the
design is On, which means a register outputs “X” whenever a timing violation occurs.
To disable “X” propagation due to a timing violation on certain registers, you can set
the x_on_violation_option logic option to Off for those registers. The following
command is an example of the Quartus II Settings File (.qsf):

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name> r

Performing Timing Simulation Using the Post-Synthesis Netlist
You can perform a timing simulation using the post-synthesis netlist instead of using
a gate-level netlist, and you can generate an .sdo file without running the Fitter. In this
case, the .sdo file includes all timing values for the device cells only. Interconnect
delays are not included because fitting (placement and routing) has not been
performed.

To generate the post-synthesis netlist and the .sdo file, type the following commands
at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map \
--zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation \
--tool= <third-party EDA tool> --format=<HDL language> r
For more information about the -format and -tool options, type the following
command:

quartus_eda -help=<options> command r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

3–8 Chapter 3: Synopsys VCS and VCS MX Support
Common VCS and VCS MX Software Compiler Options
Common VCS and VCS MX Software Compiler Options
The VCS software has options that help you simulate your design. Table 3–1 lists
some of the available options.

f For more information about VCS software options, refer to the VCS User Guide.

Using DVE
Design Viewpoint Editor (DVE) is the graphical debugging system for the VCS and
VCS MX software. This tool is included with the VCS MX software. It can be run by
using the -gui (simulating option) when running a simulation.

The following VCS or VCS MX software command shows the command-line syntax
for simulating in DVE:

simv -gui (for Verilog HDL simulations)

However, to open the GUI with these commands, you must enable the use of Unified
Command Line Interface (UCLI) and DVE when performing elaboration. To enable
UCLI and DVE, enter the following command:

vcs -debug_all (for Verilog HDL simulations)

f For more information about using DVE, refer to the DVE User Guide included in the
VCS MX software installation.

Debugging Support Command-Line Interface
The Synopsys VCS software has an interactive non-graphical debugging capability
that is very similar to other UNIX debuggers such as the GNU debugger (GDB). The
VCS software UCLI can be used to halt simulations at user-defined break points, force
registers with values, and display register values.

Table 3–1. VCS Software Compiler Options

Library Description

-R Runs the executable file immediately.

-v <library filename> Specifies a Verilog HDL library file (for example, 220model.v or altera_mf.v). The VCS
software looks in this file for module definitions that are found in the source code.

-y <library directory> Specifies a Verilog HDL library directory. The VCS software looks for library files in this
folder that contain module definitions that are instantiated in the source code.

+compsdf
Indicates that the VCS software compiler includes the back-annotated Standard Delay
File (.sdf) file in the compilation.

+cli
The VCS software enters Command-Line Interface (CLI) mode upon successful
compilation completion.

+race
Specifies that the VCS software generate a report that indicates all of the race conditions
in the design. The default report name is race.out.

-P Compiles user-defined Programming Language Interface (PLI) table files.

-q Indicates the VCS software runs in quiet mode. All messages are suppressed.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://synopsys.com/
http://www.synopsys.com/

Chapter 3: Synopsys VCS and VCS MX Support 3–9
Simulating Designs that Include Transceivers
Enable the non-graphical capability by using the +ucli run-time option. Use the VCS
software UCLI to debug your Altera FPGA design by typing the following command:

vcs -R <testbench>.v <design name>.vo -v <path to Quartus II \
installation> \eda\sim_lib\<device family>_atoms.v +compsdf +ucli r
The +ucli command takes an optional number argument that specifies the level of
debugging capability. As the optional debugging capability is increased, there is an
increase in simulation time.

f For more information about the +ucli options, refer to the VCS User Guide included in
the VCS software installation.

For the design examples to run gate-level timing simulations in VHDL or Verilog
HDL language, refer to Synopsys VCS Simulation Design Example.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone® IV, HardCopy® IV, Stratix®,
Stratix II, Stratix IV, or Stratix V transceivers, you must compile additional library files
to perform functional or gate-level timing simulations.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

f If your design contains PCI Express hard IP, refer to the “Simulate the Design” section
in the PCI Express Compiler User Guide.

Functional Simulation for Stratix GX Devices
To perform a functional simulation of your design that instantiates the ALTGXB
megafunction, enabling the gigabit transceiver block gigabit transceiver block on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix GX device, at the VCS command prompt, type the following
command:

vcs -R <testbench>.v <design files>.v -v stratixgx_mf.v -v sgate.v \
-v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.synopsys.com/
http://www.altera.com/support/examples/vcs/exm-vcs.html
http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

3–10 Chapter 3: Synopsys VCS and VCS MX Support
Simulating Designs that Include Transceivers
1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix GX device, at the VCS command prompt, type the following
command:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixgx_atoms.v -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v +transport_int_delays \
+pulse_int_e/0 +pulse_int_r/0 +transport_path_delays +pulse_e/0 +pulse_r/0 r

Functional Simulation for Stratix II GX Devices
Functional simulation for Stratix II GX devices is similar to functional simulation for
Arria GX devices. To simulate the transceiver in Arria GX devices, you only have to
replace the stratixiigx_hssi model file with the arriagx_hssi model file.

To perform a functional simulation of your design that instantiates the ALT2GXB
megafunction, enabling the gigabit transceiver block on Stratix II GX devices, compile
the stratixiigx_hssi model file into the stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on Generate Simulation Model in
the Simulation Library in the ALT2GXB MegaWizard™ Plug-In Manager. The
<alt2gxb entity name>.vho file or <alt2gxb module name>.vo file is generated in the
current project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi wysiwyg atoms.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix II GX device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <alt2gxb simulation netlist>.vo -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix II GX Devices
Gate-level timing simulation for Stratix II GX devices is similar to gate-level timing
simulation for Arria GX devices. To simulate the transceiver in Arria GX devices, you
only have to replace the stratixiigx_hssi model file with the arriagx_hssi model file.

To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx
and stratixiigx_hssi libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 3: Synopsys VCS and VCS MX Support 3–11
Simulating Designs that Include Transceivers
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix II GX device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiigx_atoms.v -v \
stratixiigx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Functional Simulation for Stratix IV GX Devices
Functional simulation for Stratix IV devices is similar to functional simulation for
Arria II, Cyclone IV, and HardCopy IV devices. To simulate transceivers in Arria II,
Cyclone IV, and HardCopy IV devices, you only have to replace the stratixiv_hssi
model file with the arriaii_hssi, cycloneiv_hssi, and hardcopyiv_hssi model files,
respectively.

To perform a functional simulation of your design that instantiates the ALTGX
megafunction, enabling the gigabit transceiver block on Stratix IV devices, compile
the stratixiv_hssi model file into the stratixiv_hssi library,

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix IV device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <altgx>.v -v \ stratixiv_hssi_atoms.v -v sgate.v \
-v 220model.v -v altera_mf.v r

Gate-Level Timing Simulation for Stratix IV GX Devices
Gate-level timing simulation for Stratix IV devices is similar to gate-level timing
simulation for Arria II, Cyclone IV, and HardCopy IV devices. To simulate
transceivers in Arria II, Cyclone IV, and HardCopy IV devices, you only have to
replace the stratixiv_hssi model file with the arriaii_hssi, cycloneiv_hssi, and
hardcopyiv_hssi model files, respectively.

To perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver, compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively.

To perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver, compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively.

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

3–12 Chapter 3: Synopsys VCS and VCS MX Support
Simulating Designs that Include Transceivers
Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix IV device, type the following command at the VCS command
prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiv_atoms.v \
-v stratixiv_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0

Functional Simulation for Stratix V GX Devices
Functional simulation for Stratix V devices is similar to functional simulation for
Arria II, Cyclone IV, HardCopy IV, and Stratix IV devices. To simulate transceivers in
Arria II, Cyclone IV, HardCopy IV, and Stratix IV devices, you only have to replace the
stratixv_hssi model file with the arriaii_hssi, cycloneiv_hssi, hardcopyiv_hssi, and
stratixiv_hssi model files, respectively.

The stratixv_hssi_atoms model file references the lpm and sgate libraries. You must
compile these libraries to perform a simulation.

1 The transceiver module from the MegaWizard Plug-In Manager is created in
Interfaces/Transceiver PHY. Select Custom PHY.

Compiling Library Files for Functional Simulation
To compile the libraries necessary for functional simulation of a Verilog HDL or
VHDL design targeting a Stratix V device, type the following commands at the VCS
command prompt:

mkdir -p ./stratixv r
mkdir -p ./stratixv_pcie_hip r
mkdir -p ./stratixv_hssi r
mkdir -p ./work r
vlogan +v2k -work stratixv \
$QUARTUS_ROOTDIR/eda/sim_lib/synopsys/stratixv_atoms_ncrypt.v r
vlogan +v2k -work stratixv_hssi \
$QUARTUS_ROOTDIR/eda/sim_lib/synopsys/stratixv_hssi_atoms_ncrypt.v r
vlogan -sverilog -work stratixv_pcie_hip \
$QUARTUS_ROOTDIR/eda/sim_lib/synopsys/stratixv_pcie_hip_atoms_ncrypt.v
r
vhdlan -work stratixv_hssi \
$QUARTUS_ROOTDIR/eda/sim_lib/stratixv_hssi_components.vhd r
vhdlan -work stratixv_hssi \
$QUARTUS_ROOTDIR/eda/sim_lib/stratixv_hssi_atoms.vhd r
vcs test r
./simv r

1 The PCIe files are required only if you are using the PCIe HIP.

1 For VHDL, you must compile the Verilog HDL files first.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 3: Synopsys VCS and VCS MX Support 3–13
Transport Delays
1 In addition to the top-level variant wrapper, <variant>.v, you also get a simulation
files subdirectory, <variant>_sim/. All Verilog (.v) and SystemVerilog (.sv) files in the
simulation directory must also be compiled into the simulation project.

Transport Delays
By default, the VCS software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the
VCS software prevents the simulation tool from filtering out these pulses. Use the
following options to ensure that all signal pulses are seen in the simulation results.

+transport_path_delays
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive. You must include the +pulse_e/number and +pulse_r/number
options.

+transport_int_delays
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives. You must include the +pulse_int_e/number and
+pulse_int_r/number options.

1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the VCS User Guide
installed with the VCS software.

The following VCS software command shows the command-line syntax to perform a
post-synthesis simulation with the device family library:

vcs -R <testbench>.v <gate-level netlist>.v -v <Altera device family
library>.v \ +transport_int_delays +pulse_int_e/0 +pulse_int_r/0
+transport_path_delays \
+pulse_e/0 +pulse_r/0 r

Using NativeLink with the VCS or VCS MX Software
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
VCS or VCS MX within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

Generating a Timing .vcd File for the PowerPlay Power Analyzer
To generate a timing Verilog Value Change Dump File (*.vcd) for PowerPlay, you
must first generate a VCD script in the Quartus II software, and then run the VCD
script from the VCS software. This timing .vcd file can then be used by PowerPlay for
power analysis.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://synopsys.com/
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

3–14 Chapter 3: Synopsys VCS and VCS MX Support
Viewing a Waveform from a .vpd or .vcd File
To generate timing VCD scripts in the Quartus II software, perform the following
steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. On the
Simulation page, in the Tool name list, select VCS and turn on the Generate
Value Change Dump (VCD) file script option.

3. To generate the VCD script file, perform a full compilation.

Perform the following steps to generate a timing .vcd file in the VCS software:

1. Before compiling and simulating your design, include the script in your testbench
file where the design under test (DUT) is instantiated:

include <revision_name>_dump_all_vcd_nodes.v r

1 Include the script within the testbench module block. If you include the
script outside of the testbench module block, syntax errors occur during
compilation.

2. Run the simulation using the VCS command as usual. Exit the VCS software when
the simulation is finished and the <revision_name>.vcd file is generated in the
simulation directory.

1 The .vcd file is not supported in the VCS MX software.

f For more detailed information about using the timing .vcd file for power analysis,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .vpd or .vcd File
A Virtual Panoramic Display (.vpd) file is automatically generated when your
simulation is finished. The .vpd file is not readable. It is used for generating the
waveform view through DVE. You can view your waveform result in DVE if you have
created a .vpd or .vcd file.

To view a waveform from a .vpd file through DVE, perform the following steps:

1. Type dve on a command line. The DVE dialog box appears.

2. On the File menu, click Open Database. The Open Database dialog box appears.

3. Browse to the directory that contains your .vpd file (for example, inter.vpd).

4. Double-click the .vpd file.

5. In the DVE dialog box, select the signals that you want to observe from the
Hierarchy.

6. On the Signal menu, click Add To Waves.

7. Click New Wave View. The waveform appears.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 3: Synopsys VCS and VCS MX Support 3–15
Scripting Support
You cannot view a waveform from a .vcd file in DVE directly. The .vcd file must first
be converted to a .vpd file. To convert the file, perform the following steps:

1. Use the vcd2vpd command to convert the file. For example, type the following on a
command line:

vcd2vpd <example>.vcd <example>.vpd r
2. After you convert the .vcd file to a .vpd file, follow the procedures for viewing a

waveform from a .vpd file through DVE.

You can also convert your .vpd file to a .vcd file by using the vpd2vcd command.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about command-line scripting, refer
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the Qhelp utility.

To start the Qhelp utility, type the following command:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for VCS
You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at a command prompt.

Tcl Commands
Type the following Tcl commands to generate a post-synthesis simulation netlist when
you compile your design or as part of a Tcl script that compiles your design:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r
set_global_assignment –name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Prompt
Type the following command to generate a simulation output file for the VCS
software simulator; specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=vcs --functional r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

3–16 Chapter 3: Synopsys VCS and VCS MX Support
Conclusion
Generating a Gate-Level Timing Simulation Netlist for VCS
You can use the Quartus II software to generate a gate-level timing simulation netlist
with Tcl commands or with a command at a command prompt.

Tcl Commands
Type the following Tcl command to generate a gate-level timing simulation netlist:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r

Command Prompt
Type the following command to generate a simulation output file for the VCS
software simulator. Specify VHDL or Verilog HDL for the format.

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs r

Conclusion
You can use the Synopsys VCS or VCS MX software in your Altera FPGA design flow
to easily and accurately perform functional simulations, post-synthesis simulations,
and gate-level functional timing simulations. The seamless integration of the
Quartus II software and VCS or VCS MX software make this simulation flow an ideal
method for fully verifying an FPGA design.

Document Revision History
Table 3–2 shows the revision history for this chapter.

Table 3–2. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Quartus II Help where appropriate

■ Added Stratix V simulation information

■ Minor text edits

■ Removed VirSim references

■ Removed Referenced Documents section

November 2009 9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 3: Synopsys VCS and VCS MX Support 3–17
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

March 2009 9.0.0

■ Added support for Synopsys VCS MX software

■ Changed chapter title to “Synopsys VCS and VCS MX Support”

■ Major revision to “Compiling Libraries Using the EDA Simulation Library Compiler” on
page 4–2

■ Major revision to “RTL Functional Simulations” on page 4–2

■ Added Table 3–4 on page 3–10 and Table 3–5 on page 3–11

■ Added new section “Using DVE” on page 4–7

■ Added new section “Generating a Simulation Script from the EDA Netlist Writer” on
page 3–16

■ Added new section “Viewing a Waveform from a .vpd or .vcd File” on page 4–13

November 2008 8.1.0

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 3–3

■ Added information about the --simlib_comp utility

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates

Table 3–2. Document Revision History (Part 2 of 2)

Date Version Changes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

3–18 Chapter 3: Synopsys VCS and VCS MX Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53003-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53003-10.0.1
4. Cadence NC-Sim Support
This chapter describes the basic NC-Sim, NC-Verilog, and NC-VHDL functional,
post-synthesis, and gate-level timing simulations.

The Cadence Incisive verification platform includes NC-Sim, NC-Verilog, NC-VHDL,
Verilog HDL, and VHDL desktop simulators.

This chapter is a “getting started” guide to using the Cadence Incisive verification
platform in Altera® FPGA design flows. This chapter also describes the location of the
simulation libraries and how to automate simulations.

This chapter includes the following topics:

■ “Software Requirements”

■ “Simulation Flow Overview”

■ “Functional Simulation” on page 4–3

■ “Post-Synthesis Simulation” on page 4–7

■ “Gate-Level Timing Simulation” on page 4–8

■ “Simulating Designs that Include Transceivers” on page 4–10

■ “Using the NativeLink Feature with NC-Sim” on page 4–18

■ “Generating a Timing VCD File for the PowerPlay Power Analyzer” on page 4–18

■ “Viewing a Waveform from a .trn File” on page 4–19

■ “Scripting Support” on page 4–20

Software Requirements
To simulate your design using the NC-Sim software, you must first set up the Altera
libraries. These libraries are installed with the Quartus II software.

f For more information about installing the software and directories created during the
Quartus II software installation, refer to the Altera Software Installation and Licensing
manual.

Simulation Flow Overview
The Incisive verification platform supports the following simulation flows:

■ Functional Simulation

■ Post-Synthesis Simulation

■ Gate-Level Timing Simulation

■ Using the NativeLink Feature with NC-Sim
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53003
http://www.altera.com/literature/manual/quartus_install.pdf

4–2 Chapter 4: Cadence NC-Sim Support
Simulation Flow Overview
Functional simulation verifies the functionality of your design. When you perform a
functional simulation with Cadence Incisive simulators, you use your design files
(Verilog HDL or VHDL) and the models provided with the Quartus II software. These
Quartus II models are required if your design uses the library of parameterized
modules (LPM) functions or Altera-specific megafunctions. Refer to “Functional
Simulation” on page 4–3 for more information about how to perform this simulation.

A post-synthesis simulation verifies the functionality of a design after synthesis has
been performed. You can create a post-synthesis netlist (.vo or .vho) in the Quartus II
software and use this netlist to perform a post-synthesis simulation with the Incisive
simulator. Refer to “Post-Synthesis Simulation” on page 4–7 for more information
about how to perform this simulation.

After performing place-and-route, the Quartus II software generates a Verilog HDL
Output File (.vo) or VHDL Output File (.vho) and a Standard Delay Output file (.sdo)
for gate-level timing simulation. The netlist files map your design to
architecture-specific primitives. The .sdo file contains the delay information of each
architecture primitive and routing element specific to your design. Together, these
files provide an accurate simulation of your design with the selected Altera FPGA
architecture. Refer to “Gate-Level Timing Simulation” on page 4–8 for more
information about how to perform this simulation.

Operation Modes
You can use either the GUI mode or the command-line mode to simulate your design
in the NC simulators.

To start the Incisive simulators in GUI mode, type the following command at a
command prompt:

nclaunch r
To simulate in command-line mode, use the programs shown in Table 4–1.

Quartus II Software and NC Simulation Flow Overview
This section provides an overview of the Quartus II software and Cadence NC
simulation flow. More detailed information is provided in “Functional Simulation” on
page 4–3, “Post-Synthesis Simulation” on page 4–7, and “Gate-Level Timing
Simulation” on page 4–8.

Table 4–1. Command-Line Programs

Program Function

ncvlog or
ncvhdl

NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog Syntax Tree (.vst) file. ncvlog also performs
syntax and static semantics checks.

NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax Tree (.ast) file. ncvhdl also performs syntax
and static semantics checks.

ncelab NC-Elab (ncelab) elaborates the design. ncelab constructs the design hierarchy and establishes signal
connectivity. This program also generates a Signature File (.sig) and a Simulation SnapShot File (.sss).

ncsim NC-Sim (ncsim) performs mixed-language simulation. This program is the simulation kernel that performs
event scheduling and executes the simulation code.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 4: Cadence NC-Sim Support 4–3
Functional Simulation
For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

Complete the following tasks:

1. Create user libraries.

Create a file that maps logical library names to their physical locations. These
library mappings include your working directory and any design-specific
libraries; for example, Altera LPM functions or megafunctions.

2. Compile source code and testbenches.

Compile your design files at the command-line using ncvlog (Verilog HDL files)
or ncvhdl (VHDL files) or, on the Tools menu, click Verilog Compiler or VHDL
Compiler in NCLaunch. During compilation, the NC software performs syntax
and static semantic checks. If no errors are found, compilation produces an
internal representation for each HDL design unit in the source files. By default,
these intermediate objects are stored in a single, packed, library database file in
your working directory.

3. Elaborate your design.

Before you can simulate your model, you must define the design hierarchy in a
process called “elaboration”. Use ncelab in command-line mode or, on the Tools
menu in NCLaunch, click Elaborator.

4. Add signals to your waveform.

Specify which signals to view in your waveform using a simulation history
manager (SHM) database.

5. Simulate your design.

Run the simulator with the ncsim program (command-line mode) or by clicking
Run in the SimVision Console window.

Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler compiles Verilog HDL and VHDL simulation
libraries for all Altera devices and supported third-party simulators. You can compile
all libraries required by functional and gate-level simulation with this tool.

f For more information about this tool, refer to the “EDA Simulation Library Compiler”
section in the Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

Functional Simulation
The following sections provide detailed instructions for performing functional
simulation using the Quartus II software and the Cadence Incisive verification
platform tools.

h For the Altera Behavioral Simulation Models, refer to Altera Functional Simulation
Libraries in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

4–4 Chapter 4: Cadence NC-Sim Support
Functional Simulation
Creating Libraries
To create libraries, perform the following steps:

1. Create a directory for the work library and any other libraries you require by
typing the following command at a command prompt:

mkdir <library name> r
Examples:

mkdir worklib r
mkdir altera_mf r

2. Using a text editor, create a cds.lib file and add the following line to it:

DEFINE <library name> <physical directory path>

Examples:

DEFINE worklib ./worklib
DEFINE altera_mf ./altera_mf

h For information about creating a cds.lib file in GUI mode, refer to Performing a
Functional Simulation with the NCSim Software in Quartus II Help.

For VHDL Designs
If you are targeting a Stratix V device, compile the following files in the
quartus/eda/sim_lib/cadence directory:

stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation. You need a co-simulation license from Cadence to use these models in
VHDL.

1 Compile these encrypted Verilog files before you compile any VHDL files. Compile
stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.vhd
stratixv_components.vhd
stratixv_hssi_components.vhd
stratixv_pcie_components.vhd
stratixv_hssi_atoms.vhd
stratixv_pcie_hip_atoms.vhd

1 The PCIe® files are required only if you are using the PCIe HIP.

For Verilog HDL Designs
If you are targeting a Stratix V device, compile the following files in the
<quartus/eda/sim_lib/cadence directory:
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm

Chapter 4: Cadence NC-Sim Support 4–5
Functional Simulation
stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models.

1 Compile stratixv_pcie_hip_atoms.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.v
stratixv_hssi_atoms.v
stratixv_pcie_hip_atoms.v

1 The PCIe files are required only if you are using the PCIe HIP.

Compiling Source Code
To compile from your source code from the command line, type one of the following
commands:

■ Verilog HDL:

ncvlog <options> -work <library name> <design files> r
■ VHDL:

ncvhdl <options> -work <library name> <design files> r
You must create a work library before compiling your design and testbench. If your
design uses LPM, Altera megafunctions, or Altera primitives, you must also compile
the Altera-provided functional models. The commands in Example 4–1 and
Example 4–2 show an example of each.

h For information about compiling in GUI mode, refer to Performing a Functional
Simulation with the NCSim Software in Quartus II Help.

Example 4–1. Compile in Verilog HDL

ncvlog -WORK lpm 220model.v
ncvlog -WORK altera_mf altera_mf.v
ncvlog -WORK altera altera_primitives.v
ncvlog -WORK altera altera_primitives.v
ncvlog -WORK work toplevel.v testbench.v

Example 4–2. Compile in VHDL

ncvhdl -V93 -WORK lpm 220pack.vhd
ncvhdl -V93 -WORK lpm 220model.vhd
ncvhdl -V93 -WORK altera_mf altera_mf_components.vhd
ncvhdl -V93 -WORK altera_mf altera_mf.vhd
ncvhdl -V93 -WORK altera altera_primitives_components.vhd
ncvhdl -V93 -WORK altera altera_primitives.vhd
ncvhdl -V93 -WORK work toplevel.vhd testbench.vhd
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm

4–6 Chapter 4: Cadence NC-Sim Support
Functional Simulation
Elaborating Your Design
Before you can simulate your design, you must define the design hierarchy in a
process called elaboration. The Incisive simulator elaborates your design with the
language-independent ncelab program. The ncelab program constructs a design
hierarchy based on the design’s instantiation and configuration information,
establishes signal connectivity, and computes initial values for all objects in the
design. The elaborated design hierarchy is stored in a simulation snapshot, which is
the representation of your design that the simulator uses to run the simulation. The
snapshot is stored in the library database file, along with the other intermediate
objects generated by the compiler and elaborator.

To elaborate your Verilog HDL or VHDL design from the command line, type the
following command:

ncelab [options][<library>.<testbench module name]

Example:

ncelab -access +rwc work.testbench_module

Adding the option -access +rwc allows signals to be viewed in the Waveform
window.

If your design includes high-speed signals, you might have to add the following pulse
reject options with the ncelab command:

ncelab -access +rwc work.testbench_module -PULSE_R 0 -PULSE_INT_R 0

f For more information about the pulse reject options, refer to the SDF Annotate Guide
from Cadence.

h For information about elaborating your design in GUI mode, refer to Performing a
Functional Simulation with the NCSim Software in Quartus II Help.

Simulating Your Design
After you have compiled and elaborated your design, you can simulate it using
ncsim. The ncsim program loads the file, or snapshot, generated by ncelab as its
primary input and then loads other intermediate objects referenced by the snapshot. If
you enable interactive debugging, ncsim can also load HDL source files and script
files. The simulation output is controlled by the model or debugger. The output can
include result files generated by the model, the SHM database, or the .vcd file.

To perform functional simulation of your Verilog HDL or VHDL design at the
command line, type the following command:

ncsim [options][<library>.<testbench module name>]

Example:

ncsim -gui work.testbench_module

Adding the option -gui opens the SimVision window for running your simulation.

h For information about performing a functional simulation in GUI mode, refer to
Performing a Functional Simulation with the NCSim Software in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm
http://cadence.com/
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_func_sim.htm

Chapter 4: Cadence NC-Sim Support 4–7
Post-Synthesis Simulation
Post-Synthesis Simulation
The following sections provide detailed instructions for performing post-synthesis
simulation with the Incisive platform software and output files and simulation files
from the Quartus II software.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.

h For a list of the gate-level simulation models, refer to Altera Post-Fit Libraries in
Quartus II Help.

Quartus II Simulation Output Files
After performing synthesis with either a third-party synthesis tool or with Quartus II
integrated synthesis, you must generate a simulation netlist for functional
simulations.

f To generate a simulation netlist for functional simulation, refer to the “Generating
Post-Synthesis Netlist Files” section in the Simulating Altera Designs chapter in volume
3 of the Quartus II Handbook.

Creating Libraries
Create the following libraries for your simulation:

■ Work library

■ Device family library targeting your design targets using the following files in the
<path to Quartus II installation>/eda/sim_lib directory:

■ <device_family>_atoms.v

■ <device_family>_atoms.vhd

■ <device_family>_components.vhd

Refer to “Creating Libraries” on page 4–4 for instructions about creating libraries.

Compiling Project Files and Libraries
Compile the project files and libraries into your work directory using the ncvlog,
ncvhdl programs, or the GUI. Include the following files:

■ Testbench file

■ The Quartus II software functional output netlist file (.vo file or .vho file)

■ Atom library file for the device family <device family>_atoms.<v|vhd>

■ For VHDL, <device family>_components.vhd

Refer to “Compiling Source Code” on page 4–5 for instructions about compiling.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

4–8 Chapter 4: Cadence NC-Sim Support
Gate-Level Timing Simulation
Elaborating Your Design
Elaborate your design using the ncelab program as described in “Elaborating Your
Design” on page 4–6.

Simulating Your Design
Simulate your design using the ncsim program as described in “Simulating Your
Design” on page 4–6.

Gate-Level Timing Simulation
The following sections provide detailed instructions for performing a timing
simulation using the Quartus II output files, simulation libraries, and Cadence NC
tools.

1 You cannot perform post-synthesis or post-fit simulations if you are targeting the
Stratix V device family.

h For a list of the gate-level simulation models, refer to Altera Post-Fit Libraries in
Quartus II Help.

h For details about how to perform gate-level timing simulation using the Quartus II
software and the Cadence NC-Sim software, refer to Performing a Timing Simulation
with the NCSim Software in Quartus II Help.

Generating a Gate-Level Timing Simulation Netlist
To perform a gate-level timing simulation, your design should provide the NC-Sim
software with information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in the form of
a .vo file for Verilog HDL designs and a .vho file for VHDL designs. The
accompanying timing information is stored in the .sdo file, which annotates the delay
for the elements found in the .vo file or .vho file.

f To generate the .vo or .vho file and the .sdo file, refer to the “Generating Gate-Level
Timing Simulation Netlist Files” section in the Simulating Altera Designs chapter in
volume 3 of the Quartus II Handbook.

Disabling Timing Violation on Registers
In certain situations, the timing violations can be ignored and you can disable the
timing violation on registers. For example, timing violations that occur in internal
synchronization registers used for asynchronous clock-domain crossing can be
ignored and disabled.

By default, the x_on_violation_option logic option is On, which means the
simulation shows “X” whenever a timing violation occurs. To disable showing the
timing violation on certain registers, you can set the x_on_violation_option logic
option to Off for those registers. The following command is the Quartus II Tcl
command to disable timing violation on registers.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim//eda_pro_ncsim_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim//eda_pro_ncsim_timing_sim.htm

Chapter 4: Cadence NC-Sim Support 4–9
Gate-Level Timing Simulation
set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to \ <register_name>

This Tcl command is also stored in the .qsf file.

Creating Libraries
Create the following libraries for your simulation:

■ Work library

■ Device family libraries targeting using the following files in the <path to Quartus II
installation>/eda/sim_lib directory:

■ <device_family>_atoms.v

■ <device_family>_atoms.vhd

■ <device_family>_components.vhd

For instructions about creating libraries, refer to “Creating Libraries” on page 4–4.

Compiling Project Files and Libraries
Compile the project files and libraries into your work directory with the ncvlog or
ncvhdl programs or the GUI. Include the following files:

■ Testbench file

■ The Quartus II software functional output netlist file (.vo file or .vho file)

■ Atom library file for the device family <device family>_atoms.<v|vhd>

■ For VHDL, <device family>_components.vhd

For instructions about compiling, refer to “Compiling Source Code” on page 4–5.

Elaborating Your Design
When performing elaboration with the Quartus II-generated Verilog HDL netlist file,
the .sdo file is read automatically. The ncelab executable recognizes the embedded
system task $sdf_annotate and automatically compiles and annotates the .sdo file
(runs ncsdfc automatically).

1 The .sdo file should be located in the same directory where you perform an
elaboration or simulation, because the $sdf_annotate task references the .sdo file
without using a full path. If you are starting an elaboration or simulation from a
different directory, you can either comment out the $sdf_annotate and annotate the
.sdo file with the GUI, or add the full path of the .sdo file.

Refer to “Elaborating Your Design” on page 4–6 for elaboration instructions.

VHDL netlist files do not contain system task calls to locate your .sdf file; therefore,
you must compile the Standard .sdo file manually. For information about compiling
the .sdo file, refer to “Compiling the .sdo File (VHDL Only) in Command-Line Mode”
and “Compiling the .sdo File (VHDL Only) in GUI Mode”.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

4–10 Chapter 4: Cadence NC-Sim Support
Simulating Designs that Include Transceivers
Compiling the .sdo File (VHDL Only) in Command-Line Mode
To annotate the .sdo file timing data from the command line, perform the following
steps:

1. Compile the .sdo file using the ncsdfc program by typing the following command
at the command prompt:

ncsdfc <project name>_vhd.sdo –output <output name> r
The ncsdfc program generates an <output name>.sdf.X compiled .sdo file.

1 If you do not specify an output name, ncsdfc uses <project name>.sdo.X.

2. Specify the compiled .sdf file for the project by adding the following command to
an ASCII SDF command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

Example 4–3 shows an example of an SDF command file.

After you compile the .sdf file, type the following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> r

Compiling the .sdo File (VHDL Only) in GUI Mode

h To compile the .sdo file in GUI mode, refer to Performing a Timing Simulation with the
NCSim Software in Quartus II Help.

Simulating Your Design
Simulate your design using the ncsim program as described in “Simulating Your
Design” on page 4–6.

f For the design examples to run gate-level timing simulation, refer to the
Cadence NC-Sim Simulation Design Example web page.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone IV, HardCopy IV, Stratix, Stratix II, or
Stratix IV transceivers, you must compile additional library files to perform functional
or gate-level timing simulations.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation might fail.

Example 4–3. SDF Command File

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_timing_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/ncsim/eda_pro_ncsim_timing_sim.htm
http://www.altera.com/support/examples/ncsim/exm-ncsim.html

Chapter 4: Cadence NC-Sim Support 4–11
Simulating Designs that Include Transceivers
f If your design contains PCI Express® hard IP, refer to the “Simulate the Design”
section in the PCI Express Compiler User Guide.

Functional Simulation for Stratix GX Devices
To perform a functional simulation of your design that instantiates the ALTGXB
megafunction, enabling the gigabit transceiver block (GXB) on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Compiling Library Files for Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix GX device, type the commands shown in Example 4–4 at the
NC-Sim command prompt.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for a functional simulation of a Verilog HDL design
targeting a Stratix GX device, type the commands shown in Example 4–5 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver, compile the stratixgx_atoms and stratixgx_hssi_atoms model files into
the stratixgx and stratixgx_gxb libraries, respectively.

1 You must create these libraries to perform a simulation because the
stratixgx_hssi_atoms model file references the lpm and sgate libraries.

Example 4–4. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd
ncsim work.<my design>

Example 4–5. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work altgxb stratixgx_mf.v
ncsim work.<my design>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

4–12 Chapter 4: Cadence NC-Sim Support
Simulating Designs that Include Transceivers
Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for a timing simulation of a VHDL design targeting
a Stratix GX device, type the commands shown in Example 4–6 at the NC-Sim
command prompt.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for a timing simulation of a Verilog HDL design
targeting a Stratix GX device, type the commands shown in Example 4–7 at the
NC-Sim command prompt.

Functional Simulation for Stratix II GX Devices
Functional simulation of Stratix II GX devices is similar to functional simulation of
Arria GX devices. Example 4–9 on page 4–13 and “Compile Libraries Commands for
Functional Simulation in Verilog HDL” on page 4–13 show only the functional
simulation for designs that include transceivers in Stratix II GX devices. To simulate
transceivers in Arria GX devices, replace the stratixiigx_hssi model file with the
arriagx_hssi model file.

To perform a functional simulation of your design that instantiates the ALT2GXB
megafunction, edit your cds.lib file so all of the libraries point to the work library, and
compile the stratixiigx_hssi model file into the stratixiigx_hssi library. When
compiling the library files, you can safely ignore the following warning message:

"Multiple logical libraries mapped to a single location"

Example 4–8 shows the cds.lib file.

Example 4–6. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd
ncvhdl -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 4–7. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixgx stratixgx_atoms.v
ncvlog -work stratixgx_gxb stratixgx_hssi_atoms.v
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 4–8. cds.lib File

SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiigx_hssi ./ncsim_work
DEFINE stratixiigx ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 4: Cadence NC-Sim Support 4–13
Simulating Designs that Include Transceivers
1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Generate a functional simulation netlist by turning on Create a simulation library for
this design in the last page of the ALT2GXB MegaWizard Plug-In Manager. The
<alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated in the current
project directory.

1 The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

Compiling Library Files for Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix II GX device, type the commands shown in Example 4–9 at the
NC-Sim command prompt.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix II GX device, type the commands shown in Example 4–10 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix II GX Devices
Stratix II GX functional simulation is similar to Arria GX functional simulation.
Example 4–11 on page 4–14 and Example 4–12 on page 4–14 show only the gate-level
timing simulation for designs that include transceivers in Stratix II GX. To simulate
transceivers in Arria GX, replace the stratixiigx_hssi model file with the arriagx_hssi
model file.

To perform a post-fit timing simulation of your design that includes the ALT2GXB
megafunction, edit your cds.lib file so that all the libraries point to the work library
and compile stratixiigx_atoms and stratixiigx_hssi_atoms into the stratixiigx
and stratixiigx_hssi libraries, respectively. When compiling the library files, you can
safely ignore the following warning message:

"Multiple logical libraries mapped to a single location"

Example 4–9. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
ncvhdl -work work <alt2gxb entity name>.vho
ncelab work.<my design>

Example 4–10. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
ncvlog -work work <alt2gxb module name>.vo
ncelab work.<my design>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

4–14 Chapter 4: Cadence NC-Sim Support
Simulating Designs that Include Transceivers
For an example of a cds.lib file, refer to “Functional Simulation for Stratix II GX
Devices” on page 4–12.

1 The stratixiigx_hssi_atoms model file references the lpm and sgate libraries. You
must create these libraries to perform a simulation.

Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for timing simulation of a VHDL design targeting a
Stratix II GX device, type the commands shown in Example 4–11 at the NC-Sim
command prompt.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix II GX device, type the commands shown in Example 4–12 at the
NC-Sim command prompt.

Functional Simulation for Stratix IV GX Devices
Functional simulation for Stratix IV devices is similar to functional simulation for
Arria II, Cyclone IV, and HardCopy IV devices. Example 4–14 shows only the
functional simulation for designs that include transceivers in Stratix IV devices. To
simulate transceivers in Arria II, Cyclone IV, and HardCopy IV devices, replace the
stratixiv_hssi model file with the arriaii_hssi, cycloneiv_hssi, and hardcopyiv_hssi
model files, respectively.

To perform a functional simulation of your design that instantiates the ALTGX
megafunction, edit your cds.lib file so that all of the libraries point to the work library,
and compile the stratixiv_hssi model file into the stratixiv_hssi library.

When compiling the library files, you can safely ignore the following warning
message:

"Multiple logical libraries mapped to a single location"

Example 4–11. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
ncvhdl -work work <alt2gxb>.vho
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Example 4–12. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiigx stratixiigx_atoms.v
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 4: Cadence NC-Sim Support 4–15
Simulating Designs that Include Transceivers
Example 4–13 shows the cds.lib file.

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix IV device, type the commands shown in Example 4–14 at the
NC-Sim command prompt.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix IV device, type the commands shown in Example 4–15 at the
NC-Sim command prompt.

Gate-Level Timing Simulation for Stratix IV GX Devices
Stratix IV gate-level timing simulation is similar to Arria II gate-level timing
simulation.

Example 4–16 and Example 4–17 show only the gate-level timing simulation for
designs that include transceivers in Stratix IV devices. To simulate transceivers in
Arria II, Cyclone IV, and HardCopy IV devices, replace the stratixiv_hssi model file
with the arriaii_hssi, cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

Example 4–13. cds.lib File

SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiv_hssi ./ncsim_work
DEFINE stratixiv ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

Example 4–14. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiv_hssi stratixiv_hssi_components.vhd \
stratixiv_hssi_atoms.vhd
ncvhdl -work work <altgx entity name>.vhd
ncelab work.<my design>

Example 4–15. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiv_hssi stratixiv_hssi_atoms.v
ncvlog -work work <altgx module name>.v
ncelab work.<my design>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

4–16 Chapter 4: Cadence NC-Sim Support
Simulating Designs that Include Transceivers
To perform a post-fit timing simulation of your design that includes the ALTGX
megafunction, edit your cds.lib file so that all of the libraries point to the work library
and compile stratixiv_atoms and stratixiv_hssi_atoms into the stratixiv and
stratixiv_hssi libraries, respectively. When compiling the library files, you can safely
ignore the following warning message:

"Multiple logical libraries mapped to a single location"

For an example of a cds.lib file, refer to Example 4–13 on page 4–15.

The stratixiv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Gate-Level Timing Simulation in VHDL
To compile the libraries necessary for timing simulation of a VHDL design targeting a
Stratix IV device, type the commands shown in Example 4–16 at the NC-Sim
command prompt.

Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL
To compile the libraries necessary for timing simulation of a Verilog HDL design
targeting a Stratix IV device, type the commands shown in Example 4–17 at the
NC-Sim command prompt.

Functional Simulation for Stratix V GX Devices
Functional simulation for Stratix V devices is similar to functional simulation for
Arria II, Cyclone IV, HardCopy IV, and Stratix IV devices. To simulate transceivers in
Arria II, Cyclone IV, HardCopy IV, and Stratix IV devices, you only have to replace the
stratixv_hssi model file with the arriaii_hssi, cycloneiv_hssi, hardcopyiv_hssi, and
stratiiv_hssi model files, respectively.

The stratixv_hssi_atoms model file references the lpm and sgate libraries. You must
compile these libraries to perform a simulation.

Example 4–16. Compile Libraries Commands for Timing Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixiv stratixiv_atoms.vhd \
stratixiv_components.vhd
ncvhdl -work stratixiv_hssi stratixiv_hssi_components.vhd \
stratixiv_hssi_atoms.vhd
ncvhdl -work work <altgx>.vho
ncsdfc <project name>_vhd.sdo
ncelab work.<my design> -TIMESCALE 1ps/1ps \
-SDF_CMD_FILE <SDF Command File> -PULSE_R 0 -PULSE_INT_R 0

Example 4–17. Compile Libraries Commands for Timing Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog -work stratixiv stratixiv_atoms.v
ncvlog -work stratixiv_hssi stratixiv_hssi_atoms.v
ncvlog -work work <altgx>.vo
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 4: Cadence NC-Sim Support 4–17
Simulating Designs that Include Transceivers
1 The transceiver module from the MegaWizard Plug-In Manager is created in
Interfaces/Transceiver PHY. Select Custom PHY.

Compiling Library Files for Functional Simulation
To compile the libraries necessary for functional simulation of a Verilog HDL or
VHDL design targeting a Stratix V device, type the following command at the VCS
command prompt:

Example 4–18 shows the cds.lib file.

The stratixv_hssi_atoms model file references the lpm and sgate libraries. You must
create these libraries to perform a simulation.

Compiling Library Files for Functional Simulation in VHDL
To compile the libraries necessary for functional simulation of a VHDL design
targeting a Stratix V device, type the commands shown in Example 4–19 at the
NC-Sim command prompt.

Compiling Library Files for Functional Simulation in Verilog HDL
To compile the libraries necessary for functional simulation of a Verilog HDL design
targeting a Stratix V device, type the commands shown in Example 4–20 at the
NC-Sim command prompt.

Example 4–18. cds.lib File

SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixv_hssi ./ncsim_work
DEFINE stratixv ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

Example 4–19. Compile Libraries Commands for Functional Simulation in VHDL

ncvhdl -work lpm 220pack.vhd 220model.vhd
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd
ncvhdl -work sgate sgate_pack.vhd sgate.vhd
ncvhdl -work stratixv_hssi stratixv_hssi_components.vhd \
ncvlog +v2k –work stratixv_hssi \
quartus/eda/sim_lib/cadence/stratixv_hssi_atoms_ncrypt.v
stratixv_hssi_atoms.vhd
ncvhdl -work work <my_design>.vhd
ncelab work.<my design>

Example 4–20. Compile Libraries Commands for Functional Simulation in Verilog HDL

ncvlog -work lpm 220model.v
ncvlog -work altera_mf altera_mf.v
ncvlog -work sgate sgate.v
ncvlog +v2k –work stratixv_hssi \
quartus/eda/sim_lib/cadence/stratixv_hssi_atoms_ncrypt.v
ncvlog -work stratixv_hssi stratixv_hssi_atoms.v
ncvlog -work work <my design>.v
ncelab work.<my design>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

4–18 Chapter 4: Cadence NC-Sim Support
Using the NativeLink Feature with NC-Sim
Pulse Reject Delays
By default, the NC-Sim software filters out all pulses that are shorter than the
propagation delay between primitives. Setting the pulse reject delays options in the
NC-Sim software prevents the simulation tool from filtering out these pulses. Use the
following options to ensure that all signal pulses are seen in the simulation results.

-PULSE_R
Use this option when the pulses in your simulation are shorter than the delay within a
gate-level primitive. The argument is the percentage of delay for pulse reject limit for
the path.

-PULSE_INT_R
Use this option when the pulses in your simulation are shorter than the interconnect
delay between gate-level primitives. The argument is the percentage of delay for
pulse reject limit for the path.

1 The -PULSE_R and -PULSE_INT_R options are also used by default in the
NativeLink feature for gate-level timing simulation.

The following NC-Sim software command shows the command-line syntax to
perform a gate-level timing simulation with the device family library.

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Using the NativeLink Feature with NC-Sim
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run
NC-Sim within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

Generating a Timing VCD File for the PowerPlay Power Analyzer
To generate a timing .vcd file for PowerPlay, you must first generate a VCD script in
the Quartus II software and run the VCD script from the NC-Sim software to generate
a timing .vcd file. This timing .vcd file can then be used by the PowerPlay Power
Analyzer for power analysis. The following instructions show you how to generate a
timing .vcd file.

Perform the following steps to generate timing VCD scripts in the Quartus II
software:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears (Figure 4–1).

2. In the Category list, click the “+” icon to expand EDA Tool Settings.

3. Click Simulation.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 4: Cadence NC-Sim Support 4–19
Viewing a Waveform from a .trn File
4. In the Tool name list, click NC-Sim.

5. Turn on the Generate Value Change Dump (VCD) File Script option.

6. Click OK.

7. To generate the VCD script file, perform a full compilation.

Perform the following steps to generate a timing .vcd file in NC-Sim:

1. In the NC-Sim software, before simulating your design, source the
<revision_name>_dump_all_vcd_nodes.tcl script. To source the .tcl script, use the
–input switch while running the nssim command. For example:

ncsim –input <revision_name>_dump_all_vcd_nodes.tcl <my design>

2. Continue to run the simulation until it finishes. Exit ncsim and the
<revision_name>.vcd is generated in the simulation directory.

f For more detailed information about using the timing .vcd file for power analysis,
refer to the PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Viewing a Waveform from a .trn File
A .trn file is automatically generated when your simulation is done. The .trn file is not
readable. It is used for generating the waveform view through SimVision.

To view a waveform from a .trn file through SimVision, perform the following steps:

Figure 4–1. Simulation Settings Dialog Box
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

4–20 Chapter 4: Cadence NC-Sim Support
Scripting Support
1. Type simvision on a command line. The Design Browser dialog box appears.

2. On the File menu, click Open Database. The Open File dialog box appears.

3. In the Directories field, browse to the directory that contains your .trn file.

4. Double-click the .trn file.

5. In the Design Browser dialog box, select the signals that you want to observe from
the Hierarchy.

6. Right-click the selected signals and click Send to Waveform Window.

1 You cannot view a waveform from a .vcd file in SimVision, and the .vcd file cannot be
converted to a .trn file.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt.

For detailed information about scripting command options, refer to the Quartus II
Command-Line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

h For more information, refer to About Quartus II Scripting in Quartus II Help.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generating NC-Sim Simulation Output Files
You can generate .vo files and .sdo simulation output files with Tcl commands or at a
command prompt.

For more information about generating .vo simulation output files and .sdo file
simulation output files, refer to “Quartus II Simulation Output Files” on page 4–7.

Tcl Commands
The following three assignments cause a Verilog HDL netlist to be written out when
you run the Quartus II netlist writer.

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id
eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id
eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"

The netlist has a 1 ps timing resolution for the NC-Sim simulation software.

Type the following Tcl command to run the Quartus II Netlist Writer:

execute_module -tool eda
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 4: Cadence NC-Sim Support 4–21
Conclusion
Command Prompt
Type the following command to generate a simulation output file for the Cadence
NC-Sim software simulator. Specify Verilog HDL or VHDL for the format.

quartus_eda <project name> --simulation --format=<verilog|vhdl> --tool=ncsim r

Conclusion
The Cadence NC family of simulators work within an Altera FPGA design flow to
perform functional, post-synthesis, and gate-level timing simulation, easily and
accurately.

Altera provides functional models of LPM and Altera-specific megafunctions that you
can compile with your testbench or design. For timing simulation, use the atom netlist
file generated by Quartus II compilation.

The seamless integration of the Quartus II software and Cadence NC tools make this
simulation flow an ideal method for fully verifying an FPGA design.

Document Revision History
Table 4–2 shows the revision history for this chapter.

Table 4–2. Document Revision History (Part 1 of 2)

Date Version Changes

December 2010 10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Help where appropriate

■ Minor text edits

■ Removed Referenced Documents section

November 2009 9.1.0

■ Removed NativeLink information and referenced new Simulating Designs with EDA
Tools chapter in volume 3 of the Quartus II Handbook

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits

March 2009
9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library Compiler”

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 4–5

■ Added “Generate Simulation Script from EDA Netlist Writer” on page 4–35

■ Added “Viewing a Waveform from a .trn File” on page 4–36

■ Minor editorial updates
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

4–22 Chapter 4: Cadence NC-Sim Support
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2008 8.1.0

■ Added “Compile Libraries Using the Altera Simulation Library Compiler” on page 4–5.

■ Added information about the --simlib_comp utility.

■ Minor editorial updates.

■ Updated entire chapter using 8½” × 11” chapter template.

May 2008 8.0.0.

■ Updated Table 4–1.

■ Updated Figure 4–1.

■ Updated “Compilation in Command-Line Mode” on page 4–9.

■ Updated “Generating a Timing Netlist with Different Timing Models” on page 4–18.

■ Added “Disable Timing Violation on Registers” on page 4–20.

■ Updated “Simulating Designs that Include Transceivers” on page 4–23.

■ Updated “Performing a Gate Level Simulation Using NativeLink” on page 4–30.

■ Added “Generating a Timing VCD File for PowerPlay” on page 4–33.

■ Added hyperlinks to referenced documents throughout the chapter.

■ Minor editorial updates.

Table 4–2. Document Revision History (Part 2 of 2)

Date Version Changes
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53023-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53023-10.0.1
5. Aldec Active-HDL and Riviera-PRO
Support
This chapter describes how to use the Active-HDL and Riviera-PRO software to
simulate designs that target Altera® FPGAs. This chapter provides step-by-step
instructions about how to perform functional simulations, post-synthesis simulations,
and gate-level timing simulations for Verilog HDL or VHDL designs.

This chapter includes the following topics:

■ “Software Requirements”

■ “Using Active-HDL or Riviera-PRO Software in Quartus II Design Flows”

■ “Simulation Libraries” on page 5–2

■ “Performing Simulation Using the Active-HDL Software (GUI Mode)” on
page 5–3

■ “Performing Simulation Using the Riviera-PRO Software (GUI Mode)” on
page 5–5

■ “Performing Simulation Using the Active-HDL or Riviera-PRO Software
(Command-Line Mode)” on page 5–6

■ “Compiling System Verilog Files” on page 5–11

■ “Simulating Designs that Include Transceivers” on page 5–11

■ “Using the NativeLink Feature in Active-HDL or Riviera-PRO Software” on
page 5–18

■ “Generating .vcd Files for the PowerPlay Power Analyzer” on page 5–18

■ “Scripting Support” on page 5–19

Software Requirements
To simulate your design using the Active-HDL or Riviera-PRO software, you must
first set up the Altera libraries. These libraries are installed with the Quartus II
software.

f For more information about installing the software and directories created during the
Quartus II software installation, refer to the Altera Software Installation and Licensing
manual.

Using Active-HDL or Riviera-PRO Software in Quartus II Design Flows
You can perform the following types of simulations using the Active-HDL
or Riviera-PRO software:

■ Functional simulation

■ Post-synthesis simulation
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
http://www.altera.com/literature/manual/quartus_install.pdf
https://www.altera.com/servlets/subscriptions/alert?id=QII53023

5–2 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Simulation Libraries
■ Gate-level timing simulation

Simulation Libraries
Simulation model libraries are required to run a simulation whether you are running
a functional simulation, post-synthesis simulation, or gate-level timing simulation. In
general, running a functional simulation requires the functional simulation model
libraries and running a post-synthesis or gate-level timing simulation requires the
gate-level timing simulation model libraries. You must compile the necessary library
files before you can run the simulation.

However, there are a few exceptions where you are also required to compile gate-level
timing simulation library files to perform functional simulation. For example, some of
Altera megafunctions require gate-level libraries to perform a functional simulation in
third-party simulators.

1 For each megafunction that you are using, refer to the last page in the Altera
MegaWizard™ Plug-In Manager, which lists the simulation library files required to
perform a functional simulation for that megafunction.

The transceiver megafunction (for example, ALTGX) also requires the gate-level
libraries to perform functional simulation.

For detailed, step-by-step instructions about how to simulate the transceiver
megafunction, refer to “Simulating Designs that Include Transceivers” on page 5–11.

Simulation Library Files in the Quartus II Software
In Active-HDL or Riviera-PRO software, you must compile the necessary libraries to
perform functional, post-synthesis functional, or gate-level timing simulation. You
can refer to these library files for any particular simulation model that you are looking
for.

h For a list of all functional simulation library files in the Quartus II directory, refer to
Altera Functional Simulation Libraries in Quartus II Help. For a list of all gate-level
timing simulation and post-fit library files in the Quartus II directory, refer to Altera
Post-Fit Libraries in Quartus II Help.

Disabling Timing Violation on Registers
In certain situations, the timing violation can be ignored and you can disable the
timing violation on registers; for example, timing violations that occur in internal
synchronization registers used for asynchronous clock-domain crossing.

By default, the x_on_violation_option logic option is On, which means the
simulation shows “x” whenever a timing violation occurs. To disable showing the
timing violation on certain registers, set the x_on_violation_option logic option to
Off on those registers. The following command is an example of the QSF file:

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF –to <register_name>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–3
Performing Simulation Using the Active-HDL Software (GUI Mode)
Compiling Libraries Using the EDA Simulation Library Compiler
The EDA Simulation Library Compiler is used to compile Verilog HDL and VHDL
simulation libraries for all Altera devices and supported third-party simulators. You
can use this tool to compile all libraries required by and gate-level timing simulation.

1 The altera_mf_components.vhd and altera_mf.vhd model files should be compiled
into the altera_mf library. The 220pack.vhd and 220model.vhd model files should be
compiled into the lpm library.

f For more information about this tool, refer to the “EDA Simulation Library Compiler”
section in the Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

Performing Simulation Using the Active-HDL Software (GUI Mode)
Perform simulation of Verilog HDL or VHDL designs with Active-HDL software at
various levels to verify designs from different aspects. There are three types of
simulation:

■ Functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

Simulation helps you verify your designs and debug them against any errors the
designs may have. The following sections provide step-by-step instructions to
perform the simulation through the GUI.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions. If you choose slower than ps, the high-speed simulation may
fail.

Workspace creation is the mandatory first step to start working in the Active-HDL
GUI. You must create a new workspace to add the simulation model files, design files,
and testbench file before you can compile them.

Simulating VHDL Designs
When you simulate VHDL designs using the Active-HDL GUI, you do not have to
remember the commands to compile the libraries or load and simulate the VHDL
design files. You can use the Active-HDL GUI to perform the functional simulation,
post-synthesis simulation, and gate-level timing simulation.

Performing Functional Simulation
Functional simulation is typically performed to verify the syntax of the code and to
check the functionality of the design.

h For detailed information about how to perform functional simulation in the
Active-HDL software for VHDL designs, refer to Performing a Simulation of a VHDL
Design with the Active-HDL Software in Quartus II Help.

If you are targeting a Stratix V device, compile the following files in the
quartus/eda/sim_lib/aldec directory:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm

5–4 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Performing Simulation Using the Active-HDL Software (GUI Mode)
stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation. You need a co-simulation license from Aldec to use these models in
VHDL.

1 Compile these encrypted Verilog files before you compile any VHDL files. Compile
stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.vhd
stratixv_components.vhd
stratixv_hssi_components.vhd
stratixv_pcie_hip_components.vhd
stratixv_hssi_atoms.vhd
stratixv_pcie_hip_atoms.vhd

1 The PCIe® files are required only if you are using the PCIe HIP.

Simulating Verilog HDL Designs
When you simulate Verilog HDL designs using the Active-HDL GUI, you do not have
to remember the commands to compile the libraries or load and simulate the Verilog
HDL design files. You can use the Active-HDL GUI to perform functional simulation,
post-synthesis simulation, and gate-level timing simulation.

Performing Functional Simulation
Functional simulation is performed to verify the syntax of the code and to check the
functionality of the design.

h For detailed information about how to perform functional simulation in the
Active-HDL software for Verilog HDL designs, refer to Performing a Simulation of a
Verilog HDL Design with the Active-HDL Software in Quartus II Help.

If you are targeting a Stratix V device, compile the following files in the
quartus/eda/sim_lib/aldec directory:

stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation.

1 Compile these encrypted Verilog files before you compile any VHDL files.

1 Compile stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/activehdl/eda_pro_aldec_vlog_sim.htm

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–5
Performing Simulation Using the Riviera-PRO Software (GUI Mode)
stratixv_atoms.v
stratixv_hssi_atoms.v
stratixv_pcie_hip_atoms.v

1 Compile stratixv_pcie_hip_atoms.v with the SystemVerilog option.

1 The PCIe files are required only if you are using the PCIe HIP.

Performing Simulation Using the Riviera-PRO Software (GUI Mode)
You can use the Riviera-PRO software to perform the following types of simulation:

■ Functional simulation

■ Post-synthesis simulation

■ Gate-level timing simulation

h For detailed information about how to perform functional simulation with
the Riviera-PRO software, refer to Performing an RTL Functional Simulation with the
Riviera-PRO Software in Quartus II Help. For detailed information about how to
perform post-synthesis simulation with the Riviera-PRO software, refer to Performing
a Post-Synthesis Simulation with the Riviera-PRO Software in Quartus II Help. For
detailed information about how to perform gate-level timing simulation with the
Riviera-PRO software, refer to Performing a Gate-Level Simulation with the Riviera-PRO
Software in Quartus II Help.

If you are performing a functional simulation in Verilog HDL and targeting a Stratix V
device, compile the following files in the quartus/eda/sim_lib/aldec directory:

stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation.

1 Compile these encrypted Verilog files before you compile any VHDL files.

1 Compile stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.v
stratixv_hssi_atoms.v
stratixv_pcie_hip_atoms.v

1 Compile stratixv_pcie_hip_atoms.v with the SystemVerilog option.

1 The PCIe files are required only if you are using the PCIe HIP.

If you are performing a functional simulation in VHDL and targeting a Stratix V
device, compile the following files in the quartus/eda/sim_lib/aldec directory:
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_func_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_postsyn_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_postsyn_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_gate_sim.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/simulation/riviera/eda_pro_riviera_gate_sim.htm

5–6 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
stratixv_atoms_ncrypt.v
stratixv_hssi_atoms_ncrypt.v
stratixv_pcie_hip_atoms_ncrypt.v

These files contain IEEE encrypted Verilog models suitable for VHDL/Verilog
co-simulation. You need a co-simulation license from Aldec to use these models in
VHDL.

1 Compile these encrypted Verilog files before you compile any VHDL files. Compile
stratixv_pcie_hip_atoms_ncrypt.v with the SystemVerilog option.

Also, compile the following files in the quartus/eda/sim_lib directory:

stratixv_atoms.vhd
stratixv_components.vhd
stratixv_hssi_components.vhd
stratixv_pcie_hip_components.vhd
stratixv_hssi_atoms.vhd
stratixv_pcie_hip_atoms.vhd

1 The PCIe files are required only if you are using the PCIe HIP.

Performing Simulation Using the Active-HDL or Riviera-PRO Software
(Command-Line Mode)

Perform simulation of Verilog HDL or VHDL designs with Active-HDL or
Riviera-PRO software at various levels to verify designs from different aspects. There
are three categories of simulation:

■ Functional simulation

■ Post-synthesis simulation

■ Gate-level simulation

Simulation helps you verify your design and debug it against any possible errors in
the design.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions. If you choose slower than ps, the high-speed simulation may
fail.

In command-line mode, standalone commands, such as vlib, vcom, and vsim, are
executed in the system shell (for example, cygwin). These standalone commands can
be grouped into script files (tcl, perl, windows batch) that are run from the system
shell.

Before running Active-HDL or Riviera-PRO from the command line, ensure that the
Active-HDL/bin or Riviera-PRO/bin directory is located in PATH environment
variables.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–7
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
Simulating Verilog HDL Designs Using the Active-HDL or Riviera-PRO
Software

If you are running the simulation commands from the Active-HDL GUI console, you
must first create the workspace. Type the following commands to create and open the
workspace:

createdesign DELAY_TEST C:/DELAY_TEST/simulation/activehdl r
opendesign -a DELAY_TEST.adf r
If you are running Riviera-PRO, you can skip the step above.

Performing Functional Simulation
Use the following commands to perform a functional simulation for Verilog HDL
designs with one of the libraries (lib1) listed in Altera Functional Simulation Libraries in
Quartus II Help:

Create and compile Altera libraries
vlib <lib1> r
vlog -v2k -dbg -work <lib1> <lib1.v> r
vlib <lib2> r
vlog -v2k -dbg -work <lib2> <lib2.v> r
Create work library and compile design files and testbench file
vlib work r
vlog -v2k -dbg -work work <design_file1.v> <design file2.v> <testbench
\ file.v> r
Load Design
vsim +access +r -t 1ps -L work -L <lib1> -L <lib2> work.<testbench module
\ name> r
#add signals at waveform and run
add wave * r
run r
Example

vlib verilog_libs/lpm_ver
vlog -v2k -dbg -work lpm_ver
c:/altera/91/quartus/eda/sim_lib/220model.v

vlib verilog_libs/altera_mf_ver
vlog -v2k -dbg -work altera_mf_ver
c:/altera/91/quartus/eda/sim_lib/altera_mf.v

vlib work
vlog -v2k -dbg -work work C:/project/adder.v C:/project/adder.vt

vsim +access +r -t 1ps -L work -L lpm_ver -L altera_mf_ver
work.adder_vlg_vec_tst

add wave *

Performing Post-Synthesis Simulation
Before you run post-synthesis simulation, generate post-synthesis simulation netlist
files. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

5–8 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
Use the following commands to perform a post-synthesis simulation for Verilog HDL
designs with one of the libraries (lib1) listed in Altera Post-Fit Libraries in Quartus II
Help:

Create and compile Altera libraries
vlib <lib1> r
vlog -v2k -dbg -work <lib1> <lib1.v> r
vlib <lib2> r
vlog -v2k -dbg -work <lib2> <lib2.v> r
Create work library and compile EDA output netlist files and testbench
file
vlib work r
vlog -v2k -dbg -work work <EDA_output_netlist.vo> <testbench file.v> r
Load Design
vsim +access +r -t 1ps +transport_int_delays +transport_path_delays -L
work \
-L <lib1> -L <lib2> work.<testbench module name> r
#add signals at waveform and run
add wave * r
run r

Example

vlib verilog_libs/lpm_ver
vlog -v2k -dbg -work lpm_ver
c:/altera/91/quartus/eda/sim_lib/220model.v

vlib verilog_libs/altera_ver
vlog -v2k -dbg -work altera_ver
c:/altera/91/quartus/eda/sim_lib/altera_primitives.v

vlib verilog_libs/stratixiv_ver

vlog -v2k -dbg -work stratixiv_ver
c:/altera/91/quartus/eda/sim_lib/stratixiv_atoms.v

vlib work

vlog -v2k -dbg -work work C:/project/simulation/activehdl/adder.vo
C:/project/adder.vt

vsim +access +r -t 1ps +transport_int_delays +transport_path_delays -L
work -L lpm_ver -L altera_mf_ver work.adder_vlg_vec_tst

add wave *
run

Performing Gate-Level Timing Simulation
The steps for gate-level timing simulation are almost same as the steps for
post-synthesis simulation. The only difference is that the SDO file must be
back-annotated for gate level-timing simulation.

For Verilog HDL designs, the back-annotating process is done within the
EDA_output_netlist.vo script. Therefore, you are not required to back-annotate the
SDO file again.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–9
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
Simulating VHDL Designs Using the Active-HDL or Riviera-PRO Software
If you are running the simulation commands from the Active-HDL GUI console, you
first create the workspace. The following commands create and open the workspace:

createdesign <workspace name> <your design path> r
opendesign -a <workspace name>.adf r
If you are running Riviera-PRO, you can skip the step above.

Performing Functional Simulation
Use the following commands to perform a functional simulation for VHDL designs
with one of the libraries (lib1) listed in Altera Functional Simulation Libraries in
Quartus II Help:

Create and compile Altera libraries
vlib <lib1> r
vcom -strict93 -dbg -work <lib1> <lib1_component/pack.vhd> <lib1.vhd> r
vlib <lib1> r
vcom -strict93 -dbg -work <lib2> <lib2_component/pack.vhd> <lib2.vhd> r
Create work library and compile design files and testbench file
vlib work r
vcom - strict93 -dbg -work work <design_file1.vhd> <design file2.vhd>
\ <testbench file.vhd> r
Load Design
vsim +access +r -t 1ps -L work -L <lib1> -L <lib2> work.<testbench module
\ name> r
#add signals at waveform and run
add wave * r
run r

Example

vlib vhdl_libs/lpm
vcom -strict93 -dbg -work lpm
c:/altera/91/quartus/eda/sim_lib/220pack.vhd
vcom -strict93 -dbg -work lpm
c:/altera/91/quartus/eda/sim_lib/220model.vhd

vlib vhdl_libs/altera_mf
vcom -strict93 -dbg -work altera_mf
c:/altera/91/quartus/eda/sim_lib/altera_mf_components.vhd
vcom -strict93 -dbg -work altera_mf
c:/altera/91/quartus/eda/sim_lib/altera_mf.vhd

vlib work
vcom -strict93 -dbg -work work C:/project/adder.vhd
C:/project/adder.vht

vsim +access +r -t 1ps -L adder -L work -L lpm -L altera_mf
work.adder_vhd_vec_tst

#add signals at waveform and run
add wave *
run
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/quartus2/eda_ref_presynth_lib.htm

5–10 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
Performing Post-Synthesis Simulation
Before you run post-synthesis simulation, generate post-synthesis simulation netlist
files. Refer to the “Generating Post-Synthesis Simulation Netlist Files” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.

Use the following commands to perform a functional simulation for VHDL designs
with one of the libraries (lib1) listed in Altera Post-Fit Libraries in Quartus II Help:

Create and compile Altera libraries
vlib <lib1> r
vcom -strict93 -dbg -work <lib1> <lib1_component/pack.vhd> <lib1.vhd> r
vlib <lib1> r
vcom -strict93 -dbg -work <lib2> <lib2_component/pack.vhd> <lib2.vhd> r
Create work library and compile EDA output netlist files and testbench
file
vlib work r
vcom - strict93 -dbg -work work <EDA output netlist.vho> <testbench \
file.vhd> r
Load Design
vsim +access+r -t 1ps +transport_int_delays +transport_path_delays -L
work \ -L <lib1> -L <lib2> work.<testbench module name> r
#add signals at waveform and run
add wave * r
run r

Example

vlib vhdl_libs/lpm
vcom -strict93 -dbg -work lpm
c:/altera/91/quartus/eda/sim_lib/220pack.vhd
vcom -strict93 -dbg -work lpm
c:/altera/91/quartus/eda/sim_lib/220model.vhd

vlib vhdl_libs/altera
vcom -strict93 -dbg -work altera
c:/altera/91/quartus/eda/sim_lib/altera_primitives_components.vhd
vcom -strict93 -dbg -work altera
c:/altera/91/quartus/eda/sim_lib/altera_primitives.vhd

vlib work
vcom -strict93 -dbg -work work
C:/project/simulation/activehdl/adder.vho C:/project/adder.vht

vsim +access +r -t 1ps +transport_int_delays +transport_path_delays -L
adder -L work -L lpm -L altera_mf work.adder_vhd_vec_tst

add wave *
run

Performing Gate-Level Timing Simulation
The steps for gate-level timing simulation are almost same as the steps for
post-synthesis simulation. The only difference is that the SDO file must be
back-annotated for gate level-timing simulation.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/synthesis/dc/eda_ref_dc_postsynth_lib.htm

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–11
Compiling System Verilog Files
1 You cannot perform post-synthesis or post-fit simulation if you are targeting the
Stratix V device family.

For VHDL designs, the back-annotating process is done by adding the –sdftyp
option.

Example

vsim +access +r -t 1ps +transport_int_delays +transport_path_delays
-sdftyp <instance path to design>= <path to SDO file> -L adder -L work
-L lpm -L altera_mf work.adder_vhd_vec_tst

Compiling System Verilog Files
If your design includes multiple System Verilog files, you must compile the System
Verilog files together with a single alog command.

If you have Verilog files and System Verilog files in your design, it is recommended
that you compile the Verilog files, and then compile only the System Verilog files in
the single alog command.

Simulating Designs that Include Transceivers
If your design includes Arria®, Arria II, Cyclone IV, HardCopy IV, Stratix, Stratix II, or
Stratix IV transceivers, you must compile additional library files to perform functional
or gate-level timing simulations. The following example shows how to perform
simulation on designs that include Stratix GX and Stratix II GX transceivers.

For high-speed simulation, you must select ps in the Resolution list for your
simulator resolutions (Design tab of the Start Simulation dialog box). If you choose
slower than ps, the high-speed simulation may fail.

Performing simulation with transceivers in Arria GX or Stratix II GX is very similar.
The only requirement is to replace the stratixiigx_atoms and stratixiigx_hssi_atoms
model files with the arriagx_atoms and arriagx_hssi_atoms model files, respectively.

f If your design contains PCI Express hard IP, refer to the “Simulate the Design” section
in the PCI Express Compiler User Guide.

Functional Simulation for Stratix II GX Devices
Functional simulation for Stratix II GX devices is similar to functional simulation for
Arria GX devices. The following example shows only the functional simulation for
designs that include transceivers in Stratix II GX devices. To simulate transceivers in
Arria GX devices, replace the stratixiigx_hssi model file with the arriagx_hssi model
file.

To perform an functional simulation of your design that instantiates the ALT2GXB
megafunction, which enables the gigabit transceiver blocks on Stratix II GX devices,
you must generate a functional simulation netlist and compile the stratixiigx_hssi
model file into the stratixiigx_hssi library.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/ug/ug_pci_express.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=PCIe%20Compiler%20User%20Guide

5–12 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Simulating Designs that Include Transceivers
1 The stratixgx_hssi_atoms model file references the lpm and sgate libraries; you must
create these libraries to perform a simulation.

To run the functional simulation, you must generate a functional simulation netlist by
turning on Generate Simulation Model in the Simulation Libraries tab of the
ALT2GXB MegaWizard Plug-In Manager.

The <alt2gxb entity name>.vho or <alt2gxb module name>.vo is generated in the current
project directory.

The ALT2GXB functional simulation library file generated by the Quartus II software
references stratixiigx_hssi WYSIWYG atoms.

Performing Functional Simulation in VHDL
Type the commands in Example 5–1 to compile and simulate the design.

Performing Functional Simulation in Verilog HDL
Type the commands in Example 5–2 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix II GX Devices
To perform a gate-level timing simulation of your design that includes a Stratix II GX
transceiver, you must compile stratixiigx_atoms and stratixiigx_hssi_atoms into the
stratixiigx and stratixiigx_hssi libraries, respectively.

Example 5–1.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd
vcom -work work <alt2gxb entity name>.vho
vcom -work work <my design>.vhd <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my testbench>

Example 5–2.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v
vlog -work work <alt2gxb module name>.vo
vlog -work work <my design>.v <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi \

work.<my testbench>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–13
Simulating Designs that Include Transceivers
Performing Gate-Level Timing Simulation in VHDL
Type the commands in Example 5–3 to compile and simulate the design.

Performing Gate-Level Timing Simulation in Verilog HDL
Type the commands in Example 5–4 to compile and simulate the design.

Functional Simulation for Stratix GX Devices
To perform a functional simulation of your design that instantiates the ALTGXB
megafunction, which enables the gigabit transceiver block on Stratix GX devices,
compile the stratixgx_mf model file into the altgxb library.

1 The stratixgx_mf model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Performing Functional Simulation in VHDL
Type the commands in Example 5–5 to compile and simulate the design.

Example 5–3.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiigx stratixiigx_atoms.vhd stratixiigx_components.vhd
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd stratixiigx_hssi_atoms.vhd
vcom -work work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Example 5–4.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiigx_ver stratixiigx_atoms.v
vlog -work stratixiigx_hssi_ver stratixiigx_hssi_atoms.v
vlog -work work <my design>.vo <my testbench>.v
vsim -L lpm -L altera_mf_ver -L sgate_ver -L stratixiigx_ver -L stratixiigx_hssi_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays

Example 5–5.

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work lpm 220pack.vhd 220model.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd
vcom -work work<altgxb entity name>.vhd
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my testbench>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

5–14 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Simulating Designs that Include Transceivers
Performing Functional Simulation in Verilog HDL
Type the commands in Example 5–6 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix GX
transceiver by compiling the stratixgx_atoms and stratixgx_hssi_atoms model files
into the stratixgx and stratixgx_gxb libraries, respectively.

Performing Gate-Level Timing Simulation in VHDL
Type the commands in Example 5–7 to compile and simulate the design.

Performing Gate-Level Timing Simulation in Verilog HDL
Type the commands in Example 5–8 to compile and simulate the design.

Functional Simulation for Stratix IV GX Devices
Functional simulation for Stratix IV devices is similar to functional simulation for
Arria II, Cyclone IV, and HardCopy IV devices.

Example 5–6.

vlib work
vlib lpm_ver
vlib altera_mf_ver
vlib sgate_ver
vlib altgxb_ver
vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work altgxb_ver stratixgx_mf.v
vlog -work work <altgxb module name>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb_ver work.<my testbench>

Example 5–7.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd
vcom -work work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb work. \
<my testbench> -t ps -sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Example 5–8.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixgx_ver stratixgx_atoms.v
vlog -work stratixgx_gxb_ver stratixgx_hssi_atoms.v
vlog -work work <my design>.vo <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L stratixgx_gxb_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delaysr
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–15
Simulating Designs that Include Transceivers
The following example shows only the functional simulation for designs that include
transceivers in Stratix IV devices. To simulate transceivers in Arria II, Cyclone IV, and
HardCopy IV devices, replace the stratixiv_hssi model file with the arriaii_hssi,
cycloneiv_hssi, and hardcopyiv_hssi model files, respectively.

To perform a functional simulation of your design that instantiates the ALTGX
megafunction, which enables the gigabit transceiver blocks on Stratix IV devices, you
must generate a functional simulation netlist and compile the stratixiv_hssi model
file into the stratixiv_hssi library.

1 The stratixiv_hssi model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

Performing Functional Simulation in VHDL
Type the commands in Example 5–9 to compile and simulate the design.

Performing Functional Simulation in Verilog HDL
Type the commands in Example 5–10 to compile and simulate the design.

Gate-Level Timing Simulation for Stratix IV GX Devices
Perform a gate-level timing simulation of your design that includes a Stratix IV
transceiver by compiling the stratixiv_atoms and stratixiv_hssi_atoms model files
into the stratixiv and stratixiv_hssi libraries, respectively.

Example 5–9.

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work lpm 220pack.vhd 220model.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiv_hssi stratixiv_hssi.vhd\
stratixiv_hssi_components.vhd
vcom -work work <altgxb entity name>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiv_hssi work.<my testbench>

Example 5–10.

vlib work
vlib lpm_ver
vlib altera_mf_ver
vlib sgate_ver
vlib stratixiv_hssi_ver
vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiv_hssi_ver stratixiv_hssi_.v
vlog -work work <altgxb module name>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver \
-L stratixiv_hssi_ver work.<my testbench>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

5–16 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Simulating Designs that Include Transceivers
Performing Gate-Level Timing Simulation in VHDL
Type the commands in Example 5–11 to compile and simulate the design.

Performing Gate-Level Timing Simulation in Verilog HDL
Type the commands in Example 5–12 to compile and simulate the design.

Functional Simulation for Stratix V GX Devices
Functional simulation for Stratix V devices is similar to functional simulation for
Arria II, Cyclone IV, HardCopy IV, and Stratix IVdevices.

The following example shows only the functional simulation for designs that include
transceivers in Stratix V devices. To simulate transceivers in Arria II, Cyclone IV,
HardCopy IV, and Stratix V devices, replace the stratixv_hssi model file with the
arriaii_hssi, cycloneiv_hssi, hardcopyiv_hssi, and stratixiv_hssi model files,
respectively.

1 The transceiver module from the MegaWizard Plug-In Manager is created in
Interfaces/Transceiver PHY. Select Custom PHY.

Example 5–11.

vcom -work lpm 220pack.vhd 220model.vhd
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vcom -work stratixiv stratixiv_atoms.vhd stratixiv_components.vhd
vcom -work stratixiv_hssi stratixiv_hssi_atoms.vhd \
stratixiv_hssi_components.vhd
vcom -work work <my design>.vho <my testbench>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixiv -L stratixiv_hssi\
work.<my testbench> -t ps\
-sdftyp <design instance>=<path to SDO file>.sdo \
+transport_int_delays +transport_path_delays

Example 5–12.

vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog -work stratixiv_ver stratixiv_atoms.v
vlog -work stratixiv_hssi_ver stratixiv_hssi_atoms.v
vlog -work work <my design>.vo <my testbench>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixiv_ver -L
stratixiv_hssi_ver \
work.<my testbench> -t ps +transport_int_delays +transport_path_delays
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–17
Simulating Designs that Include Transceivers
Performing Functional Simulation in VHDL
Type the commands in Example 5–13 to compile and simulate the design.

Performing Functional Simulation in Verilog HDL
Type the commands in Example 5–14 to compile and simulate the design.

1 The stratixv_hssi model file references the lpm and sgate libraries. You must create
these libraries to perform a simulation.

1 In addition to the top-level variant wrapper, <variant>.v, you also get a simulation
files subdirectory, <variant>_sim/. All Verilog (.v) and SystemVerilog (.sv) files in the
simulation directory must also be compiled into the simulation project.

Transport Delays
By default, the Active-HDL or Riviera-PRO software filters out all pulses that are
shorter than the propagation delay between primitives. Turning on the transport
delay options in the Active-HDL or Riviera-PRO software prevents the simulation
tool from filtering out these pulses. Use the following options to ensure that all signal
pulses are visible in the simulation results:

■ +transport_path_delays

Use this option when the pulses in your simulation may be shorter than the delay
within a gate-level primitive.

■ +transport_int_delays

Use this option when the pulses in your simulation may be shorter than the
interconnect delay between gate-level primitives.

Example 5–13.

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd
vcom -work lpm 220pack.vhd 220model.vhd
vcom -work sgate sgate_pack.vhd sgate.vhd
vlog +v2k –work stratixv_hssi \
quartus/eda/sim_lib/aldec/stratixv_hssi_atoms_ncrypt.v
vcom -work stratixv_hssi stratixiv_hssi.vhd \
stratixiv_hssi_components.vhd
vcom -work work <my design>.vhd
vsim -L lpm -L altera_mf -L sgate -L stratixv_hssi work.<my testbench>

Example 5–14.

vlib work
vlib lpm_ver
vlib altera_mf_ver
vlib sgate_ver
vlib stratixv_hssi_ver
vlog -work lpm_ver 220model.v
vlog -work altera_mf_ver altera_mf.v
vlog -work sgate_ver sgate.v
vlog +v2k –work stratixv_hssi \
quartus/eda/sim_lib/aldec/stratixv_hssi_atoms_ncrypt.v
vlog -work stratixv_hssi_ver stratixiv_hssi_.v
vlog -work work <my design>.v
vsim -L lpm_ver -L altera_mf_ver -L sgate_ver \
-L stratixv_hssi_ver work.<my testbench>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

5–18 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Using the NativeLink Feature in Active-HDL or Riviera-PRO Software
1 The +transport_path_delays and +transport_int_delays options are also used by
default in the NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the Active-HDL online
documentation installed with the Active-HDL software.

Example 5–15 shows an Active-HDL software command in command-line syntax to
perform a gate-level timing simulation with the device family library.

Using the NativeLink Feature in Active-HDL or Riviera-PRO Software
The NativeLink feature in the Quartus II software facilitates the seamless transfer of
information between the Quartus II software and EDA tools and allows you to run the
Active-HDL or Riviera-PRO software within the Quartus II software.

f For more information, refer to the “Using the NativeLink Feature” section in the
Simulating Altera Designs chapter in volume 3 of the Quartus II Handbook.

Generating .vcd Files for the PowerPlay Power Analyzer
To generate a Value Change Dump File (.vcd) for the PowerPlay power analyzer, you
must first generate a VCD script in the Quartus II software and run the VCD script
from the Active-HDL software to generate a VCD file. This VCD file can then be used
by PowerPlay for power analysis. The following instructions show you how to
generate a VCD file.

Perform the following steps to generate VCD Scripts in the Quartus II software:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, select Simulator Settings.

3. On the Simulator Settings page, in the Tool name list, select Active-HDL and turn
on the Generate Value Change Dump File Script option.

4. To generate the VCD Script file, perform a full compilation.

Perform the following steps to generate a VCD file in the Active-HDL software:

1. In the Active-HDL software, before simulating your design, source the
<revision_name>_dump_all_vcd_nodes.tcl script. To source the TCL script, run the
following command before running the vsim command:

source <revision_name>_dump_all_vcd_nodes.tcl r
2. Continue to run the simulation until the simulation is completed. Exit the

Active-HDL software. If you do not exit the software, the Active-HDL software
may end the writing process of the VCD files improperly, resulting in a corrupted
VCD file.

Example 5–15.

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo \
work.filtref_vhd_vec_tst +transport_int_delays +transport_path_delays
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–19
Scripting Support
f For more details about using the VCD file for power analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at the command-line prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook.

f For more information about command-line scripting, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

f For detailed information about scripting command options, refer to the Qhelp
command line and Tcl API help browser.

To start the Qhelp help browser, type the following command:

quartus_sh -qhelp r

Generating a Post-Synthesis Simulation Netlist for Active-HDL or
Riviera-PRO

You can use the Quartus II software to generate a post-synthesis simulation netlist
with Tcl commands or with a command at the command-line prompt. The following
examples assume you are selecting Active-HDL or Riviera-PRO (Verilog HDL output
from the Quartus II software).

Tcl Commands
Use the following Tcl commands to set the output format to Verilog HDL, the
simulation tool to Active-HDL or Riviera-PRO for Verilog HDL, and to generate a
functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "Active-HDL(Verilog)" r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r
or

set_global_assignment-name EDA_SIMULATION_TOOL "Riviera-PRO (Verilog)"
r
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Line
Use the following command to generate a simulation output file for the Active-HDL
or Riviera-PRO software. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=activehdl --functional r

or

quartus_eda <project name> --simulation=on --format=<format> \
--tool=rivierapro --functional r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

5–20 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Conclusion
Generating a Gate-Level Timing Simulation Netlist for Active-HDL or
Riviera-PRO

You can use the Quartus II software to generate a gate-level timing simulation netlist
with Tcl commands or with a command at the command prompt.

Tcl Commands
Use one of the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (Verilog)"
r
set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (VHDL)" r
or

set_global_assignment -name EDA_SIMULATION_TOOL "Riviera-PRO (Verilog)"
r
set_global_assignment -name EDA_SIMULATION_TOOL "Riviera-PRO (VHDL)" r

Command Line
Generate a simulation output file for the Active-HDL or Riviera-PRO software by
specifying VHDL or Verilog HDL for the format by typing the following command at
the command prompt:

quartus_eda <project name> --simulation=on --format=<format> \
--tool=activehdl r

or

quartus_eda <project name> --simulation=on --format=<format> \
--tool=rivierapro r

Conclusion
Using the Active-HDL or Riviera-PRO simulation software within the Altera FPGA
design flow allows you to easily and accurately perform functional simulations,
post-synthesis simulations, and gate-level timing simulations on your designs. Proper
verification of designs at the functional, post-synthesis, and post place-and-route
stages using the Active-HDL or Riviera-PRO software helps ensure your design
functions correctly and, ultimately, a quick time-to-market.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 5: Aldec Active-HDL and Riviera-PRO Support 5–21
Document Revision History
Document Revision History
Table 5–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 5–1. Document Revision History

Date Version Changes

December 2010 10.0.1 ■ Changed to new document template. No change to content.

July 2010 10.0.0

■ Linked to Quartus II Help

■ Revised simulation procedures

■ Added Stratix V simulation information

■ Added Riviera-PRO support

■ Minor text edits

■ Removed Referenced Documents section

November 2000 9.1.0

■ Updated Table 6–1

■ Removed Simulation Library tables and EDA Simulation Library Compiler sections and
referenced new Simulating Designs with EDA Tools chapter

■ Added “RTL Functional Simulation for Stratix IV Devices” and “Gate-Level Timing
Simulation for Stratix IV Devices” sections

■ Minor text edits

March 2009 9.0.0

■ Removed “Compile Libraries Using the Altera Simulation Library Compiler”

■ Added “Compile Libraries Using the EDA Simulation Library Compiler” on page 5–10

■ Added “Generate Simulation Script from EDA Netlist Writer” on page 5–51

■ Minor editorial updates

November 2008 8.1.0

Added the following sections:

■ “Compile Libraries Using the Altera Simulation Library Compiler” on page 5–10

■ Added steps to the procedure “Performing an RTL Simulation Using NativeLink” on
page 5–45 for using the Altera Simulation Library Compilation

■ Added steps to the procedure “Performing a Gate-Level Timing Simulation Using
NativeLink” on page 5–47 for using the Altera Simulation Library Compilation

■ Minor editorial updates

■ Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0 Initial release
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

5–22 Chapter 5: Aldec Active-HDL and Riviera-PRO Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

December 2010 Altera Corporation
Section II. Timing Analysis
As designs become more complex, advanced timing analysis capability requirements
grow. Static timing analysis is a method of analyzing, debugging, and validating the
timing performance of a design. The Quartus® II software provides the features
necessary to perform advanced timing analysis for today’s system-on-a-
programmable-chip (SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to perform static
timing analysis on most ASIC designs. The Quartus II software provides a path to
enable you to run PrimeTime on your Quartus II software designs, and export a
netlist, timing constraints, and libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the advanced
features supported by the Quartus II Timing Analyzer, and how you can use
PrimeTime to analyze your Quartus II projects.

This section includes the following chapters:

■ Chapter 6, The Quartus II TimeQuest Timing Analyzer

This chapter describes the Quartus II TimeQuest Timing Analyzer, which is a
powerful ASIC-style timing analysis tool that validates the timing performance of
all logic in your design using an industry-standard constraint, analysis, and
reporting methodology.

■ Chapter 7, Best Practices for the Quartus II TimeQuest Timing Analyzer

This chapter provides the steps to fully constrain an FPGA design with the
Quartus II TimeQuest Timing Analyzer.

■ Chapter 8, Switching to the Quartus II TimeQuest Timing Analyzer

This chapter describes the benefits of switching to the Quartus II TimeQuest
Timing Analyzer, the differences between the Quartus II TimeQuest and
Quartus II Classic Timing Analyzers, and the process you should follow to switch
a design from using the Quartus II Classic Timing Analyzer to the Quartus II
TimeQuest Timing Analyzer.

■ Chapter 9, Synopsys PrimeTime Support

This chapter describes the PrimeTime software that uses data from either best-case
or worst-case Quartus II timing models to measure timing. The PrimeTime
software is controlled using a Tcl script generated by the Quartus II software that
you can customize to direct the PrimeTime software to produce violation and
slack reports.
Quartus II Handbook Version 10.1 Volume 3: Verification

II–2 Section II: Timing Analysis
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53018-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53018-10.1.0
6. The Quartus II TimeQuest
Timing Analyzer
The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis
tool that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology. Use the
TimeQuest analyzer GUI or command-line interface to constrain, analyze, and report
results for all timing paths in your design.

f For more information about interactive timing analysis, refer to the TimeQuest Timing
Analyzer Quick Start Tutorial.

f For more information about Altera resources available for the TimeQuest analyzer,
refer to the TimeQuest Timing Analyzer Resource Center of the Altera website.

f For more information about constraining circuits and reporting timing analysis
results in the TimeQuest analyzer, including examples, refer to the TimeQuest Design
Examples page of the Altera website and the Quartus II TimeQuest Timing Analyzer
Cookbook.

f For more information about constraining designs, refer to the Best Practices for the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

This chapter contains the following sections:

■ “Understanding Timing Analysis with the TimeQuest Analyzer” on page 6–1

■ “Clock Setup Check” on page 6–5

■ “Using Tcl Commands” on page 6–23

■ “Creating Clocks and Clock Constraints” on page 6–27

■ “Creating I/O Constraints” on page 6–37

■ “Creating Delay and Skew Constraints” on page 6–38

■ “Creating Timing Exceptions” on page 6–39

■ “Timing Reports” on page 6–40

Understanding Timing Analysis with the TimeQuest Analyzer
A comprehensive static timing analysis includes analysis of register-to-register, I/O,
and asynchronous reset paths. The TimeQuest analyzer uses data required times, data
arrival times, and clock arrival times to verify circuit performance and detect possible
timing violations. The TimeQuest analyzer determines the timing relationships that
must be met for the design to correctly function, and checks arrival times against
required times to verify timing.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53018

6–2 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
Table 6–1 describes TimeQuest analyzer terminology.

Timing Netlists and Timing Paths
The TimeQuest analyzer requires a timing netlist to perform timing analysis on any
design. After you generate a timing netlist, the TimeQuest analyzer uses the data to
help determine the different design elements in your design and how to optimize
timing.

The Timing Netlist
Figure 6–1 shows an example design for which the TimeQuest analyzer can generate a
netlist equivalent.

Table 6–1. TimeQuest Analyzer Terminology

Term Definition

nodes Most basic timing netlist unit. Used to represent ports, pins, and registers.

keepers Ports or registers. (1)

cells Look-up tables (LUT), registers, digital signal processing (DSP) blocks,
memory blocks, input/output elements, and so on. (2)

pins Inputs or outputs of cells.

nets Connections between pins.

ports Top-level module inputs or outputs; for example, device pins.

clocks Abstract objects outside of the design.

Notes to Table 6–1:

(1) Pins can indirectly refer to keepers. For example, a pin refers to a keeper when the value in the -from field of a
constraint is a clock pin to a dedicated memory block. In this case, the clock pin refers to a collection of registers.

(2) For Stratix® devices, the LUTs and registers are contained in logic elements (LE) and act as cells.

Figure 6–1. Sample Design

data1

data2

clk

reg1

reg2

and_inst

reg3
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–3
Understanding Timing Analysis with the TimeQuest Analyzer
Figure 6–2 shows the timing netlist for the design, including how different design
elements are divided into various cells, pins, nets, and ports.

Timing Paths
Timing paths connect two design nodes, such as the output of a register to the input of
another register. Timing paths play a significant role in timing analysis.
Understanding the types of timing paths is important to timing closure and
optimization. The TimeQuest analyzer uses the following commonly analyzed paths:

■ Edge paths—connections from ports-to-pins, from pins-to-pins, and from
pins-to-ports.

■ Clock paths—connections from device ports or internally generated clock pins to
the clock pin of a register.

■ Data paths—connections from a port or the data output pin of a sequential
element to a port or the data input pin of another sequential element.

■ Asynchronous paths—connections from a port or sequential element to the
asynchronous reset or asynchronous clear pin of another sequential element.

Figure 6–3 shows path types commonly analyzed by the TimeQuest analyzer.

Figure 6–2. The TimeQuest Analyzer Timing Netlist

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk
regout

regout

datac

datad

combout

datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

Figure 6–3. Path Types

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–4 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
In addition to identifying various paths in a design, the TimeQuest analyzer analyzes
clock characteristics to compute the worst-case requirement between any two
registers in a single register-to-register path. You should constrain all clocks in your
design before analyzing clock characteristics.

Launch and Latch Edges
Figure 6–4 shows a single-cycle system that uses consecutive clock edges to transfer
and capture data, a register-to-register path, and the corresponding timing diagram
for the launch and latch edges. The launch edge is an active clock edge that sends data
out of a sequential element, acting as a source for the data transfer. A latch edge is the
active clock edge that captures data at the data port of a sequential element, acting as
a destination for the data transfer. In this example, the launch edge sends the data out
of register reg1 at 0 ns, and the register reg2 latch edge captures the data at 5 ns.

1 The TimeQuest analyzer validates clock setup and hold requirements relative to the
launch and latch edges.

Data and Clock Arrival Times
After the TimeQuest analyzer identifies the path type, it can report data and clock
arrival times at register pins. The TimeQuest analyzer calculates data arrival time by
adding the delay from the clock source to the clock pin of the source register, the
micro clock-to-output delay (μtCO) of the source register, and the delay from the
source register’s Q pin to the destination register ’s D pin, where the μtCO is the
intrinsic clock-to-out for the internal registers in the FPGA.

Figure 6–4. Launch Edge and Latch Edge

Latch Edge at
Destination Register reg2

Launch Edge at
Source Register reg1

D Q D Q

reg1 reg2

clk

0 ns 5 ns 15 ns10 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–5
Understanding Timing Analysis with the TimeQuest Analyzer
The TimeQuest analyzer calculates clock arrival time by adding the delay from the
clock source to the clock pin of the destination register. Figure 6–5 shows a data
arrival path and a clock arrival path. The TimeQuest analyzer calculates the data
required time by accounting for the clock arrival time and micro setup time (μtSU) of
the destination register, where the μtSU is the intrinsic setup for the internal registers in
the FPGA.

Clock Setup Check
To perform a clock setup check, the TimeQuest analyzer determines a setup
relationship by analyzing each launch and latch edge for each register-to-register
path. For each latch edge at the destination register, the TimeQuest analyzer uses the
closest previous clock edge at the source register as the launch edge. Figure 6–6 shows
two setup relationships, setup A and setup B. For the latch edge at 10 ns, the closest
clock that acts as a launch edge is at 3 ns and is labeled setup A. For the latch edge at
20 ns, the closest clock that acts as a launch edge is 19 ns and is labeled setup B.

The TimeQuest analyzer reports the result of clock setup checks as slack values. Slack
is the margin by which a timing requirement is met or not met. Positive slack indicates
the margin by which a requirement is met; negative slack indicates the margin by
which a requirement is not met. Equation 6–1 shows the TimeQuest analyzer clock
setup slack time calculation for internal register-to-register paths.

Figure 6–5. Data Arrival and Clock Arrival Paths

D Q D Q

Data Arrival

Clock Arrival

Figure 6–6. Setup Check

Equation 6–1. Clock Setup Slack for Internal Register-to-Register paths

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Register Delay+

Data Required Clock Arrival Time μtSU Setup Uncertainty––=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–6 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
Equation 6–2 shows the TimeQuest analyzer clock setup slack time calculation if the
data path is from an input port to an internal register.

Equation 6–3 shows the TimeQuest analyzer clock setup slack time calculation if the
data path is an internal register to an output port.

Clock Hold Check
To perform a clock hold check, the TimeQuest analyzer determines a hold relationship
for each possible setup relationship that exists for all source and destination register
pairs. The TimeQuest analyzer checks all adjacent clock edges from all setup
relationships to determine the hold relationships. The TimeQuest analyzer performs
two hold checks for each setup relationship. The first hold check determines that the
data launched by the current launch edge is not captured by the previous latch edge.
The second hold check determines that the data launched by the next launch edge is
not captured by the current latch edge. From the possible hold relationships, the
TimeQuest analyzer selects the hold relationship that is the most restrictive. The most
restrictive hold relationship is the hold relationship with the smallest difference
between the latch and launch edges and determines the minimum allowable delay for
the register-to-register path. Figure 6–7 shows two setup relationships, setup A and
setup B, and their respective hold checks. In this example, the TimeQuest analyzer
selects hold check A2 as the most restrictive hold relationship.

Equation 6–2. Clock Setup Slack from Input Port to Internal Register

Equation 6–3. Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Maximum Delay Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Pin Delay+

Data Required Time Latch Edge Clock Network Delay Output Maximum Delay of Pin–+=

Figure 6–7. Hold Checks

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–7
Understanding Timing Analysis with the TimeQuest Analyzer
Equation 6–4 shows the TimeQuest analyzer clock hold slack time calculation.

Equation 6–5 shows the TimeQuest analyzer hold slack time calculation if the data
path is from an input port to an internal register.

Equation 6–6 shows the TimeQuest analyzer hold slack time calculation if the data
path is from an internal register to an output port.

Recovery and Removal Time
Recovery time is the minimum length of time for the deassertion of an asynchronous
control signal; for example, signals such as clear and preset must be stable before the
next active clock edge. The recovery slack calculation is similar to the clock setup
slack calculation, but it applies to asynchronous control signals. Equation 6–7 shows
the TimeQuest analyzer recovery slack time calculation if the asynchronous control
signal is registered.

Equation 6–4. Clock Hold Slack

Equation 6–5. Clock Hold Slack from Input Port to Internal Register

Equation 6–6. Clock Hold Slack from Internal Register to Output Port

Clock Hold Slack Time Data Arrival Time Data Required Time–=

Arrival Time Launch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Register Delay

Data Required Time Clock Arrival Time μtH Hold Uncertainty+ +=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Hold Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay + +=

Input Minimum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Clock Hold Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Latch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Pin Delay

Data Required Time Latch Edge Clock Network Delay Output Minimum Delay of Pin–+=

Equation 6–7. Recovery Slack if Asynchronous Control Signal Registered

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–8 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
Equation 6–8 shows the TimeQuest analyzer recovery slack time calculation if the
asynchronous control signal is not registered.

1 If the asynchronous reset signal is from a device I/O port, you must assign the Input
Maximum Delay timing assignment to the asynchronous reset port for the TimeQuest
analyzer to perform recovery analysis on the path.

Removal time is the minimum length of time the deassertion of an asynchronous
control signal must be stable after the active clock edge. The TimeQuest analyzer
removal slack calculation is similar to the clock hold slack calculation, but it applies
asynchronous control signals. Equation 6–9 shows the TimeQuest analyzer removal
slack time calculation if the asynchronous control signal is registered.

Equation 6–10 shows the TimeQuest analyzer removal slack time calculation if the
asynchronous control signal is not registered.

1 If the asynchronous reset signal is from a device pin, you must assign the Input
Minimum Delay timing assignment to the asynchronous reset pin for the TimeQuest
analyzer to perform removal analysis on the path.

Equation 6–8. Recovery Slack if Asynchronous Control Signal not Registered

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay Maximum Input Delay+ + +=

Port-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register Delay μtSU–+=

Equation 6–9. Removal Slack if Asynchronous Control Signal Registered

Equation 6–10. Removal Slack if Asynchronous Control Signal not Registered

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO of Source Register Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay Input Minimum Delay of Pin ++ +=

Minimum Pin-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–9
Understanding Timing Analysis with the TimeQuest Analyzer
Multicycle Paths
Multicycle paths are data paths that require more than one clock cycle to latch data at
the destination register. For example, a register may be required to capture data on
every second or third rising clock edge. Figure 6–8 shows an example of a multicycle
path between the input registers of a multiplier and an output register where the
destination latches data on every other clock edge.

Figure 6–8. Multicycle Path

2 Cycles

ENA

D Q

ENA

D Q

D Q

ENA
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–10 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
Figure 6–9 shows a register-to-register path used for the default setup and hold
relationship, the respective timing diagrams for the source and destination clocks, and
the default setup and hold relationships, when the source clock, src_clk, has a period
of 10 ns and the destination clock, dst_clk, has a period of 5 ns. The default setup
relationship is 5 ns; the default hold relationship is 0 ns.

To accommodate the system requirements you can modify the default setup and hold
relationships with the set_multicycle_path command.

Figure 6–10 shows the timing diagram after the TimeQuest analyzer uses a multicycle
setup assignment of two. The command moves the latch edge time to 10 ns from the
default value of 5 ns.

Figure 6–9. Register-to-Register Path and Default Setup and Hold Timing Diagram

Figure 6–10. Modified Setup Diagram

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold

 new setup
default setup

0 10 20 30
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–11
Understanding Timing Analysis with the TimeQuest Analyzer
Table 6–2 shows the commands you can use to modify either the launch or latch edge
times that the TimeQuest analyzer uses to determine a setup relationship or hold
relationship.

h For more information about the set_multicycle_path command—including full
syntax information, options, and example usage—refer to set_multicycle_path in
Quartus II Help.

Metastability
Metastability problems can occur when a signal is transferred between circuitry in
unrelated or asynchronous clock domains because the designer cannot guarantee that
the signal will meet setup and hold time requirements. To minimize the failures due to
metastability, circuit designers typically use a sequence of registers, also known as a
synchronization register chain, or synchronizer, in the destination clock domain to
resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between
instances of failure due to metastability.

The TimeQuest analyzer analyzes the robustness of your design for metastability and
can calculate the MTBF for synchronization register chains in your design. The MTBF
of the entire design is then estimated based on the synchronization chains it contains.

In addition to reporting synchronization register chains found in the design, the
Quartus II software also protects these registers from optimizations that might
negatively impact MTBF, such as register duplication and logic retiming. The
Quartus II software can also optimize the MTBF of your design if the MTBF is too low.

f For more information about metastability, its effects in FPGAs, and how MTBF is
calculated, refer to the Understanding Metastability in FPGAs white paper. For more
information about metastability analysis, reporting, and optimization features in the
Quartus II software, refer to the Managing Metastability with the Quartus II Software
chapter in volume 1 of the Quartus II Handbook.

Common Clock Path Pessimism Removal
Common clock path pessimism removal accounts for the minimum and maximum
delay variation associated with common clock paths during static timing analysis by
adding the difference between the maximum and minimum delay value of the
common clock path to the appropriate slack equation.

Table 6–2. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Launch edge time of the hold relationship
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm
www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

6–12 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
Minimum and maximum delay variation can occur when two different delay values
are used for the same clock path. For example, in a simple setup analysis, the
maximum clock path delay to the source register is used to determine the data arrival
time. The minimum clock path delay to the destination register is used to determine
the data required time. However, if the clock path to the source register and to the
destination register share a common clock path, both the maximum delay and the
minimum delay are used to model the common clock path during timing analysis.
The use of both the minimum delay and maximum delay results in an overly
pessimistic analysis since two different delay values, the maximum and minimum
delays, cannot be used to model the same clock path.

Figure 6–11 shows a typical register-to-register path with the maximum and
minimum delay values shown.

Segment A is the common clock path between reg1 and reg2. The minimum delay is
5.0 ns; the maximum delay is 5.5 ns. The difference between the maximum and
minimum delay value equals the common clock path pessimism removal value; in
this case, the common clock path pessimism is 0.5 ns. The TimeQuest analyzer adds
the common clock path pessimism removal value to the appropriate slack equation to
determine overall slack. Therefore, if the setup slack for the register-to-register path in
Figure 6–11 equals 0.7 ns without common clock path pessimism removal, the slack
would be 1.2 ns with common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum
pulse width of a register. A clock signal must meet a register ’s minimum pulse width
requirement to be recognized by the register. A minimum high time defines the
minimum pulse width for a positive-edge triggered register. A minimum low time
defines the minimum pulse width for a negative-edge triggered register.

Figure 6–11. Common Clock Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–13
Understanding Timing Analysis with the TimeQuest Analyzer
Clock pulses that violate the minimum pulse width of a register prevent data from
being latched at the data pin of the register. To calculate the slack of the minimum
pulse width, the TimeQuest analyzer subtracts the required minimum pulse width
time from the actual minimum pulse width time. The TimeQuest analyzer determines
the actual minimum pulse width time by the clock requirement you specified for the
clock that feeds the clock port of the register. The TimeQuest analyzer determines the
required minimum pulse width time by the maximum rise, minimum rise, maximum
fall, and minimum fall times. Figure 6–12 shows a diagram of the required minimum
pulse width time for both the high pulse and low pulse.

With common clock path pessimism, the minimum pulse width slack can be increased
by the smallest value of either the maximum rise time minus the minimum rise time,
or the maximum fall time minus the minimum fall time. For Figure 6–12, the slack
value can be increased by 0.2 ns, which is the smallest value between 0.3 ns (0.8
ns – 0.5 ns) and 0.2 ns (0.9 ns – 0.7 ns).

To remove common clock path pessimism with the TimeQuest analyzer, follow these
steps:

1. In the Quartus II software, on the Assignments menu, click Settings.

2. In the Category list, click TimeQuest Timing Analyzer.

3. Turn on Enable common clock path pessimism removal.

4. Click OK.

h For more information, refer to TimeQuest Timing Analyzer Page in Quartus II Help.

Clock-As-Data Analysis
The majority of FPGA designs contain simple connections between any two nodes
known as either a data path or a clock path. A data path is a connection between the
output of a synchronous element to the input of another synchronous element. A
clock is a connection to the clock pin of a synchronous element. However, for more
complex FPGA designs, such as designs that use source-synchronous interfaces, this
simplified view is no longer sufficient.

Figure 6–12. Required Minimum Pulse Width

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise

Rise Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

6–14 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Understanding Timing Analysis with the TimeQuest Analyzer
The connection between the input clock port and output clock port can be treated
either as a clock path or a data path. Figure 6–13 shows a design where the path from
port clk_in to port clk_out is both a clock and a data path. The clock path is from the
port clk_in to the register reg_data clock pin. The data path is from port clk_in to
the port clk_out.

With clock-as-data analysis, the TimeQuest analyzer provides a more accurate
analysis of the path based on user constraints. For the clock path analysis, any phase
shift associated with the phase-locked loop (PLL) is taken into consideration. For the
data path analysis, any phase shift associated with the PLL is taken into consideration
rather than ignored.

The clock-as-data analysis also applies to internally generated clock dividers.
Figure 6–14 shows an internally generated clock divider. A source-synchronous
interface contains a clock signal that travels in parallel with data signals. The clock
and data pair originates or terminates at the same device.

Figure 6–13. Simplified Source Synchronous Output

Figure 6–14. Clock Divider (Note 1)

Note to Figure 6–14:

(1) In this figure, the inverter feedback path is analyzed during timing analysis. The output of the divider register is used
to determine the launch time and the clock port of the register is used to determine the latch time.

D Q

clk_in
clk_out

reg_data

D Q

D Q

Launch Clock (1/2 T)

Data Arrival Time

Latch Clock (T)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–15
Understanding Timing Analysis with the TimeQuest Analyzer
Multicorner Analysis
The TimeQuest analyzer performs multicorner timing analysis to verify your design
under a variety of operating conditions—such as voltage, process, and temperature—
while performing static timing analysis.

To change the operating conditions or speed grade of the device used for static timing
analysis, use the set_operating_conditions command.

If you specify an operating condition Tcl object, the -model, speed, -temperature, and
-voltage options are optional. If you do not specify an operating condition Tcl object,
the -model option is required; the -speed, -temperature, and -voltage options are
optional.

1 To obtain a list of available operating conditions for the target device, use the
get_available_operating_conditions -all command.

h For more information about the set_operating_conditions and
get_available_operating_conditions commands—including full syntax
information, options, and example usage—refer to set_operating_conditions and
get_available_operating_conditions in Quartus II Help.

To ensure that no violations occur under various conditions during the device
operation, perform static timing analysis under all available operating conditions.
Table 6–3 shows the operating conditions for the slow and fast timing models for
device families that support only slow and fast operating conditions.

Example 6–1 shows how to set the operating conditions for a Stratix III design to the
slow timing model, with a voltage of 1100 mV, and temperature of 85° C.

Example 6–2 shows how to set the operating conditions in Example 6–1 with a Tcl
object.

Table 6–3. Operating Conditions for Slow and Fast Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in device density Vcc minimum supply (1) Maximum TJ (1)

Fast Fastest speed grade in device density Vcc maximum supply (1) Minimum TJ (1)

Note toTable 6–3:

(1) Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for Vcc and TJ. values

Example 6–1. Setting Operating Conditions with Individual Values

set_operating_conditions -model slow -temperature 85 -voltage 1100

Example 6–2. Setting Operating Conditions with a Tcl Object

set_operating_conditions 4_slow_1100mv_85c
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_operating_conditions.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_get_available_operating_conditions.htm

6–16 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Example 6–3 shows how to use the set_operating_conditions command to generate
different reports for various operating conditions.

Getting Started with the TimeQuest Analyzer
This section provides a brief overview of the design steps necessary to set up your
project for timing and analysis and the steps to perform to constrain your design with
the TimeQuest analyzer.

Example 6–3. Script Excerpt for Analysis of Various Operating Conditions

#Specify initial operating conditions
set_operating_conditions -model slow -speed 3 -grade c -temperature 85
-voltage 1100

#Update the timing netlist with the initial conditions
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of 0C
set_operating_conditions -model slow -speed 3 -grade c -temperature 0
-voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting

#Change initial operating conditions. Use a temperature of 0C and a
model of fast
set_operating_conditions -model fast -speed 3 -grade c -temperature 0
-voltage 1100

#Update the timing netlist with the new operating condition
update_timing_netlist

#Perform reporting
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–17
Getting Started with the TimeQuest Analyzer
Running the TimeQuest Analyzer
You can run the TimeQuest analyzer in the following ways:

■ Directly from the Quartus II software GUI

■ As a stand-alone GUI application

■ At a system command prompt

For more information about prerequisite steps to perform before opening the
TimeQuest analyzer, refer to “Recommended Flows” on page 6–19.

To run the TimeQuest analyzer from the Quartus II software, on the Tools menu, click
TimeQuest Timing Analyzer.

To run the TimeQuest analyzer as a stand-alone application, type the following
command at the command prompt:

quartus_staw r

h For more information about the TimeQuest analyzer GUI, refer to About TimeQuest
Timing Analysis in Quartus II Help.

To run the TimeQuest analyzer in command-line mode for easy integration with
scripted design flows, type the following command at a system command prompt:

quartus_sta r
For more information about using Tcl commands to constrain and analyze your
design, refer to “Using Tcl Commands” on page 6–23.

Table 6–4 shows a summary of the command-line options available in command-line
mode.

Table 6–4. Summary of Command-Line Options (Part 1 of 2)

Command-Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing

For all clocks in the design, run the following commands:

report_timing -npaths 1 -to_clock $clock

report_timing -setup -npaths 1 -to_clock $clock

report_timing -hold -npaths 1 -to_clock $clock

report_timing -recovery -npaths 1 -to_clock $clock

report_timing -removal -npaths 1 -to_clock $clock

--force_dat
Forces the delay annotator to annotate the new delays from the recently compiled
design to the compiler database.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--qsf2sdc
Converts assignments from the Quartus II Settings File (.qsf) format to the .sdc
format.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

6–18 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Locating Timing Paths in Other Tools
You can locate paths and elements from the TimeQuest analyzer to other tools in the
Quartus II software. Use the Locate Path command in the TimeQuest analyzer GUI or
the locate command-line command to locate paths.

h For more information about locating paths from the TimeQuest analyzer, refer to
Viewing Timing Analysis Results and locate in Quartus II Help.

Example 6–4 shows how to locate ten paths from TimeQuest analyzer to the Chip
Planner and locate all data ports in the Technology Map Viewer.

--sdc=<SDC file> Specifies the .sdc to read.

--report_script=<script> Specifies a custom report script to call.

--speed=<value> Specifies the device speed grade used for timing analysis.

--tq2hc
Generate temporary files to convert the TimeQuest analyzer .sdc file(s) to a
PrimeTime .sdc that can be used by the HardCopy® Design Center.

--tq2pt
Generates temporary files to convert the TimeQuest Timing Analyzer .sdc file(s) to a
PrimeTime .sdc.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated .qsf to use.

--multicorner
Specifies that all slack summary reports be generated for both slow- and
fast-corners.

--multicorner[=on|off] Turns off the multicorner timing analysis.

--voltage=<value_in_mV> Specifies the device voltage, in mV, used in timing analysis.

--temperature=
<value_in_C>

Specifies the device temperature in degrees Celsius, used in timing analysis.

--parallel
[=<num_processors>]

Specifies the number of computer processors to use on a multiprocessor system.

--64bit Enables 64-bit version of the executable.

Table 6–4. Summary of Command-Line Options (Part 2 of 2)

Command-Line Option Description

Example 6–4. Locating from the TimeQuest Analyzer

Locate in the Chip Planner all of the nodes in the longest ten paths

locate [get_path -npaths 10] -chip

locate all ports that begin with data to the Technology Map Viewer

locate [get_ports data*] -tmv
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_locate.htm

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–19
Getting Started with the TimeQuest Analyzer
Recommended Flows
Figure 6–15 shows the recommended design flow for setting up your design for
timing analysis with the TimeQuest analyzer.

Figure 6–15. Design Flow with the TimeQuest Timing Analyzer

Create Quartus II Project
and Specify Design Files

Perform Initial Compilation

Specify Timing Requirements

Perform Compilation

Verify Timing
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–20 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Figure 6–16 shows the recommended flow for constraining and analyzing your
design with the TimeQuest analyzer. Included are the corresponding Tcl commands
for each step.

Creating and Setting Up your Design
You must first create your project in the Quartus II software. Make sure to include all
the necessary device files, including any existing Synopsys Design Constraints (.sdc)
files that contain timing constraints for your design.

1 If you previously created and specified an .sdc for your project, you should perform a
full compilation to create a post-fit database.

h For more information, refer to Managing Files in a Project in Quartus II Help.

Performing an Initial Compilation
After your project is set up, you must compile your design to create an initial design
database before you specify timing constraints. You can either perform Analysis and
Synthesis to create a post-map database, or perform a full compilation to create a
post-fit database. Creating a post-map database reduces processing time and is
sufficient for creating initial timing constraints. The type of database you create
determines the type of timing netlist generated by the TimeQuest analyzer, a
post-map netlist if you perform Analysis and Synthesis or a post-fit netlist if you
perform a full compilation.

Figure 6–16. The TimeQuest Timing Analyzer Flow

Open Project
project_open

Create Timing Netlist
create_timing_netlist

Constrain the Design
create_clock

set_clock_uncertainty
set_clock_latency

create_generated_clock
derive_pll_clocks
set_input_delay
set_output_delay

...

Update Timing Netlist
update_timing_netlist

report_clocks_transfers
report_min_pulse_width

report_net_timing

report_sdc
report_timing
report_clocks

report_min_pulse_width
report_ucp

Verify Static Timing Analysis
Results
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–21
Getting Started with the TimeQuest Analyzer
1 If you want to create a post-map database and your design uses incremental
compilation, you must merge your design partitions before performing Analysis and
Synthesis.

h For more information, refer to Setting up and Running Analysis and Synthesis and
Setting up and Running a Compilation in Quartus II Help.

Specifying Timing Requirements
Before running timing analysis with the TimeQuest analyzer, you must first create a
timing netlist, and then you can specify initial timing constraints that describe the
clock characteristics, timing exceptions, and signal transition arrival and required
times. You can use the TimeQuest Timing Analyzer Wizard to enter basic, initial
constraints for your design, or you can specify timing constraints with the dialog
boxes in the TimeQuest analyzer or with a Tcl script. The timing constraints you create
with the TimeQuest analyzer are saved in the .sdc format.

h For more information, refer to Specifying Timing Constraints and Exceptions, Running a
Timing Analysis, and TimeQuest Timing Analyzer Wizard in Quartus II Help.

1 When you create timing constraints with the TimeQuest analyzer GUI, the .sdc is not
automatically updated. To write your constraints to an .sdc, use the write_sdc
command in command-line mode, or the Write SDC File command in the TimeQuest
analyzer GUI. Writing constraints to an existing .sdc overwrites the existing file. After
editing timing constraints in your design, if you want to save the constraints to an
.sdc, you should create a new file rather than overwriting the existing file.

You can also use an existing .sdc rather than creating new timing constraints. To use
timing constraints from an existing .sdc and any SDC timing constraints embedded in
your HDL files, use the read_sdc command in command-line mode, or the Read
SDC File in the TimeQuest analyzer GUI.

h For more information, refer to read_sdc, write_sdc, Write SDC File Command, and Read
SDC File Command in Quartus II Help.

The .sdc should contain only SDC commands; commands to manipulate the timing
netlist or control the compilation flow should be run as part of a separate Tcl script.
After you create timing constraints, you must update the timing netlist. The
TimeQuest analyzer applies all constraints to the netlist for verification and removes
any invalid or false paths in the design from verification.

1 The constraints in the .sdc are read in the order in which they are declared. You must
first declare a constraint before making any references to it. For example, if a
generated clock references a base clock, the base clock constraint must be declared
before the generated clock constraint.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_synthesis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_com_sta_wizard.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_read_sdc.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_write_sdc.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_com_write_sdc.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_com_read_sdc.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_com_read_sdc.htm

6–22 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Getting Started with the TimeQuest Analyzer
Fitting and Timing Analysis with .sdc Files
You can specify the same or different .sdc files for the Quartus II Fitter to use during
the place-and-route process, and the TimeQuest analyzer for static timing analysis.
Using different .sdc files allows you to have one set of constraints for the
place-and-route process and another set of constraints for final timing sign-off in the
TimeQuest analyzer.

To specify an .sdc for the Fitter, you must add the .sdc to your project. The Fitter
optimizes your design based on the requirements in the .sdc.

h For more information, refer to Managing Files in a Project in Quartus II Help.

Performing a Full Compilation
After creating initial timing constraints, you must fully compile your design. During
full compilation the Fitter optimizes the placement of logic to meet your constraints.
When compilation is complete, you can open the TimeQuest analyzer to verify timing
results and to generate summary, clock setup and clock hold, recovery, and removal
reports for all defined clocks in the design.

Verifying Timing
During timing analysis, the TimeQuest analyzer analyzes the timing paths in the
design, calculates the propagation delay along each path, checks for timing constraint
violations, and reports timing results as slack. If the TimeQuest analyzer reports any
timing violations, you can view precise timing information about specific paths by
customize the reporting, and then constrain those paths to correct the violations. As
you verify timing, you might encounter failures along critical paths. If you encounter
failures along critical paths, use the timing reports to analyze your design and
determine how best to optimize your design. If you modify, remove, or add
constraints, you should perform a full compilation. This iterative process allows you
to resolve your timing violations in the design.

SDC File Precedence
The Fitter and the TimeQuest analyzer read the .sdc files from the files list in the .qsf
in the order they are listed, from top to bottom.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–23
Using Tcl Commands
Figure 6–17 shows the order in which the Quartus II software searches for an .sdc.

1 If you type the read_sdc command at the command line without any arguments, the
TimeQuest analyzer follows precedence order shown in Figure 6–17.

h For more information, refer to Viewing Timing Analysis Results in Quartus II Help.

Using Tcl Commands
You can use Tcl commands from the Quartus II software Tcl Application
Programming Interface (API) to constrain and analyze your design, and to collect
information about your design. This chapter focuses on completing timing analysis
tasks with Tcl commands, however; you can perform many of the same functions in
the TimeQuest analyzer GUI. You can use standard SDC Tcl commands and SDC
extension commands in addition to TimeQuest analyzer Tcl commands. The following
Tcl packages are available in the Quartus II software:

■ ::quartus::sta

■ ::quartus::sdc

■ ::quartus::sdc_ext

h For more information about TimeQuest analyzer Tcl commands and a complete list of
commands, refer to ::quartus::sta in Quartus II Help. For more information about
standard SDC commands and a complete list of commands, refer to ::quartus::sdc in
Quartus II Help. For more information about Altera extensions of SDC commands
and a complete list of commands, refer to ::quartus::sdc_ext in Quartus II Help.

Figure 6–17. Synopsys Design Constraints File Order of Precedence

Note to Figure 6–17:
(1) This flow occurs only in the TimeQuest analyzer and not during compilation in the Quartus II software. The TimeQuest

analyzer has the ability to automate the conversion of the .qsf timing assignments to SDC if no .sdc exists when you
open the TimeQuest analyzer.

Is the .sdc file specified in
the .qsf ?

No

Yes

Does the .sdc file
<current revision>.sdc

exist in the project
directory?

No

Yes

Analyze the design

Manually create .sdc file <current revision>.sdc
based on the current .qsf (1)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_view_result.htm

6–24 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Using Tcl Commands
Wildcard Characters
To apply constraints to many nodes in a design, use the “*” and “?” wildcard
characters. The “*” wildcard character matches any string; the “?” wildcard character
matches any single character.

If you make an assignment to node reg*, the TimeQuest analyzer searches for and
applies the assignment to all design nodes that match the prefix reg with any number
of following characters, such as reg, reg1, reg[2], regbank, and reg12bank.

If you make an assignment to a node specified as reg?, the TimeQuest analyzer
searches and applies the assignment to all design nodes that match the prefix reg and
any single character following; for example, reg1, rega, and reg4.

Collection Commands
The commands in the Tcl API for the TimeQuest analyzer often return port, pin, cell,
or node names in a data set called a collection. In your Tcl scripts you can iterate over
the values in collections to analyze or modify constraints in your design. Collection
commands are part of the ::quartus::sta, ::quartus::sdc, and ::quartus::sdc_ext Tcl
packages.

Adding and Removing Collection Items
Filters used with collection commands limit collection items identified by the
command. For example, if a design contains registers named src0, src1, src2, and
dst0, the collection command [get_registers src*] identifies registers src0, src1,
and src2, but not register dst0. To identify register dst0, you must use an additional
command, [get_registers dst*].

To overcome this limitation when using filters, use the add_to_collection and
remove_from_collection commands. The add_to_collection command allows you
to add additional items to an existing collection. Example 6–5 shows the
add_to_collection command and arguments.

The remove_from_collection command allows you to remove items from an existing
collection. Example 6–6 shows the remove_from_collection command and
arguments.

Example 6–5. add_to_collection Command

add_to_collection <first collection> <second collection>

Example 6–6. remove_from_collection Command

remove_from_collection <first collection> <second collection>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–25
Using Tcl Commands
Example 6–7 shows examples of how to add elements to collections.

h For more information about the add_to_collection and remove_from_collection
commands—including full syntax information, options, and example usage—refer to
add_to_collection and remove_from_collection in Quartus II Help.

Refining Collections with Wildcards
The collection commands get_cells and get_pins have options that allow you to
refine searches that include wildcard characters.

Example 6–7. Adding Items to a Collection

#Setting up initial collection of registers

set regs1 [get_registers a*]

#Setting up initial collection of keepers

set kprs1 [get_keepers b*]

#Creating a new set of registers of $regs1 and $kprs1

set regs_union [add_to_collection $kprs1 $regs1]

#OR

Creating a new set of registers of $regs1 and b*

Note that the new collection appends only registers with name b*

not all keepers

set regs_union [add_to_collection $regs1 b*]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm

6–26 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Using Tcl Commands
Table 6–5 shows examples of search strings that use options to refine the search and
wildcards. The examples in Table 6–5 use the following cells and pin names:

■ foo

■ foo|bar

■ foo|dataa

■ foo|datab

■ foo|bar|datac

■ foo|bar|datad

Table 6–5. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty>

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility *|datac foo|bar|datac

get_pins -compatibility *|*|datac foo|bar|datac

Note to Table 6–5:

(1) The search result is <empty> because of the additional *|*| in the search string.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–27
Creating Clocks and Clock Constraints
Removing Constraints and Exceptions
When you use the TimeQuest analyzer interactively, it is sometimes necessary to
remove a constraint or exception. Use the following commands to remove constraints
and exceptions:

■ remove_clock

■ remove_clock_groups

■ remove_clock_latency

■ remove_clock_uncertainty

■ remove_input_delay

■ remove_output_delay

■ remove_annotated_delay

■ reset_design

■ reset_timing_derate

h For more information—including a complete list of commands and full syntax
information, options, and example usage—refer to ::quartus::sdc and ::quartus::sdc_ext
in Quartus II Help.

Creating Clocks and Clock Constraints
To ensure accurate static timing analysis results, you must specify all clocks and any
associated clock characteristics in your design. The TimeQuest analyzer supports SDC
commands that accommodate various clocking schemes and clock characteristics.

Creating Clocks
To create a clock at any register, port, or pin, use the create_clock command. You can
create each clock with unique characteristics. Clocks defined with the create_clock
command have a default source latency value of zero. The TimeQuest analyzer
automatically computes the clock’s network latency for non-virtual clocks.

h For more information about the create_clock command—including full syntax
information, options, and example usage—refer to create_clock in Quartus II Help.

Example 6–8 shows how to create a 10 ns clock with a 50% duty cycle that is phase
shifted by 90 degrees applied to port clk_sys.

Example 6–8. 100MHz Shifted by 90 Degrees Clock Creation

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5.htm

6–28 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Creating Virtual Clocks
To create virtual clocks, use the create_clock command with no value specified for
the <targets> option. A virtual clock is a clock that does not have a real source in the
design or that does not interact directly with the design. For example, if a clock feeds
only an external device’s clock port and not a clock port in the design, and the
external device then feeds, or is fed by, a port in the design, it is considered a virtual
clock.

1 Use virtual clocks for set_input_delay and set_output_delay constraints.

Figure 6–18 shows a design where a virtual clock is required for the TimeQuest
analyzer to properly analyze the relationship between the external register and the
registers in the design. Because the oscillator, virt_clk, does not interact with the
Altera device, but acts as the clock source for the external register, you must declare
the clock as a virtual clock. After you create the virtual clock, you can perform a
register-to-register analysis between the register in the Altera device and the register
in the external device.

Example 6–9 shows how to create a 10 ns virtual clock named virt_clk with a 50%
duty cycle where the first rising edge occurs at 0 ns. The virtual clock is then used as
the clock source for an output delay constraint.

Creating Multifrequency Clocks
To create multifrequency clocks, use the create_clock command with the -add option
to add more than one clock to a clock node. You should create a multifrequency clock
if your design has more than one clock source feeding a single clock node in the
design. The additional clock may act as a low-power clock, with a lower frequency
than the primary clock.

Figure 6–18. Virtual Clock Board Topology

Example 6–9. Virtual Clock Example 1

#create base clock for the design
create_clock -period 5 [get_ports system_clk]

#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }

#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]

Altera FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–29
Creating Clocks and Clock Constraints
Example 6–10 shows how to create a 10 ns clock applied to clock port clk, and then
add an additional 15 ns clock to the same clock port. The TimeQuest analyzer uses
both clocks when it performs timing analysis.

Creating Generated Clocks
To create generated clocks, use the create_generated_clock command. The
TimeQuest analyzer considers clock dividers, ripple clocks, or circuits that modify or
change the characteristics of the incoming or master clock as generated clocks. You
should define as generated clocks the output of circuits that modify or change the
characteristics of the incoming or master clock. Defining the output of the circuits as
generated clocks allows the TimeQuest analyzer to analyze these clocks and account
for any associate network latency. Source latencies are based on clock network delays
from the master clock, but not necessarily the master pin. You can use the
set_clock_latency -source command to override source latency.

h For more information about the create_generated_clock command—including full
syntax information, options, and example usage—refer to create_generated_clock in
Quartus II Help.

Figure 6–19 shows how to generate an inverted clock based on a 10 ns clock.

Example 6–10. Multifrequency Clock Example

create_clock –period 10 –name clock_primary –waveform { 0 5 } \
[get_ports clk]

create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } \
[get_ports clk] -add

Figure 6–19. Generating an Inverted Clock

create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 1 -invert -source [get_registers clk] \

[get_registers gen|clkreg]

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

gen|clkreg

Time
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm

6–30 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Figure 6–20 shows how to modify the generated clock by defining and shifting the
edges.

Figure 6–21 shows the effect of the applying a multiplication factor to the generated
clock.

Automatically Detecting Clocks and Creating Default Clock Constraints
To automatically create clocks for all clock nodes in your design, use the
derive_clocks command. The derive_clocks command is equivalent to using the
create_clock command for each register or port feeding the clock pin of a register.
The derive_clocks command creates clocks on ports or registers to ensure every
register in the design has a clock, and it applies one period to all base clocks in your
design.

Figure 6–20. Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5} [get_ports clk]

Creates a divide-by-two clock
create_generated_clock -source [get_ports clk] -edges {1 3 5 } [get_registers \
clkdivA|clkreg]

Creates a divide-by-two clock independent of the master clocks’ duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges {1 1 5} -edge_shift { 0 2.5 0 } \
[get_registers clkdivB|clkreg]

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

0 10 20 30
Time

Figure 6–21. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]

Creates a multiply-by-two clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

clk

clkmult|clkreg

0 10 20 30
Time
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–31
Creating Clocks and Clock Constraints
To provide a complete clock analysis, if there are no clock constraints in your design,
the TimeQuest analyzer automatically creates default clock constraints for all detected
unconstrained clock nodes. The TimeQuest analyzer automatically creates clocks only
when all synchronous elements have no associated clocks. For example, the
TimeQuest analyzer does not create a default clock constraint if your design contains
two clocks and you assigned constraints to one of the clocks. However, if you did not
assign constraints to either clock, then the TimeQuest analyzer creates a default clock
constraint.

Example 6–11 shows how the TimeQuest analyzer creates a base clock with a 1 GHz
requirement for unconstrained clock nodes.

1 To achieve a thorough and realistic analysis of your design’s timing requirements, you
should make individual clock constraints for all clocks in your design. Do not use the
derive_clocks command for final timing sign-off; instead, you should create clocks
for all clock sources with the create_clock and create_generated_clock commands.

h For more information about the derive_clocks command—including full syntax
information, options, and example usage—refer to derive_clocks in Quartus II Help.

Deriving PLL Clocks
Because you should create clocks for all clock nodes, you must create generated clocks
for all PLL outputs in your design. Use the derive_pll_clocks command to direct the
TimeQuest analyzer to automatically create the appropriate generated clocks, or use
the create_generated_clock command to manually create the generated clocks.

h For more information about the derive_pll_clocks command—including full syntax
information, options, and example usage—refer to derive_pll_clocks in Quartus II Help.

Use the derive_pll_clocks command to direct the TimeQuest analyzer to
automatically search the timing netlist for all unconstrained PLL output clocks. The
derive_pll_clocks command calls the create_generated_clock command to create
generated clocks on the outputs of the PLL. The source for the
create_generated_clock command is the input clock pin of the PLL.

You must create manually a base clock for the input clock port of the PLL. If you do
not define a clock for the input clock node of the PLL, no clocks are reported for the
PLL outputs and the TimeQuest analyzer issues a warning message when the timing
netlist is updated.

1 You can use the -create_base_clocks option to create the input clocks for the PLL
inputs automatically.

You can include the derive_pll_clocks command in your .sdc, which allows the
derive_pll_clocks command to automatically detect any changes to the PLL. Each
time the TimeQuest analyzer reads your .sdc, it generates the appropriate
create_generated_clocks command for the PLL output clock pin. If you use the
write_sdc -expand command after the derive_pll_clocks command, the new .sdc

Example 6–11. Create Base Clock for Unconstrained Clock Nodes

derive_clocks -period 1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm

6–32 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
contains the individual create_generated_clock commands for the PLL output clock
pins and not the derive_pll_clocks command. Any changes to the properties of the
PLL are not automatically reflected in the new .sdc. You must manually update the
create_generated_clock commands in the new .sdc written by the
derive_pll_clocks command to reflect the changes to the PLL.

1 Writing constraints to an existing .sdc overwrites the existing file. After editing timing
constraints in your design, if you want to save the constraints to an .sdc, you should
create a new file rather than overwriting the existing file.

1 The derive_pll_clocks command also constrains any LVDS transmitters or LVDS
receivers in the design by adding the appropriate multicycle constraints to account for
any deserialization factors.

Figure 6–22 shows a simple PLL design with a register-to-register path.

Example 6–12 shows the messages generated by the TimeQuest analyzer when you
use the derive_pll_clocks command to automatically constrain the PLL for the
design shown in Figure 6–22.

The input clock pin of the PLL is the node
pll_inst|altpll_component|pll|inclk[0] used for the -source option. The name of
the output clock of the PLL is the PLL output clock node,
pll_inst|altpll_component|pll|clk[0].

If the PLL is in clock switchover mode, multiple clocks are created for the output clock
of the PLL; one for the primary input clock (for example, inclk[0]), and one for the
secondary input clock (for example, inclk[1]). You should create exclusive clock
groups for the primary and secondary output clocks.

For more information about creating exclusive clock groups, refer to “Creating Clock
Groups” on page 6–33.

Figure 6–22. Simple PLL Design

Example 6–12. derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source
pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|clk[0]
pll_inst|altpll_component|pll|clk[0]
Info:

reg_1 reg_2

pll_inclk pll_inst

dataout
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–33
Creating Clocks and Clock Constraints
Before you can generate any reports for this design, you must create a base clock for
the PLL input clock port. You do not have to generate the base clock on the input clock
pin of the PLL, pll_inst|altpll_component|pll|inclk[0]. The clock created on the
PLL input clock port propagates to all fan-outs of the clock port, including the PLL
input clock pin. Example 6–13 shows how to create a base clock for the PLL input
clock port.

Creating Clock Groups
To specify clocks in your design that are exclusive or asynchronous, use the
set_clock_groups command.

h For more information about the set_clock_groups command—including full syntax
information, options, and example usage—refer to set_clock_groups in Quartus II Help.

Exclusive Clock Groups
Use the -exclusive option to declare that two clocks are mutually exclusive. You may
want to declare clocks as mutually exclusive when multiple clocks are created on the
same node or for multiplexed clocks. For example, a port can be clocked by either a
25-MHz or a 50-MHz clock. To constrain this port, you should create two clocks on the
port, and then create clock groups to declare that they cannot coexist in the design at
the same time. Declaring the clocks as mutually exclusive eliminates any clock
transfers that may be derived between the 25-MHz clock and the 50-MHz clock.
Example 6–14 shows how to create mutually exclusive clock groups.

A group is defined with the -group option. The TimeQuest analyzer excludes the
timing paths between clocks for each of the separate groups.

Asynchronous Clock Groups
Use the -asynchronous option to create asynchronous clock groups. Clocks contained
within an asynchronous clock group are considered asynchronous to clocks in other
clock groups; however, any clocks within a clock group are considered synchronous
to each other.

1 The TimeQuest analyzer assumes all clocks are related unless constrained otherwise.

Example 6–13. Create Base Clock for PLL input Clock Port

create_clock -period 5 [get_ports pll_inclk]

Example 6–14. Create Mutually Exclusive Clock Groups

create_clock -period 40 -name clk_A [get_ports {port_A}]
create_clock -add -period 20 -name clk_B [get_ports {port_A}]
set_clock_groups -exclusive -group {clk_A} -group {clk_B}
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm

6–34 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
For example, if your design has three clocks, clk_A, clk_B, and clk_C, and you
establish that clk_A and clk_B are related to each other, but clock clk_C operates
completely asynchronously, you can set up clock groups to define the clock behavior.
Example 6–15 shows how to create a clock group containing clocks clk_A and clk_B
and a second unrelated clock group containing clk_C.

Alternatively, in this example, you can create a clock group containing only clk_C to
ensure that clk_A and clk_B are synchronous with each other and asynchronous with
clk_C. Because clk_C is the only clock in the constraint, it is asynchronous with every
other clock in the design.

Accounting for Clock Effect Characteristics
The clocks you create with the TimeQuest analyzer are ideal clocks that do not
account for any board effects. You can account for clock effect characteristics with
clock latency and clock uncertainty.

Clock Latency
There are two forms of clock latency, clock source latency and clock network latency.
Source latency is the propagation delay from the origin of the clock to the clock
definition point (for example, a clock port). Network latency is the propagation delay
from a clock definition point to a register’s clock pin. The total latency at a register’s
clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the
set_clock_latency command.

1 The TimeQuest analyzer automatically computes network latencies; therefore, you
only can create source latency with the set_clock_latency command. You must use
the -source option.

h For more information about the set_clock_latency command—including full syntax
information, options, and example usage—refer to set_clock_latency in Quartus II
Help.

Clock Uncertainty
To specify clock uncertainty, or skew, for clocks or clock-to-clock transfers, use the
set_clock_uncertainty command. You can specify the uncertainty separately for
setup and hold, and you can specify separate rising and falling clock transitions. The
TimeQuest analyzer subtracts setup uncertainty from the data required time for each
applicable path and adds the hold uncertainty to the data required time for each
applicable path.

To automatically apply interclock, intraclock, and I/O interface uncertainties, use the
derive_clock_uncertainty command. The TimeQuest analyzer automatically
applies clock uncertainties to clock-to-clock transfers in the design, and calculates
both setup and hold uncertainties for each clock-to-clock transfer.

Example 6–15. Create Asynchronous Clock Groups

set_clock_groups -asynchronous -group {clk_A clk_B} -group {clk_C}
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–35
Creating Clocks and Clock Constraints
Any clock uncertainty constraints applied to source and destination clock pairs with
the set_clock_uncertainty command have a higher precedence than the clock
uncertainties derived with the derive_clock_uncertainty command for the same
source and destination clock pairs. For example, if you use the
set_clock_uncertainty command to set clock uncertainty between clka and clkb,
the TimeQuest analyzer ignores the values for the clock transfer calculated with the
derive_clock_uncertainty command. The TimeQuest analyzer reports the values
calculated with the derive_clock_uncertainty command even if they are not used.

To automatically remove previous clock uncertainty assignments, use the -overwrite
option. To manually remove previous clock uncertainty assignments, use the
remove_clock_uncertainty command.

h For more information about the set_clock_uncertainty, derive_clock_uncertainty,
and remove_clock_uncertainty commands—including full syntax information,
options, and example usage—refer to set_clock_uncertainty, derive_clock_uncertainty,
and remove_clock_uncertainty in Quartus II Help.

I/O Interface Uncertainty
To specify I/O interface uncertainty, you must create a virtual clock and constrain the
input and output ports with the set_input_delay and set_output_delay commands
that reference the virtual clock. You must use a virtual clock to prevent the
derive_clock_uncertainty command from applying clock uncertainties for either
intraclock or interclock transfers to an I/O interface clock transfer when the
set_input_delay or set_output_delay commands reference a clock port or PLL
output. If you do not reference a virtual clock with the set_input_delay or
set_output_delay commands, the derive_clock_uncertainty command calculates
intraclock or interclock uncertainty values for the I/O interface.

Create the virtual clock with the same properties as the original clock that is driving
the I/O port. Figure 6–23 shows a typical input I/O interface with clock
specifications.

Figure 6–23. I/O Interface Clock Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Q

reg1

D

reg1

D

100 MHz
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_uncertainty.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_remove_clock_uncertainty.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm

6–36 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Clocks and Clock Constraints
Example 6–16 shows the SDC commands to constrain the I/O interface shown in
Figure 6–23.

Intraclock transfers occur when the register-to-register transfer takes place in the core
of the FPGA and the source and destination clocks come from the same PLL output
pin or clock port. Figure 6–24 shows an intraclock transfer.

Interclock transfers occur when a register-to-register transfer takes place in the core of
the FPGA and the source and destination clocks come from a different PLL output pin
or clock port. Figure 6–25 shows an interclock transfer.

Example 6–16. SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]

Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in

Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay_value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

Figure 6–24. Intraclock Transfer

Figure 6–25. Interclock Transfer

D Q D Q

Source Register Destination Register

data_in

data_out
clk0

PLL

D Q D Q

Source Register Destination Register

data_in

clk_in
clk0

PLL

data_out
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–37
Creating I/O Constraints
I/O interface clock transfers occur when data transfers from an I/O port to the core of
the FPGA or from the core of the FPGA to the I/O port. Figure 6–26 shows an I/O
interface clock transfer.

Creating I/O Constraints
To specify any external device or board timing parameters, use input and output
delay constraints. When you apply these constraints, the TimeQuest analyzer
performs static timing analysis on the entire system.

To specify input delay constraints to ports in the design and the data arrival time at a
port with respect to a given clock, use the set_input_delay command. To specify
output delay constraints to ports in the design and the data required time at a port
with respect to a given clock, use the set_output_delay command.

Figure 6–27 shows an input delay path.

Figure 6–28 shows an output delay path.

By default, a set of input or output delays, that is a -min and -max pair or a -rise and
-fall pair, is allowed for only one -clock, -clock_fall, and -reference_pin
combination. Specifying an input delay on the same port for a different -clock,
-clock_fall, or -reference_pin setting removes any previously set input delays,
unless you specify the -add_delay option. When you specify the -add_delay option,
the TimeQuest analyzer uses the worst-case values.

Figure 6–26. I/O Interface Clock Transfer

D Q

reg1

data_in

clk_in

data_out

Figure 6–27. Input Delay

Figure 6–28. Output Delay

External Device Altera Device

Oscillator

External DeviceAltera Device

Oscillator
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

6–38 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Creating Delay and Skew Constraints
1 The -min and -max and -rise and -fall options are mutually exclusive.

h For more information about the set_input_delay and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay and set_output_delay in Quartus II Help.

Creating Delay and Skew Constraints
The TimeQuest analyzer supports the Synopsys Design Constraint format for
constraining timing for the ports in your design. These constraints allow the
TimeQuest analyzer to perform a system static timing analysis that includes not only
the FPGA internal timing, but also any external device timing and board timing
parameters.

Net Delay
To perform minimum or maximum analysis across nets and report the net delays, use
the set_net_delay command in conjunction with the report_net_delay command.
You can use the set_net_delay and report_net_delay commands to verify
timing-critical delays for high-speed interfaces.

h For more information about the set_net_delay and report_net_delay commands—
including full syntax information, options, and example usage—refer to set_net_delay
and report_net_delay in Quartus II Help.

Advanced I/O Timing and Board Trace Model Delay
The TimeQuest analyzer can use advanced I/O timing and board trace model
assignments to model I/O buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments,
recompile your design before you analyze timing, or use the -force_dat option to
force delay annotation when you create a timing netlist. Example 6–17 shows how to
force delay annotation when creating a timing netlist.

h For more information about using advanced I/O timing, refer to Using Advanced I/O
Timing in Quartus II Help.

f For more information about advanced I/O timing, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook.

Maximum Skew
To specify the maximum path-based skew requirements for registers and ports in the
design and report the results of maximum skew analysis, use the set_max_skew
command in conjunction with the report_max_skew command.

Example 6–17. Forcing Delay Annotation

create_timing_netlist -force_dat r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_net_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_net_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–39
Creating Timing Exceptions
By default, the set_max_skew command excludes any input or output delay
constraints.

h For more information about the set_max_skew and report_max_skew commands—
including full syntax information, options, and example usage—refer to set_max_skew
report_max_skew in Quartus II Help.

Creating Timing Exceptions
Timing exceptions modify the default analysis performed by the TimeQuest analyzer.
You can create several different timing exceptions with the TimeQuest analyzer to
adjust the timing of your design.

Precedence
If a conflict of node names occurs between timing exceptions, the following order of
precedence applies:

1. False path

2. Minimum delays and maximum delays

3. Multicycle path

The false path timing exception has the highest precedence. Within each category,
assignments to individual nodes have precedence over assignments to clocks. Finally,
the remaining precedence for additional conflicts is order-dependent, such that the
assignments most recently created overwrite, or partially overwrite, earlier
assignments.

False Paths
To specify false paths in your design, use the set_false_path command. False paths
are paths that can be ignored during timing analysis.

If you specify a false path between two timing notes, the false path applies only to the
path between the two nodes. If you specify a false path to a clock, the false path
applies to all paths where the source node (-from) or destination node (-to) is clocked
by the clock.

h For more information about the set_false_path command—including full syntax
information, options, and example usage—refer to set_false_path in Quartus II Help.

Minimum and Maximum Delays
To specify an absolute minimum or maximum delay for a path, use the
set_min_delay command or the set_max_delay commands, respectively.

If the source or destination node is clocked, the TimeQuest analyzer takes into account
the clock paths, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included in the
minimum or maximum delay check.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_max_skew.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm

6–40 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Timing Reports
If you specify a minimum or maximum delay between timing nodes, the delay
applies only to the path between the two nodes. If you specify a minimum or
maximum delay for a clock, the delay applies to all paths where the source node
(-from) or destination node (-to) is clocked by the clock.

You can create a minimum or maximum delay exception for an output port that does
not have an output delay constraint. You cannot report timing for the paths associated
with the output port; however, the TimeQuest analyzer reports any slack for the path
in the setup summary and hold summary reports. Because there is no clock associated
with the output port, no clock is reported for timing paths associated with the output
port.

1 To report timing with clock filters for output paths with minimum and maximum
delay constraints, you can set the output delay for the output port with a value of
zero. You can use an existing clock from the design or a virtual clock as the clock
reference.

h For more information about the set_min_delay and set_max_delay commands—
including full syntax information, options, and example usage—refer to set_min_delay
and set_max_delay in Quartus II Help.

Delay Annotation
To modify the default delay values used during timing analysis, use the
set_annotated_delay and set_timing_derate commands. You must update the
timing netlist to see the results of these commands

To specify different operating conditions in a single .sdc, rather than having multiple
.sdc files that specify different operating conditions, use the set_annotated_delay
command with the -operating_conditions option.

h For more information about the set_annotated_delay and set_timing_derate
commands—including full syntax information, options, and example usage—refer to
set_annotated_delay and set_timing_derate in Quartus II Help.

Timing Reports
The TimeQuest analyzer provides real-time static timing analysis result reports. The
TimeQuest analyzer does not automatically generate reports; you must create each
report individually in the TimeQuest analyzer GUI or with command-line commands.
You can customize in which report to display specific timing information, excluding
fields that are not required.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm

Chapter 6: The Quartus II TimeQuest Timing Analyzer 6–41
Timing Reports
Table 6–6 shows some of the different command-line commands you can use to
generate reports in the TimeQuest analyzer and the equivalent reports shown in the
TimeQuest analyzer GUI.

h For more information—including a complete list of commands to generate timing
reports and full syntax information, options, and example usage—refer to
::quartus::sta in Quartus II Help.

During compilation, the Quartus II software generates timing reports that contain
basic timing information. You can configure various options for the TimeQuest
analyzer reports generated during compilation.

h For more information about the options you can set to customize the reports, refer to
TimeQuest Timing Analyzer Page in Quartus II Help.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS assignment to
generate a report of the worst-case timing paths for each clock domain. This report
contains worst-case timing data for setup, hold, recovery, removal, and minimum
pulse width checks.

Use the TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to specify the
number of paths to report for each clock domain.

Example 6–18 shows an example of how to use the
TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS and
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments in the .qsf to
generate reports.

Table 6–6. TimeQuest Analyzer Reports

Command-Line Command Report

report_timing Timing report

report_exceptions Exceptions report

report_clock_transfers Clock Transfers report

report_min_pulse_width Minimum Pulse Width report

report_ucp Unconstrained Paths report

Example 6–18. Generating Worst-Case Timing Reports

#Enable Worst-Case Timing Report
set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON
#Report 10 paths per clock domain
set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_tqa_settings.htm

6–42 Chapter 6: The Quartus II TimeQuest Timing Analyzer
Document Revision History
Document Revision History
Table 6–7 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 6–7. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Revised and reorganized entire chapter.

■ Linked to Quartus II Help.

July 2010 10.0.0 Updated to link to content on SDC commands and the TimeQuest analyzer GUI in Quartus II
Help.

November 2009 9.1.0

Updated for the Quartus II software version 9.1, including:

■ Added information about commands for adding and removing items from collections

■ Added information about the set_timing_derate and report_skew commands

■ Added information about worst-case timing reporting

■ Minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1, including:

■ Added the following sections:

■ “set_net_delay” on page 7–42

■ “Annotated Delay” on page 7–49

■ “report_net_delay” on page 7–66

■ Updated the descriptions of the -append and -file <name> options in tables
throughout the chapter

■ Updated entire chapter using 8½” × 11” chapter template

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53024-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53024-10.1.0
7. Best Practices for the Quartus II
TimeQuest Timing Analyzer
Timing constraints and exceptions are vital to all designs that target FPGAs because
they allow designers to specify requirements and verify timing of their systems or
FPGAs. Constraints and exceptions allow the Fitter to spend more time fitting the
critical paths in your design and reduce the amount of time spent on noncritical parts
of the design.

This chapter provides recommendations on how to fully constrain an FPGA design
with the Quartus® II TimeQuest Timing Analyzer. The sections are ordered in the
recommended flow for applying timing constraints and exceptions in the TimeQuest
analyzer.

f For more information about interactive timing analysis, refer to the TimeQuest Timing
Analyzer Quick Start Tutorial.

f For more information about Altera resources available for the TimeQuest analyzer,
refer to the TimeQuest Timing Analyzer Resource Center of the Altera website.

f For more information about constraining circuits and reporting timing analysis
results in the TimeQuest analyzer, including examples, refer to the TimeQuest Design
Examples page of the Altera website and the Quartus II TimeQuest Timing Analyzer
Cookbook.

f For more information about constraints and exceptions supported by the TimeQuest
analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

h For more information about TimeQuest analyzer Tcl commands and a complete list of
commands, refer to ::quartus::sta in Quartus II Help. For more information about
standard SDC commands and a complete list of commands, refer to ::quartus::sdc in
Quartus II Help. For more information about Altera extensions of SDC commands
and a complete list of commands, refer to ::quartus::sdc_ext in Quartus II Help.

This chapter contains the following sections:

■ “Creating Clock Requirements” on page 7–2

■ “Creating I/O Requirements” on page 7–5

■ “Creating Timing Exceptions” on page 7–7
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53024
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/literature/hb/qts/ug_tq_tutorial.pdf
http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/support/examples/timequest/exm-timequest.html
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm

7–2 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Clock Requirements
Creating Clock Requirements
The TimeQuest analyzer supports the following types of clocks:

■ Base clocks

■ Derived clocks

■ Virtual clocks

Clocks are used to specify register-to-register requirements for synchronous transfers
and guide the Fitter optimization algorithms to achieve the best possible placement
for your design.

Specify clock constraints first in Synopsys Design Constraint Files (.sdc) because other
constraints may reference previously defined clocks. The TimeQuest analyzer reads
SDC constraints and exceptions from top to bottom in the file.

f For more information about creating clocks and clock constraints, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Base Clocks
Base clocks are the primary input clocks to the FPGA. Unlike clocks from
phase-locked loops (PLLs) that are derived within the FPGA, base clocks are usually
generated in off-chip oscillators or forwarded from an external device. Define base
clocks first because derived clocks and other constraints can reference the base clocks.

Use the create_clock command to constrain all primary input clocks. The target for
the create_clock command is usually an FPGA device pin. To specify the FPGA
device pin as the target, use the get_ports command. Example 7–1 shows how to
specify a 100-MHz requirement on a clk_sys input clock port.

You can apply multiple clocks on the same clock node with the -add option.
Example 7–2 shows how to specify that two oscillators drive the same clock port on
the FPGA.

h For more information about the create_clock and get_ports commands—including
full syntax information, options, and example usage—refer to create_clock and
get_ports in Quartus II Help.

Example 7–1. create_clock Command

create_clock -period 10 -name clk_sys [get_ports clk_sys]

Example 7–2. Two Oscillators Driving the Same Clock Port

create_clock -period 10 -name clk_100 [get_ports clk_sys]

create_clock -period 5 -name clk_200 [get_ports clk_sys] -add
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_get_ports.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–3
Creating Clock Requirements
Derived Clocks
Derived clocks are generated in the FPGA when you modify the properties, including
phase, frequency, offset, and duty cycle, of a source clock signal. Derived clocks,
which are PLLs or register clock dividers, are constrained after all base clocks are
constrained in the .sdc. Derived clocks capture all clock delays and clock latency
where the derived clock target is defined, ensuring that all base clock properties are
accounted for in the derived clock.

You can use the create_generated_clock command to constrain all generated clocks
in your design. The source of the create_generated_clock command should be a
node in your design and not a previously constrained clock.

Example 7–3 shows a divide-by-two clock divider.

Use the create_generated_clock command with the -source option when you
specify multiple clock constraints for the same pin in a design. When you use the
create_generated_clock command, the -source option should refer to the nearest
clock pin of the specified target. Do not use the clock port as the source for a generated
clock, because multiple source clocks can feed the clock port. In Example 7–3, the
-source option assigns the clock pin of the register as the source for the generated
clock instead of the clock port clk feeding the register ’s reg clock pin.

The TimeQuest analyzer provides the derive_pll_clocks command to automatically
generate derived clocks for all PLL clock outputs. The properties of the generated
clocks on the PLL outputs match the properties defined for the PLL.

h For more information about the create_generated_clock and derive_pll_clocks
commands—including for full syntax information, options, and example usage—refer
to create_generate_clock and derive_pll_clocks in Quartus II Help.

Virtual Clocks
A virtual clock does not have a real source in your design and does not interact
directly with your design. You can create virtual clocks with the create_clock
command, with no targets specified. Example 7–4 shows how to create a 10 ns virtual
clock.

If you use the derive_clock_uncertainty command for your design, use virtual
clocks with the set_input_delay and set_output_delay commands. It is important to
use virtual clocks to allow the TimeQuest analyzer to calculate clock uncertainty
separately for I/O interfaces and internal register-to-register paths.

Example 7–3. Clock Divider

create_clock -period 10 -name clk_sys [get_ports clk_sys]

create_generated_clock -name clk_div_2 -divide_by 2 -source
[get_pins reg|clk] [get_pins reg|regout]

Example 7–4. Create Virtual Clock

create_clock -period 10 -name my_virt_clk
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm

7–4 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Clock Requirements
If an FPGA interfaces with an external device, and both the FPGA and external device
have different clock sources, you should model the clock source for the external
device with a virtual clock.

h For more information about the set_input_delay, set_output_delay, and
derive_clock_uncertainty commands—including full syntax information, options,
and example usage—refer to set_input_delay, set_output_delay, and
derive_clock_uncertainty in Quartus II Help.

Figure 7–1 shows a typical I/O interface that contains an FPGA that interfaces with an
external device and also shows a virtual clock. Example 7–5 shows how to create an
equivalent virtual clock for each clock in your design that feeds an input or output
port.

Figure 7–1. Design with Virtual Clock

Example 7–5. Commands to Create Clocks

Create the base clock for the clock port
create_clock –period 10 –name clk_in [get_ports clk_in]

Create a virtual clock with the same properties of the base clock
driving the source register
create_clock –period 10 –name virt_clk_in

Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay –clock clk_in <delay_value>
[get_ports data_in]
set_input_delay –clock virt_clk_in <delay value> [get_ports data_in]

Altera FPGAExternal Device
data_in

clk_in

Q Qreg1Dreg1D

100 MHz
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–5
Creating I/O Requirements
Figure 7–2 shows a design that contains an FPGA that interfaces with an external
device and also shows the base clock and the virtual clock. Example 7–6 shows how to
create virtual clock for the design.

Creating I/O Requirements
You should specify timing requirements, including internal and external timing
requirements, before you fully analyze a design. With external timing requirements
specified, the TimeQuest analyzer verifies the I/O interface, or periphery of the
FPGA, against any system specification. The TimeQuest analyzer supports input and
output external delay modeling.

You should specify I/O requirements after you constrain all clocks in your design.
When specifying I/O requirements, reference a virtual clock in the constraints.

f For more information about specifying I/O interface requirements and uncertainty,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Figure 7–2. Design with Base Clock and Virtual Clock

Example 7–6. Commands to Create Clocks

#create base clock for the design
create_clock -period 10 -name clk_in [get_ports clk_in]

#create the virtual clock for the external register
create_clock -period 20 -name virt_clk -waveform {0 10}

#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports data_out]

Altera FPGAExternal Device
data_in

clk_in

Q Qreg1Dreg1D

50 MHz 100 MHz

Virtual Clock Base Clock

data_out
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

7–6 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating I/O Requirements
Input Constraints
Input constraints allow you to specify all the external delays feeding into the FPGA.
Specify input requirements for all input ports in your design.

You can use the set_input_delay command to specify external input delay
requirements. Use the -clock option to reference a virtual clock. Using a virtual clock
allows the TimeQuest analyzer to correctly derive clock uncertainties for interclock
and intraclock transfers. The virtual clock defines the launching clock for the input
port. The TimeQuest analyzer automatically determines the latching clock inside the
device that captures the input data, because all clocks in the device are defined.
Figure 7–3 shows an example of an input delay referencing a virtual clock.

Equation 7–1 shows a typical input delay calculation.

Output Constraints
Output constraints allow you to specify all external delays from the FPGA for all
output ports in your design.

You can use the set_output_delay command to specify external output delay
requirements. Use the -clock option to reference a virtual clock. The virtual clock
defines the latching clock for the output port. The TimeQuest analyzer automatically
determines the launching clock inside the device that launches the output data,
because all clocks in the device are defined. Figure 7–4 shows an example of an output
delay referencing a virtual clock.

Figure 7–3. Input Delay

Equation 7–1. Input Delay Calculation

External Device Altera Device

Oscillator

dd

cd_altrcd_ext

tco_ext

input delayMAX cd_extMIN cd_altrMAX–() tco_extMAX ddMAX+ +=

input delayMIN cd_extMAX cd_altrMIN–() tco_extMIN ddMIN+ +=

Figure 7–4. Output Delay

External DeviceAltera Device

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–7
Creating Timing Exceptions
Equation 7–2 shows a typical output delay calculation.

h For more information about the set_input_delay and set_output_delay
commands—including full syntax information, options, and example usage—refer to
set_input_delay and set_output_delay in Quartus II Help.

Creating Timing Exceptions
Timing exceptions in the TimeQuest analyzer provide a way to modify the default
timing analysis behavior to match the analysis required by your design. Specify
timing exceptions after clocks and input and output delay constraints because timing
exceptions can modify the default analysis. The TimeQuest analyzer supports the
following three major categories of timing exceptions:

■ False paths

■ Minimum and maximum delays

■ Multicycle paths

f For more information about creating timing exceptions, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

False Paths
Specifying a false path in your design removes the path from timing analysis. Use the
set_false_path command to specify false paths in your design. You can specify
either a point-to-point or clock-to-clock path as a false path. For example, a path you
should specify as false path is a static configuration register that is written once
during power-up initialization, but does not change state again. Although signals
from static configuration registers often cross clock domains, you may not want to
make false path exceptions to a clock-to-clock path, because some data may transfer
across clock domains. However, you can selectively make false path exceptions from
the static configuration register to all endpoints.

Example 7–7 shows how to make false path exceptions from all registers beginning
with A to all registers beginning with B.

The TimeQuest analyzer assumes all clocks are related unless you specify otherwise.
You can use clock groups to make false path exceptions for clock-to-clock timing
relationships in your design. Clock groups are a more efficient way to make false path
exceptions between clocks, compared to writing multiple set_false_path exceptions
between every clock transfer you want to eliminate.

Equation 7–2. output Delay Calculation

input delayMAX ddMAX tsu_ext– cd_altrMIN cd_extMAX–()+=

input delayMIN ddMIN th_ext– cd_altrMAX cd_extMIN–()+=

Example 7–7. False Path

set_false_path -from [get_pins A*] -to [get_pins B*]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

7–8 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
1 The TimeQuest analyzer runs more efficiently with clock groups rather than
individual false path assignments.

Use the set_clock_groups command to collect groups of signals related to each other,
and use the -asynchronous option to specify that each group of clocks is
asynchronous with each other. If you apply multiple clocks to the same port, use the
set_clock_groups command with the -exclusive option to place the clocks into
separate groups and declare that the clocks are mutually exclusive. The clocks cannot
physically exist in your design at the same time.

h For more information about the set_clock_groups and set_false_path commands—
including full syntax information, options, and example usage—refer to
set_clock_groups and set_false_path in Quartus II Help.

Minimum and Maximum Delays
Specifying minimum and maximum delay constraints in your design creates a
bounded minimum and maximum path delay. Use the set_min_delay and
set_max_delay commands to create constraints for asynchronous signals that do not
have a specific clock relationship in your design, but require a minimum and
maximum path delay. You can create minimum and maximum delay exceptions for
port-to-port paths through the FPGA without a register stage in the path. If you use
minimum and maximum delay exceptions to constrain the path delay, specify both
the minimum and maximum delay of the path; do not constrain only the minimum or
maximum value.

You can also use the set_net_delay command to specify the minimum delay,
maximum delay, or skew for any edge in your design when no clock relationships are
defined or required.

h For more information about the set_min_delay, set_max_delay, and set_net_delay
commands—including full syntax information, options, and example usage—refer to
set_min_delay, set_max_delay, and set_net_delay in Quartus II Help.

Creating Multicycle Exceptions
By default, the TimeQuest analyzer uses single-cycle path analysis. The TimeQuest
Timing Analyzer examines all register-to-register paths and performs setup and hold
check analysis on those paths. The setup and hold check analysis evaluates the launch
and latch edge relationships. When analyzing a path, the TimeQuest analyzer
determines the setup launch and latch edge times by finding the closest two active
edges in the respective waveforms. When analyzing setup and hold relationships, the
TimeQuest analyzer analyzes the path against two timing conditions for every
possible setup relationship, not just the worst-case setup relationship; therefore, the
hold launch and latch times may be unrelated to the setup launch and latch edges.
The TimeQuest analyzer does not report negative setup or hold relationships. When
either a negative setup or a negative hold relationship is calculated, the TimeQuest
analyzer moves both the launch and latch edges such that the setup and hold
relationship becomes positive.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_net_delay.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–9
Creating Multicycle Exceptions
Multicycle exceptions relax the timing requirements for a register-to-register path,
allowing the Fitter to optimally place and route a design in an FPGA. Multicycle
exceptions also can reduce compilation time and increase the quality of results.

For example, if your design contains a long combinational path in which the latching
register does not require data stability on every clock edge, but only on every second
clock edge, you can assign a multicycle exception to the path. The multicycle path is
dependent on the endpoint register’s use of the clock signal. Example 7–8 shows how
to create a multicycle path for the combinational path where the data is stable at the
endpoint every two clock cycles of the endpoint latch clock.

If you specify a multicycle path, define both the setup and hold multicycle
relationships. For the preceding example, setting data at the endpoint can take two
clock cycles and the minimum hold time relationship is defined with a multicycle
exception as well. Use the set_multicycle_path command with the -hold option to
define the hold relationship. The value of the -hold option is (N – 1), where N is equal
to the multicycle setup assignment value for a register-to-register path in the same
clock domain. However, if data crosses different clock domains, the phase and period
of the launch and latch clock may change the default multicycle setup and hold
values. If you use multicycle paths that cross different clock domains, you must
carefully examine the timing paths in the TimeQuest analyzer before and after
applying the multicycle exception to determine if the launch and latch clock edges
function as you intend.

h For more information about the set_multicycle_path command, including full
syntax information, options, and example usage, refer to set_multicycle_path in
Quartus II Help.

Multicycle Clock Setup Check and Hold Check Analysis
You can modify the setup and hold relationship when you apply a multicycle
exception to a register-to-register path. Figure 7–5 shows a register-to-register path
with various timing parameters labeled.

Example 7–8. Multicycle Path

set_multicycle_path -setup 2

Figure 7–5. Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm

7–10 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Multicycle constraints adjust setup or hold relationships by the specified number of
clock cycles based on the source (-start) or destination (-end) clock. An end
multicycle setup constraint of two extends the worst-case setup latch edge by one
destination clock period.

Hold multicycle constraints are based on the hold position—the default hold position
is zero. An end multicycle hold constraint of one effectively subtracts one destination
clock period from the default hold latch edge.

To specify the multicycle constraints in your design, use the set_multicycle_path
command.

h For more information about the set_multicycle_path command, including full
syntax information, options, and example usage, refer to set_multicycle_path in
Quartus II Help.

If you specify a multicycle constraint between timing nodes, the multicycle constraint
applies only to the path between the two nodes. If you specify a multicycle constraint
for a clock, the multicycle constraint applies to all paths where the source node
(-from) or destination node (-to) is clocked by the clock.

Table 7–1 summarizes commonly used multicycle assignments.

Multicycle Clock Setup
The setup relationship is defined as the number of clock periods between the latch
edge and the launch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the setup relationship being equal to one clock period
(latch edge – launch edge). When analyzing a path, the TimeQuest analyzer
determines the setup launch and latch edge times by finding the closest two active
edges in the respective waveforms. Applying a multicycle setup assignment,
increases—or relaxes—the setup relationship by the multicycle setup value.

Table 7–1. Common Multicycle Assignments

Type Clock Timing Check SDC Command

End Multicycle Setup Destination Setup set_multicycle_path
–end –setup

End Multicycle Hold Destination Hold set_multicycle_path
–end –hold

Start Multicycle Setup Source Setup set_multicycle_path
–start –setup

Start Multicycle Hold Source Hold set_multicycle_path
–start -hold
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–11
Creating Multicycle Exceptions
For every register-to-register path, the TimeQuest analyzer calculates the setup slack
for the path. Equation 7–3 shows the setup slack calculation.

An end multicycle setup assignment modifies the latch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default latch edge. Figure 7–6 shows various values of the end multicycle
setup assignment and the resulting latch edge.

Equation 7–3. Setup Slack (1) (2) (3) (4) (5) (6)

=

=

=

Notes to Equation 7–3:
(1) tclk1 = the propagation delay from clock source to clock input on source register
(2) tclk2 = the propagation delay from clock source to clock input on destination register
(3) tdata = the propagation delay from source register to data input on destination register
(4) tCO = the clock to output delay of source register
(5) tSU = the setup requirement of destination register
(6) tH = the hold requirement of destination register

setup slack data required time data arrival time–

latch edge tclk2 tSU–+() launch edge tclk1 tCO tdata+ + +()–

latch edge launch edge–() tclk2 tclk1–() tCO tdata tSU+ +()–+

Figure 7–6. End Multicycle Setup Values

-10 0 10 20

REG1.CLK

REG2.CLK

EMS = 2

EMS = 1
(default)

EMS = 3
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–12 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
A start multicycle setup assignment modifies the launch edge of the source clock by
moving the launch edge the specified number of clock periods to the left of the
determined default launch edge. Figure 7–7 shows various values of the start
multicycle setup assignment and the resulting launch edge.

Figure 7–8 shows the setup relationship reported by the TimeQuest analyzer for the
negative setup relationship shown in Figure 7–7.

Multicycle Clock Hold
The hold relationship is defined as the number of clock periods between the launch
edge and the latch edge. By default, the TimeQuest analyzer performs a single-cycle
path analysis, which results in the hold relationship being equal to one clock period
(launch edge – latch edge). When analyzing a path, the TimeQuest analyzer performs
two hold checks. The first hold check determines that the data launched by the
current launch edge is not captured by the previous latch edge. The second hold check
determines that the data launched by the next launch edge is not captured by the
current latch edge. The TimeQuest analyzer reports only the most restrictive hold
check. Equation 7–4 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

Figure 7–7. Start Multicycle Setup Values

-10-20 0 10 20

SMS = 2

SMS = 3
SMS = 1
(default)

Source Clock

Destination Clock

Figure 7–8. Start Multicycle Setup Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default)

SMS = 3

Equation 7–4. Hold Check

hold check 1 current launch edge previous latch edge–=

hold check 2 next launch edge current latch edge–=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–13
Creating Multicycle Exceptions
1 If a hold check overlaps a setup check, the hold check is ignored.

Applying a multicycle hold assignment, increases—or relaxes—the hold slack
equation by the number of specified clock cycles.

For every register-to-register path, the TimeQuest analyzer calculates the hold slack
for the path. Equation 7–5 shows the hold slack calculation.

A start multicycle hold assignment modifies the launch edge of the destination clock
by moving the latch edge the specified number of clock periods to the right of the
determined default launch edge. Figure 7–9 shows various values of the start
multicycle hold assignment and the resulting launch edge.

Equation 7–5. Hold Slack (1) (2) (3) (4) (5) (6)

=

=

=

Notes to Equation 7–5:
(1) tc lk1 = the propagation delay from clock source to clock input on source register
(2) tc lk2 = the propagation delay from clock source to clock input on destination register
(3) tdata = the propagation delay from source register to data input on destination register
(4) tCO = the clock to output delay of source register
(5) tSU = the setup requirement of destination register
(6) tH = the hold requirement of destination register

hold slack data arrival time data required time–

launch edge tclk1 tCO tdata+ + +() latch edge tclk2 tH–+()–

launch edge latch edge–() tclk2 tclk1–()– tCO tdata tH–+()+

Figure 7–9. Start Multicycle Hold Values

-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–14 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
An end multicycle hold assignment modifies the latch edge of the destination clock by
moving the latch edge the specific ed number of clock periods to the left of the
determined default latch edge. Figure 7–10 shows various values of the end
multicycle hold assignment and the resulting latch edge.

Figure 7–11 shows the hold relationship reported by the TimeQuest analyzer for the
negative hold relationship shown in Figure 7–10.

Examples of Basic Multicycle Exceptions
This section describes the following examples of combinations of multicycle
exceptions:

■ “Default Settings” on page 7–15

■ “End Multicycle Setup = 2 and End Multicycle Hold = 0” on page 7–17

■ “End Multicycle Setup = 1 and End Multicycle Hold = 1” on page 7–20

■ “End Multicycle Setup = 2 and End Multicycle Hold = 1” on page 7–23

■ “Start Multicycle Setup = 2 and Start Multicycle Hold = 0” on page 7–26

■ “Start Multicycle Setup = 1 and Start Multicycle Hold = 1” on page 7–29

■ “Start Multicycle Setup = 2 and Start Multicycle Hold = 1” on page 7–32

Figure 7–10. End Multicycle Hold Values

-10-20 0 10 20

Source Clock

Destination Clock

EMH = 2

EMH= 0
(default)EMH = 1

Figure 7–11. End Multicycle Hold Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

EMH = 2EMH = 0
default)

EMH = 1
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–15
Creating Multicycle Exceptions
Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. The multicycle exceptions are applied to a
simple register-to-register circuit. Both the source and destination clocks are set to
10 ns.

Default Settings
By default, the TimeQuest analyzer performs a single-cycle analysis to determine the
setup and hold checks. Also, by default, the TimeQuest Timing Analyzer sets the end
multicycle setup assignment value to one and the end multicycle hold assignment
value to zero.

Figure 7–12 shows the source and the destination timing waveform for the source
register and destination register, respectively.

Equation 7–6 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with the default single-cycle analysis, that is, a
setup relationship with an end multicycle setup assignment of one, is 10 ns.

Figure 7–12. Default Timing Diagram

-10 0 10 20

Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

Equation 7–6. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10ns 0ns–

10ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–16 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–13 shows the setup report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

Equation 7–7 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with the default single-cycle analysis, that a
hold relationship with an end multicycle hold assignment of zero, is 0 ns.

Figure 7–13. Setup Report

Equation 7–7. Hold Check

=

=

=

=

=

hold check 1 next launch edge current latch edge–

0ns 0ns–

0ns

hold check 2 10 ns 10 ns–

0 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–17
Creating Multicycle Exceptions
Figure 7–14 shows the hold report for the default setup in the TimeQuest analyzer
with the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 0
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is zero. Example 7–9 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 An end multicycle hold value is not required because the default end multicycle hold
value is zero.

In this example, the setup relationship is relaxed by a full clock period by moving the
latch edge to the next latch edge. The hold analysis is unchanged from the default
settings.

Figure 7–14. Hold Report

Example 7–9. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -setup -end 2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–18 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–15 shows the setup timing diagram. The latch edge is a clock cycle later than
in the default single-cycle analysis.

Equation 7–8 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with an end multicycle setup assignment of
two is 20 ns.

Figure 7–16 shows the setup report in the TimeQuest analyzer with the launch and
latch edges highlighted.

Figure 7–15. Setup Timing Diagram

-10 0 10 20

Current Launch

Current Latch

SC

REG1.CLK

REG2.CLK

Equation 7–8. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns

Figure 7–16. Setup Report
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–19
Creating Multicycle Exceptions
Because the multicycle hold latch and launch edges are the same as the results of hold
analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. Figure 7–17 shows the timing diagram for
the hold checks for this example. The hold checks are relative to the setup check.
Usually, the TimeQuest analyzer performs hold checks on every possible setup check,
not only on the most restrictive setup check edges.

Equation 7–9 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of zero is 10 ns.

Figure 7–17. Hold Timing DIagram

-10 0 10 20

Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

Equation 7–9. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 10 ns–

10 ns–

hold check 2 next launch edge current latch edge–

10 ns 20 ns–

10 ns–
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–20 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–18 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

End Multicycle Setup = 1 and End Multicycle Hold = 1
In this example, the end multicycle setup assignment value is one, and the end
multicycle hold assignment value is one. Example 7–10 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 An end multicycle setup value is not required because the default end multicycle
setup value is one.

In this example, the hold relationship is relaxed by one clock period by moving the
latch edge to the previous latch edge. The setup analysis is unchanged from the
default settings.

Figure 7–18. Hold Report

Example 7–10. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -hold -end 1
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–21
Creating Multicycle Exceptions
Figure 7–19 shows the setup timing diagram. The latch edge is the same as the default
single-cycle analysis.

Equation 7–10 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with an end multicycle setup assignment of
one is 10 ns.

Figure 7–19. Setup Timing Diagram

-10 0 10 20

SC

SRC.CLK

DST.CLK

HC1
HC2

Current
Launch

Current
Latch

Equation 7–10. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 0 ns–

10 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–22 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–20 shows the setup report in the TimeQuest analyzer with the launch and
latch edges highlighted.

Figure 7–21 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Figure 7–20. Setup Report

Figure 7–21. Hold Timing Diagram

-10 0 10 20

SC

SRC.CLK

DST.CLK

HC1
HC2

Current
Launch

Current
Latch
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–23
Creating Multicycle Exceptions
Equation 7–11 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of one and an end multicycle hold assignment value of one is 10 ns.

Figure 7–22 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

End Multicycle Setup = 2 and End Multicycle Hold = 1
In this example, the end multicycle setup assignment value is two, and the end
multicycle hold assignment value is one. Example 7–11 shows the multicycle
exceptions applied to the register-to-register design for this example.

Equation 7–11. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 10– ns()–

10 ns

hold check 2 next launch edge current latch edge–

10 ns 0 ns–

10 ns

Figure 7–22. Hold Report

Example 7–11. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-hold -end 1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–24 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
In this example, the setup relationship is relaxed by two clock periods by moving the
latch edge to the left two clock periods. The hold relationship is relaxed by a full
period by moving the latch edge to the previous latch edge.

Figure 7–23 shows the setup timing diagram.

Equation 7–12 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive hold relationship with an end multicycle setup assignment value
of two is 20 ns.

Figure 7–23. Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

Equation 7–12. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

20 ns 0 ns–

20 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–25
Creating Multicycle Exceptions
Figure 7–24 shows the setup report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Figure 7–25 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Figure 7–24. Setup Report

Figure 7–25. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC

HC1

HC2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–26 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Equation 7–13 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with an end multicycle setup assignment value
of two and an end multicycle hold assignment value of one is 0 ns.

Figure 7–26 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Start Multicycle Setup = 2 and Start Multicycle Hold = 0
In this example, the start multicycle setup assignment value is two, and the start
multicycle hold assignment value is zero. Example 7–12 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 A start multicycle hold value is not required because the default start multicycle hold
value is zero.

Equation 7–13. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns

Figure 7–26. Hold Report

Example 7–12. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -setup -start 2
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–27
Creating Multicycle Exceptions
In this example, the setup relationship is relaxed by moving the latch edge to the left
two clock periods. Hold analysis is unchanged from the default settings.

Figure 7–27 shows the setup timing diagram.

Equation 7–14 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive hold relationship with a start multicycle setup assignment value
of two is 20 ns.

Figure 7–27. Setup TIming Diagram

-10 0

012

10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC

Equation 7–14. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 10– ns()–

20 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–28 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–28 shows the setup report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Because the multicycle hold latch and launch edges are the same as the results of hold
analysis with the default settings, the multicycle hold analysis in this example is
equivalent to the single-cycle hold analysis. Figure 7–29 shows the timing diagram for
the hold checks for this example.

Figure 7–28. Setup Report

Figure 7–29. Hold TIming Diagram

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC2HC1 SC
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–29
Creating Multicycle Exceptions
Equation 7–15 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with a start multicycle setup assignment value
of two and a start multicycle hold assignment value of zero is 10 ns.

Figure 7–30 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Start Multicycle Setup = 1 and Start Multicycle Hold = 1
In this example, the start multicycle setup assignment value is one, and the start
multicycle hold assignment value is one. Example 7–13 shows the multicycle
exceptions applied to the register-to-register design for this example.

1 A start multicycle setup value is not required, because the default start multicycle
hold value is one.

Equation 7–15. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

0 ns 10 ns–

10 ns–

hold check 2 next launch edge current latch edge–

10 ns 0 ns–

10 ns

Figure 7–30. Hold Report

Example 7–13. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_\
dst] -hold -start 1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–30 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
In this example, the hold relationship is relaxed by one clock period by moving the
launch edge to the left.

Figure 7–31 shows the setup timing diagram.

Equation 7–16 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive setup relationship with a start multicycle setup assignment of one
is 10 ns.

Figure 7–32 shows the setup report in the TimeQuest analyzer with the launch and
latch edges highlighted.

Figure 7–31. Setup Timing Diagram

-10 0

2 1 0

10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC

Equation 7–16. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 0 ns–

10 ns

Figure 7–32. Setup Report
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–31
Creating Multicycle Exceptions
Figure 7–33 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Equation 7–17 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with a start multicycle setup assignment value
of one and a start multicycle hold assignment value of one is 10 ns.

Figure 7–33. Hold Timing Diagram

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC2HC1 SC

Equation 7–17. Hold Check

=

=

=

=

=

=

hold check 1 current launch edge previous latch edge–

10 ns 0 ns–

10 ns

hold check 2 next launch edge current latch edge–

20 ns 10 ns–

10 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–32 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–34 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Start Multicycle Setup = 2 and Start Multicycle Hold = 1
In this example, the start multicycle setup assignment value is two, and the start
multicycle hold assignment value is one. Example 7–14 shows the multicycle
exceptions applied to the register-to-register design for this example.

In this example, the setup relationship is relaxed by two clock periods by moving the
launch edge to the left two clock periods.

Figure 7–35 shows the setup timing diagram.

Figure 7–34. Hold Report

Example 7–14. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-hold -start 1

Figure 7–35. Setup Timing Diagram

-10 0

012

10 20

SRC.CLK

DST.CLK

SC

SC
(default)

Data

(

Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–33
Creating Multicycle Exceptions
Equation 7–18 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The most restrictive hold relationship with a start multicycle setup assignment value
of two is 20 ns.

Figure 7–36 shows the setup report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Figure 7–37 shows the timing diagram for the hold checks for this example. The hold
checks are relative to the setup check.

Equation 7–18. Setup Check

=

=

=

setup check current latch edge closest previous launch edge–

10 ns 10 ns–()–

20 ns

Figure 7–36. Setup Report

Figure 7–37. Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC HC2

HC1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–34 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Equation 7–19 shows the calculation that the TimeQuest analyzer performs to
determine the hold check. Both hold checks are equivalent.

The most restrictive hold relationship with a start multicycle setup assignment value
of two and a start multicycle hold assignment value of one is 0 ns.

Figure 7–38 shows the hold report for this example in the TimeQuest analyzer with
the launch and latch edges highlighted.

Equation 7–19. Hold Check

=

=

=

=

=

=

 hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

 hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns

Figure 7–38. Hold Report
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–35
Creating Multicycle Exceptions
Application of Multicycle Exceptions
This section shows the following examples of applications of multicycle exceptions:

■ “Same Frequency Clocks with Destination Clock Offset” on page 7–35

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency” on
page 7–37

■ “The Destination Clock Frequency is a Multiple of the Source Clock Frequency
with an Offset” on page 7–40

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency” on
page 7–42

■ “The Source Clock Frequency is a Multiple of the Destination Clock Frequency
with an Offset” on page 7–45

Each example explains how the multicycle exceptions affect the default setup and
hold analysis in the TimeQuest analyzer. All of the examples are between related
clock domains. If your design contains related clocks, such as PLL clocks, and paths
between related clock domains, you can apply multicycle constraints.

Same Frequency Clocks with Destination Clock Offset
In this example, the source and destination clocks have the same frequency, but the
destination clock is offset with a positive phase shift. Both the source and destination
clocks have a period of 10 ns. The destination clock has a positive phase shift of 2 ns
with respect to the source clock. Figure 7–39 shows an example of a design with same
frequency clocks and a destination clock offset.

Figure 7–40 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Figure 7–39. Same Frequency Clocks with Destination Clock Offset

Figure 7–40. Setup Timing Diagram

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–36 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Equation 7–20 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–40 is too pessimistic and is not the setup
relationship required for typical designs. To correct the default analysis, you must use
an end multicycle setup exception of two. Example 7–15 shows the multicycle
exception used to correct the default analysis in this example.

Figure 7–41 shows the timing diagram for the preferred setup relationship for this
example.
.

Figure 7–42 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–20. Setup Check

=

=

=

Example 7–15. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

Figure 7–41. Preferred Setup Relationship

Figure 7–42. Default Hold Check

setup check current latch edge closest previous launch edge–

2 ns 0 ns–

2 ns

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–37
Creating Multicycle Exceptions
Equation 7–21 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, the default hold analysis returns the preferred hold requirements and
no multicycle hold exceptions are required.

Figure 7–43 shows the associated setup and hold analysis if the phase shift is –2 ns. In
this example, the default hold analysis is correct for the negative phase shift of 2 ns,
and no multicycle exceptions are required.

The Destination Clock Frequency is a Multiple of the Source Clock
Frequency
In this example, the destination clock frequency value of 5 ns is an integer multiple of
the source clock frequency of 10 ns. The destination clock frequency can be an integer
multiple of the source clock frequency when a PLL is used to generate both clocks
with a phase shift applied to the destination clock. Figure 7–44 shows an example of a
design where the destination clock frequency is a multiple of the source clock
frequency.

Equation 7–21. Hold Check

=

=

=

=

=

=

Figure 7–43. Negative Phase Shift

Figure 7–44. Destination Clock is Multiple of Source Clock

 hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2– ns

 hold check 2 next launch edge current latch edge–

10 ns 12 ns–

2 ns

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–38 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–45 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–22 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–45 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of two. Example 7–16 shows
the multicycle exception used to correct the default analysis in this example.

Figure 7–45. Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

Equation 7–22. Setup Check

=

=

=

Example 7–16. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 2

setup check current latch edge closest previous launch edge–

5 ns 0 ns–

5 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–39
Creating Multicycle Exceptions
Figure 7–46 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–47 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of two.

Equation 7–23 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 0 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

Figure 7–46. Preferred Setup Analysis

Figure 7–47. Default Hold Check

Equation 7–23. Hold Check

=

=

=

=

=

=

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

 hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5– ns

 hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–40 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
The Destination Clock Frequency is a Multiple of the Source Clock
Frequency with an Offset
This example is a combination of the previous two examples. The destination clock
frequency is an integer multiple of the source clock frequency and the destination
clock has a positive phase shift. The destination clock frequency is 5 ns and the source
clock frequency is 10 ns. The destination clock also has a positive offset of 2 ns with
respect to the source clock. The destination clock frequency can be an integer multiple
of the source clock frequency with an offset when a PLL is used to generate both
clocks with a phase shift applied to the destination clock. Figure 7–48 shows an
example of a design in which the destination clock frequency is a multiple of the
source clock frequency with an offset.

Figure 7–49 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–24 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–49 demonstrates that the data does not need
to be captured at edge one, but can be captured at edge two; therefore, you can relax
the setup requirement. To correct the default analysis, you must shift the latch edge by
one clock period with an end multicycle setup exception of three.

Figure 7–48. Destination Clock is Multiple of Source Clock with Offset

Figure 7–49. Setup Timing Diagram

Equation 7–24. Setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

setup check current latch edge closest previous launch edge–

2 ns 0 ns–

2 ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–41
Creating Multicycle Exceptions
Example 7–17 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–50 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–51 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with an end multicycle setup value of three.

Example 7–17. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -end 3

Figure 7–50. Preferred Setup Analysis

Figure 7–51. Default Hold Check

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–42 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Equation 7–25 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check one is too restrictive. The data is launched by the edge at
0 ns and should check against the data captured by the previous latch edge at 2 ns,
which does not occur in hold check one. To correct the default analysis, you must use
an end multicycle hold exception of one.

The Source Clock Frequency is a Multiple of the Destination Clock
Frequency
In this example, the source clock frequency value of 5 ns is an integer multiple of the
destination clock frequency of 10 ns. The source clock frequency can be an integer
multiple of the destination clock frequency when a PLL is used to generate both
clocks and different multiplication and division factors are used. Figure 7–52 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency.

Equation 7–25. Hold Check

=

=

=

=

=

=

Figure 7–52. Source Clock Frequency is Multiple of Destination Clock Frequency

 hold check 1 current launch edge previous latch edge–

0 ns 5 ns–

5– ns

 hold check 2 next launch edge current latch edge–

10 ns 10 ns–

0 ns

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–43
Creating Multicycle Exceptions
Figure 7–53 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–26 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.

The setup relationship shown in Figure 7–53 demonstrates that the data launched at
edge one does not need to be captured, and the data launched at edge two must be
captured; therefore, you can relax the setup requirement. To correct the default
analysis, you must shift the launch edge by one clock period with a start multicycle
setup exception of two.

Example 7–18 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–53. Default Setup Check Analysis

Equation 7–26. Setup Check

=

=

=

Example 7–18. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 2

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

10 ns 5 ns–

5 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–44 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Figure 7–54 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–55 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of two.

Equation 7–27 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.
.

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
10 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Figure 7–54. Preferred Setup Check Analysis

Figure 7–55. Default Hold Check

Equation 7–27. Hold Check

=

=

=

=

=

=

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

 hold check 1 current launch edge previous latch edge–

0 ns 0 ns–

0 ns

 hold check 2 next launch edge current latch edge–

5 ns 10 ns–

5– ns
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–45
Creating Multicycle Exceptions
The Source Clock Frequency is a Multiple of the Destination Clock
Frequency with an Offset
In this example, the source clock frequency is an integer multiple of the destination
clock frequency and the destination clock has a positive phase offset. The source clock
frequency is 5 ns and destination clock frequency is 10 ns. The destination clock also
has a positive offset of 2 ns with respect to the source clock. The source clock
frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL is used to generate both clocks, different multiplication and division
factors are used, and a phase shift applied to the destination clock. Figure 7–56 shows
an example of a design where the source clock frequency is a multiple of the
destination clock frequency with an offset.

Figure 7–57 shows the timing diagram for default setup check analysis performed by
the TimeQuest analyzer.

Equation 7–28 shows the calculation that the TimeQuest analyzer performs to
determine the setup check.
.

The setup relationship shown in Figure 7–57 demonstrates that the data is not
launched at edge one, and the data that is launched at edge three must be captured;
therefore, you can relax the setup requirement. To correct the default analysis, you
must shift the launch edge by two clock periods with a start multicycle setup
exception of three.

Figure 7–56. Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

Figure 7–57. Setup Timing Diagram

Equation 7–28. setup Check

=

=

=

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

C

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

setup check current latch edge closest previous launch edge–

12 ns 10 ns–

2 ns
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

7–46 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Creating Multicycle Exceptions
Example 7–19 shows the multicycle exception used to correct the default analysis in
this example.

Figure 7–58 shows the timing diagram for the preferred setup relationship for this
example.

Figure 7–59 shows the timing diagram for default hold check analysis performed by
the TimeQuest analyzer with a start multicycle setup value of three.

Example 7–19. Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst]
-setup -start 3

Figure 7–58. Preferred Setup Check Analysis

Figure 7–59. Default Hold Check Analysis

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer 7–47
Document Revision History
Equation 7–29 shows the calculation that the TimeQuest analyzer performs to
determine the hold check.

In this example, hold check two is too restrictive. The data is launched next by the
edge at 10 ns and should check against the data captured by the current latch edge at
12 ns, which does not occur in hold check two. To correct the default analysis, you
must use a start multicycle hold exception of one.

Document Revision History
Table 7–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Equation 7–29. Hold Check

=

=

=

=

=

=

 hold check 1 current launch edge previous latch edge–

0 ns 2 ns–

2 ns–

 hold check 2 next launch edge current latch edge–

5 ns 12 ns–

7– ns

Table 7–2. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Edited document and linked to other resources.

■ Added information that previously appeared in Application Note 481: Applying Multicycle
Exceptions in the TimeQuest Timing Analyzer.

July 2010 10.0.0 Minor editorial changes to document. No updates to technical content.

November 2009 9.1.0
■ Added example to “Derived Clocks” on page 7–3.

■ Updated “Base Clocks” on page 7–2.

March 2009 9.0.0 Initial release.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

7–48 Chapter 7: Best Practices for the Quartus II TimeQuest Timing Analyzer
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53019-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53019-10.1.0
8. Switching to the Quartus II TimeQuest
Timing Analyzer
This chapter describes the benefits of switching to the Quartus® II TimeQuest Timing
Analyzer, the differences between the TimeQuest analyzer and the Classic Timing
Analyzer, and the process you should follow to switch a design from using the Classic
Timing Analyzer to the TimeQuest analyzer.

Benefits of Switching to the TimeQuest Analyzer
Increasing design complexity requires a timing analysis tool with greater capabilities
and flexibility. The TimeQuest analyzer offers the following benefits:

■ Industry-standard Synopsys Design Constraint (SDC) support increases
productivity.

■ Simple, flexible reporting uses industry-standard terminology and makes timing
sign-off faster.

These features ease constraint and analysis of modern, complex designs. SDC
constraints support complex clocking schemes and high-speed interfaces. An example
includes designs that have multiplexed clocks, regardless of whether they are
switched on or off chip. Designs with source-synchronous interfaces, such as double
data rate (DDR) memory interfaces, are much simpler to constrain and analyze with
the TimeQuest analyzer.

There are three main differences between the Classic Timing Analyzer and the
TimeQuest analyzer. Unlike the Classic Timing Analyzer, the TimeQuest analyzer has
the following benefits:

■ All clocks are related by default.

■ The default hold multicycle value is zero.

■ You must constrain all ports and ripple clocks.

This chapter contains the following sections:

■ “Switching Your Design” on page 8–2

■ “Differences Between the Quartus II Timing Analyzers” on page 8–3

■ “Timing Assignment Conversion” on page 8–24

■ “Conversion Utility” on page 8–43

■ “Notes” on page 8–53
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53019

8–2 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Switching Your Design
Switching Your Design
To switch a design from the Classic Timing Analyzer to the TimeQuest analyzer,
perform the steps:

1. Open your compiled design in the Quartus II software.

2. Create a Synopsys Design Constraints File (.sdc) that contains timing constraints.

3. Perform timing analysis with the TimeQuest analyzer and examine the reports.

Open Your Compiled Design
To begin, open a design you previously compiled with the Quartus II software.

Create an SDC Constraints

Create SDC Constraints Manually
If you are familiar with SDC commands and syntax, you can create an .sdc with any
text editor and skip to “Start the TimeQuest Analyzer” on page 8–3. Name the .sdc
<revision>.sdc,where <revision> is the current revision of your project, and save it in
your project directory.

f For more information about TimeQuest analyzer SDC constraints, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Create SDC Constraints from Existing Timing Assignments
You can use the TimeQuest analyzer conversion utility to help you convert the timing
assignments in an existing Quartus II Settings File (.qsf) to corresponding SDC
constraints.To run the TimeQuest analyzer conversion utility, on the Constraints
menu, click Generate SDC File from QSF. You can also run the conversion utility by
typing the following command at a system command prompt:

quartus_sta --qsf2sdc <project name> r
The .sdc created by the conversion utility is named <revision>.sdc.

After conversion, review the .sdc to ensure it is correct and complete, and make
changes if necessary. Refer to “Constraint File Priority” on page 8–7 for
recommendations.

The conversion utility cannot convert some types of Classic Timing Analyzer
assignments if no corresponding SDC constraint exist, or if there is more than one
potentially equivalent SDC constraint. If the conversion utility cannot convert your
assignment, manually convert any ambiguous assignments. Correct conversion
requires knowledge of the intended function of your design. To convert your
assignments, use the guidelines in “Timing Assignment Conversion” on page 8–24.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–3
Differences Between the Quartus II Timing Analyzers
Start the TimeQuest Analyzer
To open the TimeQuest analyzer GUI, on the Tools menu, click TimeQuest Timing
Analyzer. The TimeQuest GUI automatically opens the project open in the Quartus II
software GUI.

To open the TimeQuest analyzer GUI from a system command prompt, type the
following command:

quartus_staw r

To start the TimeQuest analyzer Tcl shell type the following command:

quartus_sta -s r

Differences Between the Quartus II Timing Analyzers
The differences between the TimeQuest analyzer and the Classic Timing Analyzer are
described in the following sections:

■ “Terminology” on page 8–3

■ “Constraints” on page 8–5

■ “Clocks” on page 8–10

■ “Hold Multicycle” on page 8–18

■ “Fitter Performance and Behavior” on page 8–19

■ “Reporting” on page 8–20

■ “Timing Assignment Conversion” on page 8–24

Terminology
This section introduces the industry-standard SDC terminology used by the
TimeQuest analyzer.

Netlists
The TimeQuest analyzer uses SDC naming conventions for netlists. Netlists consist of
cells, pins, nets, ports, and clocks.

■ Cells are instances of fundamental hardware elements in Altera® FPGAs, such as
logic elements, look-up tables (LUTs), and registers.

■ Pins are inputs and outputs of cells.

■ Nets are connections between output pins and input pins.

■ Ports are top-level module inputs and outputs (device inputs and outputs).

■ Clocks are abstract objects outside the netlist.

1 The terminology of pins and ports is opposite to that of the Classic Timing Analyzer.
In the Classic Timing Analyzer, ports are inputs and outputs of cells, and pins are
top-level module inputs and outputs (device inputs and outputs).
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–4 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Figure 8–1 shows a sample design, and Figure 8–2 shows the TimeQuest analyzer
netlist representation of the design. Netlist elements in Figure 8–2 are labeled to
illustrate the SDC terminology.

Collections
In addition to standard SDC collections, the TimeQuest analyzer supports the
following Altera-specific collection types:

■ Keepers—Noncombinational nodes in a netlist

■ Nodes—Nodes can be combinational, registers, latches, or ports (device inputs
and outputs)

■ Registers—Registers or latches in the netlist

You can use the get_keepers, get_nodes, or get_registers commands to access these
collections.

f For more information about TimeQuest analyzer terminology, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Figure 8–1. Sample Design

ina

clk

inb

inrega

inregb

ab
outreg out

Figure 8–2. TimeQuest Analyzer Netlist

inb

outreg

combout datain

clk clk~clkctrl

ina inrega

inregb

clk

regout

ab

out

datain

cell=atom/wysiwygpin = iterm
pin = oterm

inclk[0]

combout port = I/O

Sample Pin Names:
 ina|combout
 inrega|datain
 inrega|clk
 inrega|regout
 ab|combout
 ab|datac

Sample Net Names:
 ina~combout
 ab
 clk~clkctrl
 inrega
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–5
Differences Between the Quartus II Timing Analyzers
Constraints
The Classic Timing Analyzer and TimeQuest analyzer store constraints in different
files, support different methods for constraint entry, and prioritize constraints
differently. The following sections explain these differences.

Constraint Files
The TimeQuest analyzer stores all SDC timing constraints in .sdc files. The Classic
Timing Analyzer stores all timing assignments in the .qsf for your project.

When you use the TimeQuest analyzer, your .qsf contains all assignments and
settings except for SDC constraints. The TimeQuest analyzer ignores the timing
assignments in your .qsf except when the conversion utility converts Classic Timing
Analyzer timing assignments to TimeQuest analyzer SDC constraints. There is no
automatic process that keeps timing constraints synchronized between your .qsf and
.sdc files. You must manually keep the constraints synchronized, if so desired.

Constraint Entry
With the Classic Timing Analyzer, you enter timing assignments with the Settings
dialog box, the Assignment Editor, or with commands in Tcl scripts. With the
TimeQuest analyzer, you cannot use the Assignment Editor to enter SDC constraints.
You must use one of the following methods to enter TimeQuest analyzer constraints:

■ Enter constraints at the Tcl prompt in the TimeQuest analyzer

■ Enter constraints in an .sdc with a text editor or SDC editor

■ Use the constraint entry commands on the Constraints menu in the TimeQuest
analyzer GUI

You can enter timing assignments for the Classic Timing Analyzer even if no timing
netlist exists for your design. The TimeQuest analyzer requires that a netlist exist for
interactive constraint entry. Each TimeQuest analyzer constraint is a Tcl command
evaluated in real-time, if entered directly in the Tcl console. As part of this evaluation,
the TimeQuest analyzer validates all names. To do this, SDC commands can only be
evaluated after a netlist is created. An .sdc can be created at any time using the
TimeQuest analyzer or any other text editor, but a netlist is required before an .sdc can
be sourced. You must create a timing netlist in the TimeQuest analyzer before you can
enter constraints with either of the following interactive methods:

■ At the Tcl console of the TimeQuest analyzer

■ With commands on the Constraints menu in the TimeQuest analyzer GUI

If you enter constraints with a text editor separate from the TimeQuest analyzer, no
timing netlist is required.

To create a timing netlist in the TimeQuest analyzer, use the create_timing_netlist
command, or double-click Create Timing Netlist in the Tasks pane of the TimeQuest
analyzer GUI.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–6 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Time Units
Enter time values in default time units of nanoseconds (ns) with up to three decimal
places. Note that the TimeQuest analyzer does not display the default time unit when
it displays time values.

You can specify a different default time unit with the set_time_format -unit <default
time unit> command, or specify another unit when you enter a time value, for
example, 300ps.

1 Specifying time units after a value is not part of the standard SDC format. Unit
specification is a TimeQuest analyzer extension.

You can specify clock constraints with period or frequency in the TimeQuest analyzer.
For example, you can use any of the following constraints:

■ create_clock -period 10.000
(assuming default units and decimal places)

■ create_clock -period "100 MHz"

■ create_clock -period "10 ns"

MegaCore Functions
If you change any MegaCore function settings and regenerate the core after you
convert your timing assignments to SDC constraints, you must manually update the
SDC constraints or reconvert your assignments. You must update or reconvert,
because changes to MegaCore function settings can affect timing assignments
embedded in the hardware description language files of the function. The timing
assignments are not converted automatically when the core settings change.

1 You should make a backup copy of your .sdc before reconverting assignments. If you
make changes to the .sdc, you can manually copy the updated MegaCore timing
constraints to your .sdc.

Bus Name Format
In the Classic Timing Analyzer, you can make a timing assignment to all bits in a bus
with the bus name (or the bus name followed by an asterisk enclosed in square
brackets) as the target. For example, to make an assignment to all bits of a bus called
address, use address or address[*] as the target of the assignment.

In the TimeQuest analyzer, you must use the bus name followed by square brackets
enclosing an asterisk, as follows: address[*] to make all timing assignments to all bits
within a bus.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–7
Differences Between the Quartus II Timing Analyzers
Constraint File Priority
Figure 8–3 shows the priority order in which the TimeQuest analyzer searches for .sdc
files.

If you specify constraints in multiple .sdc files, or if you use a single .sdc with a name
other than <revision>.sdc, you must add the files to your project so the TimeQuest
analyzer can find them.

h For more information, refer to Managing Files in a Project in Quartus II Help.

You can also add .sdc files to your project with the following Tcl command in your
.qsf, repeated once for each .sdc:

set_global_assignment -name SDC_FILE <.sdc file name>

The TimeQuest analyzer reads constraint files from the files list in the order they are
listed.

If you use an .sdc created by the conversion utility, you should place it first in the list
of files. When conflicting constraints apply to the same node, the last constraint has
the highest priority. Therefore, .sdc files with your additions or changes should be
listed after the .sdc created by the conversion utility, so your constraints have higher
priority.

Figure 8–3. .sdc Search Order

Are any

SDC files specified in
the Add Files project

dialog box?

No

Yes

Does the SDC file
<revision>.sdc

exist?

No

Yes

Continue with the chosen
SDC file(s)

The TimeQuest Timing
Analyzer

does not create nor
convert any constraints
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/global/pjn/pjn_pro_add_delete_files.htm

8–8 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
When you process your design, and the TimeQuest analyzer cannot find an .sdc it
attempts to meet a default 1 GHz constraint on all clocks in your design. The
Quartus II software may prompt you to run the conversion utility if your design does
not reference any .sdc files.

You must review the .sdc as you would when manually running the conversion
utility. Refer to “Reviewing Conversion Results” on page 8–50 for information about
reviewing the converted constraints.

Constraint Priority
The Classic Timing Analyzer prioritizes assignments based on the specificity of the
nodes to which they are assigned. The more specific an assignment is, the higher its
priority. The TimeQuest analyzer simplifies these precedence rules. When overlaps
occur in the nodes to which the constraints apply, constraints at the bottom of the file
take priority over constraints at the top of the file.

As an example, in the Classic Timing Analyzer, point-to-point multicycle assignments
have higher priority than single-point multicycle assignments. The two assignments
in Example 8–1 result in a multicycle assignment of two between A_reg and all nodes
beginning with B, including B_reg. The single-point assignment does not apply to
paths from A_reg to B_reg, because the specific point-to-point assignment takes
priority over the general single-point assignment.

Example 8–2 shows SDC versions of the preceding Classic Timing Analyzer timing
assignments. However, the TimeQuest analyzer evaluates the constraints from top to
bottom, regardless of whether the assignments are point-to-point assignments or
single-point assignments, so the path from A_reg to B_reg receives a multicycle
exception of three because it is ordered second.

Example 8–1. Classic Timing Analyzer Multicycle Assignments

set_instance_assignment -name MULTICYCLE -from A_reg -to B* 2
set_instance_assignment -name MULTICYCLE -to B_reg 3

Example 8–2. TimeQuest Analyzer Multicycle Exceptions

set_multicycle_path -from [get_keepers A_reg] -to [get_keepers B*] 2
set_multicycle_path -to [get_keepers B_reg] 3
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–9
Differences Between the Quartus II Timing Analyzers
Ambiguous Constraints
Because of capabilities in the TimeQuest analyzer, some Classic Timing Analyzer
assignments can be ambiguous after conversion by the conversion utility. These
assignments require manual updating based on your knowledge of your design.

Figure 8–4 shows a ripple clock circuit. The explanation that follows shows an
ambiguous constraint for that circuit, and how to edit the constraint to remove the
ambiguity in the TimeQuest analyzer.

In the Classic Timing Analyzer, the following QSF multicycle assignment from clk_a
to clk_b with a value of two applies to paths transferring data from the clk_a domain
to the clk_b domain:

set_instance_assignment -name MULTICYCLE -from clk_a -to clk_b 2

In Figure 8–4, this assignment applies to the path from reg_c to reg_d. In the
TimeQuest analyzer, the use of the clock node names in the following equivalent
multicycle exception is ambiguous:

set_multicycle_path -setup -from clk_a -to clk_b 2

The exception could apply to the path between clk_a and clk_b, or it could apply to
paths from one ripple clock domain to the other ripple clock domain (reg_c to reg_d).

The TimeQuest analyzer exceptions shown in Example 8–3 are not ambiguous
because they use collections to explicitly specify the targets of the exception.

Figure 8–4. Ripple Clock Circuit

Example 8–3. Unambiguous TimeQuest Analyzer Exceptions

Applies to path from reg_c to reg_d
set_multicycle_path -setup -from [get_clocks clk_a] \

-to [get_clocks clk_b] 2
Applies to path from clk_a to clk_b
set_multicycle_path -setup -from [get_registers clk_a] \

-to [get_registers clk_b] 2

reg_dreg_c

clk_a clk_b
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–10 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Clocks
The Classic Timing Analyzer and TimeQuest analyzer detect, analyze, and report
clocks differently. The following sections describe these differences.

Related and Unrelated Clocks
In the TimeQuest analyzer, all clocks are related by default, and you must add
assignments to indicate unrelated clocks. However, in the Classic Timing Analyzer, all
base clocks are unrelated by default. All derived clocks of a base clock are related to
each other, but are unrelated to other base clocks and their derived clocks.

Figure 8–5 shows a circuit with a path between two clock domains. The TimeQuest
analyzer analyzes the path from reg_a to reg_b because all clocks are related by
default. The Classic Timing Analyzer does not analyze the path from reg_a to reg_b
by default.

To make clocks unrelated in the TimeQuest analyzer, use the set_clock_groups
command with the -exclusive option. The TimeQuest analyzer does not analyze
paths between the two clock domains. For example, the following command renders
clock_a and clock_b unrelated:

set_clock_groups -exclusive -group {clock_a} -group {clock_b}

Clock Offset
In the TimeQuest analyzer, clocks can have nonzero values for the rising edge of the
waveform, a feature that the Classic Timing Analyzer does not support. To specify an
offset for your clock, use the create_clock command with the -waveform option to
specify the rising and falling edge times, as shown in this example:

-waveform {<rising edge time> <falling edge time>}

Figure 8–5. Cross Clock Domain Path

data_out

clock_a

data_a
reg_a

clock_b

reg_b
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–11
Differences Between the Quartus II Timing Analyzers
Figure 8–6 shows a clock constraint with an offset in the TimeQuest analyzer GUI.

Clock offset affects setup and hold relationships. Launch and latch edges are
evaluated after offsets are applied. Depending on the offset, the setup relationship can
be the offset value, or the difference between the period and offset. You should use the
clock latency constraint, instead of clock offset to emulate latency. Refer to “Offset and
Latency Example” on page 8–11 for an example that illustrates the different effects of
offset and latency.

Clock Latency
The TimeQuest analyzer does not ignore early clock latency and late clock latency
differences when the clock source is the same, as the Classic Timing Analyzer does.
When you specify latencies, you should take common clock path pessimism into
account and use uncertainty to control pessimism differences for clock-to-clock data
transfers. Unlike clock offset, clock latency affects skew, and launch and latch edges
are evaluated before latencies are applied, so the setup relationship is always equal to
the period.

Offset and Latency Example
Figure 8–7 shows a simple register-to-register circuit used to illustrate the different
effects of offset and latency. The examples show why you should not use clock offset
to emulate clock latency.

The period for clk is 10 ns, and the period for the phase-locked loop (PLL) output is
10 ns. The PLL compensation value is –2 ns. The network delay from the PLL to reg_a
equals the network delay from clk to reg_b. Finally, the delay from reg_a to reg_b is
3 ns.

Figure 8–6. Create Clock Dialog Box

Figure 8–7. Offset and Latency Example Circuit

reg_breg_a

clk

in out
3 ns

PLL
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–12 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Clock Offset Scenario

Treat the PLL compensation value of –2 ns as a clock offset of –2 ns with a clock skew
of 0 ns. Launch and latch edges are evaluated after offsets are applied, so the setup
relationship is 2 ns (Figure 8–8).

Equation 8–1 shows how to calculate the slack value for the path from reg_a to reg_b.

The negative slack requires a multicycle assignment with a value of two and a hold
multicycle assignment with a value of one to correct. With these assignments from
reg_a to reg_b, the setup relationship is then 12 ns, resulting in a slack of 9 ns.

Clock Latency Scenario

Treat the PLL compensation value of –2 ns as latency with a clock skew of 2 ns.
Because launch and latch edges are evaluated before latencies are applied, the setup
relationship is 10 ns (the period of clk and the PLL) (Figure 8–9).

Figure 8–8. Setup Relationship Using Offset

Equation 8–1.

Figure 8–9. Setup Relationship Using Latency

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Offset

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 2ns 0ns 3ns–+=

slack 1ns–=

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Latency
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–13
Differences Between the Quartus II Timing Analyzers
Equation 8–2 shows how to calculate the slack value for the path from reg_a to reg_b.

The slack of 9 ns is identical to the slack computed in the previous example, but
because this example uses latency instead of offset, no multicycle assignment is
required.

Clock Uncertainty
The Classic Timing Analyzer ignores Clock Setup Uncertainty and Clock Hold
Uncertainty assignments when you specify a setup or hold relationship between two
clocks. However, the TimeQuest analyzer does not ignore clock uncertainty when you
specify a setup or hold relationship between two clocks. Figure 8–10 and Figure 8–11
illustrate the different behavior between the TimeQuest analyzer and the Classic
Timing Analyzer.

In both figures, the constraints are identical. There is a 20-ns period for clk_a and
clk_b. There is a setup relationship (a set_max_delay exception in the TimeQuest
analyzer) of 7 ns from clk_a to clk_b, and a clock setup uncertainty constraint of 1 ns
from clk_a to clk_b. The actual setup relationship in the TimeQuest analyzer is 1 ns
less than in the Classic Timing Analyzer because of the way they analyze clock
uncertainty.

Equation 8–2.

Figure 8–10. Classic Timing Analyzer Behavior

Figure 8–11. TimeQuest Analyzer Behavior

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 10ns 2ns 3ns–+=

slack 9ns=

0 ns 7 ns 10 ns

Setup Relationship with and without Uncertainty

0 7 106

Setup Relationship with Uncertainty

Setup Relationship without Uncertainty

Clock Setup Uncertainty
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–14 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Derived and Generated Clocks
Generated clocks in the TimeQuest analyzer are different than derived clocks in the
Classic Timing Analyzer. In the Classic Timing Analyzer, the source of a derived clock
must be a base clock. However, in the TimeQuest analyzer, the source of a generated
clock can be any other clock in the design (including virtual clocks), or any node to
which a clock propagates through the clock network. Because generated clocks are
related through the clock network, you can specify generated clocks for isolated
modules, such as IP, without knowing the details of the clocks outside of the module.

In the TimeQuest analyzer, you can specify generated clocks relative to specific edges
and edge shifts of a master clock, a feature that the Classic Timing Analyzer does not
support.

Figure 8–12 shows a simple ripple clock that you should constrain with generated
clocks in the TimeQuest analyzer.

The TimeQuest analyzer constraints shown in Example 8–4 constrain the clocks in the
circuit above. Note that the source of each generated clock can be the input pin of the
register itself, not the name of another clock.

Automatic Clock Detection
The Classic Timing Analyzer and TimeQuest analyzer identify clock sources of
registers that do not have a defined clock source. The Classic Timing Analyzer traces
back along the clock network, through registers and logic, until it reaches a top-level
port in your design. The TimeQuest analyzer also traces back along the clock network,
but it stops at registers.

You can use two SDC commands in the TimeQuest analyzer to automatically detect
and create clocks for unconstrained clock sources:

■ derive_clocks—creates clocks on sources of clock pins that do not already have at
least one clock sourcing the clock pin

■ derive_pll_clocks—identifies PLLs and creates generated clocks on the clock
output pins

Figure 8–12. Generated Clocks Circuit

Example 8–4. Generated Clock Constraints

create_clock –period 10 –name clk clk
create_generated_clock –divide_by 2 –source reg_a|CLK -name reg_a reg_a
create_generated_clock –divide_by 2 –source reg_b|CLK -name reg_b reg_b

clk

reg_a reg_b
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–15
Differences Between the Quartus II Timing Analyzers
derive_clocks Command

Figure 8–13 shows a circuit with a divide-by-two register and indicates the clock
network delays as A, B, and C. The following explanation describes how the Classic
Timing Analyzer and TimeQuest analyzer detect the clocks in Figure 8–13.

The Classic Timing Analyzer detects that clk is the clock source for registers reg_a,
reg_b, and reg_c. It detects that clk is the clock source for reg_c because it traces back
along the clock network for reg_c through reg_a, until it finds the clk port. The
Classic Timing Analyzer computes the clock arrival time for reg_c as A + C.

The derive_clocks command in the TimeQuest analyzer creates two base clocks, one
on the clk port and one on reg_a, because the command does not trace through
registers on the clock network. The clock arrival time for reg_c is C because the clock
starts at reg_a.

To make the TimeQuest analyzer compute the same clock arrival time (A + C) as the
Classic Timing Analyzer for reg_c, make the following modifications to the clock
constraints created by the derive_clocks command:

1. Change the base clock named reg_a to a generated clock

2. Make the source the clock pin of reg_a (reg_a|clk) or the port clk

3. Add a -divide_by 2 option

These modifications cause the clock arrival times to reg_c to match between the
Classic Timing Analyzer and the TimeQuest analyzer. However, the clock for reg_c is
shown as reg_a instead of clk, and the launch and latch edges may change for some
paths due to the -divide_by option.

You can use the derive_clocks command at the beginning of your design cycle when
you do not know all of the clock constraints for your design, but you should not use it
during timing sign-off. Instead, you should constrain each clock in your design with
the create_clock or create_generated_clocks commands.

Figure 8–13. Example Circuit for derive_clocks

reg_creg_b

reg_a

clk

A

B

C

December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–16 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
The derive_clocks command detects clocks in your design using the following rules:

1. An input clock port is detected as a clock only if there are no other clocks feeding
the destination registers.

a. Input clock ports are not detected automatically if they feed only other base
clocks.

b. If other clocks feed the port’s register destinations, the port is assumed to be an
enable or data port for a gated clock.

c. When no clocks are defined, and multiple clocks feed a destination register, the
auto-detected clock is selected arbitrarily.

2. All ripple clocks (registers in a clock path) are detected as clocks automatically
using the same rules for input clock ports. If both an input port and a register feed
register clock pins, the input port is selected as the clock.

The following examples show how the derive_clocks command detects clocks in the
circuit shown in Figure 8–14.

■ If you do not make any clock settings, and then you use the derive_clocks
command, it detects a_in as a clock according to rule 1, because there are no other
clocks feeding the register.

■ If you create a clock with b as its target, and then you run the derive_clocks
command, it does not detect a_in as a clock according to rule 1a, because a_in
feeds only another clock.

The following examples show how the derive_clocks command detects clocks in the
circuit shown in Figure 8–15.

■ If you do not make any clock settings and then you use the derive_clocks
command, it selects a clock arbitrarily, according to rule 1c.

■ If you create a clock with a_in as its target and then you use the derive_clocks
command, it does not detect b_in as a clock according to rule 1b, because another
clock (a_in) feeds the register.

Figure 8–14. Detectable Clock

Figure 8–15. Two Detectable Clocks

ba_in

a_in
b_in
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–17
Differences Between the Quartus II Timing Analyzers
derive_pll_clocks Command

The derive_pll_clocks command names the generated clocks according to the
names of the PLL output pins by default, and you cannot change these generated
clock names. If you want to use your own clock names, you must use the
create_generated_clock command for each PLL output clock and specify the names
with the -name option.

If you use the PLL clock-switchover feature, the derive_pll_clocks command creates
additional generated clocks on each output clock pin of the PLL based on the
secondary clock input to the PLL. This may require the set_clock_groups or
set_false_path commands to cut the primary and secondary clock outputs. For
information about how to make clocks unrelated, refer to “Related and Unrelated
Clocks” on page 8–10.

Hold Relationship
The TimeQuest analyzer and Classic Timing Analyzer choose the worst-case hold
relationship differently. Refer to Figure 8–16 for sample waveforms to illustrate the
different effects.

The Classic Timing Analyzer first identifies the worst-case setup relationship. The
worst-case setup relationship is Setup B. Then the Classic Timing Analyzer chooses
the worst-case hold relationship (Hold Check B1 or Hold Check B2) for that specific
setup relationship, Setup B. The Classic Timing Analyzer chooses Hold Check B2 for
the worst-case hold relationship.

However, the TimeQuest analyzer calculates worst-case hold relationships for all
possible setup relationships and chooses the absolute worst-case hold relationship.
The TimeQuest analyzer checks two hold relationships for every setup relationship:

■ Data launched by the current launch edge not captured by the previous latch edge
(Hold Check A1 and Hold Check B1)

■ Data launched by the next launch edge not captured by the current latch edge
(Hold Check A2 and Hold Check B2)

The TimeQuest analyzer chooses Hold Check A2 as the absolute worst-case hold
relationship.

Figure 8–16. Worst-Case Hold

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Setup A Setup B
Hold

Check A2
Hold

Check B1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–18 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Clock Objects
The Classic Timing Analyzer treats nodes with clock settings assigned to them as
special objects in the timing netlist. Any node in the timing netlist with a clock setting
is treated as a clock object, regardless of its actual type, such as a register. When a
register has a clock setting assigned to it, the Classic Timing Analyzer does not
analyze register-to-register paths beginning or ending at that register. Figure 8–17
shows a circuit that illustrates this situation.

With no clock assignments on any of the registers, the Classic Timing Analyzer
analyzes timing on the path from reg_a to reg_b, and from reg_c to reg_d. If you
make a clock setting assignment to reg_b, reg_b is no longer considered a register
node in the netlist, and the path from reg_a to reg_b is no longer analyzed.

In the TimeQuest analyzer, clocks are abstract objects that are associated with nodes in
the timing netlist. The TimeQuest analyzer analyzes the path from reg_a to reg_b
even if there is a clock assigned to reg_b.

Hold Multicycle
The hold multicycle value numbering scheme is different in the Classic Timing
Analyzer and TimeQuest analyzer. Also, you can choose between two values for the
default hold multicycle value in the Classic Timing Analyzer but you cannot change
the default value in the TimeQuest analyzer. The hold multicycle value specifies
which clock edge is used for hold analysis when you change the latch edge with a
multicycle assignment.

In the Classic Timing Analyzer, the hold multicycle value is based on one, and is the
number of clock cycles away from the setup edge. In the TimeQuest analyzer, the hold
multicycle value is based on zero, and is the number of clock cycles away from the
default hold edge. In the TimeQuest analyzer, the default hold edge is one edge before
or after the setup edges. Subtract one from any hold multicycle value in the Classic
Timing Analyzer to compute the equivalent value for the TimeQuest analyzer.

Figure 8–17. Clock Objects

clk

reg_a reg_b

reg_c reg_d
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–19
Differences Between the Quartus II Timing Analyzers
Figure 8–18 shows simple waveforms for a cross-clock domain transfer with the
indicated setup and hold edges.

In the TimeQuest analyzer, only a multicycle exception of two is required to constrain
the design for the indicated setup and hold relationships.

Figure 8–19 shows simple waveforms for a different cross-clock domain transfer with
indicated setup and hold edges. The following explanation shows what exceptions to
apply to achieve the desired setup and hold relationships.

In the TimeQuest analyzer, you must use the following two exceptions:

■ A multicycle exception of two

■ A hold multicycle exception of one, because the hold edge is one edge behind the
default hold edge, which is one edge after the setup edge.

You should always add a hold multicycle assignment for every multicycle assignment
to ensure the correct exceptions are applied regardless of the timing analyzer you use.

Fitter Performance and Behavior
When you analyze a design with the TimeQuest analyzer, the Fitter memory use and
compilation time may increase as compared to the Classic Timing Analyzer, however
the timing analysis time may decrease.

The behavior for one value of the Optimize hold time Fitter assignment differs
between the TimeQuest analyzer and the Classic Timing Analyzer. In the TimeQuest
analyzer, the I/O Paths and Minimum TPD Paths setting and the All Paths setting
are equivalent, whereas in the Classic Timing Analyzer the settings directed the Fitter
to optimize hold times differently.

Figure 8–18. First Relationship Example

Figure 8–19. Second Relationship Example

Hold Edge Setup Edge

Hold Edge Setup Edge
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–20 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
Reporting
The TimeQuest analyzer provides a more flexible and powerful interface for reporting
timing analysis results than the Classic Timing Analyzer. Although the interface and
constraints are more flexible and powerful, both analyzers use the same device timing
models, except for device families that support rise/fall analysis. The Classic Timing
Analyzer does not support rise/fall analysis, but the TimeQuest analyzer does.
Therefore, you may see slightly different delays on identical paths in device families
that support rise/fall analysis if you analyze timing in both analyzers.

Both analyzers report identical delays along identically constrained paths in your
design. The TimeQuest analyzer allows you to constrain some paths that you could
not constrain with the Classic Timing Analyzer. Differently constrained paths result in
different reported values, but for identical paths in your design that are constrained
identically, the delays are exactly the same. Both timing analyzers use the same timing
models.

Paths and Pairs
In reporting, the most significant difference between the two analyzers is that the
TimeQuest analyzer reports paths, while the Classic Timing Analyzer reports pairs.
Path reporting means that the analyzer separately reports every path between two
registers. Pair reporting means that the analyzer reports only the worst-case path
between two registers. One benefit of path reporting over pair reporting is that you
can more easily identify common points in failing paths that may be good targets for
optimization.

If your design does not meet timing constraints, this reporting difference can give the
impression that there are many more timing failures when you use the TimeQuest
analyzer. Figure 8–20 shows a sample circuit followed by a description of the
differences between path and pair reporting.

There is an 8-ns period constraint on the clk pin, resulting in two paths that fail
timing: regA→C→regB and regA →D→ regB. The Classic Timing Analyzer reports
only worst-case path regA→C→regB. The TimeQuest analyzer reports both failing
paths regA→C→regB and regA →D→regB. It also reports path regA →E→regB
with positive slack.

Figure 8–20. Failing Paths

clk

node C
regA

node D

node E

10 ns

9 ns

7 ns

regB
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–21
Differences Between the Quartus II Timing Analyzers
Default Reports
The TimeQuest analyzer generates only a small number of reports by default, as
compared to the Classic Timing Analyzer, which generates every available report by
default. With the TimeQuest analyzer, you generate reports on demand.

Netlist Names
The Classic Timing Analyzer uses register names in reporting, but the TimeQuest
analyzer uses register pin names (with the exception of port names of the top-level
module). Buried nodes or register names are used when necessary.

Example 8–5 shows how register names are used in Classic Timing Analyzer reports.

Example 8–6 shows the same information as presented in a TimeQuest analyzer
report. In this example, register pin names are used in place of register names.

Non-Integer Clock Periods
In some cases when related clock periods are not integer multiples of each other, a
lack of precision in clock period definition in the TimeQuest analyzer can result in
reported setup or hold relationships of a few picoseconds. In addition, launch and
latch times for the relationships can be very large. If you experience this, use the
set_max_delay and set_min_delay commands to specify the correct relationships.
The Classic Timing Analyzer can maintain additional information about clock
frequency that mitigates the lack of precision in clock period definition.

Example 8–5. Netlist Names in the Classic Timing Analyzer

Info: + Shortest register to register delay is 0.538 ns
Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. =

LCFF_X1_Y5_N1;
Fanout = 1; REG Node = 'inst'

Info: 2: + IC(0.305 ns) + CELL(0.149 ns) = 0.454 ns; Loc. =
LCCOMB_X1_Y5_N20; Fanout = 1; COMB Node = 'inst3~feeder'

Info: 3: + IC(0.000 ns) + CELL(0.084 ns) = 0.538 ns; Loc. =
LCFF_X1_Y5_N21; Fanout = 1; REG Node = 'inst3'

Info: Total cell delay = 0.233 ns (43.31 %)
Info: Total interconnect delay = 0.305 ns (56.69 %)

Example 8–6. Netlist Names in the TimeQuest Analyzer

Info: 3.788 0.250 uTco inst
Info: 3.788 0.000 RR CELL inst|regout
Info: 4.093 0.305 RR IC inst3~feeder|datad
Info: 4.242 0.149 RR CELL inst3~feeder|combout
Info: 4.242 0.000 RR IC inst3|datain
Info: 4.326 0.084 RR CELL inst3
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–22 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Differences Between the Quartus II Timing Analyzers
When the clock period cannot be expressed as an integer in terms of picoseconds, you
have the situation shown in Figure 8–21. This figure shows two clocks: clk_a has a
10 ns period, and clk_b has a 6.667 ns period.

There is a 1 ps setup relationship at 20 ns because you cannot specify the 6.667 ns
period beyond picosecond precision. You should apply the maximum and minimum
delay exceptions shown in Example 8–7 between the two clocks to specify the correct
relationships.

Figure 8–21. Very Small Setup Relationship

Example 8–7. Minimum and Maximum Delay Exceptions

set_max_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 3.333
set_min_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 0

clk_a

clk_b
0 6.667 13.334 20.001

20100
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–23
Differences Between the Quartus II Timing Analyzers
Other Features
The TimeQuest analyzer reports time values without units. By default, the units are
nanoseconds, and three decimal places are displayed. You can change the default time
unit and decimal places with the set_time_format command.

When you use the TimeQuest analyzer in a Tcl shell, output is ASCII-formatted, and
columns are aligned for easy reading on 80-column consoles. Example 8–8 shows
sample output from the TimeQuest analyzer report_timing command.

Example 8–8. ASCII-Formatted TimeQuest Analyzer Report

tcl> report_timing -from inst -to inst5
Info: Report Timing: Found 1 setup paths (0 violated). Worst case slack
is 3.634
Info: -from [get_keepers inst]
Info: -to [get_keepers inst5]
Info: Path #1: Slack is 3.634
Info:
===
Info: From Node : inst
Info: To Node : inst5
Info: Launch Clock : clk_a
Info: Latch Clock : clk_b
Info:
Info: Data Arrival Path:
Info:
Info: Total (ns) Incr (ns) Type Node
Info: ========== ========= == ====
===================================
Info: 0.000 0.000 launch edge time
Info: 2.347 2.347 R clock network delay
Info: 2.597 0.250 uTco inst
Info: 2.597 0.000 RR CELL inst|regout
Info: 3.088 0.491 RR IC inst6|datac
Info: 3.359 0.271 RR CELL inst6|combout
Info: 3.359 0.000 RR IC inst5|datain
Info: 3.443 0.084 RR CELL inst5
Info:
Info: Data Required Path:
Info:
Info: Total (ns) Incr (ns) Type Node
Info: ========== ========= == ====
===================================
Info: 4.000 4.000 latch edge time
Info: 7.041 3.041 R clock network delay
Info: 7.077 0.036 uTsu inst5
Info:
Info: Data Arrival Time : 3.443
Info: Data Required Time : 7.077
Info: Slack : 3.634
Info:
===
Info:
1 3.634
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–24 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Timing Assignment Conversion
This section describes Classic Timing Analyzer QSF timing assignments and the
equivalent TimeQuest analyzer constraints. In some cases, there is more than one
potentially equivalent SDC constraint. In these cases, correct conversion requires
knowledge of the intended function of your design.

This section includes the following topics:

■ “Clock Enable Multicycle” on page 8–28

■ “Clock Latency” on page 8–25

■ “Clock Uncertainty” on page 8–25

■ “Cut Timing Path” on page 8–40

■ “Default Required fMAX Assignment” on page 8–26

■ “Hold Relationship” on page 8–25

■ “Input and Output Delay” on page 8–29

■ “Inverted Clock” on page 8–25

■ “Maximum Clock Arrival Skew” on page 8–41

■ “Maximum Data Arrival Skew” on page 8–41

■ “Maximum Delay” on page 8–40

■ “Minimum Delay” on page 8–41

■ “Minimum tCO Requirement” on page 8–36

■ “Minimum tPD Requirement” on page 8–40

■ “Multicycle” on page 8–27

■ “Not a Clock” on page 8–26

■ “Setup Relationship” on page 8–24

■ “tCO Requirement” on page 8–34

■ “tH Requirement” on page 8–32

■ “tPD Requirement” on page 8–38

■ “tSU Requirement” on page 8–30

■ “Virtual Clock Reference” on page 8–26

Setup Relationship
The Setup Relationship assignment overrides the setup relationship between two
clocks. By default, the Classic Timing Analyzer automatically calculates the setup
relationship based on your clock settings. The QSF variable for the Setup
Relationship assignment is SETUP_RELATIONSHIP. In the TimeQuest analyzer, use the
set_max_delay command to specify the maximum setup relationship for a path.

The setup relationship value is the time between latch and launch edges before the
TimeQuest analyzer accounts for clock latency, source μtCO, or destination μtSU.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–25
Timing Assignment Conversion
Hold Relationship
The Hold Relationship assignment overrides the hold relationship between two
clocks. By default, the Classic Timing Analyzer automatically calculates the hold
relationship based on your clock settings. The QSF variable for the Hold Relationship
assignment is HOLD_RELATIONSHIP. In the TimeQuest analyzer, use the set_min_delay
command to specify the minimum hold relationship for a path.

Clock Latency
Table 8–1 shows the equivalent SDC constraints for the Early Clock Latency and Late
Clock Latency Classic Timing Analyzer assignments.

For more information about clock latency support in the TimeQuest analyzer, refer to
“Clock Latency” on page 8–11.

Clock Uncertainty
Table 8–2 shows the equivalent SDC constraints for the Clock Setup Uncertainty and
Clock Hold Uncertainty Classic Timing Analyzer assignments.

Inverted Clock
The Classic Timing Analyzer detects inverted clocks automatically when the clock
inversion occurs at the input of the LCELL that contains the register specified in the
assignment. You must make an Inverted Clock assignment in all other situations for
Classic Timing Analyzer analysis. The QSF variable for the Inverted Clock
assignment is INVERTED_CLOCK. The TimeQuest analyzer detects inverted clocks
automatically, regardless of the type of inversion circuit, in designs that target device
families that support unateness. For designs that target any other device family, you
must create a generated clock with the -invert option on the output of the cell that
inverts the clock.

Table 8–1. Classic Timing Analyzer Assignments and SDC Equivalent Constraints for Clock
Latency Assignments

Classic Timing Analyzer Assignment
SDC Constraint

Assignment Name QSF Variable

Early Clock Latency EARLY_CLOCK_LATENCY set_clock_latency -source -late

Late Clock Latency LATE_CLOCK_LATENCY set_clock_latency -source -early

Table 8–2. Classic Timing Analyzer Assignments and SDC Equivalent Constraints for Clock
Uncertainty Assignments

Classic Timing Analyzer Timing Assignment
SDC Constraint

Assignment Name QSF Variable

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY set_clock_uncertainty -setup

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY set_clock_uncertainty -hold
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–26 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Not a Clock
The Not a Clock assignment directs the Classic Timing Analyzer to identify specified
node as not a clock source when it would normally be detected as a clock because of a
global fMAX requirement. The QSF variable for the Not a Clock assignment is
NOT_A_CLOCK. This assignment is not supported in the TimeQuest analyzer and there is
no equivalent constraint. Appropriate clock constraints are created in the TimeQuest
analyzer only.

Default Required fMAX Assignment
The Default Required fMAX assignment allows you to specify an fMAX requirement for
the Classic Timing Analyzer for all unconstrained clocks in your design. The QSF
variable for the Default Required fMAX assignment is FMAX_REQUIREMENT. You can use
the derive_clocks command to create clocks on sources of clock pins in your design
that do not already have clocks assigned to them. You should constrain each
individual clock in your design with the create_clock or created_generated_clock
command, instead of the derive_clocks command. Refer to “Automatic Clock
Detection” on page 8–14 to learn why you should constrain individual clocks in your
design.

Virtual Clock Reference
The Virtual Clock Reference assignment allows you to define timing characteristics
of a reference clock outside the FPGA. The QSF variable for the Virtual Clock
Reference assignment is VIRTUAL_CLOCK_REFERENCE. The TimeQuest analyzer
supports virtual clocks by default, while the Classic Timing Analyzer requires the
Virtual Clock Reference assignment to indicate that a clock setting is for a virtual
clock. To create a virtual clock in the TimeQuest analyzer, use the create_clock or
create_generated_clock commands with the -name option and no targets.

Figure 8–22 shows a circuit that requires a virtual clock, and the following example
shows how to constrain the circuit. The circuit shows data transfer between an Altera
FPGA and another device, and the clocks for the two devices are not related. You can
constrain the path with an output delay assignment, but that assignment requires a
virtual clock that defines the clock characteristics of the destination device.

Figure 8–22. Virtual Clock Circuit

reg_b

Other Device
d_in

clk_b
clk_b

reg_a

Altera FPGA

d_out

clk_a
clk_a
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–27
Timing Assignment Conversion
Assume the circuit has the following assignments in the Classic Timing Analyzer:

■ Clock period of 10 ns on system_clk (clock for the Altera FPGA)

■ Clock period of 8 ns on virt_clk (clock for the other device)

■ The Virtual Clock Reference setting for virt_clk is On (indicates that virt_clk is
a virtual clock)

■ The Output Maximum Delay setting of 5 ns on dataout with respect to virt_clk
(constrains the path between the two devices)

The SDC commands shown in Example 8–9 constrain the circuit the same way.

Clock Settings
The Classic Timing Analyzer includes a variety of assignments to describe clock
settings. These include duty cycle, fMAX, offset, and others. In the TimeQuest analyzer,
use the create_clock and create_generated_clock commands to constrain clocks.

Multicycle
Table 8–3 shows the equivalent SDC exceptions for each of these Classic Timing
Analyzer timing assignments.

Example 8–9. SDC Constraints

Clock for the Altera FPGA
create_clock -period 10 -name system_clk [get_ports system_clk]
Virtual clock for the other device, with no targets
create_clock -period 8 -name virt_clk
Constrains the path between the two devices
set_output_delay -clock virt_clk 5 [get_ports dataout]

Table 8–3. Classic Timing Analyzer Multicycle Assignments and SDC Equivalent Exceptions

Classic Timing Analyzer Multicycle Assignment
SDC Exception

Assignment Name QSF Variable

Multicycle (1) MULTICYCLE set_multicycle_path -setup -end

Source Multicycle (2) SRC_MULTICYCLE set_multicycle_path -setup -start

Multicycle Hold (3) HOLD_MULTICYCLE set_multicycle_path -hold -end

Source Multicycle Hold SRC_HOLD_MULTICYCLE set_multicycle_path -hold -start

Notes to Table 8–3:

(1) A multicycle assignment is also known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment is also known as a “source multicycle setup” assignment.
(3) A multicycle hold is also known as a “destination multicycle hold “assignment.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–28 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
The default value and numbering scheme for the hold multicycle value is different in
the Classic Timing Analyzer and TimeQuest analyzer. Refer to “Hold Multicycle” on
page 8–18 for more information about the difference between the default value and
numbering scheme for the hold multicycle value in the Classic Timing Analyzer and
TimeQuest analyzer.

f For more information about how to convert the hold multicycle value, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Clock Enable Multicycle
The Classic Timing Analyzer supports the following clock enable multicycle
assignments:

■ Clock Enable Multicycle

■ Clock Enable Source Multicycle

■ Clock Enable Multicycle Hold

■ Clock Enable Source Multicycle Hold

Corresponding types of multicycle assignments are applied to all registers enabled by
the targets of the specified clock. The TimeQuest analyzer supports clock-enabled
multicycle constraints with the get_fanouts command. Use the get_fanouts
command to create a collection of nodes that have a common source signal, such as a
clock enable.

I/O Constraints
FPGA I/O timing assignments have typically been made with FPGA-centric tSU and
tCO requirements for the Classic Timing Analyzer. However, the Classic Timing
Analyzer also supports input and output delay assignments to accommodate
industry-standard, system-centric timing constraints. Where possible, you should use
system-centric constraints to constrain your designs for the TimeQuest analyzer.
Table 8–4 includes Classic Timing Analyzer I/O assignments, the equivalent
FPGA-centric SDC constraints, and recommended system-centric SDC constraints.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–29
Timing Assignment Conversion
For setup checks (tSU and tCO), <latch – launch> equals the clock period for same-clock
transfers. For hold checks (tH and Minimum tCO), <latch – launch> equals 0 for
same-clock transfers. Conversions from Classic Timing Analyzer assignments to
set_input_delay and set_output_delay constraints work well only when the source
and destination registers’ clocks are the same (same clock and polarity). If the source
and destination registers’ clocks are different, the conversion may not be
straightforward and you should take extra care when converting to set_input_delay
and set_output_delay constraints.

Input and Output Delay
Table 8–5 shows the equivalent SDC exceptions for Classic Timing Analyzer timing
assignments.

In some circumstances, you may receive the following warning message when you
update the SDC netlist:

Warning: For set_input_delay/set_output_delay, port "<port>" does not
have delay for flag (<rise|fall>, <min|max>)

Table 8–4. Classic Timing Analyzer and TimeQuest Analyzer Equivalent I/O Constraints

Classic Timing Analyzer
Assignment FPGA-centric SDC System-centric SDC

tSU Requirement set_max_delay <tSU requirement>
set_input_delay -max
<latch - launch -- tSU
requirement>

tH Requirement set_min_delay - <tH requirement> (1)
set_input_delay -min
<latch -- launch + tH requirement>

tCO Requirement set_max_delay <tCO requirement>
set_output_delay -max
<latch -- launch - tCO
requirement>

Minimum tCO Requirement
set_min_delay <minimum tCO
requirement>

set_output_delay -min
<latch -- launch - minimum tCO
requirement>

tPD Requirement set_max_delay <tPD requirement> (2)

Minimum tPD Requirement set_min_delay <minimum tPD
requirement>

(2)

Notes to Table 8–4:

(1) Refer to “tH Requirement” on page 8–32 for an explanation about why this exception uses the negative tH requirement.
(2) The input and output delays can be used for tPD paths, such that they will be analyzed as a system fMAX path. This is a feature unique to the

TimeQuest analyzer.

Table 8–5. Classic Timing Analyzer Assignments and SDC Equivalent Exceptions

Classic Timing Analyzer Assignment
SDC Exception

Assignment Name QSF Variable

Input Maximum Delay INPUT_MAX_DELAY set_input_delay -max

Input Minimum Delay INPUT_MIN_DELAY set_input_delay -min

Output Maximum Delay OUTPUT_MAX_DELAY set_output_delay -max

Output Minimum Delay OUTPUT_MIN_DELAY set_output_delay -min
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–30 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
This warning occurs whenever port constraints have maximum or minimum delay
assignments, but not both. In the Classic Timing Analyzer, device inputs can have
Input Maximum Delay assignments, Input Minimum Delay assignments, or both,
and device outputs can have Output Maximum Delay assignments, Output
Minimum Delay assignments, or both.

To avoid this warning, your .sdc must specify both the -max and -min options for each
port, or specify neither. If a device I/O in your design includes both the maximum
and minimum delay assignments in the Classic Timing Analyzer, the conversion
utility converts both, and no warning appears about that device I/O. If a device I/O
has only maximum or minimum delay assignments in the Classic Timing Analyzer,
you have the following options:

■ Add the missing minimum or maximum delay assignment to the device I/O
before performing the conversion.

■ Modify the SDC constraint after the conversion to add appropriate -max or -min
values.

■ Modify the SDC constraint to remove the -max or -min option so the value is used
for both by default.

tSU Requirement
The tSU Requirement assignment specifies the maximum acceptable clock setup time
for the input (data) pin. The QSF variable for the tSU Requirement assignment is
TSU_REQUIREMENT. You can convert the tSU Requirement assignment to the
set_max_delay command or the set_input_delay command with the -max option.
The delay value for the set_input_delay command is <latch – launch – tSU
requirement>. Refer to the labeled paths in Figure 8–23 to understand the names in
Equation 8–3 and Equation 8–4.

Figure 8–23. Path Names

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–31
Timing Assignment Conversion
Equation 8–3 shows the derivation of this conversion.

The delay value is the difference between the period of the clock source of the register
and the tSU Requirement value, as shown in Figure 8–24.

The delay value for the set_max_delay command is the tSU Requirement value.
Equation 8–4 shows the derivation of this conversion.

Equation 8–3.

Figure 8–24. tSU Requirement

Equation 8–4.

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

input_delay board.srcclk src.clk src.utcu src.out srctodst board.dstclk–+ + + +=

required latch dst.clk dst.utsu–+=

arrival launch input_delay dst.in+ +=

latch dst.clk dst.utsu–+() launch input_delay dst.in+ +() 0>–

tsu requirement actual tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

tsu requirement latch launch input_delay––=

input_delay latch launch– tsurequirement–=

FPGAOther Device

Input Delay

tsu

clk

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

max_delay latch board.dstclk launch board.srcclk–– src.clk– src.out– srctodst–+ +=

required max_delay dst.clk dst.utsu–+=

arrival dst.in=

max_delay dst.clk dst.utsu–+() dst.in()– 0>

tsu requirement tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

set_max_delay tsu requirement=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–32 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Table 8–6 shows the different ways you can make tSU assignments in the Classic
Timing Analyzer, and the corresponding options for the set_max_delay exception.

To convert a global tSU assignment to an equivalent SDC exception, use the command
shown in Example 8–10.

tH Requirement
The tH Requirement specifies the maximum acceptable clock hold time for the input
(data) pin. The QSF variable for the tH Requirement assignment is TH_REQUIREMENT.
You can convert the tH Requirement assignment to the set_min_delay command, or
the set_input_delay command with the -min option. The delay value for the
set_input_delay command is <latch – launch + tH requirement>. Refer to the labeled
paths in Figure 8–25 to understand the names in Equation 8–5 and Equation 8–6.

Table 8–6. tSU Requirement and set_max_delay Equivalence

tSU Requirement
Options set_max_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to
<register>

-from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Note to Table 8–6:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,
-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly.

Example 8–10. Converting a Global tSU Assignment to an Equivalent SDC Exception

set_max_delay -from [all_inputs] -to [all_registers] <tSU value>

Figure 8–25. Path Names

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–33
Timing Assignment Conversion
Equation 8–5 shows the derivation of this calculation.

The delay value for the set_min_delay command is the tH Requirement value.
Equation 8–6 shows the derivation of this conversion.

Equation 8–5.

Equation 8–6.

arrival required– 0>

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

required latch board.dstclk dst.clk dst.uth+ + +=

input_delay board.srcclk src.clk srcutcu src.out srctodst board.dstclk–+ + + +=

arrival launch input_delay dst.in+ +=

required latch dst.clk dst.uth+ +=

launch input_delay dst.in+ +() latch dst.clk dst.uth+ +()– 0>

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

tH requirement launch latch input_delay+–=

input_delay latch launch tH requirement+–=

arrival required– 0>

arrival dst.in=

required min_delay dst.clk dst.uth+ +=

dst.in min_delay dst.clk dst.uth+ +()–

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

set_min_delay tH requirement–=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–34 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Table 8–7 shows the different ways you can make tH assignments in the Classic
Timing Analyzer, and the corresponding options for the set_min_delay command.

To convert a global tH assignment to an equivalent SDC exception, use the command
shown in Example 8–11.

tCO Requirement
The tCO Requirement assignment specifies the maximum acceptable clock to output
delay to the output pin. The QSF variable for the tCO Requirement assignment is
TCO_REQUIREMENT. You can convert the tCO Requirement assignment to the
set_max_delay command or the set_output_delay command with the -max option.
The delay value for the set_output_delay command is <latch – launch – tCO
requirement>. Refer to the labeled paths in Figure 8–26 to understand the names in
Equation 8–7 and Equation 8–8.

Table 8–7. tH Requirement and set_min_delay Equivalence

tH Requirement Options set_min_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Note to Table 8–7:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers
clocked by different clocks, use set_input_delay to constrain the paths properly. Refer to“Input and Output Delay” on page 8–29 for
additional information.

Example 8–11. Converting a Global tH Assignment to an Equivalent SDC Exception

set_min_delay -from [all_inputs] -to [all registers] <negative tH value>

Figure 8–26. Path Names

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–35
Timing Assignment Conversion
Equation 8–7 shows the derivation of this conversion.

The delay value is the difference between the period of the clock source of the register
and the tCO Requirement value, as illustrated in Figure 8–27.

The delay value for the set_max_delay command is the tCO Requirement value.
Equation 8–8 shows the derivation of this conversion.

Equation 8–7.

Figure 8–27. tCO Requirement

Equation 8–8.

required arrival– 0>

required latch output_delay–=

arrival launch src.clk src.utco src.out+ + +=

output_delay srctodst dst.in dst.utsu dst.clk– board.dstc.k board.srcclk+–+ +=

latch output_delay–() launch src.clk src.utco src.out+ + +()– 0>

tco requirement actual tco– 0>

actual tco launch src.clk src.utco src.out+ + +=

tco requirement src.clk src.utco src.out+ +()– 0>

tco requirement latch launch output_delay––=

output_delay latch launch tco requirement––=

FPGA Other Device

Output Delay

tco

clk

required arrival– 0>

required set_max_delay=

arrival src.clk src.utco src.out+ +=

set_max_delay src.clk src.utco src.out+ +()– 0>

tco requirement actual tco– 0>

actual tco src.clk src.utco src.out+ +=

tco requirement src.clk src.utco src.out+ +()– 0>

set_max_delay tco requirement=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–36 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Table 8–8 shows the different ways you can make tCO assignments in the Classic
Timing Analyzer, and the corresponding options for the set_max_delay exception.

To convert a global tCO assignment to an equivalent SDC exception, use the command
in Example 8–12.

Minimum tCO Requirement
The Minimum tCO Requirement assignment specifies the minimum acceptable clock
to output delay to the output pin. The QSF variable for the Minimum tCO
Requirement assignment is MIN_TCO_REQUIREMENT. You can convert the Minimum tCO
Requirement assignment to the set_min_delay command or the set_output_delay
command with the -min option. The delay value for the set_output_delay command
is <latch – launch – minimum tCO requirement>. Refer to the labeled paths in Figure 8–28
to understand the names in Equation 8–9 and Equation 8–10.

Table 8–8. tCO Requirement and set_max_delay Equivalence

tCO Requirement Options set_max_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Note to Table 8–8:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,
-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to
constrain the paths properly.

Example 8–12. Converting a Global tCO Assignment to an Equivalent SDC Exception

set_max_delay -from [all registers] -to [all_outputs] <tCO value>

Figure 8–28. Path Names

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–37
Timing Assignment Conversion
Equation 8–9 shows the derivation of this conversion.

The delay value for the set_min_delay command is the Minimum tCO Requirement.
Equation 8–10 shows the derivation of this conversion.

Equation 8–9.

Equation 8–10.

arrival required+ 0>

arrival launch src.clk src.utco src.out+ + +=

required latch output_delay–=

output_delay srctodst dst.in dst.uth– dst.clk– board.dstclk– board.srcclk+ +=

launch src.clk src.utco src.out+ + +() latch output_delay–()– 0>

minimum tco minimum tcorequirement– 0>

minimum tco launch src.clk src.utco src.out+ + +=

launch src.clk src.utco src.out+ + +() minimum tco requirement– 0>

minimum tco requirement latch launch– output_delay–=

output_delay latch launch– minimum tco requirement–=

arrival required– 0>

arrival src.clk src.utco src.out+ +=

required min_delay=

src.clk src.utco src.out+ +() set_min_delay()– 0>

minimum tco minimum tco requirement– 0>

minimum tco src.clk src.utco src.out+ +=

src.clk src.utco src.out+ +() minimum tcorequirement– 0>

set_min_delay minimum tco requirement=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–38 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Table 8–9 shows the different ways you can make minimum tCO assignments in the
Classic Timing Analyzer, and the corresponding options for the set_min_delay
exception.

To convert a global Minimum tCO Requirement to an equivalent SDC exception, use
the command shown in Example 8–13.

tPD Requirement
The tPD Requirement assignment specifies the maximum acceptable input to
nonregistered output delay, that is, the time required for a signal from an input pin to
propagate through combinational logic and appear at an output pin. The QSF variable
for the tPD Requirement assignment is TPD_REQUIREMENT. You can use the
set_max_delay command in the TimeQuest analyzer as an equivalent constraint as
long as you account for input and output delays. The tPD Requirement assignment
does not take into account input and output delays, but the set_max_delay exception
does, so you must modify the set_max_delay value to take into account input and
output delays.

Combinational Path Delay Scenario

Figure 8–29 shows a circuit to illustrate the following example of converting a tPD
Requirement to a set_max_delay constraint.

Table 8–9. Minimum tCO Requirement and set_min_delay Equivalence

Minimum tCO Requirement Options set_min_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Note to Table 8–9:

(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option, -to <pin>. If the pin feeds registers
clocked by different clocks, use set_output_delay to constrain the paths properly.

Example 8–13. Converting a Global Minimum tCO Requirement to an Equivalent SDC Exception

set_min_delay -from [all_registers] -to [all_outputs] <minimum tCO value>

Figure 8–29. tPD Example

clk

reg_out

comb_out

b_in

a_in
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–39
Timing Assignment Conversion
Assume the circuit has the following assignments in the Classic Timing Analyzer:

■ Clock period of 10 ns

■ tPD Requirement from a_in to comb_out of 10 ns

■ Input Max Delay on a_in relative to clk of 2 ns

■ Output Max Delay on comb_out relative to clk of 2 ns

The path from a_in to comb_out is not affected by the input and output delays. The
slack is equal to the <tPD Requirement from a_in to comb_out> – <path delay from a_in to
comb_out>.

Assume the circuit has the SDC constraints shown in Example 8–14 in the TimeQuest
analyzer.

The path from a_in to comb_out is affected by the input and output delays. The slack
is equal to:

<set_max_delay value from a_in to comb_out> – <input delay> – <output delay> – <path
delay from a_in to comb_out>

To convert a global tPD Requirement assignment to an equivalent SDC exception, use
the command shown in Example 8–15. You should add the input and output delays to
the value of your converted tPD Requirement (set_max_delay exception value) to
achieve an equivalent SDC exception.

Example 8–14. SDC Constraints

create_clock -period 10 –name clk [get_ports clk]
set_max_delay -from a_in -to comb_out 10
set_input_delay -clk clk 2 [get_ports a_in]
set_output_delay –clk clk 2 [get_ports comb_out]

Example 8–15. Converting a Global tPD Requirement Assignment to an Equivalent SDC Exception

set_max_delay -from [all_inputs] -to [all_outputs] <value>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–40 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
Minimum tPD Requirement
The Minimum tPD Requirement assignment specifies the minimum acceptable input
to nonregistered output delay, that is, the minimum time required for a signal from an
input pin to propagate through combinational logic and appear at an output pin. The
QSF variable for the Minimum tPD Requirement assignment is MIN_TPD_REQUIREMENT.
You can use the set_min_delay command in the TimeQuest analyzer as an equivalent
constraint as long as you account for input and output delays. The Minimum tPD
Requirement assignment does not take into account input and output delays, but the
set_min_delay exception does.

Refer to “Combinational Path Delay Scenario” on page 8–38 to see how input and
output delays affect minimum and maximum delay exceptions.

To convert a global Minimum tPD Requirement assignment to an equivalent SDC
exception, use the command shown in Example 8–16.

Cut Timing Path
The Cut Timing Path assignment in the Classic Timing Analyzer is equivalent to the
set_false_path command in the TimeQuest analyzer. The QSF variable for the Cut
Timing Path assignment is CUT.

Maximum Delay
The Maximum Delay assignment specifies the maximum required delay for the
following types of paths:

■ Pins to registers

■ Registers to registers

■ Registers to pins

The QSF variable for the Maximum Delay assignment is MAX_DELAY. This overwrites
the requirement computed from the clock setup relationship and clock skew. There is
no equivalent constraint in the TimeQuest analyzer.

1 The Maximum Delay assignment for the Classic Timing Analyzer is not related to the
set_max_delay exception in the TimeQuest analyzer.

Example 8–16. Converting a Global Minimum tPD Requirement Assignment to an Equivalent SDC
Exception

set_min_delay -from [all_inputs] -to [all_outputs] <value>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–41
Timing Assignment Conversion
Minimum Delay
The Minimum Delay assignment specifies the minimum required delay for the
following types of paths:

■ Pins to registers

■ Registers to registers

■ Registers to pins

The QSF variable for the Minimum Delay assignment is MIN_DELAY. This overwrites
the requirement computed from the clock hold relationship and clock skew. There is
no equivalent constraint in the TimeQuest analyzer.

1 The Minimum Delay assignment for the Classic Timing Analyzer is not related to the
set_min_delay exception in the TimeQuest analyzer.

Maximum Clock Arrival Skew
The Maximum Clock Arrival Skew assignment specifies the maximum clock skew
between a set of registers. The QSF variable for the Maximum Clock Arrival Skew
assignment is MAX_CLOCK_ARRIVAL_SKEW. In the Classic Timing Analyzer, this
assignment is specified between a clock node name and a set of registers. Maximum
Clock Arrival Skew is not supported in the TimeQuest analyzer.

Maximum Data Arrival Skew
The Maximum Data Arrival Skew assignment specifies the maximum data arrival
skew between a set of registers, pins, or both. The QSF variable for the Maximum
Data Arrival Skew assignment is MAX_DATA_ARRIVAL_SKEW. In this case, the data
arrival delay represents the tCO from the clock to the given register, pin, or both. This
assignment is specified between a clock node and a set of registers, pins, or both.

The TimeQuest analyzer does not support a constraint to specify maximum data
arrival skew, but you can specify setup and hold times relative to a clock port to
constrain an interface like this. Figure 8–30 shows a simplified source-synchronous
interface used in the following example.

Constraining Skew on an Output Bus
This example constrains the interface so that all bits of the data_out bus go off-chip
between 2 ns and 3 ns after the clk_out signal. Assume that clk_in and clk_out have
a period of 8 ns.

Figure 8–30. Source-Synchronous Interface Diagram

data_in Input Controller Output Controller

clk_in PLL

data_out

clk_out
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–42 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Timing Assignment Conversion
The following equations and example show how to create timing requirements that
satisfy the timing relationships shown in Figure 8–31.

Equation 8–11 shows how to compute the value for the set_output_delay -min
command that creates the 2 ns hold requirement on the destination. For hold
requirement calculations in which source and destination clocks are the same,
<latch> – <launch> = 0.

Equation 8–12 shows how to compute the value for the set_output_delay command
that creates the 3 ns setup requirement on the destination. For setup requirement
calculations in which source and destination clocks are the same, <latch> – <launch> =
clock period.

Refer to “I/O Constraints” on page 8–28 for an explanation of the above equations.

Example 8–17 shows the three constraints together.

Figure 8–31. Source-Synchronous Timing Diagram

Equation 8–11.

Equation 8–12.

Example 8–17. Constraining a DDR Interface

set period 8.000
create_clock -period $period \

-name clk_in \
[get_ports data_out*]

derive_pll_clocks
set_output_delay -add_delay \

-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin [get_ports clk_out] \
-min -2.000 \
[get_ports data_out*]

set_output_delay -add_delay \
-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin [get_ports clk_out] \
-max [expr $period - 3.000] \
[get_ports data_out*]

clk_out

data_out

0 2 3 4 8 10 11 12

latch launch– 0ns=

output delay latch launch– 2ns–=

output delay 2ns–=

latch launch– 8ns=

output delay latch launch– 3ns–=

output delay 5ns=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–43
Conversion Utility
Conversion Utility
The TimeQuest analyzer includes a conversion utility to help you convert Classic
Timing Analyzer assignments in a .qsf to SDC constraints in an .sdc The utility can
use information from your project report database (in the \db folder), if it exists, so
you should compile your design before the conversion.

1 The conversion utility ignores all disabled QSF assignments. Disabled assignments
show No in the Enabled column of the Assignment Editor, and include the -disable
option in the .qsf.

Refer to “Create SDC Constraints from Existing Timing Assignments” on page 8–2 to
learn how to run the conversion utility.

Unsupported Global Assignments
The conversion utility checks whether any of the global timing assignments in
Table 8–10 exist in your project. Any global assignments not supported by the
conversion utility are ignored during the conversion. Refer to the indicated page for
information about each assignment, and how to manually convert these global
assignments to SDC commands.

Recommended Global Assignments
When any unsupported assignments have been identified, the conversion utility
checks the global assignments in Table 8–11 to ensure they match the specified values.

Table 8–10. Global Timing Assignments

Assignment Name QSF Variable More Information

tSU Requirement TSU_REQUIREMENT page 8–30

tH Requirement TH_REQUIREMENT page 8–32

tCO Requirement TCO_REQUIREMENT page 8–34

Minimum tCO Requirement MIN_TCO_REQUIREMENT page 8–36

tPD Requirement TPD_REQUIREMENT page 8–38

Minimum tPD Requirement MIN_TPD_REQUIREMENT page 8–40

Table 8–11. Recommended Global Assignments

Classic Timing Analyzer Assignment Name QSF Variable Value

Cut off clear and preset signal paths CUT_OFF_CLEAR_AND_PRESET_PATHS ON

Cut off feedback from I/O pins CUT_OFF_IO_PIN_FEEDBACK ON

Cut off read during write signal paths CUT_OFF_READ_DURING_WRITE_PATHS ON

Analyze latches as synchronous elements ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Enable Clock Latency ENABLE_CLOCK_LATENCY ON

Display Entity Name PROJECT_SHOW_ENTITY_NAME ON
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–44 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility
The following assignments are checked to ensure the functionality of the Classic
Timing Analyzer with the specified values corresponding to the behavior of the
TimeQuest analyzer.

■ Cut off clear and preset signal paths— The TimeQuest analyzer does not support
this functionality. You should use Recovery and Removal analysis instead to
analyze register control paths. The Classic Timing Analyzer does not support this
option.

■ Cut off feedback from I/O pins—The TimeQuest analyzer does not match the
functionality of the Classic Timing Analyzer when this assignment is set to OFF.

■ Cut off read during write signal paths—The TimeQuest analyzer does not match
the functionality of the Classic Timing Analyzer when this assignment is set to OFF.

■ Analyze latches as synchronous elements—The TimeQuest analyzer analyzes
latches as synchronous elements by default and does not match the functionality
of the Classic Timing Analyzer when this assignment is set to OFF. The Classic
Timing Analyzer analyzes latches as synchronous elements by default.

■ Enable Clock Latency—The TimeQuest analyzer includes clock latency in its
calculations. The TimeQuest analyzer does not match the functionality of the
Classic Timing Analyzer when this assignment is set to OFF. Latency on a clock can
be viewed as a simple delay on the clock path, and affects clock skew. This is in
contrast to an offset, which alters the setup and hold relationship between two
clocks. Refer to “Offset and Latency Example” on page 8–11 for an example of the
different effects of offset and latency. When you turn on Enable Clock Latency in
the Classic Timing Analyzer, it affects the following aspects of timing analysis:

■ Early Clock Latency and Late Clock Latency assignments are honored

■ The compensation delay of a PLL is analyzed as latency

■ For clock settings where you do not specify an offset, the automatically
computed offset is treated as latency

■ Display Entity Name—Any entity-specific assignments are ignored in the
TimeQuest analyzer because they do not include the entity name when this option
is set to ON.

If your design meets timing requirements in the Classic Timing Analyzer without all
of the settings recommended in Table 8–11 on page 8–43, you should perform one of
the following actions:

■ Change the settings and reconstrain and reverify as necessary.
or

■ Add or modify SDC constraints as appropriate because analysis in the TimeQuest
analyzer may be different after conversion.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–45
Conversion Utility
Clock Conversion
Next, the conversion utility adds the derive_pll_clocks command to the .sdc. This
command creates generated clocks on all PLL outputs in your design each time the
.sdc is read. The command does not add a clock on the FPGA port that drives the PLL
input.

The conversion utility includes the derive_pll_clocks -use_net_name command in
the .sdc it creates. The -use_net_name option overrides the default clock naming
behavior (the PLL pin name) so the clock name is the same as the net name in the
Classic Timing Analyzer.

Including the -use_net_name option ensures that the conversion utility converts
clock-to-clock exceptions properly. If you remove the -use_net_name option, you must
also edit references to the clock names in other SDC commands so they match the PLL
pin names.

If your design includes a global fMAX assignment, the assignment is converted to a
derive_clocks command. The behavior of a global fMAX assignment is different from
the behavior of clocks created with the derive_clocks command, and you should use
the report_clocks command when you review conversion results to evaluate the
clock settings. Refer to “Automatic Clock Detection” on page 8–14 for an explanation
of the differences. As soon as you know the appropriate clock settings, you should use
the create_clock or create_generated_clock command instead of the
derive_clocks command.

1 The conversion utility adds a post_message command before the derive_clocks
command to remind you that the clocks are derived automatically. The TimeQuest
analyzer displays the reminder the first time it reads the .sdc. Remove or comment
out the post_message command to prevent the message from displaying.

Next, the conversion utility identifies and converts clock settings in the .qsf. If a
project database exists, the utility also identifies and converts any additional clocks in
the report file that are not in the .qsf, such as PLL base clocks.

1 If you change the PLL input frequency, you must modify the SDC constraint
manually.

The conversion utility ignores clock offsets on generated clocks. Refer to “Clock
Offset” on page 8–10 for information about how to use offset values in the TimeQuest
analyzer.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–46 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility
Instance Assignment Conversion
Next, the conversion utility converts the instance assignments shown in Table 8–12.
Refer to the indicated page for information about each assignment.

Depending on input and output delay assignments, you may receive a warning
message when the .sdc is read. The message warns that the set_input_delay
command, set_output_delay command, or both are missing the -max option, -min
option, or both. Refer to “Input and Output Delay” on page 8–29 for an explanation of
why the warning occurs and how to avoid it.

The conversion utility automatically adds multicycle hold exceptions for each
multicycle setup assignment. The value of each multicycle hold exception depends on
the Default hold multicycle assignment value in your project. If the value is One, the
conversion utility uses a value of 0 (zero) for each multicycle hold exception it adds. If
the value is Same as multicycle, the conversion utility uses a value one less than the
corresponding multicycle setup assignment value for each multicycle hold exception
it adds. Refer to “Hold Multicycle” on page 8–18 for more information on hold
multicycle differences between the Classic Timing Analyzer and the TimeQuest
analyzer.

Table 8–12. Instance Timing Assignments

Assignment Name QSF Variable More Information

Late Clock Latency LATE_CLOCK_LATENCY
page 8–25

Early Clock Latency EARLY_CLOCK_LATENCY

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY
page 8–25

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY

Multicycle (1) MULTICYCLE

page 8–27
Source Multicycle (2) SRC_MULTICYCLE

Multicycle Hold (3) HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Clock Enable Multicycle CLOCK_ENABLE_MULTICYCLE

page 8–28
Clock Enable Source Multicycle CLOCK_ENABLE_SOURCE_MULTICYCLE

Clock Enable Multicycle Hold CLOCK_ENABLE_MULTICYCLE_HOLD

Clock Enable Source Multicycle Hold CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD

Cut Timing Path CUT page 8–40

Input Maximum Delay INPUT_MAX_DELAY

page 8–29
Input Minimum Delay INPUT_MIN_DELAY

Output Maximum Delay OUTPUT_MAX_DELAY

Output Minimum Delay OUTPUT_MIN_DELAY

Notes to Table 8–12:

(1) A multicycle assignment can also be known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment can also be known as a “source multicycle setup” assignment.
(3) A multicycle hold can also be known as a “destination multicycle hold” assignment.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–47
Conversion Utility
Next, the conversion utility converts the instance assignments shown in Table 8–13.
Refer to the indicated page for information about each assignment. If the tPD and
minimum tPD assignment targets also have input or output delays that apply to them,
the tPD and minimum tPD conversion values may be incorrect. This is described in
more detail on the indicated pages for the appropriate assignments.

The conversion utility converts Classic Timing Analyzer I/O timing assignments to
FPGA-centric SDC constraints. Table 8–14 includes Classic Timing Analyzer timing
assignments, the equivalent FPGA-centric SDC constraints, and recommended
system-centric SDC constraints.

The conversion utility can convert Classic Timing Analyzer I/O timing assignments
only to the FPGA-centric constraints without additional information about your
design. Making system-centric constraints requires information about the external
circuitry interfacing with the FPGA such as external clocks, clock latency, board delay,
and clocking exceptions. You cannot convert Classic Timing Analyzer timing
assignments to system-centric constraints without that information. If you use the
conversion utility, you can modify the SDC constraints to change the FPGA-centric
constraints to system-centric constraints as appropriate.

Table 8–13. Instance Timing Assignments

Assignment Name QSF Variable More Information

tPD Requirement (1) TPD_REQUIREMENT page 8–38

Minimum tPD Requirement (1) MIN_TPD_REQUIREMENT page 8–40

Setup Relationship SETUP_RELATIONSHIP page 8–24

Hold Relationship HOLD_RELATIONSHIP page 8–25

Note to Table 8–13:

(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 8–55 for more information about how the
conversion utility converts single-point tPD and minimum tPD assignments.

Table 8–14. Classic Timing Analyzer and TimeQuest Analyzer Equivalent Constraints

Classic Timing Analyzer
Assignment FPGA-Centric SDC System-Centric SDC More Information

tSU Requirement (1) set_max_delay set_input_delay -max page 8–30

tH Requirement (1) set_min_delay set_input_delay -min page 8–32

tCO Requirement (2) set_max_delay set_output_delay -max page 8–34

Minimum tCO Requirement (2) set_min_delay set_output_delay -min page 8–36

Notes to Table 8–14:

(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 8–55 for more information about how the conversion utility converts this type
of assignment.

(2) Refer to “tCO Requirement Conversion” on page 8–49 for more information about how the conversion utility converts this type of assignment.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–48 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility
PLL Phase Shift Conversion
The conversion utility does not account for PLL phase shifts when it converts values
of the following FPGA-centric I/O timing assignments:

■ tSU Requirement

■ tH Requirement

■ tCO Requirement

■ Minimum tCO Requirement

If any of your paths go through PLLs with a phase shift, you must correct the
converted values for those paths according to the formula in Equation 8–13:

Example 8–18 shows the incorrect conversion result for a tCO assignment and how to
correct it. For the example, assume the PLL output frequency is 200 MHz (period is
5 ns), the phase shift is 90 degrees, the tCO Requirement value is 1 ns, and it is made
to data[0]. The .qsf contains the following assignment:

The conversion utility generates the SDC command shown in Example 8–19.

To correct the value, use the formula and values above, as shown in the following
equation:

Then, change the value so the SDC command so that it looks like Example 8–20.

Equation 8–13.

Example 8–18. Assignment

set_instance_assignment -name TCO_REQUIREMENT -to data[0] 1.0

Example 8–19. SDC Command

set_max_delay -from [get_registers *] -to [get_ports data[0]] 1.0

Example 8–20. SDC Command with Correct Values

set_max_delay -from [get_registers *] -to [get_ports data[0]] -0.25

<correct value> <converted value> <pll output period> <phase shift>×()
360

--–=

1.0 5 90×()
360

---------------------– 0.25–=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–49
Conversion Utility
tCO Requirement Conversion
The conversion utility uses a special process to convert tCO Requirement and
Minimum tCO Requirement assignments. In addition to the set_max_delay or
set_min_delay commands, the conversion utility adds a set_output_delay constraint
relative to a virtual clock named N/C (Not a Clock). It also creates the virtual clock
named N/C with a period of 10 ns. Adding the virtual clock allows you to report
timing on the output paths. Without the virtual clock N/C, the clock used for
reporting would be blank. Example 8–21 shows how the conversion utility converts a
tCO Requirement assignment of 5.0 ns to data[0].

Entity-Specific Assignments
Next, the conversion utility converts the entity-specific assignments listed in
Table 8–15 that exist in the Timing Analyzer Settings report panel. This usually
occurs if you have any timing assignments in your Verilog HDL or VHDL source,
which can include MegaCore function files. These entity-specific assignments cannot
be automatically converted unless your project is compiled and a \db directory exists.

1 You must manually convert all other entity-specific timing assignments.

Paths Between Unrelated Clock Domains
The conversion utility can create exceptions that cut paths between unrelated clock
domains, which matches the default behavior of the Classic Timing Analyzer. When
Cut paths between unrelated clock domains is turned on, the conversion utility
creates clock groups with the set_clock_groups command and uses the -exclusive
option to cut paths between the clock groups.

Example 8–21. Converting a tCO Requirement Assignment of 5.0 ns to data[0]

set_max_delay -from [get_registers *] -to [get_ports data[0]] 5.0
set_output_delay -clock "N/C" 0 [get_ports data[0]]

Table 8–15. Entity-Specific Timing Assignments

Classic Timing Analyzer
Assignment QSF Variable More Information

Multicycle MULTICYCLE

page 8–27
Source Multicycle SRC_MULTICYCLE

Multicycle Hold HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Setup Relationship SETUP_RELATIONSHIP page 8–24

Hold Relationship HOLD_RELATIONSHIP page 8–25

Cut Timing Path CUT page 8–40
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–50 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility
Unsupported Instance Assignments
Finally, the conversion utility checks for the unsupported instance assignments listed
in Table 8–16 and warns you if any exist. Refer to the indicated page for information
about each assignment.

1 You can manually convert some of the assignments to SDC constraints.

Reviewing Conversion Results
You must review the messages that are generated during the conversion process, and
review the .sdc file for correctness and completeness. Warning and critical warning
messages identify significant differences between the Classic Timing Analyzer and
TimeQuest analyzer behaviors. In some cases, warning messages indicate that the
conversion utility ignored assignments because it could not determine the intended
functionality of your design. You must add to or modify the SDC constraints as
necessary based on your knowledge of the design.

The conversion utility creates an .sdc with the same name as your current revision,
<revision>.sdc, and it overwrites any existing <revision>.sdc. If you use the conversion
utility to create an .sdc, you should make additions or corrections in a separate .sdc, or
a copy of the .sdc created by the conversion utility. That way, you can rerun the
conversion utility later without overwriting your additions and changes. If you have
constraints in multiple .sdc files, refer to“Constraint File Priority” on page 8–7 to learn
how to add constraints to your project.

Warning Messages
The conversion utility may generate any of the following warning messages. Refer to
the information provided for each warning message to learn what to do in that
instance.

Ignored QSF Variable <assignment>

The conversion utility ignored the specified assignment. Determine whether an
equivalent constraint is necessary and manually add one if appropriate. Refer to
“Timing Assignment Conversion” on page 8–24 for information about conversions for
all QSF timing assignments.

Table 8–16. Instance Timing Assignments

Assignment Name QSF Variable More
Information

Inverted Clock INVERTED_CLOCK page 8–25

Maximum Clock Arrival Skew MAX_CLOCK_ARRIVAL_SKEW page 8–41

Maximum Data Arrival Skew MAX_DATA_ARRIVAL_SKEW page 8–41

Maximum Delay MAX_DELAY page 8–40

Minimum Delay MIN_DELAY page 8–41

Virtual Clock Reference VIRTUAL_CLOCK_REFERENCE page 8–26
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–51
Conversion Utility
Global <name> = <value>

The conversion utility ignored the global assignment <name>. Manually add an
equivalent constraint if appropriate. Refer to “Unsupported Global Assignments” on
page 8–43 for information about conversions for these assignments.

QSF: Expected <name> to be set to <expected value> but it is set to <actual value>

The behavior of the TimeQuest analyzer is closest to the Classic Timing Analyzer
when the value for the specified assignment is the expected value. Because the actual
assignment value is not the expected value in your project, the TimeQuest analyzer
analysis may be different from the Classic Timing Analyzer analysis. Refer to
“Recommended Global Assignments” on page 8–43 for an explanation about the
indicated QSF variable names.

QSF: Found Global FMAX Requirement. Translation will be done using derive_clocks

Your design includes a global fMAX requirement, and the requirement is converted to
the derive_clocks command. Refer to “Default Required fMAX Assignment” on
page 8–26 for information about how to convert to an SDC constraint.

TAN Report Database not found. HDL based assignments will not be migrated

You did not analyze your design with the Classic Timing Analyzer before running the
conversion utility. As a result, the conversion utility did not convert any timing
assignments in your HDL source code to SDC constraints. If you have timing
assignments in your HDL source code, you must find and convert them manually, or
analyze your design with the Classic Timing Analyzer and rerun the conversion
utility.

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>

The conversion utility ignored the specified entity assignment because the utility
cannot automatically convert the assignment. Table 8–15 on page 8–49 lists the
entity-specific assignments the script can convert automatically.

Refer to “Timing Assignment Conversion” on page 8–24 for information about how to
convert the entity assignment manually.

Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock>

In some cases, this assignment is used to work around a limitation in how the Classic
Timing Analyzer handles some forms of clock inversion. The conversion script
ignores the assignment because it cannot determine whether the assignment is used
as a workaround. Review your clock setting and add the assignment in your .sdc if
appropriate. Refer to “Clock Offset” on page 8–10 for more information about
converting clock offset.

Clock <clock> has no FMAX_REQUIREMENT - No clock was generated

The conversion utility did not convert the clock named <clock> because it has no fM AX
requirement. You should add a clock constraint with an appropriate period to your
.sdc.

No Clock Settings defined in .qsf

If your .qsf has no clock settings, ignore this message. You must add clock constraints
in your .sdc manually.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–52 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Conversion Utility
Clocks
Ensure that the conversion utility converted all clock assignments correctly. Run the
report_clocks command, or double-click Report Clocks in the Tasks pane in the
TimeQuest analyzer GUI. Make sure that the right number of clocks is reported. If any
clock constraints are missing, you must add them manually with the appropriate SDC
commands (create_clock or create_generated_clock). Confirm that each option for
each clock is correct.

The TimeQuest analyzer can create more clocks, such as:

■ derive_clocks selecting ripple clocks

■ derive_pll_clocks, adding

■ Extra clocks for PLL switchover

■ Extra clocks for LVDS pulse-generated clocks (~load_reg)

Clock Transfers
After you confirm that all clock assignments are correct, run the
report_clock_transfers command, or double-click Report Clock Transfers in the
Tasks pane in the TimeQuest analyzer GUI. The command generates a summary table
with the number of paths between each clock domain. If the number of cross-clock
domain paths seems high, remember that all clock domains are related in the
TimeQuest analyzer. You must cut unrelated clock domains. Refer to “Related and
Unrelated Clocks” on page 8–10 for information about how to cut unrelated clock
domains.

Path Details
If you have unexpected differences between the Classic Timing Analyzer and the
TimeQuest analyzer on some paths, follow these steps to identify the cause of the
difference.

1. Report timing on the path in the TimeQuest analyzer.

2. Compare slack values.

3. Compare source and destination clocks.

4. Compare the launch/latch times in the TimeQuest analyzer to the setup/hold
relationship in the Classic Timing Analyzer. The times are absolute in the
TimeQuest analyzer and relative in the Classic Timing Analyzer.

5. Compare clock latency values.

Unconstrained Paths
Next, run the report_ucp command, or double-click Report Unconstrained Paths in
the Tasks pane in the TimeQuest analyzer GUI. This command generates a series of
reports that detail any unconstrained paths in your design. If your design was
completely constrained in the Classic Timing Analyzer, but there are unconstrained
paths in the TimeQuest analyzer, some assignments may not have been converted
properly. Also, some of the assignments could be ambiguous. The TimeQuest
analyzer analyzes more paths than the Classic Timing Analyzer does, so any
unconstrained paths might be paths you could not constrain in the Classic Timing
Analyzer.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–53
Notes
Bus Names
If your design includes Classic Timing Analyzer timing assignments to buses, and the
bus names do not include square brackets enclosing an asterisk, such as: address[*],
you should review the SDC constraints to ensure the conversion is correct. Refer to
“Bus Name Format” on page 8–6 for more information.

Other
Review the notes listed in “Conversion Utility” on page 8–55.

Rerunning the Conversion Utility
You can force the conversion utility to run even if it can find an .sdc according to the
priority described in “Constraint File Priority” on page 8–7. Any method described in
“Create SDC Constraints from Existing Timing Assignments” on page 8–2 forces the
conversion utility to run even if it can find an .sdc.

Notes
This section describes notes for the TimeQuest analyzer.

Output Pin Load Assignments
The TimeQuest analyzer takes Output Pin Load values into account when it analyzes
your design. If you change Output Pin Load assignments and do not recompile
before you analyze timing, you must use the -force_dat option when you create the
timing netlist. Type the following command at the Tcl console of the TimeQuest
analyzer:

create_timing_netlist -force_dat r
If you change Output Pin Load assignments and recompile before you analyze
timing, do not use the -force_dat option when you create the timing netlist. You can
create the timing netlist with the create_timing_netlist command, or with the Create
Timing Netlist task in the Tasks pane.

Also note that the SDC set_output_load command is not supported, so you must
make all output load assignments in the .qsf.

Constraint Target Types
The TimeQuest analyzer supports mixed exception types; you can apply an exception
of any clock/node combination.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

8–54 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Notes
DDR Constraints with the DDR Timing Wizard
The DDR Timing Wizard creates an .sdc that contains constraints for a DDR interface.
You can use that .sdc with the TimeQuest analyzer to analyze only the DDR interface
part of a design.

You should use the .sdc created by DDR Timing Wizard for constraining a DDR
interface in the TimeQuest analyzer. Additionally, your .qsf should not contain timing
assignments for the DDR interface if you plan to use the conversion utility to create an
.sdc. You should run the conversion utility before you use DDR Timing Wizard, and
you should choose not to apply assignments to the .qsf.

However, if you used DDR Timing Wizard and chose to apply assignments to a .qsf,
before you used the conversion utility, you should remove the DDR Timing
Wizard-generated QSF timing assignments and rerun the conversion utility. The
conversion utility creates some incompatible SDC constraints from the DDR Timing
Wizard QSF assignments.

Unsupported SDC Features
Some SDC commands and features are not supported by the current version of the
TimeQuest analyzer, including the following commands and features:

■ The get_designs command, because the Quartus II software supports a single
design, so this command is not necessary

■ True latch analysis with time-borrowing feature; it can, however, convert latches to
negative-edge-triggered registers

■ The case analysis feature

■ Loads, clock transitions, input transitions, and other features

Constraint Passing and Optimization
The Quartus II software can read constraints generated by other EDA software, and
write constraints to be read by other EDA software.

Other synthesis software can generate constraints that target the .qsf. If you change
timing constraints in synthesis software after creating an .sdc for the TimeQuest
analyzer, you must update the SDC constraints. You can use the conversion utility, or
update the .sdc manually.

If you use physical synthesis with the TimeQuest analyzer, the design may have lower
performance.

Clock Network Delay Reporting
The TimeQuest analyzer reports delay on the clock network by node-to-node
segments; the Classic Timing Analyzer reports delay on the clock network as a single
number, rather than node-to-node segments
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer 8–55
Document Revision History
Project Management
If you use the project_open Tcl command in the TimeQuest analyzer to open a project
compiled with an earlier version of the Quartus II software, the TimeQuest analyzer
overwrites the compilation results (\db folder) without warning. Opening a project
any other way results in a warning, and you can choose not to open the project.

Conversion Utility
This section describes the notes for the QSF assignment to SDC constraint conversion
utility.

tPD and Minimum tPD Requirement Conversion
The conversion utility treats the targets of single-point tPD and minimum tPD
assignments as device outputs. It does not correctly convert targets of single-point tPD
and minimum tPD assignments that are device inputs. The following QSF assignment
applies to an a device input named d_in:

set_intance_assignment -name TPD_REQUIREMENT -to d_in "3 ns"

The conversion utility creates the following SDC command, regardless of whether
d_in is a device input or device output:

set_max_delay "3 ns" -from [get_ports *] -to [get_ports d_in]

You must update any incorrect SDC constraints manually.

f For more detailed information about the features and capabilities of the TimeQuest
analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Document Revision History

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 8–17. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Removed deprecated Classic Timing Analyzer features.

■ Minor updates to content.

July 2010 10.0.0 Minor updates to content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 This was chapter 8 in version 8.1.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

8–56 Chapter 8: Switching to the Quartus II TimeQuest Timing Analyzer
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53005-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53005-10.0.1
9. Synopsys PrimeTime Support
PrimeTime is the Synopsys stand-alone full chip, gate-level static timing analyzer. The
Quartus® II software makes it easy for designers to analyze their Quartus II projects
using the PrimeTime software. The Quartus II software exports a netlist, design
constraints (in the PrimeTime format), and libraries to the PrimeTime software
environment. Figure 9–1 shows the PrimeTime flow diagram.

This chapter contains the following sections:

■ “Quartus II Settings for Generating the PrimeTime Software Files”

■ “Files Generated for the PrimeTime Software Environment” on page 9–2

■ “Running the PrimeTime Software” on page 9–6

■ “PrimeTime Timing Reports” on page 9–7

■ “Static Timing Analyzer Differences” on page 9–18

Quartus II Settings for Generating the PrimeTime Software Files
To set up the Quartus II software to generate files for the PrimeTime software,
perform the following steps:

1. In the Quartus II software, on the Assignments menu, click Settings, and then
click EDA Tool Settings.

2. In the Category list, under EDA Tool Settings, select Timing Analysis.

3. In the Tool name list, select PrimeTime, and in the Format for output netlist list,
select either Verilog HDL or VHDL.

Figure 9–1. PrimeTime Software Flow Diagram

Design Netlist
(Verilog HDL or
VHDL Format)

Constraints in
PrimeTime

Format

Standard Delay
Format Output

File (Timing
Information)

Timing Reports Generated

The Quartus II Software

The PrimeTime Software

DB lib
HDL lib
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53005

9–2 Chapter 9: Synopsys PrimeTime Support
Files Generated for the PrimeTime Software Environment
When you compile your project after making these settings, the Quartus II software
runs the EDA Netlist Writer to create three files for the PrimeTime software. These
files are saved in the <revision_name>/timing/primetime directory by default, where
<revision_name> is the name of your Quartus II software revision. If it is not, you have
used the wrong variable name.

Files Generated for the PrimeTime Software Environment
The Quartus II software generates a flattened netlist, a Standard Delay Output File
(.sdo), and a Tcl script that prepares the PrimeTime software for timing analysis of the
Quartus II project. These files are saved in the <project directory>/timing/primetime
directory.

The Quartus II software uses the EDA Netlist Writer to generate PrimeTime files
based on either the Classic Timing Analyzer or the TimeQuest Timing Analyzer static
timing analysis results. When you run the EDA Netlist Writer, the PrimeTime .sdo
files are based on delays generated by the currently selected timing analysis tool in
the Quartus II software.

To specify the timing analyzer, on the Assignments menu, click Settings. The Settings
dialog box appears. Under Category, click Timing Analysis Settings. Select the
timing analyzer of your choice.

f For more information about specifying the Quartus II timing analyzers, refer to either
the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing Analyzer
chapter in volume 3 of the Quartus II Handbook. Also, refer to the Switching to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook to
help you decide which timing analyzer is most appropriate for your design.

The Netlist
Depending on whether Verilog HDL or VHDL is selected as the Format for output
netlist option, in the Tool name list on the Timing Analysis page of the Settings
dialog box, the netlist is written and saved as either <project name>.vo or
<project name>.vho, respectively. This file contains the flattened netlist representing
the entire design.

1 When you select the TimeQuest analyzer, only a Verilog HDL PrimeTime netlist can
be generated.

The .sdo File
The Quartus II software saves the .sdo file as either <revision_name>_v.sdo or
<revision_name>_vhd.sdo, depending on whether you select Verilog HDL or VHDL
in the Tool name list on the Timing Analysis page of the Settings dialog box.

This file contains the timing information for each timing path between any two nodes
in the design.

When you enable the Classic Timing Analyzer, the slow-corner (worst-case) timing
models are used by default when generating the .sdo file. To generate the .sdo file
using the fast-corner (best-case) timing models, perform the following steps:
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Chapter 9: Synopsys PrimeTime Support 9–3
Files Generated for the PrimeTime Software Environment
1. In the Quartus II software, on the Processing menu, point to Start and click Start
Classic Timing Analyzer (Fast Timing Model).

2. After the fast-corner timing analysis is complete, on the Processing menu, point to
Start and click Start EDA Netlist Writer to create a <revision_name>_v_fast.sdo or
<revision_name>_vhd_fast.sdo file, which contains the best-case delay values for
each timing path.

1 If you are running a best-case timing analysis, the Quartus II software generates a Tcl
script similar to the following: <revision_name>_pt_v_fast.tcl.

When the TimeQuest analyzer is run with the fast-corner netlist, or when the
Optimize fast-corner timing check box is selected in the Fitter Settings dialog box,
the fast-corner Synopsys Design Constraints File (.sdc) file is generated.

After the EDA Netlist Writer has finished, two .sdc files are created:
<revision_name>_v.sdo (slow corner) and <revision_name>_v_fast.sdo (fast corner).

Generating Multiple Operating Conditions with the TimeQuest Analyzer
You can specify different operating conditions to the EDA Netlist Writer for
PrimeTime analysis. The different operating conditions are reflected in the .sdo file
generated by the EDA Netlist Writer.

1 From the TimeQuest analyzer console pane, use the command
get_available_operating_conditions to obtain a list of available operating
conditions for the target device.

The following steps show how to generate the .sdo files for the three different
operating conditions for a Stratix III design. Enter each command at the command
prompt.

1 The --tq2pt option for quartus_sta is required only if the project does not specify
that the PrimeTime tool is be used as the timing analysis tool.

1. Generate the first slow-corner model at the operating conditions: slow, 1100 mV,
and 85º C.

quartus_sta --model=slow --voltage=1100 --temperature=85 <project name>

2. Generate the fast-corner model at the operating conditions: fast, 1100 mV, and 0º C.

quartus_sta --model=fast --voltage=1100 --temperature=0
--tq2pt <project name>

3. Generate the PrimeTime output files for the corners specified above. The output
files are generated in the primetime_two_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog
--output_directory=primetime_two_corner_files
--write_settings_files=off <project name>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–4 Chapter 9: Synopsys PrimeTime Support
Files Generated for the PrimeTime Software Environment
4. Generate the second slow-corner model at the operating conditions: slow,
1100 mV, and 0º C.

quartus_sta --model=slow --voltage=1100 --temperature=0
--tq2pt <project name>

5. Generate the PrimeTime output files for the second slow corner. The output files
are generated in the primetime_one_slow_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog
--output_directory=primetime_one_slow_corner_files
--write_settings_files=off $revision

To summarize, the previous steps generate the following files for the three operating
conditions:

■ First slow corner (slow, 1100 mV, 85º C):
.vo file—primetime_two_corner_files/<project name>.vo
.sdo file—primetime_two_corner_files/<project name>_v.sdo

■ Fast corner (fast, 1100 mV, 0º C):
.vo file—primetime_two_corner_files/<project name>.vo
.sdo file—primetime_two_corner_files/<project name>_v_fast.sdo

■ Second slow corner (slow, 1100 mV, 0º C):
.vo file—primetime_one_slow_corner_files/<project name>.vo
.sdo file—primetime_one_slow_corner_files/<project name>_v.sdo

1 The primetime_one_slow_corner_files directory may also have files for fast corner.
These files can be ignored because they were already generated in the
primetime_two_corner_files directory.

The Tcl Script
The Tcl script generated by the Quartus II software contains information required by
the PrimeTime software to analyze the timing and set up your post-fit design. This
script specifies the search path and the names of the PrimeTime database library files
provided with the Quartus II software. The search_path and link_path variables are
defined at the beginning of the Tcl file. The link_path variable is a space-delimited list
that contains the names of all database files used by the PrimeTime software.

Depending on whether you select Verilog HDL or VHDL in the Format for output
netlist list on the Timing Analysis page of the Settings dialog box, when the Classic
Timing Analyzer is enabled, the EDA Netlist Writer generates and saves the script as
either <revision_name>_pt_v.tcl or <revision_name>_pt_vhd.tcl.

To access the EDA Settings dialog box, perform the following:

1. On the Assignments menu, click Settings, and then click EDA Tool Settings

2. Expand EDA Tool Settings under the Category list.

In the dialog box, you can specify VHDL or Verilog HDL for the format of the output
netlist.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–5
Files Generated for the PrimeTime Software Environment
1 The script also directs the PrimeTime software to use the <device family>_all_pt.v or
<device family>_all_pt.vhd file, which contains the Verilog HDL or VHDL description
of library cells for the targeted device family.

Example 9–1 shows the search_path and link_path variables defined in the Tcl script:

The EDA Netlist Writer converts any Classic Timing Analyzer timing assignments to
the PrimeTime software constraints and exceptions when it generates the PrimeTime
files. The converted constraints are saved to the Tcl script. The Tcl script also includes
a PrimeTime software command that reads the .sdo file generated by the Quartus II
software. You can place additional commands in the Tcl script to analyze or report on
timing paths.

Table 9–1 shows some examples of timing assignments converted by the Quartus II
software for the PrimeTime software. For example, the set_input_delay -max
command sets the input delay on an input pin.

When the TimeQuest analyzer is turned on, the EDA Netlist Writer generates and
saves the script as <revision_name>.pt.tcl.

The EDA Netlist Writer converts all TimeQuest analyzer .sdc constraints and
exceptions into compatible PrimeTime software constraints and exceptions when it
generates the PrimeTime files. The constraints and exceptions are saved to the
<revision_name>.constraints.sdc file.

Example 9–1. Sample PrimeTime Setup Script

set quartus_root "altera/quartus/"
set search_path [list . [format "%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

set link_path [list * stratixii_lcell_comb_lib.db stratixii_lcell_ff_lib.db
stratixii_asynch_io_lib.db stratixii_io_register_lib.db stratixii_termination_lib.db
bb2_lib.db stratixii_ram_internal_lib.db stratixii_memory_register_lib.db
stratixii_memory_addr_register_lib.db stratixii_mac_out_internal_lib.db
stratixii_mac_mult_internal_lib.db stratixii_mac_register_lib.db
stratixii_lvds_receiver_lib.db stratixii_lvds_transmitter_lib.db
stratixii_asmiblock_lib.db stratixii_crcblock_lib.db stratixii_jtag_lib.db
stratixii_rublock_lib.db stratixii_pll_lib.db stratixii_dll_lib.db alt_vtl.db]

read_vhdl -vhdl_compiler stratixii_all_pt.vhd

Table 9–1. Equivalent Quartus II and PrimeTime Software Constraints

Quartus II Equivalent PrimeTime Constraint

Clock defined on input pin, clock of 10 ns
period and 50% duty cycle

create_clock -period 10.000 -waveform {0 5.000} \
[get_ports clk] -name clk

Input maximum delay of 1 ns on input pin, din set_input_delay -max -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Input minimum delay of 1 ns on input pin, din set_input_delay -min -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Output maximum delay of 3 ns on output pin,
out

set_output_delay -max -add_delay 3.000 -clock \
[get_clocks clk] [get_ports out]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–6 Chapter 9: Synopsys PrimeTime Support
Running the PrimeTime Software
Generated File Summary
The files that are generated by the EDA Netlist Writer for the PrimeTime software
depend on the Quartus II timing analysis tool you select.

Table 9–2 shows the files that are generated for the PrimeTime software when the
Classic Timing Analyzer is selected.

Table 9–3 shows the files that are generated for the PrimeTime software when the
TimeQuest analyzer is selected. The EDA Netlist Writer supports the output netlist
format only when the TimeQuest analyzer is enabled.

Running the PrimeTime Software
The PrimeTime software runs only on UNIX operating systems. If the Quartus II
output files for the PrimeTime software were generated by running the Quartus II
software on a PC/Windows-based system, follow these steps to run the PrimeTime
software using Quartus II output files:

1. Install the PrimeTime libraries on a UNIX system by installing the Quartus II
software on UNIX.

The PrimeTime libraries are located in the <Quartus II installation
directory>/eda/synopsys/primetime/lib directory.

2. Copy the Quartus II output files to the appropriate UNIX directory. You may need
to run a PC to UNIX program, such as dos2unix, to remove any control characters.

Table 9–2. Classic Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vho |
<revision_name>.vo

The PrimeTime software output netlist. Either a VHDL Output File (.vho) or a Verilog
Output File (.vo) is generated, depending on the output netlist language set.

<revision_name>_vhd.sdo |
<revision_name>_v.sdo

The PrimeTime software standard delay file. Either a VHDL Standard Delay Output File
(vhd.sdo) or a Verilog Standard Delay Output File (v.sdo) is generated, depending on the
output netlist language set.

<revision_name>_pt_vhd.tcl |
<revision_name>_pt_v.tcl

PrimeTime setup and constraint script. Either a VHDL Tcl Script File (vhd.tcl) or a
Verilog Tcl Script File (v.tcl) is generated, depending on the output netlist language set.

Table 9–3. TimeQuest Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vo The PrimeTime software output netlist. When the TimeQuest analyzer is enabled,
only PrimeTime (Verilog HDL) is supported.

<revision_name>_v.sdo |
<revision_name>_v_fast.sdo

The PrimeTime software standard delay file. When the TimeQuest analyzer is
enabled, only PrimeTime (Verilog HDL) is supported.

<revision_name>.pt.tcl PrimeTime setup and constraint script. When the TimeQuest analyzer is enabled,
only PrimeTime (Verilog HDL) is supported.

<revision_name>.collections.sdc Contains the mapping from the TimeQuest analyzer netlist to the PrimeTime netlist.

<revision_name>.constraints.sdc Contains the converted TimeQuest analyzer constraints for the PrimeTime
software.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–7
PrimeTime Timing Reports
3. Modify the Quartus II path in Tcl scripts to point to the PrimeTime libraries using
the first line of Example 9–1:

set quartus_root "altera/quartus/" set search_path [list . [format
"%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

Analyzing Quartus II Projects
The PrimeTime software is controlled with Tcl scripts and can be run through
pt_shell. You can run the <revision_name>_pt_v.tcl script file. For example, type the
following at a UNIX system command prompt:

pt_shell -f <revision_name>_pt_v.tcl r
When the TimeQuest analyzer is selected, type the following at a UNIX system
command prompt:

pt_shell -f <revision_name>.pt.tcl r
After all Tcl commands in the script are interpreted, the PrimeTime software returns
control to the pt_shell prompt, which allows you to use other commands.

Other pt_shell Commands
You can run additional pt_shell commands at the pt_shell prompt, including the
man program. For example, to read documentation about the report_timing
command, type the following at the pt_shell prompt:

man report_timing r
You can list all commands available in pt_shell by typing the following at the
pt_shell prompt:

help r
Type quit r at the pt_shell prompt to close pt_shell.

1 You can also run pt_shell without a script file by typing pt_shellr at the UNIX
command line prompt.

PrimeTime Timing Reports
This section describes PrimeTime timing reports.

Sample PrimeTime Software Timing Report
After running the script, the PrimeTime software generates a timing report. If the
timing constraints are not met, Violated is displayed at the end of the timing report.
The timing report also gives the negative slack.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–8 Chapter 9: Synopsys PrimeTime Support
PrimeTime Timing Reports
The PrimeTime software timing report is similar to the sample shown in Example 9–2.
The starting point in this report is a register clocked by clock signal, clock, and the
endpoint is another register, inst3-I.lereg.

Comparing Timing Reports from the Classic Timing Analyzer and the
PrimeTime Software

Both the Classic Timing Analyzer and the TimeQuest analyzer generate a static timing
analysis report for every successful design compilation. The timing report lists all of
the timing paths in your design that were analyzed, and indicates whether these paths
have met or violated their timing requirements. Violations are reported only if timing
constraints were specified.

The TimeQuest analyzer and PrimeTime use an equivalent set of equations when
reporting the static timing analysis results for a design. However, the Classic Timing
Analyzer uses slightly different reporting equations when reporting the static timing
analysis results for a design. This section describes the differences between the Classic
Timing Analyzer and the PrimeTime software.

The timing report generated by the Classic Timing Analyzer differs from the report
generated by the PrimeTime software. Both tools provide the same data, but the data
is presented in different formats. The following sections show how the PrimeTime
software reports the following slack values differently from the Classic Timing
Analyzer report:

■ “Clock Setup Relationship and Slack” on page 9–9

■ “Clock Hold Relationship and Slack” on page 9–12

■ “Input Delay and Output Delay Relationships and Slack” on page 9–16

Example 9–2. Hold Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: min
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <- 0.176* 3.342r
inst2~I.regout (stratix_lcell) 0.000* 3.342r
inst3~I.datac (stratix_lcell) 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 3.002r
library hold time 0.100* 3.102
data required time 3.102

data required time 3.102
data arrival time -6.755

slack (MET) 3.653
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–9
PrimeTime Timing Reports

ay
Clock Setup Relationship and Slack
The Classic Timing Analyzer performs a setup check that ensures that the data
launched by source registers is latched correctly at the destination registers. The
Classic Timing Analyzer does this by determining the data arrival time and clock
arrival time at the destination registers, and compares this data with the setup time
delay of the destination register. Equation 9–1 expresses the inequality that is used for
a setup check. The data arrival time includes the longest path from the clock to the
source register, the clock-to-out micro delay of the source register, and the longest
path from the source register to the destination register. The clock arrival time is the
shortest delay from the clock to the destination register.

Slack is the margin by which a timing requirement is met or not met. Positive slack
indicates the margin by which a requirement is met. Negative slack indicates the
margin by which a requirement is not met. The Classic Timing Analyzer determines
the clock setup slack, as shown in Equation 9–2:

1 The longest register-to-register delay in the previous equation is equal to the
register-to-register data delay.

Figure 9–2 shows a simple three-register design.

Equation 9–1.

Equation 9–2.

Clock Arrival Data Arrival tsu≥–

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Del–=

Equation 9–3.

Largest Register-to-Register Requirement
Setup Relationship between Source and Destination Largest Clock Skew
Micro tco of Destination Register Micro tsu of Destination Register–

–+
=

Setup Relationship between Source and Destination Latch Edge Launch Edge–=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

Figure 9–2. Simple Three-Register Design
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–10 Chapter 9: Synopsys PrimeTime Support
PrimeTime Timing Reports
The Classic Timing Analyzer generates a report for the design, as shown in
Figure 9–3.

Equation 9–1, Equation 9–2, and Equation 9–3 are similar to those found in other
static timing analysis tools, such as the PrimeTime software. Equation 9–4 through
Equation 9–7, used by the PrimeTime software, are essentially the same as those used
by the Classic Timing Analyzer, but they are rearranged.

1 The longest data delay in the previous equation is equal to
register-to-register data delay.

Figure 9–3. Timing Analyzer Report from Figure 9–2

Equation 9–4.

Equation 9–5.

Equation 9–6.

Equation 9–7.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Shortest Clock Path to Destination+=

Data Required Clock Arrival Micro tsu–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Longest Data Delay++ +=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–11
PrimeTime Timing Reports

ay
Figure 9–4 shows a clock setup check in the Quartus II software.

The results in Equation 9–8 are obtained by extracting the numbers from the Classic
Timing Analyzer report and applying them to the clock setup slack equations from
the Classic Timing Analyzer:

Figure 9–4. Clock Setup Check Reporting with the Classic Timing Analyzer

Equation 9–8.

Setup Relationship between Source and Destination Latch Edge Launch Edge
Clock Setup Uncertainty

––=

8.0 0.0– 0.0– 8.0ns=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

3.002 3.166– 0.164ns–=

Largest Register-to-Register Requirement
Setup Relationship between Source & Destination Largest Clock Skew

Micro tco of Source Register– Micro tsu of Destination Register–
+

=

8 0.164–() 0.176– 0.010–+ 7.650ns=

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Del–=

7.650 3.413– 4.237ns=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–12 Chapter 9: Synopsys PrimeTime Support
PrimeTime Timing Reports
For the same register-to-register path, the PrimeTime software generates a clock setup
report as shown in Example 9–3:

Clock Hold Relationship and Slack
The Classic Timing Analyzer performs a hold time check along every
register-to-register path in the design to ensure that no hold time violations have
occurred. The hold time check verifies that data from the source register does not
reach the destination until after the hold time of the destination register. The condition
used for a hold check is shown in Equation 9–9:

Example 9–3. Setup Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: max
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <- 0.176* 3.342r
inst2~I.regout (stratix_lcell) <- 0.000* 3.342r
inst3~I.datac (stratix_lcell) <- 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755
clock clock (rise edge) 8.000 8.000
clock network delay (propagated) 3.002 11.002
inst3~I.lereg.clk (stratix_lcell_register 11.002r
library setup time -0.010* 10.992
data required time 10.992
--
data required time 10.992
data arrival time -6.755
--
slack (MET) 4.237

Equation 9–9.

Data Arrival Clock Arrival– tH≥
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–13
PrimeTime Timing Reports

ent
The Classic Timing Analyzer determines the clock hold slack with Equation 9–10,
Equation 9–11, Equation 9–12, and Equation 9–13:

Figure 9–5 shows a simple three-register design.

Equation 9–10.

Equation 9–11.

Equation 9–12.

Equation 9–13.

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirem–=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tsu of Source Micro tH of Destination+–

+=

Hold Relationship between Source & Destination Latch Edge Launch Edge–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

Figure 9–5. Simple Three-Register Design
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–14 Chapter 9: Synopsys PrimeTime Support
PrimeTime Timing Reports
The Classic Timing Analyzer generates a report as shown in Figure 9–6.

The previous equations are similar to those found in the Quartus II software.
Equation 9–14 through Equation 9–17 are the same equations that are used by the
PrimeTime software, but they are rearranged.

1 The shortest register-to-register delay in the previous equation is equal to
register-to-register data delay.

Figure 9–6. Timing Analyzer Report Generated from the Three-Register Design

Equation 9–14.

Equation 9–15.

Equation 9–16.

Equation 9–17.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Longest Clock Path to Destination+=

Data Required Clock Arrival Micro tH–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Shortest Data Delay++ +=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–15
PrimeTime Timing Reports

ent
Figure 9–7 shows a clock setup check with the Classic Timing Analyzer.

The results in Equation 9–18 are obtained by extracting the numbers from the Timing
Analysis report and applying the clock setup slack equations from the Classic Timing
Analyzer.

Figure 9–7. Clock Hold Check Reporting with the Classic Timing Analyzer

Equation 9–18.

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirem–=

3.413 0.240–()– 3.653ns=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tco of Source Micro tH of Destination+–

+=

0 0.164–() 0.176– 0.100+ + 0.240ns–=

Hold Relationship between Source & Destination Latch Launch–=

0.0 0.0ns–

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

3.002 3.166– 0.164ns–=
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–16 Chapter 9: Synopsys PrimeTime Support
PrimeTime Timing Reports
For the same register-to-register path, the PrimeTime software generates the report
shown in Example 9–4:

Both sets of hold slack equations can be used to determine the hold slack value of any
path.

Input Delay and Output Delay Relationships and Slack
Input delay and output delay reports generated by the Classic Timing Analyzer are
similar to the clock setup and clock hold relationship reports. Figure 9–8 shows the
input delay and output delay report for the design shown in Figure 9–5 on page 9–13.

Example 9–4. Hold Path Report in PrimeTime

Startpoint: inst2~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Path Group: clock
Path Type: min
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.166 3.166
inst2~I.lereg.clk (stratix_lcell_register) 0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register)<- 0.176* 3.342r
inst2~I.regout (stratix_lcell) 0.000* 3.342r
inst3~I.datac (stratix_lcell) 0.000* 3.342r
inst3~I.lereg.datac (stratix_lcell_register) 3.413* 6.755r
data arrival time 6.755

clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 3.002r
library hold time 0.100* 3.102
data required time 3.102
--
data required time 3.102
data arrival time -6.755
--
slack (MET) 3.653

Figure 9–8. Input and Output Delay Reporting with the Classic Timing Analyzer
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–17
PrimeTime Timing Reports
Figure 9–9 shows the fully expanded view for the output delay path.

For the same output delay path, the PrimeTime software generates a report similar to
Example 9–5:

To generate a list of the 100 worst paths and place this data into a file called
file.timing, type the following command at the pt_shell prompt:

report_timing -nworst 100 > file.timing r

Figure 9–9. Output Delay Path Reporting with the Classic Timing Analyzer

Example 9–5. Setup Path Report in PrimeTime

Startpoint: inst3~I.lereg
(rising edge-triggered flip-flop clocked by clock)

Endpoint: data_out
(output port clocked by clock)

Path Group: clock
Path Type: max
Point Incr Path
--
clock clock (rise edge) 0.000 0.000
clock network delay (propagated) 3.002 3.002
inst3~I.lereg.clk (stratix_lcell_register) 0.000 3.002r
inst3~I.lereg.regout (stratix_lcell_register)<- 0.176* 3.178r
inst3~I.regout (stratix_lcell)<- 0.000 3.178r
data_out~I.datain (stratix_io)<- 0.000 3.178r
data_out~I.out_mux3.A (mux21)<- 0.000 3.178r
data_out~I.out_mux3.MO (mux21)<- 0.000 3.178r
data_out~I.and2_22.IN1 (AND2)<- 0.000 3.178r
data_out~I.and2_22.Y (AND2)<- 0.000 3.178r
data_out~I.out_mux1.A (mux21)<- 0.000 3.178r
data_out~I.out_mux1.MO (mux21)<- 0.000 3.178r
data_out~I.inst1.datain (stratix_asynch_io)<- 0.902* 4.080r
data_out~I.inst1.padio (stratix_asynch_io)<- 2.495* 6.575r
data_out~I.padio (stratix_io)<- 0.000 6.575r
data_out (out) 0.000 6.575r
data arrival time 6.575
clock clock (rise edge) 8.000 8.000
clock network delay (propagated) 0.000 8.000
output external delay 1.250 6.750
data required time 6.750

data required time 6.750
data arrival time 6.575

slack (MET) 0.175
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

9–18 Chapter 9: Synopsys PrimeTime Support
Static Timing Analyzer Differences
Timing paths in the PrimeTime software are listed in the order of most-negative-slack
to most-positive-slack. The PrimeTime software does not categorize failing paths by
default. Timing setup (tsu) and timing hold (th) times are not listed separately. In the
PrimeTime software, each path is shown with a start and end point; for example, if it
is a register-to-register or input-to-register type of path. If you only use the
report_timing part of the command without adding a -delay option, only the
setup-time-related timing paths are reported.

The following command is used to create a minimum timing report or a list of
hold-time-related violations:

report_timing -delay_type min r
Ensure that the correct .sdo file, either minimum or maximum delays, is loaded before
running this command.

Static Timing Analyzer Differences
Under certain design conditions, several static timing analysis differences can exist
between the Classic Timing Analyzer and the TimeQuest analyzer, and the PrimeTime
software. The following sections explain the differences between the two static timing
analysis engines and the PrimeTime software.

Classic Timing Analyzer and PrimeTime Software
The following section describes the differences between the Classic Timing Analyzer
and the PrimeTime software.

Rise/Fall Support
The Classic Timing Analyzer does not support rise/fall analysis. However, rise/fall
support is available in PrimeTime.

Minimum and Maximum Delays
The Classic Timing Analyzer calculates minimum and maximum delays for all device
components with the exception of clock routing. PrimeTime does not model these
delays. This can result in different slacks for a given path on average of 2 to 3%.

Recovery/Removal Analysis
The Classic Timing Analyzer performs a more pessimistic recovery/removal analysis
for asynchronous paths than PrimeTime. This can result in different delays reported
between the two tools.

Encrypted Intellectual Property Blocks
The Quartus II software has the capability to decrypt all intellectual property (IP)
blocks designed for Altera® devices that have been encrypted by their vendors. The
decryption process allows the Quartus II software to perform a full compilation of the
design that contains an encrypted IP block. This also allows the Classic Timing
Analyzer to perform a complete static timing analysis on the design. However,
licensed and encrypted IP blocks do not permit output netlists to be generated when
using PrimTime as the static timing analysis tool. (The EDA Netlist Writer does not
generate .vho or .vo netlist files.)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 9: Synopsys PrimeTime Support 9–19
Static Timing Analyzer Differences
Registered Clock Signals
Registered clock signals are clock signals that pass through a register before reaching
the clock port of a sequential element. Figure 9–10 shows an example of a registered
clock signal.

If no clock setting is applied to the register on the clock path (shown as register reg_1
in Figure 9–10), the Classic Timing Analyzer treats the register in the clock path as a
buffer. The delay of the buffer is equal to the CELL delay of the register plus the tCO of
the register. The PrimeTime software does not treat the register as a buffer.

1 For more information about creating clock settings, refer to the Quartus II Classic
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Multiple Source and Destination Register Pairs
In any design, multiple paths may exist from a source register to a destination register.
Each path from the source register to the destination register may have a different
delay value due to the different routes taken. For example, Figure 9–11 shows a
sample design that contains multiple path pairs between the source register and
destination register.

The Classic Timing Analyzer analyzes all source and destination pairs, but reports
only the source and destination register pair with the worst slack. For example, if the
Path 2 pair delay is greater than the Path 1 pair delay in Figure 9–11, the Classic
Timing Analyzer reports the slack value of the Path 2 pair and not the Path 1 pair. The
PrimeTime software reports all possible source and destination register pairs.

Latches
By default, the Quartus II software implements all latches as combinational loops. The
Classic Timing Analyzer can analyze such latches by treating them as registers with
inverted clocks or analyze latches as a combinational loop modeled as a
combinational delay.

Figure 9–10. Registered Clock Signal

D Q

D Q

reg1

reg2

Logic

Figure 9–11. Multiple Source and Destination Pairs

D Q

Path 2

Path 1

D Q
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

9–20 Chapter 9: Synopsys PrimeTime Support
Static Timing Analyzer Differences
1 For more information about latch analysis, refer to the Quartus II Classic Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational loops, as
defined in the netlist file.

LVDS I/O
When analyzing the dedicated LVDS transceivers in your design, the Classic Timing
Analyzer generates the Receiver Skew Margin (RSKM) report and a
Channel-to-Channel Skew (TCCS) report. The PrimeTime software does not generate
these reports.

Clock Latency
When a single clock signal feeds both the source and destination registers of a
register-to-register path, and either an Early Clock Latency or a Late Clock Latency
assignment has been applied to the clock signal, the Classic Timing Analyzer does not
factor in the clock latency values when it calculates the clock skew between the two
registers. The Classic Timing Analyzer factors in the clock latency values when the
clock signal to the source and destination registers of a register-to-register path are
different. The PrimeTime software applies the clock latency values when a single
clock signal or different clock signals feeds the source and destination registers of a
register-to-register path.

Input and Output Delay Assignments
When a purely combinational (non-registered) path exists between an input pin and
output pin of the Altera FPGA and both pins have been constrained with an input
delay and an output delay assignment applied, respectively, the Classic Timing
Analyzer does not perform a clock setup or clock hold analysis. The PrimeTime
software analyzes these paths.

Generated Clocks Derived from Generated Clocks
The Classic Timing Analyzer does not support a generated clock derived from a
generated clock. This situation might occur if a generated clock feeds the input clock
pin of a PLL. The output clock of the PLL is a generated clock.

TimeQuest Timing Analyzer and PrimeTime Software
The following sections describe the static timing analysis differences between the
TimeQuest analyzer and the PrimeTime software.

Encrypted Intellectual Property Blocks
The Quartus II software has the capability to decrypt all IP blocks, designed for Altera
devices that have been encrypted by their vendors. The decryption process allows the
Quartus II software to perform a full compilation on the design containing an
encrypted IP block. This also allows the TimeQuest analyzer to perform a complete
static timing analysis on the design. However, licensed and encrypted IP blocks do
not permit output netlists to be generated when using PrimTime as the static timing
analysis tool. (The EDA Netlist Writer does not generate .vho or .vo netlist files.)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf

Chapter 9: Synopsys PrimeTime Support 9–21
Static Timing Analyzer Differences
Latches
By default, the Quartus II software implements all latches as combinational loops. The
TimeQuest analyzer can analyze such latches by treating them as registers with
inverted clocks. The TimeQuest analyzer analyzes latches as a combinational loop
modeled as a combinational delay.

f For more information about latch analysis, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational loops, as
defined in the netlist file.

LVDS I/O
When analyzing the dedicated LVDS transceivers in your design, the TimeQuest
analyzer generates a Receiver Skew Margin (RSKM) report and a Channel-to-Channel
Skew (TCCS) report. The PrimeTime software does not generate these reports.

The TimeQuest Timing Analyzer .sdc File and PrimeTime Compatibility
Because of differences between node naming conventions with the netlist generated
by the EDA Netlist Writer and the internal netlist used by the Quartus II software,
.sdc files generated for the Quartus II software or the TimeQuest analyzer are not
compatible with the PrimeTime software.

Run the EDA Netlist Writer to generate a compatible .sdc file from the TimeQuest .sdc
file for the PrimeTime software. After the files <revision_name>.collections.sdc and
<revision_name>.constraints.sdc have been generated, both files can be read by the
PrimeTime software for compatibility of constraints between the TimeQuest analyzer
and the PrimeTime software.

Clock and Data Paths
If a timing path acts both as a clock path (a path that connects to a clock pin with a
clock associated with it), and a data path (a path that feeds into the data-in port of a
register), the TimeQuest analyzer reports the data paths, whereas PrimeTime does
not.

Inverting and Non-Inverting Propagation
The TimeQuest analyzer always propagates non-inverting sense for clocks through
non-unate paths in the clock network.

PrimeTime’s default behavior is to propagate both inverting and non-inverting senses
through a non-unate path in the clock network.

Multiple Rise/Fall Numbers For a Timing Arc
For a given timing path with a corresponding set of pins/ports that make up the path
(including source and destination pair), if the individual components of that path
have different rise/fall delays, there can potentially be many timing paths with
different delays using the same set of pins. If this occurs, the TimeQuest analyzer
reports only one timing path for the set of pins that make up the path.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

9–22 Chapter 9: Synopsys PrimeTime Support
Conclusion
Virtual Generated Clocks
PrimeTime does not support virtual generated clocks. To maintain compatibility
between the TimeQuest analyzer and PrimeTime, all generated clocks should have an
explicit target specified.

Generated Clocks Derived from Generated Clocks
The Classic Timing Analyzer does not support the creation of a generated clock
derived from a generated clock. This situation might occur if a generated clock feeds
the input clock pin of another generated clock. The output clock of the PLL is a
generated clock.

Conclusion
The Quartus II software can export a netlist, constraints, and timing information for
use with the PrimeTime software. The PrimeTime software can use data from either
best-case or worst-case Quartus II timing models to measure timing. The PrimeTime
software is controlled using a Tcl script generated by the Quartus II software that you
can customize to direct the PrimeTime software to produce violation and slack
reports.

Document Revision History
Table 9–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 9–4. Document Revision History

Date Version Changes Made

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 ■ Minor corrections throughout, and Quartus II interface changes.

November 2009 9.1.0 ■ Updated “Setting the Quartus II Software to Generate the PrimeTime Software Files”
figure for changes in the Quartus II software version 9.1

March 2009 9.0.0
■ This was chapter 10 in version 8.1.

■ Updated for the Quartus II software version 9.0 release.

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0
■ Updated to Quartus II software version 8.0 and date.

■ Added hyperlinks to referenced Altera documentation throughout the chapter.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

December 2010 Altera Corporation
Section III. Power Estimation and
Analysis
As FPGA designs grow larger and processes continue to shrink, power is an ever-
increasing concern. When designing a PCB, the power consumed by a device must be
accurately estimated to develop an appropriate power budget, and to design the
power supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by your current
design during timing simulation. The power consumption of your design can be
calculated using the Microsoft Excel-based power calculator, or the Simulation-Based
Power Estimation features in the Quartus II software. This section explains how to use
both.

This section includes the following chapter:

■ Chapter 10, PowerPlay Power Analysis

This chapter describes the Altera® Quartus II PowerPlay power analysis tool and
how to use the tools to accurately estimate device power consumption.
Quartus II Handbook Version 10.1 Volume 3: Verification

III–2 Section III: Power Estimation and Analysis
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53013-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53013-10.1.0
10. PowerPlay Power Analysis
This chapter describes how to use the Altera® Quartus® II PowerPlay Power Analysis
tools to accurately estimate device power consumption.

As designs grow larger and process technology continues to shrink, power becomes
an increasingly important design consideration. When designing a PCB, the power
consumed by a device must be accurately estimated to develop an appropriate power
budget and to design the power supplies, voltage regulators, heat sink, and cooling
system. As shown in Figure 10–1, the PowerPlay Power Analysis tools provide the
ability to estimate power c1onsumption from early design concept through design
implementation.

h For more information about the PowerPlay suite of power analysis and optimizations
tools, refer to About Power Estimation and Analysis in Quartus II Help. For more
information about acquiring the PowerPlay EPE spreadsheet, refer to PowerPlay
Early Power Estimators (EPE) and Power Analyzer on the Altera website.

This chapter discusses the following topics:

■ “Types of Power Analyses” on page 10–2

■ “Factors Affecting Power Consumption” on page 10–2

■ “Creating PowerPlay EPE Spreadsheets” on page 10–5

■ “PowerPlay Power Analyzer Flow” on page 10–7

■ “Using Simulation Files in Modular Design Flows” on page 10–10

■ “Using the PowerPlay Power Analyzer” on page 10–16

■ “Conclusion” on page 10–24

Figure 10–1. PowerPlay Power Analysis

User Input

Quartus II
Design Profile

Placement and
Routing
Results

Simulation
Results

Design Concept Design Implementation

PowerPlay EPE Quartus II PowerPlay Power Analyzer

Lower PowerPlay Power Analysis Input Higher

Es
tim

at
io

n
Ac

cu
ra

cy

Higher
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53013

10–2 Chapter 10: PowerPlay Power Analysis
Types of Power Analyses
Types of Power Analyses
Understanding the uses of power analysis and the factors affecting power
consumption helps you to use the PowerPlay Power Analyzer effectively. Power
analysis meets two significant planning requirements:

■ Thermal planning—The cooling solution must be sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

■ Power supply planning—Power supplies must provide adequate current to
support device operation.

The two types of analyses are closely related because much of the power supplied to
the device is dissipated as heat from the device; however, in some situations, the two
types of analyses are not identical. For example, if you are using terminated I/O
standards, some of the power drawn from the power supply of the device dissipates
in termination resistors rather than in the device.

Power analysis also addresses the activity of your design over time as a factor that
impacts the power consumption of the device. Static power is the power consumed
regardless of design activity. Dynamic power is the additional power consumed due
to signal activity or toggling.

1 For power supply planning, you can use the PowerPlay EPE at the early stages of
your design cycle, or use the PowerPlay Power Analyzer reports when your design is
complete to get an estimate of your design power requirement.

Factors Affecting Power Consumption
This section describes the factors affecting power consumption. Understanding these
factors allows you to use the PowerPlay Power Analyzer and interpret its results
effectively.

Device Selection
Different device families have different power characteristics. Many parameters affect
the device family power consumption, including choice of process technology, supply
voltage, electrical design, and device architecture. For example, the Cyclone II device
family architecture consumes less static power than the high-performance and
full-featured Stratix II device family.

Power consumption also varies in a single device family. A larger device consumes
more static power than a smaller device in the same family because of its larger
transistor count. Dynamic power can also increase with device size in devices that
employ global routing architectures, for example, the MAX device family. Cyclone,
MAX II, and Stratix devices do not exhibit significantly increased dynamic power as
device size increases.

The choice of device package also affects the ability of the device to dissipate heat.
This choice can impact your cooling solution choice required to meet junction
temperature constraints.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–3
Factors Affecting Power Consumption
Process variation can affect power consumption. Process variation primarily impacts
static power because sub-threshold leakage current varies exponentially with changes
in transistor threshold voltage. As a result, it is critical to consult device specifications
for static power and not rely on empirical observation. Process variation has a weak
effect on dynamic power.

Environmental Conditions
Operating temperature primarily affects device static power consumption. Higher
junction temperatures result in higher static power consumption. The device thermal
power and cooling solution that you use must result in the device junction
temperature remaining within the maximum operating range for the device. The main
environmental parameters affecting junction temperature are the cooling solution and
ambient temperature.

Airflow
Airflow is a measure of how quickly heated air is removed from the vicinity of the
device and replaced by air at ambient temperature. Airflow can either be specified as
“still air” when no fan is used, or as the linear feet per minute rating of the fan used in
the system. Higher airflow decreases thermal resistance.

Heat Sink and Thermal Compound
A heat sink allows more efficient heat transfer from the device to the surrounding area
because of its large surface area exposed to the air. The thermal compound that
interfaces the heat sink to the device also influences the rate of heat dissipation. The
case-to-ambient thermal resistance (θCA) parameter describes the cooling capacity of
the heat sink and thermal compound employed at a given airflow. Larger heat sinks
and more effective thermal compounds reduce θCA.

Junction Temperature
The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · θJA

in which θJA is the total thermal resistance from the device transistors to the
environment, having units of degrees Celsius per watt. The value θJA is equal to the
sum of the junction-to-case (package) thermal resistance (θJC) and the case-to-ambient
thermal resistance (θCA) of your cooling solution.

Board Thermal Model
The thermal resistance of the path through the board is referred to as the
junction-to-board thermal resistance (θJB), having units of degrees Celsius per watt. It
is used in conjunction with the board temperature, as well as the top-of-chip θJA and
ambient temperatures, to compute junction temperature.

Device Resource Usage
The number and types of device resources used greatly affects power consumption.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

10–4 Chapter 10: PowerPlay Power Analysis
Factors Affecting Power Consumption
Number, Type, and Loading of I/O Pins
Output pins drive off-chip components, resulting in high-load capacitance that leads
to a high-dynamic power per transition. Terminated I/O standards require external
resistors that generally draw constant (static) power from the output pin.

Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
A design with more logic elements (LEs), multiplier elements, and memory blocks
tends to consume more power than a design with fewer circuit elements. The
operating mode of each circuit element also affects its power consumption. For
example, a DSP block performing 18 × 18 multiplications and a DSP block performing
multiply-accumulate operations consume different amounts of dynamic power
because of different amounts of internal capacitance being charged on each
transition.The operating mode of a circuit element also affects static power.

Number and Type of Global Signals
Global signal networks span large portions of the device and have high capacitance,
resulting in significant dynamic power consumption. The type of global signal is
important as well. For example, Stratix II devices support several kinds of global clock
networks that span either the entire device or a specific portion of the device (a
regional clock network covers a quarter of the device). Clock networks that span
smaller regions have lower capacitance and tend to consume less power. The location
of the logic array blocks (LABs) driven by the clock network can also have an impact
because the Quartus II software automatically disables unused branches of a clock.

Signal Activities
The final important factor in estimating power consumption is the behavior of each
signal in your design. The two vital statistics are the toggle rate and the static
probability.

The toggle rate of a signal is the average number of times that the signal changes
value per unit of time. The units for toggle rate are transitions per second and a
transition is a change from 1 to 0, or 0 to 1.

The static probability of a signal is the fraction of time that the signal is logic 1 during
the period of device operation that is being analyzed. Static probability ranges from 0
(always at ground) to 1 (always at logic-high).

Dynamic power increases linearly with the toggle rate as the capacitive load is
charged more frequently for logic and routing. The Quartus II software models full
rail-to-rail switching. For high toggle rates, especially on circuit output I/O pins, the
circuit can transition before fully charging the downstream capacitance. The result is a
slightly conservative prediction of power by the PowerPlay Power Analyzer.

The static power consumed by both routing and logic can sometimes be affected by
the static probabilities of their input signals. This effect is due to state-dependent
leakage and has a larger effect on smaller process geometries. The Quartus II software
models this effect on devices at 90 nm (or smaller) if it is important to the power
estimate. The static power also varies with the static probability of a logic 1 or 0 on the
I/O pin when output I/O standards drive termination resistors.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–5
Creating PowerPlay EPE Spreadsheets
1 To get accurate results from the power analysis, the signal activities for analysis must
represent the actual operating behavior of your design. Inaccurate signal toggle rate
data is the largest source of power estimation error.

Creating PowerPlay EPE Spreadsheets
You can use PowerPlay EPE spreadsheets to perform a preliminary thermal analysis
and power consumption estimate for your design. You can either enter the data
manually or use the tools in the Quartus II software to assist you with generating the
device resources usage information for your design.

h For more information about generating a PowerPlay EPE File in the Quartus II
software, refer to Performing an Early Power Estimate Using the PowerPlay Early Power
Estimator in Quartus II Help.

Figure 10–2 shows an example of the contents of a PowerPlay EPE File generated for a
design that targets a Stratix III device.

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the PowerPlay EPE File and transfers it into the spreadsheet. If you do
not want to use the macro, you can manually transfer the data into the PowerPlay EPE
spreadsheet.

Figure 10–2. Example of a PowerPlay EPE File
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm

10–6 Chapter 10: PowerPlay Power Analysis
Creating PowerPlay EPE Spreadsheets
For example, after importing the PowerPlay EPE File information into the PowerPlay
EPE spreadsheet, you can add additional device resource information at any time. If
the existing Quartus II project represents only a portion of your full design, you must
enter the additional device resources used in the final design manually.

PowerPlay EPE File Generator Compilation Report
After successfully generating the PowerPlay EPE File, you can locate a PowerPlay
EPE File Generator report under the Compilation Report section. This report contains
different sections, such as Summary, Settings, Generated Files, Confidence Metric
Details, and Signal Activities. For more information about the PowerPlay EPE File
Generator report, refer to “PowerPlay Power Analyzer Compilation Report” on
page 10–20.

Table 10–1 lists the main differences between the PowerPlay EPE and the Quartus II
PowerPlay Power Analyzer.

Table 10–1. Comparison of the PowerPlay EPE and Quartus II PowerPlay Power Analyzer

Characteristic PowerPlay EPE Quartus II PowerPlay Power Analyzer

Phase in the design cycle Any time Post-fit

Tool requirements Spreadsheet program or the Quartus II
software

The Quartus II software

Accuracy Medium Medium to very high

Data inputs

■ Resource usage estimates

■ Clock requirements

■ Environmental conditions

■ Toggle rate

■ Post-fit design

■ Clock requirements

■ Signal activity defaults

■ Environmental conditions

■ Register transfer level (RTL) simulation
results (optional)

■ Post-fit simulation results (optional)

■ Signal activities per node or entity
(optional)

Data outputs (1)

■ Total thermal power dissipation

■ Thermal static power

■ Thermal dynamic power

■ Off-chip power dissipation

■ Current drawn from voltage supplies

■ Total thermal power

■ Thermal static power

■ Thermal dynamic power

■ Thermal I/O power

■ Thermal power by design hierarchy

■ Thermal power by block type

■ Thermal power dissipation by clock
domain

■ Off-chip (non-thermal) power dissipation

■ Device supply currents

Notes to Table 10–1:

(1) PowerPlay EPE and PowerPlay Power Analyzer outputs vary by device family. For more information, refer to the device-specific EPE User Guide
and PowerPlay Power Analyzer Reports in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_powerplay_analyzer.htm

Chapter 10: PowerPlay Power Analysis 10–7
PowerPlay Power Analyzer Flow
The result of the PowerPlay Power Analyzer is only an estimation of power. Altera
does not recommend using the result as a specification. The purpose of the estimation
is to help you to establish a guide for the power budget of your design. Altera
recommends measuring the actual power on the board. You must measure the total
dynamic current of your design during device operation because the estimate is
design dependent and depends on many variable factors, including input vector
quantity, quality, and exact loading conditions of a PCB design. Static power
consumption must not be based on empirical observation. The values reported by the
PowerPlay Power Analyzer or data sheet must be used because the tested devices
might not exhibit worst-case behavior.

PowerPlay Power Analyzer Flow
The PowerPlay Power Analyzer supports accurate power estimations by allowing
you to specify all the important design factors affecting power consumption.
Figure 10–3 shows the high-level PowerPlay Power Analyzer flow.

The PowerPlay Power Analyzer requires your design to be synthesized and fitted to
the target device. You must specify the electrical standard used by each I/O cell and
the capacitive load on each I/O standard in your design to obtain accurate I/O power
estimates.

Operating Settings and Conditions
You can specify device power characteristics, operating voltage conditions, and
operating temperature conditions for power analysis in the Quartus II software.

On the Operating Settings and Conditions page of the Settings dialog box, you can
specify whether the device has typical power consumption characteristics or
maximum power consumption characteristics.

Figure 10–3. PowerPlay Power Analyzer High-Level Flow

Note to Figure 10–3:

(1) Operating condition specifications are available only for some device families. For more information, refer to
Performing Power Analysis with the PowerPlay Power Analyzer in Quartus II Help.

PowerPlay
Power Analyzer

Operating
Conditions (1)

User Design
(Post-Fit)

Power Analysis
Report

Signal
Activities
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm

10–8 Chapter 10: PowerPlay Power Analysis
PowerPlay Power Analyzer Flow
h For more information, refer to Operating Setting and Conditions Page (Settings Dialog
Box) in Quartus II Help.

On the Voltage page of the Settings dialog box, you can view the operating voltage
conditions for each power rail in the device, and specify supply voltages for power
rails with selectable supply voltages.

h For more information, refer to Voltage Page (Settings Dialog Box) in Quartus II Help.

On the Temperature page of the Settings dialog box, you can specify the thermal
operating conditions of the device.

h For more information, refer to Temperature Page (Settings Dialog Box) in Quartus II
Help.

Signal Activities Data Sources
The PowerPlay Power Analyzer provides a flexible framework for specifying signal
activities. It reflects the importance of using representative signal-activity data during
power analysis. You can use the following sources to provide information about
signal activity:

■ Simulation results

■ User-entered node, entity, and clock assignments

■ User-entered default toggle rate assignment

■ Vectorless estimation

The PowerPlay Power Analyzer allows you to mix and match the signal-activity data
sources on a signal-by-signal basis. Figure 10–4 shows the priority scheme. The
following sections describe the data sources.

Figure 10–4. Signal-Activity Data Source Priority Scheme

Note to Figure 10–4:
(1) Vectorless estimation is available only for some device families. For more information, refer to Performing Power Analysis with the PowerPlay

Power Analyzer.

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?

Use vectorless
estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

(1)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_tab_pppa_operating_conditions-voltage.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr/pwr_tab_pppa_operating_conditions-temperature.htm
http://quartushelp.altera.com/10.1/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/10.1/mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm

Chapter 10: PowerPlay Power Analysis 10–9
PowerPlay Power Analyzer Flow
Simulation Results
The PowerPlay Power Analyzer directly reads the waveforms generated by a design
simulation. The static probability and toggle rate for each signal are calculated from
the simulation waveform. Power analysis is most accurate when you use
representative input stimuli to generate simulations.

The PowerPlay Power Analyzer reads results generated by the following simulators:

■ ModelSim®

■ ModelSim-Altera

■ QuestaSim

■ Active-HDL

■ NCSim

■ VCS

■ VCS MX

■ Riviera-PRO

Signal activity and static probability information derive from a Verilog Value Change
Dump File (.vcd). For more information, refer to “Signal Activities” on page 10–4.

For third-party simulators, use the Quartus II EDA Tool Settings for Simulation to
specify a Generate Value Change Dump file script. These scripts instruct the
third-party simulators to generate a .vcd that encodes the simulated waveforms. The
Quartus II PowerPlay Power Analyzer reads this file directly to derive the toggle rate
and static probability data for each signal.

Third-party EDA simulators, other than those listed, can generate a .vcd that can then
be used with the PowerPlay Power Analyzer. For those simulators, you must
manually create a simulation script to generate the appropriate .vcd.

1 You can use a .vcd created for power analysis to optimize your design for power
during fitting by utilizing the appropriate settings in the PowerPlay power
optimization list, available in the Fitter Settings page of the Settings dialog box.

f For more information about power optimization, refer to the Power Optimization
chapter in volume 2 of the Quartus II Handbook.

f For more information about how to create a .vcd in other third-party EDA simulation
tools, refer to Section I. Simulation in volume 3 of the Quartus II Handbook.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Power%20Optimization
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Section%20I.%20Simulation
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Power%20Optimization

10–10 Chapter 10: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows
Using Simulation Files in Modular Design Flows
A common design practice is to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate it in a higher-level entity,
forming a complete design. You can perform simulation on a complete design or on
each modular design for verification. The PowerPlay Power Analyzer supports
modular design flows when reading the signal activities generated from these
simulation files. An example of a modular design flow is shown in Figure 10–5.

When specifying a simulation file, an associated design entity name is given, such that
the signal activities derived from the simulation file (.vcd) are imported into the
PowerPlay Power Analyzer for that particular design entity. The PowerPlay Power
Analyzer also supports the specification of multiple .vcd for power analysis, with
each having an associated design entity name to allow the integration of partial
design simulations into a complete design power analysis. When specifying multiple
.vcd for your design, it is possible that more than one simulation file contains
signal-activity information for the same signal. When you apply multiple .vcd to the
same design entity, the signal activity used in the power analysis is the equal-weight
arithmetic average of each .vcd. When you apply multiple simulation files to design
entities at different levels in your design hierarchy, the signal activity in the power
analysis derives from the simulation file that applies to the most specific design entity.

Figure 10–5. Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface

Timing
Control

system.vcd

video_gizmo.vcd

output_driver.vcd

video_input.vcd
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–11
Using Simulation Files in Modular Design Flows
Figure 10–6 shows an example of a hierarchical design. The top-level module of your
design, called Top, consists of three 8b/10b decoders, followed by a multiplexer. The
output of the multiplexer is then encoded again before being the output from your
design. There is also an error-handling module that handles any 8b/10b decoding
errors. The top contains the top-level entity of your design and any logic not defined
as part of another module. The design file for the top-level module might be just a
wrapper for the hierarchical entities below it, or it might contain its own logic. The
following usage scenarios show common ways that you can simulate your design and
import .vcd into the PowerPlay Power Analyzer.

Complete Design Simulation
You can simulate the entire design top, generating a .vcd from a third-party simulator.
The .vcd can then be imported (specifying entity top) into the PowerPlay Power
Analyzer. The resulting power analysis uses all the signal activities information from
the generated .vcd, including those that apply to submodules, such as decode [1-3],
err1, mux1, and encode1.

Modular Design Simulation
You can independently simulate submodules of the design top, and then import all
the resulting .vcd into the PowerPlay Power Analyzer. For example, you can simulate
the 8b10b_dec independent of the entire design, as well as multiplexer, 8b10b_rxerr,
and 8b10b_enc. You can then import the .vcd generated from each simulation by
specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and mux.vcd, the
import specifications in Table 10–2 are used.

Figure 10–6. Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Table 10–2. Import Specifications (Part 1 of 2)

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

10–12 Chapter 10: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows
The resulting power analysis applies the simulation vectors found in each file to the
assigned entity. Simulation provides signal activities for the pins and for the outputs
of functional blocks. If the inputs to an entity instance are input pins for the entire
design, the simulation file associated with that instance does not provide signal
activities for the inputs of that instance. For example, an input to an entity such as
mux1 has its signal activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity
You can perform multiple simulations of an entire design or specific modules of a
design. For example, in the process of verifying the design top, you can have three
different simulation testbenches: one for normal operation and two for corner cases.
Each of these simulations produces a separate .vcd. In this case, apply the different
.vcd names to the same top-level entity, shown in Table 10–3.

The resulting power analysis uses an arithmetic average that the signal activities
calculated from each simulation file to obtain the final signal activities used. If a signal
err_out has a toggle rate of zero toggles per second in normal.vcd, 50 toggles per
second in corner1.vcd, and 70 toggles per second in corner2.vcd, the final toggle rate
in the power analysis is 40 toggles per second.

Overlapping Simulations
You can perform a simulation on the entire design top and more exhaustive
simulations on a submodule, such as 8b10b_rxerr. Table 10–4 shows the import
specification for overlapping simulations.

In this case, signal activities from error_cases.vcd are used for all of the nodes in the
generated .vcd and signal activities from full_design.vcd are used for only those
nodes that do not overlap with nodes in error_cases.vcd. In general, the more specific
hierarchy (the most bottom-level module) derives signal activities for overlapping
nodes.

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.vcd Top|mux:mux1

Table 10–2. Import Specifications (Part 2 of 2)

File Name Entity

Table 10–3. Multiple Simulation File Names and Entities

File Name Entity

normal.vcd Top

corner1.vcd Top

corner2.vcd Top

Table 10–4. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–13
Using Simulation Files in Modular Design Flows
Partial Simulations
You can perform a simulation in which the entire simulation time is not applicable to
signal-activity calculation. For example, run a simulation for 10,000 clock cycles and
reset the chip for the first 2,000 clock cycles. If the signal-activity calculation is
performed over all 10,000 cycles, the toggle rates are only 80% of their steady state
value (because the chip is in reset for the first 20% of the simulation). In this case, you
must specify the useful parts of the .vcd for power analysis. The Limit VCD Period
option enables you to specify a start and end time to be used when performing
signal-activity calculations.

Node Name Matching Considerations
Node name mismatches happen when you have .vcd applied to entities other than the
top-level entity. In a modular design flow, the gate-level simulation files created in
different Quartus II projects may not match their node names with the current
Quartus II project.

For example, if you have a file named 8b10b_enc.vcd, which was generated in a
separate project called 8b10b_enc and is simulating the 8b10b encoder, and you
import that .vcd into another project called Top, you might encounter name
mismatches when applying the .vcd to the 8b10b_enc module in the Top project. This
mismatch happens because all the combinational nodes in the 8b10b_enc.vcd might
be named differently in the Top project.

You can avoid name mismatching with only RTL simulation data, in which register
names do not change, or with an incremental compilation flow that preserves node
names in conjunction with a gate-level simulation.

1 To ensure the best accuracy, Altera recommends using an incremental compilation
flow to preserve the node names of your design.

f For more information about the incremental compilation flow, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Glitch Filtering
The PowerPlay Power Analyzer defines a glitch as two signal transitions so closely
spaced in time that the pulse or glitch occurs faster than the logic and routing circuitry
can respond. The output of a transport delay model simulator contains glitches for
some signals. The logic and routing structures of the device form a low-pass filter that
filters out glitches that are tens to hundreds of picoseconds long, depending on the
device family.

Some third-party simulators use different models than the transport delay model as
default model. Different models cause differences in signal activity and power
estimation. The inertial delay model, which is the ModelSim default model, filters out
more glitches than the transport delay model and usually yields a lower power
estimate.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

10–14 Chapter 10: PowerPlay Power Analysis
Using Simulation Files in Modular Design Flows
1 Altera recommends using the transport simulation model when using the Quartus II
software glitch filtering support with third-party simulators. Simulation glitch
filtering has little effect if you use the inertial simulation model.

h For more information about how to set the simulation model type for your specific
simulator, refer to Quartus II Help.

Glitch filtering in a simulator can also filter a glitch on one LE (or other circuit
element) output from propagating to downstream circuit elements to ensure that the
glitch does not affect simulated results. It prevents a glitch on one signal from
producing non-physical glitches on all downstream logic, which can result in a signal
toggle rate and a power estimate that are too high. Circuit elements in which every
input transition produces an output transition, including multipliers and logic cells
configured to implement XOR functions, are especially prone to glitches. Therefore,
circuits with such functions can have power estimates that are too high when you do
not use glitch filtering.

Altera recommends using the glitch filtering feature to obtain the most accurate
power estimates. For .vcd, the PowerPlay Power Analyzer flows support two levels of
glitch filtering, both of which are recommended for power estimation.

In the first level of glitch filtering, glitches are filtered during simulation. To enable
this level of glitch filtering in the Quartus II software for supported third-party
simulators, follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Simulation under EDA Tool Settings. The Simulation
page appears.

3. Select the Tool name to use for the simulation.

4. Turn on Enable glitch filtering.

The second level of glitch filtering occurs while the PowerPlay Power Analyzer is
reading the .vcd generated by a third-party simulator. To enable this level of glitch
filtering, follow these steps:

On the Assignments menu, click Settings. The Settings dialog box appears.

1. In the Category list, select PowerPlay Power Analyzer Settings. The PowerPlay
Power Analyzer Settings page appears.

2. Under Input File(s), turn on Perform glitch filtering on VCD files.

The .vcd file reader performs complementary filtering to the filtering performed
during simulation and is often not as effective. While the .vcd file reader can remove
glitches on logic blocks, it has no way of determining how downstream logic and
routing are affected by a given glitch, and may eliminate the impact of the glitch
completely. Filtering the glitches during simulation avoids switching downstream
routing and logic automatically.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–15
Using Simulation Files in Modular Design Flows
1 When running simulation for design verification (rather than to produce input to the
PowerPlay Power Analyzer), Altera recommends turning off the glitch filtering
option to produce the most rigorous and conservative simulation from a functionality
viewpoint. When performing simulation to produce input for the PowerPlay Power
Analyzer, Altera recommends turning on the glitch filtering to produce the most
accurate power estimates.

Node and Entity Assignments
You can assign specific toggle rates and static probabilities to individual nodes and
entities in the design. These assignments have the highest priority, overriding data
from all other signal-activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle
Rate and Power Static Probability assignments. You can specify the power toggle
rate as an absolute toggle rate in transitions using the Power Toggle Rate assignment
or you can use the Power Toggle Rate Percentage assignment to specify a toggle rate
relative to the clock domain of the assigned node for a more specific assignment made
in terms of hierarchy level.

1 If the Power Toggle Rate Percentage assignment is used, and the given node does not
have a clock domain, a warning is issued and the assignment is ignored.

f For more information about how to use the Assignment Editor in the Quartus II
software, refer to the Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Assigning specific toggle rates and static probabilities to individual nodes and entities
is appropriate for signals in which you have specific knowledge of the signal or entity
being analyzed. For example, if you know that a 100 MHz data bus or memory output
produces data that is essentially random (uncorrelated in time), you can directly enter
a 0.5 static probability and a toggle rate of 50 million transitions per second.

Bidirectional I/O pins are treated specially. The combinational input port and the
output pad for a given pin share the same name. However, those ports might not
share the same signal activities. For the purpose of reading signal-activity
assignments, the PowerPlay Power Analyzer creates a distinct name
<node_name~output> when the bidirectional signal is configured as an output and
<node_name~result> when the signal is configured as an input. For example, if a
design has a bidirectional pin named MYPIN, assignments for the combinational input
use the name MYPIN~result, and the assignments for the output pad use the name
MYPIN~output.

1 When creating the logic assignment in the Assignment Editor, you will not find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to create
the logic assignment, you must manually enter the two differentiating node names to
create the specific assignment for the input and output port of the bidirectional pin.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf

10–16 Chapter 10: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer
Timing Assignments to Clock Nodes
For clock nodes, the PowerPlay Power Analyzer uses the timing requirements to
derive the toggle rate when neither simulation data nor user-entered signal-activity
data is available. fMAX requirements specify full cycles per second, but each cycle
represents a rising transition and a falling transition. For example, a clock fMAX
requirement of 100 MHz corresponds to 200 million transitions per second.

Default Toggle Rate Assignment
You can specify a default toggle rate for primary inputs and all other nodes in the
design. The default toggle rate is used when no other method has specified the
signal-activity data.

The toggle rate is specified in absolute terms (transitions per second) or as a fraction
of the clock rate in effect for each particular node. The toggle rate for a given clock
derives from the timing settings for the clock. For example, if a clock is specified with
an fMAX constraint of 100 MHz and a default relative toggle rate of 20%, nodes in this
clock domain transition in 20% of the clock periods, or 20 million transitions occur per
second. In some cases, the PowerPlay Power Analyzer cannot determine the clock
domain for a given node because there is either no clock domain for the node or it is
ambiguous. In these cases, the PowerPlay Power Analyzer substitutes and reports a
toggle rate of zero.

Vectorless Estimation
For some device families, the PowerPlay Power Analyzer automatically derives
estimates for signal activity on nodes with no simulation or user-entered
signal-activity data. Vectorless estimation statistically estimates the signal activity of a
node based on the signal activities of all nodes feeding that node, and on the actual
logic function implemented by the node. Vectorless estimation cannot derive signal
activities for primary inputs. Vectorless estimation is generally accurate for
combinational nodes, but not for registered nodes. Therefore, simulation data for at
least the registered nodes and I/O nodes is required for accuracy.

h For more information, refer to Performing Power Analysis with the PowerPlay Power
Analyzer in Quartus II Help.

The PowerPlay Power Analyzer Settings dialog box lets you disable vectorless
estimation. When enabled, vectorless estimation takes priority over default toggle
rates. Vectorless estimation does not override clock assignments.

Using the PowerPlay Power Analyzer
For all the flows that use the PowerPlay Power Analyzer, synthesize your design first
and then fit it to the target device. You must either provide timing assignments for all
the clocks in the design or use a simulation-based flow to generate activity data. The
I/O standard used on each device input or output and the capacitive load on each
output must be specified in the design.

h For more information about using the PowerPlay Power Analyzer, refer to Performing
Power Analysis with the PowerPlay Power Analyzer in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm

Chapter 10: PowerPlay Power Analysis 10–17
Using the PowerPlay Power Analyzer
Common Analysis Flows
You can use the analysis flows in this section with the PowerPlay Power Analyzer.
However, vectorless activity estimation is only available for some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation
This flow provides the most accuracy because all node activities reflect actual design
behavior, provided that supplied input vectors are representative of typical design
operation. Results are better if the simulation filters glitches. The disadvantage of this
method is that the simulation time is long.

Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation
The zero delay simulation flow is used with designs for which signal activities from a
full post-fit netlist (timing) simulation are not available. Zero delay simulation is as
accurate as timing simulation in 95% of designs with no glitches.

1 If your design has glitches, power may be underestimated. Altera recommends using
the signal activities from a full post-fit netlist (timing) simulation to achieve accurate
power estimation of your design.

The following designs might exhibit glitches:

■ Designs with many XOR gates (for example, an encryption core)

■ Designs with arithmetic blocks without input and output registers (DSPs and
carry chains)

For more information about creating zero delay simulation signal activities, refer to
“Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation” on page 10–19.

Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation
In this flow, simulation provides toggle rates and static probabilities for all pins and
registers in the design. Vectorless estimation fills in the values for all the
combinational nodes between pins and registers, giving good results. This flow
usually provides a compilation time benefit to the user in the third-party RTL
simulator.

1 RTL simulation may not provide signal activities for all registers in the post-fitting
netlist because some register names might be lost during synthesis. For example,
synthesis might automatically transform state machines and counters, thus changing
the names of registers in those structures.

Signal Activities from Vectorless Estimation and User-Supplied Input Pin
Activities
This flow provides a low level of accuracy, because vectorless estimation for registers
is not entirely accurate.

Signal Activities from User Defaults Only
This flow provides the lowest degree of accuracy.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

10–18 Chapter 10: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer
Generating a .vcd
In previous versions of the Quartus II software, you could use either the Quartus II
simulator or an EDA simulator to perform your simulation. The Quartus II software
no longer supports a built-in simulator, and you must use EDA simulators to perform
simulation. Use the .vcd as the input to the PowerPlay Power Analyzer to estimate
power for your design.

f For more information about the supported third-party simulators, refer to
“Simulation Results” on page 10–9.

To create a .vcd for your design, follow these steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. The Simulation
page appears.

3. In the Tool name list, select your preferred EDA simulator.

4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL,
or VHDL.

5. Turn on Generate Value Change Dump (VCD) file script.

1 This turns on the Map illegal HDL characters and Enable glitch filtering
options. The Map illegal HDL characters option ensures that all signals
have legal names and that signal toggle rates are available later in the
PowerPlay Power Analyzer.

6. By turning on Enable glitch filtering, glitch filtering logic is the output when you
generate an EDA netlist for simulation. This option is available regardless of
whether or not you want to generate the .vcd scripts. For more information about
glitch filtering, refer to “Glitch Filtering” on page 10–13.

1 When performing simulation using ModelSim, the +nospecify option for
the vsim command disables the specify path delays and timing checks
option in ModelSim. By enabling glitch filtering on the Simulation page,
the simulation models include specified path delays. Thus, ModelSim
might fail to simulate a design if glitch filtering is enabled, and the
+nospecify option is specified. Altera recommends removing the
+nospecify option from the ModelSim vsim command to ensure accurate
simulation for power estimation.

7. Click Script Settings. The Script Settings dialog box appears.

Select which signals must be output to the .vcd. With All signals selected, the
generated script instructs the third-party simulator to write all connected output
signals to the .vcd. With All signals except combinational lcell outputs selected,
the generated script tells the third-party simulator to write all connected output
signals to the .vcd, except logic cell combinational outputs.

1 The file can become extremely large if you write all output signals to the file
because its size depends on the number of output signals being monitored
and the number of transitions that occur.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–19
Using the PowerPlay Power Analyzer
8. Click OK.

9. Type a name for your testbench in the Design instance name box.

10. Compile your design with the Quartus II software and generate the necessary
EDA netlist and script that instructs the third-party simulator to generate a .vcd.

f For more information about the NativeLink feature, refer to Section I. Simulation in
volume 3 of the Quartus II Handbook.

11. Perform a simulation with the third-party EDA simulation tool. Call the generated
script in the simulation tool before running the simulation. The simulation tool
generates the .vcd and places it in the project directory.

Generating a .vcd from ModelSim Software
To successfully produce a .vcd with the ModelSim software, follow these steps:

1. In the Quartus II software, on the Assignments menu, click Settings. The Settings
dialog box appears.

2. In the Category list, under EDA Tool Settings, click Simulation. The Simulation
page appears.

3. In the Tool name list, select your preferred EDA simulator.

4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL,
or VHDL.

5. Turn on Generate Value Change Dump (VCD) file script.

6. To generate the .vcd, perform a full compilation.

7. In the ModelSim software, compile the files necessary for simulation.

8. Load your design by clicking Start Simulation on the Tools menu, or use the vsim
command.

9. Use the .vcd script created in step 6 using the following command:
source <design>_dump_all_vcd_nodes.tcl

10. Run the simulation (for example, run 2000ns or run -all).

11. Quit the simulation using the quit -sim command, if required.

12. Exit the ModelSim software. If you do not exit the software, the ModelSim
software might end the writing process of the .vcd improperly, resulting in a
corrupt .vcd.

Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation
To successfully generate a .vcd from the full post-fit Netlist (zero delay) simulation,
follow these steps:

1. Compile your design in the Quartus II software to generate the Netlist
<project_name>.vo.

2. In <project_name>.vo, search for the include statement for <project_name>.sdo,
comment the statement out, and save the file.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

10–20 Chapter 10: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer
3. Generate a .vcd for power estimation by performing the steps in “Generating a
.vcd” on page 10–18.

1 Altera recommends using the Standard Delay Format Output File (.sdo) for
gate-level timing simulation. The .sdo contains the delay information of
each architecture primitive and routing element specific to your design;
however, you must exclude the .sdo for zero delay simulation.

f For more information about how to create a .vcd in other third-party EDA
simulation tools, refer to Section I. Simulation in volume 3 of the Quartus II
Handbook.

Running the PowerPlay Power Analyzer Using the Quartus II GUI
To run the PowerPlay Power Analyzer using the Quartus II GUI, refer to Performing
Power Analysis with the PowerPlay Power Analyzer in Quartus II Help.

PowerPlay Power Analyzer Compilation Report
The PowerPlay Power Analyzer section of the Compilation Report consists of the
following sections.

Summary
This section of the report shows the estimated total thermal power consumption of
your design. This includes dynamic, static, and I/O thermal power consumption. The
I/O thermal power consumption is the total I/O power contributed by both the VCCIO
power supplies and some portion of the VCCINT. The report also includes a confidence
metric that reflects the overall quality of the data sources for the signal activities. For
example, a Low power estimation confidence value reflects that you have provided
insufficient toggle rate data, or most of the signal-activity information used for power
estimation is from default or vectorless estimation settings. For more information
about the input data, refer to the PowerPlay Power Analyzer Confidence Metric
report.

Settings
This section of the report shows the PowerPlay Power Analyzer settings information
of your design, including the default input toggle rates, operating conditions, and
other relevant setting information.

Simulation Files Read
This section of the report lists the simulation output file (.vcd) used for power
estimation. This section also includes the file ID, file type, entity, VCD start time, VCD
end time, the unknown percentage, and the toggle percentage. The unknown
percentage indicates the portion of the design module that is not exercised by the
simulation vectors.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_power_analyzer.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

Chapter 10: PowerPlay Power Analysis 10–21
Using the PowerPlay Power Analyzer
Operating Conditions Used
This section of the report shows device characteristics, voltages, temperature, and
cooling solution, if any, that were used during the power estimation. This section also
shows the entered junction temperature or auto-computed junction temperature that
was used during the power analysis.

Thermal Power Dissipated by Block
This section of the report shows estimated thermal dynamic power and thermal static
power consumption categorized by atoms. This information provides you with
estimated power consumption for each atom in your design.

Thermal Power Dissipation by Block Type (Device Resource Type)
This section of the report shows the estimated thermal dynamic power and thermal
static power consumption categorized by block types. This information is further
categorized by estimated dynamic and static power that was used, as well as
providing an average toggle rate by block type. Thermal power is the power
dissipated as heat from the FPGA device.

Thermal Power Dissipation by Hierarchy
This section of the report shows estimated thermal dynamic power and thermal static
power consumption categorized by design hierarchy. This information is further
categorized by the dynamic and static power that was used by the blocks and routing
in that hierarchy. This information is very useful when locating problem modules in
your design.

Core Dynamic Thermal Power Dissipation by Clock Domain
This section of the report shows the estimated total core dynamic power dissipation
by each clock domain, which provides designs with estimated power consumption
for each clock domain in the design. If the clock frequency for a domain is unspecified
by a constraint, the clock frequency is listed as “unspecified.” For all the
combinational logic, the clock domain is listed as no clock with zero MHz.

Current Drawn from Voltage Supplies
This section of the report lists the current that was drawn from each voltage supply.
The VCCIO voltage supply is further categorized by I/O bank and by voltage. The
minimum safe power supply size (current supply ability) is also listed for each supply
voltage.

Transceiver-based devices have multiple voltage supplies, which are VCCH, VCCT,
VCCR, VCCA, and VCCP. The report also shows the static and dynamic current (in mA)
drawn from each voltage supply. Total static and dynamic power consumed by the
transceivers on all voltage supplies is listed under the “Thermal Power Dissipation by
Block Type” report section, which contains a row that starts with “GXB Transceiver.”

The I/O thermal power dissipation, which is listed on the summary page, does not
correlate directly to the power drawn from the VCCIO voltage supply listed in this
report. This is because the I/O thermal power dissipation value also includes portions
of the VCCINT power, such as the I/O element (IOE) registers, which are modeled as
I/O power, but do not draw from the VCCIO supply.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

10–22 Chapter 10: PowerPlay Power Analysis
Using the PowerPlay Power Analyzer
Confidence Metric Details
The confidence metric indicates the quality of the signal toggle rate data used to
compute a power estimate. The confidence metric is low if the signal toggle rate data
comes from sources that are considered poor predictors of real signal toggle rates in
the device during an operation. Toggle rate data that comes from simulation,
user-entered assignments on specific signals, or entities are considered reliable.
Toggle rate data from default toggle rates (for example, 12.5% of the clock period) or
vectorless estimation are considered relatively inaccurate. This section gives an
overall confidence rating in the toggle rate data, from low to high. This section also
summarizes how many pins, registers, and combinational nodes obtained their toggle
rates from each of simulation, user entry, vectorless estimation, or default toggle rate
estimations. This detailed information helps you understand how to increase the
confidence metric, letting you determine your own confidence in the toggle rate data.

Signal Activities
This section lists toggle rates and static probabilities assumed by power analysis for
all signals with fan-out and pins. The signal type is provided (pin, registered, or
combinational), as well as the data source for the toggle rate and static probability. By
default, all signal activities are reported, but can be turned off by turning off the Write
signal activities to report file option on the PowerPlay Power Analyzer Settings
page.

1 Altera recommends turning off the Write signal activities to report file option for a
large design because of the large number of signals present. You can use the
Assignment Editor to specify that activities for individual nodes or entities are
reported by assigning an on value to those nodes for the Power Report Signal
Activities assignment.

Messages
This section lists the messages generated by the Quartus II software during the
analysis.

Specific Rules for Reporting
In a Stratix GX device, the XGM II state machine block is always used together with
GXB transceivers, so its power is lumped into the power for the transceivers.
Therefore, the power for the XGM II state machine block is reported as zero Watts.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For more information about
scripting command options, refer to the Quartus II Command-Line and Tcl API Help
browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelpr
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–23
Using the PowerPlay Power Analyzer
f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook and API Functions for Tcl in Quartus II Help. For more
information about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about command-line
scripting, refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

Running the PowerPlay Power Analyzer from the Command–Line
The separate executable used to run the PowerPlay Power Analyzer is quartus_pow.
For a complete listing of all command–line options supported by quartus_pow, type
the following command at a system command prompt:

quartus_pow --help or quartus_sh --qhelp r
The following is an example of using the quartus_pow executable with project
sample.qpf:

■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File, type
the following command at a system command prompt:

quartus_pow sample --output_epe=sample.csv r
■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File

without performing the power estimate, type the following command at a system
command prompt:

quartus_pow sample --output_epe=sample.csv --estimate_power=off r
■ To instruct the PowerPlay Power Analyzer to use a .vcd as input (sample.vcd),

type the following command at a system command prompt:

quartus_pow sample --input_vcd=sample.vcd r
■ To instruct the PowerPlay Power Analyzer to use two .vcd files as input files

(sample1.vcd and sample2.vcd), perform glitch filtering on the .vcd and use a
default input I/O toggle rate of 10,000 transitions per second, type the following
command at a system command prompt:

quartus_pow sample --input_vcd=sample1.vcd --input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s r

■ To instruct the PowerPlay Power Analyzer to not use any input file, a default input
I/O toggle rate of 60%, no vectorless estimation, and a default toggle rate of 20%
on all remaining signals, type the following command at a system command
prompt:

quartus_pow sample --no_input_file --
default_input_io_toggle_rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20% r

1 There are no command–line options to specify the information found on the
PowerPlay Power Analyzer Settings Operating Conditions page. You can
use the Quartus II GUI to specify these options.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

10–24 Chapter 10: PowerPlay Power Analysis
Conclusion
The quartus_pow executable creates a report file, <revision name>.pow.rpt. You can
locate the report file in the main project directory. The report file contains the same
information in “PowerPlay Power Analyzer Compilation Report” on page 10–20.

Conclusion
PowerPlay power analysis tools are designed for accurate estimation of power
consumption from early design concept through design implementation. You can use
the PowerPlay EPE to estimate power consumption during the design concept stage.
You can use the PowerPlay Power Analyzer tool to refine power estimations during
design implementation. The PowerPlay Power Analyzer produces detailed reports
that you can use to optimize designs for lower power consumption and verify that the
design is in your power budget.

Document Revision History
Table 10–5 shows the revision history for this chapter.

Table 10–5. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Added links to Quartus II Help, removed redundant material.

■ Moved “Creating PowerPlay EPE Spreadsheets” to page 10–5.

■ Minor edits.

July 2010 10.0.0

■ Removed references to the Quartus II Simulator.

■ Updated Table 10–1 on page 10–6, Table 10–2 on page 10–11, and Table 10–3 on
page 10–12.

■ Updated Figure 10–3 on page 10–7, Figure 10–4 on page 10–8, and Figure 10–5 on
page 10–10.

November 2009 9.1.0

■ Updated “Creating PowerPlay EPE Spreadsheets” on page 10–5 and “Simulation Results”
on page 10–9.

■ Added “Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation” on page 10–17
and “Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation” on page 10–19.

■ Minor changes to “Generating a .vcd from ModelSim Software” on page 10–19.

■ Updated Figure 10–2 on page 10–5 and Figure 11–8 on page 11–24.

March 2009 9.0.0
■ This chapter was chapter 11 in version 8.1.

■ Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1 version.

November 2008 8.1.0

■ Updated for the Quartus II software version 8.1.

■ Replaced Figure 11-3.

■ Replaced Figure 11-14.

May 2008 8.0.0

■ Updated Figure 11–5.

■ Updated “Types of Power Analyses” on page 11–5.

■ Updated “Operating Conditions” on page 11–9.

■ Updated “PowerPlay Power Analyzer Compilation Report” on page 11–31.

■ Updated “Current Drawn from Voltage Supplies” on page 11–32.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 10: PowerPlay Power Analysis 10–25
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

10–26 Chapter 10: PowerPlay Power Analysis
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

December 2010 Altera Corporation
Section IV. System Debugging Tools
The Altera® Quartus® II design software provides a complete design debugging
environment that easily adapts to your specific design requirements. This handbook
is arranged in chapters, sections, and volumes that correspond to the major tools
available for debugging your designs. For a general introduction to features and the
standard design flow in the software, refer to the Introduction to the Quartus II Software
manual.

This section is an introduction to System Debugging Tools and includes the following
chapters:

■ Chapter 11, System Debugging Tools Overview

This chapter compares the various system debugging tools and explains when to
use each of them.

■ Chapter 12, Analyzing and Debugging Designs with the System Console

This chapter describes the System Console Toolkit and compares the different
capabilities within the toolkit.

Chapter 13, Transceiver Link Debugging Using the System Console

This chapter explains what functions are available within the Transceiver Toolkit
and helps you decide which tool best meets your debugging needs.

■ Chapter 14, Quick Design Debugging Using SignalProbe

This chapter provides detailed instructions about how to use SignalProbe to
quickly debug your design.

Use this chapter to verify your design more efficiently by routing internal signals
to I/O pins quickly without affecting the design.

■ Chapter 15, Design Debugging Using the SignalTap II Logic Analyzer

This chapter describes how to debug your FPGA design during normal device
operation without the need for external lab equipment. Use this chapter to learn
how to examine the behavior of internal signals, without using extra I/O pins,
while the design is running at full speed on an FPGA device.

■ Chapter 16, In-System Debugging Using External Logic Analyzers

This chapter explains how to use external logic analyzers to debug designs on
Altera devices.

■ Chapter 17, In-System Modification of Memory and Constants

This chapter explains how to use the Quartus II In-System Memory Content Editor
as part of your FPGA design and verification flow to easily view and debug your
design in the hardware lab.
Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/manual/intro_to_quartus2.pdf

IV–2 Section IV: System Debugging Tools
■ Chapter 18, Design Debugging Using In-System Sources and Probes

This chapter provides detailed instructions about how to use the In-System
Sources and Probes Editor and Tcl scripting in the Quartus® II software to debug
your design.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53027-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53027-10.1.0
11. System Debugging Tools Overview
The Altera® system debugging tools help you verify your FPGA designs. As your
product requirements continue to increase in complexity, the time you spend on
design verification continues to rise. This chapter provides a quick overview of the
tools available in the system debugging suite and discusses the criteria for selecting
the best tool for your design.

The Quartus® II software provides a portfolio of system design debugging tools for
real-time verification of your design. Each tool in the system debugging portfolio uses
a combination of available memory, logic, and routing resources to assist in the
debugging process. The tools provide visibility by routing (or “tapping”) signals in
your design to debugging logic. The debugging logic is then compiled with your
design and downloaded into the FPGA or CPLD for analysis. Because different
designs can have different constraints and requirements, such as the number of spare
pins available or the amount of logic or memory resources remaining in the physical
device, you can choose a tool from the available debugging tools that matches the
specific requirements for your design.

System Debugging Tools
Table 11–1 summarizes the tools in the system debugging tool suite that are covered in
this section.

Table 11–1. Available Tools in the In-System Verification Tools Suite (Part 1 of 2)

Tool Description Typical Usage

System Console

This is a Tcl console that communicates to
hardware modules instantiated into your design.
You can use it with the Transceiver Toolkit to
monitor or debug your design.

You need to perform system-level debugging.
For example, if you have an Avalon-MM slave or
Avalon-ST interfaces, you can debug your
design at a transaction level. The tool supports
JTAG connectivity, but also supports PLI
connectivity to a simulation model, as well as
TCP/IP connectivity to the target FPGA you wish
to debug.

Transceiver Toolkit This toolkit allows you to calibrate PMA settings
so that you can optimize settings for your board.

You need to debug or optimize transceiver link
channels in your design.

SignalTap® II Logic
Analyzer

This logic analyzer uses FPGA resources to
sample tests nodes and outputs the information
to the Quartus II software for display and
analysis.

You have spare on-chip memory and you want
functional verification of your design running in
hardware.

SignalProbe
This tool incrementally routes internal signals to
I/O pins while preserving results from your last
place-and-routed design.

You have spare I/O pins and you would like to
check the operation of a small set of control pins
using either an external logic analyzer or an
oscilloscope.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53027

11–2 Chapter 11: System Debugging Tools Overview
System Debugging Tools
With the exception of SignalProbe, each of the on-chip debugging tools uses the JTAG
port to control and read back data from debugging logic and signals under test.
System Console uses JTAG and other interfaces as well. The JTAG resource is shared
among all of the on-chip debugging tools.

For all system debugging tools except System Console, the Quartus II software
compiles logic into your design automatically to distinguish between data and control
information and each of the debugging logic blocks when the JTAG resource is
required. This arbitration logic, also known as the System-Level Debugging (SLD)
infrastructure, is shown in the design hierarchy of your compiled project as
sld_hub:sld_hub_inst. The SLD logic allows you to instantiate multiple debugging
blocks into your design and run them simultaneously. For System Console, you must
explicitly insert IP cores into your design to enable debugging.

To maximize debugging closure, the Quartus II software allows you to use a
combination of the debugging tools in tandem to fully exercise and analyze the logic
under test. All of the tools described in Table 11–1 have basic analysis features built in;
that is, all of the tools enable you to read back information collected from the design
nodes that are connected to the debugging logic. Out of the set of debugging tools, the
SignalTap II Logic Analyzer, the LAI, and the SignalProbe feature are general purpose
debugging tools optimized for probing signals in your RTL netlist. In-System Sources
and Probes, the Virtual JTAG Interface, System Console, Transceiver Toolkit, and

Logic Analyzer
Interface (LAI)

This tool multiplexes a larger set of signals to a
smaller number of spare I/O pins. LAI allows you
to select which signals are switched onto the I/O
pins over a JTAG connection.

You have limited on-chip memory, and have a
large set of internal data buses that you would
like to verify using an external logic analyzer.
Logic analyzer vendors, such as Tektronics and
Agilent, provide integration with the tool to
improve the usability of the tool.

In-System Sources
and Probes

This tool provides an easy way to drive and
sample logic values to and from internal nodes
using the JTAG interface.

You want to prototype a front panel with virtual
buttons for your FPGA design.

In-System Memory
Content Editor

This tool displays and allows you to edit on-chip
memory.

You would like to view and edit the contents of
on-chip memory that is not connected to a
Nios II processor. You can also use the tool
when you do not want to have a Nios II debug
core in your system.

Virtual JTAG
Interface

This megafunction allows you to communicate
with the JTAG interface so that you can develop
your own custom applications.

You have custom signals in your design that you
want to be able to communicate with.

Table 11–1. Available Tools in the In-System Verification Tools Suite (Part 2 of 2)

Tool Description Typical Usage
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 11: System Debugging Tools Overview 11–3
System Debugging Tools
In-System Memory Content Editor, in addition to being able to read back data from
the debugging points, allow you to input values into your design during runtime.
Taken together, the set of on-chip debugging tools form a debugging ecosystem. The
set of tools can generate a stimulus to and solicit a response from the logic under test,
providing a complete debugging solution (Figure 11–1).

The tools in the toolchain offer different advantages and different trade-offs. To
understand the selection criteria between the different tools, the following sections
analyze the tools according to their typical applications.

The first section, “Analysis Tools for RTL Nodes”, compares the SignalTap II Logic
Analyzer, SignalProbe, and the LAI. These three tools are logically grouped since they
are intended for debugging nodes from your RTL netlist at system speed.

The second section, “Stimulus-Capable Tools” on page 11–8, compares System
Console, In-System Memory Content Editor, Virtual JTAG Interface Megafunction,
and In-System Sources and Probes. These tools are logically grouped since they offer
the ability to both read and write transactions through the JTAG port.

Figure 11–1. Quartus II Debugging Ecosystem (Note 1)

Note to Figure 11–1:

(1) The set of debugging tools offer end-to-end debugging coverage.

In-System Sources and Probes
In-System Memory Content Editor

VJI

SignalTap II Logic Analyzer
In-System Memory Content Editor

Transceiver Toolkit - System Console
LAI

Design
Under Test

JTAG

FPGA

Quartus II SoftwareQuartus II Software
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

11–4 Chapter 11: System Debugging Tools Overview
System Debugging Tools
Analysis Tools for RTL Nodes
The SignalTap II Logic Analyzer, the SignalProbe feature, and the LAI are designed
specifically for probing and debugging RTL signals at system speed. They are general-
purpose analysis tools that enable you to tap and analyze any routable node from the
FPGA or CPLD. If you have spare logic and memory resources, the SignalTap II Logic
Analyzer is useful for providing fast functional verification of your design running on
actual hardware.

Conversely, if logic and memory resources are tight and you require the large sample
depths associated with external logic analyzers, both the LAI and the SignalProbe
feature make it easy to view internal design signals using external equipment.

The most important selection criteria for these three tools are the available resources
remaining on your device after implementing your design and the number of spare
pins available. You should evaluate your preferred debugging option early on in the
design planning process to ensure that your board, your Quartus II project, and your
design are all set up to support the appropriate options. Planning early can reduce
time spent during debugging and eliminate the necessary late changes to
accommodate your preferred debugging methodologies. The following two sections
provide information to assist you in choosing the appropriate tool by comparing the
tools according to their resource usage and their pin consumption.

1 The SignalTap II Logic Analyzer is not supported on CPLDs, because there are no
memory resources available on these devices.

Resource Usage
Any debugging tool that requires the use of a JTAG connection requires the SLD
infrastructure logic mentioned earlier, for communication with the JTAG interface and
arbitration between any instantiated debugging modules. This overhead logic uses
around 200 logic elements (LEs), a small fraction of the resources available in any of
the supported devices. The overhead logic is shared between all available debugging
modules in your design. Both the SignalTap II Logic Analyzer and the LAI use a JTAG
connection.

SignalProbe requires very few on-chip resources. Because it requires no JTAG
connection, SignalProbe uses no logic or memory resources. SignalProbe uses only
routing resources to route an internal signal to a debugging test point.

The LAI requires a small amount of logic to implement the multiplexing function
between the signals under test, in addition to the SLD infrastructure logic. Because no
data samples are stored on the chip, the LAI uses no memory resources.

The SignalTap II Logic Analyzer requires both logic and memory resources. The
number of logic resources used depends on the number of signals tapped and the
complexity of the trigger logic. However, the amount of logic resources that the
SignalTap II Logic Analyzer uses is typically a small percentage of most designs. A
baseline configuration consisting of the SLD arbitration logic and a single node with
basic triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each
additional node you add to the baseline configuration adds about 11 LEs. Compared
with logic resources, memory resources are a more important factor to consider for
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 11: System Debugging Tools Overview 11–5
System Debugging Tools
your design. Memory usage can be significant and depends on how you configure
your SignalTap II Logic Analyzer instance to capture data and the sample depth that
your design requires for debugging. For the SignalTap II Logic Analyzer, there is the
added benefit of requiring no external equipment, as all of the triggering logic and
storage is on the chip.

Figure 11–2 shows a conceptual graph of the resource usage of the three analysis tools
relative to each other.

The resource estimation feature for the SignalTap II Logic Analyzer and the LAI
allows you to quickly judge if enough on-chip resources are available before
compiling the tool with your design. Figure 11–3 shows the resource estimation
feature for the SignalTap II Logic Analyzer and the LAI.

Pin Usage
The ratio of the number of pins used to the number of signals tapped for the
SignalProbe feature is one-to-one. Because this feature can consume free pins quickly,
a typical application for this feature is routing control signals to spare debugging pins
for debugging.

The ratio of the number of pins used to the number of signals tapped for the LAI is
many-to-one. It can map up to 256 signals to each debugging pin, depending on
available routing resources. The control of the active signals that are mapped to the
spare I/O pins is performed via the JTAG port. The LAI is ideal for routing data buses
to a set of test pins for analysis.

Other than the JTAG test pins, the SignalTap II Logic Analyzer uses no additional
pins. All data is buffered using on-chip memory and communicated to the
SignalTap II Logic Analyzer GUI via the JTAG test port.

Figure 11–2. Resource Usage per Debugging Tool (Note 1)

Note to Figure 11–2:
(1) Though resource usage is highly dependent on the design, this graph provides a rough guideline for tool selection.

Figure 11–3. Resource Estimator

Memory

Lo
gi

c

SignalTap II

Signal
Probe

Lo
gi

c
An

al
yz

er
In

te
rfa

ce
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

11–6 Chapter 11: System Debugging Tools Overview
System Debugging Tools
Usability Enhancements
The SignalTap II Logic Analyzer, the SignalProbe feature, and the LAI tools can be
added to your existing design with minimal effects. With the node finder, you can find
signals to route to a debugging module without making any changes to your HDL
files. SignalProbe inserts signals directly from your post-fit database. The SignalTap II
Logic Analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists. All three tools allow you to find and configure your debugging setup quickly.
In addition, the Quartus II incremental compilation feature and the Quartus II
incremental routing feature allow for a fast turnaround time for your programming
file, increasing productivity and enabling fast debugging closure.

Both LAI and the SignalTap II Logic Analyzer support incremental compilation. With
incremental compilation, you can add a SignalTap II Logic Analyzer instance or an
LAI instance incrementally into your placed-and-routed design. This has the benefit
of both preserving your timing and area optimizations from your existing design, and
decreasing the overall compilation time when any changes are necessary during the
debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

SignalProbe uses the incremental routing feature. The incremental routing feature
runs only the Fitter stage of the compilation. This also leaves your compiled design
untouched, except for the newly routed node or nodes. With SignalProbe, you can
save as much as 90% compile time of a full compilation.

As another productivity enhancement, all tools in the on-chip debugging tool set
support scripting via the quartus_stp Tcl package. For the SignalTap II Logic
Analyzer and the LAI, scripting enables user-defined automation for data collection
while debugging in the lab.

In addition, the JTAG server allows you to debug a design that is running on a device
attached to a PC in a remote location. This allows you to set up your hardware in the
lab environment, download any new .sof files, and perform any analysis from your
desktop.

Table 11–2 compares common debugging features between these tools and provides
suggestions about which is the best tool to use for a given feature.

Table 11–2. Suggested On-Chip Debugging Tools for Common Debugging Features (Part 1 of 2) (Note 1)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Logic

Analyzer
Description

Large Sample

Depth
N/A v —

An external logic analyzer used with the LAI has
a bigger buffer to store more captured data
than the SignalTap II Logic Analyzer. No data is
captured or stored with SignalProbe.

Ease in Debugging

Timing Issue
v v —

External equipment, such as oscilloscopes and
Mixed Signal Oscilloscopes (MSOs), can be
used with either LAI or SignalProbe. When
used with the LAI to provide you with access to
timing mode, you can debug combined streams
of data.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 11: System Debugging Tools Overview 11–7
System Debugging Tools
Minimal Effect

on Logic Design
v v (2) v (2)

The LAI adds minimal logic to a design,
requiring fewer device resources. The
SignalTap II Logic Analyzer has little effect on
the design, because it is set as a separate
design partition. SignalProbe incrementally
routes nodes to pins, not affecting the design at
all.

Short Compile and

Recompile Time
v v (2) v (2)

SignalProbe attaches incrementally routed
signals to previously reserved pins, requiring
very little recompilation time to make changes
to source signal selections. The SignalTap II
Logic Analyzer and the LAI can take advantage
of incremental compilation to refit their own
design partitions to decrease recompilation
time.

Triggering

Capability
N/A N/A v

The SignalTap II Logic Analyzer offers
triggering capabilities that are comparable to
commercial logic analyzers.

I/O Usage — — v
No additional output pins are required with the
SignalTap II Logic Analyzer. Both the LAI and
SignalProbe require I/O pin assignments.

Acquisition

Speed
N/A — v

The SignalTap II Logic Analyzer can acquire
data at speeds of over 200 MHz. The same
acquisition speeds are obtainable with an
external logic analyzer used with the LAI, but
may be limited by signal integrity issues.

No JTAG

Connection

Required

v — —

An FPGA design with the SignalTap II Logic
Analyzer or the LAI requires an active JTAG
connection to a host running the Quartus II
software. SignalProbe does not require a host
for debugging purposes.

No External

Equipment Required
— — v

The SignalTap II Logic Analyzer logic is
completely internal to the programmed FPGA
device. No extra equipment is required other
than a JTAG connection from a host running
the Quartus II software or the stand-alone
SignalTap II Logic Analyzer software.
SignalProbe and the LAI require the use of
external debugging equipment, such as
multimeters, oscilloscopes, or logic analyzers.

Notes to Table 11–2:

(1) v indicates the recommended tools for the feature.
— indicates that while the tool is available for that feature, that tool may not give the best results.
N/A indicates that the feature is not applicable for the selected tool.

(2) When used with incremental compilation.

Table 11–2. Suggested On-Chip Debugging Tools for Common Debugging Features (Part 2 of 2) (Note 1)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Logic

Analyzer
Description
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

11–8 Chapter 11: System Debugging Tools Overview
System Debugging Tools
Stimulus-Capable Tools
The In-System Memory Content Editor, the In-System Sources and Probes, and the
Virtual JTAG interface each enable you to use the JTAG interface as a general-purpose
communication port. Though all three tools can be used to achieve the same results,
there are some considerations that make one tool easier to use in certain applications
than others. In-System Sources and Probes is ideal for toggling control signals. The
In-System Memory Content Editor is useful for inputting large sets of test data.
Finally, the Virtual JTAG interface is well suited for more advanced users who want to
develop their own customized JTAG solution.

System Console provides system-level debugging at a transaction level, such as with
Avalon-MM slave or Avalon-ST interfaces. You can communicate to a chip through
JTAG, PLI connectivity for simulation models, and TCP/IP protocols. System Console
is a Tcl console that you use to communicate with hardware modules that you have
instantiated into your design.

In-System Sources and Probes
In-System Sources and Probes is an easy way to access JTAG resources to both read
and write to your design. You can start by instantiating a megafunction into your
HDL code. The megafunction contains source ports and probe ports for driving
values into and sampling values from the signals that are connected to the ports,
respectively. Transaction details of the JTAG interface are abstracted away by the
megafunction. During runtime, a GUI displays each source and probe port by
instance and allows you to read from each probe port and drive to each source port.
The GUI makes this tool ideal for toggling a set of control signals during the
debugging process.

A good application of In-System Sources and Probes is to use the GUI as a
replacement for the push buttons and LEDs used during the development phase of a
project. Furthermore, In-System Sources and Probes supports a set of scripting
commands for reading and writing using quartus_stp. When used with the Tk
toolkit, you can build your own graphical interfaces. This feature is ideal for building
a virtual front panel during the prototyping phase of the design.

In-System Memory Content Editor
The In-System Memory Content Editor allows you to quickly view and modify
memory content either through a GUI interface or through Tcl scripting commands.
The In-System Memory Content Editor works by turning single-port RAM blocks into
dual-port RAM blocks. One port is connected to your clock domain and data signals,
and the other port is connected to the JTAG clock and data signals for editing or
viewing.

Because you can modify a large set of data easily, a useful application for the
In-System Memory Content Editor is to generate test vectors for your design. For
example, you can instantiate a free memory block, connect the output ports to the
logic under test (using the same clock as your logic under test on the system side), and
create the glue logic for the address generation and control of the memory. At
runtime, you can modify the contents of the memory using either a script or the
In-System Memory Content Editor GUI and perform a burst transaction of the data
contents in the modified RAM block synchronous to the logic being tested.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 11: System Debugging Tools Overview 11–9
Conclusion
Virtual JTAG Interface Megafunction
The Virtual JTAG Interface megafunction provides the finest level of granularity for
manipulating the JTAG resource. This megafunction allows you to build your own
JTAG scan chain by exposing all of the JTAG control signals and configuring your
JTAG Instruction Registers (IRs) and JTAG Data Registers (DRs). During runtime, you
control the IR/DR chain through a Tcl API, or with System Console. This feature is
meant for users who have a thorough understanding of the JTAG interface and want
precise control over the number and type of resources used.

System Console
System Console is a framework that you can launch from the Quartus II software to
start services for performing various debugging tasks. System Console provides you
with Tcl scripts and a GUI to access either the Qsys system integration tool or SOPC
Builder modules to perform low-level hardware debugging of your design, as well as
identify a module by its path, and open and close a connection to a Qsys or SOPC
Builder module. You can access your design at a system level for purposes of loading,
unloading, and transferring designs to multiple devices.

System Console also allows you to access commands that allow you to control how
you generate test patterns, as well as verify the accuracy of data generated by test
patterns. You can use JTAG debug commands in System Console to verify the
functionality and signal integrity of your JTAG chain. You can test clock and reset
signals.

You can use System Console to access programmable logic devices on your
development board, as well as bring up a board and verify stages of setup. You can
also access software running on a Nios II processor, as well as access modules that
produce or consume a stream of bytes.

Transceiver Toolkit runs from the System Console framework, and allows you to run
automatic tests of your transceiver links for debugging and optimizing your
transceiver designs. You can use the Transceiver Toolkit GUI to set up channel links in
your transceiver devices, and then automatically run EyeQ and Auto Sweep testing to
view a graphical representation of your test data.

Conclusion
The Quartus II on-chip debugging tool suite allows you to reach debugging closure
quickly by providing you a with set of powerful analysis tools and a set of tools that
open up the JTAG port as a general purpose communication interface. The Quartus II
software further broadens the scope of applications by giving you a comprehensive
Tcl/Tk API. With the Tcl/Tk API, you can increase the level of automation for all of
the analysis tools. You can also build virtual front panel applications quickly during
the early prototyping phase.

In addition, all of the on-chip debugging tools have a tight integration with the rest of
the productivity features within the Quartus II software. The incremental compilation
and incremental routing features enable a fast turnaround time for programming file
generation. The cross-probing feature allows you to find and identify nodes quickly.
The SignalTap II Logic Analyzer, when used with the TimeQuest Timing Analyzer, is
a best-in-class timing verification suite that allows fast functional and timing
verification.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

11–10 Chapter 11: System Debugging Tools Overview
Document Revision History
Document Revision History
Table 11–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 11–3. Document Revision History

Date Version Changes

December 2010 10.1.0 Maintenance release. Changed to new document template.

July 2010 10.0.0 Initial release
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53028-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53028-10.1.0
12. Analyzing and Debugging Designs
with the System Console
This chapter provides a description of the System Console. The chapter lists Tcl
commands and provides examples of how to use various applications in the System
Console to analyze and debug your FPGA designs.

Introduction
The System Console performs low-level hardware debugging of either Qsys or SOPC
Builder systems. You can use the System Console to debug systems that include IP
cores instantiated in your Qsys or SOPC Builder system, as well as for initial bring-up
of your printed circuit board, and for low-level testing. You access the System Console
from the Tools menu of either Qsys or SOPC Builder. You can use the System Console
in command-line mode or with the GUI.

■ Command-line mode allows you to run Tcl scripts from the Tcl Console pane,
located in the System Console window. You can also run Tcl scripts from the
System Console GUI.

■ The System Console GUI allows you to view a main window with separate panes,
including System Explorer, Tcl Console, Messages, and Tools panes.

h For more information about the System Console GUI, refer to About System Console in
Quartus II Help.

This chapter contains the following sections:

■ “System Console Overview”

■ “Setting Up the System Console” on page 12–3

■ “Interactive Help” on page 12–3

■ “Using the System Console” on page 12–3

■ “System Console Examples” on page 12–27

■ “Device Support” on page 12–37

System Console Overview
The System Console allows you to use many types of services. When you interact
with the Tcl console in the System Console, you have general commands related to
finding and accessing instances of those services. Each service type has functions that
are unique to that service.

Finding and Referring To Services
You can retrieve available service types with the get_service_types command.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_about.htm
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53028

12–2 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Overview
The System Console uses a virtual file system to organize the available services, which
is similar to the /dev location on Linux systems. Instances of services are referred to
by their unique service path in the file system. You can retrieve service paths for a
particular service with the command get_service_paths <service-type>.

1 Every System Console command requires a service path to identify the service
instance you want to access.

Most System Console service instances are automatically discovered when you start
the System Console. The System Console automatically scans for all JTAG-based
service instances, and their services paths are immediately retrieved. Some other
services, such as those connected by TCP/IP, are not automatically discovered. You
can use the add_service Tcl command to inform the System Console about those
services.

Accessing the Service Life Cycle
After you have a service path to a particular service instance, you can access the
service for use.

The open_service command tells the System Console to start using a particular
service instance. The open_service command works on every service type. The
open_service command claims a service instance for exclusive use. The command
does not tell the System Console which part of a service you are interested in. As such,
service instances that you open are not safe for shared use among multiple users.

The claim_service command tells the System Console to start accessing a particular
portion of a service instance. For example, if you use the master service to access
memory, then use claim_service to tell the System Console that you only want to
access the address space between 0x0 and 0x1000. The System Console then allows
other users to access other memory ranges and denies them access to your claimed
memory range. The claim_service command returns a newly created service path
that you can use to access your claimed resources.

Not all services support the claim_service command.

You can access a claim service after you open or claim it. When you finish accessing a
service instance, use the close_service command to tell the System Console to free
up resources.

Applying Services
The System Console provides extensive portfolios of services for various applications,
such as real-time on-chip control and debugging, and system measurement. Examples
of how to use these services are provided in this chapter. Table 12–1 lists example
applications included with the System Console and associated services.

The System Console functions by running Tcl commands that are described in
Table 12–3 through Table 12–22.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–3
Setting Up the System Console
Setting Up the System Console
You set up the System Console according to the hardware you have available in your
system. You can access available debug IP on your system with the System Console.
The debug IP allows you to access the running state of your system. The following
sections discuss setting up and using debug IP in further detail.

“System Console Examples” on page 12–27 provides you with detailed examples of
using the System Console in conjunction with SOPC Builder components.

f Download the design files for the example designs from the On-chip Debugging
Design Examples page on the Altera website.

These design examples demonstrate how to add debug IP blocks to your design and
how to connect them before you can use the host application.

Interactive Help
Typing help help into the System Console lists all available commands. Typing
help <command name> provides the syntax of individual commands. The System
Console provides command completion if you type the beginning letters of a
command and then press the Tab key.

1 The System Console interactive help commands only provide help for enabled
services; consequently, typing help help does not display help for commands
supplied by disabled plugins.

Using the System Console
The Quartus® II software expands the framework of the System Console by allowing
you to start services for performing different types of tasks, as described in the
following sections of this chapter. These sections provide Tcl scripting commands,
arguments, and a brief description of the command functions.

Table 12–1. System Console Example Applications

Application Services Used

Board Bring-Up device, jtag_debug, sld

Processor Debug processor, elf, bytestream, master

Active retrieval of dynamic information master

Query static design information marker, design

System Monitoring monitor, master, dashboard

Transceiver Toolkit Direct Phy Control transceiver_reconfig_analog, alt_xcvr_reconfig_dfe,
alt_xcvr_reconfig_eye_viewer

Transceiver Toolkit System Level Control transceiver_channel_rx, transceiver_channel_tx,
transceiver_debug_link
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

12–4 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
1 Many of the System Console commands do not work unless you connect to a system
with a programming cable and with the proper debug IP.

Qsys and SOPC Builder Communications
You can use the System Console to help you debug Qsys or SOPC Builder systems.
The System Console communicates with debug IP in your system design. You can
instantiate debug IP cores using Qsys, SOPC Builder, or the MegaWizard Plug-In
Manager.

f For more information about the Qsys system integration tool, refer to System Design
with Qsys in volume 1 of the Quartus II Handbook.

Table 12–2 describes some of the IP cores that you can use to facilitate debugging your
system with the System Console. When connected to the System Console, these
components enable you to send commands and receive data.

f For more information about Qsys and SOPC Builder components, refer to the
following web pages and documents:

■ Nios II Processor page of the Altera website

■ SPI Slave/JTAG to Avalon Master Bride Cores chapter in the Embedded Peripherals IP
User Guide

■ Avalon Verification IP Suite User Guide

■ Avalon-ST JTAG Interface Core chapter in the Embedded Peripherals IP User Guide

■ Virtual JTAG (sld_virtual_jtag) Megafunction User Guide

■ JTAG UART Core chapter in the Embedded Peripherals IP User Guide

■ System Design with Qsys in volume 1 of the Quartus II Handbook

■ About Qsys in Quartus II Help

Table 12–2. Qsys and SOPC Builder Components for Communication with the System Console (Note 1)

Component Name Component Interface Types for Debugging

Nios® II processor with JTAG debug enabled

Components that include an Avalon® Memory-Mapped (Avalon-MM)
slave interface. The JTAG debug module can also control the Nios II
processor for debug functionality, including starting, stopping, and
stepping the processor.

JTAG to Avalon master bridge Components that include an Avalon-MM slave interface.

Avalon Streaming (Avalon-ST) JTAG Interface Components that include an Avalon-ST interface.

JTAG UART
The JTAG UART is an Avalon-MM slave device that can be used in
conjunction with the System Console to send and receive byte streams.

TCP/IP
For more information, refer to AN624: Debugging with System Console
over TCP/IP.

Note to Table 12–2:
(1) The System Console can also send and receive byte streams from any system-level debugging (SLD) node whether it is instantiated in Qsys or

SOPC Builder components provided by Altera, a custom component, or part of your Quartus II project; however, this approach requires detailed
knowledge of the JTAG commands.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_about_qsys.htm
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf

Chapter 12: Analyzing and Debugging Designs with the System Console 12–5
Using the System Console
Figure 12–1 illustrates examples of interfaces of the components that the System
Console can use.

Altera recommends that you include the following components in your system:

■ On-chip memory

■ JTAG UART

■ System ID core

The System Console provides many different types of services. Different modules can
provide the same type of service. For example, both the Nios II processor and the
JTAG to Avalon Bridge master provide the master service; consequently, you can use
the master commands to access both of these modules.

c If your system includes a Nios II/f core with a data cache it may complicate the
debugging process. If you suspect that writes to memory from the data cache at
nondeterministic intervals are overwriting data written by the System Console, you
can disable the cache of the Nios II/f core while debugging.

Figure 12–1. Example Interfaces (Paths) the System Console Uses to Send Commands

Connections You Make
in Qsys or SOPC Builder

Transparent Connections

JTAG Logic
(Quartus II)

JTAG TAP
Controller
(Hard IP)

Virtual
JTAG Hub
(Soft IP)

JTAG Avalon Master Bridge

Virtual JTAG
Interface

Avalon-MM
Master

Nios II Processor

Virtual JTAG
Interface

Avalon-MM
Master

Avalon-ST JTAG Interface

Virtual JTAG
Interface

Avalon-ST
Source and

Sink

JTAG UART

Legacy
 JTAG

Interface

Avalon-MM
Slave

User Component

Avalon-MM
Slave

User Component

Avalon-ST
Source
and Sink

or

To
Host PC
Running

System Console
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.0/mergedProjects/system/qsys/qsys_about_qsys.htm

12–6 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
You can start the System Console from a Nios II command shell.

1. On the Windows Start menu, point to All Programs, then Altera, then Nios II EDS
<version>, and then click Nios II <version> Command Shell.

2. To start the System Console, type the following command:

system-console r
You can customize your System Console environment by adding commands to the
configuration file called system_console_rc.tcl. This file can be located in either of the
following places:

■ <quartus_install_dir>/sopc_builder/system_console_macros/system_console_rc.tcl,
known as the global configuration file, which affects all users of the system

■ <$HOME>/system_console/system_console_rc.tcl, known as the user
configuration file, which only affects the owner of that home directory

On startup, the System Console automatically runs any Tcl commands in these files.
The commands in the global configuration file run first, followed by the commands in
the user configuration file.

Console Commands
The console commands enable testing. You can use console commands to identify a
module by its path, and to open and close a connection to it. The path that identifies a
module is the first argument to most of the System Console commands. To exercise a
module, follow these steps:

1. Identify a module by specifying the path to it, using the get_service_paths
command.

2. Open a connection to the module using the open_service or claim_service
command. (claim_service returns a new path for use).

3. Run Tcl and System Console commands to use a debug module that you insert to
test another module of interest.

4. Close a connection to a module using the close_service command.

Table 12–3 describes the syntax of the console commands.

Table 12–3. Console Commands (Part 1 of 2)

Command Arguments Function

get_service_types —

Returns a list of service types that the System Console
manages. Examples of service types include master,
bytestream, processor, sld, jtag_debug, device, and
plugin.

get_service_paths <service_type_name> Returns a list of paths to nodes that implement the
requested service type.

open_service
<service_type_name>
<service_path>

Claims a service instance for exclusive use.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–7
Using the System Console
claim_service

<service-type>
<service-path>
<library-name>
<claims>

Provides finer control of the portion of a service you
want to use.

Run help claim_service to get a list of
<service-type>s.

Then run help claim_service <service-type> to get
specific help on that service.

close_service
<service_type_name>
<service_path>

Frees the System Console resources at the path you
claimed.

is_service_open
<service_type_name>
<service_path>

Returns 1 if the service type provided by the path is
open, 0 if the service type is closed.

get_services_to_add — Returns a list of all services that are instantiable with the
add_service command.

add_service
<service-type> <instance-name>
<optional-parameters>

Adds a service of the specified service type with the
given instance name. Run get_services_to_add to
retrieve a list of instantiable services. This command
returns the path where the service was added.

Run help add_service <service-type> to get specific
help about that service-type, including any arguments
that might be required for that service. Available
services include:
dashboard
gdbserver
nios2dpx
pli_bytestream
pli_master
pli_packets
tcp
tcp_bytestream
tcp_master
transceiver_channel_rx
transceiver_channel_tx
transceiver_debug_link

get_version — Returns the current System Console version and build
number.

add_help
<command>
<help-text>

Adds help text for a given command. Use this when you
write a Tcl script procedure (proc) and then want to
provide help for others to use the script.

get_claimed_services <library-name>

For the given library name, returns a list services
claimed via claim_service with that library name. The
returned list consists of pairs of paths and service
types, each pair one claimed service.

refresh_connections — Scans for available hardware and updates the available
service paths if there have been any changes.

send_message
<level>
<message>

Sends a message of the given level to the message
window. Available levels are info, warning, error, and
debug.

Table 12–3. Console Commands (Part 2 of 2)

Command Arguments Function
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–8 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Plugins
Plugins allow you to customize how you use the System Console services, and are
enabled by default. Table 12–4 lists Plugin commands.

Design Service Commands
Design Service commands allow you to use the System Console services to load and
work with your design at a system level. Table 12–5 lists Design Service commands.

Table 12–4. Plugin Commands

Command Arguments Function

Plugin Service Type Commands

plugin_enable <plugin-path>

Enables the plugin specified by the path.
After a plugin is enabled, you can retrieve
the <service-path> and
<service_type_name> for additional
services using the get_service_paths
command.

plugin_disable <plugin-path> Disables the plugin specified by the path.

is_plugin_enabled <plugin-path> Returns a non-zero value when the plugin
at the specified path is enabled.

Table 12–5. Design Service Commands

Command Arguments Function

design_load
<quartus-project-path>
or
<qpf-file-path>

Loads a model of a Quartus II design into
the System Console.

For example, if your .qpf file is in
c:/projects/loopback, type the following
command: design_load
{c:\projects\loopback\}

design_instantiate <design-path> <instance-name> Allows you to apply the same design to
multiple devices.

design_link
<design-instance-path>
<device-service-path>

Links a Quartus II logical design with a
physical device.

For example, you can link a Quartus II
design called 2c35_quartus_design to a
2c35 device. After you create this link, the
System Console creates the appropriate
correspondences between the logical and
physical submodules of the Quartus II
project. Example 12–4 on page 12–30
shows a transcript illustrating the
design_load and design_link
commands.

Note that the System Console does not
verify that the link is valid; if you create an
incorrect link, the System Console does not
report an error.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–9
Using the System Console
Data Pattern Generator Commands
Data Pattern Generator commands allow you control data patterns that you generate
for testing, debugging, and optimizing your design. You must first insert debug IP to
enable these commands.Table 12–6 lists Data Pattern Generator commands.

Table 12–6. Data Pattern Generator Commands (Part 1 of 2)

Command Arguments Function

data_pattern_generator_start <service-path> Starts the data pattern generator.

data_pattern_generator_stop <service-path> Stops the data pattern generator.

data_pattern_generator_is_generating <service-path> Returns non-zero if the generator is
running.

data_pattern_generator_inject_error <service-path> Injects a 1-bit error into the
generator's output.

data_pattern_generator_set_pattern
<service-path>
<pattern-name>

Sets the output pattern specified by
the <pattern-name>. In all, 6
patterns are available, 4 are
pseudo-random binary sequences
(PRBS), 1 is high frequency and 1 is
low frequency. The following pattern
names are defined:

■ PRBS7

■ PRBS15

■ PRBS23

■ PRBS31

■ HF–outputs a high frequency,
constant pattern of alternating 0s
and 1s

■ LF–outputs a low frequency,
constant pattern of
10b’1111100000 for 10-bit
symbols and 8b’11110000 for
8-bit symbols

data_pattern_generator_get_pattern <service-path> Returns currently selected output
pattern.

data_pattern_generator_get_available_patter
ns

<service-path> Returns a list of available data
patterns by name.

data_pattern_generator_enable_preamble <service-path> Enables the preamble mode at the
beginning of generation.

data_pattern_generator_disable_preamble <service-path> Disables the preamble mode at the
beginning of generation.

data_pattern_generator_is_preamble_enabled <service-path> Returns a non-zero value if preamble
mode is enabled.

data_pattern_generator_set_preamble_word
<service-path>
<preamble-word>

Sets the preamble word (could be
32-bit or 40-bit).

data_pattern_generator_get_preamble_word <service-path> Gets the preamble word.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–10 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Data Pattern Checker Commands
Data Pattern Checker commands allow you verify the data patterns that you generate.
You must first insert debug IP to enable these commands. Table 12–7 lists Data Pattern
Checker commands.

Programmable Logic Device (PLD) Commands
The PLD commands provide access to programmable logic devices on your board.
Before you use these commands, identify the path to the programmable logic device
on your board using the get_service_paths command described in Table 12–3.

data_pattern_generator_set_preamble_beats
<service-path>
<number-of-preamble-
beats>

Sets the number of beats to send out
the in the preamble word.

data_pattern_generator_get_preamble_beats <service-path>
Returns the currently set number of
beats to send out in the preamble
word.

Table 12–6. Data Pattern Generator Commands (Part 2 of 2)

Command Arguments Function

Table 12–7. Data Pattern Checker Commands

Command Arguments Function

data_pattern_checker_start <service-path> Starts the data pattern checker.

data_pattern_checker_stop <service-path> Stops the data pattern checker.

data_pattern_checker_is_checking
<service-path>

Returns a non-zero value if the
checker is running.

data_pattern_checker_is_locked
<service-path>

Returns non-zero if the checker is
locked onto the incoming data.

data_pattern_checker_set_pattern
<service-path>
<pattern-name>

Sets the expected pattern to the one
specified by the
<pattern-name>.

data_pattern_checker_get_pattern
<service-path>

Returns the currently selected
expected pattern by name.

data_pattern_checker_get_available_patt
erns <service-path>

Returns a list of available data
patterns by name.

data_pattern_checker_get_data

<service-path>

Returns the correct and incorrect
counts of data received, providing the
number of bits and the number of
errors.

data_pattern_checker_reset_counters
<service-path>

Resets the bit and error counters
inside the checker.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–11
Using the System Console
Table 12–8 describes the PLD commands.

Board Bring-Up Commands
The board bring-up commands allow you to test your system. These commands are
presented in the order that you would use them during board bring-up, including the
following setup work flow:

1. Verify JTAG connectivity.

2. Verify the clock and reset signals.

3. Verify memory and other peripheral interfaces.

4. Verify basic Nios II processor functionality.

1 The System Console is intended for debugging the basic hardware functionality of
your Nios II processor, including its memories and pinout. If you are writing device
drivers, you may want to use the System Console and the Nios II software build tools
together to debug your code.

f For more information about the hardware functioning correctly and software
debugging, refer to Nios II Software Build Tools Reference in the Nios II Software
Developer’s Handbook.

JTAG Debug Commands
You can use JTAG debug commands to verify the functionality and signal integrity of
your JTAG chain. Your JTAG chain must be functioning correctly to debug the rest of
your system. To verify signal integrity of your JTAG chain, Altera recommends that
you provide an extensive list of byte values. Table 12–9 lists these commands.

Table 12–8. PLD Commands

Command Arguments Function

device_download_sof <device_path> <sof_file> Loads the specified SRAM object file (.sof) file to
the device specified by the path.

device_load_jdi <device_path> <jdi_file>
Renames the Tcl interface layer's nodes to the
names specified in the JTAG debug interface (.jdi)
file, making your design easier to understand.

Table 12–9. JTAG Commands

Command Arguments Function

jtag_debug_loop
<path> <list_of_byte_

values>

Loops the specified list of bytes through a loopback
of tdi and tdo of a system-level debug (SLD)
node. Returns the list of byte values in the order
that they were received. Blocks until all bytes are
received. Byte values are given with the 0x
(hexadecimal) prefix and delineated by spaces.

jtag_debug_reset_system <service-path> Issues a reset request to the system.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

12–12 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Clock and Reset Signal Commands
The next stage of board bring-up tests the clock and reset signals. Table 12–10 lists the
three commands to verify these signals. Use these commands to verify that your clock
is toggling and that the reset signal has the expected value.

Avalon-MM Commands
Avalon-MM commands allow you to access the memory-mapped or SLD modules
that include Avalon-ST slave interfaces. You can read or write to the Avalon-MM
interfaces using the master read and write commands, but the Avalon-MM slave must
be connected to an Avalon MM master that you can control from the host.

PLI Master commands listed in Table 12–13 provide bytestream and master services
over a PLI connection to a simulator. Tcl Master commands provide bytestream and
master services over TCP IP.

Additionally, you can use the SLD commands to shift values into the instruction and
data registers of SLD nodes and read the previous value. Table 12–11 lists these
commands.

Table 12–10. Clock and Reset Commands

Command Argument Function

jtag_debug_sample_clock <service-path>

Returns the value of the clock signal of the system clock that
drives the module's system interface. The clock value is
sampled asynchronously; consequently, you may need to
sample the clock several times to guarantee that it is
toggling.

jtag_debug_sample_reset <service-path> Returns the value of the reset signal of the system reset that
drives the module's system interface.

jtag_debug_sense_clock <service-path>

Returns the result of a sticky bit that monitors for system
clock activity. If the clock has ever toggled, the bit is 1.
Returns true if the bit has ever toggled and otherwise
returns false. The sticky bit is reset to 0 on read.

Table 12–11. Module Commands (Part 1 of 2) (Note 1)

Command Arguments Function

Avalon-MM Master Commands

master_write_memory
<service-path>
<address>
<list_of_byte_values>

Writes the specified data to the specified path and
address. Values are given in hexadecimal format with
the 0x prefix and delineated by spaces.

master_write_8
<service-path>
<address>
<list_of_byte_values>

master_write_16 <service-path>
<address>
<list_of_16_bit_words>

master_write_32
<service-path>
<address>
<list_of_32_bit_words>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–13
Using the System Console
master_read_memory
<service-path>
<base_address>
<size_in_bytes>

Returns a list of read values.

master_read_8
<service-path>
<base_address>
<size_in_bytes>

master_read_16

<service-path>
<base_address>
<size_in_multiples_of_
16_bits>

master_read_32

<service-path>
<base_address>
<size_in_multiples_of_
32_bits>

SLD Commands

sld_access_ir
<service-path> <value>
<timeout> (in µs)

Shifts the instruction value into the instruction register
of the specified node. Returns the previous value of the
instruction. If the timeout value is set to 0, the operation
never times out. A suggested starting value for
timeout is 1000 µs.

sld_access_dr

<service-path>
<size_in_bits>
<timeout> (in µs),
<list_of_byte_values>

Shifts the byte values into the data register of the SLD
node up to the size in bits specified. If the timeout
value is set to 0, the operation never times out. Returns
the previous contents of the data register. A suggested
starting value for timeout is 1000 µs.

sld_lock
sld_lock <service-path>
<timeout> (in ms)

Locks the SLD chain to guarantee exclusive access. If
the SLD chain is already locked, tries for <timeout>
ms before returning -1, indicating an error. Returns 0 if
successful.

sld_unlock sld_unlock <service-path> Unlocks the SLD chain.

Note to Table 12–11:

(1) Transfers performed in 16- and 32-bit sizes are packed in little endian format.

Table 12–11. Module Commands (Part 2 of 2) (Note 1)

Command Arguments Function
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–14 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Processor Commands
These commands allow you to start, stop, and step through software running on a
Nios II processor. The commands also allow you to read and write the registers of the
processor. Table 12–12 lists the commands.

Bytestream Commands
These commands provide access to modules that produce or consume a stream of
bytes. You can use the bytestream service to communicate directly to IP that provides
bytestream interfaces, such as the Altera JTAG UART. Table 12–13 lists the commands.

Table 12–12. Processor Commands

Command Arguments Function

elf_download

<processor-service-
path>
<master-service-pat
h>
<elf-file-path>

Downloads the given Executable and Linking Format
(.elf) File to memory using the specified master
service. Sets the processor's program counter to the
.elf entry point.

processor_in_debug_mode <service-path>
Returns a non-zero value if the processor is in debug
mode.

processor_reset <service-path> Resets the processor and places it in debug mode.

processor_run <service-path> Puts the processor into existing debug mode.

processor_stop <service-path> Puts the processor into debug mode.

processor_step <service-path> Executes one assembly instruction.

processor_get_register_nam
es

<service-path>
Returns a list with the names of all of the processor's
accessible registers.

processor_get_register
<service-path>
<register_name>

Returns the value of the specified register.

processor_set_register
<service-path>
<register_name>

Sets the value of the specified register.

Table 12–13. Bytestream Commands

Command Arguments Function

bytestream_send
<service-path>
<list_of_byte_values>

Sends the list of byte values on the specified path.
Values are in hexadecimal format and delineated by
spaces.

bytestream_receive
<service-path>
<number_of_bytes>

Limits the maximum number of bytes to return.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–15
Using the System Console
Transceiver Toolkit Commands
You can run the Transceiver Toolkit from the System Console window. Alternatively,
you can open the Transceiver Toolkit from the Tools menu in the Quartus II software.
You can debug, monitor, and optimize the transceiver channel links in your design
with Tcl scripts, or you can launch the Transceiver Toolkit GUI from the System
Console Tools menu. The GUI for the Transceiver Toolkit provides a graphical
representation of automatic tests that you run. You can also view graphical control
panels to change physical medium attachment (PMA) settings of channels, start and
stop generators, and checkers.

f For further information about the Transceiver Toolkit, refer to the Transceiver Link
Debugging Using the System Console chapter of the Quartus II Handbook.

Table 12–14 through Table 12–19 lists the Transceiver Toolkit commands..

Table 12–14. Transceiver Toolkit Channel_rx Commands (Part 1 of 2)

Command Arguments Function

transceiver_channel_rx_get_data <service-path>

Returns a list of the current
checker data.The results are in
the order: number of bits,
number of errors, bit error rate.

transceiver_channel_rx_get_dcgain <service-path> Gets the DC gain value on the
receiver channel.

transceiver_channel_rx_get_dfe_tap_value
<service-path>
<tap position>

Gets the current tap value of the
specified channel at the
specified tap position.

transceiver_channel_rx_get_eqctrl <service-path> Gets the equalization control
value on the receiver channel.

transceiver_channel_rx_get_pattern <service-path> Returns the current data
checker pattern by name.

transceiver_channel_rx_has_dfe <service-path> Gets whether this channel has
the DFE feature available.

transceiver_channel_rx_is_checking <service-path> Returns non-zero if the checker
is running.

transceiver_channel_rx_is_dfe_enabled <service-path>
Gets whether the DFE feature is
enabled on the specified
channel.

transceiver_channel_rx_is_locked <service-path>
Returns non-zero if the checker
is locked onto the incoming
data.

transceiver_channel_rx_reset_counters <service-path> Resets the bit and error
counters inside the checker.

transceiver_channel_rx_set_dcgain
<service-path>
<dc_gain setting>

Sets the DC gain value on the
receiver channel.

transceiver_channel_rx_set_dfe_enabled
 <service-path>
<disable(0)/enable(1)>

Enables/disables the DFE
feature on the specified
channel.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

12–16 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
transceiver_channel_rx_set_dfe_tap_value
 <service-path>
<tap position>
<tap value>

Sets the current tap value of the
specified channel at the
specified tap position to the
specified value.

transceiver_channel_rx_set_eqctrl
<service-path>
<eqctrl setting>

Sets the equalization control
value on the receiver channel.

transceiver_channel_rx_start_checking <service-path> Starts the checker.

transceiver_channel_rx_stop_checking <service-path> Stops the checker.

transceiver_channel_rx_get_eyeq_phase_step <service-path> Gets the current phase step of
the specified channel.

transceiver_channel_rx_set_pattern
<service-path>
<pattern-name>

Sets the expected pattern to the
one specified by the pattern
name.

transceiver_channel_rx_is_eyeq_enabled <service-path>
Gets whether the EyeQ feature
is enabled on the specified
channel.

transceiver_channel_rx_set_eyeq_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the EyeQ
feature on the specified
channel.

transceiver_channel_rx_set_eyeq_phase_step
<service-path>
<phase step>

Sets the phase step of the
specified channel.

transceiver_channel_rx_set_word_aligner_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the word
aligner of the specified channel.

transceiver_channel_rx_is_word_aligner_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the word
aligner of the specified channel.

Table 12–14. Transceiver Toolkit Channel_rx Commands (Part 2 of 2)

Command Arguments Function

Table 12–15. Transceiver Toolkit Channel _tx Commands (Part 1 of 2)

Command Arguments Function

transceiver_channel_tx_disable_preamble <service-path> Disables the preamble mode at
the beginning of generation.

transceiver_channel_tx_enable_preamble <service-path> Enables the preamble mode at
the beginning of generation.

transceiver_channel_tx_get_number_of_preamble_bea
ts

<service-path> Returns the number of
preamble beats.

transceiver_channel_tx_get_pattern <service-path> Returns the currently set
pattern.

transceiver_channel_tx_get_preamble_word <service-path> Returns the currently set
preamble word.

transceiver_channel_tx_get_preemph0t <service-path>
Gets the pre-emphasis pre-tap
value on the transmitter
channel.

transceiver_channel_tx_get_preemph1t <service-path>
Gets the pre-emphasis first
post-tap value on the
transmitter channel.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–17
Using the System Console
transceiver_channel_tx_get_preemph2t <service-path>
Gets the pre-emphasis second
post-tap value on the
transmitter channel.

transceiver_channel_tx_get_vodctrl <service-path> Gets the VOD control value on
the transmitter channel.

transceiver_channel_tx_inject_error <service-path> Injects a 1-bit error into the
generator's output.

transceiver_channel_tx_is_generating <service-path> Returns non-zero if the
generator is running.

transceiver_channel_tx_is_preamble_enabled <service-path> Returns non-zero if preamble
mode is enabled.

transceiver_channel_tx_set_number_of_preamble_bea
ts

 <service-path>
<number-of-preamble-
beats>

Sets the number of beats to
send out the preamble word.

transceiver_channel_tx_set_pattern
 <service-path>
<pattern-name>

Sets the output pattern to the
one specified by the pattern
name.

transceiver_channel_tx_set_preamble_word
 <service-path>
<preamble-word>

Sets the preamble word to be
sent out.

transceiver_channel_tx_set_preemph0t
<service-path>

<preemph0t value>

Sets the pre-emphasis pre-tap
value on the transmitter
channel.

transceiver_channel_tx_set_preemph1t
<service-path>

<preemph1t value>

Sets the pre-emphasis first
post-tap value on the
transmitter channel.

transceiver_channel_tx_set_preemph2t
<service-path>

<preemph2t value>

Sets the pre-emphasis second
post-tap value on the
transmitter channel.

transceiver_channel_tx_set_vodctrl
<service-path>

<vodctrl value>
Sets the VOD control value on
the transmitter channel.

transceiver_channel_tx_start_generation <service-path> Starts the generator.

transceiver_channel_tx_stop_generation <service-path> Stops the generator.

Table 12–16. Transceiver Toolkit Debug_Link Commands

Command Arguments Function

transceiver_debug_link_get_pattern <service-path> Gets the currently set pattern
the link uses to run the test.

transceiver_debug_link_is_running <service-path> Returns non-zero if the test is
running on the link.

transceiver_debug_link_set_pattern
<service-path>
<data pattern>

Sets the pattern the link uses to
run the test.

transceiver_debug_link_start_running <service-path> Starts running a test with the
currently selected test pattern.

transceiver_debug_link_stop_running <service-path> Stops running the test.

Table 12–15. Transceiver Toolkit Channel _tx Commands (Part 2 of 2)

Command Arguments Function
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–18 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Table 12–17. Transceiver Toolkit Reconfig_analog Commands (Part 1 of 2)

Command Arguments Function

transceiver_reconfig_analog_get_logical_channel_
address

<service-path> Gets the transceiver logical
channel address currently set.

transceiver_reconfig_analog_get_rx_dcgain <service-path>

Gets the DC gain value on the
receiver channel specified by
the current logical channel
address.

transceiver_reconfig_analog_get_rx_eqctrl <service-path>

Gets the equalization control
value on the receiver channel
specified by the current logical
channel address.

transceiver_reconfig_analog_get_tx_preemph0t <service-path>

Gets the pre-emphasis pre-tap
value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_analog_get_tx_preemph1t <service-path>

Gets the pre-emphasis first
post-tap value on the
transmitter channel specified
by the current logical channel
address.

transceiver_reconfig_analog_get_tx_preemph2t <service-path>

Gets the pre-emphasis second
post-tap value on the
transmitter channel specified
by the current logical channel
address.

transceiver_reconfig_analog_get_tx_vodctrl <service-path>

Gets the VOD control value on
the transmitter channel
specified by the current logical
channel address.

transceiver_reconfig_analog_set_logical_channel_
address

<service-path>

<logical channel
address>

Sets the transceiver logical
channel address.

transceiver_reconfig_analog_set_rx_dcgain
<service-path>

<dc_gain value>
Sets the transceiver logical
channel address.

transceiver_reconfig_analog_set_rx_eqctrl
<service-path>

<eqctrl value>

Sets the equalization control
value on the receiver channel
specified by the current logical
channel address.

transceiver_reconfig_analog_set_tx_preemph0t
<service-path>

<preemph0t value>

Sets the pre-emphasis pre-tap
value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_analog_set_tx_preemph1t
<service-path>

<preemph1t value>

Sets the pre-emphasis first
post-tap value on the
transmitter channel specified
by the current logical channel
address.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–19
Using the System Console
.

transceiver_reconfig_analog_set_tx_preemph2t
<service-path>

<preemph2t value>

Sets the pre-emphasis second
post-tap value on the
transmitter channel specified
by the current logical channel
address.

transceiver_reconfig_analog_set_tx_vodctrl
<service-path>

<vodctrl value>

Sets the VOD control value on
the transmitter channel
specified by the current logical
channel address.

Table 12–17. Transceiver Toolkit Reconfig_analog Commands (Part 2 of 2)

Command Arguments Function

Table 12–18. Transceiver Toolkit DFE Feedback Equalization (DFE) Tcl Commands

Command Arguments Function

alt_xcvr_reconfig_dfe_get_logical_channel_address
<service-path>

Gets the logical channel
address that other
alt_xcvr_reconfig_dfe
commands use to apply.

alt_xcvr_reconfig_dfe_is_enabled <service-path>
Gets whether the DFE feature is
enabled on the previously
specified channel.

alt_xcvr_reconfig_dfe_set_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the DFE
feature on the previously
specified channel.

alt_xcvr_reconfig_dfe_set_logical_channel_address
<service-path>
 <tap position>

Gets the tap value of the
previously specified channel at
specified tap position.

alt_xcvr_reconfig_dfe_set_logical_channel_address
<service-path>
<logical channel
address>

Sets the logical channel
address that other
alt_xcvr_reconfig_eye_viewer
commands use to apply.

alt_xcvr_reconfig_dfe_set_tap_value
<service-path>
<tap position>
 <tap value>

Sets the tap value at the
previously specified channel at
specified tap position and
value.

Table 12–19. Transceiver Toolkit Eye Monitor Tcl Commands (Part 1 of 2)

Command Arguments Function

alt_xcvr_custom_is_word_aligner_enabled <service-path>
<disable(0)/enable(1)>

Enables/disables the word
aligner of the previously
specified channel.

alt_xcvr_custom_set_word_aligner_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the word
aligner of the previously
specified channel.

alt_xcvr_reconfig_eye_viewer_get_logical_channel_
address

<service-path>

Gets the logical channel
address on which other
alt_reconfig_eye_viewer
commands will use to apply.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–20 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
In-System Sources and Probes Commands
You can use the In-System Sources and Probes commands to read source and probe
data. Table 12–20 lists the commands. You use these commands with the In-System
Sources and Probes that you insert into your project from the Quartus II software
main menu.
.

alt_xcvr_reconfig_eye_viewer_get_phase_step <service-path>
Gets the current phase step of
the previously specified
channel.

alt_xcvr_reconfig_eye_viewer_is_enabled <service-path>
Gets whether the EyeQ feature
is enabled on the previously
specified channel.

alt_xcvr_reconfig_eye_viewer_set_enabled
<service-path>
<disable(0)/enable(1)>

Enables/disables the EyeQ
feature on the previously
specified channel.

alt_xcvr_reconfig_eye_viewer_set_logical_channel_
address

<service-path>
<logical channel
address>

Sets the logical channel
address on which other
alt_reconfig_eye_viewer
commands will use to apply.

alt_xcvr_reconfig_eye_viewer_set_phase_step
<service-path>
<phase step>

Sets the phase step of the
previously specified channel.

Table 12–19. Transceiver Toolkit Eye Monitor Tcl Commands (Part 2 of 2)

Command Arguments Function

Table 12–20. In-System Sources and Probes Tcl Commands

Command Arguments Function

issp_get_instance_info <service-path>
Returns a list of the
configurations of the In-System
Sources and Probes instance.

issp_read_probe_data <service-path>

Retrieves the current value of
the probes. A hex string is
returned representing the probe
port value.

issp_read_source_data <service-path>

Retrieves the current value of
the sources. A hex string is
returned representing the
source port value.

issp_write_source_data
<service-path>
<source-value>

Sets values for the sources.
The value can be either a hex
string or a decimal value
supported by System Console
Tcl interpreter.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–21
Using the System Console
Monitor Commands
You can use the Monitor commands to efficiently read many Avalon-MM slave
memory locations at a regular interval. For example, if you want to do 100 reads per
second, every second, you get much better performance using the monitor service
than if you call 100 separate master_read_memory commands every second. This is the
primary difference between the monitor service and the master service. Table 12–21
lists the commands.

Table 12–21. Monitoring Commands (Part 1 of 2)

Command Arguments Function

monitor_add_range

<service-path>
<target-path>
<address>
<size>

Adds a contiguous memory
addresses into the monitored
memory list.

monitor_set_callback
<service-path>
<Tcl-expression>

Defines a Tcl expression in a
single string that will be
evaluated after all the memories
monitored by this service are
read. Typically, this expression
should be specified as a Tcl
procedure call with necessary
argument passed in.

monitor_set_interval
<service-path>
<interval>

Specifies the frequency of the
polling action by specifying the
interval between two memory
reads. The actual polling
frequency varies depending on
the system activity. The
monitor service will try it keep
it as close to this specification
as possible.

monitor_get_interval <service-path>
Returns the current interval set
which specifies the frequency
of the polling action.

monitor_set_enabled
<service-path>
<enable(1)/disable(0)>

Enables/disables monitoring.
Memory read starts after this is
enabled, and Tcl callback is
evaluated after data is read.

monitor_read_data

<service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values
read from the most recent
values read from device. The
memory range specified must
be within the monitored
memory range as defined by
monitor_add_range.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–22 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Dashboard Commands
The System Console dashboard allows you to create graphical tools that seamlessly
integrate into the System Console. This section describes how to build your own
dashboard with Tcl commands and the properties that you can assign to the widgets
on your dashboard. The dashboard allows you to create tools that interact with live
instances of an IP core on your device. Table 12–22 lists the dashboard Tcl commands
available from the System Console.

Example 12–1 shows a Tcl command to create a dashboard. After you run the
command, you get a path. You can then use the path on the commands listed in
Table 12–22.

monitor_read_all_data

<service-path>
<target-path>
<address>
<size>

Returns a list of 8-bit values
read from all recent values read
from device since last Tcl
callback. The memory range
specified must be within the
monitored memory range as
defined by monitor_add_range.

monitor_get_read_interval

<service-path>
<target-path>
<address>
<size>

Returns the number of
milliseconds between last two
data reads returned by
monitor_read_data.

monitor_get_all_read_intervals

<service-path>
<target-path>
<address>
<size>

Returns a list of intervals in
milliseconds between two
reads within the data returned
by monitor_read_all.

monitor_get_missing_event_count <service-path>

Returns the number of callback
events missed during the
evaluation of last Tcl callback
expression.

Table 12–21. Monitoring Commands (Part 2 of 2)

Command Arguments Function

Example 12–1. Example of Creating a Dashboard

add_service dashboard my_new_dashboard "This is a New Dashboard" “Tools/My New Dashboard”

Table 12–22. Dashboard Commands (Part 1 of 2)

Command Arguments Description

dashboard_add
<service-path>
<string>

Allows you to add a specified
widget to your GUI dashboard.

dashboard_remove
<service-path>
<string>

Allows you to remove a
specified widget from your GUI
dashboard.

dashboard_set_property <string>

Allows you to set the specified
properties of the specified
widget that has been added to
your GUI dashboard.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–23
Using the System Console
Specifying Widgets
You can specify the widgets that you add to your dashboard. Table 12–23 lists the
widgets.

Example 12–2 is a Tcl script to instantiate a widget. In this example, the Tcl command
adds a label to the dashboard. The first argument is the path to the dashboard. This
path is returned by the add_service command. The next argument is the ID you
assign to the widget. The ID must be unique within the dashboard. You use this ID
later on to refer to the widget.

Following that argument is the type of widget you are adding, which in this example
is a label. The type of labels in this example is label. The last argument to this
command is the group where you want to put this widget. In this example, a special
keyword self is used. Self refers to the dashboard itself, the primary group. You can
then add a group to self, which allows you to add other widgets to this group by
using the ID of the new group, rather than using the ID of the self group.

dashboard_get_property
<service-path>
<string>

Allows you to determine the
existing properties of a widget
added to your GUI dashboard.

dashboard_get_types —
Returns a list of all possible
widgets that you can add to
your GUI dashboard.

dashboard_get_properties —
Returns a list of all possible
properties of the specified
widgets in your GUI dashboard.

Table 12–22. Dashboard Commands (Part 2 of 2)

Command Arguments Description

Table 12–23. Dashboard Widgets

Widget Description

Group Allows you to add a collection of widgets and control the general layout of
the widgets.

Button Allows you to add a button.

FileChooserButton Allows you to define button actions.

Label Allows you to add a text string.

Text Allows you to specify text.

Table Allows yo to add a table.

LED Allows you to add an LED with a label.

Dial Allows you to add the shape of an analog dial.

TimeChart Allows you to add a chart of historic values, with the X-axis of the chart
representing time.

BarChart Allows yo to add a bar chart.

LineChart Allows you to add a line chart.

PieChart Allows you to add a pie chart.

Example 12–2. Example of Instantiating a Widget

dashboard_add $dash myLabel label self
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–24 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Customizing Widgets
You can change widget properties at any time. The dashboard_set_property command
allows you to interact with the widgets you instantiate. This functionality is most
useful when you use you change part of the execution of a callback. Example 12–3
shows how to change the text in a label.

In Example 12–3, the first argument is the path to the dashboard. Next is the unique
ID of the widget, which then allows you to target an arbitrary widget. Following that
is the name of the property. Each type of widget has a defined set of properties,
discussed later. You can change the properties. In this example, myLabel is of the type
label, and the example shows how to set its text property. The last argument is the
value that the property takes when the command is executed.

Assigning Dashboard Widget Properties
In Table 12–24 through Table 12–36, the various properties are listed that you can
apply to the widgets on your dashboard.

Example 12–3. Example of Customizing a Widget

dashboard_set_property $dash myLabel text "Hello World!"

Table 12–24. Properties Common to All Widgets

Property Description

enabled Enables or disables the widget.

expandableX Allows the widget to be resized horizontally if there's space available in the
cell where it resides.

expandableY Allows the widget to be resized vertically if there's space available in the cell
where it resides.

maxHeight If the widget's expandableY is set, this is the maximum height in pixels that
the widget can take.

minHeight If the widget's expandableY is set, this is the minimum height in pixels that
the widget can take.

maxWidth If the widget's expandableX is set, this is the maximum width in pixels that
the widget can take.

minWidth If the widget's expandableX is set, this is the minimum width in pixels that
the widget can take.

preferredHeight The height of the widget if expandableY is not set.

preferredWidth The width of the widget if expandableX is not set.

toolTip A tool tip string that appears once the mouse hovers above the widget.

Table 12–25. Button Properties

Property Description

onClick A Tcl command to run, usually a proc, every time the button is clicked.

text The text on the button.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–25
Using the System Console
Table 12–26. FileChooserButton Properties

Property Description

text The text on the button.

onChoose A Tcl command to run, usually a proc, every time the button is clicked.

title The text of file chooser dialog box title.

chooserButtonText The text of file chooser dialog box approval button. By default, it is "Open".

filter

The file filter based on extension. Only one extension is supported. By
default, all file names are allowed. The filter is specified as [list
filter_description file_extension], for example [list "Text Document (.txt)"
"txt"].

mode Specifies what kind of files or directories can be selected. "files_only", by
default. Possible options are "files_only" and "directories_only".

multiSelectionEnabled Controls whether multiple files can be selected. False, by default.

paths
Returns a list of file paths selected in the file chooser dialog box. This is
read only property. It is most useful when used within the onClick script or
a procedure when the result is freshly updated after the dialog box closes.

Table 12–27. Dial Properties

Properties Description

max The maximum value that the dial can show.

min The minimum value that the dial can show.

tickSize The space between the different tick marks of the dial.

title The title of the dial.

value The value that the dial's needle should mark. It must be between min and
max.

Table 12–28. Group Properties

Properties Description

itemsPerRow The number of widgets the group can position in one row, from left to right,
before moving to the next row.

title The title of the group. Groups with a title can have a border around them,
and setting an empty title removes the border.

Table 12–29. Label Properties

Properties Description

text The text to show in the label.

Table 12–30. LED Properties

Properties Description

color The color of the LED. The options are: red_off, red, yellow_off, yellow,
green_off, green, blue_off, blue, and black.

text The text to show next to the LED.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–26 Chapter 12: Analyzing and Debugging Designs with the System Console
Using the System Console
Table 12–31. Text Properties

Properties Description

editable Controls whether the text box is editable.

htmlCapable Controls whether the text box can format HTML.

text Controls the text of the textbox.

Table 12–32. Time Chart Properties

Properties Description

labelX The label for the X axis.

labelY The label for the Y axis.

latest The latest value in the series.

maximumItemCount The number of sample points to display in the historic record.

title The title of the chart.

Table 12–33. Table Properties (Part 1 of 2)

Properties Description

Table-wide Properties

columnCount The number of columns (Mandatory) (0, by default).

rowCount The number of rows (Mandatory) (0, by default).

headerReorderingAllowed Controls whether you can drag the columns (false, by default).

headerResizingAllowed
Controls whether you can resize all column widths. (false, by default) Note,
each column can be individually configured to be resized by using property,
columnWidthResizable.

rowSorterEnabled Controls whether you can sort the cell values in a column (false, by default).

showGrid Controls whether to draw both horizontal and vertical lines (true, by
default).

showHorizontalLines Controls whether to draw horizontal line (true, by default).

showVerticalLines Controls whether to draw vertical line (true, by default).

rowIndex Current row index. 0 based. This value affects some properties below (0, by
default).

columnIndex Current column index. Zero-based. This value affects all column specific
properties below (0, by default).

cellText Specifies the text to be filled in the cell specified the current rowIndex and
columnIndex (Empty, by default).

selectedRows Control or retrieve row selection.

Column-specific Properties

columnHeader The text to be filled in the column header.

columnHorizontalAlignment The cell text alignment in the specified column. Supported types are
"leading"(default), "left", "center", "right", "trailing".

columnRowSorterType
The type of sorting method used. This is applicable only if
rowSorterEnabled is true. Each column has its own sorting type. Supported
types are "string" (default), "int", and "float".
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–27
System Console Examples
System Console Examples
This section provides an example of how to load and link a design in the System
Console, as well as three SOPC Builder system examples that show you how to use
the System Console. The System-Console.zip file contains design files for the first
two example systems. This zip file includes files for both the Nios II Development Kit
Cyclone® II Edition and the Nios II Development Kit Stratix® II Edition.

f Download the design files for the example designs from the On-chip Debugging
Design Examples page on the Altera website.

columnWidth The number of pixels used for the column width.

columnWidthResizable Controls whether the column width is resizable by you (false, by default).

Table 12–33. Table Properties (Part 2 of 2)

Properties Description

Table 12–34. BarChart Properties

Properties Description

title Chart title.

labelX X axis label text.

labelY Y axis label text.

range Y axis value range. By default, it is auto range. Range is specified in a Tcl
list, for example [list lower_numerical_value upper_numerical_value].

itemValue Item value. Value is specified in a Tcl list, for example [list bar_category_str
numerical_value].

Table 12–35. Linechart Properties

Properties Description

title Chart title.

labelX Axis X label text.

labelY Axis Y label text.

range Axis Y value range. By default, it is auto range. Range is specified in a Tcl
list, for example [list lower_numerical_value upper_numerical_value].

itemValue Item value. Value is specified in a Tcl list, for example [list bar_category_str
numerical_value].

Table 12–36. PieChart Properties

Properties Description

title Chart title.

itemValue Item value. Value is specified in a Tcl list, for example [list bar_category_str
numerical_value].
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

12–28 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Examples
The first example Tcl script creates a LED light show on your board. The SOPC
Builder system for this example includes two modules: a JTAG to Avalon master
bridge and a parallel I/O (PIO) core. The JTAG to Avalon master bridge provides a
connection between your development board and either SOPC Builder system via
JTAG. The serial peripheral interface (SPI) to Avalon master bridge provides
connections via SPI. The PIO module provides a memory-mapped interface between
an Avalon-MM slave port and general-purpose I/O ports.

f For more information about these components, refer to the Embedded Peripherals IP
User Guide.

The first example Tcl script sends a series of master_write_8 commands to the JTAG
Avalon master bridge. The JTAG Avalon master sends these commands to the
Avalon-MM slave port of the PIO module. The PIO I/O ports connect to FPGA pins
that are, in turn, connected to the LEDs on your development board. The write
commands to the PIO Avalon-MM slave port result in the light show.

1 The instructions for these examples assume that you are familiar with the Quartus II
software and either the SOPC Builder software.

LED Light Show Example
Figure 12–2 illustrates the SOPC Builder system for the first example.

To build this example system, perform the following steps:

1. On your host computer file system, locate the following directory: <Nios II EDS
install path>\examples\<verilog or vhdl>\<board version>\standard. Each
development board has a VHDL and Verilog HDL version of the design. You can
use either of these design examples.

Figure 12–2. SOPC Builder System for Light Show Example

JTAG
Avalon-MM

Master

PIO LED
(Avalon-MM

Slave)

System
Interconnect

 Fabric

LEDs

Conduit
Interface
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Chapter 12: Analyzing and Debugging Designs with the System Console 12–29
System Console Examples
2. Copy the standard directory to a new location. By copying the design files, you
avoid corrupting the original design and avoid issues with file permissions. This
document refers to the newly created directory as the c:\<projects>\standard
directory.

f For information on different board kits available from Altera, refer to the All
Development Kits page on the Altera website.

3. Copy the System_Console.zip file to the c:\< projects>\standard directory and
unzip it. Specific directories may be created for specific Altera development
boards.

4. Choose All Programs > Altera > Nios II EDS <version> Command Shell
(Windows Start menu) to run a Nios II command shell.

5. Change to the directory for your board.

6. To program your board with the .sof file, type the following command in the
Nios II command shell:

nios2-configure-sof <sof_name>.sof r

If your development board includes more than one JTAG cable, you must specify
which cable you are communicating with as an argument to the
nios2-configure-sof <sof_name>.sof command. To do so, type the following
commands:

jtagconfig r
Figure 12–3 gives sample output from the jtagconfig command. This output
shows that the active JTAG cable is number 2. Substitute the number of your JTAG
for the <cable_number> variable in the following command:

nios2-configure-sof -c <cable_number> <sof_name>.sof r

7. You can then run the LED light show example by typing the following command:

system-console --script=led_lightshow.tcl r
8. You can see the LEDs performing a running light demonstration. Press Ctrl+C to

stop the LED light show.

9. To see the commands that this script runs, open the led_lightshow.tcl file in your
\jtag_pio_<cii_or_sii> directory.

Figure 12–3. jtagconfig Output
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.altera.com/products/devkits/kit-dev_platforms.jsp

12–30 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Examples
Loading and Linking a Design
Example 12–4 shows how to load and link a Quartus II design set.

JTAG Examples
Two JTAG examples are described below. The first JTAG example gives you some
practice working with the System Console as an interactive tool. The second example
verifies that the clock is toggling.

Verify JTAG Chain
In this example, you verify the JTAG chain on your board. To run this example,
perform the following steps:

1. On the Windows Start menu, point to All Programs, then point to Altera, and then
click Quartus II <version> to run the Quartus II software. Open the Quartus II
project file, jtag_pio.qpf or jtag_pio_sii.qpf.

2. On the Tools menu, click SOPC Builder.

3. On the SOPC Builder Tools menu, click System Console.

4. Set the path to the jtag_debug service by typing the following command:

set jd_path [lindex [get_service_paths jtag_debug] 0] r
The get_service_paths command always returns a list, even if the list has a single
item; consequently, you must index into the list using the lindex command. In this
case, the variable jd_path is assigned the string that is the 0th element of the list.

5. Open the jtag_debug service by typing the following command:

open_service jtag_debug $jd_path r

Example 12–4. Loading and Linking a Design

% get_service_paths device
{/connections/USB-Blaster [USB-0]/EP2C35}

% set device_path [lindex [get_service_paths device] 0]
/connections/USB-Blaster [USB-0]/EP2C35

% design_load /projects/9.1/standard
QuartusDesignFactory elaborating \projects\9.1\standard
QuartusDesignFactory found SOF File at NiosII_cycloneII_2c35_standard.sof
QuartusDesignFactory found JDI File at NiosII_cycloneII_2c35_standard.jdi
QuartusDesignFactory found SOPC Info File at
\projects\9.1\standard\NiosII_cycloneII_2c35_standard_sopc.sopcinfo

% set design_path [lindex [get_service_paths design] 0]
/designs/standard

% design_link $design_path $device_path
Created a link from /designs/standard to /connections/USB-Blaster [USB-0]/EP2C35.
Created a link from /designs/standard/NiosII
cycloneII_2c35_standard_sopc.sopcinfo/cpu.data_master to /connections/USB-Blaster
[USB-0]/EP2C35/cpu.
Created a link from
/designs/standard/NiosII_cycloneII_2c35_standard_sopc.sopcinfo/cpu.data_master/jtag_
uart.avalon_jtag_slave to /connections/USB-Blaster [USB-0]/EP2C35/jtag_uart
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–31
System Console Examples
6. Set up a list of byte values to test the chain by typing the following command:

set values [list 0xaa 0x55 0xaa 0x55 0xaa 0x55 0xaa 0x55 0xaa 0x55
0xaa 0x55 0xaa 0x55 0xaa 0x55 0xaa 0x55]r

7. Loop the values by typing the following command:

jtag_debug_loop $jd_path $values r
If the jtag_debug_loop command is successful, you should see the values that you
sent reflected in the System Console. Figure 12–4 shows the transcript from this
interactive session.

8. Close the jtag_debug service by typing the following command:

close_service jtag_debug $jd_pathr
This example provides the beginnings of a JTAG chain validation workflow.
Depending on the number of FPGAs in your JTAG chain, you can expand upon this
test by performing more operations, in which you can interleave access to JTAG
chains with larger data sets, and potentially multiple devices.

Figure 12–4. The jtag_debug_loop Command
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–32 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Examples
Verify Clock
The command to verify that your clock is toggling samples the clock asynchronously.
Consequently, you may need to use this command several times to determine if the
clock is toggling. The jtag_debug_sample_clock.tcl script samples the clock 10 times.
To run this script, type source jtag_debug_sample_clock.tcl at the System Console
prompt. You should see 10 values for the JTAG clock printed to the System Console as
Figure 12–5 illustrates.

Figure 12–5. The jtag_debug_sample_clock Command
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–33
System Console Examples
Checksum Example
In this example, you add an on-chip memory and hardware accelerator to the SOPC
Builder system discussed in the previous example. The hardware accelerator
calculates a checksum. Figure 12–6 illustrates this system.

To build this example system, perform the following steps:

1. In the System Contents tab in SOPC Builder, double-click On-Chip Memory
(RAM or ROM) in the On-Chip of the Memories and Memory Controllers folder
to add this component to your system.

2. In the On-Chip Memory (RAM or ROM) wizard, for Total memory size type 128
to change the memory size to 128 bytes. Click Finish to accept the other default
values.

3. To connect the on-chip memory to the master, click the open dot at the intersection
of the onchip_mem s1 Avalon slave port and the JTAG to Avalon Master Bridge
master port.

4. In the System Contents tab, double-click Checksum Accelerator in the Custom
Component folder to add this component to your system.

5. To connect the checksum accelerator Slave port, click on the open dot at the
intersection of the accelerator Slave and the master master port.

6. To connect the checksum accelerator Master port, click on the open dot at the
intersection of the accelerator Master and the onchip_mem s1 port.

Figure 12–6. SOPC Builder System for Checksum Accelerator Example

System Interconnect Fabric

LEDs

PIO LED
Checksum
Accelerator

On-Chip
Memory

JTAG
Avalon-MM

Master
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–34 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Examples
7. In the Base column, enter the base addresses for the slaves in your system.

■ Onchip_mem s1 port—0x00000080

■ Accelerator Slave port—0x00000020

Click on the lock icon next to each address to lock these values.

Figure 12–7 illustrates the completed system.

8. Save your system.

9. In the System Contents tab, click Next.

10. In the System Generation tab, click Generate.

11. On the Quartus II Processing menu, click Start Compilation.

12. When compilation completes, re-program your board by typing the following
command in the Nios II command shell:
nios2-configure-sof jtag_pio.sof r

13. Type system-console r in the Nios II command shell to start the System Console.

1 If you reprogram your board, you must start a new System Console to
receive the changes.

14. To run the checksum example, in the System Console, type:

source set_memory_and_run_checksum.tcl r

Figure 12–7. Checksum Accelerator Module Connections
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 12: Analyzing and Debugging Designs with the System Console 12–35
System Console Examples
Figure 12–8 shows the output from a successful run.

Figure 12–8. System Console Output
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

12–36 Chapter 12: Analyzing and Debugging Designs with the System Console
System Console Examples
You can change the value written into the RAM by changing the value given in the
fill_memory routine in the set_memory_and_run_checksum.tcl file. Save the Tcl file
after editing and rerun the command. (Because the system command uses
master_write_32, if you use values that are less than 32 bits, they are filled with
leading 0s.)

Nios II Processor Example
In this example, you program the Nios II processor on your board to run the count
binary software example that is included in the Nios II installation. This is a simple
program that uses an 8-bit variable to repeatedly count from 0x00 to 0xFF. The output
of this variable is displayed on the LEDs on your board. After programming the
Nios II processor, you use the System Console processor commands to start and stop
the processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the
Altera website.

2. Create a folder to extract the design. For this example, use C:\Count_binary.

3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.

4. In a Nios II command shell, change to the directory of your new project.

5. To program your board, type the following command in a Nios II command shell:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof r
6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application

and BSP from Template using the Count Binary template and targeting the Nios II
Ethernet Standard Design Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application,
right-click the Count Binary project and select Build Project.

f For more information about creating Nios II applications, refer to the Nios II Software
Build Tools chapter in the Nios II Software Developer’s Handbook.

8. Download the .elf file to your board by right-clicking Count Binary project and
selecting Run As, Nios II Hardware.

The LEDs on your board provide a new light show.

9. Start the System Console by typing system-console in your Nios II command
shell.

10. Set the processor service path to the Nios II processor by typing the following
command:

set niosii_proc [lindex [get_service_paths processor] 0] r
11. Open both services by typing the following commands:

open_service processor $niosii_proc r
12. Stop the processor by typing the following command:

processor_stop $niosii_proc r
The LEDs on your board freeze.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Chapter 12: Analyzing and Debugging Designs with the System Console 12–37
Device Support
13. Start the processor by typing the following command:

processor_run $niosii_proc r
The LEDs on your board resume their previous activity.

14. Stop the processor by typing the following command:

processor_stop $niosii_proc r
15. Close the services by typing the following command:

close_service processor $niosii_proc r
The processor_step, processor_set_register and processor_get_register
commands provide additional control over the Nios II processor.

Device Support
You can target all Altera device families with the System Console. Transceiver Toolkit
commands, however, can only be targeted for Arria II GX and Stratix IV GX devices.

Conclusion
The System Console offers you a wide variety of options for communicating with
modules in your design at a low level. You can use either Tcl scripting commands or
the GUI to access and run services for setting up, running tests, optimizing design
parameters, and debugging designs you have programmed into Altera supported
device families without having to recompile you designs.

Document Revision History
Table 12–37 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 12–37. Document Revision History

Date Version Changes

December 2010 10.1.0 Maintenance release. This chapter adds new commands and references for Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide, which is being
obsoleted. This new chapter adds new commands.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

12–38 Chapter 12: Analyzing and Debugging Designs with the System Console
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53029-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53029-10.1.0
13. Transceiver Link Debugging Using the
System Console
This chapter describes how to use the transceiver link debugging examples with the
Transceiver Toolkit in the Quartus®II software. The Transceiver Toolkit in the
Quartus II software allows you to quickly test the functionality of transceiver
channels and helps you improve the signal integrity of transceiver links in your
design.

You can use an example design available on the Altera® website if you want to
immediately start using the Transceiver Toolkit, or you can create a custom design. In
today's high-speed interfaces, stringent bit error rate (BER) requirements are not easy
to meet and debug. You can use the Transceiver Toolkit in the Quartus II software to
check and improve the signal integrity of transceiver links on your board before you
complete the final design, saving you time and helping you find the best physical
medium attachment (PMA) settings for your high-speed interfaces.

This chapter contains the following sections:

■ “Transceiver Toolkit Overview”

■ “Transceiver Link Debugging Design Examples” on page 13–2

■ “Setting Up Tests for Link Debugging” on page 13–3

■ “Tcl Script in System Console” on page 13–11

■ “Usage Scenarios” on page 13–12

Transceiver Toolkit Overview
The underlying framework for the Transceiver Toolkit is the System Console. The
System Console performs low-level hardware debugging of your design. The System
Console provides read and write access to the IP cores instantiated in your design.
Use the System Console for the initial bring-up of your PCB and low-level testing.

f For information about the System Console, refer to the Analyzing and Debugging
Designs with the System Console chapter in volume 3 of the Quartus II Handbook.

The Transceiver Toolkit allows you to perform run-time tasks, including performing
high-speed link tests for the transceivers in your devices. The Transceiver Toolkit
allows you to test your high-speed interfaces in real-time. To launch the Transceiver
Toolkit, in the main Quartus II window, on the Tools menu, clickTransceiver Toolkit.

Auto Sweep
You can test the input sweep ranges for your transceiver PMA settings and run tests
automatically with the auto sweep feature. You can store a history of the test runs and
keep a record of the best PMA settings. You can then use these settings in your final
design.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53029

13–2 Chapter 13: Transceiver Link Debugging Using the System Console
Transceiver Link Debugging Design Examples
h For more information, refer to the Transceiver Toolkit Auto Sweep Panel in Quartus II
Help.

EyeQ
You can determine signal integrity with the EyeQ feature. The EyeQ feature in the
Transceiver Toolkit allows you to chart eye-width data and view the data in a bathtub
curve. After you run the EyeQ feature you can view the data in the Report pane of the
Transceiver Toolkit and export the data in Comma-Separated Value (.csv) format for
further analysis.

h For more information about the EyeQ feature, refer to Transceiver Toolkit EyeQ in
Quartus II Help.

f For more information, refer to AN 605: Using the On-Chip Signal Quality Monitoring
Circuitry (EyeQ) Feature in Stratix IV Transceivers.

Control Links
You can test the transmitter and receiver channel links in your design in manual mode
with the channel control features. The channel control panels allow you to view and
manually modify settings for transmitter and receiver channels while the channels are
running.

h For more information about the Transceiver Toolkit, refer to Working with the
Transceiver Toolkit in Quartus II Help.

Transceiver Link Debugging Design Examples
Altera provides design examples to assist you with setting up and using the
Transceiver Toolkit. To learn more about the version of the Quartus II software used to
create these design examples, the target device, and development board details, refer
to the readme.txt of each example. Each example is verified and tested with the
Quartus II software version referenced in the readme.txt. However, you may be able
to use these examples with a later version of the Quartus II software.

If you are recompiling the design examples for a different board, refer to “Changing
Pin Assignments” on page 13–7 to determine which pin assignments you must edit.

f Download theTransceiver Toolkit design examples from the On-Chip Debugging
Design Examples page of the Altera website.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_db_autosweep.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm
http://www.altera.com/literature/an/an605.pdf
http://www.altera.com/literature/an/an605.pdf

Chapter 13: Transceiver Link Debugging Using the System Console 13–3
Transceiver Link Debugging Design Examples
Setting Up Tests for Link Debugging
Testing signal integrity for high-speed transceiver links involves using data patterns,
such as pseudo-random binary sequences (PRBS). Although the sequences appear to
be random, they have specific properties that you can use to measure the quality of a
link. In the example designs available on the Altera website, data patterns are
generated by a pattern generator and are then transmitted by the transmitter. The
transceiver on the far end can then be looped back so that the same data is then
received by the receiver portion of the transceiver. The data obtained is then checked
by a data checker to verify any bit errors.

Figure 13–1 and Figure 13–2 show examples of the test setup for the transceiver link
debugging tool. The figures show a setup that is similar to the design examples that
you can download from the On-Chip Debugging Design Example page of the Altera
website. You can also have the transmitter on one FPGA and the receiver on a
different FPGA.

Figure 13–1. Transceiver Link Debugging Tool Test Setup

Custom PHY
 IP Core

JTAG-to-Avalon
Master Bridge

System Console
(in SOPC Builder)
Host Computer

Loopback
on board

Stratix IV GX Signal Integrity Board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
 IP Core
 or
Low Latency
PHY IP Core
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

13–4 Chapter 13: Transceiver Link Debugging Using the System Console
Transceiver Link Debugging Design Examples
Figure 13–2 shows a similar test setup for the second design example described in this
section, except that there are four sets of transceivers and receivers rather than one.

The design examples include the Qsys system integration tool or SOPC Builder
system, which contains the following components:

■ Custom PHY IP Core or Low Latency PHY IP Core

■ Avalon-ST Data Pattern Generator

■ Avalon-ST Data Pattern Checker

■ JTAG-to-Avalon Master Bridge

■ The Avalon® Streaming interface (Avalon-ST)

The Avalon Streaming interface (Avalon-ST) accommodates the development of
high-bandwidth, low-latency components for Qsys and SOPC Builder systems. The
Avalon-ST interface protocol provides component designers with a framework to
create interfaces that support the unidirectional flow of data, including multiplexed
streams, packets, and DSP data.

Custom PHY IP Core
You can use the Custom PHY IP core to test all possible parallel data widths of the
transceivers in these design examples. You can configure the Custom PHY IP core as
8, 10, 16, 20, 32 or 40-bit. The sweep tools disable word alignment during sweep,
which is enabled to simplify timing closure. You can also use the Data Format
Adapter IP component as required. You can have one or multiple channels in your
design.

Figure 13–2. Transceiver Link Debugging Tool Test Setup (Four Channels)

JTAG to Avalon
Master Bridge

System Console
(in SOPC Builder)
Host Computer

Loopback
on board

Custom PHY
 IP Core
 or
Low Latency
PHY IP Core

Loopback
on board

Loopback
on board

Loopback
on board

Stratix IV GX Signal Integrity Board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 13: Transceiver Link Debugging Using the System Console 13–5
Transceiver Link Debugging Design Examples
You use SOPC Builder to define and generate the Custom PHY IP core. The Custom
PHY IP core in the design examples that you can download from the from the
On-Chip Debugging Design Example page of the Altera website are generated for
Stratix IV GX devices.

To use the Custom PHY IP core with the Transceiver Toolkit, perform the following
steps:

1. Set the following parameters to meet your project requirements:

■ Number of lanes

■ Bonded group size

■ Serialization factor

■ Data rate

■ Input clock frequency

2. Turn on Avalon data interfaces.

3. Disable 8B/10B

4. Set Word alignment mode to manual

5. Disable rate match FIFO

6. Disable byte ordering block

f For more information about the protocol settings used in the Custom PHY IP core,
refer to the “Custom PHY IP User Core” section of the Altera Transceiver PHY IP Core
User Guide.

Low Latency PHY IP Core
Use Low Latency PHY IP Core as follows:

■ To get more than 8.5 gbps in GT devices.

■ To use PMA direct mode, such as when using six channels in one quad.

To meet your project requirements, use the same set of parameters that you would use
with the Custom PHY IP core.

The phase compensation FIFO mode must be set to embedded, above cetain data
rates. The Transceiver Toolkit provides a warning when you exceed the data rate. To
be in PMA direct mode, you must set the phase compensation FIFO mode to none,
which means that only certain data rates support the PMA direct mode.

f For more information about the protocol settings used in the Low Latency PHY IP
core, refer to the “Low Latency PHY IP User Core” section of the Altera Transceiver
PHY IP Core User Guide.

Avalon-ST Data Pattern Generator
This component produces data patterns in the test flow. You can use a variety of
popular patterns to test transceiver signal integrity (SI). The data pattern generator
component is provided as an Altera IP core component. You can use any pattern, but
you must have a checker to verify that you receive that pattern properly.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf
http://www.altera.com/literature/ug/xcvr_user_guide.pdf

13–6 Chapter 13: Transceiver Link Debugging Using the System Console
Transceiver Link Debugging Design Examples
When you use the Avalon®-ST Data Pattern Generator, the width may be different in
the pattern that you use, and you may need to use a data format adaptor. The
Avalon-ST Data Pattern Generator component is available in the Qsys or SOPC
Builder library tree. The adaptor, however, does not form a new data generation
component package, but serves as a data formatter.

The Avalon-ST Data Pattern Generator generates industry-standard data patterns.
Data patterns are generated on a 32-bit or 40-bit wide Avalon streaming source port.

f For more information, refer to the System Interconnect Fabric for Streaming Interfaces
chapter in the SOPC Builder User Guide.

Figure 13–3 shows the wizard page that you use to set parameters for the Avalon-ST
Data Format Adapter.

Data Checker
The Avalon-ST Data Pattern Checker components are provided as Qsys or SOPC
components. These components include Avalon-ST Data Pattern Checker, Avalon-ST
Data Format Adapter, and Avalon-ST Timing Adapter. When the data checker runs, it
attempts to find the selected data pattern in the incoming data by comparing the
incoming pattern with the expected pattern.

Figure 13–3. Avalon-ST Data Format Adapter
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_sopc_builder.pdf

Chapter 13: Transceiver Link Debugging Using the System Console 13–7
Transceiver Link Debugging Design Examples
The Avalon-ST Data Pattern Checker is available under Debug and Performance in
the Qsys or SOPC Builder component library tree. The checker is the core logic for
data pattern checking. Data patterns are accepted on 32-bit or 40-bit wide Avalon
streaming sink ports.

f For more information, refer to Avalon Streaming Data Pattern Generator and Checker
Cores in the Embedded Peripherals User Guide.

Use the design examples to quickly test the functionality of the receiver and
transmitter channels in your design without creating any custom designs with data
generators and checkers. When working with these examples, assume that your
design is not complete, and that you want to check the transceiver link signal integrity
(SI). You can quickly change the transceiver settings in the design examples to see
how they affect transceiver link performance. You can also use the design examples to
isolate and verify the transceiver links without having to debug other logic in your
design.

Compiling Design Examples
Once you have downloaded the design examples, open the Quartus II software
version 10.0 or later and unarchive the project in the example. If you have access to the
same development board with the same device as mentioned in the readme.txt file of
the example, you can directly program your device with the provided programming
file in that example. If you want to recompile the design, you must regenerate the
system in SOPC builder and recompile the design in the Quartus II software to get a
new programming file.

If you have the same board as mentioned in readme.txt file, but a different device on
your board, you must choose the appropriate device and recompile the design. For
example, some early development boards are shipped with the engineering sample
devices.

If you have a different board, you must edit the necessary pin assignments and
recompile the design examples provided here.

Changing Pin Assignments
Table 13–1 shows the pin-assignment edits for the Stratix IV Transceiver Signal
Integrity Development Kit (DK-SI-4SGX230N). You must make these assignments
before you recompile your design.

Table 13–1. Stratix IV GX Top-Level Pin Assignments (DK-SI-4SGX230N)

Top-Level Signal Name I/O Standard Pin Number on
DK-SI-4SGX230N Board

REFCLK_GXB2_156M25 (input) 2.5 V LVTTL/LVCMOS PIN_G38

S4GX_50M_CLK4P (input) 2.5 V LVTTL/LVCMOS PIN_AR22

GXB1_RX1 (input) 1.4-V PCML PIN_R38

GXB1_TX1 (output) 1.4-V PCML PIN_P36
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/nios2/qts_qii55019.pdf
http://www.altera.com/literature/hb/nios2/qts_qii55019.pdf

13–8 Chapter 13: Transceiver Link Debugging Using the System Console
Transceiver Toolkit Link Test Setup
Table 13–2 shows the pin-assignment edits for the Stratix IV GX development kit
(DK-DEV-4SGX230N). You must make these assignemnts before you recompile your
design.

Similarly, you can change the pin assignment for your own board and recompile the
design examples.

Transceiver Toolkit Link Test Setup
To set up testing with the Transceiver Toolkit, perform the following steps:

1. Program the device either with the programming file provided with the .zip file or
with the new programming file after you recompile your project.

2. Open the Transceiver Toolkit from the Tools menu in the Quartus II software.

3. Ensure that the .sof of the device you use is programmed and that board settings,
such as the jumper settings, are correct.

Loading the Project in System Console
From the Transceiver Toolkit, load the Quartus project file (*.qpf) by going to the File
menu and selecting Load Project. Whether you have recompiled the design or not, the
unzipped contents of the examples contain this file. After the project is loaded, you
can review the design information under System Explorer in the System Console.

Linking the Hardware Resource
Ensure the device board is turned ON and is available before you start the System
Console or the Transceiver Toolkit. The connections are detected at startup of the tool.
Right click on a Design Instance under the System Explorer and link that instance to
the device you want. Each design example contains one transceiver Custom PHY IP
core instance, the first one configured as one channel and the second one configured
with four channels in bonded mode. Right-click on the design instance and click on
the device to link that design instance with your device. If you are designing your
own design example with more than one design instance and your board has more
than one device, then you have the option of linking a certain device to a certain
design instance. This is useful when you want to perform a link test between a
transmitter and receiver on two separate devices.

To set up the transmitter channels, receiver channels, and transceiver links, go to the
Tools menu and select Transceiver Toolkit, or from the Welcome to the Transceiver
Toolkit tab, click on the Transceiver Toolkit. You can then create the channels, as
described in the following section.

Table 13–2. Stratix IV GX Top-Level Pin Assignments (DK-DEV-4SGX230N)

Top-Level Signal Name I/O Standard Pin Number on
DK-DEV-4SGX230N Board

REFCLK_GXB2_156M25 (input) LVDS PIN_AA2

S4GX_50M_CLK4P (input) 2.5 V LVTTL/LVCMOS PIN_AC34

GXB1_RX1 (input) 1.4-V PCML PIN_AU2

GXB1_TX1 (output) 1.4-V PCML PIN_AT4
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 13: Transceiver Link Debugging Using the System Console 13–9
Transceiver Toolkit Link Test Setup
Creating the Channels
After you open the Transceiver Toolkit, there are three tabs in the System Console—
Transmitter Channels, Receiver Channels, and Transceiver Links tabs.

The Transmitter Channel and Receiver Channel tabs are automatically populated
with the existing transmitter and receiver channels in the design example,
respectively. However, you can create your own additional transmitter and receiver
channels in a situation where the expected configuration was not automatically
populated. In the Link Channel tab you can create a link between the transmitter and
receiver channels.

Links are automatically created when a receiver channel and transmitter channel
share a transceiver channel. However, if you are not actually looping data back, but
using it to transmit or receive to another transceiver channel, you must define and
create a new link. For example, in Figure 13–4 , a link is created in the Link Channel
tab between a transmitter and receiver channels of the same device.

You can also perform a physical link test without loopback by connecting one device
transmitter channel to another device receiver channel. In this channel you would
define that connection into a link, and tests would run off that link. For example, as
shown in Figure 13–1, use the transmitter and receiver channels of the same device
and loop them back on the far side of the board trace to check the signal integrity of
your high-speed interface on the board trace. You can select the link that you created
in the Transceiver Toolkit and use the different buttons to start and control link tests.

1 You can also communicate with other devices that have the capability to generate and
verify test patterns that Altera supports.

Running the Link Tests
Use the Link Channel tab options to control how you want to test the link. For
example, use the Auto Sweep feature to sweep various transceiver settings
parameters through a range of values to find the results that give the best BER value.
You can also open Transmitter, Receiver and Link Control panels to manually control
the PMA settings and run individual tests. You can change the various controls in the
panels to suit your requirements.

Figure 13–4. Creating a Link Channel in Transceiver Toolkit
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

13–10 Chapter 13: Transceiver Link Debugging Using the System Console
Transceiver Toolkit Link Test Setup
To perform an auto sweep link test, perform the following steps:

1. Select the link to test and click Auto Sweep to open the auto sweep panel for the
selected link.

2. Set the test pattern to test.

3. Select either Smart AutoSweep or Full AutoSweep. Full AutoSweep runs a test of
every combination of settings that falls within the bounds that you set.

f Smart AutoSweep minimizes the number of tests run to reach a good setting, which
saves you time. Smart AutoSweep does not test every possible setting, so may not
achieve the very best setting possible; however, it can quickly find an acceptable
setting.

4. Set up run lengths for each test iteration. The run length limits you set are ignored
when you run a smart sweep.

5. Set up the PMA sweep limits within the range you want to test.

6. Press Start and let the sweep run until complete.

After an Auto Sweep test has finished at least one iteration, you can create a report by
clicking Create Reports, which opens the Reports tab. The report shows data from all
tests that you have completed. You can sort by columns and filter data by regular
expression in the Reports tab. You can also export the reports to a .csv file by right
clicking on a report.

If you found a setting with the Smart Sweep mode, use the reported best case PMA
settings, and apply a +/- 1 setting to them, returning the test to Full AutoSweep
mode. This helps you determine if the settings you chose are the best.

You can then choose your own runtime conditions, reset the AutoSweep feature by
pressing Reset, and re-running the tests to generate BER data based on your own run
length conditions. This procedure allows you to obtain a good setting for PMA faster.
Review the BER column at the end of the full sweep to determine the best case.

1 When setting smart sweep ranges, try to include the 0 setting as often as possible, as
that setting often provides the best results.

Viewing Results in the EyeQ Feature
Advanced FPGA devices such as Stratix IV have built-in EyeQ circuitry, which is used
with the EyeQ feature in Transceiver Toolkit. The EyeQ feature allows you to estimate
the horizontal eye opening at the receiver of the transceiver. With this feature, you can
tune the PMA settings of your transceiver, which results in the best eye and BER at
high data rates.

f For more information about the EyeQ feature, refer to AN 605: Using the On-Chip
Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers.

To use the EyeQ feature in the Transceiver Toolkit to view the results of the link tests,
perform the following steps:

1. Select a Transceiver Link or Receiver Channel in the main Transceiver Toolkit
panel that you want to run EyeQ against.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/an/an605.pdf
http://www.altera.com/literature/an/an605.pdf

Chapter 13: Transceiver Link Debugging Using the System Console 13–11
Tcl Script in System Console
2. Click Control Link or Control Channel to open control panels. Use these control
panels to set the PMA settings and test pattern that you want the EyeQ feature to
run against. You can check the report panel or Best Case column from an
Autosweep run for the settings with the best BER value and enter those PMA
values through the Transmitter and Receiver control panels.

3. Click EyeQ to open the EyeQ feature.

4. Review the test stop conditions and set them to your preference.

5. Click Run. The EyeQ feature gathers current settings of the channel and uses those
settings to start a phase sweep. Thirty-two iterations of the phase sweep will run.

As the run progresses, you can view the status, which is displayed on the top
section of the EyeQ feature. You can read current progress and the chart is updated
with values each time a run completes. When the run is completed, you should see
a bathtub curve.

When at least one run has completed, you can click Create Report to view past
data runs in a report panel.

6. When the run finishes, if the bathtub curve looks like a hill instead, click the center
eye button, which then reorganizes the data into a bathtub curve.

7. If the data does not display on the chart, you can right-click and choose
Auto-Range, which should make the data appear.

If you want to change PMA settings and re-run the EyeQ feature, make sure you
first stop and reset the EyeQ feature. If you do not reset, the EyeQ feature
continues testing based on the original PMA settings of the current test that it had
begun, and overwrites any setting you may have changed through the control
panel.

After you stop and reset the EyeQ feature, change settings in the link or receiver
channel control panel. Then click Start on the EyeQ feature to start a new set of
tests.

When you can see that you are running good PMA settings, the bathtub curve is wide,
with sharp slopes near the edges. The curve may be up to 30 units wide. If the bathtub
is narrow, maybe as small as two units wide, then the signal quality may be poor. The
wider the bathtub curve, the wider the eye you have. Conversely, the smaller the
bathtub curve, the smaller the eye.

h For more information about how to use the EyeQ feature, refer to Working with the
Transceiver Toolkit in Quartus II Help.

Tcl Script in System Console
System Console is the framework in the Quartus II software that supports the
Transceiver Toolkit. System Console provides a number of Tcl commands that you can
use to build a custom test routine script to test the transceiver link using the data
generator and checker. System Console allows you to tune PMA parameter, such as
those for changing DC gain. To get help on the Tcl commands available, type help in
the Tcl console in System Console. To run a transceiver link test flow, perform the
following.You can perform all the tasks with Tcl commands in System Console.

1. Load the Quartus II project.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm

13–12 Chapter 13: Transceiver Link Debugging Using the System Console
Usage Scenarios
2. Find and link the design and service path.

3. Find and open links to transmitter channels and receiver channels.

4. Set up PRBS patterns to run on the link.

5. Set up PMA settings on transmitter and receiver channels.

6. Use PIO logic to generate a rising edge to enable the word aligner.

7. Start the link test.

8. Poll the receiver for BER data.

9. When the test is finished, stop the link test.

10. Close the link.

f For more information about Tcl commands, refer to the Analyzing and Debugging
Designs with the System Console chapter in volume 3 of the Quartus II Handbook.

The Tcl scripts provided with the design examples help you understand Tcl
commands associated with each task.

Running Tcl Scripts
The tasks that you perform with the Transceiver Toolkit GUI for setting up your test
environment you can also save as Tcl scripts. For example, you can save the steps you
perform for loading your project in the Transceiver Toolkit by clicking Create Tcl
setup script on the File menu.

You can save your steps at various stages when you add projects, create design
instances, link designs to devices, and create transceiver links., so that you do not
have to redo all the steps in the GUI to reach the initial setup you created to get your
specific configuration ready for debugging. All the saved scripts are shown under the
Scripts in the System Explorer.You can execute the script by right-clicking on Scripts
under the System Explorer in the Transceiver Toolkit, and then clicking Run, or you
can double-click on the script. You can also execute the script from the System
Console command line.

Usage Scenarios
You can use the Transceiver Toolkit in many scenarios. For example you can use the
Transceiver Toolkit if you are debugging one device on one board or more than one
device on a single or multiple boards. Usually for a device you have a single Quartus
II design or project, but you can have one design targeted for two or more similar
devices on the same or different boards.

Possible scenarios for how you can use the Transceiver Toolkit in those situations
follows. The scenarios assume that you have programmed the relevant .sof to the
correct device that you are testing.

■ “Linking One Design to One Device Connected By One USB Blaster Cable” on
page 13–13

■ “Linking Two Designs to Two Separate Devices on Same Board (JTAG Chained),
Connected By One USB Blaster Cable” on page 13–13
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

Chapter 13: Transceiver Link Debugging Using the System Console 13–13
Usage Scenarios
■ “Linking Two Designs to Two Separate Devices on Separate Boards, Connected to
Separate USB Blaster Cables” on page 13–13

■ “Linking Same Design on Two Separate Devices” on page 13–14

■ “Linking Unrelated Designs” on page 13–14

■ “Saving Your Setup As Tcl Scripts” on page 13–14

■ “Verifying Channels Are Correct When Creating Link” on page 13–14

■ “Using the Recommended DFE Flow” on page 13–15

■ “Running Simultaneous Tests” on page 13–15

h For further information on how to use the Transceiver Toolkit GUI to perform the
following scenarios, refer to Working with the Transceiver Toolkit in Quartus II Help.

Linking One Design to One Device Connected By One USB Blaster Cable
1. In the Transceiver Toolkit, open the Quartus II project file (.qpf).

2. Link the design instance to the device through the JTAG hardware to which you
connect the device.

3. Create the link between channels on the device to test.

Linking Two Designs to Two Separate Devices on Same Board (JTAG
Chained), Connected By One USB Blaster Cable

1. In the Transceiver Toolkit, open the Quartus II project file (.qpf) for the first device
on the JTAG chain.

2. Link the design instance to the first device on the chain through the JTAG
hardware to which you connected the device.

3. Open the project for the second device.

4. Link the second design instance to the second device you use on the JTAG chain.

5. Create a link between the channels on the devices you want to test.

Linking Two Designs to Two Separate Devices on Separate Boards,
Connected to Separate USB Blaster Cables

1. In the Transceiver Toolkit, open the Quartus II project file (.qpf) for the device on
the first USB blaster.

2. Link the design instance to the device connected to the first USB blaster.

3. Open the project for the device on the second USB blaster.

4. Link the design instance to the device you connected to the second USB blaster.

5. Create a link between the channels on the devices you want to test.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/syscon/syscon_proc_bert.htm

13–14 Chapter 13: Transceiver Link Debugging Using the System Console
Usage Scenarios
Linking Same Design on Two Separate Devices
1. In the Transceiver Tookit, open the Quartus II project file (.qpf) you are using on

both devices.

2. Right-click on the design to instantiate a second instance.

3. Link the first design instance to the first device, wherever the device is located.
Follow the same linking method that you used on previous steps.

4. Link the second design instance to the second device, wherever the device is
located. Follow the same linking method that you used on previous steps.

5. Create a link between the channels on the devices you want to test.

Linking Unrelated Designs
Use a combination of the above steps to load multiple Quartus II projects and make
links between different systems. You can perform tests on completely separate
systems that are not related to one another. All tests run through the same tool
instance.

1 Do not attempt to start multiple instances of the Transceiver Toolkit. You can only
control multiple devices and run multiple tests simultaneously through the same
instance of the Transceiver Toolkit.

Saving Your Setup As Tcl Scripts
After you open projects and define links for the system so that the entire physical
system is correctly described, use the command Save Tcl Script to create a setup
script.

Close and reopen the Transceiver Toolkit.

Open the scripts folder in System Explorer and double-click the script to reload the
system. You can also right-click and choose Run Script, or use the menu command
Load Script to run the appropriate script.

Verifying Channels Are Correct When Creating Link
After you load your design and link your hardware , you should verify that the
channels you have created are correct and looped back properly on the hardware. You
should be able to send the data patterns and receive them correctly.

Perform the following steps before you perform Autosweep or EyeQ tests to verify
your link and correct channel, which may save time in the work flow.

1. Assuming that you have completed the system setup, choose the transmitter
channel, and click Control Transmitter Channel.

2. Set the test pattern to prbs 7.

3. Start the pattern generator, press Start.

4. Navigate to the control panel, choose the receiver channel, and click Control
Receiver Channel.

5. Set the test pattern to prbs 7.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 13: Transceiver Link Debugging Using the System Console 13–15
Usage Scenarios
6. Press Start.

7. Verify channels that the channels are correct, based on the following conditions:

a. If the Data Locked check box goes high, the receiver is receiving data. To verify
that the data is coming from the expected transmitter, you can navigate to the
transmitter and do either of the following:

■ Click Stop on the transmitter and see if Data Locked on the receiver turns
off.

■ If the receiver shows 0 error bits, click Inject Error on the transmitter and
see if that error shows up on the receiver.

b. If the Data Locked check box does not go high, do either of the following:

■ The data quality is too poor to lock. You can manually adjust the PMA
settings to see if you can get a lock. If not, use the Autosweep tool if you are
certain the channel is correct.

■ The receiver and transmitter are not connected together. You either picked
the wrong pair, or you have not made the physical connection between the
pair.

After you have verified that the transmitter and receiver are talking to each other,
create a link in the link tab with these two transceivers so that you can perform
Autosweep and EyeQ tests with this pair.

Using the Recommended DFE Flow
To use the DFE flow recommended by Altera, perform the following steps:

1. Use the Autosweep flow to find optimal PMA settings while leaving the DFE
setting OFF.

2. Take the best PMA setting achieved, if BER = 0. Then you do not have to do
anything if you use this setting.

3. If BER > 0, then use this PMA setting and set minimum and maximum values in
the AutoSweep tool to match this setting. Set the DFE MAX range to limits for
each of the three DFE settings.

4. Run the AutoSweep tool to determine which DFE setting results in the best BER.
Use these settings in conjunction with the PMA settings for the best results.

Running Simultaneous Tests
To run link tests simultaneously in one instance of the Transceiver Toolkit, perform
the following steps:

1. Set up your system correctly with one of the previous set-up scenarios.

2. In the control panel for the link you work on, run either the Autosweep or EyeQ
tool.

3. After you start the test, return to the Transceiver Toolkit control panel.

4. Select the control panel tab.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

13–16 Chapter 13: Transceiver Link Debugging Using the System Console
Conclusion
5. Open the Tools menu and click Transceiver Toolkit, which returns you to the
control panel.

6. Repeat step 2 until all tests are run.

Conclusion
You gain productivity when optimizing high-speed transceiver links in your board
designs with the Transceiver Toolkit and design examples provided from Altera. You
can easily set up automatic testing of your transceiver channels so that you can
monitor, debug, and optimize transceiver link channels in your board design quicker
than before. You then know the optimal PMA settings to use for each channel in your
final FPGA design. You can use standard design examples that you download from
Altera’s website, and then customize the examples to match your own requirements.

Document Revision History
Table 13–3 lists the revision history for this handbook chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 13–3. Document Revision History

Date Version Changes

December 2010 10.1.0 Changed to new document template. Added new 10.1 release features.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 Initial release
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53008-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53008-10.0.1
14. Quick Design Debugging Using
SignalProbe
This chapter provides detailed instructions about how to use SignalProbe to quickly
debug your design. The SignalProbe incremental routing feature helps reduce the
hardware verification process and time-to-market for
system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in the design or debugging process.
The SignalProbe feature makes design verification more efficient by routing internal
signals to I/O pins quickly without affecting the design. When you start with a fully
routed design, you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

The SignalProbe feature is supported with the Arria® GX, Stratix® series, Cyclone®
series, and MAX® II, device families.

f The Quartus® II software provides a portfolio of on-chip debugging solutions. For an
overview and comparison of all of the tools available in the Quartus II software
on-chip debugging tool suite, refer to Section IV. System Debugging Tools in volume 3 of
the Quartus II Handbook.

Debugging Using the SignalProbe Feature
The SignalProbe feature allows you to reserve available pins and route internal
signals to those reserved pins, while preserving the behavior of your design.
SignalProbe is an effective debugging tool that provides visibility into your FPGA.

You can reserve pins for SignalProbe and assign I/O standards before or after a full
compilation. Each SignalProbe-source to SignalProbe-pin connection is implemented
as an engineering change order (ECO) change that is applied to your netlist after a full
compilation.

To route the internal signals to the device’s reserved pins for SignalProbe, perform the
following tasks:

1. Reserve the SignalProbe Pins, described on page 14–2.

2. Perform a Full Compilation, described on page 14–2.

3. Assign a SignalProbe Source, described on page 14–2.

4. Add Registers to the Pipeline Path to SignalProbe Pin, described on page 14–3.

5. Perform a SignalProbe Compilation, described on page 14–3.

6. Analyze the Results of the SignalProbe Compilation, described on page 14–4.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53008
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

14–2 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature
Reserve the SignalProbe Pins
SignalProbe pins can only be reserved after compiling your design. You can also
reserve any unused I/Os of the device for SignalProbe pins after compilation.
Assigning sources is a simple process after reserving SignalProbe pins. The sources
for SignalProbe pins are the internal nodes and registers in the post-compilation
netlist that you want to probe.

1 Although you can reserve SignalProbe pins using many features within the Quartus II
software, including the Pin Planner and the Tcl interface, you should use the
SignalProbe Pins dialog box to create and edit your SignalProbe pins.

h For more information, refer to About SignalProbe in Quartus II Help.

Perform a Full Compilation
You must complete a full compilation to generate an internal netlist containing a list of
internal nodes to probe to a SignalProbe output pin.

To perform a full compilation, on the Processing menu, click Start Compilation.

Assign a SignalProbe Source
A SignalProbe source can be any combinational node, register, or pin in your
post-compilation netlist. To find a SignalProbe source, in the Node Finder, use the
SignalProbe filter to remove all sources that cannot be probed. You might not be able
to find a particular internal node because the node can be optimized away during
synthesis, or the node cannot be routed to the SignalProbe pin. For example, nodes
and registers within Gigabit transceivers in Stratix IV devices cannot be probed
because there are no physical routes available to the pins.

1 To probe virtual I/O pins generated in low-level partitions in an incremental
compilation flow, select the source of the logic that feeds the virtual pin as your
SignalProbe source pin.

h For more information, refer to SignalProbe Pins Dialog Box and Add SignalProbe Pins
Dialog Box in Quartus II Help.

Because SignalProbe pins are implemented and routed as ECOs, turning the
SignalProbe enable option on or off is the same as selecting Apply Selected Change
or Restore Selected Change in the Change Manager window. (If the Change Manager
window is not visible at the bottom of your screen, on the View menu, point to Utility
Windows and click Change Manager.)

f For more information about the Change Manager for the Chip Planner and Resource
Property Editor, refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/comp_intro_signalprobe.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

Chapter 14: Quick Design Debugging Using SignalProbe 14–3
Debugging Using the SignalProbe Feature
Add Registers to the Pipeline Path to SignalProbe Pin
You can specify the number of registers placed between a SignalProbe source and a
SignalProbe pin to synchronize the data with a clock and to control the latency of the
SignalProbe outputs. The SignalProbe feature automatically inserts the number of
registers specified into the SignalProbe path.

Figure 14–1 shows a single register between the SignalProbe source Reg_b_1 and
SignalProbe SignalProbe_Output_2 output pin added to synchronize the data
between the two SignalProbe output pins.

1 When you add a register to a SignalProbe pin, the SignalProbe compilation attempts
to place the register to best fit timing requirements. You can place SignalProbe
registers either near the SignalProbe source to meet fM AX requirements, or near the
I/O to meet tCO requirements.

h To pipeline an existing SignalProbe connection, refer to Add SignalProbe Pins Dialog
Box in Quartus II Help.

In addition to clock input for pipeline registers, you can also specify a reset signal pin
for pipeline registers. To specify a reset pin for pipeline registers, use the Tcl command
make_sp, as described in “Scripting Support” on page 14–6.

Perform a SignalProbe Compilation
Perform a SignalProbe compilation to route your SignalProbe pins. A SignalProbe
compilation saves and checks all netlist changes without recompiling the other parts
of the design and completes compilation in a fraction of the time of a full compilation.
The design’s current placement and routing are preserved.

To perform a SignalProbe compilation, on the Processing menu, point to Start and
click Start SignalProbe Compilation.

Figure 14–1. Synchronizing SignalProbe Outputs with a SignalProbe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

14–4 Chapter 14: Quick Design Debugging Using SignalProbe
Debugging Using the SignalProbe Feature
Analyze the Results of the SignalProbe Compilation
After a SignalProbe compilation, the results are available in the compilation report
file. Each SignalProbe pin is displayed in the SignalProbe Fitting Result page in the
Fitter section of the Compilation Report. To view the status of each SignalProbe pin in
the SignalProbe Pins dialog box, on the Tools menu, click SignalProbe Pins.

The status of each SignalProbe pin appears in the Change Manager window
(Figure 14–2). (If the Change Manager window is not visible at the bottom of your
GUI, from the View menu, point to Utility Windows and click Change Manager.)

f For more information about how to use the Change Manager, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

To view the timing results of each successfully routed SignalProbe pin, on the
Processing menu, point to Start and click Start Timing Analysis.

Performing a SignalProbe Compilation
After a full compilation, you can start a SignalProbe compilation either manually or
automatically. A SignalProbe compilation performs the following functions:

■ Validates SignalProbe pins

■ Validates your specified SignalProbe sources

■ If applicable, adds registers into SignalProbe paths

■ Attempts to route from SignalProbe sources through registers to SignalProbe pins

To run the SignalProbe compilation automatically after a full compilation, on the
Tools menu, click SignalProbe Pins. In the SignalProbe Pins dialog box, click Start
Check & Save All Netlist Changes.

To run a SignalProbe compilation manually after a full compilation, on the Processing
menu, point to Start and click Start SignalProbe Compilation.

1 You must run the Fitter before a SignalProbe compilation. The Fitter generates a list of
all internal nodes that can be used as SignalProbe sources.

Turn the SignalProbe enable option on or off in the SignalProbe Pins dialog box to
enable or disable each SignalProbe pin.

Figure 14–2. Change Manager Window with SignalProbe Pins
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

Chapter 14: Quick Design Debugging Using SignalProbe 14–5
Debugging Using the SignalProbe Feature
Understanding the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results appear in two sections of the compilation
report file. The fitting results and status (Table 14–1) of each SignalProbe pin is
displayed in the SignalProbe Fitting Result screen in the Fitter section of the
Compilation Report (Figure 14–3).

The timing results of each successfully routed SignalProbe pin is displayed in the
SignalProbe source to output delays screen in the Timing Analysis section of the
Compilation Report (Figure 14–4).

Table 14–1. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

Figure 14–3. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 14–4. SignalProbe Source to Output Delays Page in the Compilation Report Window
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

14–6 Chapter 14: Quick Design Debugging Using SignalProbe
Scripting Support
1 After a SignalProbe compilation, the processing screen of the Messages window also
provides the results of each SignalProbe pin and displays slack information for each
successfully routed SignalProbe pin.

Analyzing SignalProbe Routing Failures
The SignalProbe can begin compilation; however, one of the following reasons can
prevent complete compilation:

■ Route unavailable—the SignalProbe compilation failed to find a route from the
SignalProbe source to the SignalProbe pin because of routing congestion

■ Invalid or nonexistent SignalProbe source—you entered a SignalProbe source
that does not exist or is invalid

■ Unusable output pin—the output pin selected is found to be unusable

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts with other
I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you can allow
the compiler to modify routing to the specified SignalProbe source. On the Tools
menu, click SignalProbe Pins and turn on Modify latest fitting results during
SignalProbe compilation. This setting allows the Fitter to modify existing routing
channels used by your design.

1 Turning on Modify latest fitting results during SignalProbe compilation can change
the performance of your design.

Scripting Support
Running procedures and make settings using a Tcl script are described in this chapter.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II command-line and Tcl API
Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

1 The Tcl commands in this section are part of the ::quartus::chip_planner Quartus II
Tcl API. Source or include the ::quartus::chip_planner Tcl package in your scripts
to make these commands available.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about all settings and constraints in
the Quartus II software, refer to the Quartus II Settings File Reference Manual. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

Make a SignalProbe Pin
To reserve a SignalProbe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 14: Quick Design Debugging Using SignalProbe 14–7
Scripting Support
Delete a SignalProbe Pin
To delete a SignalProbe pin, use the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name>

Enable a SignalProbe Pin
To enable a SignalProbe pin, use the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name>

Disable a SignalProbe Pin
To disable a SignalProbe pin, use the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name>

Perform a SignalProbe Compilation
To perform a SignalProbe compilation, type the following command:

quartus_sh --flow signalprobe <project name>

Script Example
Example 14–1 shows a script that creates a SignalProbe pin called sp1 and connects
the sp1 pin to source node reg1 in a project that was already compiled.

Reserving SignalProbe Pins
To reserve a SignalProbe pin, add the commands shown in Example 14–2 to the
Quartus II Settings File .qsf for your project.

Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to “Reserve the
SignalProbe Pins” on page 14–2.

Common Problems When Reserving a SignalProbe Pin
If you cannot reserve a SignalProbe pin in the Quartus II software, it is likely that one
of the following is true:

Example 14–1. Creating a SignalProbe Pin Called sp1

package require ::quartus::chip_planner
project_open project
read_netlist
make_sp -pin_name sp1 -src_name reg1
check_netlist_and_save
project_close

Example 14–2. Reserving a SignalProbe Pin

set_location_assignment <location> -to <SignalProbe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name>
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

14–8 Chapter 14: Quick Design Debugging Using SignalProbe
Scripting Support
■ You have selected multiple pins.

■ A compile is running in the background. Wait until the compilation is complete
before reserving the pin.

■ You have the Quartus II Web Edition software, in which the SignalProbe feature is
not enabled by default. You must turn on TalkBack to enable the SignalProbe
feature in the Quartus II Web Edition software.

■ You have not set the pin reserve type to As Signal Probe Output. To reserve a pin,
on the Assignments menu, in the Assign Pins dialog box, select As SignalProbe
Output.

■ The pin is reserved from a previous compilation. During a compilation, the
Quartus II software reserves each pin on the targeted device. If you end the
Quartus II process during a compilation, for example, with the Windows Task
Manager End Process command or the UNIX kill command, perform a full
recompilation before reserving pins as SignalProbe outputs.

■ The pin does not support the SignalProbe feature. Select another pin.

■ The current family does not support the SignalProbe feature.

Adding SignalProbe Sources
Use the following Tcl commands to add SignalProbe sources.

To assign the node name to a SignalProbe pin, use the following Tcl command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> -to \
<SignalProbe pin name>

The next command turns on SignalProbe routing. To turn off individual SignalProbe
pins, specify OFF instead of ON with the following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON -to \
<SignalProbe pin name>

h For more information about adding SignalProbe sources, refer to SignalProbe Pins
Dialog Box and Add SignalProbe Pins Dialog Box in Quartus II Help.

Assigning I/O Standards
To assign an I/O standard to a pin, use the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to \
<SignalProbe pin name>

h For a list of valid I/O standards, refer to the I/O Standards general description in the
Quartus II Help.

Adding Registers for Pipelining
To add registers for pipelining, use the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> -to \
<SignalProbe pin name>
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/sipro/sipro_db_add_sipro_pin.htm

Chapter 14: Quick Design Debugging Using SignalProbe 14–9
Scripting Support
set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> -to \
<SignalProbe pin name>

Run SignalProbe Automatically
To run SignalProbe automatically after a full compile, type the following Tcl
command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

For more information about running SignalProbe automatically, refer to “Performing
a SignalProbe Compilation” on page 14–4.

Run SignalProbe Manually
To run SignalProbe as part of a scripted flow using Tcl, use the following in your
script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the
following command:

quartus_sh_fit --flow signalprobe <project name>

For more information about running SignalProbe manually, refer to “Performing a
SignalProbe Compilation” on page 14–4.

Enable or Disable All SignalProbe Routing
Use the Tcl command in Example 14–3 to turn on or turn off SignalProbe routing.
When using this command, to turn SignalProbe routing on, specify ON. To turn
SignalProbe routing off, specify OFF.

For more information about enabling or disabling SignalProbe routing, refer to
page 14–4.

Allow SignalProbe to Modify Fitting Results
To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

For more information, refer to “Analyzing SignalProbe Routing Failures” on
page 14–6.

Example 14–3. Turning SignalProbe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {

set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF> }
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

14–10 Chapter 14: Quick Design Debugging Using SignalProbe
Conclusion
Conclusion
Using the SignalProbe feature can significantly reduce the time required compared to
a full recompilation. Use the SignalProbe feature for quick access to internal design
signals to perform system-level debugging.

Document Revision History
Table 14–2 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 14–2. Document Revision History

Date Version Changes

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0

■ Revised for new UI.

■ Removed section SignalProbe ECO flows

■ Removed support for SignalProbe pin preservation when recompiling with incremental
compilation turned on.

■ Removed outdated FAQ section.

■ Added links to Quartus II Help for procedural content.

November 2009 9.1.0
■ Removed all references and procedures for APEX devices.

■ Style changes.

March 2009 9.0.0

■ Removed the “Generate the Programming File” section

■ Removed unnecessary screenshots

■ Minor editorial updates

November 2008 8.1.0

■ Modified description for preserving SignalProbe connections when using Incremental
Compilation

■ Added plausible scenarios where SignalProbe connections are not reserved in the
design

May 2008 8.0.0

■ Added “Arria GX” to the list of supported devices

■ Removed the “On-Chip Debugging Tool Comparison” and replaced with a reference to
the Section V Overview on page 13–1

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53009-10.0.1

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53009-10.0.1
15. Design Debugging Using the
SignalTap II Logic Analyzer
To help with the process of design debugging, Altera provides a solution that allows
you to examine the behavior of internal signals, without using extra I/O pins, while
the design is running at full speed on an FPGA device.

The SignalTap® II Logic Analyzer is scalable, easy to use, and is available as a
stand-alone package or included with the Quartus® II software subscription. This
logic analyzer helps debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment. Defining custom
trigger-condition logic provides greater accuracy and improves the ability to isolate
problems. The SignalTap II Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes or I/O pins in the
design. All captured signal data is conveniently stored in device memory until you
are ready to read and analyze the data.

The topics in this chapter include:

■ “Design Flow Using the SignalTap II Logic Analyzer” on page 15–4

■ “SignalTap II Logic Analyzer Task Flow” on page 15–5

■ “Configure the SignalTap II Logic Analyzer” on page 15–8

■ “Define Triggers” on page 15–25

■ “Compile the Design” on page 15–44

■ “Program the Target Device or Devices” on page 15–49

■ “Run the SignalTap II Logic Analyzer” on page 15–50

■ “View, Analyze, and Use Captured Data” on page 15–55

■ “Other Features” on page 15–61

■ “Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems”
on page 15–66

■ “Custom Triggering Flow Application Examples” on page 15–67

■ “SignalTap II Scripting Support” on page 15–69
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53009

15–2 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is a next-generation, system-level debugging tool
that captures and displays real-time signal behavior in a system-on-a-programmable-
chip (SOPC) or any FPGA design. The SignalTap II Logic Analyzer supports the
highest number of channels, largest sample depth, and fastest clock speeds of any
logic analyzer in the programmable logic market. Figure 15–1 shows a block diagram
of the components that make up the SignalTap II Logic Analyzer.

This chapter is intended for any designer who wants to debug an FPGA design
during normal device operation without the need for external lab equipment. Because
the SignalTap II Logic Analyzer is similar to traditional external logic analyzers,
familiarity with external logic analyzer operations is helpful but not necessary. To take
advantage of faster compile times when making changes to the SignalTap II Logic
Analyzer, knowledge of the Quartus II incremental compilation feature is helpful.

f For information about using the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Hardware and Software Requirements
You need the following components to perform logic analysis with the SignalTap II
Logic Analyzer:

■ Quartus II design software

or
Quartus II Web Edition (with the TalkBack feature enabled)
or
SignalTap II Logic Analyzer standalone software

Figure 15–1. SignalTap II Logic Analyzer Block Diagram (Note 1)

Note to Figure 15–1:
(1) This diagram assumes that you compiled the SignalTap II Logic Analyzer with the design as a separate design partition using the Quartus II

incremental compilation feature. This is the default setting for new projects in the Quartus II software. If incremental compilation is disabled or
not used, the SignalTap II logic is integrated with the design. For information about the use of incremental compilation with SignalTap II, refer to
“Faster Compilations with Quartus II Incremental Compilation” on page 15–45.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG

Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–3
■ Download/upload cable

■ Altera® development kit or your design board with JTAG connection to device
under test

1 The Quartus II software Web Edition does not support the SignalTap II
Logic Analyzer with the incremental compilation feature.

The device’s memory blocks store captured data and transfers the data to the
Quartus II software waveform display with a JTAG communication cable, such as
EthernetBlaster or USB-BlasterTM. Table 15–1 summarizes features and benefits of the
SignalTap II Logic Analyzer.

Table 15–1. SignalTap II Logic Analyzer Features and Benefits

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same time.

Multiple logic analyzers in multiple devices in
a single JTAG chain

Simultaneously captures data from multiple devices in a JTAG chain.

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as the
Nios® II processor.

Up to 10 basic or advanced trigger conditions
for each analyzer instance

Enables sending more complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-Up Trigger Captures signal data for triggers that occur after device programming, but
before manually starting the logic analyzer.

State-based Triggering Flow Enables you to organize your triggering conditions to precisely define what
your logic analyzer captures.

Incremental compilation Modifies the SignalTap II Logic Analyzer monitored signals and triggers
without performing a full compilation, saving time.

Flexible buffer acquisition modes

The buffer acquisition control allows you to precisely control the data that is
written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard data
samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX
function

Collects the SignalTap II Logic Analyzer captured data into a MATLAB
integer matrix.

Up to 2,048 channels per logic analyzer
instance

Samples many signals and wide bus structures.

Up to 128K samples in each device Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving the
logic under test.

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Logic Analyzer configurations.

No additional cost The SignalTap II Logic Analyzer is included with a Quartus II subscription
and with the Quartus II Web Edition (with TalkBack enabled).

Compatibility with other on-chip debugging
utilities

You can use the SignalTap II Logic Analyzer in tandem with any JTAG based
on-chip debugging tool, such as an In-System Memory Content editor
allowing you to change signal values in real-time while you are running an
analysis with the SignalTap II Logic Analyzer.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–4 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Design Flow Using the SignalTap II Logic Analyzer
f The Quartus II software offers a portfolio of on-chip debugging solutions. For an
overview and comparison of all tools available in the In-System Verification Tool set,
refer to Section V. In-System Design Debugging.

Design Flow Using the SignalTap II Logic Analyzer
Figure 15–2 shows a typical overall FPGA design flow for using the SignalTap II Logic
Analyzer in your design. A SignalTap II file (.stp) is added to and enabled in your
project, or a SignalTap II HDL function, created with the MegaWizard™ Plug-In
Manager, is instantiated in your design. The figure shows the flow of operations from
initially adding the SignalTap II Logic Analyzer to your design to final device
configuration, testing, and debugging.

Figure 15–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Analysis and Synthesis

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Assembler

Timing Analyzer

Yes

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

Configuration

Functionality
Satisfied?
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–5
SignalTap II Logic Analyzer Task Flow
SignalTap II Logic Analyzer Task Flow
To use the SignalTap II Logic Analyzer to debug your design, you perform a number
of tasks to add, configure, and run the logic analyzer. Figure 15–3 shows a typical flow
of the tasks you complete to debug your design. Refer to the appropriate section of
this chapter for more information about each of these tasks.

Add the SignalTap II Logic Analyzer to Your Design
Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the MegaWizard Plug-In Manager. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

h For information about creating an .stp, refer to Setting Up the SignalTap II Logic
Analyzer in Quartus II Help.

Figure 15–3. SignalTap II Logic Analyzer Task Flow

End

Create New Project or
Open Existing Project

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Add SignalTap II Logic
Analyzer to Design Instance

Configure
SignalTap II

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Logic Analyzer

Adjust Options,
Triggers, or both

Continue Debugging

Recompilation
Necessary?

Yes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

15–6 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
SignalTap II Logic Analyzer Task Flow
Configure the SignalTap II Logic Analyzer
After you add the SignalTap II Logic Analyzer to your design, configure it to monitor
the signals you want. You can manually add signals or use a plug-in, such as the
Nios II processor plug-in, to quickly add entire sets of associated signals for a
particular intellectual property (IP). You can also specify settings for the data capture
buffer, such as its size, the method in which data is captured and stored, and the
device memory type to use for the buffer in devices that support memory type
selection.

h For information about configuring the SignalTap II Logic Analyzer, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Define Trigger Conditions
The SignalTap II Logic Analyzer captures data continuously while it is running. To
capture and store specific signal data, set up triggers that tell the logic analyzer under
what conditions to stop capturing data. The SignalTap II Logic Analyzer lets you
define trigger conditions that range from very simple, such as the rising edge of a
single signal, to very complex, involving groups of signals, extra logic, and multiple
conditions. Power-Up Triggers allow you to capture data from trigger events
occurring immediately after the device enters user-mode after configuration.

h For information about defining trigger conditions, refer to Setting Up the SignalTap II
Logic Analyzer in Quartus II Help.

Compile the Design
With the .stp configured and trigger conditions defined, compile your project as usual
to include the logic analyzer in your design. Because you may need to change
monitored signal nodes or adjust trigger settings frequently during debugging, Altera
recommends that you use the incremental compilation feature built into the
SignalTap II Logic Analyzer, along with Quartus II incremental compilation, to reduce
recompile times.

h For information about compiling your design, refer to Compiling a Design that Contains
a SignalTap II Logic Analyzer in Quartus II Help.

Program the Target Device or Devices
When you are debugging a design with the SignalTap II Logic Analyzer, you can
program a target device directly from the .stp without using the Quartus II
Programmer. You can also program multiple devices with different designs and
simultaneously debug them.

1 The SignalTap II Logic Analyzer supports all current Altera FPGA device families
including Arria, Cyclone, HardCopy, and Stratix devices.

h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_compile_sigtap2.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–7
SignalTap II Logic Analyzer Task Flow
Run the SignalTap II Logic Analyzer
In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

View, Analyze, and Use Captured Data
After you have captured data and read it into the .stp, that data is available for
analysis and debugging. Set up mnemonic tables, either manually or with a plug-in,
to simplify reading and interpreting the captured signal data. To speed up debugging,
use the Locate feature in the SignalTap II node list to find the locations of problem
nodes in other tools in the Quartus II software. Save the captured data for later
analysis, or convert the data to other formats for sharing and further study.

h For information about analyzing results from the SignalTap II Logic Analyzer, refer to
Analyzing Data in the SignalTap II Logic Analyzer in Quartus II Help.

Embedding Multiple Analyzers in One FPGA
The SignalTap II Logic Analyzer Editor includes support for adding multiple logic
analyzers by creating instances in the .stp. You can create a unique logic analyzer for
each clock domain in the design.

h For information about creating instances, refer to Running the SignalTap II Logic
Analyzer in Quartus II Help.

Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage of each logic analyzer instance and total resources used in
the columns of the Instance Manager pane of the SignalTap II Logic Analyzer Editor.
Use this feature when you know that your design is running low on resources.

The logic element value reported in the resource usage estimator may vary by as
much as 10% from the actual resource usage.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm

15–8 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Table 15–2 shows the SignalTap II Logic Analyzer M4K memory block resource usage
for the listed devices per signal width and sample depth.

Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer
You can create a SignalTap II Logic Analyzer instance by using the MegaWizard
Plug-In Manager. The MegaWizard Plug-In Manager generates an HDL file that you
instantiate in your design.

1 The State-based trigger flow, the state machine debugging feature, and the storage
qualification feature are not supported when using the MegaWizard Plug-In Manager
to create the logic analyzer. These features are described in the following sections:

■ “Adding Finite State Machine State Encoding Registers” on page 15–13

■ “Using the Storage Qualifier Feature” on page 15–17

■ “State-Based Triggering” on page 15–29

h For information about creating a SignalTap II instance with the MegaWizard Plug-In
Manager, refer to Setting Up the SignalTap II Logic Analyzer in Quartus II Help.

Configure the SignalTap II Logic Analyzer
The .stp provides many options for configuring instances of the logic analyzer. Some
of the settings are similar to those found on traditional external logic analyzers. Other
settings are unique to the SignalTap II Logic Analyzer because of the requirements for
configuring a logic analyzer. All settings allow you to configure the logic analyzer the
way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing Run-Time Trigger
conditions instead of Power-Up Trigger conditions. To learn about Power-Up Triggers
and viewing different trigger conditions, refer to “Creating a Power-Up Trigger” on
page 15–40.

Table 15–2. SignalTap II Logic Analyzer M4K Block Utilization (Note 1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 15–2:

(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits
and logic elements required to implement the given configuration.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–9
Configure the SignalTap II Logic Analyzer
Assigning an Acquisition Clock
Assign a clock signal to control the acquisition of data by the SignalTap II Logic
Analyzer. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock. You can use any signal in your design as the
acquisition clock. However, for best results, Altera recommends that you use a global,
non-gated clock synchronous to the signals under test for data acquisition. Using a
gated clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II static timing analysis
tools show the maximum acquisition clock frequency at which you can run your
design. Refer to the Timing Analysis section of the Compilation Report to find the
maximum frequency of the logic analyzer clock.

h For information about assigning an acquisition clock, refer to Working with Nodes in the
SignalTap II Logic Analyzer in Quartus II Help.

1 Altera recommends that you exercise caution when using a recovered clock from a
transceiver as an acquisition clock for the SignalTap II Logic Analyzer. Incorrect or
unexpected behavior has been noted, particularly when a recovered clock from a
transceiver is used as an acquisition clock with the power-up trigger feature.

If you do not assign an acquisition clock in the SignalTap II Logic Analyzer Editor, the
Quartus II software automatically creates a clock pin called auto_stp_external_clk.

You must make a pin assignment to this pin independently from the design. Ensure
that a clock signal in your design drives the acquisition clock.

f For information about assigning signals to pins, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File
While configuring the logic analyzer, add signals to the node list in the .stp to select
which signals in your design you want to monitor. Selected signals are also used to
define triggers. You can assign the following two types of signals to your .stp file:

■ Pre-synthesis—This signal exists after design elaboration, but before any
synthesis optimizations are done. This set of signals should reflect your Register
Transfer Level (RTL) signals.

■ Post-fitting—This signal exists after physical synthesis optimizations and
place-and-route.

1 If you are not using incremental compilation, add only pre-synthesis signals to your
.stp. Using pre-synthesis is particularly useful if you want to add a new node after
you have made design changes. Source file changes appear in the Node Finder after
an Analysis and Elaboration has been performed. On the Processing Menu, point to
Start and click Start Analysis & Elaboration.

h For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

15–10 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
The Quartus II software does not limit the number of signals available for monitoring
in the SignalTap II window waveform display. However, the number of channels
available is directly proportional to the number of logic elements (LEs) or adaptive
logic modules (ALMs) in the device. Therefore, there is a physical restriction on the
number of channels that are available for monitoring. Signals shown in blue text are
post-fit node names. Signals shown in black text are pre-synthesis node names.

After successful Analysis and Elaboration, the signals shown in red text are invalid
signals. Unless you are certain that these signals are valid, remove them from the .stp
for correct operation. The SignalTap II Status Indicator also indicates if an invalid
node name exists in the .stp.

As a general guideline, signals can be tapped if a routing resource (row or column
interconnects) exists to route the connection to the SignalTap II instance. For example,
signals that exist in the I/O element (IOE) cannot be directly tapped because there are
no direct routing resources from the signal in an IOE to a core logic element. For input
pins, you can tap the signal that is driving a logic array block (LAB) from an IOE, or,
for output pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, all connections made to the SignalTap II Logic
Analyzer are made prior to synthesis. Logic and routing resources are allocated
during recompilation to make the connection as if a change in your design files had
been made. As such, pre-synthesis signal names for signals driving to and from IOEs
coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II Logic
Analyzer are the signal names from the actual atoms in your post-fit netlist. A
connection can only be made if the signals are part of the existing post-fit netlist and
existing routing resources are available from the signal of interest to the SignalTap II
Logic Analyzer. In the case of post-fit output signals, tap the COMBOUT or REGOUT signal
that drives the IOE block. For post-fit input signals, signals driving into the core logic
coincide with the signal name assigned to the pin.

1 If you are tapping the signal from the atom that is driving an IOE, be aware that the
signal may be inverted due to NOT-gate push back. You can check this by locating the
signal in either the Resource Property Editor or the Technology Map Viewer. The
Technology Map viewer and the Resource Property Editor are also helpful in finding
post-fit node names.

f For information about cross-probing to source design files and other Quartus II
windows, refer to the Analyzing Designs with Quartus II Netlist Viewers chapter in
volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the SignalTap II
Logic Analyzer, refer to “Faster Compilations with Quartus II Incremental
Compilation” on page 15–45.

Signal Preservation
Many of the RTL signals are optimized during the process of synthesis and
place-and-route. RTL signal names frequently may not appear in the post-fit netlist
after optimizations. For example, the compilation process can add tildes (“~”) to nets
that are fanning out from a node, making it difficult to decipher which signal nets
they actually represent. This can cause a problem when you use the incremental
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–11
Configure the SignalTap II Logic Analyzer
compilation flow with the SignalTap II Logic Analyzer. Because only post-fitting
signals can be added to the SignalTap II Logic Analyzer in partitions of type post-fit,
RTL signals that you want to monitor may not be available, preventing their usage. To
avoid this issue, use synthesis attributes to preserve signals during synthesis and
place-and-route. When the Quartus II software encounters these synthesis attributes,
it does not perform any optimization on the specified signals, forcing them to
continue to exist in the post-fit netlist. However, if you do this, you could see an
increase in resource utilization or a decrease in timing performance. The two
attributes you can use are:

■ keep—Ensures that combinational signals are not removed

■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to make them available for debugging
with the SignalTap II Logic Analyzer. This is often necessary when a plug-in is used to
add a group of signals for a particular IP.

If you use incremental compilation flow with the SignalTap II Logic Analyzer,
pre-synthesis nodes may not be connected to the SignalTap II Logic Analyzer if the
affected partition is of the post-fit type. A critical warning is issued for all pre-
synthesis node names that are not found in the post-fit netlist.

h For more information about node preservation or how to avoiding these warnings,
refer to Working with Nodes in the SignalTap II Logic Analyzer in Quartus II Help.

Assigning Data Signals Using the Technology Map Viewer
You can easily add post-fit signal names that you find in the Technology map viewer.
To do so, launch the Technology map viewer (post-fitting) after compiling your
design. When you find the desired node, copy the node to either the active .stp for
your design or a new .stp.

Node List Signal Use Options
When a signal is added to the node list, you can select options that specify how the
signal is used with the logic analyzer. You can turn off the ability of a signal to trigger
the analyzer by disabling the Trigger Enable option for that signal in the node list in
the .stp. This option is useful when you want to see only the captured data for a signal
and you are not using that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the Data Enable
column. This option is useful when you want to trigger on a signal, but have no
interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II trigger
conditions, refer to “Define Triggers” on page 15–25.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_nodes.htm
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

15–12 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Untappable Signals
Not all of the post-fitting signals in your design are available in the SignalTap II :
post-fitting filter in the Node Finder dialog box. The following signal types cannot be
tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

■ Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS) signals.

■ ALTGXB megafunction—You cannot directly tap any ports of an ALTGXB
instantiation.

■ LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

■ DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

Adding Signals with a Plug-In
Instead of adding individual or grouped signals through the Node Finder, you can
add groups of relevant signals of a particular type of IP with a plug-in. The
SignalTap II Logic Analyzer comes with one plug-in already installed for the Nios II
processor. Besides easy signal addition, plug-ins also provide features such as
pre-designed mnemonic tables, useful for trigger creation and data viewing, as well as
the ability to disassemble code in captured data.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and two
tables in the Data tab:

■ Nios II Instruction (Setup tab)—Capture all the required signals for triggering on
a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed instructions in
hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from the
corresponding address.

For information about the other features plug-ins provided, refer to “Define Triggers”
on page 15–25 and “View, Analyze, and Use Captured Data” on page 15–55.

To add signals to the .stp using a plug-in, perform the following steps after running
Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In submenu, choose the
plug-in you want to use, such as the included plug-in named Nios II.

1 If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–13
Configure the SignalTap II Logic Analyzer
2. The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. Select the IP that contains the signals you want to monitor with the plug-in
and click OK.

3. If all the signals in the plug-in are available, a dialog box might appear, depending
on the plug-in selected, where you can specify options for the plug-in. With the
Nios II plug-in, you can optionally select an .elf containing program symbols from
your Nios II Integrated Development Environment (IDE) software design. Specify
options for the selected plug-in as desired and click OK.

1 To make sure all the required signals are available, in the Quartus II Analysis &
Synthesis settings, turn on Create debugging nodes for IP cores.

All the signals included in the plug-in are added to the node list.

Adding Finite State Machine State Encoding Registers
Finding the signals to debug Finite State Machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, as FSM encoding signals may be
changed or optimized away during synthesis and place-and-route. If you can find all
of the relevant nodes in the post-fit netlist or you used the nodes from the
pre-synthesis netlist, an additional step is required to find and map FSM signal values
to the state names that you specified in your HDL.

The SignalTap II Logic Analyzer GUI can detect FSMs in your compiled design. The
SignalTap II Logic Analyzer configuration automatically tracks the FSM state signals
as well as state encoding through the compilation process. Shortcut menu commands
from the SignalTap II Logic Analyzer GUI allow you to add all of the FSM state
signals to your logic analyzer with a single command. For each FSM added to your
SignalTap II configuration, the FSM debugging feature adds a mnemonic table to map
the signal values to the state enumeration that you provided in your source code. The
mnemonic tables enable you to visualize state machine transitions in the waveform
viewer. The FSM debugging feature supports adding FSM signals from both the
pre-synthesis and post-fit netlists.

Figure 15–4 shows the waveform viewer with decoded signal values from a state
machine added with the FSM debugging feature.

f For coding guidelines for specifying FSM in Verilog and VHDL, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

h For information about adding FSM signals to the configuration file, refer to Setting Up
the SignalTap II Logic Analyzer in Quartus II Help.

Figure 15–4. Decoded FSM Mnemonics
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_setup.htm

15–14 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Modifying and Restoring Mnemonic Tables for State Machines
When you add FSM state signals via the FSM debugging feature, the SignalTap II
Logic Analyzer GUI creates a mnemonic table using the format
<StateSignalName>_table, where StateSignalName is the name of the state signals
that you have declared in your RTL. You can edit any mnemonic table using the
Mnemonic Table Setup dialog box.

If you want to restore a mnemonic table that was modified, right-click anywhere in
the node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you
modified. To restore a FSM mnemonic table to a new record, turn off Overwrite
existing mnemonic table in the Recreate State Machine Mnemonics dialog box.

1 If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

For more information about using Mnemonics, refer to “Creating Mnemonics for Bit
Patterns” on page 15–59.

Additional Considerations
The SignalTap II configuration GUI recognizes state machines from your design only
if you use Quartus II Integrated Synthesis (QIS). The state machine debugging feature
is not able to track the FSM signals or state encoding if you use other EDA synthesis
tools.

If you add post-fit FSM signals, the SignalTap II Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process. If
the following two specific optimizations are enabled, the SignalTap II FSM debug
feature may not list mnemonic tables for state machines in the design:

■ If you have physical synthesis turned on, state registers may be resource balanced
(register retiming) to improve fMAX. The FSM debug feature does not list post-fit
FSM state registers if register retiming occurs.

■ The FSM debugging feature does not list state signals that have been packed into
RAM and DSP blocks during QIS or Fitter optimizations.

You can still use the FSM debugging feature to add pre-synthesis state signals.

Specifying the Sample Depth
The sample depth specifies the number of samples that are captured and stored for
each signal in the captured data buffer. To specify the sample depth, select the desired
number of samples to store in the Sample Depth list. The sample depth ranges from
0 to 128K.

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–15
Configure the SignalTap II Logic Analyzer
Capturing Data to a Specific RAM Type
When you use the SignalTap II Logic Analyzer with some devices, you have the
option to select the RAM type where acquisition data is stored. Once SignalTap II
Logic Analyzer is allocated to a particular RAM block, the entire RAM block becomes
a dedicated resource for the logic analyzer. RAM selection allows you to preserve a
specific memory block for your design and allocate another portion of memory for
SignalTap II Logic Analyzer data acquisition. For example, if your design has an
application that requires a large block of memory resources, such a large instruction
or data cache, you would choose to use MLAB, M512, or M4k blocks for data
acquisition and leave the M9k blocks for the rest of your design.

To select the RAM type to use for the SignalTap II Logic Analyzer buffer, select it from
the RAM type list. Use this feature when the acquired data (as reported by the
SignalTap II resource estimator) is not larger than the available memory of the
memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode
The Buffer Acquisition Type Selection feature in the SignalTap II Logic Analyzer lets
you choose how the captured data buffer is organized and can potentially reduce the
amount of memory that is required for SignalTap II data acquisition. There are two
types of acquisition buffer within the SignalTap II Logic Analyzer—a non-segmented
buffer and a segmented buffer. With a non-segmented buffer, the SignalTap II Logic
Analyzer treats entire memory space as a single FIFO, continuously filling the buffer
until the logic analyzer reaches a defined set of trigger conditions. With a segmented
buffer, the memory space is split into a number of separate buffers. Each buffer acts as
a separate FIFO with its own set of trigger conditions. Only a single buffer is active
during an acquisition. The SignalTap II Logic Analyzer advances to the next segment
after the trigger condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space. Figure 15–5 illustrates the
differences between the two buffer types.

Figure 15–5. Buffer Type Comparison in the SignalTap II Logic Analyzer (Note 1), (Note 2)

Notes to Figure 15–5:
(1) Both non-segmented and segmented buffers can use a predefined trigger (Pre-Trigger, Center Trigger, Post-Trigger) position or define a custom

trigger position using the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 15–39 for more details.
(2) Each segment is treated like a FIFO, and behaves as the non-segmented buffer shown in (a).
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–16 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
For more information about the storage qualification feature, refer to “Using the
Storage Qualifier Feature” on page 15–17.

Non-Segmented Buffer
The non-segmented buffer (also known as a circular buffer) shown in Figure 15–5 (a)
is the default buffer type used by the SignalTap II Logic Analyzer. While the logic
analyzer is running, data is stored in the buffer until it fills up, at which point new
data replaces the oldest data. This continues until a specified trigger event, consisting
of a set of trigger conditions, occurs. When the trigger event happens, the logic
analyzer continues to capture data after the trigger event until the buffer is full, based
on the trigger position setting in the Signal Configuration pane in the .stp. To capture
the majority of the data before the trigger occurs, select Post trigger position from the
list. To capture the majority of the data after the trigger, select Pre-trigger position. To
center the trigger position in the data, select Center trigger position. Alternatively,
use the custom State-based triggering flow to define a custom trigger position within
the capture buffer.

For more information, refer to “Specifying the Trigger Position” on page 15–39.

Segmented Buffer
A segmented buffer allows you to debug systems that contain relatively infrequent
recurring events. The acquisition memory is split into evenly sized segments, with a
set of trigger conditions defined for each segment. Each segment acts as a non-
segmented buffer. Figure 15–6 shows an example of a segmented buffer system.

The SignalTap II Logic Analyzer verifies the functionality of the design shown in
Figure 15–6 to ensure that the correct data is written to the SRAM controller. Buffer
acquisition in the SignalTap II Logic Analyzer allows you to monitor the RDATA port
when H'0F0F0F0F is sent into the RADDR port. You can monitor multiple read
transactions from the SRAM device without running the SignalTap II Logic Analyzer
again. The buffer acquisition feature allows you to segment the memory so you can
capture the same event multiple times without wasting allocated memory. The
number of cycles that are captured depends on the number of segments specified
under the Data settings.

Figure 15–6. Example System that Generates Recurring Events

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]
WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–17
Configure the SignalTap II Logic Analyzer
To enable and configure buffer acquisition, select Segmented in the SignalTap II Logic
Analyzer Editor and select the number of segments to use. In the example in
Figure 15–6, selecting sixty-four 64-sample segments allows you to capture 64 read
cycles when the RADDR signal is H'0F0F0F0F.

h For more information about buffer acquisition mode, refer to Configuring the Trigger
Flow in the SignalTap II Logic Analyzer in the Quartus II Help.

Using the Storage Qualifier Feature
Both non-segmented and segmented buffers described in the previous section offer a
snapshot in time of the data stream being analyzed. The default behavior for writing
into acquisition memory with the SignalTap II Logic Analyzer is to sample data on
every clock cycle. With a non-segmented buffer, there is one data window that
represents a comprehensive snapshot of the datastream. Similarly, segmented buffers
use several smaller sampling windows spread out over more time, with each
sampling window representing a contiguous data set.

With carefully chosen trigger conditions and a generous sample depth for the
acquisition buffer, analysis using segmented and non-segmented buffers captures a
majority of functional errors in a chosen signal set. However, each data window can
have a considerable amount of redundancy associated with it; for example, a capture
of a data stream containing long periods of idle signals between data bursts. With
default behavior using the SignalTap II Logic Analyzer, you cannot discard the
redundant sample bits.

The Storage Qualification feature allows you to filter out individual samples not
relevant to debugging the design. With this feature, a condition acts as a write enable
to the buffer during each clock cycle of data acquisition. Through fine tuning the data
that is actually stored in acquisition memory, the Storage Qualification feature allows
for a more efficient use of acquisition memory in the specified number of samples
over a longer period of analysis.

Use of the Storage Qualification feature is similar to an acquisition using a segmented
buffer, in that you can create a discontinuity in the capture buffer. Because you can
create a discontinuity between any two samples in the buffer, the Storage
Qualification feature is equivalent to being able to create a customized segmented
buffer in which the number and size of segment boundaries are adjustable.
Figure 15–7 illustrates three ways the SignalTap II Logic Analyzer writes into
acquisition memory.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_proc_cust_trig_flow.htm

15–18 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
1 You can only use the Storage Qualification feature with a non-segmented buffer. The
MegaWizard Plug-In Manager instantiated flow only supports the Input Port mode
for the Storage Qualification feature.

There are six types available under the Storage Qualification feature:

■ Continuous

■ Input port

■ Transitional

■ Conditional

■ Start/Stop

■ State-based

Continuous (the default mode selected) turns the Storage Qualification feature off.

Each selected storage qualifier type is active when an acquisition starts. Upon the start
of an acquisition, the SignalTap II Logic Analyzer examines each clock cycle and
writes the data into the acquisition buffer based upon storage qualifier type and
condition. The acquisition stops when a defined set of trigger conditions occur.

Figure 15–7. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to Figure 15–7:

(1) Non-segmented Buffers capture a fixed sample window of contiguous data.
(2) Segmented buffers divide the buffer into fixed sized segments, with each segment having an equal sample depth.
(3) Storage Qualification allows you to define a custom sampling window for each segment you create with a qualifying condition. Storage

qualification potentially allows for a larger time scale of coverage.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–19
Configure the SignalTap II Logic Analyzer
1 Trigger conditions are evaluated independently of storage qualifier conditions. The
SignalTap II Logic Analyzer evaluates the data stream for trigger conditions on every
clock cycle after the acquisition begins.

Trigger conditions are defined in “Define Trigger Conditions” on page 15–6.

The storage qualifier operates independently of the trigger conditions.

The following subsections describe each storage qualification mode from the
acquisition buffer.

Input Port Mode
When using the Input port mode, the SignalTap II Logic Analyzer takes any signal
from your design as an input. When the design is running, if the signal is high on the
clock edge, the SignalTap II Logic Analyzer stores the data in the buffer. If the signal is
low on the clock edge, the data sample is ignored. A pin is created and connected to
this input port by default if no internal node is specified.

If you are using an .stp to create a SignalTap II Logic Analyzer instance, specify the
storage qualifier signal using the input port field located on the Setup tab. You must
specify this port for your project to compile.

If you use the MegaWizard Plug-In Manager flow, the storage qualification input port,
if specified, appears in the MegaWizard-generated instantiation template. You can
then connect this port to a signal in your RTL.

Figure 15–8 shows a data pattern captured with a segmented buffer. Figure 15–9
shows a capture of the same data pattern with the storage qualification feature
enabled.

Figure 15–8. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to illustrate Input port mode)

Figure 15–9. Data Acquisition of a Recurring Data Pattern Using an Input Signal as a Storage Qualifier
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–20 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Transitional Mode
In Transitional mode, you choose a set of signals for inspection using the node list
check boxes in the Storage Qualifier column. During acquisition, if any of the signals
marked for inspection have changed since the previous clock cycle, new data is
written to the acquisition buffer. If none of the signals marked have changed since the
previous clock cycle, no data is stored. Figure 15–10 shows the transitional storage
qualifier setup. Figure 15–11 and Figure 15–12 show captures of a data pattern in
continuous capture mode and a data pattern using the Transitional mode for storage
qualification.

Conditional Mode
In Conditional mode, the SignalTap II Logic Analyzer evaluates a combinational
function of storage qualifier enabled signals within the node list to determine whether
a sample is stored. The SignalTap II Logic Analyzer writes into the buffer during the
clock cycles in which the condition you specify evaluates TRUE.

You can select either Basic or Advanced storage qualifier conditions. A Basic storage
qualifier condition matches each signal to one of the following:

■ Don’t Care

■ Low

Figure 15–10. Transitional Storage Qualifier Setup

Figure 15–11. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Transitional mode)

Figure 15–12. Data Acquisition of Recurring Data Pattern Using a Transitional Mode as a Storage
Qualifier

Node List Storage Enable Transitional Enable
Storage Qualifier
Dialog Box
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–21
Configure the SignalTap II Logic Analyzer
■ High

■ Falling Edge

■ Either Edge

If you specify a Basic Storage qualifier condition for more than one signal, the
SignalTap II Logic Analyzer evaluates the logical AND of the conditions.

Any other combinational or relational operators that you may want to specify with
the enabled signal set for storage qualification can be done with an advanced storage
condition. Figure 15–13 details the conditional storage qualifier setup in the .stp.

You can specify up storage qualification conditions similar to the manner in which
trigger conditions are specified. For details about basic and advanced trigger
conditions, refer to the sections “Creating Basic Trigger Conditions” on page 15–25
and “Creating Advanced Trigger Conditions” on page 15–25. Figure 15–14 and
Figure 15–15 show a data capture with continuous sampling, and the same data
pattern using the conditional mode for analysis, respectively.

Figure 15–13. Conditional Storage Qualifier Setup

Figure 15–14. Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (to
illustrate Conditional capture)

Figure 15–15. Data Acquisition of a Recurring Data Pattern in Conditional Capture Mode
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–22 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
Start/Stop Mode
The Start/Stop mode is similar to the Conditional mode for storage qualification.
However, in this mode there are two sets of conditions, one for start and one for stop.
If the start condition evaluates to TRUE, data begins is stored in the buffer every clock
cycle until the stop condition evaluates to TRUE, which then pauses the data capture.
Additional start signals received after the data capture has started are ignored. If both
start and stop evaluate to TRUE at the same time, a single cycle is captured.

1 You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 15–16 shows the Start/Stop mode storage qualifier setup. Figure 15–17 and
Figure 15–18 show captures data pattern in continuous capture mode and a data
pattern in using the Start/Stop mode for storage qualification.

Figure 15–16. Start/Stop Mode Storage Qualifier Setup

Figure 15–17. Data Acquisition of a Recurring Data Pattern in Continuous Mode (to illustrate
Start/Stop mode)

Figure 15–18. Data Acquisition of a Recurring Data Pattern with Start/Stop Storage Qualifier
Enabled
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–23
Configure the SignalTap II Logic Analyzer
State-Based
The State-based storage qualification mode is used with the State-based triggering
flow. The state based triggering flow evaluates an if-else based language to define
how data is written into the buffer. With the State-based trigger flow, you have
command over boolean and relational operators to guide the execution flow for the
target acquisition buffer. When the storage qualifier feature is enabled for the
State-based flow, two additional commands are available, the start_store and
stop_store commands. These commands operate similarly to the Start/Stop capture
conditions described in the previous section. Upon the start of acquisition, data is not
written into the buffer until a start_store action is performed. The stop_store
command pauses the acquisition. If both start_store and stop_store actions are
performed within the same clock cycle, a single sample is stored into the acquisition
buffer.

For more information about the State-based flow and storage qualification using the
State-based trigger flow, refer to the section “State-Based Triggering” on page 15–29.

Showing Data Discontinuities
When you turn on Record data discontinuities, the SignalTap II Logic Analyzer
marks the samples during which the acquisition paused from a storage qualifier. This
marker is displayed in the waveform viewer after acquisition completes.

Disable Storage Qualifier
You can turn off the storage qualifier quickly with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable; that
is, the setting can be changed without recompiling the project. Changing storage
qualifier mode from the Type field requires a recompilation of the project.

1 For a detailed explanation of Runtime Reconfigurable options available with the
SignalTap II Logic Analyzer, and storage qualifier application examples using
runtime reconfigurable options, refer to “Runtime Reconfigurable Options” on
page 15–52.

Managing Multiple SignalTap II Files and Configurations
You may have more than one .stp in one design. Each file potentially has a different
group of monitored signals. These signal groups make it possible to debug different
blocks in your design. In turn, each group of signals can also be used to define
different sets of trigger conditions. Along with each .stp, there is also an associated
programming file (SRAM Object File [.sof]). The settings in a selected SignalTap II file
must match the SignalTap II logic design in the associated .sof for the logic analyzer to
run properly when the device is programmed. Use the Data Log feature and the
SOF Manager to manage all of the .stp files and their associated settings and
programming files.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–24 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Configure the SignalTap II Logic Analyzer
The Data Log allows you to store multiple SignalTap II configurations within a single
.stp. Figure 15–19 shows two signal set configurations with multiple trigger
conditions in one .stp. To toggle between the active configurations, double-click on an
entry in the Data Log. As you toggle between the different configurations, the signal
list and trigger conditions change in the Setup tab of the .stp. The active configuration
displayed in the .stp is indicated by the blue square around the signal specified in the
Data Log. To store a configuration in the Data Log, on the Edit menu, click Save to
Data Log or click Save to Data Log at the top of the Data Log.

The SOF Manager allows you to embed multiple SOFs into one .stp. Embedding an
SOF in an .stp lets you move the .stp to a different location, either on the same
computer or across a network, without the need to include the associated .sof as a
separate. To embed a new SOF in the .stp, right-click in the SOF Manager, and click
Attach SOF File (Figure 15–20).

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that particular configuration. You can use the programmer in the
SignalTap II Logic Analyzer to download the new SOF to the FPGA, ensuring that the
configuration of your .stp always matches the design programmed into the target
device.

Figure 15–19. Data Log

Figure 15–20. SOF Manager

Save to Data Log

Enable
Data Log
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–25
Define Triggers
Define Triggers
When you start the SignalTap II Logic Analyzer, it samples activity continuously from
the monitored signals. The SignalTap II Logic Analyzer “triggers”—that is, the logic
analyzer stops and displays the data—when a condition or set of conditions that you
specified has been reached. This section describes the various types of trigger
conditions that you can specify using the SignalTap II Logic Analyzer on the Signal
Configuration pane.

Creating Basic Trigger Conditions
The simplest kind of trigger condition is a basic trigger. Select this from the list at the
top of the Trigger Conditions column in the node list in the SignalTap II Logic
Analyzer Editor. If you select the Basic trigger type, you must specify the trigger
pattern for each signal you have added in the .stp. To specify the trigger pattern, right-
click in the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

■ Don’t Care

■ Low

■ High

■ Falling Edge

■ Rising Edge

■ Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals added to the
.stp that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

For more information about creating and using mnemonic tables, refer to “View,
Analyze, and Use Captured Data” on page 15–55, and to the Quartus II Help.

For signals added with certain plug-ins, you can create basic triggers easily using
predefined mnemonic table entries. For example, with the Nios II plug-in, if you have
specified an .elf from your Nios II IDE design, you can type the name of a function
from your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the
signals for a given trigger condition evaluates to TRUE.

Creating Advanced Trigger Conditions
With the SignalTap II Logic Analyzer’s basic triggering capabilities, you can build
more complex triggers with extra logic that enables you to capture data when a
combination of conditions exist. If you select the Advanced trigger type at the top of
the Trigger Conditions column in the node list of the SignalTap II Logic Analyzer
Editor, a new tab named Advanced Trigger appears where you can build a complex
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–26 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
trigger expression using a simple GUI. Drag-and-drop operators into the Advanced
Trigger Configuration Editor window to build the complex trigger condition in an
expression tree. To configure the operators’ settings, double-click or right-click the
operators that you have placed and select Properties. Table 15–3 lists the operators
you can use.

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
You can also use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

Table 15–3. Advanced Triggering Operators (Note 1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 15–3:

(1) For more information about each of these operators, refer to the Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–27
Define Triggers
Examples of Advanced Triggering Expressions
The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb (Figure 15–21).

■ Trigger when bus outa is greater than or equal to bus outb, and when the enable
signal has a rising edge (Figure 15–22).

Figure 15–21. Bus outa is Greater Than or Equal to Bus outb

Figure 15–22. Enable Signal has a Rising Edge
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–28 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
■ Trigger when bus outa is greater than or equal to bus outb, or when the enable
signal has a rising edge. Or, when a bitwise AND operation has been performed
between bus outc and bus outd, and all bits of the result of that operation are equal
to 1 (Figure 15–23).

Trigger Condition Flow Control
The SignalTap II Logic Analyzer offers multiple triggering conditions to give you
precise control of the method in which data is captured into the acquisition buffers.
Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. The SignalTap II Logic Analyzer Signal Configuration pane
offers two flow control mechanisms for organizing trigger conditions:

■ Sequential Triggering—The default triggering flow. Sequential triggering allows
you to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

■ State-Based Triggering—Allows you the greatest control over your acquisition
buffer. Custom-based triggering allows you to organize trigger conditions into
states based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

Sequential Triggering
Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. The SignalTap II Logic Analyzer sequentially evaluates each of the
triggering conditions. When the last triggering condition evaluates to TRUE, the
SignalTap II Logic Analyzer triggers the acquisition buffer. For segmented buffers,
every acquisition segment after the first segment triggers on the last triggering
condition that you have specified. Use the Simple Sequential Triggering feature with
basic triggers, advanced triggers, or a mix of both. Figure 15–24 illustrates the simple
sequential triggering flow for non-segmented and segmented buffers.

Figure 15–23. Bitwise AND Operation
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–29
Define Triggers
1 The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

To configure the SignalTap II Logic Analyzer for Sequential triggering, in the
SignalTap II editor on the Trigger flow control list, select Sequential. Select the
desired number of trigger conditions from the Trigger Conditions list. After you
select the desired number of trigger conditions, configure each trigger condition in the
node list. To disable any trigger condition, turn on the trigger condition at the top of
the column in the node list.

State-Based Triggering
Custom State-based triggering provides the most control over triggering condition
arrangement. The State-Based Triggering flow allows you to describe the relationship
between triggering conditions precisely, using an intuitive GUI and the SignalTap II
Trigger Flow Description Language, a simple description language based upon
conditional expressions. Tooltips within the custom triggering flow GUI allow you to
describe your desired flow quickly. The custom State-based triggering flow allows for
more efficient use of the space available in the acquisition buffer because only specific
samples of interest are captured.

Figure 15–24. Sequential Triggering Flow (Note 1), (2)

Notes to Figure 15–24:
(1) The acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, is evaluated before all other defined trigger conditions are evaluated. For more information about external

triggers, refer to “Using External Triggers” on page 15–42.

Non-segmented Buffer Segmented Buffer

Acquisition Segment 1
trigger

Acquisition Segment 2
trigger

Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n 10≤
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–30 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Figure 15–25 illustrates the custom State-based triggering flow. Events that trigger the
acquisition buffer are organized by a state diagram that you define. All actions
performed by the acquisition buffer are captured by the states and all transition
conditions between the states are defined by the conditional expressions that you
specify within each state.

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression dependent on a combination of triggering
conditions (configured within the Setup tab), counters, and status flags. Counters and
status flags are resources provided by the SignalTap II Logic Analyzer custom-based
triggering flow.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides you
with an optional count that specifies the number of samples captured before stopping
acquisition of the current segment. The count argument allows you to control the
amount of data captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The counter and status flag resources are used as optional
inputs in conditional expressions. Counters and status flags are useful for counting
the number of occurrences of particular events and for aiding in triggering flow
control.

This SignalTap II custom State-based triggering flow allows you to capture a sequence
of events that may not necessarily be contiguous in time; for example, capturing a
communication transaction between two devices that includes a handshaking
protocol containing a sequence of acknowledgements.

Figure 15–25. State-Based Triggering Flow (Note 1), (2)

Notes to Figure 15–25:
(1) You are allowed up to 20 different states.
(2) An external trigger input, if defined, is evaluated before any conditions in the custom State-based triggering flow are evaluated. For more

information, refer to “Using External Triggers” on page 15–42.

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition Condition i

Transition Condition j

Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

Next Acquisition Segment
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–31
Define Triggers
The State-Based Trigger Flow tab is the control interface for the custom state-based
triggering flow. To enable this tab, select State-based on the Trigger Flow Control list.
(Note that when Trigger Flow Control is specified as Sequential, the State-Based
Trigger Flow tab is hidden.)

The State-Based Trigger Flow tab is partitioned into the following three panes:

■ State Diagram Pane

■ Resources Pane

■ State Machine Pane

State Diagram Pane

The State Diagram pane provides a graphical overview of the triggering flow that
you define. It shows the number of states available and the state transitions between
the states. You can adjust the number of available states by using the menu above the
graphical overview.

State Machine Pane

The State Machine pane contains the text entry boxes where you can define the
triggering flow and actions associated with each state. You can define the triggering
flow using the SignalTap II Trigger Flow Description Language, a simple language
based on “if-else” conditional statements. Tooltips appear when you move the mouse
over the cursor, to guide command entry into the state boxes. The GUI provides a
syntax check on your flow description in real-time and highlights any errors in the
text flow.

1 For a full description of the SignalTap II Trigger Flow Description Language, refer to
“SignalTap II Trigger Flow Description Language” on page 15–32.

h You can also refer to SignalTap II Trigger Flow Description Language in Quartus II Help.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window, select
the appropriate option under State Display mode.

Resources Pane

The Resources pane allows you to declare Status Flags and Counters for use in the
conditional expressions in the Custom Triggering Flow. Actions to decrement and
increment counters or to set and clear status flags are performed within the triggering
flow that you define.

You can specify up to 20 counters and 20 status flags. Counter and status flags values
may be initialized by right-clicking the status flag or counter name after selecting a
number of them from the respective pull-down list, and selecting Set Initial Value. To
specify a counter width, right-click the counter name and select Set Width. Counters
and flag values are updated dynamically after acquisition has started to assist in
debugging your trigger flow specification.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_proc_trigflow_lang.htm

15–32 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
The configurable at runtime options in the Resources pane allows you to configure
the custom-flow control options that can be changed at runtime without requiring a
recompilation. Table 15–4 contains a description of options for the State-based trigger
flow that can be reconfigured at runtime.

1 For a broader discussion about all options that can be changed without incurring a
recompile refer to “Runtime Reconfigurable Options” on page 15–52.

You can restrict changes to your SignalTap configuration to include only the options
that do not require a recompilation by using the menu above the trigger list in the
Setup tab. Allow trigger condition changes only restricts changes to only the
configuration settings that have the configurable at runtime specified. With this
option enabled, to modify Trigger Flow conditions in the Custom Trigger Flow tab,
click the desired parameter in the text box and select a new parameter from the menu
that appears.

1 The runtime configurable settings for the Custom Trigger Flow tab are on by default.
You may get some performance advantages by disabling some of the runtime
configurable options. For details about the effects of turning off the runtime
modifiable options, refer to “Performance and Resource Considerations” on
page 15–48.

SignalTap II Trigger Flow Description Language
The Trigger Flow Description Language is based on a list of conditional expressions
per state to define a set of actions. Each line in Example 15–1 shows a language
format. Keywords are shown in bold. Non-terminals are delimited by “<>” and are
further explained in the following sections. Optional arguments are delimited by
“[]“ (Example 15–1).

Table 15–4. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In addition, you
can modify the segment_trigger and trigger action post-fill count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–33
Define Triggers
1 Examples of Triggering Flow descriptions for common scenarios using the
SignalTap II Custom Triggering Flow are provided in “Custom Triggering Flow
Application Examples” on page 15–67.

The priority for evaluation of conditional statements is assigned from top to bottom.
The <boolean_expression> in an if statement can contain a single event, or it can contain
multiple event conditions. The action_list within an if or an else if clause must
be delimited by the begin and end tokens when the action list contains multiple
statements. When the boolean expression is evaluated TRUE, the logic analyzer
analyzes all of the commands in the action list concurrently. The possible actions
include:

■ Triggering the acquisition buffer

■ Manipulating a counter or status flag resource

■ Defining a state transition

State Labels
State labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated when this state is
reached.

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

Boolean_expression
Boolean_expression is a collection of logical operators, relational operators, and their
operands that evaluate into a Boolean result. Depending on the operator, the operand
can be a reference to a trigger condition, a counter and a register, or a numeric value.
Within an expression, parentheses can be used to group a set of operands.

Example 15–1. Trigger Flow Description Language Format (Note 1)

state <State_label>:
<action_list>

if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
<action_list>] (1)
[else
<action_list>]

Note to Example 15–1:

(1) Multiple else if conditions are allowed.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–34 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Logical operators accept any boolean expression as an operand. The supported
logical operators are shown in Table 15–5.

Relational operators are performed on counters or status flags. The comparison
value, the right operator, must be a numerical value. The supported relational
operators are shown in Table 15–6.

Action_list
Action_list is a list of actions that can be performed when a state is reached and a
condition is also satisfied. If more than one action is specified, they must be enclosed
by begin and end. The actions can be categorized as resource manipulation actions,
buffer control actions, and state transition actions. Each action is terminated by a
semicolon (;).

Resource Manipulation Action
The resources used in the trigger flow description can be either counters or status
flags. Table 15–7 shows the description and syntax of each action.

Table 15–5. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 15–6. Relational Operators

Operator Description Syntax (Note 1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 15–6:

(1) <identifier> indicates a counter or status flag.
(2) <numerical_value> indicates an integer.

Table 15–7. Resource Manipulation Action

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status Flag to 1 set <register_flag_identifier>;

clear Sets a status Flag to 0 clear <register_flag_identifier>;
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–35
Define Triggers
Buffer Control Action
Buffer control actions specify an action to control the acquisition buffer. Table 15–8
shows the description and syntax of each action.

Both trigger and segment_trigger actions accept an optional post-fill count
argument. If provided, the current acquisition acquires the number of samples
provided by post-fill count and then stops acquisition. If no post-count value is
specified, the trigger position for the affected buffer defaults to the trigger position
specified in the Setup tab.

1 In the case of segment_trigger, acquisition of the current buffer stops immediately if a
subsequent triggering action is issued in the next state, regardless of whether or not
the post-fill count has been satisfied for the current buffer. The remaining unfilled
post-count acquisitions in the current buffer are discarded and displayed as
grayed-out samples in the data window.

State Transition Action
The State Transition action specifies the next state in the custom state control flow. It is
specified by the goto command. The syntax is as follows:

goto <state_label>;

Using the State-Based Storage Qualifier Feature
When you select State-based for the storage qualifier type, the start_store and
stop_store actions are enabled in the State-based trigger flow. These commands,
when used in conjunction with the expressions of the State-based trigger flow, give
you maximum flexibility to control data written into the acquisition buffer.

Table 15–8. Buffer Control Action

Action Description Syntax

trigger
Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger

Ends the acquisition of the current segment.
The SignalTap II Logic Analyzer starts
acquiring from the next segment on evaluating
this command. If all segments are filled, the
oldest segment is overwritten with the latest
sample. The acquisition stops when a trigger
action is evaluated.

This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

start_store

Asserts the write_enable to the SignalTap II
acquisition buffer. This command is active
only when the State-based storage qualifier
mode is enabled.

start_store

stop_store

De-asserts the write_enable signal to the
SignalTap II acquisition buffer. This command
is active only when the State-based storage
qualifier mode is enabled.

stop_store
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–36 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 The start_store and stop_store commands can only be applied to a non-segmented
buffer.

The start_store and stop_store commands function similar to the start and stop
conditions when using the start/stop storage qualifier mode conditions. If storage
qualification is enabled, the start_store command must be issued for SignalTap II to
write data into the acquisition buffer. No data is acquired until the start_store
command is performed. Also, a trigger command must be included as part of the
trigger flow description. The trigger command is necessary to complete the
acquisition and display the results on the waveform display.

The following examples illustrate the behavior of the State-based trigger flow with the
storage qualification commands.

Figure 15–26 shows a hypothetical scenario with three trigger conditions that happen
at different times after you click Start Analysis. The trigger flow description in
Example 15–2, when applied to the scenario shown in Figure 15–26, illustrates the
functionality of the storage qualification feature for the state-based trigger flow.

In this example, the SignalTap II Logic Analyzer does not write into the acquisition
buffer until sample a, when Condition 1 occurs. Once sample b is reached, the
trigger value command is evaluated. The logic analyzer continues to write into the
buffer to finish the acquisition. The trigger flow specifies a stop_store command at
sample c, m samples after the trigger point occurs.

The logic analyzer finishes the acquisition and displays the contents of the waveform
if it can successfully finish the post-fill acquisition samples before Condition 3 occurs.
In this specific case, the capture ends if the post-fill count value is less than m.

Example 15–2. Trigger Flow Description 1

State 1: ST1:

if (condition1)

start_store;

else if (condition2)

trigger value;

else if (condition3)

stop_store;

Figure 15–26. Capture Scenario for Storage Qualification with the State-Based Trigger Flow
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–37
Define Triggers
If the post-fill count value specified in Trigger Flow description 1 is greater than m
samples, the buffer pauses acquisition indefinitely, provided there is no recurrence of
Condition 1 to trigger the logic analyzer to start capturing data again. The SignalTap II
Logic Analyzer continues to evaluate the stop_store and start_store commands even
after the trigger command is evaluated. If the acquisition has paused, you can click
Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state are updated in real-time during a data
acquisition.

Figure 15–27 and Figure 15–28 show a real data acquisition of the scenario.
Figure 15–27 illustrates a scenario where the data capture finishes successfully. It uses
a buffer with a sample depth of 64, m = n = 10, and the post-fill count value = 5.
Figure 15–28 illustrates a scenario where the logic analyzer pauses indefinitely even
after a trigger condition occurs due to a stop_store condition. This scenario uses a
sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 15–27. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–38 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
Figure 15–28. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)

Figure 15–29. Waveform After Forcing the Analysis to Stop
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–39
Define Triggers
The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.
Example 15–3 shows a trigger flow description that skips three clock cycles of samples
after hitting condition 1. Figure 15–30 shows the data transaction on a continuous
capture and Figure 15–32 shows the data capture with the Trigger flow description in
Example 15–3 applied.

Specifying the Trigger Position
The SignalTap II Logic Analyzer allows you to specify the amount of data that is
acquired before and after a trigger event. You can specify the trigger position
independently between a Runtime and Power-Up Trigger. Select the desired ratio of
pre-trigger data to post-trigger data by choosing one of the following ratios:

Example 15–3. Trigger Flow Description 2

State 1: ST1
start_store
if (condition1)
begin

stop_store;
goto ST2;

end

State 2: ST2
if (c1 < 3)

increment c1; //skip three clock cycles; c1 initialized to 0

else if (c1 == 3)
begin

start_store; //start_store necessary to enable writing to finish
//acquisition

trigger;
end

Figure 15–30. Continuous Capture of Data Transaction for Example 2

Figure 15–31. Capture of Data Transaction with Trigger Flow Description Applied
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–40 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
■ Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

■ Center—Saves 50% pre-trigger and 50% post-trigger data.

■ Post—Saves signal activity that occurred before the trigger (88% pre-trigger, 12%
post-trigger).

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

If you use the custom-state based triggering flow, you can specify a custom trigger
position. The segment_trigger and trigger actions accept a post-fill count argument.
The post-fill count specifies the number of samples to capture before stopping data
acquisition for the non-segmented buffer or a data segment when using the trigger
and segment_trigger commands, respectively. When the captured data is displayed
in the SignalTap II data window, the trigger position appears as the number of post-
count samples from the end of the acquisition segment or buffer. Refer to
Equation 15–1:

In this case, N is the sample depth of either the acquisition segment or non-segmented
buffer.

For segmented buffers, the acquisition segments that have a post-count argument
define use of the post-count setting. Segments that do not have a post-count setting
default to the trigger position ratios defined in the Setup tab.

For more details about the custom State-based triggering flow, refer to “State-Based
Triggering” on page 15–29.

Creating a Power-Up Trigger
Typically, the SignalTap II Logic Analyzer is used to trigger on events that occur
during normal device operation. You start an analysis manually once the target device
is fully powered on and the device’s JTAG connection is available. However, there
may be cases when you would like to capture trigger events that occur during device
initialization, immediately after the FPGA is powered on or reset. With the
SignalTap II Power-Up Trigger feature, you arm the SignalTap II Logic Analyzer and
capture data immediately after device programming.

Equation 15–1.

Sample Number of Trigger Position N Post-Fill Count–()=
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–41
Define Triggers
Enabling a Power-Up Trigger
You can add a different Power-Up Trigger to each logic analyzer instance in the
SignalTap II Instance Manager pane. To enable the Power-Up Trigger for a logic
analyzer instance, right-click the instance and click Enable Power-Up Trigger, or
select the instance, and on the Edit menu, click Enable Power-Up Trigger. To disable a
Power-Up Trigger, click Disable Power-Up Trigger in the same locations. Power-Up
Trigger is shown as a child instance below the name of the selected instance with the
default trigger conditions specified in the node list. Figure 15–32 shows the
SignalTap II Logic Analyzer Editor when Power-Up Trigger is enabled.

Managing and Configuring Power-Up and Runtime Trigger Conditions
When the Power-Up Trigger is enabled for a logic analyzer instance, you can create
basic and advanced trigger conditions for the trigger as you do with a Run-Time
Trigger. Power-Up Trigger conditions that you can adjust are color coded light blue,
while Run-Time Trigger conditions you cannot adjust remain white. Since each
instance now has two sets of trigger conditions—the Power-Up Trigger and the
Run-Time Trigger—you can differentiate between the two with color coding. To
switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally
require a full recompile with Runtime Trigger conditions, such as adding signals,
deleting signals, or changing between basic and advanced triggers. To apply these
changes to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

Figure 15–32. SignalTap II Logic Analyzer Editor with Power-Up Trigger Enabled
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–42 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Define Triggers
1 Any change made to the Power-Up Trigger conditions requires that you recompile the
SignalTap II Logic Analyzer instance, even if a similar change to the Runtime Trigger
conditions does not require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger
or the Power-Up Trigger, you may want to copy these conditions to the other trigger.
This enables you to look for the same trigger during both power-up and runtime. To
do this, right-click the instance name or the Power-Up Trigger name in the Instance
Manager and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and on the Edit menu, click Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected nets over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Using External Triggers
You can create a trigger input that allows you to trigger the SignalTap II Logic
Analyzer from an external source. The external trigger input behaves like trigger
condition 1, is evaluated, and must be TRUE before any other configured trigger
conditions are evaluated. The logic analyzer supplies a signal to trigger external
devices or other SignalTap II Logic Analyzer instances. These features allow you to
synchronize external logic analysis equipment with the internal logic analyzer.
Power-Up Triggers can use the external triggers feature, but they must use the same
source or target signal as their associated Run-Time Trigger.

h For more information about setting up external triggers, refer to Signal Configuration
Pane in Quartus II Help.

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer
An advanced feature of the SignalTap II Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
http://www.altera.com/literature/hb/qts/qts_qii53021.pdf

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–43
Define Triggers
To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Target list of the Trigger out trigger, select the targeted logic analyzer
instance. For example, if the instance named auto_signaltap_0 should trigger
auto_signaltap_1, select auto_signaltap_1|trigger_in from the list (Figure 15–33).

Figure 15–33. Configuring the Trigger Out Signal

Target Set to Trigger in of
auto_signaltap_1
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–44 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
■ Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Source field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Source field of
auto_signaltap_1 is automatically filled in with auto_signaltap_0|trigger_out
(Figure 15–34).

Compile the Design
When you add an .stp to your project, the SignalTap II Logic Analyzer becomes part
of your design. You must compile your project to incorporate the SignalTap II logic
and enable the JTAG connection you use to control the logic analyzer. When you are
debugging with a traditional external logic analyzer, you must often make changes to
the signals monitored as well as the trigger conditions. Because these adjustments
require that you recompile your design when using the SignalTap II Logic Analyzer,
use the SignalTap II Logic Analyzer feature along with incremental compilation in the
Quartus II software to reduce recompilation time.

h For more information on reducing your recompilation burden with incremental
compilation, refer to Using the Incremental Compilation Design Flow in Quartus II Help.

Figure 15–34. Configuring the Trigger In Signal

Source Set to Trigger out of
auto_signaltap_1

Enabling
Trigger in
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–45
Compile the Design
Faster Compilations with Quartus II Incremental Compilation
When you compile your design with an .stp, the sld_signaltap and sld_hub entities
are automatically added to the compilation hierarchy. These two entities are the main
components of the SignalTap II Logic Analyzer, providing the trigger logic and JTAG
interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of
your original design and add the SignalTap II Logic Analyzer to your design without
recompiling your original source code. Incremental compilation is also useful when
you want to modify the configuration of the .stp. For example, you can modify the
buffer sample depth or memory type without performing a full compilation after the
change is made. Only the SignalTap II Logic Analyzer, configured as its own design
partition, must be recompiled to reflect the changes.

To use incremental compilation, first enable Full Incremental Compilation for your
design if it is not already enabled, assign design partitions if necessary, and set the
design partitions to the correct preservation levels. Incremental compilation is the
default setting for new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to create any
design partitions to use the SignalTap II incremental compilation feature. When your
design is set up to use full incremental compilation, the SignalTap II Logic Analyzer
acts as its own separate design partition. You can begin taking advantage of
incremental compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.

Enabling Incremental Compilation for Your Design
Your project is fully compiled the first time, establishing the design partitions you
have created. When enabled for your design, the SignalTap II Logic Analyzer is
always a separate partition. After the first compilation, you can use the SignalTap II
Logic Analyzer to analyze signals from the post-fit netlist. If your partitions are
designed correctly, subsequent compilations due to SignalTap II Logic Analyzer
settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you wish to tap as
Post-fit.

f For more information about configuring and performing incremental compilation,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Using Incremental Compilation with the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is automatically configured to work with the
incremental compilation flow. For all signals that you want to connect to the
SignalTap II Logic Analyzer from the post-fit netlist, set the netlist type of the
partition containing the desired signals to Post-Fit or Post-Fit (Strict) with a Fitter
Preservation Level of Placement and Routing using the Design Partitions window.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

15–46 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
Use the SignalTap II: post-fitting filter in the Node Finder to add the signals of
interest to your SignalTap II configuration file. If you want to add signals from the
pre-synthesis netlist, set the netlist type to Source File and use the SignalTap II:
pre-synthesis filter in the Node Finder. Do not use the netlist type Post-Synthesis
with the SignalTap II Logic Analyzer.

c Be sure to conform to the following guidelines when using post-fit and pre-synthesis
nodes:

■ Read all incremental compilation guidelines to ensure the proper partition of a
project.

■ To speed compile time, use only post-fit nodes for partitions specified as to
preservation-level post-fit.

■ Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap
pre-synthesis nodes for a particular partition, make all tapped nodes in that
partition pre-synthesis nodes and change the netlist type to source in the
design partitions window.

Node names may be different between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of
combinational signals in your RTL. If the type of node name chosen does not match
the netlist type, the compiler may not be able to find the signal to connect to your
SignalTap II Logic Analyzer instance for analysis. The compiler issues a critical
warning to alert you of this scenario. The signal that is not connected is tied to ground
in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Logic Analyzer and
source file changes are necessary, be aware that you may have to remove
compiler-generated post-fit net names. Source code changes force the affected
partition to go through resynthesis. During synthesis, the compiler cannot find
compiler-generated net names from a previous compilation.

1 Altera recommends using only registered and user-input signals as debugging taps in
your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the
pre-synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your SignalTap II
Logic Analyzer configuration.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–47
Compile the Design
You can check the nodes that are connected to each SignalTap II instance using the
In-System Debugging compilation reports. These reports list each node name you
selected to connect to a SignalTap II instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If incremental compile
is turned off, the In-System Debugging reports are located in the Analysis & Synthesis
folder. If incremental compile is turned on, this report is located in the Partition Merge
folder. Figure 15–35 shows an example of an In-System Debugging compilation report
for a design using incremental compilation.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report. Figure 15–36 shows an example of
the messages displayed.

Figure 15–35. Compilation Report Showing Connectivity to SignalTap II Instance

Figure 15–36. Compilation Report Messages
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–48 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Compile the Design
Unless you make changes to your design partitions that require recompilation, only
the SignalTap II design partition is recompiled. If you make subsequent changes to
only the .stp, only the SignalTap II design partition must be recompiled, reducing
your recompilation time.

Preventing Changes Requiring Recompilation
You can configure the .stp to prevent changes that normally require recompilation. To
do this, select a lock mode from above the node list in the Setup tab. To lock your
configuration, choose to allow only trigger condition changes, regardless of whether
you use incremental compilation.

h For more information about the use of lock modes, refer to Setup Tab (SignalTap II Logic
Analyzer) in Quartus II Help.

Timing Preservation with the SignalTap II Logic Analyzer
In addition to verifying functionality, timing closure is one of the most crucial
processes in successfully completing a design. When you compile a project with a
SignalTap II Logic Analyzer without the use of incremental compilation, you add IP
to your existing design. Therefore, you can affect the existing placement, routing, and
timing of your design. To minimize the effect that the SignalTap II Logic Analyzer has
on your design, Altera recommends that you use incremental compilation for your
project. Incremental compilation is the default setting in new designs and can be
easily enabled and configured in existing designs. With the SignalTap II Logic
Analyzer instance in its own design partition, it has little to no affect on your design.

In addition to using the incremental compilation flow for your design, you can use the
following techniques to help maintain timing:

■ Avoid adding critical path signals to your .stp.

■ Minimize the number of combinational signals you add to your .stp and add
registers whenever possible.

■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Logic Analyzer, refer to
the Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Performance and Resource Considerations
There is a necessary trade-off between the runtime flexibility of the SignalTap II Logic
Analyzer, the timing performance of the SignalTap II Logic Analyzer, and resource
usage. The SignalTap II Logic Analyzer allows you to select the runtime configurable
parameters to balance the need for runtime flexibility, speed, and area. The default
values have been chosen to provide maximum flexibility so you can complete
debugging as quickly as possible; however, you can adjust these settings to determine
whether there is a more optimal configuration for your design.

The following tips provide extra timing slack if you have determined that the
SignalTap II logic is in your critical path, or to alleviate the resource requirements that
the SignalTap II Logic Analyzer consumes if your design is resource-constrained.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_tab_setup.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–49
Program the Target Device or Devices
If SignalTap II logic is part of your critical path, follow these tips to speed up the
performance of the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the SignalTap II logic. If you are using State-based triggering flow, try disabling
the Goto state destination option and performing a recompilation before
disabling the other runtime configurable options. The Goto state destination
option has the greatest impact on fMAX, as compared to the other runtime
configurable options.

■ Minimize the number of signals that have Trigger Enable selected—All signals
that you add to the .stp have Trigger Enable turned on. Turn off Trigger Enable
for signals that you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a large number of
triggering signals enabled (greater than the number of inputs that would fit in a
LAB) that fan-in logic to a gate-based triggering condition, such as a basic trigger
condition or a logical reduction operator in the advanced trigger tab, turn on
Perform register retiming. This can help balance combinational logic across LABs.

If your design is resource constrained, follow these tips to reduce the amount of logic
or memory used by the SignalTap II Logic Analyzer:

■ Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in using fewer LEs.

■ Minimize the number of segments in the acquisition buffer—You can reduce the
number of logic resources used for the SignalTap II Logic Analyzer by limiting the
number of segments in your sampling buffer to only those required.

■ Disable the Data Enable for signals that are used for triggering only—By
default, both the data enable and trigger enable options are selected for all
signals. Turning off the data enable option for signals used as trigger inputs only
saves on memory resources used by the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in different
combinations until you achieve the desired balance between functionality,
performance, and utilization.

f For more information about area and timing optimization, refer the Area and Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

Program the Target Device or Devices
After you compile your project, including the SignalTap II Logic Analyzer, configure
the FPGA target device. When you are using the SignalTap II Logic Analyzer for
debugging, configure the device from the .stp instead of the Quartus II Programmer.
Because you configure from the .stp, you can open more than one .stp and program
multiple devices to debug multiple designs simultaneously.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

15–50 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
The settings in an .stp must be compatible with the programming .sof used to
program the device. An .stp is considered compatible with an .sof when the settings
for the logic analyzer, such as the size of the capture buffer and the signals selected for
monitoring or triggering, match the way the target device is programmed. If the files
are not compatible, you can still program the device, but you cannot run or control the
logic analyzer from the SignalTap II Logic Analyzer Editor.

1 When the SignalTap II Logic Analyzer detects incompatibility after analysis is started,
a system error message is generated containing two CRC values, the expected value
and the value retrieved from the .stp instance on the device. The CRC values are
calculated based on all SignalTap II settings that affect the compilation.

To ensure programming compatibility, make sure to program your device with the
latest .sof created from the most recent compilation. Checking whether or not a
particular SOF is compatible with the current SignalTap II configuration is achieved
quickly by attaching the SOF to the SOF manager. For more details about using the
SOF manager, refer to “Managing Multiple SignalTap II Files and Configurations” on
page 15–23.

Before starting a debugging session, do not make any changes to the .stp settings that
would requires recompiling the project. You can check the SignalTap II status display
at the top of the Instance Manager pane to verify whether a change you made
requires recompiling the project, producing a new .sof. This gives you the
opportunity to undo the change, so that you do not need to recompile your project. To
prevent any such changes, select Allow trigger condition changes only to lock the
.stp.

Although the Quartus II project is not required when using an .stp, it is
recommended. The project database contains information about the integrity of the
current SignalTap II Logic Analyzer session. Without the project database, there is no
way to verify that the current .stp matches the .sof that is downloaded to the device. If
you have an .stp that does not match the .sof, incorrect data is captured in the
SignalTap II Logic Analyzer.

h For instructions on programming devices in the Quartus II software, refer to Running
the SignalTap II Logic Analyzer in Quartus II Help.

Run the SignalTap II Logic Analyzer
After the device is configured with your design that includes the SignalTap II Logic
Analyzer, perform debugging operations in a manner similar to when you use an
external logic analyzer. You initialize the logic analyzer by starting an analysis. When
your trigger event occurs, the captured data is stored in the memory buffer on the
device and then transferred to the .stp with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.
Figure 15–37 illustrates a flow that shows how you operate the SignalTap II Logic
Analyzer. The flowchart indicates where Power-Up and Runtime Trigger events occur
and when captured data from these events is available for analysis.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–51
Run the SignalTap II Logic Analyzer
h For information on running the analyzer from the Instance Manager pane, refer to
Running the SignalTap II Logic Analyzer in Quartus II Help.

f You can also use In-System Sources and Probes in conjunction with the SignalTap II
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain. For
more information, refer to the Design Debugging Using In-System Sources and Probes
chapter in volume 3 of the Quartus II Handbook.

Figure 15–37. Power-Up and Runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

Data
Downloaded?
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii53021.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_run.htm

15–52 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
Runtime Reconfigurable Options
Certain settings in the .stp are changeable without recompiling your design when you
use Runtime Trigger mode. Runtime Reconfigurable features are described in
Table 15–9.

Runtime Reconfigurable options can potentially save time during the debugging cycle
by allowing you to cover a wider possible scenario of events without the need to
recompile the design. You may experience a slight impact to the performance and
logic utilization of the SignalTap II IP core. You can turn off Runtime
re-configurability for Advanced Trigger Conditions and the State-based trigger flow
parameters, boosting performance and decreasing area utilization.

You can configure the .stp to prevent changes that normally require recompilation. To
do this, in the Setup tab, select Allow Trigger Condition changes only above the
node list.

Table 15–9. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic
Storage Qualifier Conditions

All signals that have the Trigger condition turned on can be
changed to any basic trigger condition value without
recompiling.

Advanced Trigger Conditions and
Advanced Storage Qualifier
Conditions

Many operators include runtime configurable settings. For
example, all comparison operators are
runtime-configurable. Configurable settings are shown with
a white background in the block representation.This
runtime reconfigurable option is turned on in the Object
Properties dialog box.

Switching between a storage-qualified
and a continuous acquisition

Within any storage-qualified mode, you can switch to
continuous capture mode without recompiling the design.
To enable this feature, turn on disable storage qualifier.

State-based trigger flow parameters Table 15–4 lists Reconfigurable State-based trigger flow
options.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–53
Run the SignalTap II Logic Analyzer
Example 15–4 illustrates a potential use case for Runtime Reconfigurable features.
This example provides a storage qualified enabled State-based trigger flow
description and shows how you can modify the size of a capture window at runtime
without a recompile. This example gives you equivalent functionality to a segmented
buffer with a single trigger condition where the segment sizes are runtime
reconfigurable.

Figure 15–38 shows a segmented buffer described by the trigger flow in
Example 15–4.

During runtime, the values m and n are runtime reconfigurable. By changing the m
and n values in the preceding trigger flow description, you can dynamically adjust the
segment boundaries without incurring a recompile.

Example 15–4. Trigger Flow Description Providing Runtime Reconfigurable “Segments”

state ST1:
if (condition1 && (c1 <= m)) // each "segment" triggers on condition

//1
begin // m = number of total "segments"

start_store;
increment c1;
goto ST2:

End

else (c1 > m) //This else condition handles the last
//segment.

begin
start_store
Trigger (n-1)

end

state ST2:
if (c2 >= n) //n = number of samples to capture in each

//segment.
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end

Note to Example 15–4:

(1) m x n must equal the sample depth to efficiently use the space in the sample buffer.

Figure 15–38. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
(Note 1)

Note to Figure 15–38:
(1) Total sample depth is fixed, where m x n must equal sample depth.

Segment 1 Segment 2 Segment m

1 n 1 n 1 n
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–54 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Run the SignalTap II Logic Analyzer
You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

Example 15–5 shows a modified description of Example 15–4 with an additional state
inserted. You use this extra state to specify a different trigger condition that does not
use the storage qualifier feature. You insert status flags into the conditional statements
to control the execution of the trigger flow.

Example 15–5. Modified Trigger Flow Description of Example 16-4 with Status Flags to Selectively Enable States

state ST1 :

if (condition2 && f1) //additional state added for a non-segmented
//acquisition Set f1 to enable state

begin
 start_store;
 trigger
end

else if (! f1)
 goto ST2;

state ST2:
if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask state. Set f2

//to enable.
begin

start_store;
increment c1;
goto ST3:

end

else (c1 > m)
start_store
Trigger (n-1)

end

state ST3:
if (c2 >= n)
begin

reset c2;
stop_store;
goto ST1;

end

else (c2 < n)
begin

increment c2;
goto ST2;

end
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–55
View, Analyze, and Use Captured Data
SignalTap II Status Messages
Table 15–10 describes the text messages that might appear in the SignalTap II Status
Indicator in the Instance Manager pane before, during, and after a data acquisition.
Use these messages to monitor the state of the logic analyzer or what operation it is
performing.

1 In segmented acquisition mode, pre-trigger and post-trigger do not apply.

View, Analyze, and Use Captured Data
Once a trigger event has occurred or you capture data manually, you can use the
SignalTap II interface to examine the data, and use your findings to help debug your
design.

h For information about what you can do with captured data, refer to Analyzing Data in
the SignalTap II Logic Analyzer in Quartus II Help.

Table 15–10. Text Messages in the SignalTap II Status Indicator

Message Message Description

Not running
The SignalTap II Logic Analyzer is not running. There is no connection to a
device or the device is not configured.

(Power-Up Trigger) Waiting for
clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or Power-Up Trigger
acquisition and is waiting for the clock signal to transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected
if using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met
Trigger In condition has occurred. The SignalTap II Logic Analyzer is waiting for
the condition of the first trigger condition to occur. This can appear if Trigger In
is specified.

Waiting for (Power-up) trigger
(1)

The SignalTap II Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II Logic
Analyzer is waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up)
post-trigger data (1)

The entire trigger event has occurred. The SignalTap II Logic Analyzer is
acquiring the post-trigger data. The amount of post-trigger data collected is you
define between 12%, 50%, and 88% when the non-segmented buffer
acquisition mode is selected.

Offload acquired (Power-Up) data
(1)

Data is being transmitted to the Quartus II software through the JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for you to initialize the analyzer.

Note to Table 15–10:

(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in parentheses is
added.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/ela/ela_pro_wform.htm

15–56 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
Capturing Data Using Segmented Buffers
Segmented Acquisition buffers allow you to perform multiple captures with a
separate trigger condition for each acquisition segment. This feature allows you to
capture a recurring event or sequence of events that span over a long period time
efficiently. Each acquisition segment acts as a non-segmented buffer, continuously
capturing data when it is activated. When you run an analysis with the segmented
buffer option enabled, the SignalTap II Logic Analyzer performs back-to-back data
captures for each acquisition segment within your data buffer. The trigger flow, or the
type and order in which the trigger conditions evaluate for each buffer, is defined by
either the Sequential trigger flow control or the Custom State-based trigger flow
control. Figure 15–39 shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

The SignalTap II Logic Analyzer finishes an acquisition with a segment, and advances
to the next segment to start a new acquisition. Depending on when a trigger condition
occurs, it may affect the way the data capture appears in the waveform viewer.
Figure 15–39 illustrates the method in which data is captured. The Trigger markers in
Figure 15–39—Trigger 1, Trigger 2, Trigger 3 and Trigger 4—refer to the evaluation of
the segment_trigger and trigger commands in the Custom State-based trigger flow.
If you use a sequential flow, the Trigger markers refer to trigger conditions specified
within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the SignalTap II
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment
2 buffer starts when either Segment Buffer 1 finishes its post-fill count, or when
Trigger 2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the SignalTap II Logic Analyzer to
accurately capture all of the trigger conditions that have occurred. Samples that have
not been used appear as a blank space in the waveform viewer.

Figure 15–39. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–57
View, Analyze, and Use Captured Data
Figure 15–40 shows an example of a capture using sequential flow control with the
trigger condition for each segment specified as Don’t Care. Each segment before the
last captures only one sample, because the next trigger condition immediately
preempts capture of the current buffer. The trigger position for all segments is
specified as pre-trigger (10% of the data is before the trigger condition and 90% of the
data is after the trigger position). Because the last segment starts immediately with the
trigger condition, the segment contains only post-trigger data. The three empty
samples in the last segment are left over from the pre-trigger samples that the
SignalTap II Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on how the trigger position is defined, use the
custom state-based trigger flow. By adjusting the trigger position specific to your
debugging requirements, you can help maximize the use of the allocated buffer space.

Differences in Pre-fill Write Behavior Between Different Acquisition
Modes

The SignalTap II Logic Analyzer uses one of the following three modes when writing
into the acquisition memory:

■ Non-segmented buffer

■ Non-segmented buffer with a storage qualifier

■ Segmented buffer

There are subtle differences in the amount of data captured immediately after running
the SignalTap II Logic Analyzer and before any trigger conditions occur. A non-
segmented buffer, running in continuous mode, completely fills the buffer with
sampled data before evaluating any trigger conditions. Thus, a non-segmented
capture without any storage qualification enabled always shows a waveform with a
full buffer's worth of data captured.

Filling the buffer provides you with as much data as possible within the capture
window. The buffer gets pre-filled with data samples prior to evaluating the trigger
condition. As such, SignalTap requires that the buffer be filled at least once before any
data can be retrieved through the JTAG connection and prevents the buffer from being
dumped during the first acquisition prior to a trigger condition when you perform a
Stop Analysis.

Figure 15–40. Segmented Capture with Preemption of Acquisition Segments (Note 1)

Note to Figure 15–40:
(1) A segmented acquisition buffer using the sequential trigger flow with a trigger condition specified as Don’t Care. All segments, with the exception

of the last segment, capture only one sample because the next trigger condition preempts the current buffer from filling to completion.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–58 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
For segmented buffers and non-segmented buffers using any storage qualification
mode, the SignalTap II Logic Analyzer immediately evaluates all trigger conditions
while writing samples into the acquisition memory. The logic analyzer evaluates each
trigger condition before acquiring a full buffer's worth of samples. This evaluation is
especially important when using any storage qualification on the data set. The logic
analyzer may miss a trigger condition if it waits until a full buffer's worth of data is
captured before evaluating any trigger conditions.

If the trigger event occurs on any data sample before the specified amount of pre-
trigger data has occurred, then the SignalTap II Logic Analyzer triggers and begins
filling memory with post-trigger data, regardless of the amount of pre-trigger data
you specify. For example, if you set the trigger position to 50% and set the logic
analyzer to trigger on a processor reset, start the logic analyzer, and then power on
your target system, the logic analyzer triggers. However, the logic analyzer memory is
filled only with post-trigger data, and not any pre-trigger data, because the trigger
event, which has higher precedence than the capture of pre-trigger data, occurred
before the pre-trigger condition was satisfied.

Figure 15–41 and Figure 15–42 on page 15–59 show the difference between a non-
segmented buffer in continuous mode and a non-segmented buffer using a storage
qualifier. The logic analyzer for the waveforms below is configured with a sample
depth of 64 bits, with a trigger position specified as Post trigger position.

Figure 15–41. SignalTap II Logic Analyzer Continuous Data Capture (Note 1)

Note to Figure 15–41:

(1) Continuous capture mode with post-trigger position.
(2) Capture of a recurring pattern using a non-segmented buffer in continuous mode. The SignalTap II Logic Analyzer is configured with a basic trigger

condition (shown in the figure as "Trig1") with a sample depth of 64 bits.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–59
View, Analyze, and Use Captured Data
Notice in Figure 15–41 that Trig1 occurs several times in the data buffer before the
SignalTap II Logic Analyzer actually triggers. A full buffer's worth of data is captured
before the logic analyzer evaluates any trigger conditions. After the trigger condition
occurs, the logic analyzer continues acquisition until it captures eight additional
samples (12% of the buffer, as defined by the "post-trigger" position).

Notice in Figure 15–42 that the logic analyzer triggers immediately. As in
Figure 15–41, the logic analyzer completes the acquisition with eight samples, or 12%
of 64, the sample capacity of the acquisition buffer.

Creating Mnemonics for Bit Patterns
The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once you
have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the
desired mnemonic table.

You use the labels you create in a table in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by
right-clicking an entry in the Trigger Conditions column and selecting a label from
the table you assigned to the signal group. On the Data tab, if any captured data
matches a bit pattern contained in an assigned mnemonic table, the signal group data
is replaced with the appropriate label, making it easy to see when expected data
patterns occur.

Automatic Mnemonics with a Plug-In
When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click on the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

Figure 15–42. SignalTap II Logic Analyzer Conditional Data Capture (Note 1)

Note to Figure 15–42:
(1) Conditional capture, storage always enabled, post-fill count.
(2) SignalTap II Logic Analyzer capture of a recurring pattern using a non-segmented buffer in conditional mode. The logic analyzer is configured with

a basic trigger condition (shown in the figure as "Trig1"), with a sample depth of 64 bits. The “Trigger in” condition is specified as "Don't care",
which means that every sample is captured.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–60 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
View, Analyze, and Use Captured Data
As an example, the Nios II plug-in helps you to monitor your design’s signal activity
as code is executed. If you set up the logic analyzer to trigger on a function name in
your Nios II code based on data from an .elf, you can see the function name in the
Instance Address signal group at the trigger sample, along with the corresponding
disassembled code in the Disassembly signal group, as shown in Figure 15–43.
Captured data samples around the trigger are referenced as offset addresses from the
trigger function name.

Locating a Node in the Design
When you find the source of an error in your design using the SignalTap II Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Quartus II software, as well as in your design files. This lets you find the
source of the problem quickly so you can modify your design to correct the flaw. To
locate a signal from the SignalTap II Logic Analyzer in one of the Quartus II software
tools or your design files, right-click on the signal in the .stp, and click Locate in
<tool name>.

You can locate a signal from the node list with the following tools:

■ Assignment Editor

■ Pin Planner

■ Timing Closure Floorplan

■ Chip Planner

■ Resource Property Editor

■ Technology Map Viewer

■ RTL Viewer

■ Design File

f For more information about using these tools, refer to each of the corresponding
chapters in the Quartus II Handbook.

Figure 15–43. Data Tab when the Nios II Plug-In is Used
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts.jsp

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–61
Other Features
Saving Captured Data
The data log shows the history of captured data and the triggers used to capture the
data. The SignalTap II Logic Analyzer acquires data, stores it in a log, and displays it
as waveforms. When the logic analyzer is in auto-run mode and a trigger event occurs
more than once, captured data for each time the trigger occurred is stored as a
separate entry in the data log. This allows you to review the captured data for each
trigger event. The default name for a log is based on the time when the data was
acquired. Altera recommends that you rename the data log with a more meaningful
name.

The logs are organized in a hierarchical manner; similar logs of captured data are
grouped together in trigger sets. To open the Data Log pane, on the View menu, select
Data Log. To turn on data logging, turn on Enable data log in the Data Log
(Figure 15–19). To recall and activate a data log for a given trigger set, double-click the
name of the data log in the list.

You can use the Data Log feature for organizing different sets of trigger conditions
and different sets of signal configurations. For more information, refer to “Managing
Multiple SignalTap II Files and Configurations” on page 15–23.

Exporting Captured Data to Other File Formats
You can export captured data to the following file formats, for use with other EDA
simulation tools:

■ Comma Separated Values File (.csv)

■ Table File (.tbl)

■ Value Change Dump File (.vcd)

■ Vector Waveform File (.vwf)

■ Graphics format files (.jpg, .bmp)

To export the SignalTap II Logic Analyzer’s captured data, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

Creating a SignalTap II List File
Captured data can also be viewed in an .stp list file. An .stp list file is a text file that
lists all the data captured by the logic analyzer for a trigger event. Each row of the list
file corresponds to one captured sample in the buffer. Columns correspond to the
value of each of the captured signals or signal groups for that sample. If a mnemonic
table was created for the captured data, the numerical values in the list are replaced
with a matching entry from the table. This is especially useful with the use of a
plug-in that includes instruction code disassembly. You can immediately see the order
in which the instruction code was executed during the same time period of the trigger
event. To create an .stp list file in the Quartus II software, on the File menu, select
Create/Update and click Create SignalTap II List File.

Other Features
The SignalTap II Logic Analyzer has other features that do not necessarily belong to a
particular task in the task flow.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–62 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
Using the SignalTap II MATLAB MEX Function to Capture Data
If you use MATLAB for DSP design, you can call the MATLAB MEX function
alt_signaltap_run, built into the Quartus II software, to acquire data from the
SignalTap II Logic Analyzer directly into a matrix in the MATLAB environment. If
you use the MATLAB MEX function in a loop, you can perform as many acquisitions
in the same amount of time as you can when using SignalTap II in the Quartus II
software environment.

1 The SignalTap II MATLAB MEX function is available only in the Windows version of
the Quartus II software. It is compatible with MATLAB Release 14 Original Release
Version 7 and later.

To set up the Quartus II software and the MATLAB environment to perform
SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create an .stp file.

2. In the node list in the Data tab of the SignalTap II Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix. Each column of the imported matrix represents a single
SignalTap II acquisition sample, while each row represents a signal or group of
signals in the order they are organized in the Data tab.

1 Signal groups acquired from the SignalTap II Logic Analyzer and
transferred into the MATLAB MEX function are limited to a width of
32 signals. If you want to use the MATLAB MEX function with a bus or
signal group that contains more than 32 signals, split the group into smaller
groups that do not exceed the 32-signal limit.

3. Save the .stp and compile your design. Program your device and run the
SignalTap II Logic Analyzer to ensure your trigger conditions and signal
acquisition work correctly.

4. In the MATLAB environment, add the Quartus II binary directory to your path
with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run r
Use the MATLAB MEX function to open the JTAG connection to the device and run
the SignalTap II Logic Analyzer to acquire data. When you finish acquiring data, close
the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]); r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–63
Other Features
When capturing data you must assign a filename, for example, <stp filename> as a
requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in Table 15–11.

You can enable or disable verbose mode to see the status of the logic analyzer while it
is acquiring data. To enable or disable verbose mode, use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION'); r

f For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

Using SignalTap II in a Lab Environment
You can install a stand-alone version of the SignalTap II Logic Analyzer. This version
is particularly useful in a lab environment in which you do not have a workstation
that meets the requirements for a complete Quartus II installation, or if you do not
have a license for a full installation of the Quartus II software. The standalone version
of the SignalTap II Logic Analyzer is included with the Quartus II stand-alone
Programmer and is available from the Downloads page of the Altera website
(www.altera.com).

Remote Debugging Using the SignalTap II Logic Analyzer
You can use the SignalTap II Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

■ The Quartus II software installed on the local PC

■ Stand-alone SignalTap II Logic Analyzer or the full version of the Quartus II
software installed on the remote PC

■ Programming hardware connected to the device on the PCB at the remote location

■ TCP/IP protocol connection

Table 15–11. SignalTap II MATLAB MEX Function Options

Option Usage Description

signed

unsigned
'signed'

'unsigned'

The signed option turns signal group data into 32-bit
two’s-complement signed integers. The MSB of the group as
defined in the SignalTap II Data tab is the sign bit. The unsigned
option keeps the data as an unsigned integer. The default is signed.

<instance name>
'auto_signaltap_0'

Specify a SignalTap II instance if more than one instance is defined.
The default is the first instance in the .stp, auto_signaltap_0.

<signal set name>

<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the SignalTap II data log if
multiple configurations are present in the .stp. The default is the
active signal set and trigger in the file.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com

15–64 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Other Features
Equipment Setup
On the PC in the remote location, install the standalone version of the SignalTap II
Logic Analyzer or the full version of the Quartus II software. This remote computer
must have Altera programming hardware connected, such as the EthernetBlaster or
USB-Blaster.

On the local PC, install the full version of the Quartus II software. This local PC must
be connected to the remote PC across a LAN with the TCP/IP protocol.

h For information about enabling remote access to a JTAG server, refer to Using the JTAG
Server in Quartus II Help.

Using the SignalTap II Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an
on-device AES decryption engine. You can still use the SignalTap II Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is
not possible after the security key has been programmed into the device.

Altera recommends that you use an unencrypted bitstream during the prototype and
debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the SignalTap II Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design
must contain at least one instance of the SignalTap II Logic Analyzer. After the FPGA
is configured with a SignalTap II Logic Analyzer instance in the design, when you
open the SignalTap II Logic Analyzer in the Quartus II software, you then scan the
chain and are ready to acquire data with the JTAG connection.

Backward Compatibility with Previous Versions of Quartus II Software
You can open an .stp created in a previous version in a current version of the
Quartus II software. However, opening an .stp modifies it so that it cannot be opened
in a previous version of the Quartus II software.

If you have a Quartus II project file from a previous version of the software, you may
have to update the .stp configuration file to recompile the project. You can update the
configuration file by opening the SignalTap II Logic Analyzer. If you need to update
your configuration, a prompt appears asking if you would like to update the .stp to
match the current version of the Quartus II software.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–65
Other Features
SignalTap II Command-Line Options
To compile your design with the SignalTap II Logic Analyzer using the command
prompt, use the quartus_stp command. Table 15–12 shows the options that help you
use the quartus_stp executable.

Example 15–6 illustrates how to compile a design with the SignalTap II Logic
Analyzer at the command line.

The quartus_stp --stp_file stp1.stp --enable command creates the QSF variable
and instructs the Quartus II software to compile the stp1.stp file with your design.
The --enable option must be applied for the SignalTap II Logic Analyzer to compile
properly into your design.

Table 15–12. SignalTap II Command-Line Options

Option Usage Description

stp_file quartus_stp

--stp_file <stp_filename>

Assigns the specified .stp to the
USE_SIGNALTAP_FILE in the .qsf.

enable quartus_stp --enable Creates assignments to the specified .stp in
the .qsf and changes ENABLE_SIGNALTAP
to ON. The SignalTap II Logic Analyzer is
included in your design the next time the
project is compiled. If no .stp is specified in
the .qsf, the --stp_file option must be
used. If the --enable option is omitted, the
current value of ENABLE_SIGNALTAP in the
.qsf is used.

disable quartus_stp --disable Removes the .stp reference from the .qsf
and changes ENABLE_SIGNALTAP to OFF.
The SignalTap II Logic Analyzer is removed
from the design database the next time you
compile your design. If the --disable
option is omitted, the current value of
ENABLE_SIGNALTAP in the .qsf is used.

create_signaltap_hdl_file quartus_stp

--create_signaltap_hdl_file

Creates an .stp representing the
SignalTap II instance in the design
generated by the SignalTap II Logic
Analyzer megafunction created with the
MegaWizard Plug-In Manager. The file is
based on the last compilation. You must
use the --stp_file option to create an
.stp properly. Analogous to the Create
SignalTap II File from Design Instance(s)
command in the Quartus II software.

Example 15–6.

quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

15–66 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
Example 15–7 shows how to create a new .stp after building the SignalTap II Logic
Analyzer instance with the MegaWizard Plug-In Manager.

f For information about the other command line executables and options, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Tcl Commands
The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Quartus II GUI. You cannot execute SignalTap II Tcl commands
from within the Tcl console in the Quartus II software. They must be executed from
the command line with the quartus_stp executable. To execute a Tcl file that has
SignalTap II Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file> r

h For information about Tcl commands that you can use with the SignalTap II Logic
Analyzer Tcl package, refer to ::quartus::stp in Quartus II Help.

Example 15–8 is an excerpt from a script you can use to continuously capture data.
Once the trigger condition is met, the data is captured and stored in the data log.

When the script is completed, open the .stp that you used to capture data to examine
the contents of the Data Log.

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder
Systems

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. In this example, the Nios processor executes a simple C program
from on-chip memory and waits for you to press a button. After you press a button,
the processor initiates a DMA transfer, which you analyze using the SignalTap II
Logic Analyzer.

Example 15–7.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

Example 15–8.

#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_pkg_stp_ver_1.0.htm
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–67
Custom Triggering Flow Application Examples
f For more information about this example and using the SignalTap II Logic Analyzer
with SOPC builder systems, refer to AN 323: Using SignalTap II Logic Analyzers in
SOPC Builder Systems and AN 446: Debugging Nios II Systems with the SignalTap II Logic
Analyzer.

Custom Triggering Flow Application Examples
The custom triggering flow in the SignalTap II Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the SignalTap II Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

1 For additional triggering flow design examples for on-chip debugging, refer to the
On-chip Debugging Design Examples page on the Altera website.

Design Example 1: Specifying a Custom Trigger Position
Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer. Example 15–9 shows an example that applies a
trigger position to all segments in the acquisition buffer. The example describes a
triggering flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will be at sample
#34. The acquisition stops after all four segments are filled once.

Example 15–9.

if (c1 == 3 && condition1)
trigger 30;

else if (condition1)
begin

segment_trigger 30;
increment c1;

end
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

15–68 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Custom Triggering Flow Application Examples
Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values. The last acquisition before stopping the buffer is
displayed on the Data tab as the last sample number in the affected segment. The
trigger position in the affected segment is then defined by N – post count fill, where N
is the number of samples per segment. Figure 15–44 illustrates the triggering position.

Design Example 2: Trigger When triggercond1 Occurs Ten Times between
triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. Example 15–10 shows such a sample flow.
This example uses three basic triggering conditions configured in the SignalTap II
Setup tab.

Figure 15–44. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer 15–69
SignalTap II Scripting Support
This example triggers the acquisition buffer when condition1 occurs after condition3
and occurs ten times prior to condition3. If condition3 occurs prior to ten repetitions
of condition1, the state machine transitions to a permanent wait state.

SignalTap II Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script.
You can also run some procedures at a command prompt. For detailed information
about scripting command options, refer to the Quartus II Command-Line and Tcl API
Help browser. To run the Help browser, type the following at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook

h You can also refer to About Quartus II Tcl Scripting in Quartus II Help.

Conclusion
As the FPGA industry continues to make technological advancements, outdated
methodologies are replaced with new technologies that maximize productivity. The
SignalTap II Logic Analyzer gives you the same benefits as a traditional logic
analyzer, without the many shortcomings of a piece of dedicated test equipment. The
SignalTap II Logic Analyzer provides many new and innovative features that allow
you to capture and analyze internal signals in your FPGA, allowing you to quickly
debug your design.

Example 15–10.

state ST1:

if (condition2)
begin

reset c1;
goto ST2;

end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_pro_command.htm

15–70 Chapter 15: Design Debugging Using the SignalTap II Logic Analyzer
Document Revision History
Document Revision History
Table 15–13 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 15–13. Document Revision History

Date Version Changes Made

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0

■ Add new acquisition buffer content to the “View, Analyze, and Use Captured Data” section.

■ Added script sample for generating hexadecimal CRC values in programmed devices.

■ Created cross references to Quartus II Help for duplicated procedural content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0

■ Updated Table 15–1

■ Updated “Using Incremental Compilation with the SignalTap II Logic Analyzer” on
page 15–45

■ Added new Figure 15–35

■ Made minor editorial updates

November 2008 8.1.0

Updated for the Quartus II software version 8.1 release:

■ Added new section “Using the Storage Qualifier Feature” on page 14–25

■ Added description of start_store and stop_store commands in section “Trigger
Condition Flow Control” on page 14–36

■ Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0

Updated for the Quartus II software version 8.0:

■ Added “Debugging Finite State machines” on page 14-24

■ Documented various GUI usability enhancements, including improvements to the
resource estimator, the bus find feature, and the dynamic display updates to the counter
and flag resources in the State-based trigger flow control tab

■ Added “Capturing Data Using Segmented Buffers” on page 14–16

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53016-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53016-10.1.0
16. In-System Debugging Using External
Logic Analyzers
The Quartus II Logic Analyzer Interface (LAI) allows you to use an external logic
analyzer and a minimal number of Altera-supported device I/O pins to examine the
behavior of internal signals while your design is running at full speed on your
Altera®- supported device.

The LAI connects a large set of internal device signals to a small number of output
pins. You can connect these output pins to an external logic analyzer for debugging
purposes. In the Quartus II LAI, the internal signals are grouped together, distributed
to a user-configurable multiplexer, and then output to available I/O pins on your
Altera-supported device. Instead of having a one-to-one relationship between internal
signals and output pins, the Quartus II LAI enables you to map many internal signals
to a smaller number of output pins. The exact number of internal signals that you can
map to an output pin varies based on the multiplexer settings in the Quartus II LAI.

This chapter details the following topics:

■ “Choosing a Logic Analyzer”

■ “Debugging Your Design Using the LAI” on page 16–4

■ “Working with LAI Files” on page 16–4

■ “Controlling the Active Bank During Runtime” on page 16–7

■ “Using the LAI with Incremental Compilation” on page 16–7

1 The term “logic analyzer” when used in this chapter includes both logic analyzers and
oscilloscopes equipped with digital channels, commonly referred to as mixed signal
analyzers or MSOs.

h Refer to Devices and Adapters in Quartus II Help for a list of Altera-supported devices.

Choosing a Logic Analyzer
The Quartus II software offers the following two general purpose on-chip debugging
tools for debugging a large set of RTL signals from your design:

■ The SignalTap® II Logic Analyzer

■ An external logic analyzer, which connects to internal signals in your
Altera-supported device by using the Quartus II LAI
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/device/dev/dev_list_dev_adapt.htm
https://www.altera.com/servlets/subscriptions/alert?id=QII53016

16–2 Chapter 16: In-System Debugging Using External Logic Analyzers
Choosing a Logic Analyzer
Table 16–1 describes the advantages of each debugging tool.

f The Quartus II software offers a portfolio of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook.

Required Components
You must have the following components to perform analysis using the Quartus II
LAI:

■ The Quartus II software starting with version 5.1 and later

■ The device under test

■ An external logic analyzer

■ An Altera communications cable

■ A cable to connect the Altera-supported device to the external logic analyzer

Table 16–1. Comparing the SignalTap II Logic Analyzer with the Logic Analyzer Interface

Feature and Description
Logic

Analyzer
Interface

SignalTap II
Logic

Analyzer

Sample Depth

You have access to a wider sample depth with an external logic analyzer. In the
SignalTap II Logic Analyzer, the maximum sample depth is set to 128 Kb, which is a device
constraint. However, with an external logic analyzer, there are no device constraints,
providing you a wider sample depth.

v —

Debugging Timing Issues

Using an external logic analyzer provides you with access to a “timing” mode, which
enables you to debug combined streams of data.

v —

Performance

You frequently have limited routing resources available to place and route when you use
the SignalTap II Logic Analyzer with your design. An external logic analyzer adds minimal
logic, which removes resource limits on place-and-route.

v —

Triggering Capability

The SignalTap II Logic Analyzer offers triggering capabilities that are comparable to
external logic analyzers.

v v

Use of Output Pins

Using the SignalTap II Logic Analyzer, no additional output pins are required. Using an
external logic analyzer requires the use of additional output pins.

— v

Acquisition Speed

With the SignalTap II Logic Analyzer, you can acquire data at speeds of over 200 MHz. You
can achieve the same acquisition speeds with an external logic analyzer; however, you
must consider signal integrity issues.

— v
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 16: In-System Debugging Using External Logic Analyzers 16–3
Choosing a Logic Analyzer
Figure 16–1 shows the LAI and the hardware setup.

Figure 16–1. LAI and Hardware Setup

Notes to Figure 16–1:
(1) Configuration and control of the LAI using a computer loaded with the Quartus II software via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by

vendor.

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus II Software

External Logic Analyzer
Board
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

16–4 Chapter 16: In-System Debugging Using External Logic Analyzers
Debugging Your Design Using the LAI
Debugging Your Design Using the LAI
Figure 16–2 shows the steps you must follow to debug your design with the
Quartus II LAI.

Working with LAI Files
The .lai file stores the configuration of an LAI instance. The .lai file opens in the LAI
editor. The editor allows you to group multiple internal signals to a set of external
pins. The configuration parameters are described in the following sections.

h To create a new .lai file or open an existing .lai file, refer to Setting Up the Logic
Analyzer Interface in Quartus II Help.

Figure 16–2. LAI and Hardware Setup

Notes to Figure 16–1:

(1) Configuration and control of the LAI using a computer loaded with the Quartus II software via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies by

vendor.

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus II Software
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/lai/lai_pro_setup_lai.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/lai/lai_pro_setup_lai.htm

Chapter 16: In-System Debugging Using External Logic Analyzers 16–5
Working with LAI Files
Configuring the File Core Parameters
After you create the .lai file, you must configure the .lai file core parameters by
clicking on the Setup View list, and then selecting Core Parameters. Table 16–2 lists
the .lai file core parameters.

Mapping the LAI File Pins to Available I/O Pins
To configure the .lai file I/O pin parameters, select Pins in the Setup View list. To
assign pin locations for the LAI, double-click the Location column next to the
reserved pins in the Name column, and the Pin Planner opens.

f For information about how to use the Pin Planner, refer to the Pin Planner section in
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Mapping Internal Signals to the LAI Banks
After you have specified the number of banks to use in the Core Parameters settings
page, you must assign internal signals for each bank in the LAI. Click the Setup View
arrow and select Bank n or All Banks.

To view all of your bank connections, click Setup View and select All Banks.

Table 16–2. LAI File Core Parameters

Parameter Description

Pin Count

The Pin Count parameter signifies the number of pins you want dedicated to your LAI. The pins
must be connected to a debug header on your board. Within the Altera-supported device, each pin
is mapped to a user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 255 pins.

Bank Count
The Bank Count parameter signifies the number of internal signals that you want to map to each
pin. For example, a Bank Count of 8 implies that you will connect eight internal signals to each pin.

The Bank Count parameter can range from 1 to 255 banks.

Output/Capture Mode

The Output/Capture Mode parameter signifies the type of acquisition you perform. There are two
options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your Altera-supported device, you must determine the sample frequency you
should use to debug and verify your system. This mode is effective if you want to measure timing
information, such as channel-to-channel skew. For more information about the sampling frequency
and the speeds at which it can run, refer to the data sheet for your external logic analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine when
to sample. Because Registered/State acquisition samples data synchronously with your Altera-
supported device, it provides you with a functional view of your Altera-supported device while it is
running. This mode is effective when you verify the functionality of your design.

Clock

The Clock parameter is available only when Output/Capture Mode is set to Registered State. You
must specify the sample clock in the Core Parameters view. The sample clock can be any signal in
your design. However, for best results, Altera recommends that you use a clock with an operating
frequency fast enough to sample the data you would like to acquire.

Power-Up State
The Power-Up State parameter specifies the power-up state of the pins you have designated for use
with the LAI. You have the option of selecting tri-stated for all pins, or selecting a particular bank
that you have enabled.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

16–6 Chapter 16: In-System Debugging Using External Logic Analyzers
Working with LAI Files
Using the Node Finder
Before making bank assignments, on the View menu, point to Utility Windows and
click Node Finder. Find the signals that you want to acquire, then drag and drop the
signals from the Node Finder dialog box into the bank Setup View. When adding
signals, use SignalTap II: pre-synthesis for non-incrementally routed instances and
SignalTap II: post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the schematic of your
LAI in the Logical View of your .lai file begins to reflect your assignments. Continue
making assignments for each bank in the Setup View until you have added all of the
internal signals for which you wish to acquire data.

Compiling Your Quartus II Project
When you save your .lai file, a dialog box prompts you to enable the LAI instance for
the active project. Alternatively, you can specify the .lai file your project uses in the
Global Project Settings dialog box.

After you specify the name of your .lai file, you must compile your project. To
compile your project, on the Processing menu, click Start Compilation.

To ensure that the LAI is properly compiled with your project, expand the entity
hierarchy in the Project Navigator. (To display the Project Navigator, on the View
menu, point to Utility Windows and click Project Navigator.) If the LAI is compiled
with your design, the sld_hub and sld_multitap entities are shown in the project
navigator (Figure 16–3).

Programming Your Altera-Supported Device Using the LAI
After compilation completes, you must configure your Altera-supported device
before using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can
also consist of devices that do not support the LAI or non-Altera, JTAG-compliant
devices. To use the LAI in more than one Altera-supported device, create an .lai file
and configure an .lai file for each Altera-supported device that you want to analyze.

h To configure a device or a set of devices for use with LAI, refer to Enabling the Logic
Analyzer Interface in Quartus II Help.

Figure 16–3. Project Navigator
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm

Chapter 16: In-System Debugging Using External Logic Analyzers 16–7
Controlling the Active Bank During Runtime
Controlling the Active Bank During Runtime
When you have programmed your Altera-supported device, you can control which
bank you map to the reserved .lai file output pins. To control which bank you map, in
the schematic in the logical view, right-click the bank and click Connect Bank
(Figure 16–4).

Acquiring Data on Your Logic Analyzer
To acquire data on your logic analyzer, you must establish a connection between your
device and the external logic analyzer.

f For more information about this process and for guidelines about how to establish
connections between debugging headers and logic analyzers, refer to the
documentation for your logic analyzer.

Using the LAI with Incremental Compilation
The Incremental Compilation feature in the Quartus II software allows you to
preserve the synthesis and fitting results of your design. This is an effective feature for
reducing compilation times if you only modify a portion of a design or you wish to
preserve the optimization results from a previous compilation.

The Incremental Compilation feature is well suited for use with LAI since LAI
comprises a small portion of most designs. Because LAI consists of only a small
portion of your design, incremental compilation helps to minimize your compilation
time. Incremental compilation works best when you are only changing a small
portion of your design. Incremental compilation yields an accurate representation of
your design behavior when changing the .lai file through multiple compilations.

h For further details on how to use Incremental Compilation with the LAI, refer to
Enabling the Logic Analyzer Interface in Quartus II Help.

Figure 16–4. Configuring Banks
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/lai/lai_pro_enabling_lai.htm

16–8 Chapter 16: In-System Debugging Using External Logic Analyzers
Conclusion
Conclusion
As the device industry continues to make technological advancements, outdated
debugging methodologies must be replaced with new technologies that maximize
productivity. The LAI feature enables you to connect many internal signals within
your Altera-supported device to an external logic analyzer with the use of a small
number of I/O pins. This new technology in the Quartus II software enables you to
use feature-rich external logic analyzers to debug your Altera-supported device
design, ultimately enabling you to deliver your product in the shortest amount of
time.

Document Revision History
Table 16–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 16–3. Document Revision History

Date Version Changes

December 2010 10.1.0
■ Minor editorial updates

■ Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0

■ Created links to the Quartus II Help

■ Editorial updates

■ Removed Referenced Documents section

November 2009 9.1.0
■ Removed references to APEX devices

■ Editorial updates

March 2009 9.0.0
■ Minor editorial updates

■ Removed Figures 15–4, 15–5, and 15–11 from 8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0

■ Updated device support list on page 15–3

■ Added links to referenced documents throughout the chapter

■ Added “Referenced Documents”

■ Added reference to Section V. In-System Debugging

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53012-10.0.2

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53012-10.0.1
17. In-System Modification of Memory
and Constants
This chapter explains how to use the Quartus®II In-System Memory Content Editor as
part of your FPGA design and verification flow.

The In-System Memory Content Editor allows you to view and update memories and
constants with the JTAG port connection.

The In-System Memory Content Editor allows access to dense and complex FPGA
designs. When you program devices, you have read and write access to the memories
and constants through the JTAG interface. You can then identify, test, and resolve
issues with your design by testing changes to memory contents in the FPGA while
your design is running.

Overview
This chapter contains the following sections:

■ “Updating Memory and Constants in Your Design” on page 17–2

■ “Updating Memory and Constants in Your Design” on page 17–2

■ “Creating In-System Modifiable Memories and Constants” on page 17–2

■ “Running the In-System Memory Content Editor” on page 17–2

When you use the In-System Memory Content Editor in conjunction with the
SignalTap II Logic Analyzer, you can more easily view and debug your design in the
hardware lab.

f For more information about the SignalTap II Logic Analyzer, refer to the Design
Debugging Using the SignalTap II Logic Analyzer chapter in volume 3 of the Quartus II
Handbook.

The ability to read data from memories and constants allows you to quickly identify
the source of problems. The write capability allows you to bypass functional issues by
writing expected data. For example, if a parity bit in your memory is incorrect, you
can use the In-System Memory Content Editor to write the correct parity bit values
into your RAM, allowing your system to continue functioning. You can also
intentionally write incorrect parity bit values into your RAM to check the error
handling functionality of your design.

f The Quartus II software offers a variety of on-chip debugging tools. For an overview
and comparison of all tools available in the Quartus II software on-chip debugging
tool suite, refer to Section IV. System Debugging Tools in volume 3 of the Quartus II
Handbook.

h For a list of the types of memories and constants currently supported by the
Quartus II software, refer to Megafunctions/LPM in Quartus II Help.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53012
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/hdl/mega/mega_list_mega_lpm.htm

17–2 Chapter 17: In-System Modification of Memory and Constants
Updating Memory and Constants in Your Design
Updating Memory and Constants in Your Design
To use the In-System Updating of Memory and Constants feature, perform the
following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Creating In-System Modifiable Memories and Constants
When you specify that a memory or constant is run-time modifiable, the Quartus II
software changes the default implementation. A single-port RAM is converted to a
dual-port RAM, and a constant is implemented in registers instead of look-up tables
(LUTs). These changes enable run-time modification without changing the
functionality of your design.

h To enable your memory or constant to be modifiable, refer to Setting up the In-System
Memory Content Editor in Quartus II Help.

If you instantiate a memory or constant megafunction directly with ports and
parameters in VHDL or Verilog HDL, add or modify the lpm_hint parameter as
follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor
The In-System Memory Content Editor has three separate panes: the Instance
Manager, the JTAG Chain Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and
constants in your FPGA device. The JTAG Chain Configuration pane allows you to
program your FPGA and select the Altera® device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project.
The In-System Memory Content Editor retrieves all instances of run-time configurable
memories and constants by scanning the JTAG chain and sending a query to the
specific device selected in the JTAG Chain Configuration pane.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_pro_open_editor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_pro_open_editor.htm

Chapter 17: In-System Modification of Memory and Constants 17–3
Running the In-System Memory Content Editor
If you have more than one device with in-system configurable memories or constants
in a JTAG chain, you can launch multiple In-System Memory Content Editors within
the Quartus II software to access the memories and constants in each of the devices.
Each In-System Memory Content Editor can access the in-system memories and
constants in a single device.

Instance Manager
When you scan the JTAG chain to update the Instance Manager pane, you can view a
list of all run-time modifiable memories and constants in the design. The Instance
Manager pane displays the Index, Instance, Status, Width, Depth, Type, and Mode of
each element in the list.

h You can read and write to in-system memory with the Instance Manager pane. For
more information refer to Instance Manager Pane in Quartus II Help.

1 In addition to the buttons available in the Instance Manager pane, you can read and
write data by selecting commands from the Processing menu, or the right-click menu
in the Instance Manager pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running, Offloading data,
or Updating data. The health monitor provides information about the status of the
editor.

The Quartus II software assigns a different index number to each in-system memory
and constant to distinguish between multiple instances of the same memory or
constant function. View the In-System Memory Content Editor Settings section of
the Compilation Report to match an index number with the corresponding instance
ID.

Editing Data Displayed in the Hex Editor Pane
You can edit data read from your in-system memories and constants displayed in the
Hex Editor pane by typing values directly into the editor or by importing memory
files.

h For more information, refer to Working with In-System Memory Content Editor Data in
Quartus II Help.

Importing and Exporting Memory Files
The In-System Memory Content Editor allows you to import and export data values
for memories that have the In-System Updating feature enabled. Importing from a
data file enables you to quickly load an entire memory image. Exporting to a data file
enables you to save the contents of the memory for future use.

h For more information, refer to Working with In-System Memory Content Editor Data in
Quartus II Help.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_pro_import_export.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_pro_import_export.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_com_instance_manager.htm

17–4 Chapter 17: In-System Modification of Memory and Constants
Running the In-System Memory Content Editor
Scripting Support
The In-System Memory Content Editor supports reading and writing of memory
contents via a Tcl script or Tcl commands entered at a command prompt. For detailed
information about scripting command options, refer to the Quartus II command-line
and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook and API Functions for Tcl in Quartus II Help. For more
information about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content Editor are as
follows:

■ Reading from memory:

read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

■ Writing to memory:

write_content_to_memory

■ Save memory contents to file:

save_content_from_memory_to_file

■ Update memory contents from File:

update_content_to_memory_from_file

h For descriptions of the command options and scripting examples, refer to the Tcl API
Help Browser and the API Functions for Tcl in Quartus II Help.

Programming the Device with the In-System Memory Content Editor
If you make changes to your design, you can program the device from within the
In-System Memory Content Editor.

h To program the device, refer to Setting up the In-System Memory Content Editor in
Quartus II Help.

Example: Using the In-System Memory Content Editor with the SignalTap II
Logic Analyzer

The following scenario describes how you can use the In-System Updating of
Memory and Constants feature with the SignalTap II Logic Analyzer to efficiently
debug your design in-system. You can use the In-System Memory Content Editor and
the SignalTap II Logic Analyzer simultaneously with the JTAG interface.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/red/red_pro_open_editor.htm
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 17: In-System Modification of Memory and Constants 17–5
Conclusion
Scenario: After completing your FPGA design, you find that the characteristics of
your FIR filter design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be
in-system modifiable and instantiate the SignalTap II Logic Analyzer.

2. Using the SignalTap II Logic Analyzer to tap and trigger on internal design nodes,
you find the FIR filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the FIR
filter coefficients. Upon reading each coefficient, you discover that one of the
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients
with the correct data with the In-System Memory Content Editor.

In this scenario, you can quickly locate the source of the problem using both the
In-System Memory Content Editor and the SignalTap II Logic Analyzer. You can also
verify the functionality of your device by changing the coefficient values before
modifying the design source files.

You can also modify the coefficients with the In-System Memory Content Editor to
vary the characteristics of the FIR filter, for example, filter attenuation, transition
bandwidth, cut-off frequency, and windowing function.

Conclusion
The In-System Updating of Memory and Constants feature provides access to a device
for efficient debugging in a hardware lab. You can use the In-System Memory and
Content Editor with the SignalTap II Logic Analyzer to maximize the visibility into an
Altera FPGA. By maximizing visibility and access to internal logic of the device, you
can identify and resolve problems with your design more easily.

Document Revision History
Table 17–1 shows the revision history of this chapter.

Table 17–1. Document Revision History

Date Version Changes

December 2010 10.0.2 ■ Changed to new document template. No change to content

August 2010 10.0.1 ■ Corrected links

July 2010 10.0.0
■ Inserted links to Quartus II Help

■ Removed Reference Documents section

November 2009 9.1.0
■ Delete references to APEX devices

■ Style changes

March 2009 9.0.0 ■ No change to content
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

17–6 Chapter 17: In-System Modification of Memory and Constants
Document Revision History
f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

November 2008 8.1.0 ■ Changed to 8-1/2 x 11 page size. No change to content

May 2008 8.0.0

■ Added reference to Section V. In-System Debugging in volume 3 of the Quartus II
Handbook on page 16-1

■ Removed references to the Mercury device, as it is now considered to be a “Mature”
device

■ Added links to referenced documents throughout document

■ Minor editorial updates

Table 17–1. Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53021-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53021-10.1.0
18. Design Debugging Using In-System
Sources and Probes
This chapter provides detailed instructions about how to use the In-System Sources
and Probes Editor and Tcl scripting in the Quartus® II software to debug your design.

Traditional debugging techniques often involve using an external pattern generator to
exercise the logic and a logic analyzer to study the output waveforms during run
time. The SignalTap® II Logic Analyzer and SignalProbe allow you to read or “tap”
internal logic signals during run time as a way to debug your logic design. You can
make the debugging cycle more efficient when you can drive any internal signal
manually within your design, which allows you to perform the following actions:

■ Force the occurrence of trigger conditions set up in the SignalTap II Logic Analyzer

■ Create simple test vectors to exercise your design without using external test
equipment

■ Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Quartus II software extends the
portfolio of verification tools, and allows you to easily control any internal signal and
provides you with a completely dynamic debugging environment. Coupled with
either the SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and
Probes Editor gives you a powerful debugging environment in which to generate
stimuli and solicit responses from your logic design.

f The Virtual JTAG Megafunction and the In-System Memory Content Editor also give
you the capability to drive virtual inputs into your design. The Quartus II software
offers a variety of on-chip debugging tools. For an overview and comparison of all the
tools available in the Quartus II software on-chip debugging tool suite, refer to
Section IV. System Debugging Tools in volume 3 of the Quartus II Handbook.

Overview
This chapter includes the following topics:

■ “Design Flow Using the In-System Sources and Probes Editor” on page 18–4

■ “Running the In-System Sources and Probes Editor” on page 18–7

■ “Tcl interface for the In-System Sources and Probes Editor” on page 18–9

■ “Design Example: Dynamic PLL Reconfiguration” on page 18–13

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE
megafunction and an interface to control the ALTSOURCE_PROBE megafunction
instances during run time. Each ALTSOURCE_PROBE megafunction instance
provides you with source output ports and probe input ports, where source ports
drive selected signals and probe ports sample selected signals. When you compile
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53021
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

18–2 Chapter 18: Design Debugging Using In-System Sources and Probes
Overview
your design, the ALTSOURCE_PROBE megafunction sets up a register chain to either
drive or sample the selected nodes in your logic design. During run time, the
In-System Sources and Probes Editor uses a JTAG connection to shift data to and from
the ALTSOURCE_PROBE megafunction instances. Figure 18–1 shows a block
diagram of the components that make up the In-System Sources and Probes Editor.

The ALTSOURCE_PROBE megafunction hides the detailed transactions between the
JTAG controller and the registers instrumented in your design to give you a basic
building block for stimulating and probing your design. Additionally, the In-System
Sources and Probes Editor provides single-cycle samples and single-cycle writes to
selected logic nodes. You can use this feature to input simple virtual stimuli and to
capture the current value on instrumented nodes. Because the In-System Sources and
Probes Editor gives you access to logic nodes in your design, you can toggle the
inputs of low-level components during the debugging process. If used in conjunction
with the SignalTap II Logic Analyzer, you can force trigger conditions to help isolate
your problem and shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control
signals in your design as virtual stimuli. This feature can be especially helpful for
prototyping your design, such as in the following operations:

■ Creating virtual push buttons

■ Creating a virtual front panel to interface with your design

■ Emulating external sensor data

■ Monitoring and changing run time constants on the fly

Figure 18–1. In-System Sources and Probes Editor Block Diagram

D QD QD QD Q

D QD QD QD Q

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

Altera
Programming

Hardware

Quartus II
Software

FPGA
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 18: Design Debugging Using In-System Sources and Probes 18–3
Overview
The In-System Sources and Probes Editor supports Tcl commands that interface with
all your ALTSOURCE_PROBE megafunction instances to increase the level of
automation.

Hardware and Software Requirements
The following components are required to use the In-System Sources and Probes
Editor:

■ Quartus II software

or

■ Quartus II Web Edition (with the TalkBack feature turned on)

■ Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)

■ Altera® development kit or user design board with a JTAG connection to device
under test

The In-System Sources and Probes Editor supports the following device families:

■ Arria® GX

■ Stratix® series

■ HardCopy® II

■ Cyclone® series

■ MAX® II
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–4 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Flow Using the In-System Sources and Probes Editor
Design Flow Using the In-System Sources and Probes Editor
The In-System Sources and Probes Editor supports an RTL flow. Signals that you want
to view in the In-System Sources and Probes editor are connected to an instance of the
ALTSOURCE_PROBE megafunction. After you compile the design, you can control
each ALTSOURCE_PROBE instance via the In-System Sources and Probes Editor
pane or via a Tcl interface. The complete design flow is shown in Figure 18–2.

Configuring the ALTSOURCE_PROBE Megafunction
To use the In-System Sources and Probes Editor in your design, you must first
instantiate the ALTSOURCE_PROBE megafunction variation file. You can configure
the ALTSOURCE_PROBE megafunction with the MegaWizard™ Plug-In Manager.
Each source or probe port can be up to 256 bits. You can have up to 128 instances of
the ALTSOURCE_PROBE megafunction in your design.

Figure 18–2. FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project
or Open an Existing

Project

Configure
altsource_probe
Megafunction

Instrument selected logic
nodes by Instantiating the

altsource_probe
Megafunction variation file

into the HDL Design

Compile the design

Program Target
Device(s)

Control Source and
Probe Instance(s)

Debug/Modify HDL
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 18: Design Debugging Using In-System Sources and Probes 18–5
Design Flow Using the In-System Sources and Probes Editor
To configure the ALTSOURCE_PROBE megafunction, performing the following
steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. On page 2a of the MegaWizard Plug-In Manager, make the following selections:

a. In the Installed Plug-Ins list, expand the JTAG-accessible Extensions folder
and select In-System Sources and Probes.

1 Verify that the currently selected device family matches the device you are
targeting.

b. Select an output file type and enter the name of the ALTSOURCE_PROBE
megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or Verilog HDL (.v)
as the output file type.

5. Click Next.

6. On page 3 of the MegaWizard Plug-In Manager, make the following selections:

a. Under Do you want to specify an Instance Index?, turn on Yes.

b. Specify the ‘Instance ID’ of this instance.

c. Specify the width of the probe port. The width can be from 0 bit to 256 bits.

d. Specify the width of the source port. The width can be from 0 bit to 256 bits.

7. On page 3 of the MegaWizard Plug-In Manager, you can click Advanced Options
and specify other options, including the following:

■ What is the initial value of the source port, in hexadecimal?—Allows you to
specify the initial value driven on the source port at run time.

■ Write data to the source port synchronously to the source clock—Allows you
to synchronize your source port write transactions with the clock domain of
your choice.

■ Create an enable signal for the registered source port—When turned on,
creates a clock enable input for the synchronization registers. You can turn on
this option only when the Write data to the source port synchronously to the
source clock option is turned on.

1 The In-System Sources and Probes Editor does not support simulation. You must
remove the ALTSOURCE_PROBE megafunction instantiation before you create a
simulation netlist.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–6 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Flow Using the In-System Sources and Probes Editor
Instantiating the ALTSOURCE_PROBE Megafunction
The MegaWizard Plug-In Manager produces the necessary variation file and the
instantiation template based on your inputs to the MegaWizard. Use the template to
instantiate the ALTSOURCE_PROBE megafunction variation file in your design. The
port information is shown in Table 18–1.

You can include up to 128 instances of the ALTSOURCE_PROBE megafunction in
your design, if your device has available resources. Each instance of the
ALTSOURCE_PROBE megafunction uses a pair of registers per signal for the width of
the widest port in the megafunction. Additionally, there is some fixed overhead logic
to accommodate communication between the ALTSOURCE_PROBE instances and the
JTAG controller. You can also specify an additional pair of registers per source port for
synchronization.

Compiling the Design
When you compile your design with the In-System Sources and Probes megafunction
instantiated, an instance of the ALTSOURCE_PROBE and SLD_HUB instances are
added to your compilation hierarchy automatically. These instances provide
communication between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the
ALTSOURCE_PROBE megafunction. To open the design instance you want to modify
in the MegaWizard Plug-In Manager, double-click the instance in the Project
Navigator. You can then modify the connections in the HDL source file. You must
recompile your design after you make changes.

You can use the Quartus II incremental compilation feature to reduce compilation
time. Incremental compilation allows you to organize your design into logical
partitions. During recompilation of a design, incremental compilation preserves the
compilation results and performance of unchanged partitions and reduces design
iteration time by compiling only modified design partitions.

f For more information about the Quartus II incremental compilation feature, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Table 18–1. ALTSOURCE_PROBE Megafunction Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.

source_clk No Input
Source Data is written synchronously to this clock. This input is
required if you turn on Source Clock in the Advanced Options box in
the MegaWizard Plug-In Manager.

source_ena No Input Clock enable signal for source_clk. This input is required if specified
in the Advanced Options box in the MegaWizard Plug-In Manager.

source[] No Output Used to drive inputs to user design.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 18: Design Debugging Using In-System Sources and Probes 18–7
Running the In-System Sources and Probes Editor
Running the In-System Sources and Probes Editor
The In-System Sources and Probes Editor gives you control over all
ALTSOURCE_PROBE megafunction instances within your design. The editor allows
you to view all available run time controllable instances of the ALTSOURCE_PROBE
megafunction in your design, provides a push-button interface to drive all your
source nodes, and provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor, on the Tools menu, click In-System
Sources and Probes Editor.

The In-System Sources and Probes Editor contains three panes:

■ JTAG Chain Configuration—Allows you to specify programming hardware,
device, and file settings that the In-System Sources and Probes Editor uses to
program and acquire data from a device.

■ Instance Manager—Displays information about the instances generated when
you compile a design, and allows you to control data that the In-System Sources
and Probes Editor acquires.

■ In-System Sources and Probes Editor—Logs all data read from the selected
instance and allows you to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a
Quartus II software project. The In-System Sources and Probes Editor retrieves all
instances of the ALTSOURCE_PROBE megafunction by scanning the JTAG chain and
sending a query to the device selected in the JTAG Chain Configuration pane. You
can also use a previously saved configuration to run the In-System Sources and
Probes Editor.

Each In-System Sources and Probes Editor pane can access the
ALTSOURCE_PROBE megafunction instances in a single device. If you have more
than one device containing megafunction instances in a JTAG chain, you can launch
multiple In-System Sources and Probes Editor panes to access the megafunction
instances in each device.

Programming Your Device With JTAG Chain Configuration
After you compile your project, you must configure your FPGA before you use the
In-System Sources and Probes Editor. To configure a device to use with the In-System
Sources and Probes Editor, perform the following steps:

1. Open the In-System Sources and Probes Editor.

2. In the JTAG Chain Configuration pane, point to Hardware, and then select the
hardware communications device. You may be prompted to configure your
hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to download the
design (the device may be automatically detected). You may need to click Scan
Chain to detect your target device.

4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File
(.sof) that includes the In-System Sources and Probes instance or instances. (The
.sof may be automatically detected).

5. Click Program Device to program the target device.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–8 Chapter 18: Design Debugging Using In-System Sources and Probes
Running the In-System Sources and Probes Editor
Instance Manager
The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in
the design and allows you to configure how data is acquired from or written to those
instances.

The following buttons and sub-panes are provided in the Instance Manager pane:

■ Read Probe Data—Samples the probe data in the selected instance and displays
the probe data in the In-System Sources and Probes Editor pane.

■ Continuously Read Probe Data—Continuously samples the probe data of the
selected instance and displays the probe data in the In-System Sources and
Probes Editor pane; you can modify the sample rate via the Probe read interval
setting.

■ Stop Continuously Reading Probe Data—Cancels continuous sampling of the
probe of the selected instance.

■ Write Source Data—Writes data to all source nodes of the selected instance.

■ Probe Read Interval—Displays the sample interval of all the In-System Sources
and Probe instances in your design; you can modify the sample interval by
clicking Manual.

■ Event Log—Controls the event log in the In-System Sources and Probes Editor
pane.

■ Write Source Data—Allows you to manually or continuously write data to the
system.

The status of each instance is also displayed beside each entry in the Instance
Manager pane. The status indicates if the instance is Not running Offloading data,
Updating data, or if an Unexpected JTAG communication error occurs. This status
indicator provides information about the sources and probes instances in your design.

In-System Sources and Probes Editor Pane
The In-System Sources and Probes Editor pane allows you to view data from all
sources and probes in your design. The data is organized according to the index
number of the instance. The editor provides an easy way to manage your signals, and
allows you to rename signals or group them into buses. All data collected from
in-system source and probe nodes is recorded in the event log and you can view the
data as a timing diagram.

Reading Probe Data
You can read data by selecting the ALTSOURCE_PROBE instance in the Instance
Manager pane and clicking Read Probe Data. This action produces a single sample of
the probe data and updates the data column of the selected index in the In-System
Sources and Probes Editor pane. You can save the data to an event log by turning on
the Save data to event log option in the Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance
Manager pane, click the instance you want to read, and then click Continuously read
probe data. While reading, the status of the active instance shows Unloading. You can
read continuously from multiple instances.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 18: Design Debugging Using In-System Sources and Probes 18–9
Tcl interface for the In-System Sources and Probes Editor
You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the Manual
option in the Probe read interval sub-pane, and specify the sample rate in the text
field next to the Manual option. The maximum sample rate depends on your
computer setup. The actual sample rate is shown in the Current interval box. You can
adjust the event log window buffer size in the Maximum Size box.

Writing Data
To modify the source data you want to write into the ALTSOURCE_PROBE instance,
click the name field of the signal you want to change. For buses of signals, you can
double-click the data field and type the value you want to drive out to the
ALTSOURCE_PROBE instance. The In-System Sources and Probes Editor stores the
modified source data values in a temporary buffer. Modified values that are not
written out to the ALTSOURCE_PROBE instances appear in red. To update the
ALTSOURCE_PROBE instance, highlight the instance in the Instance Manager pane
and click Write source data. The Write source data function is also available via the
shortcut menus in the Instance Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update
each ALTSOURCE_PROBE instance. Continuous updating allows any modifications
you make to the source data buffer to also write immediately to the
ALTSOURCE_PROBE instances. To continuously update the ALTSOURCE_PROBE
instances, change the Write source data field from Manually to Continuously.

Organizing Data
The In-System Sources and Probes Editor pane allows you to group signals into
buses, and also allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and
select Group. You can modify the display format in the Bus Display Format and the
Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal. To
rename a signal, double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is
adjustable up to 128k samples. The time stamp for each sample is logged and is
displayed above the event log of the active instance as you move your pointer over
the data samples.

You can save the changes that you make and the recorded data to a Sources and
Probes File (.spf). To save changes, on the File menu, click Save. The file contains all
the modifications you made to the signal groups, as well as the current data event log.

Tcl interface for the In-System Sources and Probes Editor
To support automation, the In-System Sources and Probes Editor supports the
procedures described in this chapter in the form of Tcl commands. The Tcl package for
the In-System Sources and Probes Editor is included by default when you run
quartus_stp.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–10 Chapter 18: Design Debugging Using In-System Sources and Probes
Tcl interface for the In-System Sources and Probes Editor
The Tcl interface for the In-System Sources and Probes Editor provides a powerful
platform to help you debug your design. The Tcl interface is especially helpful for
debugging designs that require toggling multiple sets of control inputs. You can
combine multiple commands with a Tcl script to define a custom command set.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For more information about settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 18–2 shows the Tcl commands you can use instead of the In-System Sources and
Probes Editor.

Example 18–1 shows an excerpt from a Tcl script with procedures that control the
ALTSOURCE_PROBE instances of the design as shown in Figure 18–3. The example
design contains a DCFIFO with ALTSOURCE_PROBE instances to read from and
write to the DCFIFO. A set of control muxes are added to the design to control the
flow of data to the DCFIFO between the input pins and the ALTSOURCE_PROBE

Table 18–2. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source_pro
be

-device_name <device name>
-hardware_name <hardware
name>

Opens a handle to a device with the
specified hardware.

Call this command before starting any
transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all ALTSOURCE_PROBE
instances in your design. Each record
returned is in the following format:

{<instance Index>, <source width>, <probe
width>, <instance name>}

read_probe_data
-instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the probe.

A string is returned that specifies the status
of each probe, with the MSB as the
left-most bit.

read_source_data
-instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the sources.

A string is returned that specifies the status
of each source, with the MSB as the
left-most bit.

write_source_data

-instance_index
<instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the source ports,
with the MSB as the left-most bit.

end_interactive_probe None
Releases the JTAG chain.

Issue this command when all transactions
are finished.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

Chapter 18: Design Debugging Using In-System Sources and Probes 18–11
Tcl interface for the In-System Sources and Probes Editor
instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances,
when used with the script in Example 18–1, provide visibility into the contents of the
FIFO by performing single sample write and read operations and reporting the state
of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your
design. For example, you can use this feature to preload the FIFO to match a trigger
condition you have set up within the SignalTap II Logic Analyzer.

Figure 18–3. A DCFIFO Example Design Controlled by the Tcl Script in Example 18–1

D Q

D Q

Write_clock

Write_req
Data[7..0]

Write_clock

Read_req

Read_clock

Wr_full

Q[7..0]

Rd_empty

Data_out

Read_clock

Source_read_sel

S_read_req

S_write_req

Rd_req_in

Wr_req_in

Data_in[7..0]

altsource_probe
(instance 1)

altsource_probe
(instance 0)

Source_write_sel

S_data[7..0]
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–12 Chapter 18: Design Debugging Using In-System Sources and Probes
Tcl interface for the In-System Sources and Probes Editor
Example 18–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 18–3 (Part 1 of 2)

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb
variable full

start_insystem_source_probe -device_name $device_name -hardware_name $usb

#read full flag
set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}

Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 18: Design Debugging Using In-System Sources and Probes 18–13
Design Example: Dynamic PLL Reconfiguration
Design Example: Dynamic PLL Reconfiguration
The In-System Sources and Probes Editor can help you create a virtual front panel
during the prototyping phase of your design. You can create relatively simple, high
functioning designs of in a short amount of time. The following PLL reconfiguration
example demonstrates how to use the In-System Sources and Probes Editor to provide
a GUI to dynamically reconfigure a Stratix PLL.

##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]

##clear transaction

write_source_data -instance_index 0 -value 0

end_insystem_source_probe
}

proc read {} {

global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb

##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag

set empty [read_probe_data -instance_index 1]

if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }

toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1

pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x
}

Example 18–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 18–3 (Part 2 of 2)
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

18–14 Chapter 18: Design Debugging Using In-System Sources and Probes
Design Example: Dynamic PLL Reconfiguration
Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each
enhanced PLL within the Stratix device contains a register chain that allows you to
modify the pre-scale counters (m and n values), output divide counters, and delay
counters. In addition, the ALTPLL_RECONFIG megafunction provides an easy
interface to access the register chain counters. The ALTPLL_RECONFIG
megafunction provides a cache that contains all modifiable PLL parameters. After you
update all the PLL parameters in the cache, the ALTPLL_RECONFIG megafunction
drives the PLL register chain to update the PLL with the updated parameters.
Figure 18–4 shows a Stratix-enhanced PLL with reconfigurable coefficients.

1 Stratix II and Stratix III devices also allow you to dynamically reconfigure PLL
parameters. For more information about these families, refer to the appropriate data
sheet. For more information about dynamic PLL reconfiguration, refer to AN 282:
Implementing PLL Reconfiguration in Stratix & Stratix GX Devices or AN 367:
Implementing PLL Reconfiguration in Stratix II Devices.

The following design example uses an ALTSOURCE_PROBE instance to update the
PLL parameters in the ALTPLL_RECONFIG megafunction cache. The
ALTPLL_RECONFIG megafunction connects to an enhanced PLL in a Stratix FPGA to
drive the register chain containing the PLL reconfigurable coefficients. This design
example uses a Tcl/Tk script to generate a GUI where you can enter in new m and n
values for the enhanced PLL. The Tcl script extracts the m and n values from the GUI,
shifts the values out to the ALTSOURCE_PROBE instances to update the values in the

Figure 18–4. Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δtm÷m

÷g0 Δtg0

÷e3 Δte3

÷g3 Δtg3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an282.pdf
http://www.altera.com/literature/an/an367.pdf
http://www.altera.com/literature/an/an367.pdf

Chapter 18: Design Debugging Using In-System Sources and Probes 18–15
Design Example: Dynamic PLL Reconfiguration
ALTPLL_RECONFIG megafunction cache, and asserts the reconfiguration signal on
the ALTPLL_RECONFIG megafunction. The reconfiguration signal on the
ALTPLL_RECONFIG megafunction starts the register chain transaction to update all
PLL reconfigurable coefficients. A block diagram of a design example is shown in
Figure 18–5. The Tk GUI is shown in Figure 18–6.

This design example was created using a Nios® II Development Kit, Stratix Edition.
The file sourceprobe_DE_dynamic_pll.zip contains all the necessary files for running
this design example, including the following:

■ Readme.txt—A text file that describes the files contained in the design example
and provides instructions about running the Tk GUI shown in Figure 18–6.

■ Interactive_Reconfig.qar—The archived Quartus II project for this design
example.

f Download the sourceprobe_DE_dynamic_pll.zip file from the Literature: Quartus II
Handbook page of the Altera website.

Figure 18–5. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 18–6. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl Package

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA

50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction
In-System

Sources and Probes
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp

18–16 Chapter 18: Design Debugging Using In-System Sources and Probes
Conclusion
Conclusion
The In-System Sources and Probes Editor provides stimuli and receives responses
from the target design during run time. With the simple and intuitive interface, you
can add virtual inputs to your design during run time without using external
equipment. When used in conjunction with the SignalTap II Logic Analyzer, you can
use the In-System Sources and Probes Editor to obtain greater control of the signals in
your design, and thus help shorten the verification cycle.

Document Revision History
Table 18–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this handbook chapter.

Table 18–3. Document Revision History

Date Version Changes

December 2010 10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November 2009 9.1.0
■ Removed references to obsolete devices.

■ Style changes.

March 2009 9.0.0 No change to content.

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0

■ Documented that this feature does not support simulation on page 17–5

■ Updated Figure 17–8 for Interactive PLL reconfiguration manager

■ Added hyperlinks to referenced documents throughout the chapter

■ Minor editorial updates
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

December 2010 Altera Corporation
Section V. Formal Verification
The Quartus® II software easily interfaces with EDA formal design verification tools
such as the Cadence Encounter Conformal and Synopsys Synplify software. In
addition, the Quartus II software has built-in support for verifying the logical
equivalence between the synthesized netlist from Synopsys Synplify and the post-fit
Verilog Quartus Mapped (.vqm) files using Cadence Encounter Conformal software.

This section discusses formal verification, how to set-up the Quartus II software to
generate the .vqm file and Cadence Encounter Conformal script, and how to compare
designs using Cadence Encounter Conformal software.

This section includes the following chapter:

■ Chapter 19, Cadence Encounter Conformal Support
Quartus II Handbook Version 10.1 Volume 3: Verification

V–2 Section V: Formal Verification
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53011-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53011-10.1.0
19. Cadence Encounter Conformal
Support
The Quartus® II software provides formal verification support for Altera® designs
through interfaces with a formal verification EDA tool, the Cadence Encounter
Conformal Logic Equivalence Check (LEC) software.

The two types of formal verification are equivalence checking and model checking.
This chapter discusses equivalence checking with the Conformal LEC software.

Use the Conformal LEC software to verify the functional equivalence of a
post-synthesis Verilog Quartus Mapping (.vqm) netlist file from Synopsys Synplify
Pro software, a post-fit Verilog Output File (.vo) from the Quartus II software, or both.
You can also use the Conformal LEC software to verify the functional equivalence of
the register transfer level (RTL) source code and post-fit .vo file with the Quartus II
software when using Quartus II integrated synthesis. These formal verification flows
support designs for the Arria® GX, Cyclone®, Cyclone II, Cyclone III, HardCopy® II,
Stratix®, Stratix II, Stratix II GX, Stratix III, and Stratix IV device families.

This chapter contains the following sections:

■ “Formal Verification Design Flow” on page 19–2

■ “RTL Coding Guidelines for Quartus II Integrated Synthesis” on page 19–4

■ “Black Boxes in the Conformal LEC Flow” on page 19–8

■ “Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files”
on page 19–10

■ “Understanding the Formal Verification Scripts for Conformal LEC” on
page 19–12

■ “Comparing Designs Using Conformal LEC” on page 19–15

■ “Known Issues and Limitations” on page 19–16

■ “Black Box Models” on page 19–18

■ “Conformal Dofile/Script Example” on page 19–19

Equivalence checking uses mathematical techniques to compare the logical
equivalence of two versions of the same design rather than using test vectors to
perform simulation. The two compared versions can be post-map design and post-fit
design, or RTL design and post-fit design. Equivalence checking greatly shortens the
verification cycle of the design.

Formal Verification Versus Simulation
Formal verification cannot be considered as a replacement for vector-based
simulation. Formal verification only complements the existing vector-based
simulation techniques to speed up the verification cycle. Vector-based simulation
techniques of gate-level designs can take a considerable amount of time.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII53011

19–2 Chapter 19: Cadence Encounter Conformal Support
Formal Verification Design Flow
You can use Vector-based simulation techniques to perform the following functions:

■ Verify design functionality

■ Verify timing specifications

■ Debug designs

Formal Verification: What You Need to Know
If you use formal verification techniques to verify logic equivalence of your design,
you can save time by foregoing a comprehensive vector-based simulation of the
gate-level design. However, there might be an impact on area and performance
during recompilation of your design with the Quartus II software if you choose to use
formal verification flow for Conformal LEC software. The area and performance of
your design might be affected by the following factors:

■ Hierarchy preservation

■ ROM implementation by logic elements (LEs)

■ Disabled retiming is disabled

Refer to “Known Issues and Limitations” on page 19–16 before you consider using the
formal verification flow in your design methodology.

Formal Verification Design Flow
Altera supports formal verification using the Conformal LEC software for the
following two synthesis tools:

■ “Quartus II Integrated Synthesis” on page 19–3

■ “Synplify Pro” on page 19–3

The following sections describe the supported design flows for these synthesis tools.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–3
Formal Verification Design Flow
Quartus II Integrated Synthesis
The design flow for formal verification using the Quartus II integrated synthesis is
shown in Figure 19–1. This flow performs equivalency checking for the RTL source
code and the post-fit netlist generated by the Quartus II software. The RTL source
code can be in Verilog HDL or VHDL format. The post-fit netlist generated by the
Quartus II software is always in Verilog HDL format.

EDA Tool Support for Quartus II Integrated Synthesis
The formal verification flow using the Quartus II software and Conformal LEC
software supports the following software versions and operating systems:

■ Quartus II software beginning with version 4.2

■ Cadence Conformal LEC software beginning with version 4.3.5A

■ Solaris and Linux operating systems

Synplify Pro
The design flow for formal verification using Synplify Pro Synthesis performs
equivalency checking for the post-synthesis netlist from Synplify Pro and the post-fit
netlist generated by Quartus II software, as shown in Figure 19–2 on page 19–4.

Figure 19–1. Formal Verification Using Quartus II Integrated Synthesis and the Conformal LEC
Software

Synthesis

Place-and-Route

Equivalence
Checking

RTL

Quartus II
Software

Post-Fit
Verilog Output

Encounter Conformal
Software

Formal Verification
Library
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–4 Chapter 19: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis
f For additional information about performing equivalency checking between RTL and
post-synthesis netlists generated from Synplify Pro software, refer to the Synplify Pro
documentation.

RTL Coding Guidelines for Quartus II Integrated Synthesis
The Conformal LEC software can compare the RTL code against the post-fit netlist
generated by the Quartus II software. The Conformal LEC software and the
Quartus II integrated synthesis parse and compile the RTL description in slightly
different ways. The Quartus II software supports some RTL features that the
Conformal LEC software does not support and vice versa. The style of the RTL code is
of particular concern because neither tool supports some constructs, leading to
potential formal verification mismatches; for example, state machine extraction,
wherein different encoding mechanisms can result in different structures. Therefore,
for successful verification, both tools must interpret the RTL code in the same manner.

The following section provides information about recognizing and preventing
problems that can arise in the formal verification flow.

f For more details about RTL coding styles for Quartus II integrated synthesis, refer to
the Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

1 Some of the coding guidelines apply to both the Quartus II integrated synthesis and
Synplify Pro flow, as indicated in each of the guidelines in the following sections.

Synthesis Directives and Attributes
Synthesis directives, also known as pragmas, play an important role in successful
verification of RTL against the post-fit .vo netlist file from the Quartus II software.

Pragmas and trigger keywords that are supported in Quartus II integrated synthesis
and the Conformal LEC software are also supported in the formal verification flow.
The Quartus II integrated synthesis and Conformal LEC both support the trigger
keywords “synthesis” and “synopsys.” When the Quartus II software does not
recognize a keyword (such as “verplex“), the keyword is disabled in the formal
verification scripts produced for use with the Conformal LEC software. Therefore, it is
important to use caution with unsupported pragmas because they can lead to
verification mismatches.

Figure 19–2. Formal Verification Flow Using Synplify Pro and the Conformal LEC Software

Synplify Pro

Quartus II

Synthesized
Netlist

Equivalence Checking/
Encounter Conformal

Equivalence Checking/
Encounter Conformal

Formal Verification
 Library

P&R
Netlist

RTL
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 19: Cadence Encounter Conformal Support 19–5
RTL Coding Guidelines for Quartus II Integrated Synthesis
For example, you can use Quartus II integrated synthesis to synthesize RTL code with
the synthesis directive read_comments_as_HDL (Example 19–1 and Example 19–2).

1 The Conformal LEC software does not support the synthesis directive
read_comments_as_HDL, and the directive has no affect on the Conformal LEC
software.

Table 19–1 lists supported pragmas and trigger keywords for formal verification.

Stuck-at Registers
Quartus II integrated synthesis eliminates registers that have their output stuck at a
constant value. Quartus II integrated synthesis gives a warning message and adds an
entry to the corresponding report panel in the formal verification folder of the
Analysis & Synthesis section of the Compilation Report. If the Conformal LEC
software does not find the same optimizations, it can lead to unmapped points in the
golden netlist. Example 19–3 on page 19–6 illustrates the issue.

Example 19–1. Verilog HDL Example of Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 19–2. VHDL Example of Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Table 19–1. Supported Pragmas and Trigger Keywords for Formal Verification

Pragmas (1) Trigger Keywords

full_case

parallel_case

pragma

synthesis_off

synthesis_on

translate_off

translate_on

synthesis

synopsys

Note to Table 19–1:

(1) Do not use Verilog 2001-style pragma declarations. The Quartus II software and the Conformal LEC software
support this style of pragma in different manners.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–6 Chapter 19: Cadence Encounter Conformal Support
RTL Coding Guidelines for Quartus II Integrated Synthesis
In this module description, registers e and g are tied to logic 0. In this example, the
Quartus II software generates the following warning message:

Warning: Reduced register "g" with stuck data_in port to stuck value GND
Warning: Reduced register "e" with stuck data_in port to stuck value GND

Quartus II integrated synthesis then adds a command to the formal verification
scripts telling Conformal LEC that a register is stuck at a constant value, as shown in
Example 19–4.

The command is commented in the formal verification script, forcing the Conformal
LEC software to treat the register as stuck at a constant value and potentially hiding a
compilation error. You must verify that input to the e and g registers is constant in the
design and uncomment the command to obtain accurate results.

1 Altera recommends recoding your design to eliminate “stuck-at” registers.

The stuck-at register information in this section also applies to the Synplify Pro flow.

ROM, LPM_DIVIDE, and Shift Register Inference
For the purpose of formal verification, the Quartus II integrated synthesis implements
both ROM and shift registers in the form of LEs instead of using dedicated on-chip
memory resources. Using LEs can be less area-efficient than inferring a megafunction
that can be implemented in a RAM block. However, the Quartus II software generates
a warning message indicating that the megafunction was not inferred. Quartus II
integrated synthesis also reports a suggested ROM or shift register instantiation that
enables you to either use the MegaWizard™ Plug-In Manager to create the appropriate
megafunction explicitly, or to isolate the corresponding logic in a separate entity that
you can set as a black box. By setting black box properties on a particular module or

Example 19–3. Verilog HDL Example Showing Stuck at Registers

module stuck_at_example {clk, a,b,c,d,out};
input a,b,c,d,clk;
output out;
reg e,f,g;

always @(posedge clk) begin
e <= a and g;// e is stuck at 0
g <= c and e;// g is stuck at 0
f <= e | b;

end
assign out = f and d;
endmodule

Example 19–4. Conformal LEC Script Showing Commands for Instance Equivalence

// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–7
RTL Coding Guidelines for Quartus II Integrated Synthesis
entity, you are telling the formal verification tool not to look inside the module or
entity for formal verification. If the black box properties are set on the corresponding
megafunction before synthesis, you can verify the megafunction with the Conformal
LEC software. For details about setting black box properties on a particular module,
refer to Table 19–2 on page 19–9.

If the design contains division functionality, the Quartus II software infers an
LPM_DIVIDE megafunction, which is treated as a black box for the purpose of formal
verification.

RAM Inference
When the Quartus II software infers the ALTSYNCRAM megafunction from the RTL
code, the Quartus II software generates the following warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram
megafunction to implement register logic with M512 or M4K memory block
or M-RAM. Expect to get an error or a mismatch for this block in the
formal verification tool.

This warning is generated because the memory block (altsyncram) is a new instance
in the post-fit netlist that is handled as a black box by the formal verification tool.
However, no such instance exists in the original RTL design, resulting in mismatch or
error reporting in the formal verification tool.

Latch Inference
A latch is implemented in the Quartus II integrated synthesis using a combinational
feedback loop. The Conformal LEC software infers a latch primitive in the Conformal
LEC library (DLAT) to implement a latch. This results in having a DLAT on the golden
side and a combinational loop with a cut point on the revised side, leading to
verification mismatches. The Quartus II software issues a warning message whenever
a latch is inferred, and the Quartus II software adds an entry to the report panel in the
Formal Verification folder of the Analysis & Synthesis report. Altera recommends that
you avoid latches in your design; however, if latches are necessary, Altera
recommends using the corresponding LPM_LATCH megafunction.

f For more information about the problems related to latches, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Combinational Loops
If the design consists of an intended combinational loop, you must define an
appropriate cut point for both the RTL and the post-fit .vo netlist file. A warning that
a combinational loop exists in the design is found in the Formal Verification
subfolder of the Quartus II software Analysis & Synthesis report.

For more information about issues with combinational loops, refer to “Known Issues
and Limitations” on page 19–16.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

19–8 Chapter 19: Cadence Encounter Conformal Support
Black Boxes in the Conformal LEC Flow
Finite State Machine Coding Styles
When a state machine is inferred by the Conformal LEC software, it uses sequential
encoding as the default encoding when no user encoding is present. The Quartus II
software selects the encoding most suited for the inferred state machine if the State
Machine Processing setting is set to the default value Auto. To do this, perform the
following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Analysis & Synthesis Settings. The Analysis &
Synthesis Settings page appears.

3. Click More Settings. The More Analysis & Synthesis Settings dialog box
appears.

4. Under Option, in the Name list, select State Machine Processing. In the Setting
list, select Auto.

5. Click OK.

6. Click OK.

Use the coding style described in the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook when writing finite state machines (FSMs). This
allows the Quartus II integrated synthesis and the Conformal LEC software to infer a
similar state machine for the same RTL code.

Black Boxes in the Conformal LEC Flow
The Quartus II software usually generates a flattened netlist; however, you must treat
some modules in the design as black boxes. The following is a list of some of these
modules:

■ LPMs and megafunctions without formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version, which consists of
the modules listed above and its implemented version, the modules must be treated
as black boxes by the Conformal LEC software. To facilitate the formal verification
flow, the Quartus II software reconstructs the hierarchy on the black boxes with a port
interface that is identical to the module on the golden side of the design.

If your golden netlist (.vqm netlist file from Synplify Pro or RTL) includes any design
entity not having a corresponding formal verification model, that entity is handled as
a black box with its boundary interface preserved. There are three types of black boxes
with their required user actions described in Table 19–2 on page 19–9.

Verilog Output Files (.vo) written by the Quartus II software contain the black box
hierarchy when you make an EDA Formal Verification Hierarchy assignment with the
value BLACKBOX.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 19: Cadence Encounter Conformal Support 19–9
Black Boxes in the Conformal LEC Flow
If this assignment is not made for a module, the Quartus II software implements that
module with logic cells. When this happens, the .vo netlist file no longer contains the
black box hierarchy and does not preserve the port interface, resulting in a mismatch
within the Conformal LEC software.

You can also use Tcl commands or the Quartus II GUI to set the black box property on
the entities, which the formal verification tool does not compare.

Tcl Command
Use the Tcl command shown in Example 19–5 to preserve the boundary interface of a
black box entity: dram.

GUI
To preserve the boundary interface of an entity using the GUI, make an EDA Formal
Verification Hierarchy assignment to the entity with the value BLACKBOX as shown in
Figure 19–3.

Table 19–2. Black Boxes and Required User Action

Type of Black Box Required User Action

Altera library of parameterized modules (LPMs) and
megafunctions.

No action required. The Quartus II software automatically
creates a black box list of components and preserves the
hierarchy.

Any parameterized entity other than those listed in the
Guidelines for Creating a Design for Use with the Encounter
Conformal and Quartus II Software topic in Quartus II Help.

User must designate the wrapper that instantiates the
parameterized entity as a black box.

Non-parameterized entities that the user wants to designate
as a black box.

User can designate the entity itself as a black box.

Example 19–5. Tcl Command to Create a Black Box

set_instance_assignment -name EDA_FV_HIERARCHY BLACKBOX -to | -entity dram

Figure 19–3. Setting the Black-Box Property on a Module
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm

19–10 Chapter 19: Cadence Encounter Conformal Support
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup
Files

The following steps describe how to set up the Quartus II software environment to
generate the post-fit .vo netlist file and the Conformal LEC script for use in formal
verification. With the exception of step 2, the steps are identical for both of the
Synthesis tools:

To create a new Quartus II project or open an existing project, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, click EDA Tool Settings.

If you are using Quartus II integrated synthesis, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select <None> from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list.

If you are using Synplify Pro, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design Entry/Synthesis.
Select Synplify Pro from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal Verification.
Select Conformal LEC from the Tool name list.

3. In the Category list, click the “+” icon to expand Compilation Process Settings,
and select Incremental Compilation. The Incremental Compilation page appears.

4. Select Full Incremental Compilation to turn on Incremental Compilation.

or

Turn on Incremental Compilation by typing the following Tcl command in the
Quartus II software Tcl console:

set_global_assignment -name INCREMENTAL_COMPILATION FULL_INCREMENTAL_COMPILATION

1 Altera requires that Incremental Compilation be turned on for Formal
Verification, and that your design does not contain any user-created
partitions. The incremental compilation feature is on by default.

5. In the Category list, click the “+” icon to expand Compilation Process Settings
and click Physical Synthesis Optimizations. The Physical Synthesis
Optimizations page appears.

6. Turn off Perform register retiming.

1 If Perform register retiming is not turned off, an error occurs during
compilation: “Physical Netlist Optimization Register retiming is not
supported by Formal Verification tool Conformal LEC”.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–11
Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
7. Under Optimize for fitting (physical synthesis for density), turn off both
Perform physical synthesis for combinational logic and Perform logic to
memory mapping to prevent logic from being mapped to RAMs.

Retiming a design, either during the synthesis step or during the fitting step,
usually results in moving and merging registers along the critical path and is not
well-supported by the equivalence checking tools. Because equivalence checkers
compare the cone of logic terminating at registers, do not use retiming to move the
registers during optimization in the Quartus II software.

f For more information about physical synthesis, refer to the Netlist Optimizations and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

8. Perform a full compilation of the design. On the Processing menu, click Start
Compilation, or click the Start Compilation icon on the Toolbar.

Quartus II Software Generated Files, Formal Verification Scripts, and
Directories

After successful compilation, the Quartus II software generates a list of files, formal
verification scripts, and directories in the <project_directory>/fv/conformal/ directory
(Table 19–3).

Table 19–3. Quartus II Software Compiler-Generated Files and Directories (Part 1 of 2)

File or
Directory Name Details

.vo file <proj rev>.vo The Quartus II software-generated netlist for formal verification.

Script file

<proj rev>.ctc
The <proj rev>.ctc file references <proj rev>.clg and <proj rev>.clr that read the
library files and black box descriptions. The <proj rev>.ctc file also references
the <proj rev>.cmc file containing information about the mapped points. (1)

<proj rev>.cec The <proj rev>.cec file contains information for instance equivalences.

<proj rev>.cep The <proj rev>.cep file contains information for black box pin equivalences in
the design.

<proj rev>.cmp The <proj rev>.cmp file contains information for the black box pin mapping
between the golden and revised sides. (2)

<proj rev>.cmc The <proj rev>.cmc file contains information about the additional points to be
mapped in addition to the points selected by the tool.

<proj rev>_trivial.cmc This <proj rev>_trivial.cmc file contains mapping information for all the key
points in the design. (3)

<proj rev>.clr The <proj rev>.clr file contains information about the macros and libraries for
the revised design.

<proj rev>.clg The <proj rev>.clg file contains information about the macros and libraries for
the golden design.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

19–12 Chapter 19: Cadence Encounter Conformal Support
Understanding the Formal Verification Scripts for Conformal LEC
The script file contains the setup and constraints information to use with the formal
verification tool. The file <entity>.v in the blackboxes directory contains the module
description of entities that are not defined in the formal verification library. The file
also contains entities that you specify as black boxes. For example, if there is a
reference to a black box for an instance of the ALTDPRAM megafunction in the
design, the blackboxes directory does not contain a module description for the
ALTDPRAM megafunction because it is defined in the altdpram.v file of the formal
verification library. When a module does not have an RTL description, or the
description exists only in the formal verification library and you do not want to
compare the module using formal verification, a file containing only the top-level
module description with port declaration is written out to the blackboxes directory
and read into the Conformal LEC software. To learn more about black boxes, refer to
“Black Boxes in the Conformal LEC Flow” on page 19–8.

Understanding the Formal Verification Scripts for Conformal LEC
The Quartus II software generates scripts to use with the Conformal LEC software.
This section elaborates on the details of the Conformal LEC commands used within
the scripts to help you compare the revised netlist with the golden netlist. In most
cases, you do not have to add any more Conformal LEC constraints to verify your
netlists.

A sample script generated by the Quartus II software is provided in “Conformal
Dofile/Script Example” on page 19–19.

Conformal LEC Commands within the Quartus II Software-Generated
Scripts

The value for the variable QUARTUS is the path to the Quartus II software installation
directory:

setenv QUARTUS <Quartus Installation Directory>

blackboxes
directory

<project directory>/fv/
conformal/<project rev>_
blackboxes

This directory contains top-level module descriptions for all the user-defined
black box entities and contains modules with definitions other than Verilog HDL
or VHDL, for example, Block Design File (.bdf) in the design directory
<project directory>/fv/conformal/<project rev>_blackboxes

Notes to Table 19–3:

(1) This file is used with the Conformal LEC software.
(2) This file is called from the <proj rev>.ctc script file. By default, the line where this file is called is commented out. These files are only useful

for HardCopy II device families.
(3) In some cases, Conformal LEC software performs incorrect key point mapping, resulting in formal verification mismatches. To overcome the

verification mismatches, the Quartus II software writes out the <proj rev>_trivial.cmc file that contains mapping information for all the key
points in the design. Reading this file during the formal verification setup can result in increased run time. Therefore, the Quartus II software
writes out the top-level script file <proj rev>.ctc with the command to read the <proj rev>_trivial.cmc file commented out. If the formal
verification results are not acceptable, the user can uncomment the command and read the <proj rev>_trivial.cmc file. The command in the
<proj rev>.ctc file is:
//Trivial mappings with same name registers
//read mapped points $PROJECT/fv/conformal/<proj rev>_trivial.cmc

Table 19–3. Quartus II Software Compiler-Generated Files and Directories (Part 2 of 2)

File or
Directory Name Details
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–13
Understanding the Formal Verification Scripts for Conformal LEC
The Quartus II software assigns the current working directory of the project to the
PROJECT variable. Use this variable to change the project directory to the directory
where the design files are installed when moving from a UNIX to a Windows
environment, or vice versa:

setenv PROJECT <Quartus Project Directory>

The following command reads both the golden and the revised netlists, along with the
appropriate library models:

read design <design files>

1 You must update the project location when the files are moved from the Windows
environment to the UNIX environment.

The post place-and-route netlist from the Quartus II software might contain net and
instance names that are slightly different from those of the golden netlist. By using the
following command, the Quartus II software defines temporary substitute string
patterns enabling the Conformal LEC software to automatically map key points when
the names are not the same:

add renaming rule <rule>

The Conformal LEC software employs three name-based methods to map key points
to compare the revised netlist with the golden netlist. Scripts set the correct method to
get the best results.

set mapping method <mapping_rule>

The Quartus II software performs several optimizations, including optimizing the
registers whose input is driven by a constant. Under these circumstances, for the
formal verification software to compare the netlists properly, the command set
flatten model is used with the option seq_constant.

set flatten model <flattening_rule>

When you use the command report black box, verify that the following modules are
listed as black boxes, along with any of the modules black boxed by the user, in both
the golden and revised netlists:

■ LPMs and megafunctions without the formal verification models

■ Encrypted IP functions

■ Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on multipliers for both
the golden and revised netlists:

set multiplier implementation <implementation_name>

If there are any combinational loops or instances of LPM_LATCH, the Quartus II
software cuts the loop at the same point using the following command on both the
golden and revised netlists:

add cut point
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–14 Chapter 19: Cadence Encounter Conformal Support
Understanding the Formal Verification Scripts for Conformal LEC
The Conformal LEC software does not always automatically map all of the keypoints,
or can incorrectly map some keypoints. To help the Conformal LEC software
successfully complete the mapping process, the Quartus II software records
optimizations performed on the netlist as a series of add mapped points in the
Conformal LEC <file_name>.cmc script.

add mapped points <key_points>

There are situations in which the inverter in front of the register is moved after the
register. In this situation, the following command is used:

add mapped points <key_points> -invert

The following command reads in the mapped point information from the specified
file:

read mapped points <file_name>.cmc

During the process of optimization, the Quartus II software might merge two registers
into one (Figure 19–4). The Quartus II software informs the formal verification tool
that the U1 and U2 registers are equivalent to each other using the following
command:

add instance equivalence <instance_pathname ..> [-Golden]

If the register duplication takes place, the following command is used:

add instance equivalence <instance_pathname ..> [-revised]

The following command is used when the inverter is moved beyond the register
along with either register duplication or merging:

add instance equivalences <instance_pathname>
[-invert <instance_pathname>]

At times, the register output is driven to a constant, either logic 0 or logic 1. The
Quartus II software sets the value of the register to a constraint using the add
instance constraint command. For more information about this command, refer to
“Stuck-at Registers” on page 19–5.

add instance constraint <constraint_value>

Figure 19–4. Instance Equivalence

Golden Revised

U1

U2

DFF

DFF

PO PO
DFF

U1
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–15
Comparing Designs Using Conformal LEC
Comparing Designs Using Conformal LEC
This section addresses using the Conformal LEC software to compare designs, and to
prove logical equivalence between two versions of the design.

Running the Conformal LEC Software from the GUI
To run the Conformal LEC software from the GUI, follow these steps:

1. Open the Conformal LEC software.

2. On the File menu, click Do Dofile.

3. Select the file <path to project directory>/fv/conformal/<proj rev>.ctc.

The Conformal LEC software GUI displays the comparison results (Figure 19–5). The
Golden window displays the original RTL description or the post synthesis .vqm
netlist file from Synplify Pro, and the Revised window displays the information from
the post-fit netlist generated by the Quartus II software. The message section at the
bottom of the window reports the verification results and the number of unmapped
and non-equivalent points found in the design.

To investigate the verification results, click the Mapping Manager icon in the toolbar,
or on the Tools menu, click Mapping Manager. The Conformal LEC software reports
the mapped, unmapped, and compared points in the Mapped Points, Unmapped
Points, and Compared Points windows, respectively.

f For more information about how to diagnose non-equivalent points, refer to the
Conformal LEC software user documentation.

Figure 19–5. Conformal LEC Software GUI Display of Functional Comparisons
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–16 Chapter 19: Cadence Encounter Conformal Support
Known Issues and Limitations
Running the Conformal LEC Software From a System Command Prompt
To run the Conformal LEC software without using the GUI, type the command shown
in Example 19–6 at a system command prompt.

To get a downloadable design example showing the formal verification flow with
Quartus II software, refer to the Formal Verification Design Example page of the
Altera website.

f For more information about the latest debugging tips and solutions for formal
verification flow between the Conformal LEC software and the Quartus II software,
go to www.altera.com and perform an advanced search with keywords “formal
verification”.

Known Issues and Limitations
The following known issues and limitations can occur when using the formal
verification flow described in this chapter:

■ When a port on a black box entity drives two or more signals within the black box,
the Quartus II software pushes the connections outside of the black box, and
creates that many ports on the black box. This problem is only associated with
Stratix II and HardCopy II designs.

The additional ports on the black box are named _unassoc_inputs_[] and
_unassoc_outputs_[] (Figure 19–6). This issue is generally associated with reset
and enable signals. Figure 19–6 shows an example in which the reset pin is split
into two ports outside of the black box and the _unassoc_inputs_[] port is driven
by the clkctrl block. In such situations, the .vo netlist file generated by the
Quartus II software has signals driving these black box ports, but golden RTL does
not contain any signals to drive the _unassoc_inputs_[] port, resulting in a formal
verification mismatch of the black box. The black box module definition generated
by the Quartus II software in the directory
<Quartus_project>\fv\conformal*_blackboxes contains these additional
_unassoc_inputs_[] and _unassoc_outputs_[] ports. This black box module is
read on both the golden and revised sides of the design, which results in
unconnected ports on the golden side and formal verification mismatches.

Figure 19–6 shows the creation of the _unassoc_inputs_[] and
_unassoc_outputs_[] ports for the reset signal.

Example 19–6. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui

Figure 19–6. Creation of _unassoc_inputs_[] and _unassoc_outputs_[]

reset

clkctrl _unassoc_inputs_[]

reset

_unassoc_outputs_[]
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

www.altera.com/support/examples/quartus/exm-formal-verification.html
www.altera.com

Chapter 19: Cadence Encounter Conformal Support 19–17
Known Issues and Limitations
Another common occurrence of this issue is in HardCopy II designs. Whenever a
port drives large fan-out within the black box, the Quartus II software inserts a
buffer on the net and moves the logic outside of the black box (Figure 19–7).

To fix the problem of _unassoc_input_[] ports causing black box mismatches, use
Conformal LEC commands to change the type of the black box unassoc_input_[]
keypoint to a primary output keypoint, and then mark the appropriate pin
equivalences. Similarly, to fix the problem of register mismatches due to
_unassoc_output_[] pins from black boxes, use Conformal LEC commands to
change the type of the blackbox _unassoc_output_[] keypoint to a primary input,
and then mark the equivalent pins as such. The commands to perform these
actions are written in the <proj rev>.cep file.

Figure 19–7 shows the creation of _unassoc_inputs_[] for a signal with large
fan-out.

■ In designs with combinational feedback loops, the Conformal LEC software can
insert extra cut points in the revised netlist, causing unmapped points and
ultimately verification mismatches.

■ For Cyclone II designs, Conformal LEC might report non-equivalent flipflops and
extra cut points for the revised (post-fit) design under the following conditions:

■ when your HDL source code instantiates the lpm_ff primitive with an
asynchronous load signal aload (with or without any other asynchronous
control signals) and,

■ when the asynchronous clear signal aclr and asynchronous set signal aset are
used together.

To avoid this problem, ensure that there is a wrapper module or entity around the
lpm_ff instantiation, and black box the module or entity that instantiates the
lpm_ff primitive.

■ For Stratix III designs, the Conformal LEC software creates cut points for the
combinational loops on the golden side and might fail equivalence checking due
to improper mapping. The combinational loops are due to logic around the
registers emulating multiple sets, resets, or both. These cut points are also reported
during the mapping step in Quartus II software with warning messages. You can
add Conformal LEC commands manually to add cut points, which can result in
proper mapping and formal verification.

Figure 19–7. Creation of _unassoc_inputs_[] for a Signal with Large Fan-out

Signal A

_unassoc_inputs_[] Black Box

Signal A
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–18 Chapter 19: Cadence Encounter Conformal Support
Black Box Models
■ To perform formal verification, certain synthesis optimization options (such as
register retiming, optimization through black box hierarchy boundaries, and
disabling the ROM and shift register inference) are turned off, which can have an
impact on the area resource and performance.

■ RAM and ROM instantiations, inferences, or both are not verified using formal
verification.

■ Incremental compilation for the purpose of formal verification does not support
user-created design partitions.

■ Formal verification does not support clear box netlists due to unconnected ports
on its WYSIWYG instances.

■ Formal verification does not support VHDL megafunction variations due to
undriven ports on the megafunctions.

■ When a black box contains bidirectional ports, the Quartus II software fails to
reconstruct the hierarchy. For this reason, the black box is represented by a flat
netlist, resulting in formal verification mismatches.

■ ROMs in the design must be black boxed before compilation using Quartus II
integrated synthesis, because the Quartus II software might perform some
optimizations on the ROM, resulting in formal verification mismatches.

■ The Conformal LEC software might report mismatches or abort comparisons of
some key points when a DSP megafunction is implemented in LEs by the
Quartus II software, due to implicit optimizations within the DSP and the
complexity of the multiplier logic in terms of LEs.

■ Unused logic optimized within and around a black box by the Quartus II software
can result in a black-box interface different from the interface in the synthesized
.vqm netlist file.

Black Box Models
The black box models are interface definitions of entities, such as primitives, atoms,
LPMs, and megafunctions. These models have a parameterized interface, and do not
contain any definition of behavior. They are designed and tested specifically to work
with the Conformal LEC software, which uses these models along with your design to
generate black boxes for instances of the entity with varying sets of parameters in the
design.

h For a complete list of supported black box models, refer to Guidelines for Creating a
Design for Use with the Encounter Conformal and Quartus II Software in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/eda/verification/conformal/eda_gid_lec_fv.htm

Chapter 19: Cadence Encounter Conformal Support 19–19
Conformal Dofile/Script Example
Conformal Dofile/Script Example
The following example script (Example 19–7), generated by the Quartus II software,
lists some of the setup commands used in Conformal LEC software.

Example 19–7. Conformal LEC Script (Part 1 of 2)

// Copyright (C) 1991-2008 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.

// Script generated by the Quartus II software

reset
set system mode setup
set log file mfs_3prm_1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion_library black_box clock_hold compile_off compile_on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem_rowselect multi_port multiplier operand state_vector template
add notranslate module alt3pram -golden
add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT /net/quark/build/ajaishan/quartus_regtest/eda/fv/conformal/synplify/
stratix/mfs_3prm_1a_v1_/mfs_3prm_1a/qu_allopt
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

19–20 Chapter 19: Cadence Encounter Conformal Support
Conformal Dofile/Script Example
read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -golden

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
$PROJECT/p3rm_block.v \
$PROJECT/mfs_3prm_1a.v \
-verilog2k -merge none -golden

read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -revised

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clr \
$PROJECT/fv/conformal/mfs_3prm_1a.vo \
-verilog2k -merge none -revised

// add ignored inputs _unassoc_inputs_* -all -revised
add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 "_I\/" "\/" -revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport_unreach
set mapping method -nobbox_name_match
set flatten model -seq_constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs_3prm_1a.cec
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs_3prm_1a.cmc

// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cmp
map key points
remodel -seq_constant -repeat
add compare points -all
compare
usage
// exit -f

Example 19–7. Conformal LEC Script (Part 2 of 2)
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Chapter 19: Cadence Encounter Conformal Support 19–21
Conclusion
Conclusion
Formal verification software enables verification of the design during all stages from
RTL to placement and routing. Verifying designs takes more time as designs increase
in size. Formal verification is a technique that helps reduce the time needed for your
design verification cycle.

Document Revision History
Table 19–4 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

f Take an online survey to provide feedback about this chapter.

Table 19–4. Document Revision History

Date Version Changes

December 2010 10.1.0 Changed to new document template. Removed Table 21-1.

July 2010 10.0.0 Updates for new GUI changes, and added link to Help.

November 2009 9.1.0 Updated “Black Boxes in the Encounter Conformal Flow” section.

March 2009 9.0.0 Updated Table 21-1.

November 2008 8.1.0

■ Changed to 8-1/2 x 11 page size.

■ Added support for Stratix IV devices.

■ Added support for Cadence Conformal LEC version 7.2 and Synplify Pro version 9.6.2.

May 2008 8.0.0

■ Added support for Cyclone III devices.

■ Updated “Black Boxes in the Encounter Conformal Flow” section.

■ Updated Table 18–1 and Table 18–5.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

19–22 Chapter 19: Cadence Encounter Conformal Support
Document Revision History
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

December 2010 Altera Corporation
Section VI. Device Programming
The Quartus® II software offers a complete software solution for system designers
who design with Altera® FPGA and CPLD devices, including device programming.
The Quartus II Programmer is part of the Quartus II software package that allows you
to program Altera CPLD and configuration devices, and configure Altera FPGA
devices. This section describes how you can use the Quartus II Programmer to
program or configure your device after you successfully compile your design.

This section includes the following chapter:

■ Chapter 20, Quartus II Programmer
Quartus II Handbook Version 10.1 Volume 3: Verification

VI–2 Section VI: Device Programming
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

Quartus II Handbook Version 10.1 Volume 3: Verifica
December 2010

QII53022-10.1.0

© 2010 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

December 2010
QII53022-10.1.0
20. Quartus II Programmer
This chapter describes how to program and configure Altera® CPLD, FPGA, and
configuration devices with the Quartus® II Programmer.

The Quartus II software offers a complete software solution for system designers who
design with Altera FPGA and CPLD devices. After you compile your design, you can
use the Quartus II Programmer to program or configure your device.

This chapter contains the following sections:

■ “Programming Flow”

■ “Quartus II Programmer GUI” on page 20–3

■ “Programming and Configuration Modes” on page 20–5

■ “Scripting Support” on page 20–10

h For more information about how to use the Quartus II Programmer GUI to program
and configure your device, refer to Programming Devices in Quartus II Help.

Programming Flow
The programming flow is as follows:

1. Compile your design, such that the Quartus II Assembler generates the
programming or configuration file.

2. Perform programming or configuration file conversion for different configuration
devices, or optional programming and configuration file creation.

3. Configure or program the FPGA, CPLD, or configuration devices using the
programming or configuration file with the Quartus II Programmer.
tion

Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_prog_single_as_device.htm
https://www.altera.com/servlets/subscriptions/alert?id=QII53022

20–2 Chapter 20: Quartus II Programmer
Programming Flow
Figure 20–1 shows the programming file generation flow.

Table 20–1 shows the programming and configuration file formats supported by
Altera FPGAs, CPLDs, and configuration devices.

h For more information about Chain Description Files (.cdf), refer to About Programming
in Quartus II Help.

Figure 20–1. Programming File Generation Flow

Quartus II Assembler

FPGA
.sof

CPLD
.pof

Create Optional
Programming Files

Convert
Programming Files

EPC or
EPCS
.pof

.jam
.jbc

Quartus II Programmer
.cdf

Table 20–1. Programming and Configuration File Format

File Format FPGA CPLD Configuration
Device

Serial
Configuration

Device

SRAM Object File (.sof) v — — —

Programmer Object File (.pof) — v v v
JEDEC JESD71 STAPL Format
File (.jam) v v v —

Jam Byte Code File (.jbc) v v v —
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_intro.htm

Chapter 20: Quartus II Programmer 20–3
Quartus II Programmer GUI
Figure 20–2 shows the programming flow using the Quartus II Programmer.

Quartus II Programmer GUI
The Quartus II Programmer is a window in which you can add your programming
and configuration files, specify the programming options and hardware, and then
proceed with the programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer. The
Quartus II message window reports the status of each operation, whether
programming is successful or not.

h For a description of the Programmer window, refer to Programmer Window in
Quartus II Help. For a description of options in the Tools menu, refer to Programmer
Page (Options Dialog Box) in Quartus II Help.

Figure 20–2. Programming Flow

Open Quartus II
Programmer

Hardware setup

Specify programming/
configuration file

Add device to Quartus II
Programmer

Start operation

Select programming/
configuration mode

Select programming/
configuration options

Finish

Yes

No

Need to bypass
other device
in the chain?

Start
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_image.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_com_options_tab.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_com_options_tab.htm

20–4 Chapter 20: Quartus II Programmer
Quartus II Programmer GUI
Hardware Setup
The Quartus II Programmer provides the flexibility to choose a download cable or the
programming hardware. Before you can program or configure your device, you must
have the correct hardware setup.

h For hardware settings, refer to Setting Up Programming Hardware in Quartus II Help.

f For more information about programming hardware driver installation, refer to the
Design Software Support page on the Altera website.

JTAG Settings
The JTAG server allows programs such as the Quartus II Programmer to access the
JTAG hardware. You can also access the JTAG download cable or programming
hardware connected to a remote computer through the JTAG server of that computer.
With the JTAG server, you can control the programming or configuration of devices
from a single computer through other computers at remote locations. The JTAG server
uses the TCP/IP communications protocol.

h For more information about JTAG settings, refer to Using the JTAG Server in Quartus II
Help.

JTAG Chain Debugger Tool
The JTAG Chain Debugger tool is a Quartus II Programmer feature that allows you to
test the JTAG chain integrity and detect intermittent failures of the JTAG chain. In
addition, the tool allows you to shift in JTAG instructions and data through the JTAG
interface and step through the test access port (TAP) controller state machine for
debugging purposes.

JTAG Chain Debugger Example
To set and send the USERCODE JTAG instruction in your device with the JTAG Chain
Debugger, follow these steps:

1. On Assignment menu, click Device.

2. Click Device and Pin Option.

3. In the General list, type abcdefcb in the JTAG user code (32-bit hexadecimal)
field.

4. Click OK.

5. Click OK.

6. On the Tools menu, click JTAG Chain Debugger.

7. In the JTAG Chain Debugger dialog box, click the JTAG Chain Debugging tab.

8. In the Command pulldown list, select Scan Instruction Register.

9. In the TAP State pulldown list, select End scan in RTI state.

10. In the Clocks field, type 10.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_add_hardware.htm
http://www.altera.com/support/software/sof-index.html
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_add_server.htm

Chapter 20: Quartus II Programmer 20–5
Programming and Configuration Modes
11. In the TDI field, type 0x07, and then click Run. The TDO field displays 0x155.

To read the USERCODE JTAG instruction with the JTAG Chain Debugger, follow these
steps:

1. In the Command pulldown list, select Scan Data Register.

2. In the TAP State pulldown list, select End scan in RTI state.

3. In the Clocks field, type 40.

4. In the TDI field, type 0000 0000 or any value, and then click Run. The TDO field
displays 0x00ABCDEFAB.

h For more information, refer to Using the JTAG Chain Debugger in Quartus II Help.

Other Programming Tools
The following section describes other programming tools in more detail.

Stand-Alone Quartus II Programmer
If you do not have the full version of the Quartus II software, Altera offers the free
Quartus II Stand-Alone Programmer. The stand-alone programmer has the same full
functionality as the Quartus II Programmer in the Quartus II software. You can
download the Quartus II Stand-Alone Programmer from the Download Center on the
Altera website.

Programming and Configuration Modes
The following section describes the Quartus II Programmer and the Programmer
configuration modes in more detail.

Configuration Modes
The Quartus II Programmer supports four configuration modes, including JTAG,
passive serial (PS), active serial (AS), and in-socket modes (ISM).

Table 20–2 shows the programming and configuration modes supported by Altera
devices.

Table 20–2. Programming and Configuration Modes

Mode FPGA CPLD Configuration Device Serial Configuration
Device

JTAG v v v —

PS v — — —

AS — — — v
In-Socket Programming — v (1) v v
Notes to Table 20–2:

(1) MAX II CPLDs do not support in-socket programming mode.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_proc_jtag_debug.htm
https://www.altera.com/support/software/download/sof-download_center.html

20–6 Chapter 20: Quartus II Programmer
Programming and Configuration Modes
With the Quartus II Programmer, you can program and configure one or more
devices. This section provides references to Quartus II Help procedures that describe
how to program or configure Altera devices, and how to bypass Altera and
non-Altera devices in a JTAG chain.

h For more information about programming or configuring a single device in JTAG and
AS programming modes, refer to Programming Devices in Quartus II Help. For more
information about how to use the different configuration modes, refer to About
Programming in Quartus II Help.

f For more information about JTAG configuration or programming mode and JTAG pin
connections, refer to the Configuration Handbook, or the device handbook or data sheet
for the respective FPGA, CPLD, or configuration device.

f For more information about PS configuration mode and PS pin connection, refer to
the Configuration Handbook or the chapter about configuration in the appropriate
FPGA device handbook.

f For more information about programming the serial configuration device,
configuring the FPGA with the serial configuration device through AS mode, or the
AS pin connections, refer to the Serial Configuration Data Sheet in the Configuration
Handbook or the chapter about configuration in the appropriate FPGA device
handbook.

f For a list of programming adapters available for Altera devices, refer to
www.altera.com.

Design Security Key Programming
The Quartus II Programmer supports the generation of encryption key programming
files and encrypted configuration files for Altera FPGAs that support the design
security feature. You can also use the Quartus II Programmer to program the
encryption key into the FPGA.

f For more information about using the design security feature with the Quartus II
software, refer to AN 341: Using the Design Security Feature in Stratix II and Stratix II GX
Devices and AN 512: Using the Design Security Feature in Stratix III Devices.

The Quartus II software can generate optional programming or configuration files in
various formats that you can use with programming tools other than the Quartus II
Programmer. When you compile a design in the Quartus II software, the Assembler
automatically generates either a .sof or .pof. The Assembler also allows you to
convert FPGA configuration files to programming files for configuration devices.

h For more information, refer to About Optional Programming Files in Quartus II Help.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_view_convert.htm
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/an/an512.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_prog_single_as_device.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_intro.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_intro.htm
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com

Chapter 20: Quartus II Programmer 20–7
Programming and Configuration Modes
f For more information about the programming and configuration file formats, refer to
file format topics in the Quartus II Help or the Configuration File Formats chapter of the
Configuration Handbook. For more information about using the .jam and .jbc
programming files with the Jam STAPL Player, Jam STAPL Byte-Code Player, and the
quartus_jli command-line executable, refer to AN 425: Using Command-Line Jam
STAPL Solution for Device Programming.

Generating Secondary Programming Files
The Quartus II software generates programming files of various formats for use with
different programming tools.

Table 20–3 lists the file types generated by the Quartus II software and supported by
the Quartus II Programmer.

h For more information, refer to Generating Secondary Programming Files in Quartus II
Help.

Convert Programming Files Dialog Box
The Convert Programming Files dialog box contains the following sections:

■ Conversion setup file—Allows you to import conversion setup information from
a file and save the conversion setup information for future use.

■ Output programming file—Allows you to specify programming file types,
configuration device types and configuration modes, file names, and
Remote/Local update difference files. You can also add new files.

■ Input programming file—Allows you to add file for the conversion.

Table 20–3. File Types Generated by the Quartus II Software and Supported by the Quartus II
Programmer

File Type Generated by the Quartus II
Software

Supported by the Quartus II
Programmer

.sof v v

.pof v v

.jam v v

.jbc v v
JTAG Indirect
Configuration File (.jic)

v v
.svf v —

In System Configuration
File (.isc)

v —

Hexadecimal
(Intel-Format) Output
File (.hexout)

v —

Raw Binary File (.rbf) v —

Tabular Text File (.ttf) v —

Raw Programming Data
File (.rpd)

v —
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/an/AN425.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_pro_set_up_output_prog_files.htm

20–8 Chapter 20: Quartus II Programmer
Programming and Configuration Modes
■ Advanced Options—Allows you to debug configuration issues.

c Use the Advanced option only when you encounter an issue with device
configuration.

The Convert Programming Files dialog box in the Programmer allows you to convert
programming files from one file format to another. For example, to store the FPGA
data in configuration devices, you can convert the .sof data to another format and
then program the configuration device. You can also convert FPGA data into other file
formats, including .pof, .hexout, .rbf, .rpd, or .jic.

You must have the Programmer open to access the Convert Programming Files
dialog box. On the Quartus II main menu, click File, and then click Convert
Programming Files. You can then perform the following tasks:

■ Configure multiple devices, such as combining multiple .sof files into one .pof.

■ Configure multiple devices with an external host, such as a microprocessor or
CPLD. For example, you can combine multiple .sof files into one configuration
file.

f For more information about converting programming files with the Quartus II
software, refer to the Configuration File Formats chapter of the Configuration Handbook.

You can use the Advanced option in the Convert Programming Files dialog box to
debug your configuration.

1 When you change settings in the Advanced option, the change affects .pof, .jic, .rpd,
and .rbf files.

You must choose the setting that applies to your Altera device. You can force the
Quartus II software to enable the option by turning the option on or off in the
Advanced Options dialog box.

Table 20–4 describes the Advanced Options settings in more detail.

Table 20–4. Advanced Options Settings

Option Setting Description

Disable EPCS ID check

■ FPGA skips the EPCS silicon ID verification.

■ Default setting check box is grayed out (EPCS ID check is enabled).

■ Applies to the single- and multi-device AS configuration modes on all FPGA devices.

Disable AS mode
CONF_DONE error check

■ FPGA skips the CONF_DONE error check.

■ Default setting check box is grayed out (EPCS ID check is enabled).

■ Applies to single- and multi-device (AS) configuration modes on all FPGA devices.

Program Length Count
(PLC) settings

■ Specifies the offset you can apply to the computed PLC of the entire bitstream.

■ Default setting is 0. The value should be an integer.

■ Applies to single- and multi-device (AS) configuration modes on all FPGA devices.

Post-chain bitstream pad
bytes

■ Specifies the number of pad bytes appended to the end of an entire bitstream.

■ Default value is set to 0 if the bitstream of the last device is uncompressed. Set to 2 if the
bitstream of the last device is compressed.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 20: Quartus II Programmer 20–9
Programming and Configuration Modes
Table 20–5 lists symptoms you may encounter if a configuration fails, and describes
the Advanced Options you must use to debug your configuration.

Post-device bitstream pad
bytes

■ Specifies the number of pad bytes appended to the end of the bitstream of a device.

■ Default value is 0. No negative integer.

■ Applies to all single-device configuration modes on all FPGA devices.

Bitslice padding value

■ Specifies the padding value used to prepare bitslice configuration bitstreams, such that all
bitslice configuration chains simultaneously receive their final configuration data bit.

■ Default value is 1. Valid setting is 0 or 1.

■ Use only in 2, 4, and 8-bit PS configuration mode, when you use an EPC device with the
decompression feature enabled.

■ Applies to all FPGA devices that support enhanced configuration devices.

Table 20–4. Advanced Options Settings

Option Setting Description

Table 20–5. Failure Symptoms and Options Settings

Failure Symptoms Disable EPCS
ID Check

Disable AS
Mode

CONF_DONE
Error Check

PLC Settings
Post-Chain
Bitstream
Pad Bytes

Post-Device
Bitstream
Pad Bytes

Bitslice
Padding

Value

Configuration failure
occurs at the end of a
configuration cycle.

Decompression feature
enabled.

Encryption feature
enabled.

— — —
Use only for
multi-device

chain.

Use only for
single-device

chain.
—

CONF_DONE stays Low at
the end of a configuration
cycle.

— —

Start with
positive

offset to the
PLC settings.

Use only for
multi-device

chain.

Use only for
single-device

chain.
—

CONF_DONE goes High
momentarily at the end of
a configuration cycle.

— —

Start with
negative

offset to the
PLC settings.

— — —

FPGA does not enter user
mode even though
CONF_DONE goes High.

— — —
Use only for
multi-device

chain.

Use only for
single-device

chain.
—

Configuration failure
occurs at the beginning of
a configuration cycle.

— — — — — —

Newly introduced EPCS,
such as EPCS128.

— — — — — —

Failure in .pof generation
for EPC device using
Quartus II Convert
Programming File Utility
when the decompression
feature is enabled.

— — — — — —
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

20–10 Chapter 20: Quartus II Programmer
Scripting Support
The Input files to convert option in the Convert Programming Files dialog box
allows you to add one or more files for the conversion process after specifying the the
output file types in the Output Programming Files option.

f For more information about converting programming files with the Quartus II
software, refer to the Configuration File Formats chapter of the Configuration Handbook.

h For more information about the Convert Programming Files dialog box, refer to
Convert Programming Files Dialog Box in Quartus II Help.

Flash Loaders
Parallel and serial configuration devices do not support the JTAG interface. You are
not able to program parallel and serial configuration devices directly through normal
JTAG programming. You can use a flash loader to program serial configuration
devices in-system via the JTAG interface. To do so, use an FPGA as a bridge between
the JTAG interface and the serial configuration device. Altera supports parallel and
serial flash loaders.

h For more information, refer to About Flash Loaders in Quartus II Help.

Scripting Support
In addition to the Quartus II Programmer GUI, you can use the Quartus II
command-line programmer (quartus_pgm) to enter commands. The programmer
accepts the .pof, .sof, and .jic programming or configuration files and Chain
Description Files (.cdf).

Example 20–1 shows a command that programs a device:

Where:

■ -c byteblasterII specifies the ByteBlaster™ II download cable

■ -m jtag specifies the JTAG programming mode

■ -o bpv represents the blank-check, program, and verify operations

■ design.pof represents the .pof used for the programming

The Programmer automatically executes the erase operation before programming the
device.

h You can also run the procedures for the programmer in a Tcl script. For more
information about scripting command options, refer to About Quartus II Scripting in
Quartus II Help.

Example 20–1. Programming a Device

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof r
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_com_convert.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_com_convert.htm
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/reference/scripting/tcl_view_using_tcl_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/program/pgm/pgm_view_pfl.htm

Chapter 20: Quartus II Programmer 20–11
Conclusion
The jtagconfig Debugging Tool
You can use the jtagconfig command-line utility (which is similar to the auto detect
operation in the Quartus II Programmer) to check the devices in a JTAG chain and the
user-defined devices.

For more information about the jtagconfig utility, type one of the following
commands at the command prompt:

1 The help switch does not reference the -n switch, which you may find to be the most
useful switch. The jtagconfig -n command shows each node for each jtag device.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2
of the Quartus II Handbook. For information about all settings and constraints in the
Quartus II software, refer to the Quartus II Settings File Manual. For more information
about command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Conclusion
The Quartus II Programmer offers you a wide variety of options to program and
configure your Altera devices. With the Quartus II Programmer, the Quartus II
software provides you with a complete solution for your FPGA or CPLD design
prototyping, which can also be performed in the production environment.

Document Revision History
Table 20–6 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Example 20–2.

jtagconfig –h r
jtagconfig –-help r

Table 20–6. Document Revision History

Date Version Changes

December 2010 10.1.0

■ Changed to new document template.

■ Updated “JTAG Chain Debugger Example” on page 20–4.

■ Added links to Quartus II Help.

■ Reorganized chapter.

July 2010 10.0.0
■ Added links to Quartus II Help.

■ Deleted screen shots.

November 2009 9.1.0 No change to content.

March 2009 9.0.0

■ Added a row to Table 21–4.

■ Changed references from “JTAG Chain Debug” to “JTAG Chain Debugger”.

■ Updated figures.
December 2010 Altera Corporation Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

20–12 Chapter 20: Quartus II Programmer
Document Revision History
f Take an online survey to provide feedback about this handbook chapter.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

http://www.surveygizmo.com/s/91914/technical-documentation-survey

December 2010 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the Altera® Quartus® II
design software, version 10.1.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Third-Party Software Product Information
Third-party software products described in this handbook are not Altera products, are
licensed by Altera from third parties, and are subject to change without notice.
Updates to these third-party software products may not be concurrent with Quartus II
software releases. Altera has assumed responsibility for the selection of such third-
party software products and its use in the Quartus II 10.1 software release. To the
extent that the software products described in this handbook are derived from third-
party software, no third party warrants the software, assumes any liability regarding
use of the software, or undertakes to furnish you any support or information relating
to the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER WHICH
THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND THIRD-PARTY
LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT TO THE USE OF
SUCH THIRD-PARTY SOFTWARE CODE OR DOCUMENTATION IN THE
SOFTWARE, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT. For more information, including the latest available version
of specific third-party software products, refer to the documentation for the software
in question.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Quartus II Handbook Version 10.1 Volume 3: Verification

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Quartus II Handbook Version 10.1 Volume 3: Verification December 2010 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Quartus II Handbook Version 10.1 Volume 1: Design and Synthesis
	Contents
	Chapter Revision Dates
	Section I. Design Flows
	1. Design Planning with the Quartus II Software
	Creating Design Specifications
	Intellectual Property Selection
	System Design
	Device Selection
	Device Migration Planning

	Planning for Device Programming or Configuration
	Early Power Estimation
	Early Pin Planning and I/O Analysis
	Simultaneous Switching Noise Analysis

	Selecting Third-Party EDA Tool Flows
	Synthesis Tools
	Simulation Tools
	Formal Verification Tools

	Planning for On-Chip Debugging Options
	Design Practices and HDL Coding Styles
	Design Recommendations
	Recommended HDL Coding Styles
	Managing Metastability

	Planning for Hierarchical and Team-Based Design
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Planning Design Partitions and Floorplan Location Assignments

	Fast Synthesis and Early Timing Estimation
	Conclusion
	Document Revision History

	2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Deciding Whether to Use an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Capabilities Available When A Design Has No Partitions

	Incremental Compilation Flow With Design Partitions
	Team-Based Design Flows and IP Delivery

	Incremental Compilation Summary
	Steps for Incremental Compilation
	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Creating Design Partitions
	Creating Design Partitions in the Project Navigator
	Creating Design Partitions in the Design Partitions Window
	Creating Design Partitions With the Design Partition Planner
	Creating Design Partitions With Tcl Scripting
	Automatically-Generated Partitions

	Common Design Scenarios Using Incremental Compilation
	Reducing Compilation Time When Changing Source Files for One Partition
	Optimizing a Timing-Critical Partition
	Adding Design Logic Incrementally or Working With an Incomplete Design
	Debugging Incrementally With the SignalTap II Logic Analyzer

	Deciding Which Design Blocks Should Be Design Partitions
	Impact of Design Partitions on Design Optimization
	Design Partition Assignments Compared to Physical Placement Assignments
	Using Partitions With Third-Party Synthesis Tools
	Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	Other Synthesis Tools

	Assessing Partition Quality
	Partition Statistics Reports
	Partition Timing Reports
	Incremental Compilation Advisor

	Specifying the Level of Results Preservation for Subsequent Compilations
	Netlist Type for Design Partitions
	Fitter Preservation Level for Design Partitions
	Where Are the Netlist Databases Saved?
	Deleting Netlists
	What Changes Initiate a Partition’s Automatic Resynthesis?
	Resynthesis Due to Source Code Changes
	Forcing Use of the Compilation Netlist When a Partition has Changed

	Exporting Design Partitions from Separate Quartus II Projects
	Preparing the Top-Level Design
	Empty Partitions

	Project Management— Making the Top-Level Design Available to Other Designers
	Distributing the Top-Level Quartus II Project
	Generating Design Partition Scripts

	Exporting Partitions
	Viewing the Contents of a Quartus II Exported Partition File (.qxp)
	Integrating Partitions into the Top-Level Design
	Integrating Assignments from the .qxp
	Integrating Encrypted IP Cores from .qxp Files
	Advanced Importing Options

	Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	Using an Exported Partition to Send to a Design Without Including Source Files
	Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Designing in a Team-Based Environment
	Enabling Designers on a Team to Optimize Independently
	Resolving Assignment Conflicts During Integration
	Importing a Partition to be Instantiated Multiple Times

	Performing Design Iterations With Lower-Level Partitions

	Creating a Design Floorplan With LogicLock Regions
	Creating and Manipulating LogicLock Regions
	Changing Partition Placement with LogicLock Changes
	Taking Advantage of the Early Timing Estimator

	Incremental Compilation Restrictions
	When Timing Performance May Not Be Preserved Exactly
	When Placement and Routing May Not Be Preserved Exactly
	Using Incremental Compilation With Quartus II Archive Files
	Limitations for HardCopy Compilation and Migration Flows
	Formal Verification Support
	SignalProbe Pins and Engineering Change Orders
	SignalTap II Logic Analyzer in Exported Partitions
	External Logic Analyzer Interface in Exported Partitions
	Assignments Made in HDL Source Code in Exported Partitions
	Design Partition Script Limitations
	Warnings About Extra Clocks Due to Design Partition Scripts
	Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Design Partition Scripts
	Wildcard Support in Design Partition Scripts
	Derived Clocks and PLLs in Design Partition Scripts
	Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	Virtual Pin Timing Assignments in Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	Restrictions on Megafunction Partitions
	Register Packing and Partition Boundaries
	I/O Register Packing

	Scripting Support
	Creating Design Partitions
	Enabling or Disabling Design Partition Assignments During Compilation
	Setting the Netlist Type
	Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	Preserving High-Speed Optimization
	Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	Generating Design Partition Scripts
	Exporting a Partition
	Importing a Partition into the Top-Level Design
	Makefiles
	Scripting and Command-Line Application Examples
	Reducing Opening a Project, Creating Design Partitions, and Performing an Initial Compilation
	Reducing Compilation Time When Changing a Source File for One Partition— Command-Line Example
	Optimizing the Placement for a Timing-Critical Partition

	Conclusion
	Document Revision History

	3. Quartus II Support for HardCopy Series Devices
	HardCopy Series Design Benefits
	Quartus II Features for HardCopy Planning
	HardCopy Development Flow
	Designing the FPGA First
	Designing the HardCopy Device First

	HardCopy Companion Device Selection
	HardCopy Utilities
	Companion Revisions
	Compiling the HardCopy Companion Revision
	Comparing HardCopy and FPGA Companion Revisions
	Generating a HardCopy Handoff Report
	Archiving HardCopy Handoff Files
	HardCopy Advisor

	HardCopy Device Resource Guide
	HardCopy Recommended Settings in the Quartus II Software
	Limit DSP and RAM to HardCopy Device Resources
	Enabling Design Assistant to Run During Compile
	Timing Settings
	Constraints for Clock Effect Characteristics
	Quartus II Software Features Supported for HardCopy Designs
	Physical Synthesis Optimization
	LogicLock Regions
	PowerPlay Power Analyzer
	Incremental Compilation

	HardCopy Design Readiness Check
	Turning the HardCopy Design Readiness Check On and Off
	Setting Check
	Summary
	Global Setting
	Instance Setting
	Operating Setting

	I/O Check
	Input Pin Placement for Global and Regional Clock

	PLL Usage Check
	PLL Real-Time Reconfigurable Check
	PLL Clock Outputs Driving Multiple Clock Network Types Check
	PLL with No Compensation Mode Check
	PLL with Normal or Source Synchronous Mode Feeding Output Pin Check

	RAM Usage Check
	Initialized Memory Dependency Testing

	ALTGX Usage Check

	Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
	Migrating One-to-One Changes
	Migrating Changes that Must Be Implemented Differently
	Changes that Cannot be Migrated
	Overall Migration Flow
	Preparing the Revisions
	Applying ECO Changes

	Formal Verification of FPGA and HardCopy Revisions
	HardCopy Floorplan View

	Document Revision History

	4. Quartus II Design Separation Flow
	Design Flow Overview
	Creating Design Partitions for the Design Separation Flow
	Merging PLL Resources
	Avoiding Multiple Design Partitions With a Secured Region

	Creating a Design Floorplan with Secured Regions
	Using Security Attributes
	Using Secured Regions
	Adding I/O Pins as Members of Secured Regions
	Using Security Routing Interfaces

	Making Design Separation Flow Location Assignments in the Chip Planner
	Understanding Fencing Regions
	Creating Non-Rectangular Regions
	Guidelines for the Relative Placement of Secured LogicLock Regions
	Creating a Complete Floorplan
	Ensuring Routability Between Regions
	Ensuring Planarity
	Placing Physical Resources

	Making Signal Security Assignments
	Understanding Signal Names
	Working with Global Signals

	Assigning I/O Pins
	Making Post Compilation Edits
	Routing Restrictions
	Number of Signals in Routing Interfaces

	Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow
	Report Panels
	Secured LogicLock Region Summary
	Security Routing Interfaces
	Secured LogicLock Region Inputs and Outputs
	Security I/O Bank Usage

	Quartus Settings File Syntax
	LL_SECURITY_ROUTING_INTERFACE
	LL_REGION_SECURITY_LEVEL
	LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE
	LL_SIGNAL_SECURITY_LEVEL

	Document Revision History

	Section II. System Design with Qsys
	5. Creating a System with Qsys
	Qsys GUI
	Qsys Component Library
	Integrating Custom Components
	Integrating Third-Party Components

	Adding System Contents
	Adding Components
	Connecting Components
	Filtering Components

	Using the System Inspector
	Defining the Address Map
	Specifying Clock Settings
	Specifying Project Settings
	System Generation
	Viewing the HDL Example

	Qsys Design Flow
	Generating Output Files
	Simulating a Qsys System

	Example Hierarchical System
	Using Pipeline Bridges
	Creating Hierarchical Components

	Document Revision History

	6. Creating Qsys Components
	Qsys Components
	Component Providers
	Component Interfaces
	Component Types
	Component Structure
	Component Description File (_hw.tcl)
	Component File Organization
	Component Versioning

	Component Search Path
	Adding Components to the Library
	Copy to the IP Root Directory
	Reference Components in an .ipx File
	Understanding IPX File Syntax

	Component Editor
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Bottom-Up Component Design
	Top-Down Component Design

	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	HDL Parameters Tab
	Library Info
	Saving a Component
	Editing a Component
	Registering Software Assignments
	Component Parameterization

	Document Revision History

	7. Qsys Interconnect
	Avalon-MM Interface Components
	Component Interconnect Domains
	Using Two Separate Domains
	Using One Domain with Width Adaptation

	Qsys Transformations
	Master Command and Slave Response Networks
	Merlin Master Translator
	Merlin Master Agent
	Merlin Router
	Merlin Traffic Limiter
	Merlin Slave Translator
	Merlin Slave Agent

	Arbitration
	Arbitration Examples
	Merlin Arbiter

	Interconnect Pipelining
	Additional Qsys Interconnect Components
	Clock Bridge
	Avalon-MM Clock Crossing Bridge (Qsys)
	Avalon-MM Pipeline Bridge (Qsys)
	Merlin Width Adapter

	Burst Transfers
	Merlin Burst Adapter
	Burst Types

	Avalon-ST Interfaces
	Avalon-ST Examples
	Avalon-ST Components
	Avalon-ST Handshake Clock Crosser
	Avalon-ST Pipeline Stage
	Merlin Multiplexer
	Merlin Demultiplexer

	Avalon-ST and Avalon-MM Interfaces

	Tristate Conduit Components
	Generic Tristate Controller
	Tristate Conduit Pin Sharer
	Tristate Conduit Bridge
	Timing

	Interrupt Interfaces
	Assigning IRQs in Qsys
	IRQ Bridge
	Merlin IRQ Mapper
	Merlin IRQ Clock Crosser

	Clock Interfaces
	Reset Interfaces
	Single Global Reset Signal Implemented by Qsys
	Multiple Reset Signals
	Merlin Reset Controller
	Reset Bridge

	Conduits
	Summary: Qsys Interconnect Components
	Document Revision History

	8. Component Interface Tcl Reference
	Information in a Hardware Component Description File
	Component Phases
	Writing a Hardware Component Description File
	Providing Basic Information
	Declaring Parameters
	User Parameters
	Derived Parameters
	SYSTEM_INFO Parameters

	Declaring Interfaces
	Adding Files and Guiding Generation

	Default Behaviors
	Validation Phase Behavior
	Elaboration Phase Behavior
	Automatic Port Widths
	Parameterized Parameter Widths

	Generation Phase Behavior
	Edit Phase Behavior

	Overriding Default Behaviors
	Validation Callback
	Elaboration Callback
	Generation Callback
	Compose Callback
	Editor Callback

	Hardware Tcl Command Reference
	Module Definition
	package
	get_module_properties
	get_module_property
	set_module_property
	get_module_ports
	get_module_assignments
	get_module_assignment
	set_module_assignment
	get_files
	add_file
	add_documentation_link
	get_file_properties
	get_file_property
	set_file_property
	send_message

	Parameters
	add_parameter
	get_parameters
	get_parameter_properties
	get_parameter_property
	set_parameter_property
	get_parameter_value
	set_parameter_value
	decode_address_map

	Display Items
	add_display_item
	get_display_items
	get_display_item_properties
	get_display_item_property
	set_display_item_property

	Interfaces and Ports
	add_interface
	get_interfaces
	get_interface_properties
	get_interface_property
	set_interface_property
	add_interface_port
	get_interface_ports
	get_port_properties
	get_port_property
	set_port_property
	get_interface_assignments
	get_interface_assignment
	set_interface_assignment

	Compose
	add_instance
	get_instances
	get_instance_parameters
	set_instance_parameter_value
	get_instance_parameter_value
	get_instance_parameter_properties
	get_instance_parameter_property
	get_instance_interfaces
	get_instance_interface_properties
	get_instance_interface_property
	get_instance_interface_ports
	get_instance_port_property
	add_connection
	get_connections
	get_connection_parameters
	get_connection_parameter_value
	set_connection_parameter_value

	Generation
	get_generation_properties
	get_generation_property

	Document Revision History

	Section III. Design Guidelines
	9. Recommended Design Practices
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Power Optimization
	Metastability
	Incremental Compilation

	Checking Design Violations With the Design Assistant
	Quartus II Design Flow with the Design Assistant
	Enabling and Disabling Design Assistant Rules
	Viewing Design Assistant Results
	Custom Rules
	Custom Rules Coding Examples

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Synchronous Reset
	Asynchronous Reset
	Synchronized Asynchronous Reset

	Register Control Signals

	Targeting Embedded RAM Architectural Features
	Conclusion
	Document Revision History

	10. Recommended HDL Coding Styles
	Quartus II Language Templates
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Inferring Multipliers from HDL Code
	Inferring Multiply-Accumulators and Multiply-Adders from HDL Code

	Inferring Memory Functions from HDL Code
	Inferring RAM functions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset and Control Conditions
	Check Read-During-Write Behavior
	Controlling Inference and Implementation in Device RAM Blocks
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Mixed-Width Dual-Port RAM
	RAM with Byte-Enable Signals
	Specifying Initial Memory Contents at Power-Up

	Inferring ROM Functions from HDL Code
	Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code
	Simple Shift Register
	Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Secondary Register Control Signals Such as Clear and Clock Enable
	Latches
	Unintentional Latch Generation
	Inferring Latches Correctly

	General Coding Guidelines
	Tri-State Signals
	Clock Multiplexing
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	State Machines
	Verilog HDL State Machines
	VHDL State Machines

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Implicit Defaults in If Statements
	Default or Others Case Assignment

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Document Revision History

	11. Managing Metastability with the Quartus II Software
	Introduction
	Metastability Analysis in the Quartus II Software
	Synchronization Register Chains
	Identifying Synchronizers for Metastability Analysis
	How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	Metastability and MTBF Reporting
	Metastability Reports
	MTBF Summary Report
	Synchronizer Summary Report
	Synchronizer Chain Statistics Report in the Timing Analyzer

	Synchronizer Data Toggle Rate in MTBF Calculation

	MTBF Optimization
	Synchronization Register Chain Length

	Reducing Metastability Effects
	Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	Force the Identification of Synchronization Registers
	Set the Synchronizer Data Toggle Rate
	Optimize Metastability During Fitting
	Increase the Length of Synchronizers to Protect and Optimize
	Set Fitter Effort to Standard Fit instead of Auto Fit
	Increase the Number of Stages Used in Synchronizers, If Possible
	Select a Faster Speed Grade Device, if Possible

	Scripting Support
	Identifying Synchronizers for Metastability Analysis
	Synchronizer Data Toggle Rate in MTBF Calculation
	report_metastability and Tcl Command
	MTBF Optimization
	Synchronization Register Chain Length

	Conclusion
	Document Revision History

	12. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	Overview: Incremental Compilation
	Recommendations for the Netlist Type

	Design Flows Using Incremental Compilation
	Project Management in Team-Based Design Flows

	Why to Plan Partitions and Floorplan Assignments
	Partition Boundaries and Optimization

	General Partitioning Guidelines
	Plan Design Hierarchy and Source Design Files
	Using Partitions with Third-Party Synthesis Tools

	Partition Design by Functionality and Block Size
	Partition Design by Clock Domain and Timing Criticality
	Consider What Is Changing

	Design Partition Guidelines
	Register Partition Inputs and Outputs
	Minimize Cross-Partition-Boundary I/O
	Avoid the Need for Logic Optimization Across Partitions
	Keep Logic in the Same Partition for Optimization and Merging
	Keep Constants in the Same Partition as Logic
	Avoid Unconnected Partition I/O
	Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	Invert Clocks in Destination Partitions
	Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
	Do Not Use Internal Tri-States
	Include All Tri-State and Enable Logic in the Same Partition
	Include Bidirectional I/O Registers in the Same Partition (For Older Device Families)
	Summary of Guidelines Related to Logic Optimization Across Partitions

	Consider a Cascaded Reset Structure

	Design Partition Guidelines for Third-Party IP Delivery
	Allocate Logic Resources
	Allocate Global Routing Signals and Clock Networks if Required
	Assign Virtual Pins
	Perform Timing Budgeting if Required
	Drive Clocks Directly
	Recreate PLLs for Lower-Level Partitions if Required

	Checking Partition Quality
	Incremental Compilation Advisor
	Design Partition Planner
	Viewing Design Partition Planner and Floorplan Side-by-Side
	Partition Statistics Report
	Report Partition Timing in the TimeQuest Timing Analyzer
	Check if Partition Assignments Impact the Quality of Results

	Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
	Creating an .sdc File With Project-Wide Constraints
	Creating an .sdc with Partition-Specific Constraints
	Consolidating the .sdc in the Top-Level Design

	Introduction to Design Floorplans
	The Difference between Logical Partitions and Physical Regions
	Why Create a Floorplan?
	When to Create a Floorplan
	Early Floorplan
	Late Floorplan

	Design Floorplan Placement Guidelines
	Assigning Partitions to LogicLock Regions
	How to Size and Place Regions
	Modifying Region Size and Origin
	I/O Connections
	LogicLock Resource Exclusions

	Creating Non-Rectangular Regions

	Checking Floorplan Quality
	Incremental Compilation Advisor
	LogicLock Region Resource Estimates
	LogicLock Region Properties Statistics Report
	Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
	Inter-Region Connection Bundles
	Routing Utilization
	Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results

	Recommended Design Flows and Application Examples
	Create a Floorplan for Major Design Blocks
	Create a Floorplan Assignment for One Design Block with Difficult Timing
	Create a Floorplan as the Project Lead in a Team-Based Flow

	Conclusion
	Document Revision History

	Section IV. Synthesis
	13. Quartus II Integrated Synthesis
	Design Flow
	Language Support
	Verilog HDL Support
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Verilog HDL Macros

	VHDL Support
	VHDL-2008 Support
	VHDL Standard Libraries and Packages
	VHDL wait Constructs

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Specifying a Destination Library Name in a VHDL File
	Mapping a VHDL Instance to an Entity in a Specific Library

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages

	Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries
	Parallel Synthesis
	Quartus II Exported Partition File as Source

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Settings Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Synthesis Directives

	Optimization Technique
	Auto Gated Clock Conversion
	Timing-Driven Synthesis
	SDC Constraint Protection
	PowerPlay Power Optimization
	Limiting Resource Usage in Partitions
	Creating LogicLock Regions
	Using Assignments to Limit the Number of RAM and DSP Blocks

	Restructure Multiplexers
	Synthesis Effort
	Synthesis Seed
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Safe State Machines
	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Preserve Registers
	Disable Register Merging/Don’t Merge Register
	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	Maximum Fan-Out
	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable

	Inferring Multiplier, DSP, and Memory Functions from HDL Code
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	Resource Aware RAM, ROM, and Shift-Register Inference
	Auto RAM to Logic Cell Conversion
	RAM Style and ROM Style—for Inferred Memory
	Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	RAM Initialization File—for Inferred Memory
	Multiplier Style—for Inferred Multipliers
	Full Case Attribute
	Parallel Case
	Translate Off and On / Synthesis Off and On
	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Use I/O Flipflops
	Specifying Pin Locations with chip_pin
	Using altera_attribute to Set Quartus II Logic Options

	Analyzing Synthesis Results
	Analysis & Synthesis Section of the Compilation Report
	Project Navigator

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages by Module/Entity

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation
	Quartus II Synthesis Options

	Conclusion
	Document Revision History

	14. Synopsys Synplify Support
	Altera Device Family Support
	Design Flow
	Specifying the Output Netlist File Name and Result Format
	Specifying the Quartus II Software Version

	Synplify Optimization Strategies
	Using Synplify Premier to Optimize Your Design
	Using Implementations in Synplify Pro or Premier
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input and Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	FSM Explorer in Synplify Pro and Premier

	Optimization Attributes and Options
	Retiming in Synplify Pro and Premier
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	syn_direct_enable
	I/O Standard

	Altera-Specific Attributes
	altera_chip_pin_lc
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Run the Synplify Software
	Running the Quartus II Software Manually With the Synplify-Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus II Software
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions With the MegaWizard Plug-In Manager
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
	Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated VHDL Files
	Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions
	Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files
	Other Synplify Software Attributes for Creating Black Boxes

	Including Files for Quartus II Placement and Routing Only
	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Inferring RAM
	RAM Initialization
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Creating a Design with Separate Netlist Files for Incremental Compilation
	Using MultiPoint Synthesis with Incremental Compilation
	Set Compile Points and Create Constraint Files
	Additional Considerations for Compile Points
	Creating a Quartus II Project for Compile Points and Multiple .vqm Files

	Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects
	Manually Creating Multiple .vqm Files With Black Boxes
	Creating a Quartus II Project for Multiple .vqm Files

	Performing Incremental Compilation in the Quartus II Software

	Conclusion
	Document Revision History

	15. Mentor Graphics Precision Synthesis Support
	Altera Device Family Support
	Design Flow
	Creating and Compiling a Project in the Precision Synthesis Software
	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision Synthesis Software from Adding I/O Pads
	Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision Synthesis Software
	Running the Quartus II Software Manually Using the Precision Synthesis- Generated Tcl Script
	Using the Quartus II Software to Run the Precision Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	set_input_delay
	set_output_delay
	set_max_delay and set_min_delay
	set_false_path
	set_multicycle_path

	Guidelines for Altera Megafunctions and Architecture-Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated Verilog HDL Files
	Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated VHDL Files
	Instantiating Intellectual Property With the MegaWizard Plug-In Manager and IP Toolbench
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Setting the Use Dedicated Multiplier Option
	Setting the dedicated_mult Attribute
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Creating a Design with Precision RTL Plus Incremental Synthesis
	Creating Partitions with the incr_partition Attribute

	Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
	Creating Black Boxes to Create EDIF Netlists
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Hierarchy and Design Considerations

	Conclusion
	Document Revision History

	16. Mentor Graphics LeonardoSpectrum Support
	Altera Device Family Support
	Design Flow
	LeonardoSpectrum Optimization Strategies
	Timing-Driven Synthesis
	Global PowerTab
	Clock PowerTab
	Input and Output PowerTabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the LeonardoSpectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black Boxed Modules
	Passing Constraints with Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions and LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring Multipliers and DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Signal Level Attributes
	Guidelines for Using DSP Blocks

	Block-Based Design with the Quartus II Software
	Hierarchy and Design Considerations
	Creating a Design with Multiple .edf Files
	Generating Multiple .edf Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple .edf Files Including LogicLock Regions

	Generating Multiple .edf Files Using Black Boxes
	Black Box Methodology in Verilog HDL
	Black Boxing in VHDL
	Creating a Quartus II Project for Multiple .edf Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	Running the Tcl Script File in LeonardoSpectrum

	Conclusion
	Document Revision History

	17. Analyzing Designs with Quartus II Netlist Viewers
	When to Use the Netlist Viewers: Analyzing Design Problems
	Quartus II Design Flow with the Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Selecting an Item in the Schematic View
	Moving and Panning in the Schematic View

	Netlist Navigator Pane
	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Selecting an Item in the State Machine Viewer
	Switching Between State Machines

	Global Options
	Display Settings
	Tracing
	Customize View
	Shortcut Commands

	Navigating the Schematic View
	Traversing and Viewing the Design Hierarchy
	Flattening the Design Hierarchy
	Viewing the Contents of a Design Hierarchy in the Current Schematic

	Viewing Contents of Atom Primitives
	Viewing the Properties of Instances and Primitives
	Viewing LUT Representations in the Technology Map Viewer
	Grouping Combinational Logic into Logic Clouds
	Logic Clouds in the RTL Viewer
	Logic Clouds in the Technology Map Viewer
	Grouping and Ungrouping Logic Clouds

	Changing the Constant Signal Value Formatting
	Zooming and Magnification
	Schematic Debugging and Tracing Using the Bird’s Eye View

	Partitioning the Schematic into Pages
	Moving Between Schematic Pages
	Moving Back and Forward Through Schematic Pages
	Following Nets Across Schematic Pages
	Go to Net Driver

	Filtering in the Schematic View
	Filter Sources Command
	Filter Destinations Command
	Filter Sources and Destinations Command
	Filter Between Selected Nodes Command
	Filter Selected Nodes and Nets Command
	Filter Bus Index Command
	Filter Command Processing
	Filtering Across Hierarchies
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to a Source Design File and Other Quartus II Windows
	Moving Selected Nodes to Other Quartus II Windows

	Probing to the Netlist Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Other Features in the Schematic Viewer
	Tooltips
	Finding Design Elements in the Netlist Viewers
	Exporting and Copying a Schematic Image
	Printing

	Conclusion
	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

	Quartus II Handbook Version 10.1 Volume 2: Design Implementation and Optimization
	Contents
	Chapter Revision Dates
	Section I. Scripting and Constraint Entry
	1. Constraining Designs
	Constraining Designs with the Quartus II GUI
	Global Constraints
	Node, Entity, and Instance-Level Constraints
	Probing Between Components of the Quartus II GUI
	SDC and the TimeQuest Timing Analyzer

	Constraining Designs with Tcl
	Quartus II Settings Files and Tcl
	Timing Analysis with Synopsys Design Constraints and Tcl

	A Fully Iterative Scripted Flow
	Document Revision History

	2. Command-Line Scripting
	Benefits of Command-Line Executables
	Introductory Example
	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence

	Compilation with quartus_sh --flow
	Text-Based Report Files
	Makefile Implementation

	The MegaWizard Plug-In Manager
	Command-Line Support
	Module and Wizard Names

	Ports and Parameters
	Invalid Configurations
	Strategies to Determine Port and Parameter Values

	Optional Files
	Parameter File
	Working Directory
	Variation File Name

	Command-Line Scripting Examples
	Create a Project and Apply Constraints
	Check Design File Syntax
	Create a Project and Synthesize a Netlist Using Netlist Optimizations
	Archive and Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents Without Recompiling
	Create a Compressed Configuration File
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	Regenerating Megafunctions After Updating the Quartus II Software
	The QFlow Script

	Document Revision History

	3. Tcl Scripting
	Introduction
	What is Tcl?

	Quartus II Tcl Packages
	Loading Packages

	Quartus II Tcl API Help
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	Using the Quartus II Tcl Console Window

	End-to-End Design Flows
	Creating Projects and Making Assignments
	HardCopy Device Design

	Compiling Designs
	The flow Package
	Compile All Revisions

	Reporting
	Creating .csv Files for Excel

	Timing Analysis
	Automating Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Short Option Names
	Using Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	Using the post_message Command
	Accessing Command-Line Arguments
	Using the cmdline Package

	Using the Quartus II Tcl Shell in Interactive Mode
	Using the tclsh Shell
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References

	Document Revision History

	4. Managing Quartus II Projects
	Managing Your Quartus II Projects
	File Association
	Editing Text-Based Designs with the Quartus II Text Editor
	Creating Assignments
	Quartus II Settings File
	Preserving QSF Format
	Quartus II Default Settings File

	Creating Timing Assignments
	Creating Revisions
	Managing Project Revisions

	Creating New Copies of Your Design
	Archiving and Restoring Projects

	Exporting and Importing Version-Compatible Database Files
	Migrating to a New Version of the Quartus II Software
	Saving the Database in a Version-Compatible Format
	Quartus II Project Platform Migration
	File Names and Hierarchies
	Specifying Libraries
	Quartus II Search Path Precedence Rules
	Quartus II-Generated Files for Third-Party EDA Tools
	Migrating Database Files Between Platforms

	Working with Messages
	Messages Window
	Message Suppression

	Managing Projects in a Team-Based Design Environment
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects
	Restoring Archived Projects
	Importing and Exporting Version-Compatible Databases
	Specifying Libraries Using Scripts

	Conclusion
	Document Revision History

	Section II. I/O and PCB Tools
	5. I/O Management
	Understanding Altera Pin Terminology
	Package Pins
	Pads
	I/O Banks
	VREF Groups

	I/O Planning Overview
	Selecting a Device
	Working with Third-Party PCB Tools

	Performing Early I/O Planning with the Pin Planner
	Instantiating or Importing IP Cores in the Pin Planner
	Adding and Connecting Nodes
	Setting Up and Creating the Top-Level Design File

	Importing and Exporting Pin Assignments
	Importing and Exporting Assignments with the Quartus II Software
	Importing and Exporting Assignments with Third-Party PCB Tools

	Creating Pin-Related Assignments
	Creating Pin Assignments With the Pin Planner
	Finding Compatible Pin Locations with the Pin Finder
	Verifying Pin Migration Compatibility
	Viewing Simultaneous Switching Noise (SSN) Results
	Creating Location Assignments
	Creating Exclusive I/O Group Assignments
	Changing the Slew Rate and Drive Strength
	Assigning Locations for Differential Pins

	Creating Pin Assignments with the Chip Planner
	Creating Pin Assignments with Tcl Scripts
	Creating Pin Assignments in HDL Code
	Synthesis Attributes
	chip_pin and useioff
	altera_attribute

	Creating Pin Assignments with Low-Level I/O Primitives

	Validating Pin Assignments
	Validating Pin Assignments with the Live I/O Check Feature
	Validating Pin Assignments with I/O Assignment Analysis
	Running I/O Assignment Analysis without Design Files
	Running I/O Assignment Analysis with Design Files
	Optimizing I/O Assignment Analysis with Output Enable Group Logic Option Assignments

	Validating Pin Assignments with Full Compilation

	Performing I/O Timing Analysis
	Enabling and Configuring Advanced I/O Timing
	Defining Overall Board Trace Models
	Customizing the Board Trace Model in the Pin Planner
	Configuring Board Trace Models
	Specifying Near-End vs Far-End Timing Analysis
	Understanding Advanced I/O Timing Analysis Reports

	Adjusting I/O Timing and Power with Capacitive Loading

	Incorporating PCB Design Tools
	Scripting Support
	Running I/O Assignment Analysis
	Generating a Mapped Netlist
	Reserving Pins
	Creating Location Assignments
	Creating Exclusive I/O Group Assignments
	Changing the Slew Rate and Drive Strength

	Conclusion
	Document Revision History

	6. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	Definitions
	Understanding SSN
	SSN Estimation Tools
	SSN Analysis Overview
	Performing Early Pin-Out SSN Analysis
	Performing Early Pin-Out SSN Analysis with the ESE Tool
	Performing Early Pin-Out SSN Analysis with the SSN Analyzer

	Performing Final Pin-Out SSN Analysis

	Design Factors Affecting SSN Results
	Optimizing Your Design for SSN Analysis
	Optimizing Pin Placements for Signal Integrity
	Specifying Board Trace Model Settings
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Creating I/O Assignments
	Decreasing Pessimism in SSN Analysis
	Excluding Pins as Aggressor Signals

	Performing SSN Analysis and Viewing Results
	Understanding the SSN Reports
	Summary Report
	Output Pins and Input Pins Reports
	Unanalyzed Pins Report
	Confidence Metric Details Report

	Viewing SSN Analysis Results in the Pin Planner

	Decreasing Processing Time for SSN Analysis
	Scripting Support
	Optimizing Pin Placements for Signal Integrity
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Decreasing Pessimism in SSN Analysis
	Performing SSN Analysis

	Conclusion
	Document Revision History

	7. Signal Integrity Analysis with Third-Party Tools
	Introduction
	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Output File Generation
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results

	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations

	Simulation with HSPICE Models
	Supported Devices and Signaling
	Accessing HSPICE Simulation Kits
	The Double Counting Problem in HSPICE Simulations
	Defining the Double Counting Problem
	The Solution to Double Counting

	HSPICE Writer Tool Flow
	Applying I/O Assignments
	Enabling HSPICE Writer
	Enabling HSPICE Writer Using Assignments
	Naming Conventions for HSPICE Files
	Invoking HSPICE Writer
	Invoking HSPICE Writer from the Command Line
	Customizing Automatically Generated HSPICE Decks

	Running an HSPICE Simulation
	Interpreting the Results of an Output Simulation
	Interpreting the Results of an Input Simulation
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations
	Sample Input for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constant Definition
	Buffer Netlist
	Drive Strength
	I/O Buffer Instantiation
	Board Trace and Termination
	Stimulus Model
	Simulation Analysis

	Sample Output for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constraint Definition
	I/O Buffer Netlist
	Drive Strength
	Slew Rate and Delay Chain
	I/O Buffer Instantiation
	Board and Trace Termination
	Double-Counting Compensation Circuitry
	Simulation Analysis

	Advanced Topics
	PVT Simulations
	Hold Time Analysis
	I/O Voltage Variations
	Correlation Report

	Conclusion
	Document Revision History

	8. Mentor Graphics PCB Design Tools Support
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	Setting Up the Quartus II Software
	Generating a .pin File
	Generating an .fx File
	Creating a Backup .qsf

	FPGA-to-Board Integration with the I/O Designer Software
	I/O Designer Database Wizard
	Updating Pin Assignments from the Quartus II Software
	Sending Pin Assignment Changes to the Quartus II Software
	Protecting Assignments in the Quartus II Software

	Generating Symbols for the DxDesigner Software
	Setting Up the I/O Designer Software to Work with the DxDesigner Software
	Creating Symbols with the Symbol Wizard
	Exporting Symbols to the DxDesigner Software

	Scripting Support

	FPGA-to-Board Integration with the DxDesigner Software
	DxDesigner Project Settings
	DxDesigner Symbol Wizard

	Conclusion
	Document Revision History

	9. Cadence PCB Design Tools Support
	Product Comparison
	FPGA-to-PCB Design Flow
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	Setting Up the Quartus II Software
	Generating a .pin File

	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Creating Symbols
	Cadence Allegro PCB Librarian Part Developer Tool

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	Creating a Cadence Allegro Design Entry CIS Project
	Generating a Part
	Splitting a Part
	Instantiating a Symbol in a Design Entry CIS Schematic
	Altera Libraries for the Cadence Allegro Design Entry CIS Software

	Conclusion
	Document Revision History

	10. Reviewing Printed Circuit Board Schematics with the Quartus II Software
	Reviewing Quartus II Software Settings
	Device and Pins Options Dialog Box Settings
	Configuration Page Settings
	Unused Pin Page Settings
	Dual-Purpose Pins Page Settings
	Voltage Page Settings
	Error Detection CRC Page Settings

	Voltage Page Settings

	Reviewing Device Pin-Out Information in the Fitter Report
	Reviewing Compilation Error and Warning Messages
	Running the HardCopy Design Readiness Check
	Using Additional Quartus II Software Features
	Using Additional Quartus II Software Tools
	Pin Planner
	SSN Analyzer

	Conclusion
	Document Revision History

	Section III. Area, Timing, Power, and Compilation Time Optimization
	11. Design Optimization Overview
	Introduction
	Physical Implementation
	Trade-Offs and Limitations
	Preserving Results and Enabling Teamwork
	Reducing Area
	Reducing Critical Path Delay
	Reducing Power Consumption
	Reducing Runtime

	Using Quartus II Tools
	Design Analysis
	Advisors
	Design Space Explorer

	Conclusion
	Document Revision History

	12. Reducing Compilation Time
	Compilation Time Optimization Techniques
	Compilation Time Advisor
	Strategies to Reduce the Overall Compilation Time
	Using Parallel Compilation with Multiple Processors
	Using Incremental Compilation
	Using the Smart Compilation Setting
	Using Rapid Recompile

	Reducing Synthesis Time and Synthesis Netlist Optimization Time
	Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	Use Appropriate Coding Style to Reduce Synthesis Time
	Using Early Timing Estimation

	Reducing Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Final Placement Optimization Levels
	Physical Synthesis Effort Settings
	Limit to One Fitting Attempt
	Preserving Placement, Incremental Compilation, and LogicLock Regions

	Reducing Routing Time
	Identifying Routing Congestion in the Chip Planner
	Placement Effort Multiplier Setting
	Preserving Routing with Incremental Compilation

	Reducing Static Timing Analysis Time
	Setting Process Priority

	Conclusion
	Document Revision History

	13. Area and Timing Optimization
	Optimizing Your Design
	Initial Compilation: Required Settings
	Device Settings
	I/O Assignments
	Timing Requirement Settings
	Device Migration Settings
	Partitions and Floorplan Assignments for Incremental Compilation

	Initial Compilation: Optional Fitter Settings
	Optimize Hold Timing
	Limit to One Fitting Attempt
	Optimize Multi-Corner Timing
	Fitter Effort Setting

	Design Assistant
	Design Analysis
	Error and Warning Messages
	Ignored Timing Constraints
	Resource Utilization
	I/O Timing (Including tPD)
	Register-to-Register Timing
	Timing Analysis with the TimeQuest Timing Analyzer
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains

	Global Routing Resources

	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Using the Resource Optimization Advisor
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Use I/O Assignment Analysis
	Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Optimize Synthesis for Area, Not Speed
	Restructure Multiplexers
	Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
	Use Register Packing
	Remove Fitter Constraints
	Change State Machine Encoding
	Flatten the Hierarchy During Synthesis
	Retarget Memory Blocks
	Use Physical Synthesis Options to Reduce Area
	Retarget or Balance DSP Blocks
	Optimize Source Code
	Use a Larger Device

	Routing
	Set Auto Packed Registers to Sparse or Sparse Auto
	Set Fitter Aggressive Routability Optimizations to Always
	Increase Placement Effort Multiplier
	Increase Router Effort Multiplier
	Remove Fitter Constraints
	Optimize Synthesis for Area, Not Speed
	Optimize Source Code
	Use a Larger Device

	Timing Optimization Techniques (LUT-Based Devices)
	Debugging Timing Failures in the TimeQuest Analyzer
	Timing Optimization Advisor
	I/O Timing Optimization
	Improving Setup and Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output, and Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clock Networks and Regional Clocks Networks
	Change How Hold Times are Optimized for MAX II Devices

	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Improving Register-to-Register Timing Summary
	Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Set Maximum Router Timing Optimization Level
	Optimize Source Code

	LogicLock Assignments
	Hierarchy Assignments

	Location Assignments and Back-Annotation
	Metastability Analysis and Optimization Techniques

	Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines and Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell-Based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code—Pipelining for Complex Register Logic

	Other Optimization Resources
	Design Space Explorer
	Other Optimization Advisors

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Duplicate Logic for Fan-Out Control

	Conclusion
	Document Revision History

	14. Power Optimization
	Power Dissipation
	Design Space Explorer
	Power-Driven Compilation
	Power-Driven Synthesis
	Power-Driven Fitter
	Area-Driven Synthesis
	Gate-Level Register Retiming

	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example

	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining and Retiming
	Architectural Optimization
	I/O Power Guidelines
	Dynamically Controlled On-Chip Terminations
	Power Optimization Advisor
	Power Optimization Advisor Example

	Conclusion

	Document Revision History

	15. Analyzing and Optimizing the Design Floorplan
	Chip Planner Overview
	Starting the Chip Planner
	Chip Planner Toolbar
	Chip Planner Tasks, Layers, and Editing Modes
	Locate History Window

	LogicLock Regions
	Creating LogicLock Regions
	Creating LogicLock Regions with the Project Navigator
	Creating LogicLock Regions with the Chip Planner

	Placing LogicLock Regions
	Placing Device Resources into LogicLock Regions
	LogicLock Regions Window
	Assigning LogicLock Region Content
	Hierarchical (Parent and Child) LogicLock Regions
	Reserved LogicLock Region
	Creating Non-Rectangular LogicLock Regions
	Excluded Resources
	Additional Quartus II LogicLock Design Features
	Analysis and Synthesis Resource Utilization by Entity
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	Virtual Pins

	Using LogicLock Regions in the Chip Planner
	Viewing Connections Between LogicLock Regions in the Chip Planner
	Using LogicLock Regions with the Design Partition Planner

	Design Floorplan Analysis Using the Chip Planner
	Chip Planner Floorplan Views
	Bird’s Eye View
	Properies Window

	Viewing Architecture-Specific Design Information
	Viewing Available Clock Networks in the Device
	Viewing Critical Paths
	Viewing Routing Congestion
	Viewing I/O Banks
	Generating Fan-In and Fan-Out Connections
	Generating Immediate Fan-In and Fan-Out Connections
	Highlight Routing
	Show Delays
	Exploring Paths in the Chip Planner
	Locate Path from the Timing Analysis Report to the Chip Planner
	Analyzing Connections for a Path

	Viewing Assignments in the Chip Planner
	Viewing Routing Channels for a Path in the Chip Planner
	Delay Information Table
	Viewing High-Speed and Low-Power Tiles in the Chip Planner

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins

	Conclusion
	Document Revision History

	16. Netlist Optimizations and Physical Synthesis
	WYSIWYG Primitive Resynthesis
	Performing Physical Synthesis Optimizations
	Automatic Asynchronous Signal Pipelining
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers—Register Duplication
	Physical Synthesis for Registers—Register Retiming
	Preserving Your Physical Synthesis Results
	Physical Synthesis Options for Fitting

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Incremental Compilation
	Back-Annotating Assignments

	Conclusion
	Document Revision History

	Section IV. Engineering Change Management
	17. Engineering Change Management with the Chip Planner
	Engineering Change Orders
	Performance Preservation
	Compilation Time
	Verification
	Change Modification Record

	ECO Design Flow
	The Chip Planner Overview
	Opening the Chip Planner
	The Chip Planner Tasks and Layers

	Performing ECOs with the Chip Planner (Floorplan View)
	Creating, Deleting, and Moving Atoms
	Check and Save Netlist Changes

	Performing ECOs in the Resource Property Editor
	Logic Elements
	Logic Element Schematic View
	Logic Element Properties
	Modes of Operation
	Sum and Carry Equations
	sload and sclr Signals
	Register Cascade Mode
	Cell Delay Table
	Logic Element Connections
	Delete a Logic Element

	Adaptive Logic Modules
	Adaptive Logic Module Schematic
	Adaptive Logic Module Properties
	Adaptive Logic Module Connections

	FPGA I/O Elements
	Stratix V I/O Elements
	Arria GX, Stratix, Stratix II, and Stratix GX I/O Elements
	Arria II GX, Stratix III, and Stratix IV I/O Elements
	Cyclone and Cyclone II I/O Elements
	Cyclone III I/O Elements
	MAX II I/O Elements

	FPGA RAM Blocks
	FPGA DSP Blocks

	Change Manager
	Complex Changes in the Change Manager
	Managing SignalProbe Signals
	Exporting Changes

	Scripting Support
	Common ECO Applications
	Adjust the Drive Strength of an I/O with the Chip Planner
	Modify the PLL Properties With the Chip Planner
	PLL Properties
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Adjusting the Output Clock Frequency
	Adjusting the Spread Spectrum

	Modify the Connectivity between Resource Atoms

	Post ECO Steps
	Conclusion
	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

	Quartus II Handbook Version 10.1 Volume 3: Verification
	Contents
	Chapter Revision Dates
	Section I. Simulation
	1. Simulating Altera Designs
	Design Flow
	RTL Functional Simulation Flow
	Gate-Level Timing Simulation Flow
	Simulation Netlist Files

	EDA Simulation Library Compiler
	Running the EDA Simulation Library Compiler Through the GUI
	Running the EDA Simulation Library Compiler from the Command Line

	Using the NativeLink Feature
	Setting Up the EDA Simulator Execution Path
	Configuring NativeLink Settings
	Setting Up Testbench Files Using the NativeLink Feature

	Simulating Altera IP Cores
	IP Simulation Flows
	IP Variant Directory Structure
	Synthesis Files
	Simulation Model Files

	Instantiate the IP Core
	Perform Functional Simulation
	Verilog HDL and VHDL IP Functional Simulation Models
	Simulating Altera IP Cores Using the Quartus II NativeLink Feature
	Using the EDA Simulation Library Compiler
	Running RTL Functional Simulation Using the NativeLink Feature
	Running Gate-Level Timing Simulation Using the NativeLink Feature

	Simulating Qsys and SOPC Builder System Designs
	Document Revision History

	2. Mentor Graphics ModelSim and QuestaSim Support
	Software Requirements
	Design Flow with ModelSim-Altera, ModelSim, or QuestaSim Software
	Simulation Libraries
	Precompiled Simulation Libraries in the ModelSim-Altera Software
	Simulation Library Files in the Quartus II Software
	Disabling Timing Violation on Registers

	Performing Simulation Using the ModelSim-Altera Software
	Performing Functional Simulation
	Setting Up a Quartus II Project for the ModelSim-Altera Software
	Compiling and Loading Designs with the ModelSim-Altera Software
	Performing the Simulation

	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Performing Simulation Using the ModelSim and QuestaSim Software
	Simulating VHDL Designs Using the GUI
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating Verilog HDL Designs Using the GUI
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating VHDL Designs From the Command Line
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Simulating Verilog HDL Designs from the Command Line
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Simulation

	Passing Parameter Information from Verilog to VHDL
	Speeding Up Simulation

	Simulating Designs that Include Transceivers
	Functional Simulation for Stratix GX Devices
	Performing Functional Simulation in VHDL (ModelSim-Altera)
	Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
	Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)

	Gate-Level Timing Simulation for Stratix GX Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and QuestaSim)

	Functional Simulation for Stratix II GX Devices
	Performing Functional Simulation in VHDL (ModelSim-Altera)
	Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
	Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)

	Gate-Level Timing Simulation for Stratix II GX Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
	Performing Gate-Level Timing Simulation in Verilog HDL ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL ModelSim and QuestaSim)

	Functional Simulation for Stratix IV GX Devices
	Performing Functional Simulation in VHDL (ModelSim-Altera)
	Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
	Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)

	Gate-Level Timing Simulation for Stratix IV GX Devices
	Performing Gate-Level Timing Simulation in VHDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in VHDL (ModelSim and QuestaSim)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim-Altera)
	Performing Gate-Level Timing Simulation in Verilog HDL (ModelSim and QuestaSim)

	Functional Simulation for Stratix V GX Devices
	Performing Functional Simulation in VHDL (ModelSim and QuestaSim)
	Performing Functional Simulation in Verilog HDL (ModelSim-Altera)
	Performing Functional Simulation in Verilog HDL (ModelSim and QuestaSim)

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using the NativeLink Feature with ModelSim-Altera, ModelSim, or QuestaSim Software
	ModelSim and QuestaSim Error Message Verification
	Generating a Timing Value Change Dump (.vcd) File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .wlf File
	Simulating with ModelSim-Altera Waveform
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for ModelSim and QuestaSim
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for ModelSim and QuestaSim
	Tcl Commands
	Command Line

	Software Licensing and Licensing Setup in ModelSim-Altera Subscription Edition
	LM_LICENSE_FILE Variable

	Conclusion
	Document Revision History

	3. Synopsys VCS and VCS MX Support
	Software Requirements
	Using the VCS or VCS MX Software in the Quartus II Design Flow
	Compiling Libraries Using the EDA Simulation Library Compiler
	Functional Simulations
	Functional Simulation for Verilog HDL Designs
	Functional Simulation for VHDL Designs

	Post-Synthesis Simulation
	Post-Synthesis Simulation for Verilog HDL Designs
	Post-Synthesis Simulation for VHDL Designs

	Gate-Level Timing Simulation
	Gate-Level Timing Simulation for Verilog HDL Designs
	Gate-Level Timing Simulation for VHDL Designs

	Disabling Timing Violation on Registers
	Performing Timing Simulation Using the Post-Synthesis Netlist

	Common VCS and VCS MX Software Compiler Options
	Using DVE
	Debugging Support Command-Line Interface
	Simulating Designs that Include Transceivers
	Functional Simulation for Stratix GX Devices
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix II GX Devices
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix IV GX Devices
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix V GX Devices
	Compiling Library Files for Functional Simulation

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using NativeLink with the VCS or VCS MX Software
	Generating a Timing .vcd File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .vpd or .vcd File
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Conclusion
	Document Revision History

	4. Cadence NC-Sim Support
	Software Requirements
	Simulation Flow Overview
	Operation Modes
	Quartus II Software and NC Simulation Flow Overview
	Compiling Libraries Using the EDA Simulation Library Compiler

	Functional Simulation
	Creating Libraries
	For VHDL Designs
	For Verilog HDL Designs

	Compiling Source Code
	Elaborating Your Design
	Simulating Your Design

	Post-Synthesis Simulation
	Quartus II Simulation Output Files
	Creating Libraries
	Compiling Project Files and Libraries
	Elaborating Your Design
	Simulating Your Design

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Disabling Timing Violation on Registers
	Creating Libraries
	Compiling Project Files and Libraries
	Elaborating Your Design
	Compiling the .sdo File (VHDL Only) in Command-Line Mode
	Compiling the .sdo File (VHDL Only) in GUI Mode

	Simulating Your Design

	Simulating Designs that Include Transceivers
	Functional Simulation for Stratix GX Devices
	Compiling Library Files for Functional Simulation in VHDL
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix II GX Devices
	Compiling Library Files for Functional Simulation in VHDL
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix IV GX Devices
	Compiling Library Files for Functional Simulation in VHDL
	Compiling Library Files for Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV GX Devices
	Compiling Library Files for Gate-Level Timing Simulation in VHDL
	Compiling Library Files for Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix V GX Devices
	Compiling Library Files for Functional Simulation
	Compiling Library Files for Functional Simulation in VHDL
	Compiling Library Files for Functional Simulation in Verilog HDL

	Pulse Reject Delays
	-PULSE_R
	-PULSE_INT_R

	Using the NativeLink Feature with NC-Sim
	Generating a Timing VCD File for the PowerPlay Power Analyzer
	Viewing a Waveform from a .trn File
	Scripting Support
	Generating NC-Sim Simulation Output Files
	Tcl Commands
	Command Prompt

	Conclusion
	Document Revision History

	5. Aldec Active-HDL and Riviera-PRO Support
	Software Requirements
	Using Active-HDL or Riviera-PRO Software in Quartus II Design Flows
	Simulation Libraries
	Simulation Library Files in the Quartus II Software
	Disabling Timing Violation on Registers

	Compiling Libraries Using the EDA Simulation Library Compiler

	Performing Simulation Using the Active-HDL Software (GUI Mode)
	Simulating VHDL Designs
	Performing Functional Simulation

	Simulating Verilog HDL Designs
	Performing Functional Simulation

	Performing Simulation Using the Riviera-PRO Software (GUI Mode)
	Performing Simulation Using the Active-HDL or Riviera-PRO Software (Command-Line Mode)
	Simulating Verilog HDL Designs Using the Active-HDL or Riviera-PRO Software
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Simulating VHDL Designs Using the Active-HDL or Riviera-PRO Software
	Performing Functional Simulation
	Performing Post-Synthesis Simulation
	Performing Gate-Level Timing Simulation

	Compiling System Verilog Files
	Simulating Designs that Include Transceivers
	Functional Simulation for Stratix II GX Devices
	Performing Functional Simulation in VHDL
	Performing Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix II GX Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix GX Devices
	Performing Functional Simulation in VHDL
	Performing Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix GX Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix IV GX Devices
	Performing Functional Simulation in VHDL
	Performing Functional Simulation in Verilog HDL

	Gate-Level Timing Simulation for Stratix IV GX Devices
	Performing Gate-Level Timing Simulation in VHDL
	Performing Gate-Level Timing Simulation in Verilog HDL

	Functional Simulation for Stratix V GX Devices
	Performing Functional Simulation in VHDL
	Performing Functional Simulation in Verilog HDL

	Transport Delays

	Using the NativeLink Feature in Active-HDL or Riviera-PRO Software
	Generating .vcd Files for the PowerPlay Power Analyzer
	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for Active-HDL or Riviera-PRO
	Tcl Commands
	Command Line

	Generating a Gate-Level Timing Simulation Netlist for Active-HDL or Riviera-PRO
	Tcl Commands
	Command Line

	Conclusion
	Document Revision History

	Section II. Timing Analysis
	6. The Quartus II TimeQuest Timing Analyzer
	Understanding Timing Analysis with the TimeQuest Analyzer
	Timing Netlists and Timing Paths
	The Timing Netlist
	Timing Paths
	Launch and Latch Edges
	Data and Clock Arrival Times

	Clock Setup Check
	Clock Hold Check
	Recovery and Removal Time
	Multicycle Paths
	Metastability
	Common Clock Path Pessimism Removal
	Clock-As-Data Analysis
	Multicorner Analysis

	Getting Started with the TimeQuest Analyzer
	Running the TimeQuest Analyzer
	Locating Timing Paths in Other Tools
	Recommended Flows
	Creating and Setting Up your Design
	Performing an Initial Compilation
	Specifying Timing Requirements
	Fitting and Timing Analysis with .sdc Files
	Performing a Full Compilation
	Verifying Timing

	SDC File Precedence

	Using Tcl Commands
	Wildcard Characters
	Collection Commands
	Adding and Removing Collection Items
	Refining Collections with Wildcards

	Removing Constraints and Exceptions

	Creating Clocks and Clock Constraints
	Creating Clocks
	Creating Virtual Clocks
	Creating Multifrequency Clocks
	Creating Generated Clocks
	Automatically Detecting Clocks and Creating Default Clock Constraints
	Deriving PLL Clocks
	Creating Clock Groups
	Exclusive Clock Groups
	Asynchronous Clock Groups

	Accounting for Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty
	I/O Interface Uncertainty

	Creating I/O Constraints
	Creating Delay and Skew Constraints
	Net Delay
	Advanced I/O Timing and Board Trace Model Delay
	Maximum Skew

	Creating Timing Exceptions
	Precedence
	False Paths
	Minimum and Maximum Delays
	Delay Annotation

	Timing Reports
	Document Revision History

	7. Best Practices for the Quartus II TimeQuest Timing Analyzer
	Creating Clock Requirements
	Base Clocks
	Derived Clocks
	Virtual Clocks

	Creating I/O Requirements
	Input Constraints
	Output Constraints

	Creating Timing Exceptions
	False Paths
	Minimum and Maximum Delays

	Creating Multicycle Exceptions
	Multicycle Clock Setup Check and Hold Check Analysis
	Multicycle Clock Setup
	Multicycle Clock Hold

	Examples of Basic Multicycle Exceptions
	Default Settings
	End Multicycle Setup = 2 and End Multicycle Hold = 0
	End Multicycle Setup = 1 and End Multicycle Hold = 1
	End Multicycle Setup = 2 and End Multicycle Hold = 1
	Start Multicycle Setup = 2 and Start Multicycle Hold = 0
	Start Multicycle Setup = 1 and Start Multicycle Hold = 1
	Start Multicycle Setup = 2 and Start Multicycle Hold = 1

	Application of Multicycle Exceptions
	Same Frequency Clocks with Destination Clock Offset
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency
	The Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency
	The Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	Document Revision History

	8. Switching to the Quartus II TimeQuest Timing Analyzer
	Benefits of Switching to the TimeQuest Analyzer
	Switching Your Design
	Open Your Compiled Design
	Create an SDC Constraints
	Create SDC Constraints Manually
	Create SDC Constraints from Existing Timing Assignments

	Start the TimeQuest Analyzer

	Differences Between the Quartus II Timing Analyzers
	Terminology
	Netlists
	Collections

	Constraints
	Constraint Files
	Constraint Entry
	Time Units
	MegaCore Functions
	Bus Name Format
	Constraint File Priority
	Constraint Priority
	Ambiguous Constraints

	Clocks
	Related and Unrelated Clocks
	Clock Offset
	Clock Latency
	Offset and Latency Example
	Clock Uncertainty
	Derived and Generated Clocks
	Automatic Clock Detection
	Hold Relationship

	Clock Objects
	Hold Multicycle
	Fitter Performance and Behavior
	Reporting
	Paths and Pairs
	Default Reports
	Netlist Names
	Non-Integer Clock Periods
	Other Features

	Timing Assignment Conversion
	Setup Relationship
	Hold Relationship
	Clock Latency
	Clock Uncertainty
	Inverted Clock
	Not a Clock
	Default Required fMAX Assignment
	Virtual Clock Reference
	Clock Settings
	Multicycle
	Clock Enable Multicycle
	I/O Constraints
	Input and Output Delay
	tSU Requirement
	tH Requirement
	tCO Requirement
	Minimum tCO Requirement
	tPD Requirement
	Minimum tPD Requirement
	Cut Timing Path
	Maximum Delay
	Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Constraining Skew on an Output Bus

	Conversion Utility
	Unsupported Global Assignments
	Recommended Global Assignments
	Clock Conversion
	Instance Assignment Conversion
	PLL Phase Shift Conversion
	tCO Requirement Conversion

	Entity-Specific Assignments
	Paths Between Unrelated Clock Domains
	Unsupported Instance Assignments
	Reviewing Conversion Results
	Warning Messages
	Clocks
	Clock Transfers
	Path Details
	Unconstrained Paths
	Bus Names
	Other

	Rerunning the Conversion Utility

	Notes
	Output Pin Load Assignments
	Constraint Target Types
	DDR Constraints with the DDR Timing Wizard
	Unsupported SDC Features
	Constraint Passing and Optimization
	Clock Network Delay Reporting
	Project Management
	Conversion Utility
	tPD and Minimum tPD Requirement Conversion

	Document Revision History

	9. Synopsys PrimeTime Support
	Quartus II Settings for Generating the PrimeTime Software Files
	Files Generated for the PrimeTime Software Environment
	The Netlist
	The .sdo File
	Generating Multiple Operating Conditions with the TimeQuest Analyzer

	The Tcl Script
	Generated File Summary

	Running the PrimeTime Software
	Analyzing Quartus II Projects
	Other pt_shell Commands

	PrimeTime Timing Reports
	Sample PrimeTime Software Timing Report
	Comparing Timing Reports from the Classic Timing Analyzer and the PrimeTime Software
	Clock Setup Relationship and Slack
	Clock Hold Relationship and Slack
	Input Delay and Output Delay Relationships and Slack

	Static Timing Analyzer Differences
	Classic Timing Analyzer and PrimeTime Software
	Rise/Fall Support
	Minimum and Maximum Delays
	Recovery/Removal Analysis
	Encrypted Intellectual Property Blocks
	Registered Clock Signals
	Multiple Source and Destination Register Pairs
	Latches
	LVDS I/O
	Clock Latency
	Input and Output Delay Assignments
	Generated Clocks Derived from Generated Clocks

	TimeQuest Timing Analyzer and PrimeTime Software
	Encrypted Intellectual Property Blocks
	Latches
	LVDS I/O
	The TimeQuest Timing Analyzer .sdc File and PrimeTime Compatibility
	Clock and Data Paths
	Inverting and Non-Inverting Propagation
	Multiple Rise/Fall Numbers For a Timing Arc
	Virtual Generated Clocks
	Generated Clocks Derived from Generated Clocks

	Conclusion
	Document Revision History

	Section III. Power Estimation and Analysis
	10. PowerPlay Power Analysis
	Types of Power Analyses
	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Airflow
	Heat Sink and Thermal Compound
	Junction Temperature
	Board Thermal Model

	Device Resource Usage
	Number, Type, and Loading of I/O Pins
	Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
	Number and Type of Global Signals

	Signal Activities

	Creating PowerPlay EPE Spreadsheets
	PowerPlay EPE File Generator Compilation Report

	PowerPlay Power Analyzer Flow
	Operating Settings and Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Node Name Matching Considerations
	Glitch Filtering
	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from Full Post-Fit Netlist (Timing) Simulation
	Signal Activities from Full Post-Fit Netlist (Zero Delay) Simulation
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Generating a .vcd
	Generating a .vcd from ModelSim Software
	Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

	Running the PowerPlay Power Analyzer Using the Quartus II GUI
	PowerPlay Power Analyzer Compilation Report
	Summary
	Settings
	Simulation Files Read
	Operating Conditions Used
	Thermal Power Dissipated by Block
	Thermal Power Dissipation by Block Type (Device Resource Type)
	Thermal Power Dissipation by Hierarchy
	Core Dynamic Thermal Power Dissipation by Clock Domain
	Current Drawn from Voltage Supplies
	Confidence Metric Details
	Signal Activities
	Messages
	Specific Rules for Reporting

	Scripting Support
	Running the PowerPlay Power Analyzer from the Command–Line

	Conclusion
	Document Revision History

	Section IV. System Debugging Tools
	11. System Debugging Tools Overview
	System Debugging Tools
	Analysis Tools for RTL Nodes
	Resource Usage
	Pin Usage
	Usability Enhancements

	Stimulus-Capable Tools
	In-System Sources and Probes
	In-System Memory Content Editor
	Virtual JTAG Interface Megafunction
	System Console

	Conclusion
	Document Revision History

	12. Analyzing and Debugging Designs with the System Console
	Introduction
	System Console Overview
	Finding and Referring To Services
	Accessing the Service Life Cycle
	Applying Services

	Setting Up the System Console
	Interactive Help
	Using the System Console
	Qsys and SOPC Builder Communications
	Console Commands
	Plugins
	Design Service Commands
	Data Pattern Generator Commands
	Data Pattern Checker Commands
	Programmable Logic Device (PLD) Commands
	Board Bring-Up Commands
	JTAG Debug Commands
	Clock and Reset Signal Commands
	Avalon-MM Commands

	Processor Commands
	Bytestream Commands
	Transceiver Toolkit Commands
	In-System Sources and Probes Commands
	Monitor Commands
	Dashboard Commands
	Specifying Widgets
	Customizing Widgets
	Assigning Dashboard Widget Properties

	System Console Examples
	LED Light Show Example
	Loading and Linking a Design
	JTAG Examples
	Verify JTAG Chain
	Verify Clock

	Checksum Example
	Nios II Processor Example

	Device Support
	Conclusion
	Document Revision History

	13. Transceiver Link Debugging Using the System Console
	Transceiver Toolkit Overview
	Auto Sweep
	EyeQ
	Control Links

	Transceiver Link Debugging Design Examples
	Setting Up Tests for Link Debugging
	Custom PHY IP Core
	Low Latency PHY IP Core
	Avalon-ST Data Pattern Generator
	Data Checker

	Compiling Design Examples
	Changing Pin Assignments

	Transceiver Toolkit Link Test Setup
	Loading the Project in System Console
	Linking the Hardware Resource
	Creating the Channels
	Running the Link Tests
	Viewing Results in the EyeQ Feature

	Tcl Script in System Console
	Running Tcl Scripts

	Usage Scenarios
	Linking One Design to One Device Connected By One USB Blaster Cable
	Linking Two Designs to Two Separate Devices on Same Board (JTAG Chained), Connected By One USB Blaster Cable
	Linking Two Designs to Two Separate Devices on Separate Boards, Connected to Separate USB Blaster Cables
	Linking Same Design on Two Separate Devices
	Linking Unrelated Designs
	Saving Your Setup As Tcl Scripts
	Verifying Channels Are Correct When Creating Link
	Using the Recommended DFE Flow
	Running Simultaneous Tests

	Conclusion
	Document Revision History

	14. Quick Design Debugging Using SignalProbe
	Debugging Using the SignalProbe Feature
	Reserve the SignalProbe Pins
	Perform a Full Compilation
	Assign a SignalProbe Source
	Add Registers to the Pipeline Path to SignalProbe Pin
	Perform a SignalProbe Compilation
	Analyze the Results of the SignalProbe Compilation
	Performing a SignalProbe Compilation
	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	Scripting Support
	Make a SignalProbe Pin
	Delete a SignalProbe Pin
	Enable a SignalProbe Pin
	Disable a SignalProbe Pin
	Perform a SignalProbe Compilation
	Script Example

	Reserving SignalProbe Pins
	Common Problems When Reserving a SignalProbe Pin

	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Run SignalProbe Automatically
	Run SignalProbe Manually
	Enable or Disable All SignalProbe Routing
	Allow SignalProbe to Modify Fitting Results

	Conclusion
	Document Revision History

	15. Design Debugging Using the SignalTap II Logic Analyzer
	Hardware and Software Requirements
	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Trigger Conditions
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data
	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer
	Using the MegaWizard Plug-In Manager to Create Your Logic Analyzer

	Configure the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals Using the Technology Map Viewer
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Adding Finite State Machine State Encoding Registers
	Modifying and Restoring Mnemonic Tables for State Machines
	Additional Considerations

	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Non-Segmented Buffer
	Segmented Buffer

	Using the Storage Qualifier Feature
	Input Port Mode
	Transitional Mode
	Conditional Mode
	Start/Stop Mode
	State-Based
	Showing Data Discontinuities
	Disable Storage Qualifier

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	State-Based Triggering
	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action
	Using the State-Based Storage Qualifier Feature

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for Your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	Runtime Reconfigurable Options
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Capturing Data Using Segmented Buffers
	Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Exporting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Equipment Setup

	Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream Security
	Backward Compatibility with Previous Versions of Quartus II Software
	SignalTap II Command-Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	SignalTap II Scripting Support
	Conclusion
	Document Revision History

	16. In-System Debugging Using External Logic Analyzers
	Choosing a Logic Analyzer
	Required Components

	Debugging Your Design Using the LAI
	Working with LAI Files
	Configuring the File Core Parameters
	Mapping the LAI File Pins to Available I/O Pins
	Mapping Internal Signals to the LAI Banks
	Using the Node Finder
	Compiling Your Quartus II Project
	Programming Your Altera-Supported Device Using the LAI

	Controlling the Active Bank During Runtime
	Acquiring Data on Your Logic Analyzer

	Using the LAI with Incremental Compilation
	Conclusion
	Document Revision History

	17. In-System Modification of Memory and Constants
	Overview
	Updating Memory and Constants in Your Design
	Creating In-System Modifiable Memories and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor Pane
	Importing and Exporting Memory Files
	Scripting Support
	Programming the Device with the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Logic Analyzer

	Conclusion
	Document Revision History

	18. Design Debugging Using In-System Sources and Probes
	Overview
	Hardware and Software Requirements

	Design Flow Using the In-System Sources and Probes Editor
	Configuring the ALTSOURCE_PROBE Megafunction
	Instantiating the ALTSOURCE_PROBE Megafunction
	Compiling the Design

	Running the In-System Sources and Probes Editor
	Programming Your Device With JTAG Chain Configuration
	Instance Manager
	In-System Sources and Probes Editor Pane
	Reading Probe Data
	Writing Data
	Organizing Data

	Tcl interface for the In-System Sources and Probes Editor
	Design Example: Dynamic PLL Reconfiguration
	Conclusion
	Document Revision History

	Section V. Formal Verification
	19. Cadence Encounter Conformal Support
	Formal Verification Versus Simulation
	Formal Verification: What You Need to Know
	Formal Verification Design Flow
	Quartus II Integrated Synthesis
	EDA Tool Support for Quartus II Integrated Synthesis
	Synplify Pro

	RTL Coding Guidelines for Quartus II Integrated Synthesis
	Synthesis Directives and Attributes
	Stuck-at Registers
	ROM, LPM_DIVIDE, and Shift Register Inference
	RAM Inference
	Latch Inference
	Combinational Loops
	Finite State Machine Coding Styles

	Black Boxes in the Conformal LEC Flow
	Tcl Command
	GUI

	Generating the Post-Fit Netlist Output File and the Conformal LEC Setup Files
	Quartus II Software Generated Files, Formal Verification Scripts, and Directories

	Understanding the Formal Verification Scripts for Conformal LEC
	Conformal LEC Commands within the Quartus II Software-Generated Scripts

	Comparing Designs Using Conformal LEC
	Running the Conformal LEC Software from the GUI
	Running the Conformal LEC Software From a System Command Prompt

	Known Issues and Limitations
	Black Box Models
	Conformal Dofile/Script Example
	Conclusion
	Document Revision History

	Section VI. Device Programming
	20. Quartus II Programmer
	Programming Flow
	Quartus II Programmer GUI
	Hardware Setup
	JTAG Settings
	JTAG Chain Debugger Tool
	JTAG Chain Debugger Example

	Other Programming Tools
	Stand-Alone Quartus II Programmer

	Programming and Configuration Modes
	Configuration Modes
	Design Security Key Programming
	Generating Secondary Programming Files
	Convert Programming Files Dialog Box
	Flash Loaders

	Scripting Support
	The jtagconfig Debugging Tool

	Conclusion
	Document Revision History

	Additional Information
	How to Contact Altera
	Typographic Conventions

