Quartus Il Handbook Version 10.1 Volume 1: Design and

Synthesis

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Qllsv1-10.1.0


http://www.altera.com

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard Warran?r, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Xltera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

o

QUALITY
150 9001:2008

NSAI Certified

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/common/legal.html

QA | |:| —E DY/A ® Contents

Chapter Revision Dates . .............. ... .. . xxiii
Section I. Design Flows

Chapter 1. Design Planning with the Quartus Il Software

Creating Design Specifications ......... ... .. ... ... .. . . 1-2
Intellectual Property Selection . ......... ... .. .. ... . 1-2
System Design .. ... 1-2
Device SEleCHON . . ..ottt e e 1-3
Device Migration Planning ......... ... ... ... .. 1-4
Planning for Device Programming or Configuration ............. ... ... ... ... ... ... ... ... 1-4
Early Power Estimation ........... ... . ... 1-5
Early Pin Planning and I/O Analysis . ............ ... . 1-6
Simultaneous Switching Noise Analysis ............. ... .. .. ... ... .. 1-8
Selecting Third-Party EDA Tool Flows ........... ... ... . .. .. i i 1-9
Synthesis Tools ... ... .. 1-9
SIMUulation TOOIS . .. ..ot e 1-9
Formal Verification TOOIS . . ... ..o e e e 1-10
Planning for On-Chip Debugging Options ........... ... ... .. .. . . i i 1-10
Design Practices and HDL Coding Styles ......... ... ... .. ... .. ... .. L. 1-11
Design Recommendations . ............. . . 1-12
Recommended HDL Coding Styles . .......... ... ... . . .. i 1-12
Managing Metastability ........... ... 1-13
Planning for Hierarchical and Team-Based Design ............. ... ... ... ... ... ... ... ... ... 1-13
Flat Compilation Flow with No Design Partitions .............. ... ... ... ... ........... 1-14
Incremental Compilation with Design Partitions ................ ... ... . ... ... ...... 1-14
Planning Design Partitions and Floorplan Location Assignments ........................... 1-15
Fast Synthesis and Early Timing Estimation ............. ... ... ... ... ... . .. .. 1-16
CONCIUSION .« o\ttt e 1-16
Document Revision History ....... ... ... 1-17

Chapter 2. Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Deciding Whether to Use an Incremental Compilation Flow ........ ... ... ... ... ... ... .. 2-1
Flat Compilation Flow with No Design Partitions ................ ... ... ... ... ... ... ..... 2-2
Incremental Capabilities Available When A Design Has No Partitions ..................... 2-2
Incremental Compilation Flow With Design Partitions ................ ... ... ... ... ..... 2-3
Team-Based Design Flows and IP Delivery ........... ... ... .. ... ... . .. ... . ... 2-6
Incremental Compilation Summary ............ . 2-7
Steps for Incremental Compilation .......... ... . 2-8
Preparing a Design for Incremental Compilation ........... ... ... ... ... ... .. .. 2-8
Compiling a Design Using Incremental Compilation ............ ... ... ... ... ... ..., 2-9
Creating Design Partitions .............. .. i 2-9
Creating Design Partitions in the Project Navigator ....................... ... ... .. .. 2-9
Creating Design Partitions in the Design Partitions Window ............................. 2-9
Creating Design Partitions With the Design Partition Planner ........................... 2-10
Creating Design Partitions With Tcl Scripting ........ ... ... . ... ... ... i 2-10
Automatically-Generated Partitions ........... ... ... . o 2-10
Common Design Scenarios Using Incremental Compilation ........................ ... ... ... 2-10

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



iv Contents
Reducing Compilation Time When Changing Source Files for One Partition ................. 2-11
Optimizing a Timing-Critical Partition ......... ... ... ... ... ... ... . ... . 2-11
Adding Design Logic Incrementally or Working With an Incomplete Design ................. 2-12
Debugging Incrementally With the SignalTap Il Logic Analyzer ............................ 2-13

Deciding Which Design Blocks Should Be Design Partitions .................................. 2-14
Impact of Design Partitions on Design Optimization ....................... ... ... .. ..., 2-16
Design Partition Assignments Compared to Physical Placement Assignments ................ 2-17
Using Partitions With Third-Party Synthesis Tools .................. .. ... ... ... .. ..., 2-17

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus ................ 2-17
Other Synthesis Tools .......... ... . . 2-18
Assessing Partition Quality ......... ... .. . 2-18
Partition Statistics Reports ........... ... . ... . 2-18
Partition Timing Reports .................. . 2-19
Incremental Compilation Advisor ............. ... ... 2-19

Specifying the Level of Results Preservation for

Subsequent Compilations ........... ... .. ... 2-21
Netlist Type for Design Partitions ................ ... ... ... .. i, 2-21
Fitter Preservation Level for Design Partitions ................... ... ... .. ... ... ...... 2-22
Where Are the Netlist Databases Saved? ........... ... ... .. ... ... ... ... 2-23
Deleting Netlists ............ .. 2-23
What Changes Initiate a Partition’s Automatic Resynthesis? ............................... 2-24

Resynthesis Due to Source Code Changes ................. ... .. ... . ... ... ..... 2-25
Forcing Use of the Compilation Netlist When a Partition has Changed .................... 2-26
Exporting Design Partitions from Separate Quartus Il Projects ................................ 2-26
Preparing the Top-Level Design ........ ... ... ... .. ... .. . . . 2-27
Empty Partitions ............. . 2-28
Project Management—Making the Top-Level Design Available to Other Designers ........... 2-28
Distributing the Top-Level Quartus II Project . ................ ... ... .. ... ... ...... 2-28
Generating Design Partition Scripts ........... ... ... ... ... 2-30
Exporting Partitions ................ . 2-31
Viewing the Contents of a Quartus II Exported Partition File (.qxp) ......................... 2-31
Integrating Partitions into the Top-Level Design ............. ... ... ... ... ............. 2-32
Integrating Assignments fromthe .qxp ........ ... ...l 2-32
Integrating Encrypted IP Cores from .qxp Files ............. ... ... ... ... ... ... .. 2-33
Advanced Importing Options ......... ... ... .. . . 2-33

Team-Based Design Optimization and Third-Party IP Delivery Scenarios ...................... 2-35
Using an Exported Partition to Send to a Design Without
Including Source Files ... ... .. 2-35
Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse .................... 2-36
Designing in a Team-Based Environment ............. ... ... ... ... .. ... ... .. 2-38
Enabling Designers on a Team to Optimize Independently ................................ 2-39

Resolving Assignment Conflicts During Integration .................................... 2-41
Importing a Partition to be Instantiated Multiple Times ................................. 242
Performing Design Iterations With Lower-Level Partitions ................................ 242

Creating a Design Floorplan With LogicLock Regions ..................... ... ... ... ...... 2-44
Creating and Manipulating LogicLock Regions ................ ... ... ... ... ... ....... 2-45
Changing Partition Placement with LogicLock Changes ................................... 2-46
Taking Advantage of the Early Timing Estimator ................... . ... ... ... .. .......... 2-46

Incremental Compilation Restrictions ................. . . .. 2-47
When Timing Performance May Not Be Preserved Exactly ................................ 2-47
When Placement and Routing May Not Be Preserved Exactly ........................... ... 2-47
Using Incremental Compilation With Quartus IT Archive Files ............................. 2-48
Limitations for HardCopy Compilation and Migration Flows .............................. 2-48
Formal Verification Support ............. . 2-49

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents v

SignalProbe Pins and Engineering Change Orders ......................... ... ... .. ...... 2-49
SignalTap II Logic Analyzer in Exported Partitions .................... ... ... ... ...... 2-49
External Logic Analyzer Interface in Exported Partitions .................................. 2-50
Assignments Made in HDL Source Code in Exported Partitions ............................ 2-50
Design Partition Script Limitations .............. ... ... ... ... 2-50
Warnings About Extra Clocks Due to Design Partition Scripts ........................... 2-50
Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts ........... . 2-51
Wildcard Support in Design Partition Scripts ................... ... ..l 2-51
Derived Clocks and PLLs in Design Partition Scripts ...................... ... ... .. ..., 2-51
Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts ................... 2-52
Virtual Pin Timing Assignments in Design Partition Scripts .......................... ... 2-52
Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts . .......... 2-52
Restrictions on Megafunction Partitions ........ ... ... ... .. ... ... 2-52
Register Packing and Partition Boundaries ............... ... ... ... .. ... 2-53
I/ORegister Packing ........... ... . 2-53
Scripting SUPPOrt ... .. 2-54
Creating Design Partitions .......... ... . ... .. . . 2-54
Enabling or Disabling Design Partition Assignments During Compilation ................... 2-55
Setting the Netlist Type . ......... . 2-55
Setting the Fitter Preservation Level for a Post-fit or Imported Netlist ....................... 2-56
Preserving High-Speed Optimization ............ ... .. ... ... ... ... ... ... ..., 2-56
Specifying the Software Should Use the Specified Netlist and
Ignore Source File Changes . ......... ... . ... 2-56
Generating Design Partition Scripts ............. ... ... ... 2-56
ExportingaPartition ................. .. 2-57
Importing a Partition into the Top-Level Design .............. ... ... ... ... ... ...... 2-57
Makefiles ... ... ... 2-58
Scripting and Command-Line Application Examples .................. ... ... ... .. ..... 2-58
Reducing Opening a Project, Creating Design Partitions, and Performing
an Initial Compilation ............. .. 2-59
Reducing Compilation Time When Changing a Source File for One
Partition—Command-Line Example .......... ... ... ... ... ...l 2-59
Optimizing the Placement for a Timing-Critical Partition ............................... 2-59
Conclusion . ... ... 2-60
Document Revision History ........... ... 2-61

Chapter 3. Quartus Il Support for HardCopy Series Devices

HardCopy Series Design Benefits .............. ... ... .. .. . 3-1
Quartus II Features for HardCopy Planning .............. ... ... ... . .. ... .. ... 3-2
HardCopy Development Flow ....... ... . ... . . 3-2
Designing the FPGA First . ... ... ... 3-3
Designing the HardCopy Device First ......... ... .. .. . . . 3-5
HardCopy Companion Device Selection ........... .. ... ... ... . ... . . ... i 3-6
HardCopy Utilities ....... ... .. 3-7
Companion Revisions . ........ ... i 3-8
Compiling the HardCopy Companion Revision ................ ... ... ... . .. 39
Comparing HardCopy and FPGA Companion Revisions ................. ... ... ... .. ..... 3-9
Generating a HardCopy Handoff Report ............ ... ... .. .. i i, 39
Archiving HardCopy Handoff Files .......... ... ... .. .. .. . . . . i, 3-10
HardCopy AdVisor . . ... o 3-10
HardCopy Device Resource Guide . ....... ... .. e 3-11
HardCopy Recommended Settings in the Quartus Il Software ................................ 3-12
Limit DSP and RAM to HardCopy Device Resources .................oiiiiiiiiiinnnnn. 3-12

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



vi Contents

Enabling Design Assistant to Run During Compile ...................... .. ... ... ...... 3-12
Timing Settings ... ... ... 3-13
Constraints for Clock Effect Characteristics .................... ... ... ... ... ..., 3-13
Quartus II Software Features Supported for HardCopy Designs ............................ 3-14
Physical Synthesis Optimization .......... ... ... ... . ... 3-14
LogicLock Regions . ......... ... 3-15
PowerPlay Power Analyzer ......... ... ... . 3-15
Incremental Compilation .......... ... ... . 3-15
HardCopy Design Readiness Check . ........... ... ... ... . i i 3-15
Turning the HardCopy Design Readiness Check Onand Off . .............................. 3-16
Setting Check ... . 3-16
SUMMATY . ... 3-16
Global Setting ... ... ... ... 3-16
Instance Setting ........ ... . ... 3-16
Operating Setting .. .......... ... 3-16

I/O CRECK . oot 3-17
Input Pin Placement for Global and Regional Clock .................................... 3-17

PLL Usage Check ......... . 3-17
PLL Real-Time Reconfigurable Check .......... ... . ... ... ... ... ... ... ...... 3-18

PLL Clock Outputs Driving Multiple Clock Network Types Check ....................... 3-18

PLL with No Compensation Mode Check ................. .. .. ... ... ... . ..... 3-18

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check ............... 3-18
RAM Usage Check . ......... . 3-18
Initialized Memory Dependency Testing .......... ... ... ... ... ... .. ... ... ... 3-19
ALTGX Usage Check ........ .. 3-20
Performing ECOs with Quartus II Engineering Change Management with the Chip Planner ..... 3-20
Migrating One-to-One Changes ............ ... ... . . .. . i 3-20
Migrating Changes that Must Be Implemented Differently ................................ 3-21
Changes that Cannotbe Migrated .......... ... ... ... .. ... .. ... ... ... 3-22
Overall Migration Flow ....... ... .. . 3-22
Preparing the Revisions ........... ... ... ... .. 3-22
Applying ECO Changes ......... ... 3-22
Formal Verification of FPGA and HardCopy Revisions .................... ... ... ......... 3-23
HardCopy Floorplan View ....... ... 3-24
Document Revision History ........... ... 3-25

Chapter 4. Quartus Il Design Separation Flow

Design Flow OVerview ....... ... ... i 4-2
Creating Design Partitions for the Design Separation Flow .................................... 4-4
Merging PLL ReSOUICES . ... ..ot 4-5
Avoiding Multiple Design Partitions With a Secured Region ................................ 4-6
Creating a Design Floorplan with Secured Regions ............... ... ... ... ... ... ... .. ... 4-6
Using Security Attributes ......... ... . 4-7
Using Secured Regions .............. .. 4-9
Adding I/O Pins as Members of Secured Regions ................ ... ... ... ... ... ... 4-9
Using Security Routing Interfaces . ........... ... ... . ... ... 4-9
Making Design Separation Flow Location Assignments in the Chip Planner ................. 4-10
Understanding Fencing Regions .......... ... ... .. . il 4-11
Creating Non-Rectangular Regions ............ ... ... .. .. . . . . . . . . . . i 4-13
Guidelines for the Relative Placement of Secured LogicLock Regions ..................... 4-14
Creating a Complete Floorplan ........ ... . . . . . 4-14
Ensuring Routability Between Regions ............. ... ... ... ... .. .. ... 4-16
Ensuring Planarity ........ ... 4-17
Placing Physical Resources . ......... ... .. i 4-19

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents vii

Making Signal Security Assignments ............ ... ... .. 4-19
Understanding Signal Names .. ............... 4-20
Working with Global Signals ........... ... ... .. ... . . . 4-21

Assigning I/OPINs ... ... . 4-25

Making Post Compilation Edits ........ ... .. ... . .. .. 4-26

Routing Restrictions .............. .. 4-26
Number of Signals in Routing Interfaces .............. ... ... .. ... ... ... ... ... 4-28

Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow ... 4-31

ReportPanels . ... ... 4-33
Secured LogicLock Region Summary ........... ... ... ... i 4-33
Security Routing Interfaces ........... ... ... ... 4-34
Secured LogicLock Region Inputs and Outputs ............ .. ... ... ... ... ..., 4-34
Security [/OBank Usage . ....... ... 4-35

Quartus Settings File Syntax ........ ... ... . ... 4-35
LL_SECURITY_ROUTING_INTERFACE . ...... ... ... 4-35
LL_REGION_SECURITY_LEVEL . ... . 4-35
LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE .................................. 4-35
LL_SIGNAL_SECURITY_LEVEL .. ... e 4-36

Document Revision History ............... . 4-36

Section Il. System Design with Qsys

Chapter 5. Creating a System with Qsys

Qsys GUL . ..o o 5-2
Qsys Component Library ......... ... ... 5-3
Integrating Custom Components ................. ... ... ... ... ... 5-3
Integrating Third-Party Components .......... ... ... ... ... .. ... ... .. i, 54
Adding System Contents ............... ... 54
Adding Components . ......... ... .. 54
Connecting Components . ... i 54
Filtering Components ............. ... . 5-5
Using the System Inspector ............ ... 5-5
Defining the Address Map ............ . 5-6
Specifying Clock Settings .......... ... i i 5-7
Specifying Project Settings ........ ... .. . . 5-7
System Generation ............ ... 5-8
Viewing the HDL Example .......... .. 5-8
QsysDesign FIOW . ... o 5-8
Generating Output Files ...... ... . . 5-10
Simulating a Qsys System ....... ... . 5-11
Example Hierarchical System ............ ... . . . . . 5-12
Using Pipeline Bridges . . ....... ... 5-16
Creating Hierarchical Components ............... ... . . . i 5-16
Document Revision History ........... ... 5-17

Chapter 6. Creating Qsys Components

Qsys COMPONENTS .. ... 6-1
Component Providers ........ ... .. 6-2
Component Interfaces ....... ... . . 62
Component Types . ... ... 6-2
Component Structure . . ... ... 6-3

Component Description File (_hw.tcl) ... oo o o i i 6-3
Component File Organization ........... ... ... . . . 6—4

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



viii Contents

Component Versioning . .......... ... 64
Component Search Path ......... ... .. . . . . 64
Adding Components tothe Library ............ ... ... ... . ... 6-5

Copy tothe IP Root Directory ............ .. 6-5

Reference Componentsinan ipxFile ....... ... ... ... ... . il 6-6

Understanding IPX File Syntax ................ 6-8

Component Editor .......... 6-9
Component Hardware Structure .......... ... .. .. . . . 6-9
Starting the Component Editor ........ ... ... ... ... . 6-10
HDL FilesTab .. ... ... . 6-10

Bottom-Up Component Design ................ .. . . . 6-10

Top-Down Component Design . .............. ... i 6-11
Signals Tab . ... o 6-11

Naming Signals for Automatic Type and Interface Recognition .......................... 6-11

Templates for Interfaces to External Logic............ ... ... ... ... ... ... 6-12
Interfaces Tab ...... ... . . 6-13
HDL Parameters Tab ........... ... . 6-13
Library Info . ... 6-14
Saving a Component ......... ... ... 6-15
Editing a Component . .......... ... 6-15
Registering Software Assignments ............. ... ... . ... i 6-15
Component Parameterization ......... ... . ... . . 6-15

Document Revision History ............... . 6-16

Chapter 7. Qsys Interconnect

Avalon-MM Interface Components ............. ... ... .. . 7-2
Component Interconnect Domains ..................... ... ... ... .. ool 7-5
Using Two Separate Domains ................. ... .. ... . ... L 7-6
Using One Domain with Width Adaptation ........... ... ... . ... ... ... ... . ..., 7-6
Qsys Transformations ........... ... . . .. 7-7
Master Command and Slave Response Networks ............... ... ... ... ... ... ... ... 7-7
Merlin Master Translator .............. .. .. . . 7-8
Merlin Master Agent .............. . 7-8
Merlin Router . . ... ... 7-9
Merlin Traffic Limiter .. ...... ... 7-9
Merlin Slave Translator . ........... .. . 7-9
Merlin Slave Agent . .......... .. 7-10
Arbitration . ... .. 7-10
Arbitration Examples ... ... 7-11
Merlin Arbiter ... ... ... ... 7-11
Interconnect Pipelining ........ ... ... 7-13
Additional Qsys Interconnect Components ............ ... ... i 7-14
Clock Bridge . ... 7-15
Avalon-MM Clock Crossing Bridge (Qsys) ... 7-15
Avalon-MM Pipeline Bridge (Qsys) ........ ... 7-15
Merlin Width Adapter ....... ... ... 7-16
Burst Transfers . ...........o i 7-17
Merlin Burst Adapter ....... ... .. 7-17
Burst Types .. ... 7-18
Avalon-ST Interfaces . ........... . 7-18
Avalon-ST Examples .. ... ... e 7-18
Avalon-ST Components ......... ... .o it 7-19
Avalon-ST Handshake Clock Crosser ............ ... .. o 7-19
Avalon-ST Pipeline Stage . ...... ... .. . 7-19

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents ix

Merlin Multiplexer ....... ... .. 7-20
Merlin Demultiplexer ......... ... ... 7-20
Avalon-ST and Avalon-MM Interfaces ............. ... ... ... . i 7-20
Tristate Conduit Components .............. . . 7-21
Generic Tristate Controller ........ ... . 7-24
Tristate Conduit PinSharer . ............. . 7-26
Tristate Conduit Bridge ............ . 7-26
TIMING o 7-27
Interrupt Interfaces ...... ... 7-27
Assigning IRQsIN QSys . ... 7-27
IRQBridge . ... 7-28
Merlin IRQ Mapper . ....... .. 7-28
Merlin IRQ ClocK CroSSer . ..ot vttt e et e e e et e et et ettt et ettt 7-29
Clock Interfaces ...... ... ... i 7-29
Reset Interfaces ......... ... . 7-29
Single Global Reset Signal Implemented by Qsys ............ ... ... ... ... ... ..., 7-29
Multiple Reset Signals . .......... ... . 7-29
Merlin Reset Controller . ... 7-29
Reset Bridge ...... ... ... 7-30
Conduits ... ... o 7-30
Summary: Qsys Interconnect Components .......... ... ... .. 7-30
Document Revision History ............... . 7-32

Chapter 8. Component Interface Tcl Reference

Information in a Hardware Component Description File . ........... ... ... .. ... ... ... ... 8-1
Component Phases ............ ... . 8-2
Writing a Hardware Component Description File . ......... ... ... ... . ... oo L. 8-3
Providing Basic Information ......... ... . ... .. 8-3
Declaring Parameters .. .......... ... .. 84
User Parameters . ... ... e e 84
Derived Parameters . ... ..ottt 84
SYSTEM_INFO Parameters . ... ...t e e e 84
Declaring Interfaces .............. . 8-5
Adding Files and Guiding Generation ............ ... ... ... ... ... . i 8-5
Default Behaviors . ... ... e 8-6
Validation Phase Behavior . ........... .. i e 8-6
Elaboration Phase Behavior . ............ .. i e 8-6
Automatic Port Widths ... ... 8-6
Parameterized Parameter Widths . ....... ... ... . . 8-7
Generation Phase Behavior . ... ... 8-7
Edit Phase Behavior ... ... ... e 8-7
Overriding Default Behaviors ...... ... . . . 8-8
Validation Callback .. ... 8-9
Elaboration Callback . ........... i 8-9
Generation Callback .. ...t 8-10
Compose Callback ...... ... .. 8-11
Editor Callback ... ...ttt e e 8-13
Hardware Tcl Command Reference . ...... ...t e 8-14
Module Definition . ... ...t 8-17
PaCKage ... 8-17
get_module_properties . ........... ... 8-17
get_module_property .......... .. 8-19
set_module_property ......... ... 8-19
get_module_ports ... ... 8-20

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



X Contents

get_module_assignments ............. .. 8-20
get_module_assignment .............. . 8-20
set_module_assignment ............ ... 8-21
get files ... 821
add_file ... 8-21
add_documentation_Link ... ..... ... 8-22
get_file_properties ... ... .. 8-22
get_file_property ... ... 8-22
set_file_property .......... 8-23
SENA_IMESSAGE . . ..o oottt 8-23
Parameters . ... o 8-24
add_parameter ...... ... 8-24
get_parameters . ... ... 8-25
get_parameter_properties ................... 8-25
get_parameter_property ........ ... 8-30
set_parameter_property ......... ... 8-30
get_parameter_value ........ ... . . . 8-31
set_parameter_value ........ ... .. 8-31
decode_address_map .......... .. 8-32
Display Items . . . ... ... 8-33
add_display_item ......... .. 8-33
get_display_items ........... ... 8-34
get_display_item_properties ......... ... . ... 8-35
get_display_item_property ............. ... 8-35
set_display_item_property ....... ... 8-35
Interfaces and PoOrts . ... .. 8-36
add _Interface .. ... 8-36
get_interfaces ...... ... .. . 8-37
get_interface_properties ............. ... 8-38
get_interface_property ............ .. 8-38
set_interface_property ......... ... 8-39
add_interface_port. ... ... .. 8-39
get_interface_ports ....... ... . . 840
get_port_properties ............. . 840
get_port_property ... ... 841
Set_POTt_Property ...... ... 842
get_interface_assignments ............ ... . 842
get_interface_assignment ........... ... . . . 842
set_interface_assignment .............. . ... 843
CompoOse . ... 843
add_INStance . .. ... 843
get INStances . .. ... ... 844
get_instance_parameters ............. .. 844
set_instance_parameter_value ........... ... .. 844
get_instance_parameter_value ............. .. . . 844
get_instance_parameter_properties ............ ... . i 845
get_instance_parameter_property ............... . 845
get_instance_interfaces ....... ... . .. 846
get_instance_interface_properties ........... ... 8-46
get_instance_interface_property ............ . 8-46
get_instance_interface_ports ........................................................ 847
get_instance_port_property ......... ... 8-47
add_conNNECtiON . ..ot 8-47
get_connections . ... ... ... 8-48

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents Xi

get_connection_parameters ............. ... 8-48
get_connection_parameter_value ............. ... . . 8-49
set_connection_parameter_value ........... ... ... . 8-49
GENETAtION . ..ottt e 8-49
get_generation_properties ............. .. 8-49
get_generation_property ............. .. 8-50
Document Revision History ......... ... .. 8-50

Section Ill. Design Guidelines

Chapter 9. Recommended Design Practices

Synchronous FPGA Design Practices . ............ ... ... . i 9-2
Fundamentals of Synchronous Design ........... ... ... ... ... ... ... 9-2
Hazards of Asynchronous Design ........... ... ... .. . . i i 9-3

Design Guidelines ........ ... . 94
Combinational Logic Structures . ......... ... ... .. . 9-4

Combinational Loops ......... ... .. 94
LatChes . o 9-5
Delay Chains . ... 9-5
Pulse Generators and Multivibrators ............... . i 9-6
Clocking Schemes . .......... . 9-7
Internally Generated Clocks . ......... ... i 9-8
Divided CloCKS . ..ot 9-8
Ripple Counters ...... ... 9-8
Multiplexed Clocks . ... ... 9-9
Gated CloCKS . .o oo e 9-10
Synchronous Clock Enables ....... ... ... . . 9-11
Recommended Clock-Gating Methods ........... .. ... ... . ... ... ... ... .. 9-11
Power Optimization . ........ ... 9-12
Metastability ....... ... . 9-13
Incremental Compilation ........... ... 9-13

Checking Design Violations With the Design Assistant ...................................... 9-13
Quartus II Design Flow with the Design Assistant ........................................ 9-14
Enabling and Disabling Design Assistant Rules ................ ... ... ... . ... ... .......... 9-15
Viewing Design Assistant Results .......... ... .. . . . . i 9-15
CUStOmM RULES . .o 9-15

Custom Rules Coding Examples ............. .. . 9-16

Targeting Clock and Register-Control Architectural Features ................................. 9-19
Clock Network ReSOUICES . . ..ottt e e e e e e e 9-20
ReESet ROSOUTICES . . ..ot e e e 9-21

Synchronous Reset . ... ... .. . . 9-21
Asynchronous Reset ........ ... ... 9-21
Synchronized Asynchronous Reset............ ... ... .. . . 9-22
Register Control Signals ....... ... .. . . . 9-24

Targeting Embedded RAM Architectural Features .............. ... ... ... ................. 9-24

CONCIUSION . ottt e e 9-25

Document Revision History ........... .. 9-26

Chapter 10. Recommended HDL Coding Styles

Quartus II Language Templates ............... ... . i 10-1
Using Altera Megafunctions .............. .. . . 10-2
Instantiating Altera Megafunctionsin HDL Code .......... ... ... ... ... . .. 10-3

Instantiating Megafunctions Using the MegaWizard Plug-In Manager ...................... 10-3

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



Xii Contents

Creating a Netlist File for Other Synthesis Tools . ................ ... ... ... ... . ..., 104
Instantiating Megafunctions Using the Port and Parameter Definition....................... 10-4
Inferring Multiplier and DSP Functions from HDL Code .................................... 10-5
Inferring Multipliers from HDL Code ........... ... .. ... i, 10-5
Inferring Multiply-Accumulators and Multiply-Adders from HDL Code .................... 10-8
Inferring Memory Functions from HDL Code .............. ... ... ... ... 10-13
Inferring RAM functions from HDL Code ............. ... ... ... ... ... ... ..., 10-13
Use Synchronous Memory Blocks . ............... .. ..o 10-14
Avoid Unsupported Reset and Control Conditions .................................... 10-14
Check Read-During-Write Behavior .............. ... ... .. ... L 10-16
Controlling Inference and Implementation in Device RAM Blocks . ...................... 10-18
Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior............. 10-18
Single-Clock Synchronous RAM with New Data Read-During-Write Behavior ............ 10-20
Simple Dual-Port, Dual-Clock Synchronous RAM ..................................... 10-22

True Dual-Port Synchronous RAM . ... .. ... ... 10-24
Mixed-Width Dual-Port RAM . ...... ... ... ... 10-28
RAM with Byte-Enable Signals ............ ... ... ... ... 10-31
Specifying Initial Memory Contents at Power-Up ..................................... 10-33
Inferring ROM Functions from HDL Code ................. ... ... ... ... ... .. ..... 10-36
Shift Registers—Inferring the ALTSHIFT_TAPS Megafunction from HDL Code ............. 10-40
Simple Shift Register ........ .. ... .. . . 1041

Shift Register with Evenly Spaced Taps ............ ... ... ... . ... ... ... 10-42
Coding Guidelines for Registers and Latches ............... ... ... ... ... ... . ..., 10-43
Register Power-Up Values in Altera Devices ................ ... ... ... ... ..., 10-43
Secondary Register Control Signals Such as Clear and Clock Enable ....................... 10-45
Latches . ... 10-49
Unintentional Latch Generation ......... ... ... ... ... ... ... ... .. 10-49
Inferring Latches Correctly ........ ... .. ... .. . . . 10-50
General Coding Guidelines .......... ... ... .. . . . . . 10-53
Tri-State Signals . ... ... . . 10-54
Clock Multiplexing . ...... ... 10-54
Adder Trees ... ... .. 10-58
Architectures with 4-Input LUTs in Logic Elements ................................... 10-58
Architectures with 6-Input LUTs in Adaptive LogicModules ........................... 10-59
State Machines ............ ... .. 10-60
Verilog HDL State Machines ............. ... ... . . i 10-61
VHDL State Machines ............. 10-65
Multiplexers . .. ... .. 10-67
Quartus II Software Option for Multiplexer Restructuring ............................. 10-67
Multiplexer Types . ... ..o 10-67
Implicit Defaults in If Statements ............ ... ... .. .. . . . 10-69
Default or Others Case Assignment .............. ... ... ... ... .. ... ... 10-69
Cyclic Redundancy Check Functions ............. ... ... .. .. ... ... ... . ... 10-70

If Performance is Important, Optimize forSpeed ........... ... ... ... ... . 10-70

Use Separate CRC Blocks Instead of Cascaded Stages .................................. 10-70

Use Separate CRC Blocks Instead of Allowing Blocks to Merge ......................... 10-71

Take Advantage of Latency if Available ............. ... ... ... ... ... .. ...l 10-71

Save Power by Disabling CRC Blocks When NotinUse ................................ 10-71

Use the Device Synchronous Load (sload) Signal to Initialize ........................... 10-72
Comparators .. ... ... 10-72
COUNLEIS . .o 10-73
Designing with Low-Level Primitives ............ ... .. . . . 10-73
ConClUSION ... . o 10-74
Document Revision History ........... ... 10-74

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents Xiii

Chapter 11. Managing Metastability with the Quartus Il Software

Introduction ...... ... 11-1
Metastability Analysis in the Quartus Il Software .............. ... ... ... ... . . oo o 11-2
Synchronization Register Chains ........... ... ... ... .. .. ... 11-2
Identifying Synchronizers for Metastability Analysis ................ ... ... .. ... ... ... 11-4
How Timing Constraints Affect Synchronizer Identification and Metastability Analysis ....... 11-4
Metastability and MTBEF Reporting ............. ... .. . . . 11-5
Metastability Reports . ... ... . 11-5
MTBF Summary Report ...... ... . 11-5
Synchronizer Summary Report .......... ... . 11-6
Synchronizer Chain Statistics Report in the Timing Analyzer ............................ 11-7
Synchronizer Data Toggle Rate in MTBF Calculation ..................................... 11-7
MTBF Optimization . .......... ... 11-8
Synchronization Register Chain Length ............. ... ... ... ... ... . 11-8
Reducing Metastability Effects ......... ... ... ... .. . 11-9
Apply Complete System-Centric Timing Constraints for the Timing Analyzer ............... 11-9
Force the Identification of Synchronization Registers ..................................... 11-9
Set the Synchronizer Data Toggle Rate ........... ... ... ... ... .. ... ... ... .... 11-10
Optimize Metastability During Fitting ............... ... ... ... . . . 11-10
Increase the Length of Synchronizers to Protect and Optimize ............................ 11-10
Set Fitter Effort to Standard Fitinstead of Auto Fit........... ... ... ... ... ... ... ..., 11-10
Increase the Number of Stages Used in Synchronizers, If Possible ......................... 11-10
Select a Faster Speed Grade Device, if Possible .............. ... ... ... ... .. ... L 11-11
Scripting SUpPPOrt ... 11-11
Identifying Synchronizers for Metastability Analysis ................. ... ... ... ... ..., 11-11
Synchronizer Data Toggle Rate in MTBF Calculation .................................... 11-12
report_metastability and Tcl Command ............. ... ... ... ... .. 11-12
MTBF Optimization ........... ... 11-12
Synchronization Register Chain Length ............ ... ... ... ... ... ... .. . . 11-12
ConClUSION . . .. 11-13
Document Revision History .......... ... 11-13

Chapter 12. Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Overview: Incremental Compilation ............ ... . ... 12-2
Recommendations for the Netlist Type . .......... ... .. 12-2
Design Flows Using Incremental Compilation .............. ... ... .. i 12-3
Project Management in Team-Based Design Flows ............ ... ... ... ... .............. 124
Why to Plan Partitions and Floorplan Assignments ............. ... ... ... ... ... ... ..., 12-5
Partition Boundaries and Optimization ............ ... .. ... .. ... . . . . 12-6
General Partitioning Guidelines ........ ... ... . . . . . 12-7
Plan Design Hierarchy and Source Design Files ............. ... ... ... ... ... ... .......... 12-8
Using Partitions with Third-Party Synthesis Tools ............... ... ... ... ... ...... 12-8
Partition Design by Functionality and Block Size ......................................... 12-9
Partition Design by Clock Domain and Timing Criticality ................................. 12-9
Consider What Is Changing ......... ... ... . e 12-9
Design Partition Guidelines . ....... ... . . 12-10
Register Partition Inputs and Outputs ............... . ... . . . . . . . 12-10
Minimize Cross-Partition-Boundary I/O ...... ... ... . ... .. . . . . 12-11
Avoid the Need for Logic Optimization Across Partitions ................................ 12-12
Keep Logic in the Same Partition for Optimization and Merging ........................ 12-13
Keep Constants in the Same Partitionas Logic ............. ... ... ... ... .. ... ..., 12-14
Avoid Unconnected Partition I/O ...... ... ... ... . 12-15
Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together ............... 12-16

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



xiv Contents
Invert Clocks in Destination Partitions . .......... ... .. ... ... .. ...l 12-17
Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries ........ 12-18
Do Not Use Internal Tri-States .. ....... ... ... .. ... 12-22
Include All Tri-State and Enable Logic in the Same Partition ............................ 12-23
Include Bidirectional I/O Registers in the Same Partition (For Older Device Families) ..... 12-24
Summary of Guidelines Related to Logic Optimization Across Partitions................. 12-24

Consider a Cascaded Reset Structure ........... ... .. ... ... ... ... ... ... .. 12-25
Design Partition Guidelines for Third-Party IP Delivery .................................... 12-26
Allocate Logic ReSOUICeS .. ... ... ... 12-27
Allocate Global Routing Signals and Clock Networks if Required ......................... 12-28
Assign Virtual Pins .. ... . 12-29
Perform Timing Budgeting if Required ............. ... ... .. ... ... ... ... 12-30
Drive Clocks Directly . ... 12-30
Recreate PLLs for Lower-Level Partitions if Required ................................. ... 12-31
Checking Partition Quality ......... ... ... ... .. 12-31
Incremental Compilation Advisor .......... ... . . 12-32
Design Partition Planner ............ ... .. .. .. 12-32
Viewing Design Partition Planner and Floorplan Side-by-Side ......................... ... 12-34
Partition Statistics Report ........... ... .. . .. 12-35
Report Partition Timing in the TimeQuest Timing Analyzer .............................. 12-36
Check if Partition Assignments Impact the Quality of Results ............................. 12-36
Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery ........ ... ... 12-37
Creating an .sdc File With Project-Wide Constraints .................... ... ... ... .. 12-38
Creating an .sdc with Partition-Specific Constraints ................................ ... 12-39
Consolidating the .sdc in the Top-Level Design ....................................... 12-40
Introduction to Design Floorplans ............ ... ... ... ... . . . 12-41
The Difference between Logical Partitions and Physical Regions .......................... 12-41
Why Create a Floorplan? ......... ... ... . .. 12-42
When to Create a Floorplan ......... ... .. ... ... . . . . . . . 12-44
Early Floorplan . ... ... ... 12-44
Late Floorplan ............ .. 12-44
Design Floorplan Placement Guidelines .......... ... ... .. .. ... ... ... .. L 12-44
Assigning Partitions to LogicLock Regions ................. ... ... ... .. ... ... ... 12-45
How to Sizeand Place Regions ............ ... ... . . i i i 12-46
Modifying Region Size and Origin .............. .. .. ... ... . ... i 12-46
I/O ConNectioNS .. ..ottt e e 1247
LogicLock Resource Exclusions .............. ... i 12-48
Creating Non-Rectangular Regions .............. ... ... ... .. ... ... .. ... 12-50
Checking Floorplan Quality ......... ... . .. . . 12-50
Incremental Compilation Advisor .............. . 12-50
LogicLock Region Resource Estimates ................ ... ... . ... ... ... .......... 12-50
LogicLock Region Properties Statistics Report .............. ... ... ... ... ... ..., 12-50
Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner ................ 12-51
Inter-Region Connection Bundles .......... ... ... ... .. .. .. 12-51
Routing Utilization . ........... 12-51
Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results .............. 12-51
Recommended Design Flows and Application Examples ................................... 12-52
Create a Floorplan for Major Design Blocks ................. .. ... ... ... ... . ..., 12-52
Create a Floorplan Assignment for One Design Block with Difficult Timing ................. 12-53
Create a Floorplan as the Project Lead in a Team-Based Flow ............................. 12-53
ConCIUSION . ... o i 12-54
Document Revision History ............ .. 12-55

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents Xv

Section IV. Synthesis

Chapter 13. Quartus Il Integrated Synthesis

Design FLow .. ... 13-1
Language SUPPOTt ... ... ... 13-3
Verilog HDL SUPPOTIt . ... 13-4
SystemVerilog Support ........... . 13-5
Initial Constructs and Memory System Tasks ............. ... ... ... ... ... ... ... 13-7
Verilog HDL MaCIos ... ...ttt e 13-8
VHDL Support . ... 13-8
VHDL-2008 SUPPOIt . ... 13-10
VHDL Standard Libraries and Packages ....................... ... .. ... . ... 13-10
VHDL wait Constructs ............ . 13-10
AHDL SUPPOIt ... o 13-11
Schematic Design Entry Support ... ... ... ... 13-11
State Machine Editor ............. ... . . 13-11
Design Libraries ............ .. 13-12
Specifying a Destination Library Name in the Settings Dialog Box ....................... 13-13
Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl ........ 13-13
Specifying a Destination Library Nameina VHDL File ................................ 13-13
Mapping a VHDL Instance to an Entity in a Specific Library ...................... ... ... 13-14
Using Parameters/Generics .............. i i 13-16
Setting Default Parameter Values and BDF Instance Parameter Values ................... 13-16
Passing Parameters Between Two Design Languages .................................. 13-18
Incremental Compilation ......... ... ... 13-20
Partitions for Preserving Hierarchical Boundaries .................. ... ... ... ... ... ..., 13-20
Parallel Synthesis .......... .. . ... 13-21
Quartus II Exported Partition Fileas Source ............... ... ... . ... .. ... ... . ..., 13-22
Quartus II Synthesis Options . . ........ ... ... 13-22
Setting Synthesis Options ......... ... ... . ... 13-24
Analysis & Synthesis Settings Page of the Settings Dialog Box .......................... 13-24
Quartus Il Logic Options .......... ... .. 13-24
Synthesis Attributes . ....... ... ... 13-25
Synthesis Directives . ........... ... . 13-27
Optimization Technique .......... ... ... . .. . 13-28
Auto Gated Clock CoNvVersion ............. ... it 13-28
Timing-Driven Synthesis . ........... ... . . . 13-30
SDC Constraint Protection ................ ... . 13-31
PowerPlay Power Optimization ......... ... ... ... ... . . 13-31
Limiting Resource Usage in Partitions ................. ... ... ... ... ... ... .. 13-32
Creating LogicLock Regions ........... .. ... . . . 13-32
Using Assignments to Limit the Number of RAM and DSP Blocks ...................... 13-33
Restructure Multiplexers ............ . 13-33
Synthesis Effort ...... ... . 13-35
Synthesis Seed . ... ... 13-35
State Machine Processing ................ . i 13-35
Manually Specifying State Assignments Using the syn_encoding Attribute ................. 13-37
Manually Specifying Enumerated Types Using the enum_encoding Attribute ............... 13-38
Safe State Machines ......... ... . . . 13-39
Power-Up Level ... ..o 13-41
Inferred Power-Up Levels ....... ... . 13-41
Power-Up Don't Care ....... ... 13-42
Remove Duplicate Registers ............. .. . . 13-42

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



xvi Contents

Preserve Registers ....... ... ... 13-43
Disable Register Merging/Don’t Merge Register ........................................ 13-43
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node ....................... 13-44
Keep Combinational Node/Implement as Output of LogicCell ........................... 13-45
Disabling Synthesis Netlist Optimizations with dont_retime Attribute ..................... 13-46
Disabling Synthesis Netlist Optimizations with dont_replicate Attribute ................... 13-47
Maximum Fan-Out .. ... .. 13-48
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable . . .. 13-49
Inferring Multiplier, DSP, and Memory Functions from HDL Code .......................... 13-50
Multiply-Accumulators and Multiply-Adders .............. ... ... ...l 13-51

Shift Registers ........ ... 13-51
RAMand ROM ... .o 13-51
Resource Aware RAM, ROM, and Shift-Register Inference ............................. 13-52
Auto RAM to Logic Cell Conversion ............. ..., 13-53
RAM Style and ROM Style—for Inferred Memory ........... ... ... .. ... ..., 13-53
Turning Off the Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute ......... 13-55
RAM Initialization File—for Inferred Memory .............. ... ... ... ... ... ... ....... 13-59
Multiplier Style—for Inferred Multipliers ............. ... ... ... ... ... ... ... ... 13-59
Full Case Attribute ......... .. .. 13-61
Parallel Case ....... ... ... 13-62
Translate Off and On / Synthesis Offand On ............. ... ... ... ... o, 13-63
Ignore translate_off and synthesis_off Directives ............. ... ... ... ... ... 13-64
Read Commentsas HDL ........ ... . . .. 13-65
UseI/OFlpflops ... ... 13-66
Specifying Pin Locations with chip_pin ........ ... ... ... . ... ... .. L 13-67
Using altera_attribute to Set Quartus II Logic Options ................................... 13-69
Analyzing Synthesis Results .......... ... ... .. .. ... . 13-72
Analysis & Synthesis Section of the Compilation Report .................. ... ... .. ..... 13-72
Project Navigator .......... ... ... 13-72
Analyzing and Controlling Synthesis Messages ..................... ... ... ... . ........ 13-72
QuartusIIMessages ................ 13-73
VHDL and Verilog HDL Messages ........... ...ttt 13-73
Setting the HDL Message Level . ....... ... ... ... ... . . ... .. ... 13-75
Enabling or Disabling Specific HDL Messages by Module/Entity ....................... 13-76
Node-Naming Conventions in Quartus II Integrated Synthesis .............................. 13-77
Hierarchical Node-Naming Conventions .................. ... ... ... ... ... 13-77
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) ....................... 13-78
Register Changes During Synthesis ............... ... ... . . . 13-79
Synthesis and Fitting Optimizations . ............ ... ... ... ... ... ... ... .. 13-79
State Machines ......... ... . 13-80
Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions ................ 13-80
Packed Input and Output Registers of RAM and DSP Blocks ........................... 13-81
Preserving Register Names . ........ .. .. 13-81
Node-Naming Conventions for Combinational LogicCells ............................ ... 13-81
Preserving Combinational Logic Names .............. ... ... ... ... ... ... ....... 13-82
Scripting SUpPPOIt ... 13-83
Adding an HDL File to a Project and Setting the HDL Version ............................ 13-84
Assigning a Pin . ... 13-86
Creating Design Partitions for Incremental Compilation ................... ... ... ... ... 13-86
Quartus II Synthesis Options ........... ... .. . 13-87
ConClUSION ... ..o 13-89
Document Revision History .......... ... 13-90

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents xvii

Chapter 14. Synopsys Synplify Support

Altera Device Family Support ....... ... . ... . 14-1
Design Flow . ... oo 14-2
Specifying the Output Netlist File Name and Result Format ............................... 14-5
Specifying the Quartus II Software Version ............ ... ... ... ... ... ... ... 14-5
Synplify Optimization Strategies .............. ... ... . . . 14-6
Using Synplify Premier to Optimize Your Design ............... ... ... ... ... ... ....... 14-6
Using Implementations in Synplify Pro or Premier .................... ... ... .. ... ..... 14-7
Timing-Driven Synthesis Settings ............. ... ... . . . 14-7
Clock Frequencies .......... ... . i 14-7
Multiple Clock Domains . ............ . 14-8
Inputand Output Delays ............. . 14-8
Multicycle Paths . ... .. 14-8
False Paths . . ... ..o i 14-8
FSM Compiler . ... ..o 14-9
FSM Explorer in Synplify Proand Premier .............. ... ... ... ... ... ... ... 14-9
Optimization Attributes and Options ............ ... ... ... .. ... . i 14-10
Retiming in Synplify Proand Premier .............. ... ... . . i 14-10
Maximum Fan-Out ... ... 14-10
Preserving Nets ....... ... . 14-10
Register Packing . ....... ... 14-10
Resource Sharing ......... ... .. 14-10
Preserving Hierarchy ....... ... ... .. . 14-11
Register Input and Output Delays .......... ... ... ... ... ... i 14-11
syn_direct_enable ....... ... ... 14-12
I/O0Standard .. ...t e 14-12
Altera-Specific Attributes ......... .. . 14-12
altera_chip_pin_lc ... ... 14-12
altera_I0_pOWeIUp . ... ... i 14-13
altera_io_opendrain...... ... ... .. 14-13
Exporting Designs to the Quartus II Software Using NativeLink Integration ................... 14-13
Running the Quartus II Software from within the Synplify Software ....................... 14-14
Using the Quartus II Software to Run the Synplify Software .............................. 14-15
Running the Quartus II Software Manually With the Synplify-Generated Tcl Script .......... 14-15
Passing TimeQuest SDC Timing Constraints to the Quartus Il Software .................... 14-15
Individual Clocks and Frequencies . .............. ... ... i i 14-16
Inputand OutputDelay ............ . 14-16
Multicycle Path . ... ... 14-16
False Path ... ... 14-16
Guidelines for Altera Megafunctions and Architecture-Specific Features ...................... 14-16
Instantiating Altera Megafunctions With the MegaWizard Plug-In Manager ................ 14-17
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files ........... . 14-18
Instantiating Megafunctions with MegaWizard Plug-In Manager-Generated VHDL Files .. 14-18
Changing Synplify’s Default Behavior for Instantiated Altera Megafunctions ............. 14-18
Instantiating Intellectual Property With the MegaWizard Plug-In Manager and
IPToolbench ... ... .. 14-19
Instantiating Black Box IP Functions With Generated Verilog HDL Files ................. 14-20
Instantiating Black Box IP Functions With Generated VHDL Files ....................... 14-20
Other Synplify Software Attributes for Creating Black Boxes ........................... 14-21
Including Files for Quartus II Placement and RoutingOnly ............................... 14-22
Inferring Altera Megafunctions from HDL Code ................. ... . ... ... . .......... 14-22
Inferring Multipliers ........... ... . . 14-23
Inferring RAM ... o 14-25

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



xviii Contents

RAM Initialization ........ ... . ... 14-27
Inferring ROM . ... . 14-28
Inferring Shift Registers ............. ... . . . . . 14-28
Incremental Compilation and Block-Based Design ..................... ... ... .. ... ..., 14-29
Creating a Design with Separate Netlist Files for Incremental Compilation ................. 14-30
Using MultiPoint Synthesis with Incremental Compilation ............................... 14-31
Set Compile Points and Create Constraint Files ...................... ... ... 14-31
Additional Considerations for Compile Points ............... ... ... ... ... o 14-33
Creating a Quartus II Project for Compile Points and Multiple .vqm Files ................ 14-33
Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate
Synplify Projects .. ......... . 14-35
Manually Creating Multiple .vqm Files With Black Boxes ........................... ... 14-35
Creating a Quartus II Project for Multiple .vgm Files .................... ... ... ... .. 14-39
Performing Incremental Compilation in the Quartus Il Software .......................... 14-40
Conclusion . ... ... 14-41
Document Revision History ................. 14-41

Chapter 15. Mentor Graphics Precision Synthesis Support

Altera Device Family Support ....... ... . ... 15-1
Design Flow .. ... o 15-2
Creating and Compiling a Project in the Precision Synthesis Software ......................... 15-4
Mapping the Precision Synthesis Design .. ....... ... ... . ... .. ... ... L 15-5
Setting Timing Constraints .................. .. .. . . . . 15-6
Setting Mapping Constraints ............. ... ... ... .. .. 15-6
Assigning Pin Numbers and I/O Settings ......... ... ... . ... ... ... L 15-6
Assigning /O Registers ....... ... .. 15-8
Disabling I/O Pad Insertion ............... ... i 15-8
Preventing the Precision Synthesis Software from AddingI/OPads ...................... 15-8
Preventing the Precision Synthesis Software from Adding an 1/0O Pad on an
Individual Pin . .. ..o 15-9
Controlling Fan-Outon Data Nets . ............ ... . . i 15-9
Synthesizing the Design and Evaluating the Results . ..................... ... ... ... .. ... 15-9
Obtaining Accurate Logic Utilization and Timing Analysis Reports ........................ 15-10
Exporting Designs to the Quartus II Software Using NativeLink Integration ................... 15-10
Running the Quartus II Software from within the Precision Synthesis Software .............. 15-10
Running the Quartus II Software Manually Using the Precision Synthesis-Generated
Tl Seript oo 15-11
Using the Quartus II Software to Run the Precision Synthesis Software ..................... 15-12
Passing Constraints to the Quartus Il Software .......... ... ... ... ... ... ... ... ..... 15-12
Create_ClOCK . ..ttt 15-12
set_input_delay ... ... 15-13
set_output_delay ..... ... .. 15-13
set_max_delay and set_min_ delay ............. ... . . 15-14
set_false_path ... ... ... 15-14
set_multicycle_path . ... ... 15-15
Guidelines for Altera Megafunctions and Architecture-Specific Features ...................... 15-15
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager ............... 15-16
Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated
Verilog HDL Files ........... . 15-16

Instantiating Megafunctions With MegaWizard Plug-In Manager-Generated VHDL Files .. 15-17
Instantiating Intellectual Property With the MegaWizard Plug-In Manager

and IP Toolbench ...... ... .. 15-17
Instantiating Black Box IP Functions With Generated Verilog HDL Files ................. 15-18
Instantiating Black Box IP Functions With Generated VHDL Files ....................... 15-18

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents Xix

Inferring Altera Megafunctions from HDL Code ................ ... ... ... .. ...... 15-19
Multipliers . .. ... 15-19
Setting the Use Dedicated Multiplier Option .............. ... ... ... ... ... ... ... 15-20
Setting the dedicated_mult Attribute ............ ... ... ... o 15-20
Multiplier-Accumulators and Multiplier-Adders . ................. 15-21
Controlling DSP Block Inference ............ ... ... ... ... .. 15-22
RAMand ROM ... 15-24

Incremental Compilation and Block-Based Design ...................... ... ... ........ 15-24

Creating a Design with Precision RTL Plus Incremental Synthesis ......................... 15-24
Creating Partitions with the incr_partition Attribute . . ............. ... ... ... ... ... 15-25

Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations . 15-26

Creating Black Boxes to Create EDIF Netlists ............. ... ... ... ... ... ..... 15-28
Creating Black Boxesin Verilog HDL . ........... ... ... ... . ... ... 15-28
Creating Black Boxesin VHDL ....... ... .. ... ... ... ... ... 15-29

Creating Quartus II Projects for Multiple EDIF Files ..................................... 15-30
Creating a Single Quartus II Project for a Standard Incremental Compilation Flow ........ 15-31
Creating Multiple Quartus II Projects for a Bottom-Up Flow ............................ 15-32

Hierarchy and Design Considerations ........... ... .. ... ... ... ... ... ... ... 15-32

Conclusion . ... ... . 15-33
Document Revision History ................ . 15-33

Chapter 16. Mentor Graphics LeonardoSpectrum Support

Altera Device Family Support ....... ... . ... 16-1
Design Flow .. ... o 16-2
LeonardoSpectrum Optimization Strategies ................... . ... 164
Timing-Driven Synthesis . ............ .. . . . 164
Global PowerTab ...... ... .. . 164
Clock PowerTab . ... ... 16-5
Input and Output PowerTabs ........ ... ... ... . .. 16-5
Other Constraints .. ... ... i e 16-5
Encoding Style ... ... .. 16-5
Resource Sharing ......... ... 16-6
Mapping I/ORegisters ....... ... 16-6
Timing Analysis with the LeonardoSpectrum Software ................. ... ... ... ... .. ..... 16-6
Exporting Designs Using NativeLink Integration ............... ... ... ... ... ... ... . ... 16-7
Generating Netlist Files ... ... ... 16-7
Including Design Files for Black Boxed Modules ................ ... ... ... ............. 16-7
Passing Constraints with Scripts .......... ... . . 16-8
Integration with the Quartus Il Software ......... ... ... .. .. . ... ... ... 16-8
Guidelines for Altera Megafunctions and LPM Functions ............................ ... ... 16-8
Instantiating Altera Megafunctions .......... ... ... ... . .. ... 16-9
Inferring Altera Memory Elements ............. ... . . . . 16-9
Inferring Multipliers and DSP Functions ............ ... ... .. ... . . . . . . . . . . 16-10
Simple Multipliers . ...... ... .. 16-10
Multiplier Accumulators ........ ... . 16-10
Multiplier Adders ....... ... 16-11
Controlling DSP Block Inference ....... ... . . . . 16-11
Global Attribute ...... ... . 16-11
Module Level Attributes . ............ .. 16-12
Signal Level Attributes ...... ... ... .. 16-13
Guidelines for Using DSP Blocks ......... ... .. ... 16-15
Block-Based Design with the Quartus Il Software ............... . ... .. .. ... ... ... ... ..., 16-16
Hierarchy and Design Considerations ............. ... .. .. . . .. i 16-16
Creating a Design with Multiple .edf Files ....... ... ... ... . . .. . . 16-17

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



XX Contents

Generating Multiple .edf Files Using the LogicLock Option ............................ 16-17
Creating a Quartus II Project for Multiple .edf Files Including LogicLock Regions ......... 16-19
Generating Multiple .edf Files Using Black Boxes ................. ... ... ... ... . ..., 16-20
Black Box Methodology in Verilog HDL ..................... .. ... ... ... ..... 16-21
Black Boxing in VHDL ... ... 16-22
Creating a Quartus II Project for Multiple .edf Files ................... ... ... ..., 16-24
Incremental Synthesis Flow ......... ... ... ... 16-25
Modifications Required for the LogicLock_Incremental.tcl Script File .................... 16-25
Running the Tcl Script File in LeonardoSpectrum ..................................... 16-26
ConClUSION ... .. o 16-27
Document Revision History ................... 16-27

Chapter 17. Analyzing Designs with Quartus Il Netlist Viewers

When to Use the Netlist Viewers: Analyzing Design Problems . ............................... 17-1
Quartus II Design Flow with the Netlist Viewers .......... ... ... ... .. ... ... ... .. ... 17-2
RTL Viewer OVeIVIEW ... ... e e e e 17-4
State Machine Viewer OVerview .. ... ... .. ... i 17-5
Technology Map Viewer Overview ......... ... . i i 17-5
Introduction to the User Interface . ............ ... 17-6
Schematic View ... .. 17-7
Schematic Symbols ....... ... . 17-7
Selecting an Item in the Schematic View .......... ... ... ... . ... ... ...l 17-14
Moving and Panning in the Schematic View . .......... ... ... .. ... ... ... ... 17-15
Netlist Navigator Pane . ............. . 17-15
State Machine Viewer . ........ ... ... 17-16
State Diagram View .. ... . 17-17
State Transition Table .. ....... ... 17-18

State Encoding Table ....... ... 17-18
Selecting an Item in the State Machine Viewer ................. ... ... ... ... . ... ... 17-18
Switching Between State Machines . .............. ... ... ... .. i 17-18
Global Options ...... ... . 17-18
Display Settings . ....... ... 17-19
Tracing . ..o 17-20
Customize VIEW .. ... 17-21
Shortcut Commands . ... 17-22
Navigating the Schematic View ... ... ... . . . . 17-22
Traversing and Viewing the Design Hierarchy ......... ... ... ... .. ... ... ... ... ..., 17-22
Flattening the Design Hierarchy ............. ... . . . . . . . . . 17-22
Viewing the Contents of a Design Hierarchy in the Current Schematic ................... 17-22
Viewing Contents of Atom Primitives .......... ... ... .. .. L. 17-23
Viewing the Properties of Instances and Primitives ............. ... ... ... ... ... ... 17-24
Viewing LUT Representations in the Technology Map Viewer ............... ... ... .. ... 17-24
Grouping Combinational Logicinto LogicClouds ........... ... ... ... ... .. ... ..., 17-26
Logic Cloudsin the RTL Viewer ........ ... ... i 1726
Logic Clouds in the Technology Map Viewer ......... ... ... ... . ... it 17-27
Grouping and Ungrouping LogicClouds ........... ... .. ... ... .. ... ... ... ... 17-28
Changing the Constant Signal Value Formatting ................ ... ... ... ... ... ... ..... 17-28
Zooming and Magnification ....... ... . 17-28
Schematic Debugging and Tracing Using the Bird’s Eye View .......................... 17-29
Partitioning the Schematicinto Pages ........ ... .. ... . . . . . . . . 17-30
Moving Between Schematic Pages ................. ... . i 17-31
Moving Back and Forward Through SchematicPages ................................. 17-31
Following Nets Across Schematic Pages ............. ... ... ... .. .. . . . ... . ..., 17-31
GotoNetDriver ...... ... .. e 17-32

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Contents Xxi

Filtering in the Schematic View ...... ... ... ... .. . . . . 17-33
Filter Sources Command ........... ... . 17-33
Filter Destinations Command ........ ... ... ... .. . 17-34
Filter Sources and Destinations Command ................ ... ... ... ... ... 17-34
Filter Between Selected Nodes Command ................. ... ... ... ... ... . ... 17-35
Filter Selected Nodes and Nets Command .................. ... ... ... ... ... ... 17-36
Filter BusIndex Command ............... ... . . . 17-37
Filter Command Processing ................. . i 17-37
Filtering Across Hierarchies ......... ... ... ... .. . . . . . 17-37
Expanding a Filtered Netlist ........... ... ... . . ... 17-38
Reducing a Filtered Netlist .......... ... .. .. .. 17-39

Probing to a Source Design File and Other Quartus Il Windows ............................. 17-39
Moving Selected Nodes to Other Quartus I Windows ................................... 17-40

Probing to the Netlist Viewers from Other Quartus I Windows ....................... ... ... 17-40

Viewing a Timing Path . ... ... . ... . 17-41

Other Features in the Schematic Viewer ......... ... ... ... . ... ... ... 17-42
ToOItPS . ..o 17-42
Finding Design Elements in the Netlist Viewers ............. ... ... ... . ... ... .. ..., 17-44
Exporting and Copying a SchematicImage ................. ... ... ... .. ... ... ..., 17-45
Printing . ... 17-45

ConClUSION ... ..o 17-46

Document Revision History ............... .. 17-46

Additional Information
How to Contact AITera ... ..ottt e Info-1
Typographic Conventions ................. ... i Info-2

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



XXii Contents

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter Revision Dates
AIERA P

The chapters in this document, Quartus II Handbook Version 10.1 Volume 1: Design
and Synthesis, were revised on the following dates. Where chapters or groups of
chapters are available separately, part numbers are listed.

Chapter 1.  Design Planning with the Quartus II Software
Revised: December 2010
Part Number: QII51016-10.1.0

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: December 2010
Part Number: QII51015-10.1.0

Chapter 3.  Quartus II Support for HardCopy Series Devices
Revised: December 2010
Part Number: QII51004-10.1.0

Chapter 4.  Quartus II Design Separation Flow
Revised: December 2010
Part Number: QII51019-10.1.0

Chapter 5. Creating a System with Qsys
Revised: December 2010
Part Number: QII51020-10.1.0

Chapter 6.  Creating Qsys Components
Revised: December 2010
Part Number: QI151022-10.1.0

Chapter 7. Qsys Interconnect
Revised: December 2010
Part Number: QII51021-10.1.0

Chapter 8. Component Interface Tcl Reference
Revised: December 2010
Part Number: QII151023-10.1.0

Chapter 9. Recommended Design Practices
Revised: December 2010
Part Number: QII51006-10.1.0

Chapter 10. Recommended HDL Coding Styles
Revised: December 2010
Part Number: QII51007-10.1.0

Chapter 11. Managing Metastability with the Quartus II Software

Revised: December 2010
Part Number: QII51018-10.0.1

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



XXiv Chapter Revision Dates

Chapter 12. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revised: December 2010
Part Number: QII51017-10.1.0

Chapter 13. Quartus II Integrated Synthesis
Revised: December 2010
Part Number: QII51008-10.1.0

Chapter 14. Synopsys Synplify Support
Revised: December 2010
Part Number: QII51009-10.1.0

Chapter 15. Mentor Graphics Precision Synthesis Support
Revised: December 2010
Part Number: QII51011-10.1.0

Chapter 16. Mentor Graphics LeonardoSpectrum Support
Revised: December 2010
Part Number: QI151010-10.1.0

Chapter 17. Analyzing Designs with Quartus II Netlist Viewers

Revised: December 2010
Part Number: QII51013-10.0.1

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Section 1. Design Flows

The Altera® Quartus® II design software provides a complete design environment
that easily adapts to your specific design requirements. This handbook is arranged in
chapters, sections, and volumes that correspond to the major stages in the overall
design flow. For a general introduction to features and the standard design flow in the
software, refer to the Introduction to the Quartus 1I Software manual.

This section is an introduction to design planning. It documents various specialized
design flows in the following chapters:

Chapter 1, Design Planning with the Quartus II Software

This chapter is an overview of various design planning considerations: device
selection, early power estimation, I/O pin planning, and design planning. To help
you improve design productivity, it provides recommendations and describes
various tools available for Altera FPGAs.

Chapter 2, Quartus II Incremental Compilation for Hierarchical and Team-Based
Design

This chapter documents Altera’s incremental design and compilation flow, which
allows you to preserve the results and performance for unchanged logic in your
design as you make changes elsewhere, reduces design iteration time by up to 70%
so you achieve timing closure efficiently, and facilitates modular hierarchical and
team-based design flows using top-down or bottom-up methodologies.

Chapter 3, Quartus II Support for HardCopy Series Devices

With the Quartus II software, you can use an FPGA device as a prototype and
seamlessly migrate your design to a HardCopy ASIC to reduce cost for volume
production. This chapter describes the Quartus II support for HardCopy design
flows.

Chapter 4, Quartus II Design Separation Flow

This chapter describes rules and guidelines for creating a floorplan with the
Design Separation flow. The Quartus II Design Separation flow provides the
ability to design physically independent structures on a single device. This allows
system designers to achieve a higher level of integration on a single FPGA, and
alleviates increasingly strict Size Weight and Power (SWaP) requirements.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/intro_to_quartus2.pdf

-2 Section I: Design Flows

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



A |:| ==/ 1. Design Planning with the
® Quartus Il Software

Ql151016-10.1.0

This chapter discusses key FPGA design planning considerations, provides
recommendations, and describes various tools available for you to improve your
design productivity with Altera® FPGAs.

Because of the significant increase in FPGA device densities, designs are complex and
can sometimes involve multiple designers. System architects must resolve design
issues when integrating design blocks, often leading to problems that affect the
overall time to market and thereby increasing cost. You can solve potential problems
early in the design cycle by following the design planning considerations provided in
this chapter.

This chapter contains the following sections:

m “Creating Design Specifications” on page 1-2

“Intellectual Property Selection” on page 1-2

“System Design” on page 1-2

“Device Selection” on page 1-3

“Planning for Device Programming or Configuration” on page 1-4

“Early Power Estimation” on page 1-5

“Early Pin Planning and I/O Analysis” on page 1-6

“Selecting Third-Party EDA Tool Flows” on page 1-9

m “Planning for On-Chip Debugging Options” on page 1-10

m “Design Practices and HDL Coding Styles” on page 1-11

m “Planning for Hierarchical and Team-Based Design” on page 1-13

m “Fast Synthesis and Early Timing Estimation” on page 1-16
“ e This chapter provides only an introduction to various design planning features in the
Quartus® II software. For a general overview of the Quartus II design flow and
features, refer to the Introduction to the Quartus I Software manual. For more
information about specific Quartus II features and methodologies, this chapter
provides references to other appropriate chapters in the Quartus Il Handbook.

Before reading the design planning guidelines discussed in this chapter, consider your
design priorities. More device features, density, or performance requirements can
increase system cost. Signal integrity and board issues can impact I/O pin locations.
Power, timing performance, and area utilization all affect each other, and compilation
time is affected when optimizing these priorities.

The Quartus II software optimizes designs for the best results, but you can change the
settings to intensify optimization of one aspect of your design. Certain tools or
debugging options can lead to restrictions in your design flow. Your design priorities
help you choose the tools, features, and methodologies to use for the design.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any (})roducts and services at any time without notice. Altera assumes no responsibility or liability arisin}gl out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010
Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51016
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

1-2 Chapter 1: Design Planning with the Quartus Il Software
Creating Design Specifications

“ e After you select a device family, to check if additional guidelines are available, refer to
the design guidelines section of the appropriate device handbook.

Creating Design Specifications

Before you create your logic design or complete your system design, create detailed
design specifications that define the system, specify the 1/O interfaces for the FPGA,
identify the different clock domains, and include a block diagram of basic design
functions.

Creating a test plan also helps you to design for verification and manufacturability.
For example, you might need to validate interfaces incorporated in the design. To
perform any built-in self-test functions to drive interfaces, you can use a UART
interface with a Nios® II processor inside the FPGA device. For guidelines related to
analyzing and debugging the device after it is in the system, refer to “Planning for
On-Chip Debugging Options” on page 1-10.

If more than one designer works on your design, you should consider a common
design directory structure or source control system to make design integration easier.
For more suggestions on team-based designs, refer to “Planning for Hierarchical and
Team-Based Design” on page 1-13.

Intellectual Property Selection

Altera and its third-party intellectual property (IP) partners offer a large selection of
off-the-shelf IP cores optimized for Altera devices. The IP you select often affects
system design, especially if the FPGA interfaces with other devices in the system.
Consider which I/O interfaces or other blocks in your system design are implemented
using IP cores, and plan to incorporate these cores in your FPGA design.

The OpenCore Plus feature, which is available for many IP cores, allows you to
program the FPGA to verify your design in the hardware before you purchase the IP
license. The evaluation supports the following modes:

m  Untethered—the design runs for a limited time.

m  Tethered—the design requires an Altera serial JTAG cable connected between the
JTAG port on your board and a host computer running the Quartus II Programmer
for the duration of the hardware evaluation period.
“ e For descriptions of available IP cores, refer to the Intellectual Property page of the
Altera website.

System Design

You can use the Quartus II SOPC Builder or Qsys system integration tools to create
your design. With SOPC Builder and Qsys, you can specify system components in a
GUI and generate the required interconnect logic automatically, along with adapters
for clock crossing and width adaptation. Because system design tools change the
design entry methodology, you should plan to start developing your design within
the tool and ensure all design blocks use appropriate standard interfaces from the
beginning of the design cycle so that you do not need to make changes later.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/products/ip/ipm-index.html

Chapter 1: Design Planning with the Quartus Il Software 1-3

Device Selection

SOPC Builder and Qsys components use Avalon® standard interfaces for the physical
connection of components, and you can connect any logical device (either on-chip or
off-chip) that has an Avalon interface. The Avalon Memory-Mapped interface allows a
component to use an address mapped read or write protocol that enables flexible
topologies for connecting master components to any slave components. The Avalon
Streaming interface enables point-to-point connections between streaming
components that send and receive data using a high-speed, unidirectional system
interconnect between source and sink ports.

For more information about SOPC Builder, refer to the SOPC Builder User Guide.

a®

“ e For information about using Qsys to improve your productivity, refer to the Systemn

Design with Qsys section in volume 1 of the Quartus II Handbook.
Device Selection

The device you choose affects board specification and layout. This section provides
guidelines in the device selection process.
Choose the device family that best suits your design requirements. Families differ in
cost, performance, logic and memory density, I/O density, power utilization, and
packaging. You should also consider feature requirements, such as I/O standards
support, high-speed transceivers, global or regional clock networks, and the number
of phase-locked loops (PLLs) available in the device.

“ e Youcan use the Altera Product Selector available on the Altera website to help you

choose your device. You can also review important features of each device family in
the Selector Guides page of the Altera website. Each device family also has a device
handbook or set of data sheets that documents the device features in detail. You can
also see a summary of the resources for each device in the Device dialog box in the
Quartus II software.

Carefully study the device density requirements for your design. Devices with more
logic resources and higher I/O counts can implement larger and potentially more
complex designs, but might cost more. Smaller devices use lower static power. Select a
device that has some extra capacity than what meets your design requirements, in
case you want to add more logic later in the design cycle to upgrade or expand your
design, and reserve logic and memory for on-chip debugging (refer to “Planning for
On-Chip Debugging Options” on page 1-10). Consider requirements for specific
types of dedicated logic blocks, such as memory blocks of different sizes, or digital
signal processing (DSP) blocks to implement certain arithmetic functions.

If you have older designs that target an Altera device, you can use their resource
utilization as an estimate for your design. Compile existing designs in the Quartus II
software with the Auto device selected by the Fitter option in the Settings dialog
box. Review the resource utilization to learn which device density fits the design.
Consider coding style, device architecture, and the optimization options used in the
Quartus II software, which can significantly affect the resource utilization and timing
performance of your design.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/products/selector/psg-index.html
http://www.altera.com/literature/lit-sg.jsp

1-4

Chapter 1: Design Planning with the Quartus Il Software
Planning for Device Programming or Configuration

To obtain resource utilization estimates for certain configurations of Altera’s IP
designs, refer to the user guides for Altera megafunctions and IP MegaCores on the
IP and Megafunctions literature page of the Altera website.

Device Migration Planning

Determine whether you want the option to migrate your design to another device
density to allow flexibility when your design nears completion, or whether you want
to migrate to a HardCopy® ASIC when your design reaches volume production. In
some cases, designers may target a smaller (and less expensive) device and then move
to a larger device if necessary to meet their design requirements. Other designers may
prototype their design in a larger device to reduce optimization time and achieve
timing closure more quickly, and then migrate to a smaller device after prototyping.
Similarly, many designers compile and optimize their design for an FPGA device and
then migrate to a HardCopy ASIC when the design is complete and ready for
higher-volume production. If you want the flexibility to migrate your design, you
should specify these migration options in the Quartus II software at the beginning of
your design cycle.

For more information about specifying the target migration devices, refer to Specifying
Devices for Device Migration in Quartus II Help.

Selecting a migration device impacts pin placement because some pins may serve
different functions in different device densities or package sizes. If you make pin
assignments in the Quartus II software, the Pin Migration View in the Pin Planner
highlights pins that change function between your migration devices. (For more
information, refer to “Early Pin Planning and I/O Analysis” on page 1-6.) Selecting a
companion device might restrict logic utilization to ensure that your design is
compatible with a selected HardCopy device. Adding migration or companion
devices later in the design cycle is possible, but requires extra effort to check pin
assignments, and might require design changes to fit into the new target device.
Consider these issues early in the design cycle rather than at the end, when the design
is near completion and ready for migration.

Additionally, if you plan to migrate your design to a HardCopy ASIC, review
HardCopy guidelines early in the design cycle for any Quartus II settings that you
should use or other restrictions you should consider. You must use complete timing
constraints if you want to migrate to a HardCopy ASIC because of the rigorous
verification requirements for ASIC devices.

For more information about timing requirements and analysis for HardCopy designs,
refer to the HardCopy Series Handbook, and the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus I1I Handbook.

Planning for Device Programming or Configuration

Planning how you want to program or configure the device in your system allows
system and board designers to determine what companion devices, if any, your
system requires. Your board layout also depends on the type of programming or
configuration method you plan to use for programmable devices. Many
programming options require a JTAG interface to connect to the devices, so you might
have to set up a JTAG chain on the board. Additionally, the Quartus II software uses

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migration.htm
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-5

Early Power Estimation

the settings for the configuration scheme, configuration device, and configuration
device voltage to enable the appropriate dual purpose pins as regular I/O pins after
you complete configuration. The Quartus II software performs voltage compatibility
checks of those pins during I/O assignment analysis and compilation of your design.
You can use the Configuration tab of the Device and Pin Options dialog box to select
your configuration scheme.

The device family handbooks describe the configuration options available for a given
device family. For more details about configuration options, refer to the Configuration
Handbook. For information about programming CPLD devices, refer to your device
data sheet or handbook.

Early Power Estimation

You can use the Quartus II power estimation and analysis tools to provide
information to PCB board and system designers. Power consumption in FPGA
devices depend on the logic design, which can make planning difficult. You can
perform early power estimation before you create any source code, or when you have
a preliminary version of the design source code, and then perform the most accurate
analysis with the PowerPlay Power Analyzer when you complete the design.

You must accurately estimate device power consumption to develop an appropriate
power budget and to design the power supplies, voltage regulators, heat sink, and
cooling system. Power estimation and analysis helps you satisfy two important
planning requirements:

m Thermal—ensure that the cooling solution is sufficient to dissipate the heat
generated by the device. The computed junction temperature must fall within
normal device specifications.

m Power supply—ensure that the power supplies provide adequate current to
support device operation.

The PowerPlay Early Power Estimator (EPE) spreadsheet allows you to estimate
power utilization for your design.

You can enter data about the design manually, or you can use the tools in the
Quartus II software to assist you in generating the device resources usage information
for your design.

To manually enter data into the EPE spreadsheet, enter the device resources,
operating frequency, toggle rates, and other parameters for your design. If you do not
have an existing design, estimate the number of device resources used in your design,
and then enter them manually.

If you have an existing design or a partially completed design, you can use the
Quartus II software to generate the PowerPlay EPE File to assist you in completing the
PowerPlay EPE spreadsheet.

For more information about generating the PowerPlay EPE File, refer to Performing an
Early Power Estimate Using the PowerPlay Early Power Estimator in Quartus II Help.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_pro_early_pwr_estimate.htm

Chapter 1: Design Planning with the Quartus Il Software
Early Pin Planning and 1/0 Analysis

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the
information in the PowerPlay EPE File and transfers the information into the
spreadsheet. If you do not want to use the macro, you can manually transfer the data
into the EPE spreadsheet. For example, after importing the PowerPlay EPE File
information into the PowerPlay EPE spreadsheet, you can add additional devices
resource information. If the existing Quartus II project represents only a portion of
your full design, manually enter the additional device resources you use in the final
design.

Estimating power consumption early in the design cycle allows planning of power
budgets and avoids unexpected results for designers developing the PCB.

The PowerPlay EPE spreadsheets for each supported device family are available on
the PowerPlay Early Power Estimator and Power Analyzer page of the Altera
website.

When you complete the design, perform a complete power analysis to check the
power consumption more accurately. The PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power, ensuring that thermal
and supply limitations are not violated. For the most accurate power estimation, use
gate-level simulation results from a Verilog Value Change Dump File (.ved) with the
PowerPlay Power Analyzer.

For more information about power estimation and analysis, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Pin Planning and 1/0 Analysis

In many design environments, FPGA designers want to plan the top-level FPGA1/O
pins early to help board designers begin the PCB design and layout. The I/O
capabilities and board layout guidelines of the FPGA device influence pin locations
and other types of assignments. If the board design team specifies an FPGA pin-out, it
is crucial that the pin locations are verified in the FPGA placement and routing
software to avoid board design changes.

You can create a preliminary pin-out for an Altera FPGA with the Quartus II Pin
Planner before you develop the source code, based on standard I/O interfaces (such
as memory and bus interfaces) and any other I/O-related assignments defined by
system requirements. The Quartus I I/O Assignment Analysis checks that the pin
locations and assignments are supported in the target FPGA architecture. You can
then use I/O Assignment Analysis to validate I/O-related assignments that you
create or modify throughout the design process. When you compile your design in the
Quartus II software, I/O Assignment Analysis is run automatically in the Fitter to
validate that the assignments meet all the device requirements and generates
messages if there are problems.

This section describes pin planning and I/O analysis features for different stages of
the design flow.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-7
Early Pin Planning and 1/0 Analysis

Early in the design process, before the source code is created, the system architect has
information about the standard I/O interfaces (such as memory and bus interfaces),
the IP cores that are used in the design, and any other I/O-related assignments
defined by system requirements. You can use this information with the Create/Import
Megafunction feature in the Pin Planner to specify details about the design I/O
interfaces. Specifying these details allows you to create a top-level design file that
includes all your I/O information, so that you can analyze the /O assignments in the
Quartus II software.

The Pin Planner interfaces with the MegaWizard™ Plug-In Manager, and allows you
to create or import custom megafunctions and IP cores that use I/O interfaces. You
can configure how the functions and cores are connected to each other by specifying
matching node names for selected ports in the Set Up Top-Level Design File dialog
box. Create any other I/O-related assignments for these interfaces or other design I/0
pins in the Pin Planner, as described in this section. When you have entered as much
I/O-related information as possible, generate a top-level design file using the Create
Top-Level Design File command. The Pin Planner creates virtual pin assignments for
internal nodes, so internal nodes are not assigned to device pins during compilation.
After analysis and synthesis of the newly generated top-level wrapper file, use the
generated netlist to perform I/O Analysis with the Start I/O Assignment Analysis
command.

(?) For more information about setting up the nodes in your design, refer to Set Up
Top-Level Design File Window (Edit Menu) in Quartus II Help.

You can use the I/O analysis results to change pin assignments or IP parameters even
before the design is created, and repeat the checking process until the I/O interface
meets your design requirements and passes the pin checks in the Quartus II software.
When you complete initial pin planning, you can create a revision based on the
Quartus II-generated netlist. You can then use the generated netlist to develop the
top-level design file for the actual design, or disregard the generated netlist and use
the generated Quartus II Settings File (.qsf) with the actual design.

During this initial pin planning, after you have generated a top-level design file, or
when you have developed your design source code, you can assign pin locations and
assignments using the Pin Planner.

The Pin Planner enables easy I/O pin assignment planning, assignment, and
validation. You can use the View menu in the Pin Planner to create pin location and
other assignments using a device package view instead of pin numbers.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups,
and differential pin pairings to help you through the I/O planning process. If
migration devices are selected (including HardCopy devices) as described in “Device
Migration Planning” on page 1-4, the Pin Migration View highlights the pins that
have changed functions in the migration device when compared to the currently
selected device. Selecting the pins in the Device Migration view cross-probes to the
rest of the Pin Planner, so that you can use device migration information when
planning your pin assignments. You can also configure board trace models of selected
pins for use in “board-aware” signal integrity reports generated with the Enable

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/assign/asd/asd_com_setup_toplevel.htm

Chapter 1: Design Planning with the Quartus Il Software
Early Pin Planning and 1/0 Analysis

Advanced I/O Timing option. This option ensures that you get very accurate I/O
timing analysis. You can use a Microsoft Excel spreadsheet to start the I/O planning
process if you normally use a spreadsheet in your design flow, and you can export a
Comma-Separated Value File (.csv) containing your I/O assignments for spreadsheet
use when you assign all pins.

When you complete your pin planning, you can pass pin location information to PCB
designers. The Pin Planner is tightly integrated with certain PCB design EDA tools,
and can read pin location changes from these tools to check suggested changes. Your
pin assignments must match between the Quartus II software and your schematic and
board layout tools to ensure the FPGA works correctly on the board, especially if you
must make changes to the pin-out. The system architect uses the Quartus II software
to pass pin information to team members designing individual logic blocks, allowing
them to achieve better timing closure when they compile their design.

Start FPGA planning before you complete the HDL design to improve the confidence
in early board layouts, reduce the chance of error, and improve the overall time to
market of the design. When you complete the design, use the Fitter reports for the
final sign-off of pin assignments. After compilation, the Quartus II software generates
the Pin-Out File (.pin), and you can use this file to verify that each pin is correctly
connected in board schematics.

For more information about I/O assignment and analysis, refer to the I/O Management
chapter in volume 2 of the Quartus II Handbook. For more information about passing
I/0 information between the Quartus II software and third-party EDA tools, refer to
the Mentor Graphics PCB Design Tools Support and Cadence PCB Design Tools Support
chapters in the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Simultaneous Switching Noise Analysis

Simultaneous switching noise (SSN) is a noise voltage inducted onto a victim I/O pin
of a device due to the switching behavior of other aggressor I/O pins in the device.
SSN often leads to the degradation of signal integrity by causing signal distortion,
thereby reducing the noise margin of a system. The best approach to resolving this
issue is to address SSN with estimation early in your system design, to reduce the
chance of any later board design changes. When the design is complete, perform a
complete SSN analysis of your FPGA in the Quartus II software to verify the board
design.

Altera provides tools for SSN analysis and estimation, including SSN characterization
reports, an Early SSN Estimator (ESE) tool, and the SSN Analyzer in the Quartus II
software.

You can use the ESE tool to estimate SSN in your FPGA design, which is available for
various device families.

For more information and device support for the ESE spreadsheet tool, refer to
Altera’s Signal Integrity Center on the Altera website. For more information about the
SSN Analyzer, refer to the Simultaneous Switching Noise (SSN) Analysis and
Optimizations chapter in volume 2 of the Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_02.pdf
http://www.altera.com/technology/signal/sgl-index.html

Chapter 1: Design Planning with the Quartus Il Software 1-9
Selecting Third-Party EDA Tool Flows

Selecting Third-Party EDA Tool Flows

Your complete FPGA design flow may include third-party EDA tools in addition to
the Quartus II software. Determine which tools you want to use with the Quartus II
software to ensure that they are supported and set up correctly, and that you are
aware of any useful features or undesired limitations.

Synthesis Tools

The Quartus II software includes integrated synthesis that supports Verilog HDL,
VHDL, Altera Hardware Description Language (AHDL), and schematic design entry.
You can also use supported standard third-party EDA synthesis tools to synthesize
your Verilog HDL or VHDL design, and then compile the resulting output netlist file
in the Quartus II software. Different synthesis tools may give different results for each
design. To assess the best-performing tool for your application, you can experiment
by synthesizing typical designs for your specific application and coding style.
Perform placement and routing in the Quartus II software to get accurate timing
analysis and logic utilization results.

Because tool vendors frequently add new features, fix tool issues, and enhance
performance for Altera devices, you should use the most recent version of third-party
synthesis tools. The Quartus II Software Release Notes lists the version of each synthesis
tool that is officially supported by that version of the Quartus II software.

The synthesis tool you choose may allow you to create a Quartus II project and pass
constraints, such as the EDA tool setting, device selection, and timing requirements

that you specified in your synthesis project. You can save time when setting up your
Quartus II project for placement and routing.

If you want to take advantage of an incremental compilation methodology, you
should partition your design for synthesis and generate multiple output netlist files.
For more information, refer to “Incremental Compilation with Design Partitions” on
page 1-14.

For more information about synthesis tool flows, refer to the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

Simulation Tools

Altera provides the ModelSim®-Altera Starter Edition with the Quartus II software.
You can also purchase the ModelSim-Altera Edition to support large designs and
achieve faster simulation performance. The Quartus II software can generate both
functional and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that is supported with your Quartus II software version for
best results. You should also use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might cause a
mismatch with your simulation netlist. The Quartus II Software Release Notes list the
version of each simulation tool that is supported with that particular version of the
Quartus II software.

Specify your simulation tool in the EDA Tools Settings page of the Settings dialog
box to generate the appropriate output simulation netlist.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/rn/rn_qts.pdf

1-10 Chapter 1: Design Planning with the Quartus Il Software
Planning for On-Chip Debugging Options

=@ Tor more information about simulation tool flows, refer to the appropriate chapter in
the Simulation section in volume 3 of the Quartus II Handbook.

Formal Verification Tools

Consider whether the formal verification flow that you want to use is supported, and
whether the flow impacts the design and compilation stages of your design.
“ e For more information about formal verification flows and supported tools, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the Quartus II
Handbook.

Using a formal verification flow can impact performance results because the flow
requires turning off certain logic optimizations, such as register retiming, and forces
you to preserve hierarchy blocks, which can restrict optimization. Formal verification
treats memory blocks as black boxes. Therefore, you should keep memory in a
separate hierarchy block so other logic does not get incorporated into the black box
for verification. Other restrictions may limit your design, and you should consult the
documentation for details. If formal verification is important to your design, plan for
limitations and restrictions at the beginning of the design cycle rather than make
changes later.

Specify your formal verification tool in the EDA Tools Settings page of the Settings
dialog box to generate the appropriate output netlist.

Planning for On-Chip Debugging Options

In-system debugging tools offer different advantages and trade-offs. A particular
debugging tool may work better for different systems and designers. You should
evaluate on-chip debugging options early in your design process, to ensure that your
system board, Quartus II project, and design are all set up to support the appropriate
options. You can reduce debugging time and avoid later changes to accommodate
your preferred debugging methodologies.

“ =@ For more information about debugging tools, refer to Section IV. In-System Debugging
in volume 3 of the Quartus Il Handbook. For an overview of debugging options that
can help you decide which option to use, refer to the Systerm Debugging Tools Overview
chapter in volume 3 of the Quartus II Handbook.

If you intend to use any of these features, you may have to plan for the features when
developing your system board, Quartus II project, and design. Consider the following
factors related to your debugging requirements when you are planning your design:

m JTAG connections—required to perform in-system debugging with JTAG tools.
Plan your system and board with JTAG ports that are available for debugging.

m Additional logic resources—required to implement JTAG hub logic. If you set up
the appropriate feature early in your design cycle, you can include these device
resources in your early resource estimations to ensure that you do not overfill the
device with logic.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii53027.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Chapter 1: Design Planning with the Quartus Il Software 1-1
Design Practices and HDL Coding Styles

m Reserve device memory—required if your tool uses device memory to capture
data during system operation. To ensure that you have enough memory resources
to take advantage of this debugging technique, consider reserving device memory
to be used during debugging.

m Reserve I/O pins—required if you are using the logic analyzer interface (LAI) or
SignalProbe feature, which require I/O pins for debugging. If you reserve 1/O
pins for debugging, you do not have to change the design or board later. Keep in
mind that the LAI can multiplex signals with design I/O pins if required. Ensure
that your board supports a debugging mode, where debugging signals do not
affect system operation.

m Instantiate a megafunction in your HDL code—required if your debugging tool
uses a Quartus II megafunction.

Table 1-1 lists which factors are important for each debugging tool.

Table 1-1. Factors to Consider When Using Debugging Tools During Design Planning Stages

=
-] (-]
s =
@ 3 £ g g
T T S5 ] o =
=8 2 ES £ 2 549 s
s £ S o =] a «*e
Factor 25 EE 53 = Ea =
£ o E ] == = o= (L
25 2 BE 2 = = =
"3 & | €8 | ¢ 2| 2 3
B g B £
=
JTAG connections v v v v — v v
Additional logic resources — v — — — — v
Reserve device memory v v — — — _ _
Reserve 1/0 pins — — — v v — _
Instantiate a megafunctioninyour HDL | (1) . . L . % Y
code

Notes to Table 1-1:

(1) You can instantiate the SignalTap Il Logic Analyzer as a megafunction, so that you can manually connect the SignalTap Il Logic Analyzer to nodes
in your design and ensure that the tapped node names do not change during synthesis. You can add the debugging block as a separate design
partition for incremental compilation to minimize recompilation times.

Design Practices and HDL Coding Styles

When you develop complex FPGA designs, design practices and coding styles have
an enormous impact on the timing performance, logic utilization, and system
reliability of your device.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis




1-12 Chapter 1: Design Planning with the Quartus Il Software
Design Practices and HDL Coding Styles

Design Recommendations

You can use synchronous design practices to consistently meet your design goals.
Problems with asynchronous design techniques include reliance on propagation
delays in a device, incomplete timing analysis, and possible glitches. In a synchronous
design, a clock signal triggers all events. When you meet all register timing
requirements, a synchronous design behaves in a predictable and reliable manner for
all process, voltage, and temperature (PVT) conditions. You can easily target
synchronous designs to different device families or speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability
of your design. Problems with clock signals can cause functional and timing problems
in your design. Use dedicated clock pins and clock routing for best results, and if you
have PLLs in your target device, use the PLLs for clock inversion, multiplication, and
division. For clock multiplexing and gating, use the dedicated clock control block or
PLL clock switchover feature instead of combinational logic if these features are
available in your device. If you must use internally-generated clock signals, register
the output of any combinational logic used as a clock signal to reduce glitches.

The Design Assistant in the Quartus II software is a design-rule checking tool that
enables you to verify design issues. The Design Assistant checks your design for
adherence to Altera-recommended design guidelines. You can also use third-party
”lint” tools to check your coding style.

(?) For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.

You should also understand the target architecture of your device in order to take
advantage of device-specific features. For example, the control signals should use the
dedicated control signals in the device architecture. In some cases, you might need to
limit the number of different control signals used in your design to achieve the best
results.

“ e For more information about design recommendations and using the Design Assistant,
refer to the Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook. You can also refer to industry
papers for more information about multiple clock design. For a good analysis, refer to
Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs under
Papers (www.sunburst-design.com).

Recommended HDL Coding Styles

HDL coding styles can have a significant effect on the quality of results for
programmable logic designs. If you design memory and DSP functions, you should
understand the target architecture of your device so you can use the dedicated logic
block sizes and configurations. Follow the coding guidelines for inferring
megafunctions and targeting dedicated device hardware, such as memory and DSP
blocks.

“ e For specific HDL coding examples and recommendations, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook. For additional

tool-specific guidelines, refer to the documentation of your synthesis tool.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.sunburst-design.com

Chapter 1: Design Planning with the Quartus Il Software 1-13
Planning for Hierarchical and Team-Based Design

Managing Metastability

Metastability problems can occur in digital design when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the designer
cannot guarantee that the signal meets the setup and hold time requirements during
the signal transfer. Designers commonly use a synchronization chain to minimize the
occurrence of metastable events. Ensure that your design accounts for
synchronization between any asynchronous clock domains. Consider using a
synchronizer chain of more than two registers for high-frequency clocks and
frequently-toggling data signals to reduce the chance of a metastability failure.

You can use the Quartus II software to analyze the average mean time between
failures (MTBF) due to metastability when a design synchronizes asynchronous
signals, and optimize the design to improve the metastability MTBF. The MTBF due to
metastability is an estimate of the average time between instances when metastability
could cause a design failure. A high MTBF (such as hundreds or thousands of years
between metastability failures) indicates a more robust design. Determine an
acceptable target MTBF given the context of your entire system and the fact that
MTBF calculations are statistical estimates.

The Quartus II software can help you determine whether you have enough
synchronization registers in your design to produce a high enough MTBF at your
clock and data frequencies.

For information about the industry-leading metastability analysis, reporting, and
optimization features in the Quartus II software, refer to the Managing Metastability
with the Quartus Il Software chapter in volume 1 of the Quartus II Handbook.

Planning for Hierarchical and Team-Based Design

If you want to create a hierarchical design so that you can use compilation-time
savings and performance preservation with the Quartus II software incremental
compilation feature, plan for an incremental compilation flow from the beginning of
your design cycle. The following subsections describe the flat compilation flow, in
which the design hierarchy is flattened without design partitions, and then the
incremental compilation flow that uses design partitions. Incremental compilation
flows offer several advantages but require more design planning to ensure good
quality of results. The last subsections discuss factors to consider when planning an
incremental compilation flow, planning design partitions, and optionally creating a
design floorplan.

For information about using the incremental compilation flow methodology in the
Quartus II software, refer to the Quartus I Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51018.pdf

1-14 Chapter 1: Design Planning with the Quartus Il Software
Planning for Hierarchical and Team-Based Design

Flat Compilation Flow with No Design Partitions

In the flat compilation flow with no design partitions in the Quartus II software, the
entire design is compiled together in a “flat” netlist. Your source code can have
hierarchy, but the design is flattened during compilation and all the design source
code is synthesized and fit in the target device whenever the design is recompiled
after any change in the design. By processing the entire design, the software performs
all available logic and placement optimizations on the entire design to improve area
and performance. You can use debugging tools in an incremental design flow, such as
the SignalTap II Logic Analyzer, but you do not specify any design partitions to
preserve design hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any design partitions.
However, because the entire design is recompiled whenever there are any changes to
the design, compilation times can be relatively long for large devices. Additionally,
you may find that the results for one part of the design change when you change a
different part of your design. You can turn on the Rapid Recompile option to instruct
the software to preserve compatible placement and routing results when the design
changes in subsequent compilations. This option can reduce your compilation time in
a flat or partitioned design when you make very small changes to the design.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large design into
partitions. When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while maintaining
the quality of results.

Incremental compilation preserves the compilation results and performance of
unchanged partitions in the design, greatly reducing design iteration time by focusing
new compilations on changed design partitions only. New compilation results are
then merged with the previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical synthesis, to
specific design partitions while leaving other partitions untouched. You can also use
empty partitions to indicate that parts of your design are incomplete or missing, while
you compile the rest of the design.

Third-party IP designers can also export logic blocks to be integrated into the
top-level design. Team members can work on partitions independently, which can
simplify the design process and reduce compilation time. With exported partitions,
the system architect must provide guidance to designers or IP providers to ensure that
each partition uses the appropriate device resources. Because the designs may be
developed independently, each designer has no information about the overall design
or how their partition connects with other partitions. This lack of information can lead
to problems during system integration. The top-level project information, including
pin locations, physical constraints, and timing requirements, must be communicated
to the designers of lower-level partitions before they start their design.

The system architect plans design partitions at the top level and allows third-party
designs to access the top-level project framework. By designing within a copy of the
top-level project (or by checking out the project files in a source control environment),
the designers of the lower-level block have full information about the entire project,
which helps to ensure optimal results.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 1: Design Planning with the Quartus Il Software 1-15
Planning for Hierarchical and Team-Based Design

When you are planning your design code and hierarchy, ensure that each design
entity is created in a separate file so that the entities remain independent when you
make source code changes in the file. If you use a third-party synthesis tool, create
separate Verilog Quartus Mapping or EDIF netlists for each design partition in your
synthesis tool. You may have to create separate projects within your synthesis tool, so
that the tool synthesizes each partition separately and generates separate output
netlist files. The netlists are then considered the source files for incremental
compilation. For information about support for Quartus II incremental compilation,
refer to your synthesis tool documentation.

Planning Design Partitions and Floorplan Location Assignments

Partitioning a design for an FPGA requires planning to ensure optimal results when
the partitions are integrated, and ensure that each partition is placed well relative to
other partitions in the device. Following Altera’s recommendations for creating
design partitions improves the overall quality of results. For example, registering
partition I/O boundaries keeps critical timing paths inside one partition that can be
optimized independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

If you have timing-critical partitions that are changing through the design flow, or
partitions exported from another Quartus II project, you can create design floorplan
assignments to constrain the placement of the affected partitions. Creating location
assignments ensures that no location conflicts occur between partitions. Additionally,
design floorplan assignments help to avoid a situation in which the Fitter is directed
to place or replace a portion of the design in an area of the device in which most
resources are claimed. You can use the Quartus II Chip Planner to create floorplan
assignments using LogicLock™ region assignments for design partitions. With a basic
design framework for the top-level design, you can view connections between
regions, estimate physical timing delays on the chip, and move regions around the
device floorplan. When you have compiled the full design, you can also view logic
placement and locate areas of routing congestion to improve floorplan assignments.
Good partition and floorplan design helps partitions meet top-level design
requirements when integrated with the rest of the design, reducing time spent
integrating and verifying the timing of the top-level design.

For detailed guidelines about creating design partitions and organizing your source
code, as well as information about when and how to create floorplan assignments,
refer to the Best Practices for Incremental Compilation Partitions and Floorplan chapter in
volume 1 of the Quartus II Handbook.

For more information about creating floorplan assignments in the Chip Planner, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

1-16

Chapter 1: Design Planning with the Quartus Il Software
Fast Synthesis and Early Timing Estimation

Fast Synthesis and Early Timing Estimation

Conclusion

It is more cost-effective to find design issues early in the design cycle than to find
problems in the final timing closure stages. When the first version of the design source
code is complete, you might want to perform a quick compilation to create a kind of
silicon virtual prototype (SVP) that you can use to perform timing analysis.

If you synthesize with the Quartus II software, you can choose to perform a Fast
synthesis, which reduces the compilation time but may give reduced quality of
results.

For more information about Fast synthesis, refer to Synthesis Effort logic option in
Quartus I Help.

Regardless of your compilation flow, you can use the an Early Timing Estimate to
perform a quick placement and routing, and a timing analysis of your design. The
software chooses a device automatically if required, places any LogicLock regions
used to create a floorplan, finds a quick initial placement for all the design logic, and
provides a useful estimate of the final design performance. If you have entered timing
constraints, timing analysis reports on these constraints.

For more information about how to run an early timing estimate, refer to Running a
Timing Analysis in Quartus II Help.

If you are designing individual design blocks or partitions separately, you can use
these features as you develop the design. Any issues highlighted in the lower-level
design blocks are communicated to the system architect. Resolving these issues might
require allocating additional device resources to the individual partition, or changing
its timing budget.

If you are a top-level designer, you can also use fast synthesis and early timing
estimation to prototype the entire design. Incomplete partitions are marked as empty
in an incremental compilation flow, while the rest of the design is compiled to get an
early timing estimate and detect any problems with design integration.

Modern FPGAs support large, complex designs with fast timing performance. By
planning several aspects of your design early, you can reduce time in later stages of
the development cycle. Use features of the Quartus II software to quickly plan your
design and achieve the best possible results. Following the guidelines presented in
this chapter can improve productivity, which can reduce cost and development time.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_run_analysis.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/logicops/logicops/def_synthesis_effort.htm

Chapter 1: Design Planning with the Quartus Il Software 1-17
Document Revision History

Document Revision History

Table 1-2 shows the revision history for this chapter.

Table 1-2. Document Revision History (Part 1 of 2)

Date Version Changes

Changed to new document template
Updated “System Design” on page 1-2 to include information about the Qsys system
integration tool
Added link to the Altera Product Selector in “Device Selection” on page 1-3
Converted information into new table (Table 1-1) in “Planning for On-Chip Debugging

December 2010 | 10.1.0 | OPtions”onpage =10
Simplified description of incremental compilation usages in “Incremental Compilation
with Design Partitions” on page 1-14
Added information about the Rapid Recompile option in “Flat Compilation Flow with No
Design Partitions” on page 1-14
Removed details and linked to Quartus Il Help in “Fast Synthesis and Early Timing
Estimation” on page 1-16
Added new section “System Design” on page 1-3
Removed details about debugging tools from “Planning for On-Chip Debugging Options”
on page 1-10 and referred to other handbook chapters for more information
Updated information on recommended design flows in “Incremental Compilation with
Design Partitions” on page 1-14 and removed “Single-Project Versus Multiple-Project
Incremental Flows” heading

July 2010 10.0.0

Merged the “Planning Design Partitions” section with the “Creating a Design Floorplan”
section. Changed heading title to “Planning Design Partitions and Floorplan Location
Assignments” on page 1-15

Removed “Creating a Design Floorplan” section
Removed “Referenced Documents” section
Minor updates throughout chapter

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis




1-18

Chapter 1: Design Planning with the Quartus Il Software
Document Revision History

Tahle 1-2. Document Revision History (Part 2 of 2)

Date

Version

Changes

November 2009

9.1.0

m Added details to “Creating Design Specifications” on page 1-2
m Added details to “Intellectual Property Selection” on page 1-2
m Updated information on “Device Selection” on page 1-3

m Added reference to “Device Migration Planning” on page 1-4

m Removed information from “Planning for Device Programming or Configuration” on
page 1-4

m Added details to “Early Power Estimation” on page 1-5

m Updated information on “Early Pin Planning and I/0 Analysis” on page 1-6

m Updated information on “Creating a Top-Level Design File for I/0 Analysis” on page 1-8
m Added new “Simultaneous Switching Noise Analysis” section

m Updated information on “Synthesis Tools” on page 1-9

m Updated information on “Simulation Tools” on page 1-9

m Updated information on “Planning for On-Chip Debugging Options” on page 1-10

m Added new “Managing Metastability” section

m Changed heading title “Top-Down Versus Bottom-Up Incremental Flows” to “Single-
Project Versus Multiple-Project Incremental Flows”

m Updated information on “Creating a Design Floorplan” on page 1-18
m Removed information from “Fast Synthesis and Early Timing Estimation” on page 1-18

March 2009

9.0.0

m No change to content

November 2008

8.1.0

m Changed to 8-1/2 x 11 page size. No change to content.

May 2008

8.0.0

m Organization changes

m Added “Creating Design Specifications” section

m Added reference to new details in the In-System Design Debugging section of volume 3
m Added more details to the “Design Practices and HDL Coding Styles” section

m Added references to the new Best Practices for Incremental Compilation and Floorplan
Assignments chapter

m Added reference to the Quartus Il Language Templates

-o For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Take an online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

A |:| £ )/, 2. Quartus Il Incremental Compilation for
— ® Hierarchical and Team-Based Design

Ql151015-10.1.0

This chapter provides information and design scenarios to help you partition your
design to take advantage of the Quartus®II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical.
The Quartus II software introduced the FPGA industry’s first true incremental design
and compilation flow, with the following benefits:

m Preserves the results and performance for unchanged logic in your design as you
make changes elsewhere.

m Reduces design iteration time by an average of 75% for small changes in large
designs, so that you can perform more design iterations per day and achieve
timing closure efficiently.

m Facilitates modular hierarchical and team-based design flows, as well as design

reuse and intellectual property (IP) delivery.

=~ Quartus Il incremental compilation supports the Arria® GX, Stratix®, and Cyclone®
series of devices, with limited support for HardCopy® ASICs (for details, refer to
“Limitations for HardCopy Compilation and Migration Flows” on page 2-48).

This document contains the following sections:

“Deciding Whether to Use an Incremental Compilation Flow”

m “Incremental Compilation Summary” on page 2-7

m “Common Design Scenarios Using Incremental Compilation” on page 2-10
m “Deciding Which Design Blocks Should Be Design Partitions” on page 2-14

B “Specifying the Level of Results Preservation for Subsequent Compilations” on
page 2-21

m “Exporting Design Partitions from Separate Quartus II Projects” on page 2-26

m “Team-Based Design Optimization and Third-Party IP Delivery Scenarios” on
page 2-35

m “Creating a Design Floorplan With LogicLock Regions” on page 2—44
m “Incremental Compilation Restrictions” on page 2—-47

m “Scripting Support” on page 2-54

Deciding Whether to Use an Incremental Compilation Flow

The Quartus II incremental compilation feature enhances the standard Quartus II
design flow by allowing you to preserve satisfactory compilation results and
performance of unchanged blocks of your design.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any (})roducts and services at any time without notice. Altera assumes no responsibility or liability arisin}gl out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010
Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51015

2-2

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

This section outlines the flat compilation flow with no design partitions in “Flat
Compilation Flow with No Design Partitions”, and the incremental flow when you
divide the design into partitions in“Incremental Compilation Flow With Design
Partitions” on page 2-3, and explains the differences. This section also explains when
a flat compilation flow is satisfactory, and highlights some of the reasons you might
want to create design partitions and use the incremental flow. A discussion about
incremental and team design flows in “Team-Based Design Flows and IP Delivery” on
page 2—6 describes how it is beneficial to keep your design within one project, as well
as when it might be necessary for other team members or IP providers to develop
particular design blocks or partitions separately, and then later integrate their
partitions into the top-level design.

Flat Compilation Flow with No Design Partitions

In the flat compilation flow with no design partitions, all the source code is processed
with the Analysis and Synthesis module, and all the logic is placed and routed by the
Fitter module whenever the design is recompiled after a change in any part of the
design. One reason for this behavior is to ensure optimal push-button quality of
results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD
devices or low-density FPGA devices, when the timing requirements are met easily
with a single compilation. A flat design is satisfactory when compilation time and
preserving results for timing closure are not concerns.

Refer to the next subsection for ways to reduce compilation time when you use a flat
compilation for your design.

Incremental Capabilities Available When A Design Has No Partitions

The Quartus II software has incremental compilation capabilities available even when
you do not partition your design, including Smart Compilation, incremental
debugging, and Rapid Recompile. These features work with design partitions as well,
if you do follow an incremental design flow.

In any Quartus II compilation flow, you can use Smart Compilation to allow the
compiler to determine which compiler stages are required, based on the changes
made to the design since the last smart compilation, and then skip any stages that are
not required. For example, when Smart Compilation is turned on, the compiler skips
the Analysis and Synthesis module if all the design source files are unchanged. When
Smart Compilation is turned on, if you make any changes to the logic of a design, the
Compiler uses all the modules during processing. You can turn on Smart Compilation
in the Settings dialog box on the Compilation Process Settings page.

The Quartus II software also includes a Rapid Recompile feature that instructs the
compiler to reuse the compatible compilation results if most of the design has not
changed since the last compilation. This feature reduces compilation times for small
and isolated design changes. You do not have control over which parts of the design
are recompiled using this option; the compiler determines which parts of the design
must be recompiled. The Rapid Recompile preserves performance and can save
compile time by reducing the amount of changed logic that must be recompiled. You
can turn on the Rapid Recompile option in the Quartus II software on the
Incremental Compilation page in the Settings dialog box.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-3
Deciding Whether to Use an Incremental Compilation Flow

During the debugging stage of the design cycle, you can use incremental compilation
to add the SignalTap® II Logic Analyzer incrementally to your design, even if the
design does not have partitions. To preserve the compilation netlist for the entire
design, instruct the software to reuse the compilation results for the
automatically-created "Top" partition that contains the entire design. For more
information, refer to “Debugging Incrementally With the SignalTap II Logic
Analyzer” on page 2-13.

Incremental Compilation Flow With Design Partitions

In the standard incremental compilation design flow, the top-level design is divided
into design partitions, which can be compiled and optimized together in the top-level
Quartus II project. You can preserve fitting results and performance for completed
partitions while other parts of the design are changing, which reduces the compilation
times for each design iteration.

Incremental compilation is recommended for large designs and high resource
densities when preserving results is important to achieve timing closure. The
incremental compilation feature also facilitates team-based design flows that allow
designers to create and optimize design blocks independently, when necessary. Refer
to the next section “Team-Based Design Flows and IP Delivery” on page 2—6 for more
information.

To take advantage of incremental compilation, start by splitting your design along
any of its hierarchical boundaries into design blocks to be compiled incrementally,
and assign each block as a design partition. The Quartus II software synthesizes each
individual hierarchical design partition separately, and then merges the partitions
into a complete netlist for subsequent stages of the compilation flow. When
recompiling your design, you can use source code, post-synthesis results, or
post-fitting results to preserve satisfactory results for each partition. Refer to
“Incremental Compilation Summary” on page 2-7 and subsequent sections for more
details.

In a team-based environment, part of your design may be incomplete, or it may have
been developed by another designer or IP provider. In this scenario, you can add the
completed partitions to the design incrementally. Alternatively, other designers or IP
providers can develop and optimize partitions independently and the project lead can
later integrate the partitions into the top-level design. Refer to “Team-Based Design
Flows and IP Delivery” on page 2—6 for more details.

Table 2-1 shows a summary of the impact the Quartus II incremental compilation
feature has on compilation results.

Table 2-1. Impact Summary of Using Incremental Compilation (Part 1 of 2)

Characteristic

Impact of Incremental Compilation with Design Partitions

Compilation Typically saves an average of 75% compilation time for small design changes in large designs when

Time Savings post-fit netlists are preserved; there are savings in both Quartus Il Integrated Synthesis and the Fitter.
(1)

Performance Excellent performance preservation when timing critical paths are contained within a partition,

Preservation because you can preserve post-fitting information for unchanged partitions.

Node Na”Fe Preserves post-fitting node names for unchanged partitions.

Preservation

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-4

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

Table 2-1. Impact Summary of Using Incremental Compilation (Part 2 of 2)

Characteristic

Impact of Incremental Compilation with Design Partitions

Area Changes

The area (logic resource utilization) might increase because cross-boundary optimizations are no
longer possible, and placement and register packing are restricted.

fuax Changes

The design’s maximum frequency might be reduced because cross-boundary optimizations are no
longer possible. If the design is partitioned and the floorplan location assignments are created
appropriately, there might be no negative impact on fyax.

Note to Table 2-1:

(1) Quartus Il incremental compilation does not reduce processing time for the early "pre-fitter" operations, such as determining pin locations and
clock routing, so the feature cannot reduce compilation time if runtime is dominated by those operations.

If you use the incremental compilation feature at any point in your design flow, it is
easier to accommodate the guidelines for partitioning a design and creating a
floorplan if you start planning for incremental compilation at the beginning of your
design cycle.

For more information and recommendations on how to prepare your design to use the
Quartus Il incremental compilation feature, and how to avoid negative impact on
your design results, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-5

Deciding Whether to Use an Incremental Compilation Flow

Figure 2-1 shows a diagram of the Quartus II design flow using incremental

compilation with design partitions.

Figure 2-1. Quartus Il Design Flow Using Incremental Compilation

System
Verilog VHDL AHDL Block EDIF VQM
HDL (vhd) (tdf) Design File Netlist Netlist
(:sv) (-bdf) (.edf) (.vgm)
Partition Top
Design Partition - i
Assignments =
Analysis & Synthesis @ Settings &
Synthesize Changed Partitions, | Assi <+
ssignments
Preserve Others
One Post-Synthesis
Netlist per Partition
| Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Imported Netlist)
One Post-Fit
Netlist per Single Netlist for
Partition Complete Design
" Floorplan
Fitter ¢ . <
Place-and-Route Changed Partitions, AsLs(iJCr?rtrI\Z;ts
Preserve Others 9
Create Individual Netlists and -
Complete Netlists q—| Setings& g |
Assignments
Single Post-Fit
Netlist for
Complete Design
1
Assembler [<€—>  Timing
inparellel|  Analyzer
|
Requirements, No Make Design &

Note to Figure 2-1:

Satisfied? Assignment Modifications

C Program/Configure Device >

(1) When you use EDIF or VOM netlists created by third-party EDA synthesis tools, Analysis and Synthesis creates the
design database, but logic synthesis and technology mapping are performed only for black boxes.

The diagram in Figure 2-1 shows a top-level partition and two lower-level partitions.
If any part of the design changes, Analysis and Synthesis processes the changed
partitions and keeps the existing netlists for the unchanged partitions. After
completion of Analysis and Synthesis, there is one post-synthesis netlist for each

partition.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-6 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Whether to Use an Incremental Compilation Flow

The Partition Merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists exported from other Quartus II
projects, depending on the netlist type that you specify for each partition.

The Fitter then processes the merged netlist, preserves the placement and routing of
unchanged partitions, and refits only those partitions that have changed. The Fitter
generates the complete netlist for use in future stages of the compilation flow,
including timing analysis and programming file generation, which can take place in
parallel if more than one processor is enabled for use in the Quartus II software. The
Fitter also generates individual netlists for each partition so that the Partition Merge
stage can use the post-fit netlist to preserve the placement and routing of a partition if
you specify to do so in future compilations.

If you define partitions, but want to check your compilation results without partitions
in a “what if” scenario, you can direct the compiler to ignore all partitions
assignments in your project and compile the design as a "flat" netlist. When you turn
on the Ignore partitions assignments during compilation option on the Incremental
Compilation page, the Quartus II software disables all design partition assignments
in your project and runs a full compilation ignoring all partition boundaries and
netlists. Turning off the Ignore partitions assignments during compilation option
restores all partition assignments and netlists for subsequent compilations.

(?) For more information on incremental compilation settings, refer to Incremental
Compilation Page in Quartus II Help.

Team-Based Design Flows and IP Delivery

The Quartus II software supports various design flows to enable team-based design
and third-party IP delivery. A top-level design can include one or more partitions that
are designed or optimized by different designers or IP providers, as well as partitions
that will be developed as part of a standard incremental methodology.

In a team-based environment, part of your design may be incomplete because it is
being developed elsewhere. The project lead or system architect can create empty
placeholders in the top-level design for partitions that are not yet complete. Designers
or IP providers can create and verify HDL code separately, and then the project lead
later integrates the code into the single top-level Quartus II project. In this scenario,
you can add the completed partitions to the design incrementally, however, the design
flow allows all design optimization to occur in the top-level design for easiest design
integration. Altera recommends using a single Quartus II project whenever possible
because using multiple projects can add significant up-front and debugging time to
the development cycle.

Alternatively, partition designers can design their partition in a copy of the top-level
design, or in a separate Quartus II project. Designers export their completed partition
as either a post-synthesis netlist, or optimized placed and routed netlist, or both,
along with assignments such as LogicLock™ regions, as appropriate. The project lead
then integrates each design block as a design partition into the top-level design. Altera
recommends that designers export and reuse post-synthesis netlists, unless optimized
post-fit results are required in the top-level design, to simplify design optimization.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-7
Incremental Compilation Summary

Teams with a bottom-up design approach often want to optimize placement and
routing of design partitions independently and may want to create separate Quartus
IT projects for each partition. However, optimizing design partitions in separate
Quartus II projects, and then later integrating the results into a top-level design, can
have the following potential drawbacks that require careful planning:

m Achieving timing closure for the full design may be more difficult if you compile
partitions independently without information about other partitions in the design.
This problem may be avoided by careful timing budgeting and special design
rules, such as always registering the ports at the module boundaries.

B Resource budgeting and allocation may be required to avoid resource conflicts and
overuse. Creating a floorplan with LogicLock regions is recommended when
design partitions are developed independently in separate Quartus II projects.

®  Maintaining consistency of assignments and timing constraints can be more
difficult if there are separate Quartus II projects. The project lead must ensure that
the top-level design and the separate projects are consistent in their assignments.

A unique challenge of team-based design and IP delivery for FPGAs is the fact that
the partitions being developed independently must share a common set of resources.
To minimize issues that might arise from sharing a common set of resources, you can
design partitions within a single Quartus II project, or a copy of the top-level design.
A common project ensures that designers have a consistent view of the top-level
project framework.

For timing-critical partitions being developed and optimized by another designer, it is
important that each designer has complete information about the top-level design in
order to maintain timing closure during integration, and to obtain the best results.
When you want to integrate partitions from separate Quartus II projects, the project
lead can perform most of the design planning, and then pass the top-level design
constraints to the partition designers. Preferably, partition designers can obtain a copy
of the top-level design by checking out the required files from a source control system.
Alternatively, the project lead can provide a copy of the top-level project framework,
or pass design information using Quartus II-generated design partition scripts. In the
case that a third-party designer has no information about the top-level design,
developers can export their partition from an independent project if required.

For more information about managing team-based design flows, refer to“Exporting
Design Partitions from Separate Quartus II Projects” on page 2-26 and the subsection
“Project Management—Making the Top-Level Design Available to Other Designers”
on page 2-28.

'~ Exporting partitions is not supported in HardCopy or FPGA companion device

compilations when there is a migration device setting. For details, refer to
“Limitations for HardCopy Compilation and Migration Flows” on page 2—48.

Incremental Compilation Summary

This section provides a summary of the standard incremental compilation design flow
and describes how to create design partitions.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-8

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Summary

Figure 2-2 illustrates the incremental compilation design flow when all partitions are
contained in one top-level design.

Figure 2-2. Summary of Standard Incremental Compilation Design Flow

| Perform Analysis & Elaboration |

|Prepare Design for Incremental Compilationl

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

v

| Make Changes to Design |<7
* Repeat as Needed
| Set Netlist Type for Each Partition | During Design, Verification
* & Debugging Stages
Perform Incremental Compilation

(Partitions are Compiled if Required)

Steps for Incremental Compilation

This section summarizes the steps in an incremental compilation flow; preparing a
design to use the incremental compilation feature, and then preserving satisfactory
results and performance in subsequent incremental compilations.

For an interactive introduction to implementing an incremental compilation design
flow, refer to the Getting Started Tutorial on the Help menu in the Quartus II
software. For a step-by-step introduction on how to use incremental compilation, refer
to Using the Incremental Compilation Design Flow in Quartus II Help.

Preparing a Design for Incremental Compilation

To begin, elaborate your design, or run any compilation flow (such as a full
compilation) that includes the elaboration step. Elaboration is the part of the synthesis
process that identifies your design’s hierarchy.

Next, designate specific instances in the design hierarchy as design partitions, as
described in “Creating Design Partitions” on page 2-9.

If required for your design flow, create a floorplan with LogicLock regions location
assignments for timing-critical partitions that change with future compilations.
Assigning a partition to a physical region on the device can help maintain quality of
results and avoid conflicts in certain situations. Refer to “Creating a Design Floorplan
With LogicLock Regions” on page 2—44 for details about LogicLock region
assignments.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_incremental_compilation.htm

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-9
Incremental Compilation Summary

Compiling a Design Using Incremental Compilation

The first compilation after making partition assignments is a full compilation, and
prepares the design for subsequent incremental compilations. In subsequent
compilations of your design, you can preserve satisfactory compilation results and
performance of unchanged partitions with the Netlist Type setting in the Design
Partitions window. The Netlist Type setting determines which type of netlist or
source file the Partition Merge stage uses in the next incremental compilation. You can
choose to use the Source File, Post-Synthesis netlist, or Post-Fit netlist. For details
about the Netlist Type setting, refer to “Specifying the Level of Results Preservation
for Subsequent Compilations” on page 2-21.

Creating Design Partitions

There are several ways to designate a design instance as a design partition. This
section provides an overview of tools you can use to create partitions in the Quartus II
software. For information on selecting which design blocks to assign as partitions and
how to analyze the quality of your partition assignments, refer to “Deciding Which
Design Blocks Should Be Design Partitions” on page 2-14.

Creating Design Partitions in the Project Navigator

You can right-click an instance in the list under the Hierarchy tab in the Project
Navigator and use the sub-menu to create and delete design partitions.

(@ For detailed information about how to create design partitions in the Project
Navigator, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions in the Design Partitions Window

The Design Partitions window, available from the Assignments menu, allows you to
create, delete, and merge partitions, and is the main window for setting the netlist
type to specify the level of results preservation for each partition on subsequent
compilations. For information about how to set the netlist type and the available
settings, refer to “Netlist Type for Design Partitions” on page 2-21.

The Design Partitions window also lists recommendations at the bottom of the
window with links to the Incremental Compilation Advisor, where you can view
additional recommendations about partitions. The Color column indicates the color
of each partition as it appears in the Design Partition Planner and Chip Planner.

You can right-click a partition in the window to perform various common tasks, such
as viewing property information about a partition, including the time and date of the
compilation netlists and the partition statistics.

When you create a partition, the Quartus II software automatically generates a name
based on the instance name and hierarchy path. You can edit the partition name in the
Design Partitions Window so that you avoid referring to them by their hierarchy path,
which can sometimes be long. This is especially useful when using command-line
commands or assignments, or when you merge partitions to give the partition a
meaningful name. Partition names can be from 1 to 1024 characters in length and
must be unique. The name can only contain alphanumeric characters and the pipe
(1), colon (:), and underscore ( _) characters.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm

2-10

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation

@

For more information about how to create and manage design partitions in the Design
Partitions window, refer to Creating Design Partitions in Quartus II Help.

Creating Design Partitions With the Design Partition Planner

The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow Altera’s
guidelines.

The Design Partition Planner displays a visual representation of design connectivity
and hierarchy, as well as partitions and entity relationships. You can explore the
connectivity between entities in the design, evaluate existing partitions with respect to
connectivity between entities, and try new partitioning schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the
Design Partition Planner, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. In the Design Partition
Planner, you can then set extracted design blocks as design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks.

For more details about how to use the Design Partition Planner, refer to Using the
Design Partition Planner in Quartus II Help and the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus II
Handbook.

Creating Design Partitions With Tcl Scripting

You can also create partitions with Tcl scripting commands. For details about the
command line and scripting flow, refer to “Scripting Support” on page 2-54.

Automatically-Generated Partitions

The compiler creates some partitions automatically as part of the compilation process,
which appear in some post-compilation reports. For example, the sl d_hub partition is
created for tools that use JTAG hub connections, such as the SignalTap II Logic
Analyzer. The har d_bl ock partition is created to contain certain "hard" or dedicated
logic blocks in the device that are implemented in a separate partition so that they can
be shared throughout the design.

Common Design Scenarios Using Incremental Compilation

This section provides recommended applications of the incremental compilation flow
after you have set up your design with partitions for incremental compilation as
described in, “Steps for Incremental Compilation” on page 2-8.

This section contains the following design scenarios:

B “Reducing Compilation Time When Changing Source Files for One Partition” on
page 2-11

m “Optimizing a Timing-Critical Partition” on page 2-11

m “Adding Design Logic Incrementally or Working With an Incomplete Design” on
page 2-12

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm 
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/dpp/dpp_pro_using_dpp.htm 
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_qid_create_design_partitions.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-1
Common Design Scenarios Using Incremental Compilation

B “Debugging Incrementally With the SignalTap II Logic Analyzer” on page 2-13

Reducing Compilation Time When Changing Source Files for One Partition

Scenario background: You set up your design to include partitions for several of the
major design blocks, and now you have just performed a lengthy compilation of the
entire design. An error is found in the HDL source file for one partition and it is being
fixed. Because the design is currently meeting timing requirements, and the fix is not
expected to affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having
to recompile the other parts of the design. To reduce the compilation time, instruct the
software to reuse the post-fit netlists for the unchanged partitions. This flow also
preserves the performance for these blocks, which reduces additional timing closure
efforts.

Perform the following steps to update a single source file:
1. Apply and save the fix to the HDL source file.
2. On the Assignments menu, open the Design Partitions window.

3. Change the netlist type of each partition, including the top-level entity, to Post-Fit
to preserve as much as possible for the next compilation.

I'=" The Quartus II software recompiles partitions by default when changes are
detected in a source file. You can refer to the Partition Dependent Files table
in the Analysis and Synthesis report to see which partitions were
recompiled. If you change an assignment but do not change the logic in a
source file, you can set the netlist type to Source File for that partition to
instruct the software to recompile the partition's source design files and its
assignments.

4. Click Start Compilation to incrementally compile the fixed HDL code. This
compilation should take much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the Timing Analyzer
report to ensure that timing results have not degraded.

Optimizing a Timing-Critical Partition

Scenario background: You have just performed a lengthy full compilation of a design
that consists of multiple partitions. The Timing Analyzer reports that the clock timing
requirement is not met, and you have to optimize one particular partition. You want
to try optimization techniques such as raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer. Because these
techniques all involve significant compilation time, it makes sense to apply them to
only the partition in question.

Use the flow in this example to optimize the results of one partition when the other
partitions in the design have already meet their requirements. You can use this flow
iteratively to lock down the performance of one partition, and then move on to
optimization of another partition.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-12 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Common Design Scenarios Using Incremental Compilation

Perform the following steps to preserve the results for partitions that meet their
timing requirements, and to recompile a timing-critical partition with new
optimization settings:

1. Open the Design Partitions window.

2. For the partition in question, set the netlist type to Source File.

['=~ 1If you change a setting that affects only the Fitter, you can save additional
compilation time by setting the netlist type to Post-Synthesis to reuse the
synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to
Post-Fit.

I'="  You can optionally set the Fitter Preservation Level on the Advanced tab in
the Design Partitions Properties dialog box to Placement to allow for the
most flexibility during routing.

4. Apply the desired optimization settings.

5. Click Start Compilation to perform incremental compilation on the design with
the new settings. During this compilation, the Partition Merge stage automatically
merges the critical partition’s new synthesis netlist with the post-fit netlists of the
remaining partitions. The Fitter then refits only the required partition. Because the
effort is reduced as compared to the initial full compilation, the compilation time is
also reduced.

To use the Design Space Explorer, perform the following steps:
1. Repeat steps 1-3 of the previous procedure.

2. Save the project and run the Design Space Explorer.

Adding Design Logic Incrementally or Working With an Incomplete Design

Scenario background: You have one or more partitions that are known to be timing-
critical in your full design. You want to focus on developing and optimizing this
subset of the design first, before adding the rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally
with extra optimizations turned on. After timing closure is achieved for the critical
logic, you can preserve its content and placement and compile the remaining
partitions with normal or reduced optimization levels. For example, you may want to
compile an IP block that comes with instructions to perform optimization before you
incorporate the rest of your custom logic.

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results,
ensure that the top-level design includes the entire project framework, even if
some parts of the design are incomplete and are represented by an empty wrapper
file.

2. For the partitions to be compiled first, in the Design Partitions window, set the
netlist type to Source File.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-13
Common Design Scenarios Using Incremental Compilation

3. For the remaining partitions, set the netlist type to Empty.
4. To compile with the desired optimizations turned on, click Start Compilation.

5. Check Timing Analyzer reports to ensure that timing requirements are met. If so,
proceed to step 6. Otherwise, repeat steps 4 and 5 until the requirements are met.

6. In the Design Partitions window, set the netlist type to Post-Fit for the first
partitions. You can set the Fitter Preservation Level on the Advanced tab in the
Design Partitions Properties dialog box to Placement to allow more flexibility
during routing if exact placement and routing preservation is not required.

7. Change the netlist type from Empty to Source File for the remaining partitions,
and ensure that the completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the
optimizations at this point does not affect any fitted partitions, because each
partition has its netlist type set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements are met. If not,
make design or option changes and repeat step 8 and step 9 until the requirements
are met.

= The flow in this example is similar to design flows in which a module is implemented
separately and is later merged into the top-level , such as in the team-based design
flow described in “Designing in a Team-Based Environment” on page 2-38. Generally,
optimization in this flow works only if each critical path is contained within a single
partition due to the effects described in “Deciding Which Design Blocks Should Be

Design Partitions” on page 2-14. Ensure that if there are any partitions representing a

design file that is missing from the project, you create a placeholder wrapper file to

define the port interface. Refer to “Empty Partitions” on page 2-28 for more
information.

Debugging Incrementally With the SignalTap Il Logic Analyzer

Scenario background: Your design is not functioning as expected, and you want to
debug the design using the SignalTap II Logic Analyzer. To maintain low compilation
times and to ensure that you do not ngatively affect the current version of your
design, you want to preserve the synthesis and fitting results and add the SignalTap II
Logic Analyzer to your design without recompiling the source code.

Use this flow to reduce compilation times when you add the logic analyzer to debug
your design, or when you want to modify the configuration of the SignalTap II File
without modifying your design logic or its placement.

It is not necessary to create design partitions in order to use the SignalTap II
incremental compilation feature. The SignalTap II Logic Analyzer acts as its own
separate design partition.

Perform the following steps to use the SignalTap II Logic Analyzer in an incremental
compilation flow:

1. Open the Design Partitions window.

2. Set the netlist type to Post-fit for all partitions to preserve their placement.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-14 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions

L=~ The netlist type for the top-level partition defaults to Source File, so be sure
to change this “Top” partition in addition to any design partitions that you
have created.

3. If you have not already compiled the design with the current set of partitions,
perform a full compilation. If the design has already been compiled with the
current set of partitions, the design is ready to add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II File using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis. This allows the Fitter to add the
SignalTap II logic to the post-fit netlist without modifying the design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to
Source File and use the SignalTap II: pre-synthesis filter in the Node Finder. This
allows the software to resynthesize the partition and to tap directly to the
pre-synthesis node names that you choose. In this case, the partition is
resynthesized and refit, so the placement is typically different from previous
fitting results.
“ e For more information about setting up the SignalTap II Logic Analyzer, refer to the
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of
the Quartus I Handbook.

Deciding Which Design Blocks Should Be Design Partitions

The incremental compilation design flow requires more up-front planning than flat
compilations. For example, you might have to structure your source code or design
hierarchy to ensure that logic is grouped correctly for optimization.

It is a common design practice to create modular or hierarchical designs in which you
develop each design entity separately, and then instantiate them in a higher-level
entity, forming a complete design. The Quartus II software does not automatically
consider each design entity or instance to be a design partition for incremental
compilation; instead, you must designate one or more design hierarchies below the
top-level project as a design partition. Creating partitions prevents the compiler from
performing optimizations across partition boundaries, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2-16. However, this allows for
separate synthesis and placement for each partition, making incremental compilation
possible.

Partitions must have the same boundaries as hierarchical blocks in the design because
a partition cannot be a portion of the logic within a hierarchical entity. You can merge
partitions that have the same immediate parent partition to create a single partition
that includes more than one hierarchical entity in the design. When you declare a
partition, every hierarchical instance within that partition becomes part of the same
partition. You can create new partitions for hierarchical instances within an existing
partition, in which case the instances within the new partition are no longer included
in the higher-level partition, as described in the following example.

In Figure 2-3, a complete design is made up of instances A, B, C, D, E, E, and G. The
shaded boxes in Representation i indicate design partitions in a “tree” representation
of the hierarchy. In Representation ii, the lower-level instances are represented inside
the higher-level instances, and the partitions are illustrated with different colored
shading. The top-level partition, called “Top”, automatically contains the top-level

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-15
Deciding Which Design Blocks Should Be Design Partitions

entity in the design, and contains any logic not defined as part of another partition.
The design file for the top level may be just a wrapper for the hierarchical instances
below it, or it may contain its own logic. In this example, partition B contains the logic
in instances B, D, and E. Entities F and G were first identified as separate partitions,
and then merged together to create a partition F-G. The partition for the top-level
entity A, called “Top”, includes the logic in one of its lower-level instances, C, because
C was not defined as part of any other partition.

Figure 2-3. Partitions in a Hierarchical Design

Representation i
Partition Top
A
B c
I
D E F G
Partition B Merged Partition F-G
Representation ii
A
B ©
]
i
]
D E F i G
i
]

You can create partition assignments to any design instance. The instance can be
defined in HDL or schematic design, or come from a third-party synthesis tool as a
VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create
separate design files for each partition. If you define two different entities as separate
partitions but they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both partitions if you
changed either entity in the design file. Similarly, if two partitions rely on the same
lower-level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design
blocks you should assign as partitions.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-16 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions

Impact of Design Partitions on Design Optimization

The boundaries of your design partitions can impact the design’s quality of results.
Creating partitions prevents the compiler from performing logic optimizations across
partition boundaries, which allows the software to synthesize and place each partition
separately in an incremental flow. Therefore, consider partitioning guidelines to help
reduce the effect of partition boundaries.

Whenever possible, register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries and keeps each
register-to-register timing path within one partition for optimization. In addition,
minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid
these inter-partition paths. Including as many of the timing-critical connections as
possible inside a partition allows you to effectively apply optimizations to that
partition to improve timing, while leaving the rest of the design unchanged.

Avoid constant partition inputs and outputs, because to maintain incremental
behavior, the software cannot use the constants to optimize logic on either side of the
partition boundary. You can also merge two or more partitions to allow cross-
boundary optimizations for paths that cross between the partitions, as long as the
partitions have the same parent partition. Merging related logic from different
hierarchy blocks into one partition can be useful if you cannot change the design
hierarchy to accommodate partition assignments.

The Design Partition Planner can help you create good assignments, as described in
“Creating Design Partitions” on page 2-9. Refer to “Partition Statistics Reports” on
page 2-18, for information about the number of I/O connections and how many are
unregistered or driven by a constant value. For information on timing reports and
additional design guidelines, refer to “Partition Timing Reports” on page 2-19 and
“Incremental Compilation Advisor” on page 2-19.

If critical timing paths cross partition boundaries, you can perform timing budgeting
and make timing assignments to constrain the logic in each partition so that the entire
timing path meets its requirements. In addition, because each partition is optimized
independently during synthesis, you may have to perform resource allocation to
ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus II projects, there may be conflicts related
to global routing resources for clock signals when the design is integrated into the
top-level design. You can use the Global Signal logic option to specify which clocks
should use global or regional routing, use the ALTCLK_CTRL megafunction to
instantiate a clock control block and connect it appropriately in both the partitions
being developed in separate Quartus II projects, or find the compiler-generated clock
control node in your design and make clock control location assignments in the
Assignment Editor.

“ e For more partitioning guidelines and specific recommendations for fixing common
design issues, as well as information on resource allocation, global signal usage, and
timing budgeting, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-17
Deciding Which Design Blocks Should Be Design Partitions

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions, which is different
from physical placement assignments in the device floorplan. A logical design
partition does not refer to a physical area of the device and does not directly control
the placement of instances. A logical design partition sets up a virtual boundary
between design hierarchies so that each is compiled separately, preventing logical
optimizations from occurring between them. When the software compiles the design
source code, the logic in each partition can be placed anywhere in the device unless
you make additional placement assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for
you to back-annotate or make any location assignments for specific logic nodes. You
should not use the incremental compilation and logic placement back-annotation
features in the same Quartus II project. The incremental compilation feature does not
use placement “assignments” to preserve placement results; it simply reuses the
netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using
LogicLock region assignments. In the Quartus II software, LogicLock regions are used
to constrain blocks of a design to a particular region of the device. Altera recommends
using LogicLock regions for timing-critical design blocks that will change in
subsequent compilations, or to improve the quality of results and avoid placement
conflicts in some cases. Creating floorplan location assignments for design partitions
using LogicLock regions is discussed in “Creating a Design Floorplan With LogicLock
Regions” on page 2—44.
“ e For more information about when and why to create a design floorplan, refer to the
Best Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Using Partitions With Third-Party Synthesis Tools

If you are using a third-party synthesis tool, set up your tool to create a separate VQM
or EDIF netlist for each hierarchical partition. In the Quartus II software, assign the
top-level entity from each netlist to be a design partition. The VQM or EDIF netlist file
is treated as the source file for the partition in the Quartus II software.

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus

The Synplify Pro and Synplify Premier software include the MultiPoint synthesis
feature to perform incremental synthesis for each design block assigned as a Compile
Point in the user interface or a script. The Precision RTL Plus software includes an
incremental synthesis feature that performs block-based synthesis based on Partition
assignments in the source HDL code. These features provide automated block-based
incremental synthesis flows and create different output netlist files for each block
when set up for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those
sections of a design that have been updated are resynthesized when the design is
compiled, reducing synthesis run time and preserving the results for the unchanged
blocks. You can change and resynthesize one section of a design without affecting
other sections of the design.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-18 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Deciding Which Design Blocks Should Be Design Partitions

e For more information about these incremental synthesis flows, refer to your tool
vendor’s documentation, or the appropriate chapter in volume 1 of the Quartus II
Handbook: Synopsys Synplify Support or Mentor Graphics Precision Synthesis Support.

Other Synthesis Tools

You can also partition your design and create different netlist files manually with the
basic Synplify software (non-Pro/Premier), the basic Precision RTL software
(non-Plus), or any other supported synthesis tool by creating a separate project or
implementation for each partition, including the top level. Set up each higher-level
project to instantiate the lower-level VOM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if
the logic definition is missing from the project. Each tool also includes options or
attributes to specify that the design block should be treated as a black box, which you
can use to avoid warnings about the missing logic.

Assessing Partition Quality

The Quartus II software provides various tools to assess the quality of your assigned
design partitions. You can take advantage of these tools to assess your partition
quality, and use the information to improve your design or assignments as required to
achieve the best results.
“ e For more information about ensuring good partition quality, refer to the Best Practices
for Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1 of
the Quartus I Handbook.

Partition Statistics Reports

After compilation, you can view statistics about design partitions in the Partition
Merge Partition Statistics report, and on the Statistics tab in the Design Partitions
Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The
statistics for each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains, and how many
are registered or unconnected. This report is useful when optimizing your design
partitions, ensuring that the partitions meet the guidelines presented in the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Deciding Which Design Blocks Should Be Design Partitions

2-19

Figure 2—4 shows the report window.

Figure 2-4. Partition Merge Partition Statistics Report

' Compilation Report - Partition Merge Partition Statistics

Eh[E Legal Notice

Total combinational

anthmetic | Total Registered [nput

+1-&5(] Analysis & Synthesis
=153 Partition Marge

S summary

SHER Metlist Types Used
BB Partition Statistics
@E Resource Usage Surmm
éf‘i; Messages

+1-¢5(] Fitter =
£ ? £

&SHE Flow Summary Name furctions mode reqisters Parts
5B Flow Settings 1F Top 16 4 12 26 12 10 1
&R Flow Non-Defaulk Global S¢. | [2] mukinsts |42 24 18 0 1 M 1]
@ Flow Elapsed Time 3] tapsinst g g i a2 13 |8 11
B Flow Log (4] hvalesinst2 3 3 0 0 z 3 0

You can also view post-compilation statistics about the resource usage and port
connections for a particular partition on the Statistics tab in the Design Partition

Properties dialog box.

Partition Timing Reports

You can generate a Partition Timing Overview report and a Partition Timing Details
report by clicking Report Partitions in the Tasks pane in the TimeQuest Timing
Analyzer, or using the report _partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for
each partition and the worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition
paths and worst-case slack for partition-to-partition paths, to provide a more detailed
breakdown of where the critical paths in the design are located with respect to design

partitions.

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your design follows
Altera’s recommendations for creating design partitions and floorplan location

assignments.

As shown in Figure 2-5, recommendations are split into General Recommendations,
Timing Recommendations, and Team-Based Design Recommendations that apply
to design flows in which partitions are compiled independently in separate Quartus I
projects before being integrated into the top-level design. Each recommendation
provides an explanation, describes the effect of the recommendation, and provides the
action required to make a suggested change. In some cases, there is a link to the
appropriate Quartus II settings page where you can make a suggested change to

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-20

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design

Deciding Which Design Blocks Should Be Design Partitions

assignments or settings. For some items, if your design does not follow the
recommendation, the Check Recommendations operation creates a table that lists
any nodes or paths in your design that could be improved. The relevant timing-
independent recommendations for the design are also listed in the Design Partitions
window and the LogicLock Regions window.

Figure 2-5. Incremental Compilation Advisor

@‘ Incremental Compilation Advisor

@5 Incremental Compilation Advisor
1) How to use the Incremental Compilation Advisor
j,J More Information on Incremental Compilation
ﬁ Check Timing Independent Recommendations

w" TimeQuest Timing Analyzer - Check Timing DependentR...

= 4 General Recommendations
l\, Reagister All Mon-Global Ports
/%, Connect All Ports
+" Do Mot Connect Ports to VCC or GND
«" Awoid LogicLock Regions With Poor Utilization Levels
w" Place Connected Regions Close Together
«" Partition Ports Should Have Unique Drivers
w" Do Mot Directly Connect Ports On A Module

w" Constrain the number of DSPs to be used by each p...

\i,J Rapid Recompile
-« Timing Recommendations
w" Awoid Inter-partition Critical Paths
w" Capture Critical Edges Inside A Partition
=t " Team-Based Design Recommendations
w"  Ensure all LogicLock Regions are Fixed and Locked
w" Do Mot Define Overlapping LogicLock Regions

+" Do Mot Place Logic From Multiple Partitions in One L...

[x]

Register All Non-Global Ports

Recommendation

Ensure that all non-global inputs and outputs that drive inter-partition connections
are registered.

Description

Since inter-partition optimizations are not allowed, it is best to register all partition
ports in an effort to keep critical paths within a single partition. By registering the
ports, the length of the inter-partition register-to-register paths are kept to a
minimum. Global signals may be left unregistered if appropriate.

surmmary

The following areas wil be affected by the recommended changes:
+ Delay may decrease (fmax may increase)
- Logic element usage may increase

Action

The modules with unregistered ports should be changed so that their ports are
registered. To see a list of all unregistered ports, dick the "Check
Recommendations™ button on the "Check Timing Independent”™ panel.

Partition Mame | Unregistered Port M| Port Type | Mode Driven By Por| |7

1 |ides:des_inst2 es_blocks:desbl... | Input des_blocks:desbl... I
2  des:des_inst2 des_blocks:desbl... Input des_blocks:desbl... I
3  des:des_inst2 des_blocks:desbl... Input des_blocks:deshbl... I

des:des_inst2 des_blocks:desbl... Input des_blocks:desbl... I

To verify that your design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page, and then click Check Recommendations. For large designs, these operations
can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to
indicate whether the design or project setting follows the recommendations, or if
some or all of the design or project settings do not follow the recommendations.
Following these recommendations is not mandatory to use the incremental
compilation feature. The recommendations are most important to ensure good results
for timing-critical partitions.

For some items in the Advisor, if your design does not follow the recommendation,
the Check Recommendations operation lists any parts of the design that could be
improved. For example, if not all of the partition I/O ports follow the Register All
Non-Global Ports recommendation, the advisor displays a list of unregistered ports
with the partition name and the node name associated with the port.

When the advisor provides a list of nodes, you can right-click a node, and then click
Locate to cross-probe to other Quartus II features, such as the RTL Viewer, Chip
Planner, or the design source code in the text editor.

Opening a new TimeQuest report resets the Incremental Compilation Advisor results,

so you must rerun the Check Recommendations process.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-21
Specifying the Level of Results Preservation for Subsequent Compilations

Specifying the Level of Results Preservation for
Subsequent Compilations

As introduced in “Incremental Compilation Summary” on page 2-7 and “Common
Design Scenarios Using Incremental Compilation” on page 2-10, the netlist type of
each design partition allows you to specify the level of results preservation. The
netlist type determines which type of netlist or source file the Partition Merge stage
uses in the next incremental compilation.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter
preservation is the highest degree of placement and routing preservation supported
by the device family. The advanced Fitter Preservation Level setting allows you to
specify the amount of information that you want to preserve from the post-fit netlist
file.

Netlist Type for Design Partitions

Before starting a new compilation, ensure that the appropriate netlist type is set for
each partition to preserve the desired level of compilation results. Table 2-2 describes
the settings for the netlist type, explains the behavior of the Quartus II software for
each setting, and provides guidance on when to use each setting.

Table 2-2. Partition Netlist Type Settings (Part 1 of 2)

Netlist Type Quartus Il Behavior for Partition During Compilation
Source File Always compiles the partition using the associated design source file(s). (7)
Use this netlist type to recompile a partition from the source code using new synthesis or Fitter settings.
Post- Preserves post-synthesis results for the partition and reuses the post-synthesis netlist as long as the
Synthesis following conditions are true:
m A post-synthesis netlist is available from a previous synthesis.
m No change that initiates an automatic resynthesis has been made to the partition since the previous
synthesis. (2) For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2—24.
Compiles the partition from the source files if resynthesis is initiated or if a post-synthesis netlist is not
available. (7)
Use this netlist type to preserve the synthesis results unless you make design changes, but allow the
Fitter to refit the partition using any new Fitter settings.
Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist as long as the following

conditions are true:
m A post-fit netlist is available from a previous fitting.

m No change that initiates an automatic resynthesis has been made to the partition since the previous
fitting. (2) For details, refer to “What Changes Initiate a Partition’s Automatic Resynthesis?” on
page 2-24.

When a post-fit netlist is not available, the software reuses the post-synthesis netlist if it is available, or
otherwise compiles from the source files. Compiles the partition from the source files if resynthesis is
initiated. (7)

The Fitter Preservation Level specifies what level of information is preserved from the post-fit netlist. For
details, refer to “Fitter Preservation Level for Design Partitions” on page 2-22.

Assignment changes, such as Fitter optimization settings, do not cause a partition set to Post-Fit to
recompile.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-22 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations

Table 2-2. Partition Netlist Type Settings (Part 2 of 2)

Netlist Type Quartus Il Behavior for Partition During Compilation

Empty Uses an empty placeholder netlist for the partition. The partition's port interface information is required
during Analysis and Synthesis to connect the partition correctly to other logic and partitions in the
design, and peripheral nodes in the source file including pins and PLLs are preserved to help connect the
empty partition to the rest of the design and preserve timing of any lower-level non-empty partitions
within empty partitions. If the source file is not available, you can create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. In Verilog HDL: a module
declaration, and in VHDL: an entity and architecture declaration.

You can use this netlist type to skip the compilation of a partition that is incomplete or missing from the
top-level design. You can also set an empty partition if you want to compile only some partitions in the
design, such as to optimize the placement of a timing-critical block such as an IP core before
incorporating other design logic, or if the compilation time is large for one partition and you want to
exclude it.

If the project database includes a previously generated post-synthesis or post-fit netlist for an unchanged
Empty partition, you can set the netlist type from Empty directly to Post-Synthesis or Post-Fit and the
software reuses the previous netlist information without recompiling from the source files.

Notes to Table 2-2:

(1) If you turn on the Rapid Recompile option, the Quartus Il software may not recompile the entire partition from the source code as described
in this table; it will reuse compatible results if there have been only small changes to the logic in the partition. Refer to “Incremental Capabilities
Available When A Design Has No Partitions” on page 2-2 for more information.

(2) Youcanturnonthe Ignore changes in source files and strictly use the specified netlist, if available option on the Advanced tab in the Design
Partitions Properties dialog box to specify whether the Compiler should ignore source file changes when deciding whether to recompile the
partition.

Fitter Preservation Level for Design Partitions

The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the
highest level of preservation available for the target device family and provides the
most compilation time reduction.

You can change the advanced Fitter Preservation Level setting to provide more
flexibility in the Fitter during placement and routing. You can set the Fitter
Preservation Level on the Advanced tab in the Design Partitions Properties dialog
box. Table 2-3 describes the Fitter Preservation Level settings.

Table 2-3. Fitter Preservation Level Settings (Part 1 of 2)

Fitter Preservation Quartus Il Behavior for Partition During Compilation

Level
Placement and Preserves the design partition’s netlist atoms and their placement and routing.
Routing This setting reduces compilation times compared to Placement only, but provides less flexibility to

the router to make changes if there are changes in other parts of the design.

By default, the Fitter preserves the usage of high-speed programmable power tiles contained
within the selected partition, for devices that support high-speed and low-power tiles. You can turn
off the Preserve high-speed tiles when preserving placement and routing option on the
Advanced tab in the Design Partitions Properties dialog box.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-23
Specifying the Level of Results Preservation for Subsequent Compilations

Table 2-3. Fitter Preservation Level Settings (Part 2 of 2)

Fitter Preservation

Quartus Il Behavior for Partition During Compilation

Level
Placement Preserves the netlist atoms and their placement in the design partition. Re-routes the design
partition and does not preserve high-speed power tile usage.
Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design partition.

A post-fit netlist with the atoms preserved can be different than the Post-Synthesis netlist because
it contains Fitter optimizations; for example, Physical Synthesis changes made during a previous
Fitting.

You can use this setting to:
m Preserve Fitter optimizations but allow the software to perform placement and routing again.

m Reapply certain Fitter optimizations that would otherwise be impossible when the placement is
locked down.

m Resolve resource conflicts between two imported partitions.

@

For detailed information about how to set the Netlist Type and Fitter Preservation
Level settings in the Quartus II software, refer to Setting the Netlist Type and Fitter
Preservation Level for Design Partitions in Quartus II Help.

Where Are the Netlist Datahases Saved?

The incremental compilation database folder (\incremental_db) includes all the
netlist information from previous compilations. To avoid unnecessary recompilations,
these database files must not be altered or deleted.

If you archive or reproduce the project in another location, you can use a Quartus II
Archive File (.qar). Include the incremental compilation database files to preserve
post-synthesis or post-fit compilation results. For details, refer to “Using Incremental
Compilation With Quartus II Archive Files” on page 2—48.

To manually create a project archive that preserves compilation results without
keeping the incremental compilation database, you can keep all source and settings
files, and create and save a Quartus II Settings File (.qxp) for each partition in the
design that will be integrated into the top-level design. Refer to “Exporting Design
Partitions from Separate Quartus II Projects” on page 2-26 for more details about how
to create a .qxp for a partition within your design.

Deleting Netlists

You can choose to abandon all levels of results preservation and remove all netlists
that exist for a particular partition with the Delete Netlists command in the Design
Partitions window. When you delete netlists for a partition, the partition is compiled
using the associated design source file(s) in the next compilation. Resetting the netlist
type for a partition to Source would have the same effect, though the netlists would
not be permanently deleted and would be available for use in subsequent
compilations. For an imported partition, the Delete Netlists command also optionally
allows you to remove the imported .qxp.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_setting_netlist_type.htm

2-24 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Specifying the Level of Results Preservation for Subsequent Compilations

What Changes Initiate a Partition’s Automatic Resynthesis?

A partition is synthesized from its source files if there is no post-synthesis netlist
available from a previous synthesis, or if the netlist type is set to Source File.
Additionally, certain changes to a partition initiate an automatic resynthesis of the
partition when the netlist type is Post-Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches
the post-place-and-route programming files. If you do not want this resynthesis to
occur automatically, refer to “Forcing Use of the Compilation Netlist When a Partition
has Changed” on page 2-26.

The following list explains the changes that initiate a partition’s automatic resynthesis
when the netlist type is set to Post-Synthesis or Post-Fit:

m The device family setting has changed.

m Any dependent source design file has changed. Refer to “Resynthesis Due to
Source Code Changes” on page 2-25 for details.

m The partition boundary was changed by an addition, removal, or change to the
port boundaries of a partition (for example, a new partition has been defined for a
lower-level instance within this partition).

B A dependent source file was compiled into a different library (so it has a different
-1ibrary argument).

m A dependent source file was added or removed; that is, the partition depends on a
different set of source files.

m The partition’s root instance has a different entity binding. In VHDL, an instance
may be bound to a specific entity and architecture. If the target entity or
architecture changes, it triggers resynthesis.

m  The partition has different parameters on its root hierarchy or on an internal
AHDL hierarchy (AHDL automatically inherits parameters from its parent
hierarchies). This occurs if you modified the parameters on the hierarchy directly,
or if you modified them indirectly by changing the parameters in a parent design
hierarchy.

® You have moved the project and compiled database between a Windows and
Linux system. Due to the differences in the way new line feeds are handled
between the operating systems, the internal checksum algorithm may detect a
design file change in this case.

The software reuses the post-synthesis results but re-fits the design if you change the
device setting within the same device family. The software reuses the post-fitting
netlist if you change only the device speed grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments,
or Fitter location assignments including pin assignments, do not trigger automatic
recompilation in the incremental compilation flow. To recompile a partition with new
assignments, change the netlist type for that partition to one of the following;:

m Source File to recompile with all new settings

m Post-Synthesis to recompile using existing synthesis results but new Fitter
settings

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-25
Specifying the Level of Results Preservation for Subsequent Compilations

[/7 S=

m Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using
existing placement results, but new routing settings (such as delay chain settings)

You can use the LogicLock Origin location assignment to change or fine-tune the
previous Fitter results from a Post-Fit netlist. For details about how you can affect
placement with LogicLock regions, refer to “Changing Partition Placement with
LogicLock Changes” on page 2—46.

Resynthesis Due to Source Code Changes

The Quartus II software uses an internal checksum algorithm to determine whether
the contents of a source file have changed. Source files are the design description files
used to create the design, and include Memory Initialization Files (.mif) as well as
.qxp from exported partitions. When design files in a partition have dependencies on
other files, changing one file may initiate an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report lists the
design files that contribute to each design partition. You can use this table to
determine which partitions are recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B,
and C.v that contains entity C, then the Partition Dependent Files table for the
partition containing entity A lists file A.v, the table for the partition containing entity
B lists file B.v, and the table for the partition containing entity C lists file C.v. Any
dependencies are transitive, so if file A.v depends on B.v, and B.v depends on C.v, the
entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed
in the report table as dependent files for the partition containing entity A.

If you turn on the Rapid Recompile option, the Quartus II software may not
recompile the entire partition from the source code as described in this section; it will
reuse compatible results if there have been only small changes to the logic in the
partition. Refer to “Incremental Capabilities Available When A Design Has No
Partitions” on page 2-2 for more information.

If you define module parameters in a higher-level module, the Quartus II software
checks the parameter values when determining which partitions require resynthesis.
If you change a parameter in a higher-level module that affects a lower-level module,
the lower-level module is resynthesized. Parameter dependencies are tracked
separately from source file dependencies; therefore, parameter definitions are not
listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in each
entity by the command ‘ i ncl ude i ncl udes. v, all partitions are dependent on this file.
A change to includes.v causes the entire design to be recompiled. The VHDL
statement use wor k. al | also typically results in unnecessary recompilations, because
it makes all entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities, such as a
common include file, contain only the set of information that is truly common to all
entities. Remove use work. al | statements in your VHDL file or replace them by
including only the specific design units needed for each entity.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-26

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus Il Projects

Forcing Use of the Compilation Netlist When a Partition has Changed

Forcing the use of a post-compilation netlist when the contents of a source file has
changed is recommended only for advanced users who understand when a partition
must be recompiled. You might use this assignment, for example, if you are making
source code changes but do not want to recompile the partition until you finish
debugging a different partition, or if you are adding simple comments to the source
file but you know the design logic itself is not being changed and you want to keep
the previous compilation results.

To force the Fitter to use a previously generated netlist even when there are changes to
the source files, right-click the partition in the Design Partitions window and then
click Design Partition Properties. On the Advanced tab, turn on the Ignore changes
in source files and strictly use the specified netlist, if available option.

Turning on this option can result in the generation of a functionally incorrect netlist
when source design files change, because source file updates will not be recompiled.
Use caution when setting this option.

Exporting Design Partitions from Separate Quartus Il Projects

Partitions that are developed by other designers or team members in the same
company or third-party IP providers can be exported as design partitions to a
Quartus II Exported Partition File (.qxp), and then integrated into a top-level design.
A .qxp is a binary file that contains compilation results describing the exported design
partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does
not contain the source design files from the original Quartus II project.

To enable team-based development and third-party IP delivery, you can design and
optimize partitions in separate copies of the top-level Quartus II project framework,
or even in isolation. If the designers have access to the top-level project framework
through a source control system, they can access project files as read-only and develop
their partition within the source control system. If designers do not have access to a
source control system, the project lead can provide the designer with a copy of the
top-level project framework to use as they develop their partitions. The project lead
also has the option to generate design partition scripts to manage resource and timing
budgets in the top-level design when partitions are developed outside the top-level
project framework.

The exported compilation results of completed partitions are given to the project lead,
preferably using a source control system, who is then responsible for integrating them
into the top-level design to obtain a fully functional design. This type of design flow is
required only if partition designers want to optimize their placement and routing
independently, and pass their design to the project lead to reuse placement and
routing results. Otherwise, a project lead can integrate source HDL from several
designers in a single Quartus II project, and use the standard incremental compilation
flow described previously.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-27
Exporting Design Partitions from Separate Quartus Il Projects

The diagram in Figure 2-6 illustrates the team-based incremental compilation design
flow using a methodology in which partitions are compiled in separate Quartus II
projects before being integrated into the top-level design. This flow can be used when
partitions are developed by other designers or IP providers.

Figure 2-6. Summary of Team-Based Incremental Compilation Flow

Prepare Top-Level Design for
Incremental Compilation

v

Provide Project Framework or
Constraints to Designers

v

Design, Compile, and
Optimize Partition(s)

v

Export Lower-Level Partition(s)

Repeat as Needed
* During Design, Veri
& Debugging Stage

Integrate Partition(s)
into Top-Level Design

v

Perform Incremental Compilation
in Top-Level Design

You cannot export or import partitions that have been merged. For more information
about merged partitions, refer to “Deciding Which Design Blocks Should Be Design
Partitions” on page 2-14.

The topics in this section provide a description of the team-based design flow using
exported partitions, describe how to generate a .qxp for a design partition, and
explain how to integrate the .qxp into the top-level design:

There are some additional restrictions related to design flows using exported
partitions, described in “Incremental Compilation Restrictions” on page 2—47.

Preparing the Top-Level Design

To prepare your design to incorporate exported partitions, first create the top-level
project framework of the design to define the hierarchy for the subdesigns that will be
implemented by other team members, designers, or IP providers.

In the top-level design, create project-wide settings, for example, device selection,
global assignments for clocks and device I/O ports, and any global signal constraints
to specify which signals can use global routing resources.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-28

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus Il Projects

Next, create the appropriate design partition assignments and set the netlist type for
each design partition that will be developed in a separate Quartus II project to Empty.
Refer to “Empty Partitions” below for details. It may be necessary to constrain the
location of partitions with LogicLock region assignments if they are timing-critical
and are expected to change in future compilations, or if the designer or IP provider
wants to place and route their design partition independently, to avoid location
conflicts. For details, refer to “Creating a Design Floorplan With LogicLock Regions”
on page 2-44.

Finally, provide the top-level project framework to the partition designers, preferably
through a source control system. Refer to “Project Management—Making the Top-
Level Design Available to Other Designers” on page 2-28 for more information.

Empty Partitions

You can use a design flow in which some partitions are set to an Empty netlist type to
develop pieces of the design separately, and then integrate them into the top-level
design at a later time. In a team-based design environment, you can set the netlist type
to Empty for partitions in your design that will be developed by other designers or IP
providers. The Empty setting directs the Compiler to skip the compilation of a
partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are
preserved and all other logic is removed. The peripheral nodes including pins help
connect the empty partition to the design, and the PLLs help preserve timing of
non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis
and Synthesis to specify the port interface information so that it can connect the
partition correctly to other logic and partitions in the design. If a partition is exported
from another project, the .qxp contains this information. If there is no .qxp or design
file to represent the design entity, you must create a wrapper file that defines the
design block and specifies the input, output, and bidirectional ports. For example, in
Verilog HDL, you should include a module declaration, and in VHDL, you should
include an entity and architecture declaration.

Project Management—Making the Top-Level Design Available to Other
Designers

In team-based incremental compilation flows, whenever possible, all designers or IP
providers should work within the same top-level project framework. Using the same
project framework among team members ensures that designers have the settings and
constraints needed for their partition, and makes timing closure easier when
integrating the partitions into the top-level design. If other designers do not have
access to the top-level project framework, the Quartus II software provides tools for
passing project information to partition designers.

Distributing the Top-Level Quartus Il Project

There are several methods that the project lead can use to distribute the “skeleton” or
top-level project framework to other partition designers or IP providers.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-29
Exporting Design Partitions from Separate Quartus Il Projects

m If partition designers have access to the top-level project framework, the project
will already include all the settings and constraints needed for the design. This
framework should include PLLs and other interface logic if this information is
important to optimize partitions.

m If designers are part of the same design environment, they can check out the
required project files from the same source control system. This is the
recommended way to share a set of project files.

m  Otherwise, the project lead can provide a copy of the top-level project
framework so that each design develops their partition within the same project
framework.

m If a partition designer does not have access to the top-level project framework, the
project lead can give the partition designer a Tcl script or other documentation to
create the separate Quartus II project and all the assignments from the top-level
design.

For details about project management scripts you can create with the Quartus II
software, refer to”Generating Design Partition Scripts” on page 2-56.

If the partition designers provide the project lead with a post-synthesis .qxp and
fitting is performed in the top-level design, integrating the design partitions should be
quite easy. If you plan to develop a partition in a separate Quartus II project and
integrate the optimized post-fitting results into the top-level design, use the following
guidelines to improve the integration process:

m  Ensure that a LogicLock region constrains the partition placement and uses only
the resources allocated by the project lead.

m  Ensure that you know which clocks should be allocated to global routing resources
so that there are no resource conflicts in the top-level design.

m Set the Global Signal assignment to On for the high fan-out signals that should
be routed on global routing lines.

m  To avoid other signals being placed on global routing lines, turn off Auto
Global Clock and Auto Global Register Controls under More Settings on the
Fitter page in the Settings dialog box. Alternatively, you can set the Global
Signal assignment to Off for signals that should not be placed on global
routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the
LAB use a global clock. You may encounter problems if signals do not use
global lines in the partition, but use global routing in the top-level design.

m Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins
in the top-level design. This is critical when a partition has more output ports than
the number of pins available in the target device. Using virtual pins also helps
optimize cross-partition paths for a complete design by enabling you to provide
more information about the partition ports, such as location and timing
assignments.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-30

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus Il Projects

m  When partitions are compiled independently without any information about each
other, you might need to provide more information about the timing paths that
may be affected by other partitions in the top-level design. You can apply location
assignments for each pin to indicate the port location after incorporation in the
top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

For more information about resource balancing and timing allocation between
partitions, refer to the Best Practices for Incremental Compilation Partitions and Floorplan
Assignments chapter in volume 1 of the Quartus II Handbook.

Generating Design Partition Scripts

If IP providers or designers on a team want to optimize their design blocks
independently and do not have access to a shared project framework, the project lead
must perform some or all of the following tasks to ensure successful integration of the
design blocks:

B Determine which assignments should be propagated from the top-level design to
the partitions. This requires detailed knowledge of which assignments are
required to set up low-level designs.

m Communicate the top-level assignments to the partitions. This requires detailed
knowledge of Tcl or other scripting languages to efficiently communicate project
constraints.

m Determine appropriate timing and location assignments that help overcome the
limitations of team-based design. This requires examination of the logic in the
partitions to determine appropriate timing constraints.

m Perform final timing closure and resource conflict avoidance in the top-level
design. Because the partitions have no information about each other, meeting
constraints at the lower levels does not guarantee they are met when integrated at
the top-level. It then becomes the project lead’s responsibility to resolve the issues,
even though information about the partition implementation may not be available.

Design partition scripts automate the process of transferring the top-level project
framework to partition designers in a flow where each design block is developed in
separate Quartus II projects before being integrated into the top-level design. If the
project lead cannot provide each designer with a copy of the top-level project
framework, the Quartus Il software provides an interface for managing resources and
timing budgets in the top-level design. Design partition scripts make it easier for
partition designers to implement the instructions from the project lead, and avoid
conflicts between projects when integrating the partitions into the top-level design.
This flow also helps to reduce the need to further optimize the designs after
integration.

You can use options in the Generate Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the partitions being
developed in separate Quartus II projects.

For an example design scenario using design partition scripts, refer to “Enabling
Designers on a Team to Optimize Independently” on page 2-39.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf 
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf 

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-31
Exporting Design Partitions from Separate Quartus Il Projects

@

For step-by-step information on how to generate design partition scripts, and a
description of each option that can be included in design partition scripts, refer to
Generating Design Partition Scripts for Project Management, and Generate Design Partition
Scripts Dialog Box in Quartus II Help.

Exporting Partitions

@

When partition designers achieve the design requirements in their separate Quartus II
projects, each designer can export their design as a partition so it can be integrated
into the top-level design by the project lead. The Export Design Partition dialog box,
available from the Project menu, allows designers to export a design partition to a
Quartus II Exported Partition File (.qxp) with a post-synthesis netlist, a post-fit netlist,
or both. The project lead then adds the .qxp to the top-level design to integrate the
partition.

A designer developing a timing-critical partition or who wants to optimize their
partition on their own would opt to export their completed partition with a post-fit
netlist, allowing for the partition to more reliably meet timing requirements after
integration. In this case, you must ensure that resources are allocated appropriately to
avoid conflicts. If the placement and routing optimization can be performed in the
top-level design, exporting a post-synthesis netlist allows the most flexibility in the
top-level design and avoids potential placement or routing conflicts with other
partitions.

When designing the partition logic to be exported into another project, you can add
logic around the design block to be exported as a design partition. You can instantiate
additional design components for the Quartus II project so that it matches the
top-level design environment, especially in cases where you do not have access to the
full top-level design project. For example, you can include a top-level PLL in the
project, outside of the partition to be exported, so that you can optimize the design
with information about the frequency multipliers, phase shifts, compensation delays,
and any other PLL parameters. The software then captures timing and resource
requirements more accurately while ensuring that the timing analysis in the partition
is complete and accurate. You can export the partition for the top-level design without
any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can
use the make command with the master_makefile command created by the scripts to
export the partitions and create .qxp files. When a partition has been compiled and is
ready to be integrated into the top-level design, you can export the partition with
option on the Export Design Partition dialog box, available from the Project menu.

For more information about how to export a design partition, refer to Using a Team-
Based Incremental Compilation Design Flow in the Quartus II Help.

Viewing the Contents of a Quartus Il Exported Partition File (.qxp)

The QXP report allows you to view a summary of the contents in a .qxp when you
open the file in the Quartus II software. The .qxp is a binary file that contains
compilation results so the file cannot be read in a text editor. The QXP report opens in
the main Quartus Il window and contains summary information including a list of
the I/O ports, resource usage summary, and a list of the assignments used for the
exported partition.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_running_bottom-up_compilation.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_pro_generating_design_partition_scripts.htm

2-32 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus Il Projects

Integrating Partitions into the Top-Level Design

To integrate a partition developed in a separate Quartus II project into the top-level
design, you can simply add the .qxp as a source file in your top-level design (just like
a Verilog or VHDL source file). You can also use the Import Design Partition dialog
box to import the partition, in certain situations, described in “Advanced Importing
Options” on page 2-33.

The .qxp contains the design block exported from the partition and has the same
name as the partition. When you instantiate the design block into a top-level design
and include the .qxp as a source file, the software adds the exported netlist to the
database for the top-level design. The .qxp port names are case sensitive if the original
HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want
the .qxp to be a partition in the top-level design. If you do not designate the .qxp
instance as a partition, the software reuses just the post-synthesis compilation results
from the .qxp, removes unconnected ports and unused logic just like a regular source
file, and then performs placement and routing.

If you assigned the .qxp instance as a partition, you can set the netlist type in the
Design Partitions Window to choose the level of results to preserve from the .qxp. To
preserve the placement and routing results from the exported partition, set the netlist
type to Post-Fit for the .qxp partition in the top-level design. If you assign the instance
as a design partition, the partition boundary is preserved, as discussed in “Impact of
Design Partitions on Design Optimization” on page 2-16.

Integrating Assignments from the .qxp

The Quartus II software filters assignments from .qxp files to include appropriate
assignments in the top-level design. The assignments in the .qxp are treated like
assignments made in an HDL source file, and are not listed in the Quartus II Settings
File (.qsf) for the top-level design. Most assignments from the .qxp can be overridden
by assignments in the top-level design.

The following subsections provide more details about specific assignment types:

Design Partition Assignments Within the Exported Partition

Design partition assignments defined within a separate Quartus II project are not
added to the top-level design. All logic under the exported partition in the project
hierarchy is treated as single instance in the .qxp.

Synopsys Design Gonstraint Files for the Quartus Il TimeQuest Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing Analyzer in a
Synopsys Design Constraint File (.sdc) in the lower-level partition project are not
added to the top-level design. Ensure that the top-level design includes all of the
timing requirements for the entire project.

“ e For recommendations about managing SDC constraints for the top-level design and
independent lower-level partition projects, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus 11
Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-33
Exporting Design Partitions from Separate Quartus Il Projects

Global Assignments

The project lead should make all global project-wide assignments in the top-level
design. Global assignments from the exported partition's project are not added to the
top-level design. When it is possible for a particular constraint, the global assignment
is converted to an instance-specific assignment for the exported design partition.

LogicLock Region Assignments

The project lead typically creates LogicLock region assignments in the top-level
design for any lower-level partition designs where designer or IP providers plan to
export post-fit information to be used in the top-level design, to help avoid placement
conflicts between partitions. When you use the .qxp as a source file, LogicLock
constraints from the exported partition are applied in the top-level design, but will
not appear in your .qsf file or LogicLock Regions window for you to view or edit. The
LogicLock region itself is not required to constrain the partition placement in the
top-level design if the netlist type is set to Post-Fit, because the netlist contains all the
placement information. For information on how to control LogicLock region
assignments for exported partitions, refer to the “Advanced Importing Options” on
page 2-33.

Integrating Encrypted IP Cores from .qxp Files

Proper license information is required to compile encrypted IP cores. If an IP core is
exported as a .qxp from another Quartus II project, the top-level designer
instantiating the .qxp must have the correct license. The software requires a full
license to generate an unrestricted programming file. If you do not have a license, but
the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support,
you can generate an evaluation programming file without a license. If the IP supports
OpenCore simulation only, you can fully compile the design and generate a
simulation netlist, but you cannot create programming files unless you have a full
license.

Advanced Importing Options

You can use advanced options in the Import Design Partition dialog box to integrate
a partition developed in a separate Quartus II project into the top-level design. The
import process adds more control than using the .qxp as a source file, and is useful
only in the following circumstances:

m If you want LogicLock regions in your top-level design (.qsf)—If you have
regions in your partitions that are not also in the top-level design, the regions will
be added to your .qsf file during the import process.

m If you want different settings or placement for different instantiations of the
same entity—You can control the setting import process with the advanced import
options, and specify different settings for different instances of the same .qxp
design block.

When you use the Import Design Partition dialog box to integrate a partition into the
top-level design, the import process sets the partition’s netlist type to Imported in the
Design Partitions window.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-34

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Exporting Design Partitions from Separate Quartus Il Projects

After you compile the entire design, if you make changes to the place-and-route
results (such as movement of an imported LogicLock region), use the Post-Fit netlist
type on subsequent compilations. To discard an imported netlist and recompile from
source code, you can compile the partition with the netlist type set to Source File and
be sure to include the relevant source code in the top-level design. Refer to “Netlist
Type for Design Partitions” on page 2-21 for details. The import process sets the
partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is
imported with placement information, the Fitter Preservation Level is set to
Placement, but you can change it to the Netlist Only value. For more information
about preserving previous compilation results, refer to “Netlist Type for Design
Partitions” on page 2-21 and “Fitter Preservation Level for Design Partitions” on
page 2-22.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level
deign because the netlists from the file have been imported into the project database.
Therefore if a new version of a .qxp is exported, the top-level designer must perform
another import of the new .qxp.

When you import a partition into a top-level design with the Import Design Partition
dialog box, the software imports relevant assignments from the partition into the
top-level design, as described for the source file integration flow in “Integrating
Assignments from the .qxp” on page 2-32. If required, you can change the way some
assignments are imported, as described in the following subsections.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate multiple
instances of a subdesign in the top-level design, the imported LogicLock regions are
set to a Floating location. Otherwise, they are set to a Fixed location. You can change
the location of LogicLock regions after they are imported, or change them to a
Floating location to allow the software to place each region but keep the relative
locations of nodes within the region wherever possible. For details, refer to “Changing
Partition Placement with LogicLock Changes” on page 2—46. To preserve changes
made to a partition after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a
preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp
contains all of the relevant placement information. Altera strongly recommends that
you do not add to or delete members from an imported LogicLock region.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to disable assignment import
and specify additional options that control how assignments and regions are
integrated when importing a partition into a top-level design, including how to
resolve assignment conflicts.

For descriptions of the advanced import options available, refer to Advanced Import
Settings Dialog Box in Quartus II Help.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_qid_advanced_import_settings.htm

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-35
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

Team-Based Design Optimization and Third-Party IP Delivery Scenarios

This section includes the following design flows with step-by-step descriptions when
you have partitions being developed in separate Quartus II projects, or by a
third-party IP provider.

m “Using an Exported Partition to Send to a Design Without Including Source Files”
on page 2-35

m “Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse” on
page 2-36
m “Designing in a Team-Based Environment” on page 2-38

m “Enabling Designers on a Team to Optimize Independently” on page 2-39

m “Performing Design Iterations With Lower-Level Partitions” on page 242

Using an Exported Partition to Send to a Design Without
Including Source Files

Scenario background: A designer wants to produce a design block and needs to send
out their design, but to preserve their IP, they prefer to send a synthesized netlist
instead of providing the HDL source code to the recipient.

Use this flow to package a full design as a single source file to send to an end
customer or another design location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement
information with the synthesized netlist, also provide the exact device selection so
they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block
and provide it to the recipient for instantiating the block as an empty partition in
the top-level design.

3. Create a Quartus II project for the design block, and complete the design.

4. Export the level of hierarchy into a single .qxp. Following a successful compilation
of the project, you can generate a .qxp from the GUI, the command-line, or with
Tcl commands, as described in the following:

m If you are using the Quartus II GUI, use the Export Design Partition
command.

m If you are using command-line executables, run quartus_cdb with the
--increnental _conpi | ation_export option.

m If you are using Tcl commands, use the following command:
execute flow -incremental conpilation_export.

5. Select the option to include just the Post-synthesis netlist if you do not have to
send placement information. If the recipient wants to reproduce your exact Fitter
results, you can select the Post-fitting netlist option, and optionally enable Export
routing.

6. Provide the .qxp to the recipient. Note that you do not have to send any of your
design source code.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-36

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

As the recipient in this example, first create a Quartus II project for your top-level
design and ensure that your project targets the same device (or at least the same
device family if the .qxp does not include placement information), as specified by the
IP designer sending the design block. Instantiate the design block using the port
information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus II project to replace
any empty wrapper file. If you want to use just the post-synthesis information, you
can choose whether you want the file to be a partition in the top-level design. To use
the post-fit information from the .qxp, assign the instance as a design partition and set
the netlist type to Post-Fit. Refer to “Creating Design Partitions” on page 2-9 and
“Netlist Type for Design Partitions” on page 2-21.

Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse

Scenario background: An IP provider wants to produce and sell an IP core for a
component to be used in higher-level systems. The IP provider wants to optimize the
placement of their block for maximum performance in a specific Altera device and
then deliver the placement information to their end customer. To preserve their IP,
they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

Use this design flow to create a precompiled IP block (sometimes known as a
hard-wired macro) that can be instantiated in a top-level design. This flow provides
the ability to export a design block with post-synthesis or placement (and, optionally,
routing) information and to import any number of copies of this pre-compiled block
into another design.

The customer first specifies which Altera device is being used for this project and
provides the design specifications.

As the IP provider in this example, perform the following steps to export a preplaced
IP core (or hard macro):

1. Create a black box wrapper file that defines the port interface for the IP core and
provide the file to the customer to instantiate as an empty partition in the top-level
design.

2. Create a Quartus II project for the IP core.
3. Create a LogicLock region for the design hierarchy to be exported.

&~ Usinga LogicLock region for the IP core allows the customer to create an
empty placeholder region to reserve space for the IP in the design floorplan
and ensures that there are no conflicts with the top-level design logic.
Reserved space also helps ensure the IP core does not affect the timing
performance of other logic in the top-level design. Additionally, with a
LogicLock region, you can preserve placement either absolutely or relative
to the origin of the associated region. This is important when a .qxp is
imported for multiple partition hierarchies in the same project, because in
this case, the location of at least one instance in the top-level design does
not match the location used by the IP provider.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-37
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

If required, add any logic (such as PLLs or other logic defined in the customer’s
top-level design) around the design hierarchy to be exported. If you do so, create a
design partition for the design hierarchy that will exported as an IP core.

Optimize the design and close timing to meet the design specifications.
Export the level of hierarchy for the IP core into a single .qxp.

Provide the .qxp to the customer. Note that you do not have to send any of your
design source code to the customer; the design netlist and placement and routing
information is contained within the .qxp.

As the customer in this example, incorporate the IP core in your design by performing
the following steps:

1.

Create a Quartus II project for the top-level design that targets the same device
and instantiate a copy or multiple copies of the IP core. Use a black box wrapper
file to define the port interface of the IP core.

Perform Analysis and Elaboration to identify the design hierarchy.

Create a design partition for each instance of the IP core (refer to “Creating Design
Partitions” on page 2-54) with the netlist type set to Empty (refer to “Netlist Type
for Design Partitions” on page 2-21).

You can now continue work on your part of the design and accept the IP core from
the IP provider when it is ready.

Include the .qxp from the IP provider in your project to replace the empty
wrapper-file for the IP instance. Or, if you are importing multiple copies of the
design block and want to import relative placement, follow these additional steps:

a. Use the Import command to select each appropriate partition hierarchy. You
can import a .qxp from the GUI, the command-line, or with Tcl commands:

m If you are using the Quartus II GUI, use the Import Design Partition
command.

m If you are using command-line executables, run quartus_cdb with the
--increnental _conpil ation_i nport option.

m If you are using Tcl commands, use the following command:
execute_flow -incremental _conpilation_inport.

b. When you have multiple instances of the IP block, you can set the imported
LogicLock regions to floating, or move them to a new location, and the
software preserves the relative placement for each of the imported modules
(relative to the origin of the LogicLock region). Routing information is
preserved whenever possible. Refer to “Changing Partition Placement with
LogicLock Changes” on page 2—46

['=~ The Fitter ignores relative placement assignments if the LogicLock region’s
location in the top-level design is not compatible with the locations
exported in the .qxp.

You can control the level of results preservation with the Netlist Type setting.
Refer to “Netlist Type for Design Partitions” on page 2-21.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-38 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

L=~ 1f the IP provider did not define a LogicLock region in the exported partition, the
software preserves absolute placement locations and this leads to placement conflicts
if the partition is imported for more than one instance.

Designing in a Team-Based Environment

Scenario background: A project includes several lower-level design blocks that are
developed separately by different designers and instantiated exactly once in the
top-level design.

This scenario describes how to use incremental compilation in a team-based design
environment where each designer has access to the top-level project framework, but
wants to optimize their design in a separate Quartus II project before integrating their
design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a "skeleton" or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal allocation constraints to specify which signals can use global routing
resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions that
will be developed separately. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

5. Provide the top-level project framework to partition designers using one of the
following procedures:

m  Allow access to the full project for all designers through a source control
system. Each designer can check out the projects files as read-only and work on
their blocks independently. This design flow provides each designer with the
most information about the full design, which helps avoid resource conflicts
and makes design integration easy.

m Provide a copy of the top-level Quartus II project framework for each designer.
You can use the Copy Project command on the Project menu or create a project
archive.

As the designer of a lower-level design block in this scenario, design and optimize
your partition in your copy of the top-level design, and then follow these steps when
you have achieved the desired compilation results:

1. On the Project menu, click Export Design Partition.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-39
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

2. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist if placement or performance preservation is not
required, to provide the most flexibility for the Fitter in the top-level design. Select
Post-fit netlist to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform these steps to integrate the .qxp
files received from designers of each partition:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Enabling Designers on a Team to Optimize Independently

Scenario background: A project consists of several lower-level design blocks that are
developed separately by different designers who do not have access to a shared
top-level project framework. This scenario is similar to the “Creating Precompiled
Design Blocks (or Hard-Wired Macros) for Reuse” on page 2-36 scenario, but assumes
that there are several design blocks being developed independently (instead of just
one IP block), and the project lead can provide some information about the design to
the individual designers. If the designers have shared access to the top-level design,
use the previous scenario “Designing in a Team-Based Environment” on page 2-38.

This scenario describes how to use incremental compilation in a team-based design
environment where designers or IP developers want to fully optimize the placement
and routing of their design independently in a separate Quartus II project before
sending the design to the project lead. In this scenario, the IP developers do not have
access to the top-level project framework. This design flow requires more planning
and careful resource allocation because design blocks are developed independently.

As the project lead in this scenario, perform the following steps to prepare the
top-level design:

1. Create a new Quartus II project to ultimately contain the full implementation of
the entire design and include a “skeleton” or framework of the design that defines
the hierarchy for the subdesigns implemented by separate designers. The top-level
design implements the top-level entity in the design and instantiates wrapper files
that represent each subdesign by defining only the port interfaces but not the
implementation.

2. Make project-wide settings. Select the device, make global assignments such as
device I/O ports, define the top-level timing constraints, and make any global
signal constraints to specify which signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for
each design partition to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity
between partitions and estimates of the size of each partition based on any initial
implementation numbers and knowledge of the design specifications.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-40 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

5. Provide the constraints from the top-level design to partition designers using one
of the following procedures:.

m  Use design partition scripts to pass constraints and generate separate
Quartus II projects. On the Project menu, use the Generate Design Partition
Scripts command, or run the script generator from a Tcl or command prompt.
Make changes to the default script options as required for your project. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. If partitions
have not already been created by the other designers, use the partition script to
set up the projects so that you can easily take advantage of makefiles. Provide
each partition designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for
each partition.

m  Use documentation or manually-created scripts to pass all constraints and
assignments to each partition designer.

As the designer of a lower-level design block in this scenario, perform the appropriate
set of steps to successfully export your design, whether the design team is using
makefiles or exporting and importing the design manually.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the make command and the makefile provided by the project lead to create a
Quartus II project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition
is not available to the software automatically, so you must specify this information
in the makefile. You must specify the dependencies before the software rebuilds
the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready
to be imported into the top-level design, the project lead can use the
mast er _makef i | e command to export this partition and create a .qxp, and then
import it into the top-level design.

If you are not using makefiles, perform the following steps:

1. If you are using design partition scripts, source the Tcl script provided by the
Project Lead to create a project with the required settings:

m  To source the Tcl script in the Quartus II software, on the Tools menu, click
Utility Windows to open the Tcl console. Navigate to the script’s directory, and
type the following command: source <fil enane> «

m  To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <fil enane>.tcl «

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-41
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

2. If you are not using design partition scripts, create a new Quartus II project for the
subdesign, and then apply the following settings and constraints to ensure
successful integration:

m  Make LogicLock region assignments and global assignments (including clock
settings) as specified by the project lead.

m  Make Virtual Pin assignments for ports which represent connections to core
logic instead of external device pins in the top-level design.

m  Make floorplan location assignments to the Virtual Pins so they are placed in
their corresponding regions as determined by the top-level design. This
provides the Fitter with more information about the timing constraints
between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.

4. When you have achieved the desired compilation results, on the Project menu,
click Export Design Partition.

5. In the Export Design Partition dialog box, choose the netlist(s) to export. You can
export a Post-synthesis netlist instead if placement or performance preservation is
not required, to provide the most flexibility for the Fitter in the top-level design.
Select Post-fit to preserve the placement and performance of the lower-level
design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

6. Provide the .qxp to the project lead.

Finally, as the project lead in this scenario, perform the appropriate set of steps to
import the .qxp files received from designers of each partition.

If you are using makefiles with the design partition scripts, perform the following
steps:

1. Use the mast er _makef il e command to export each partition and create .qxp files,
and then import them into the top-level design.

2. The software does not have all the information about which source files should be
associated with which partition, so you must specify this information in the
makefile. The software cannot rebuild the project if source files change unless you
specify the dependencies.

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus II project, to replace any empty
wrapper file for the previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results
preservation.

Resolving Assignment Conflicts During Integration

When integrating lower-level design blocks, the project lead may notice some
assignment conflicts. This can occur, for example, if the lower-level design block
designers changed their LogicLock regions to account for additional logic or
placement constraints, or if the designers applied I/O port timing constraints that
differ from constraints added to the top-level design by the project lead. The project

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-42

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

lead can address these conflicts by explicitly importing the partitions into the
top-level design, and using options in the Advanced Import Settings dialog box, as
described in “Advanced Importing Options” on page 2-33. After the project lead
obtains the .qxp for each lower-level design block from the other designers, use the
Import Design Partition command on the Project menu and specify the partition in
the top-level design that is represented by the lower-level design block .qxp. Repeat
this import process for each partition in the design. After you have imported each
partition once, you can select all the design partitions and use the Reimport using
latest import files at previous locations option to import all the files from their
previous locations at one time. To address assignment conflicts, the project lead can
take one or both of the following actions:

m  Allow new assignments to be imported
m  Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of
the following actions:

m  Allow the imported region to replace the existing region
m  Allow the imported region to update the existing region
m Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can
also set the set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the design scenario, one of the lower-level design blocks is
instantiated more than once in the top-level design. The designer of the lower-level
design block may want to compile and optimize the entity once under a partition, and
then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level
design, the imported LogicLock regions are automatically set to Floating status.

If you resolve conflicts manually, you can use the import options and manual
LogicLock assignments to specify the placement of each instance in the top-level
design.

Performing Design Iterations With Lower-Level Partitions

Scenario background: A project consists of several lower-level subdesigns that have
been exported from separate Quartus II projects and imported into the top-level
design. In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements might have been met in each
individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines
that the design cannot meet the timing requirements given the current partition
placements that were imported. The project lead decides to pass additional
information to the lower-level partitions to improve the placement.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-43
Team-Based Design Optimization and Third-Party IP Delivery Scenarios

Use this flow if you re-optimize partitions exported from separate Quartus II projects
by incorporating additional constraints from the integrated top-level design.

The best way to provide top-level design information to designers of lower-level
partitions is to provide the complete top-level project framework using the following

steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a
separate Quartus II project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if
possible. Otherwise, copy the entire top-level design project directory (including
database files), or create a project archive including the post-compilation database.

3. Provide each partition designer with a checked-out version or copy of the
top-level design.

4. The partition designers recompile their designs within the new project framework
that includes the rest of the design's placement and routing information as well
top-level resource allocations and assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the

updated partition as a .qxp.

If this design flow is not possible, you can generate partition-specific scripts for
individual designs to provide information about the top-level project framework with
these steps:

1.

In the top-level design, on the Project menu, click Generate Design Partition
Scripts, or launch the script generator from Tcl or the command line.

If lower-level projects have already been created for each partition, you can turn
off the Create lower-level project if one does not exist option.

Make additional changes to the default script options, as necessary. Altera
recommends that you pass all the default constraints, including LogicLock
regions, for all partitions and virtual pin location assignments. Altera also
recommends that you add a maximum delay timing constraint for the virtual I/O
connections in each partition.

The Quartus II software generates Tcl scripts for all partitions, but in this scenario,
you would focus on the partitions that make up the cross-partition critical paths.
The following assignments are important in the script:

m Virtual pin assignments for module pins not connected to device I/O ports in
the top-level design.

m Location constraints for the virtual pins that reflect the initial top-level
placement of the pin’s source or destination. These help make the lower-level
placement “aware” of its surroundings in the top-level design, leading to a
greater chance of timing closure during integration at the top level.

m | NPUT_MAX_DELAY and QUTPUT_MAX_DELAY timing constraints on the paths to and
from the I/O pins of the partition. These constrain the pins to optimize the
timing paths to and from the pins.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-44

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions

5. The partition designers source the file provided by the project lead.

m  To source the Tcl script from the Quartus II GUI, on the Tools menu, click
Utility Windows and open the Tcl console. Navigate to the script’s directory,
and type the following command: source <fil ename> +

m  To source the Tcl script at the system command prompt, type the following
command: quartus_cdb -t <fil ename>.tcl «

6. The partition designers recompile their designs with the new project information
or assignments and optimize as needed. When the results are satisfactory and the
timing requirements are met, export the updated partition as a .qxp.

The project lead obtains the updated .qxp files from the partition designers and adds
them to the top-level design. When a new .qxp is added to the files list, the software
will detect the change in the “source file” and use the new .qxp results during the next
compilation. If the project uses the advanced import flow, the project lead must
perform another import of the new .qxp.

You can now analyze the design to determine whether the timing requirements have
been achieved. Because the partitions were compiled with more information about
connectivity at the top level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

Creating a Design Floorplan With LogicLock Regions

A floorplan represents the layout of the physical resources on the device. Creating a
design floorplan, or floorplanning, describes describe the process of mapping the
logical design hierarchy onto physical regions in the device floorplan. After you have
partitioned the design, you can create floorplan location assignments for the design to
improve the quality of results when using the incremental compilation design flow.
Creating a design floorplan is not a requirement to use an incremental compilation
flow, but it is recommended in certain cases. Floorplan location planning can be
important for a design that uses incremental compilation for the following reasons:

m To avoid resource conflicts between partitions, predominantly when partitions are
imported from another Quartus II project

m  To ensure a good quality of results when recompiling individual timing-critical
partitions

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A physical region assignment provides a reasonable region to re-place logic
after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of
the top-level design. The logic for partitions that are not timing-critical (such as
simple top-level glue logic) can be placed anywhere in the device on each
recompilation, if that is best for your design.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-45
Creating a Design Floorplan With LogicLock Regions

The simplest way to create a floorplan for a partitioned design is to create one
LogicLock region per partition (including the top-level partition). If you have a
compilation result for a partitioned design with no LogicLock regions, you can use the
Chip Planner with the Design Partition Planner to view the partition placement in the
device floorplan. You can draw regions in the floorplan that match the general
location and size of the logic in each partition. Or, initially, you can set each region
with the default settings of Auto size and Floating location to allow the Quartus II
software to determine the preliminary size and location for the regions. Then, after
compilation, use the Fitter-determined size and origin location as a starting point for
your design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed. Alternatively, you
can perform synthesis, and then set the regions to the required size based on resource
estimates. In this case, use your knowledge of the connections between partitions to
place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the
Quartus II software. You can also use advanced techniques such as creating
non-rectangular regions by merging LogicLock regions.

For more information about when creating a design floorplan can be important, as
well as guidelines for creating the floorplan, refer to the Best Practices for Incremental
Compilation Partitions and Floorplan Assignments chapter in volume 1 of the Quartus 11
Handbook.

You can use the Incremental Compilation Advisor to check that your LogicLock
regions meet Altera’s guidelines, as described in “Incremental Compilation Advisor”
on page 2-19.

Creating and Manipulating LogicLock Regions

Options in the LogicLock Regions Properties dialog box, available from the
Assignments menu, allow you to enter specific sizing and location requirements for a
region. You can also view and refine the size and location of LogicLock regions in the
Quartus II Chip Planner. You can select a region in the graphical interface in the Chip
Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete,
and modify tasks to determine which objects, including LogicLock regions and design
partitions, to display in the Chip Planner.

For more information about creating and viewing LogicLock regions in the LogicLock
Regions window and Chip Planner, refer to Creating and Manipulating LogicLock
Regions in Quartus II Help.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-46 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Creating a Design Floorplan With LogicLock Regions

Changing Partition Placement with LogicLock Changes

When a partition is assigned to a LogicLock region as part of a design floorplan, you
can modify the placement of a post-fit partition by moving the LogicLock region. As
described in “What Changes Initiate a Partition’s Automatic Resynthesis?” on

page 2-24, most assignment changes do not initiate a recompilation of a partition if
the netlist type specifies that Fitter results should be preserved. For example,
changing a pin assignment does not initiate a recompilation; therefore, the design
does not use the new pin assignment unless you change the netlist type to
Post-Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a
LogicLock region, the Fitter always reuses the corresponding LogicLock region size
specified in the post-fit netlist. That is, changes to the LogicLock Size setting do not
initiate refitting if a partition’s placement is preserved with the Post-Fit netlist type ,
or with .qxp that includes post-fit information.

However, you can use the LogicLock Origin location assignment to change or
fine-tune the previous Fitter results. When you change the Origin setting for a region,
the Fitter can move the region in the following manner, depending upon how the
placement is preserved for that region's members:

m  When you set a new region Origin, the Fitter uses the new origin and replaces the
logic, preserving the relative placement of the member logic.

m  When you set the region Origin to Floating, the following conditions apply:

m If the region’s member placement is preserved with an imported partition, the
Fitter chooses a new Origin and re-places the logic, preserving the relative
placement of the member logic within the region.

m If the region’s member placement is preserved with a Post-Fit netlist type, the
Fitter does not change the Origin location, and reuses the previous placement
results.

Taking Advantage of the Early Timing Estimator

When creating a floorplan you can take advantage of the Early Timing Estimator to
enable quick compilations of the design while creating assignments. The Early Timing
Estimator feature provides a timing estimate for a design without having to run a full
compilation. You can use the Chip Planner to view the “placement estimate” created
by this feature, identify critical paths by locating from the timing analyzer reports,
and, if necessary, add or modify floorplan constraints. You can then rerun the Early
Timing Estimator to quickly assess the impact of any floorplan location assignments
or logic changes, enabling rapid iterations on design variants to help you find the best
solution. This faster placement has an impact on the quality of results. If getting the
best quality of results is important in a given design iteration, perform a full
compilation with the Fitter instead of using the Early Timing Estimate feature.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-47
Incremental Compilation Restrictions

Incremental Compilation Restrictions

This section documents the following restrictions and limitations that you may
encounter when using incremental compilation, including interactions with other
Quartus II features:

B “When Timing Performance May Not Be Preserved Exactly” on page 2-47

m “When Placement and Routing May Not Be Preserved Exactly” on page 2-47
m “Using Incremental Compilation With Quartus II Archive Files” on page 2-48
|

“Formal Verification Support” on page 2—49

“SignalProbe Pins and Engineering Change Orders” on page 2-49

m “SignalTap II Logic Analyzer in Exported Partitions” on page 2-49

m “External Logic Analyzer Interface in Exported Partitions” on page 2-50

m “Assignments Made in HDL Source Code in Exported Partitions” on page 2-50
m “Design Partition Script Limitations” on page 2-50

B “Restrictions on Megafunction Partitions” on page 2-52

m “Register Packing and Partition Boundaries” on page 2-53

m “I/O Register Packing” on page 2-53

When Timing Performance May Not Be Preserved Exactly

Timing performance might change slightly in a partition with placement and routing
preserved when other partitions are incorporated or re-placed and routed. Timing
changes are due to changes in parasitic loading or crosstalk introduced by the other
(changed) partitions. These timing changes are very small, typically less than 30 ps on
a timing path. Additional fan-out on routing lines when partitions are added can also
degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other
partitions change, a very small timing margin might be required. The Fitter
automatically works to achieve such margin when compiling any design, so you do
not need to take any action.

When Placement and Routing May Not Be Preserved Exactly

The Fitter may have to refit affected nodes if the two nodes are assigned to the same
location, due to imported netlists or empty partitions set to re-use a previous post-fit
netlist. There are two cases in which routing information cannot be preserved exactly.
First, when multiple partitions are imported, there might be routing conflicts because
two lower-level blocks could be using the same routing wire, even if the floorplan
assignments of the lower-level blocks do not overlap. These routing conflicts are
automatically resolved by the Quartus II Fitter re-routing on the affected nets. Second,
if an imported LogicLock region is moved in the top-level design, the relative
placement of the nodes is preserved but the routing cannot be preserved, because the
routing connectivity is not perfectly uniform throughout a device.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-48 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Using Incremental Compilation With Quartus Il Archive Files

The post-synthesis and post-fitting netlist information for each design partition is
stored in the project database, the incremental_db directory. When you archive a
project, the database information is not included in the archive unless you include the
compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in
the Archive Project dialog box so compilation results are preserved. Click Advanced,
and choose a file set that includes the compilation database, or turn on Incremental
compilation database files to create a Custom file set.

When you include the database, the file size of the .qar archive file may be
significantly larger than an archive without the database.

The netlist information for imported partitions is already saved in the corresponding
.qxp. Imported .qxp files are automatically saved in a subdirectory called
imported_partitions, so you do not need to archive the project database to keep the
results for imported partitions. When you restore a project archive, the partition is
automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might
not be available. In this case, the archive will not include the compilation database. If
you require the database files to reproduce the compilation results in the same
Quartus II version, you can use the following command-line option to archive a full
database:

quartus_sh --archive -use file_set full _db [-revision <revision name>]
<project name>

Limitations for HardCopy Compilation and Migration Flows

Incremental compilation within a single Quartus II project is supported for the base
family in HardCopy migration flows for both the FPGA first and HardCopy first
flows. Design partition assignments are migrated to the companion device. However,
you can not make changes to the design after migration because the design would not
match the compilation results for the base family. Therefore, you can perform
incremental compilation on one device family, but cannot add new partitions or
remove existing partitions after migration.

The Netlist Only preservation level is not supported for Post-fit netlists for FPGA or
HardCopy ASIC device compilations when a migration device is specified (that is, for
HardCopy ASIC device compilations with a FPGA migration device, or FPGA device
compilations with a HardCopy ASIC migration device).

Exporting and importing partitions is not supported in HardCopy ASIC or FPGA
device compilations when there is a migration device setting.

The Revision Compare feature requires that the HardCopy ASIC and FPGA netlists
are the same. Therefore, all operations performed on one revision must also occur on
the other revision. This is accomplished by logging all operations and replaying them
on the other revision. Importing partitions does not support this requirement. You can
often use Empty partitions to implement behavior similar to an exported partition
flow, as long as you do not change any global assignments between compilations. All
global assignments must be the same for all compiled partitions, so the assignments
can be reproduced in the companion device after migration.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-49
Incremental Compilation Restrictions

Formal Verification Support

You cannot use design partitions for incremental compilation if you are creating a
netlist for a formal verification tool.

SignalProbe Pins and Engineering Change Orders

ECO and SignalProbe changes are performed only during ECO and SignalProbe
compilations. Other compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more
design partitions, partition boundaries are ignored while making ECO changes and
SignalProbe signal settings. However, the presence of ECO and/or SignalProbe
changes does not affect partition boundaries for incremental compilation. During
subsequent compilations, ECO and SignalProbe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes and
SignalProbe signals, you must use the Change Manager to re-apply the ECOs after
compilation.

For partitions developed independently in separate Quartus II projects, the exported
netlist includes all currently saved ECO changes and SignalProbe signals. If you make
any ECO or SignalProbe changes that affect the interface to the lower-level partition,
the software issues a warning message during the export process that this netlist does
not work in the top-level design without modifying the top-level HDL code to reflect
the lower-level change. After integrating the .qxp partition into the top-level design,
the ECO changes will not appear in the Change Manager.

“ e For more information about using the SignalProbe feature to debug your design, refer
to the Quick Design Debugging Using SignalProbe chapter in volume 3 of the Quartus 11
Handbook. For more information about using the Chip Planner and the Resource
Property Editor to make ECOs, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

SignalTap Il Logic Analyzer in Exported Partitions

You can use the SignalTap II Embedded Logic Analyzer in any project that you can
compile and program into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design
incrementally and you can tap post-fitting nodes and modify triggers and
configuration without recompiling the full design. Use the appropriate filter in the
Node Finder to find your node names. Use SignalTap II: post-fitting if the netlist
type is Post-Fit to incrementally tap node names in the post-fit netlist database. Use
SignalTap II: pre-synthesis if the netlist type is Source File to make connections to
the source file (pre-synthesis) node names when you synthesize the partition from the
source code.

If incremental compilation is turned off, the debugging logic is added to the design
during Analysis and Elaboration, and you cannot tap post-fitting nodes or modify
debug settings without fully compiling the design.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

2-50 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

For design partitions that are being developed independently in separate Quartus II
projects and contain the logic analyzer, when you export the partition, the Quartus II
software automatically removes the SignalTap II logic analyzer and related SLD_HUB
logic. You can tap any nodes in a Quartus II project, including nodes within .qxp
partitions. Therefore, you can use the logic analyzer within the full top-level design to
tap signals from the .qxp partition.

You can also instantiate the SignalTap II megafunction directly in your lower-level
design (instead of using an .stp file) and export the entire design to the top level to
include the logic analyzer in the top-level design.
“ e For details about using the SignalTap II logic analyzer in an incremental design flow,
refer to the Design Debugging Using the SignalTap I Embedded Logic Analyzer chapter in
volume 3 of the Quartus II Handbook.

External Logic Analyzer Interface in Exported Partitions

You can use the Logic Analyzer Interface in any project that you can compile and
program into an Altera device. You cannot export a partition that uses the Logic
Analyzer Interface. You must disable the Logic Analyzer Interface feature and
recompile the design before you export the design as a partition.
“ e For more information about the Logic Analyzer Interface, refer to the In-System
Debugging Using External Logic Analyzers chapter in volume 3 of the Quartus II
Handbook.

Assignments Made in HDL Source Code in Exported Partitions

Assignments made with I/O primitives or the al t era_at t ri but e HDL synthesis
attribute in lower-level partitions are passed to the top-level design, but do not appear
in the top-level .gsf file or Assignment Editor. These assignments are considered part
of the source netlist files. You can override assignments made in these source files by
changing the value with an assignment in the top-level design.

Design Partition Script Limitations

The Quartus II software has some additional limitations related to the design partition
scripts described in “Generating Design Partition Scripts” on page 2-30.

Warnings About Extra Clocks Due to Design Partition Scripts

The generated scripts include applicable clock information for all clock signals in the
top-level design. Some of those clocks may not exist in the lower-level projects, so you
may see warning messages related to clocks that do not exist in the project. You can
ignore these warnings or edit your constraints so the messages are not generated.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-51
Incremental Compilation Restrictions

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in
Design Partition Scripts

After you have compiled a design using TimeQuest constraints, and the timing
assignments option is turned on in the scripts, a separate Tcl script is generated to
create an .sdc file for each lower-level project. This script includes only clock
constraints and minimum and maximum delay settings for the TimeQuest Timing
Analyzer.

PLL settings and timing exceptions are not passed to lower-level designs in the
scripts. For suggestions on managing SDC constraints between top-level and
lower-level projects, refer to the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus II Handbook.

Wildcard Support in Design Partition Scripts

When applying constraints with wildcards, note that wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be made to these
nodes: Top| A i nst| B:inst|*, where Aand B are lower-level partitions, and hierarchy
Bis a child of A, that is B is instantiated in hierarchy A. This assignment is applied to
modules A, B, and all children instances of B. However, the assignment

Top| Aiinst| B:inst* is applied to hierarchy A, but is not applied to the B instances
because the single level of hierarchy represented by B: i nst * is not expanded into
multiple levels of hierarchy. To avoid this issue, ensure that you apply the wildcard to
the hierarchical boundary if it should represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are
supported. This means assignments such as Top| A i nst|*|B:inst|* are not
supported. The Quartus II software issues a warning in these cases.

Derived Clocks and PLLs in Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level partition,
the lower-level partition does not receive assignments and constraints from the
top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing constraints
and clock group settings. Problems can occur if your design uses logic or inversion to
derive a new clock from a clock input pin. Make appropriate timing assignments in
your lower-level Quartus II project to ensure that clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead,
the design will have all the required information about the clock and PLL settings.
Otherwise, if you use a PLL in your top-level design and connect it to lower-level
partitions, the lower-level partitions do not have information about the multiplication
or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus II project to ensure that clocks are not unconstrained or
constrained with the incorrect frequency. Alternatively, you can manually duplicate
the top-level derived clock logic or PLL in the lower-level design file to ensure that
you have the correct multiplication or phase-shift factors, compensation delays and
other PLL parameters for complete and accurate timing analysis. Create a design
partition for the rest of the lower-level design logic for export to the top level. When
the lower-level design is complete, export only the partition that contains the relevant
logic.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-52

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Incremental Compilation Restrictions

Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts

Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not
written in the scripts. You must add the pin assignments for these hard IP blocks in
the lower-level projects manually.

Virtual Pin Timing Assignments in Design Partition Scripts

Design partition scripts use | NPUT_MAX_DELAY and QUTPUT_MAX_DELAY assignments to
specify inter-partition delays associated with input and output pins, which would not
otherwise be visible to the project. These assignments require that the software specify
the clock domain for the assignment and set this clock domain to ” * ”.

This clock domain assignment means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated
scripts or change the assignments in your lower-level Quartus II project. In addition,
because there is no known clock associated with the delay assignments, the software
assumes the worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less timing-critical, lower
the delay values from the scripts. If required, enter negative numbers for input and
output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition
Scripts

When a single top-level I/O port drives multiple pins on a lower-level module, it
unnecessarily restricts the quality of the synthesis and placement at the lower-level.
This occurs because in the lower-level design, the software must maintain the
hierarchical boundary and cannot use any information about pins being logically
equivalent at the top level. In addition, because 1/O constraints are passed from the
top-level pin to each of the children, it is possible to have more pins in the lower level
than at the top level. These pins use top-level I/O constraints and placement options
that might make them impossible to place at the lower level. The software avoids this
situation whenever possible, but it is best to avoid this design practice to avoid these
potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals
within the lower-level partition.

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction instantiations.
If you use the MegaWizard " Plug-In Manager to customize a megafunction variation,
the MegaWizard-generated wrapper file instantiates the megafunction. You can create
a partition for the MegaWizard-generated megafunction custom variation wrapper
file.

The Quartus II software does not support creating a partition for inferred
megafunctions (that is, where the software infers a megafunction to implement logic
in your design). If you have a module or entity for the logic that is inferred, you can
create a partition for that hierarchy level in the design.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-53
Incremental Compilation Restrictions

The Quartus II software does not support creating a partition for any Quartus II
internal hierarchy that is dynamically generated during compilation to implement the
contents of a megafunction.

Register Packing and Partition Boundaries

The Quartus II software performs register packing during compilation automatically.
However, when incremental compilation is enabled, logic in different partitions
cannot be packed together because partition boundaries prevent cross-boundary
optimization. This restriction applies to all types of register packing, including I/0O
cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic from two
partitions cannot be packed into the same ALM.

1/0 Register Packing

Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/0 registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

m The input pin feeds exactly one register.

m The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

m The register feeds exactly one output pin.
m The output pin is fed by only one signal.

m The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

Output pins with an output enable signal cannot be packed into the device 1/O cell if
the output enable logic is part of a different partition from the output register. To
allow register packing for output pins with an output enable signal, structure your
HDL code or design partition assignments so that the register and tri-state logic are
defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable
signal. If the registers that need to be packed are in the same partition as the tri-state
logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is
created as part of the partition that contains tri-state logic. If an I/O register and its
tri-state logic are contained in the same partition, the register can always be packed
with tri-state logic into the I/O atom. The same cross-partition register packing
restrictions also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal. The path between the I/O atom and
the I/O pin must include only ports of partitions that have one fan-out each.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-54 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

=@ TFor more information and examples of cross-partition boundary I/O packing, refer to
the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script or
at a command-line prompt.

(@) For information about the : : quartus: : i ncrenental _conpil ati on Tcl package that
contains a set of functions for manipulating design partitions and settings related to
the incremental compilation feature, refer to ::quartus::incremental_compilation in
Quartus I Help.

“ e Tor scripting support information, including design examples and training, refer to
the Quartus II Software Scripting Support page of the Altera website. For detailed Tcl
scripting and command-line information, including design examples, refer to the Tcl
Scripting and Command-Line Scripting chapters in volume 2 of the Quartus II Handbook.

Creating Design Partitions
To create a design partition, use the following Tcl command example:

set _instance_assi gnnent -name PARTI TI ON_H ERARCHY \

<file name> -to <destination> -section_id <partition nane>

m  <file name>—The name for the partition, which is auto-generated by the Quartus II
software if you create the partition in the GUI or with the set _partition TCL
command. The Quartus II software uses file name for the internally generated
netlists files during incremental compilation. If you use Tcl to create your
partitions, you must assign a file name that is unique across all partitions. For the
top-level partition, the file name is ignored. To ensure the names are platform
independent, file names must be unique and case-sensitive. For example, if a
partition uses the file name ny_f i | e, no other partition can use the file name
MY_FI LE. For simplicity, Altera recommends that you base each file name on the
corresponding instance name for the partition.

m  <destination>—The hierarchy name to make into a partition.

m  <partition name>—The user-specified partition name, which appears in the Design
Partitions window in the Quartus II software. The partition name must be unique
and less than 1024 characters. The name can consist only of alphanumeric
characters, and the pipe ( | ), colon ( : ), and underscore ( _ ) characters. Altera
recommends enclosing the name in double quotation marks (" ).

"=~ You can use the same value for file name and partition name in most cases, but be
aware that the legal characters are different, for example, you cannot have the pipe
character in a filename. The Quartus software uses the hierarchy path as a default for
the partition name, and a shortened MD?5 hash as the default for the filename.

nlu

“ e For more information about hierarchical naming conventions, refer to the

Node-Naming Conventions in Quartus 1I Integrated Synthesis section in the Quartus I1
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/support/software/scripting/sof-qts-scripting.html
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://quartushelp.altera.com/10.1/mergedProjects/tafs/tafs/tcl_pkg_incremental_compilation_ver_1.1.htm 

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-55
Scripting Support

The Quartus II software stores all netlists in the \incremental_db compilation
database directory.

Enabling or Disabling Design Partition Assignments During Compilation

To direct the Quartus II Compiler to enable or disable design partition assignments
during compilation, use the following Tcl command:

set _gl obal _assi gnment - name | GNORE_PARTI TI ONS <val ue> +

m  OFF—The Qusrtus II software recognizes the design partitions assignments set in
the current Quartus II project and recompiles the partition in subsequent
compilations depending on their netlist status.

m  ON—The Quartus II software does not recognize design partitions assignments set
in the current Quartus II project and performs a compilation without regard to
partition boundaries or netlists.

Setting the Netlist Type
To set the partition netlist type, use the following Tcl command:

set _gl obal _assi gnment -name PARTI TI ON_NETLI ST_TYPE <val ue> \
-section_id <partition nanme>

m SOURCE

m POST_SYNTH
m POST FIT
m | MPORTED
m EMPTY

L=~ For details about design partition properties, refer to “Specifying the Level of Results
Preservation for Subsequent Compilations” on page 2-21.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-56 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

Setting the Fitter Preservation Level for a Post-fit or Imported Netlist

To set the Fitter Preservation Level for a post-fit or imported netlist, use the following
Tcl command:

set _gl obal _assi gnment - nanme PARTI TI ON_FI TTER_PRESERVATI ON_LEVEL \
<val ue> -section_id <partition name>

m  NETLI ST_ONLY
m  PLACEMENT
m  PLACEMENT_AND_RQOUTI NG

I[l=~ For details about design partition properties, refer to “Specifying the Level of Results
Preservation for Subsequent Compilations” on page 2-21.

Preserving High-Speed Optimization

To preserve high-speed optimization for tiles contained within the selected partition,
use the following Tcl command:

set gl obal _assignnent -name PARTI TI ON_PRESERVE H GH SPEED TI LES

Specifying the Software Should Use the Specified Netlist and
lgnore Source File Changes

To specify that the software should use the specified netlist and ignore source file
changes, even if the source file has changed since the netlist was created, use the
following command:

set _gl obal _assi gnnent -name PARTI TI ON_| GNORE_SOURCE_FI LE_CHANGES ON
-section_id "<partition name>".

Generating Design Partition Scripts

To generate design partition scripts, use the following script:

# load required package
| oad_package dat abase_nmnager

# nane and open the project
set project <project_path/project_name>
proj ect _open $proj ect

# generate the design partiion scripts
gener at e_bott om up_scri pts <options>

#close project
proj ect _cl ose

(?) The options map to the same as those in the Quartus II software in the Generate
Design Partition Scripts dialog box. For detailed information about each option, refer
to Generate Design Partition Scripts Dialog Box in Quartus II Help.

To generate design partition scripts at the command-line, use the following command:
quartus_cdb <project nane> --generate_bottom up_scripts=on <options> ¢

m --include_makefiles_with_bottomup_scripts <omloff>

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-57
Scripting Support

m --include_project_creation_in_bottomup_scripts <omnloff>
m --include_virtual _pins_in_bottomup_scripts <onloff>
m --include_virtual _pin_timng_in_bottomup_scripts <omnloff>

m --bottomup_scripts_virtual _pin_delay <delayin ns>

m --include_virtual _pin_locations_in_bottomup_scripts <omnloff>

m --include_| ogiclock_regions_in_bottomup_scripts <onloff>

m --include_all_| ogiclock_regions_in_bottomup_scripts <onloff>

m --include_gl obal _signal _pronotion_in_bottomup_scripts <onloff>
m --include_pin_|ocations_in_bottomup_scripts <onloff>

m --include_tining_assignments_in_bottomup_scripts <onloff>

m --include_design_partitions_in_bottomup_scripts <onloff>

B --renove_existing_regions_in_bottomup_scripts <omnloff>

--di sabl e_aut o_gl obal _pronotion_i n_bottomup_scripts <onloff>

m --bottomup_scripts_output_directory=<output directory>

Exporting a Partition

To open a project and load the : : quartus: :incremental _conpil ati on package before
you use the Tcl commands to export a partition to a .qxp that contains both a post-
synthesis and post-fit netlist, with routing, use the following script:

# load required package
package require ::quartus::increnental conpilation

# open project
proj ect _open <project name>

# export partition to the .qgxp and set preservation |eve
export_partition -partition <partition name>
-gxp <.gxp file name> -<options>

#cl ose proj ect
project close

m POST _FIT <on|of f>
m POST_SYNTH <on| of f >
m  ROUNTI NG <on] of f >

Importing a Partition into the Top-Level Design

To import a .qxp into a top-level design, use the following script:

# load required packages

| oad_package incremental conpilation
| oad_package project

| oad_package flow

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-58 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Scripting Support

# open project
proj ect _open <project name>

# make partition inport file assignnents

set gl obal _assi gnnent -name PARTI TI ON_| MPORT_FI LE \
-entity <entity which instantiates inmported .gxp> \
-section_id <inported partition nanme> \

<.gxp filename>

# execute inport
execute flow -increnental conpilation_inport

Makefiles

For an example of how to use incremental compilation with a makef i | e as part of the
team-based incremental compilation design flow, refer to the read_me.txt file

that accompanies the i ncr _conp example located in the
/qdesigns/incr_comp_makefile subdirectory.

(@ When using a team-based incremental compilation design flow, the Generate Design
Partition Scripts dialog box can write makefiles that automatically export lower-level
design partitions and import them into the top-level design whenever design files
change. For more information about the Generate Design Partition Scripts dialog
box, refer to Generate Design Partition Scripts Dialog Box in Quartus II Help.

Scripting and Command-Line Application Examples

This section provides scripting examples that cover some of the topics discussed in
the main section of this chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_db_generate_bottom-up_scripts.htm

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-59
Scripting Support

Reducing Opening a Project, Creating Design Partitions, and Performing an
Initial Compilation

Example background: You open a project called AB_pr 0j ect , set up two design
partitions, entities A and B, and then perform an initial complete compilation.

Example 2-1. AB_project

set project AB _project

package require ::quartus::flow
proj ect _open $proj ect

# Ensure that design partition assignnents are not ignored
set _gl obal _assi gnnment -name | GNORE_PARTI TIONS \ OFF

# Set up the partitions

set _i nstance_assi gnnent - nane PARTI TI ON_H ERARCHY \
incremental _db/A inst -to A —section_id "Partition A"

set _instance_assi gnnment -nane PARTI Tl ON_H ERARCHY \
incremental _db/B_inst -to B —section_id "Partition_B"

# Set the netlist types to post-fit for subsequent

# conpilations (all partitions are conpiled during the

# initial conpilation since there are no post-fit

# netlists)

set _gl obal _assi gnment —nane PARTI TI ON_NETLI ST_TYPE \
POST FIT —section_id "Partition_ A"

set _gl obal _assi gnment —nane PARTI TI ON_NETLI ST_TYPE \
POST_FIT —section_id "Partition_B"

# Run initial conpilation:
export_assi gnnents
execute_flow -full _conpile

proj ect _cl ose

Reducing Compilation Time When Changing a Source File for One Partition—
Command-Line Example

Example background: You have run the initial compilation shown in the example
script in Example 2-1. You have modified the HDL source file for partition A and
want to recompile it.

Run the standard flow compilation command in your Tcl script:
execute_flow -full _conpile

Or, type the following command at a system command prompt:
quartus_sh --flow conpile AB project+

Assuming the source files for partition B do not depend on A, only A is recompiled.
The placement of B and its timing performance is preserved, which also saves
significant compilation time.

Optimizing the Placement for a Timing-Critical Partition

Example background: You have run the initial compilation shown in the example
script under Example 2-1. You would like to apply Fitter optimizations, such as
physical synthesis, only to partition A. No changes have been made to the HDL files.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



2-60

Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Conclusion

Conclusion

To ensure the previous compilation result for partition B is preserved, and to ensure
that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the
netlist type of B to Post-Fit (which was already done in the initial compilation, but is
repeated here for safety), and the netlist type of A to Post-Synthesis, as shown in the
following example:

Example 2-2. AB_project (2)

set project AB_project

package require ::quartus::flow
proj ect _open $proj ect

# Turn on Physical Synthesis Optimzation
set _gl obal _assi gnnent -name \
PHYSI CAL_SYNTHESI S_REG STER_RETI M NG ON

# For A, set the netlist type to post-synthesis
set _gl obal _assi gnnent —name PARTI TI ON_NETLI ST_TYPE POST_SYNTH \
—section_id "Partition_A"

# For B, set the netlist type to post-fit
set _gl obal _assi gnment —name PARTI TI ON_NETLI ST_TYPE PCST_FI T \
—section_id "Partition_B"

# Run increnental conpilation:
export_assi gnments
execute_flow -full _conpile

proj ect _cl ose

With the Quartus Il incremental compilation feature described in this chapter, you can
preserve the results and performance of unchanged logic in your design as you make
changes elsewhere. The various applications of incremental compilation enable you to
improve your productivity while designing for high-density FPGAs.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design 2-61
Document Revision History

Document Revision History

Table 2—4 shows the revision history for this document.

Tahle 2-4. Document Revision History

Date Version Changes

m Changed to new document template.

December 2010 1040 |™ Reo_rganlzed Tcl s_cnptmg s.ect|_on. AdQed description for new feature: Ignore partitions
assignments during compilation option.

m Reorganized “Incremental Compilation Summary” on page 2—7 section.

m Removed the explanation of the “bottom-up design flow” where designers work
completely independently, and replaced with Altera’s recommendations for team-based
environments where partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including independent partitions from
third-party IP designers.

m Expanded the Merge command explanation to explain how it now accommodates cross-

July 2010 10.0.0 partition boundary optimizations.

m Restructured Altera recommendations for when to use a floorplan.

m Added “Viewing the Contents of a Quartus Il Exported Partition File (.qxp)” on page 2-31
section.

m Reorganized chapter to make design flow scenarios more visible; integrated into various
sections rather than at the end of the chapter.

m Redefined the bottom-up design flow as team-based and reorganized previous design
flow examples to include steps on how to pass top-level design information to lower-level
designers.

m Moved SDC Constraints from Lower-Level Partitions section to the Best Practices for

October 2009 9.1.0 Incremental Compilation Partitions and Floorplan Assignments chapter in volume 1
of the Quartus II Handbook.

m Reorganized the “Conclusion” on page 2—60 section.

m Removed HardCopy APEX and HardCopy Stratix Devices section.

m Split up netlist types table

m Moved “Team-Based Incremental Compilation Design Flow” into the “Including or
Integrating partitions into the Top-Level Design” section.

March 2009 9.00 m Added new section “Including or Integrating Partitions into the Top-Level Design”.

m Removed “Exporting a Lower-Level Partition that Uses a JTAG Feature” restriction

m Other edits throughout chapter

m Added new section “Importing SDC Constraints from Lower-Level Partitions” on
page 2-44

m Removed the Incremental Synthesis Only option

m Removed section “OpenCore Plus Feature for MegaCore Functions in Bottom-Up Flows”

November 2008 8.1.0 i

Removed section “Compilation Time with Physical Synthesis Optimizations”
Added information about using a .qxp as a source design file without importing
Reorganized several sections

Updated Figure 2-10

December 2010  Altera Corporation

Archive

e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

2-62 Chapter 2: Quartus Il Incremental Compilation for Hierarchical and Team-Based Design
Document Revision History

“ e Take an online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.surveygizmo.com/s/91914/technical-documentation-survey

A |:| = 0)/) 3. Quartus Il Support for HardCopy Series
[:J = o Devices

Ql151004-10.1.0

This chapter describes Quartus® II support for HardCopy® series devices.

Altera® HardCopy ASICs are the lowest risk, lowest total cost ASICs. The HardCopy
system development methodology offers fast time-to-market, low risk, and with the
Quartus II software, you can design with one set of RTL code and one IP set for both
FPGA and ASIC implementations. This flow enables you to conduct true
hardware/software co-design and completely prepare your system for production
prior to ASIC design hand-off. Altera provides a turn-key process to convert your
design to a HardCopy ASIC for production.

In this chapter, the term FPGA refers to a Stratix® II, Stratix III, or Stratix IV device,
which is the prototype device for a HardCopy II, HardCopy 111, or HardCopy IV
device, respectively.

This chapter discusses the following topics:

“HardCopy Development Flow” on page 3-2
“HardCopy Companion Device Selection” on page 3-6
“HardCopy Utilities” on page 3-7

“HardCopy Device Resource Guide” on page 3-11

“HardCopy Recommended Settings in the Quartus II Software” on page 3-12

“HardCopy Design Readiness Check” on page 3-15

m “Performing ECOs with Quartus II Engineering Change Management with the
Chip Planner” on page 3-20

m “Formal Verification of FPGA and HardCopy Revisions” on page 3-23

“ e For more information about HardCopy series devices, refer to the respective

HardCopy device handbook, which is available on the Literature page of the Altera
website at www.altera.com.

HardCopy Series Design Benefits

Designing with HardCopy ASICs offers the following substantial benefits over other
ASIC offerings:

m Seamless prototyping using an FPGA for at-speed system verification and system
development reduces total project development time and cost

m Dependable conversion from an FPGA prototype to a HardCopy ASIC expands
product planning options

m Unified design methodology for FPGA and HardCopy designs reduces the need
for ASIC development software, two sets of intellectual property, and project risk

m System development methodology delivers lowest total cost

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010
Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51004
http://www.altera.com/

3-2

Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Development Flow

Quartus Il Features for HardCopy Planning

With the Quartus II software, you can design a HardCopy ASIC using seamless FPGA
prototyping. The Quartus II software provides the following expanded features,
which are described in further detail later in this chapter, for HardCopy series device
planning:

HardCopy Companion Device Assignment—Identifies compatible HardCopy
series devices for use with the FPGA prototype device currently selected.

This feature constrains the pins of your FPGA prototype, making it compatible
with your HardCopy device. The feature also constrains the correct resources
available for the HardCopy device, ensuring the compatibility of your FPGA
design. You must compile the design targeting the HardCopy device to ensure that
the design fits, routes, and meets timing requirements.

HardCopy Utilities—The HardCopy Utilities menu provides a variety of
functions to create or overwrite HardCopy companion revisions, set current
revisions, and compare revisions for equivalency.

HardCopy Advisor—The HardCopy Advisor guides you through the steps
necessary to successfully submit a HardCopy design to the Altera HardCopy
Design Center.

HardCopy Floorplan—The Chip Planner can show a preliminary floorplan view
of your HardCopy design’s Fitter placement results.

HardCopy Device Preliminary Timing—The TimeQuest Timing Analyzer
performs a timing analysis of HardCopy devices based on preliminary timing
models and Fitter placements. Final timing results for HardCopy devices are
provided by the Altera HardCopy Design Center.

HardCopy Design Readiness Check—The Quartus II software checks the project
settings to ensure compliance with the HardCopy device settings, I/O, PLL, and
RAM usage checks.

HardCopy Handoff Report—The Quartus II software generates a handoff report
containing information about the HardCopy design used by the Altera HardCopy
Design Center in the design review process.

HardCopy Design Archiving—The Quartus II software archives the HardCopy
design project’s files required to hand off the design to the Altera HardCopy
Design Center.

Formal Verification—Cadence Encounter Conformal software performs formal
verification between the source RTL design files and post-compilation gate-level
netlist from a HardCopy design.

HardCopy Development Flow

In the Quartus II software, you design your FPGA and HardCopy companion device
together in one Quartus II project using one of the following methods:

Design the FPGA first for in-system verification, and then create a HardCopy
companion device second.

Design the HardCopy device first, and then create the FPGA companion device
second for in-system verification.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices 3-3
HardCopy Development Flow

Both of these flows are illustrated at a high level in Figure 3-1. The features in the
HardCopy Utilities menu help you complete your HardCopy design for submission
to the Altera HardCopy Design Center for back-end implementation.

Figure 3-1. HardCopy Flow in Quartus Il Software

Prepare Design HDL

Design FPGA First

Select FPGA Device
& HardCopy
Companion Device

v

Complete FPGA
Device First Flow (7)

Design FPGA Second

Select HardCopy
Device & FPGA
Companion Device

v

Complete HardCopy
Device First Flow (2)

Design
FPGA
First?

In-System Verification
= of FPGA Design l

v

Compare FPGA
& HardCopy
Design Revisions

v

Generate the HardCopy
Handoff Files and
Archive the Design

Handoff Design Archive for
HardCopy ASIC Back-End

Notes to Figure 3-1:
(1) Refer to Figure 3-2 on page 3—4 for an expanded description of this process.
(2) Referto Figure 3-3 on page 36 for an expanded description of this process.

The FPGA first flow is the default flow and the rest of this chapter is based on this
flow.

Designing the FPGA First

December 2010  Altera Corporation

The HardCopy FPGA first flow development flow begins with seamless FPGA
prototyping and is identical to the traditional FPGA design flow; plus a few
additional tasks necessary to convert the design to the HardCopy companion device
within the same project. To design your HardCopy device when selecting the FPGA
companion device first, complete the following tasks:

m Specify an FPGA device and a HardCopy companion device
m Compile the FPGA design

m Create and compile the HardCopy companion revision

|

Compare the HardCopy companion revision compilation to the FPGA device
compilation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



34

Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Development Flow

Figure 3-2 provides an overview of the development process for designing with an
FPGA first and creating a HardCopy companion device second.

Figure 3-2. Designing FPGA Device First Flow

HardCopy Device Development with the FPGA Device First Flow

C Prepare FPGA Design )

I

| Select HardCopy Companion Device |

¥

| Review HardCopy Advisor |

¥

| Apply Design Constraints |

¥

In-System Verification

Compile FPGA Design |47

Any
Violations?

Fix Violations

A

Create or Overwrite HardCopy
Companion Revision

y

Compile HardCopy Companion Revision

Select a Larger No
HardCopy Companion
Device

Fitsin
HardCopy Device?

Compare FPGA and HardCopy Revisions

Any
Violations?

No

Design Submission & Back-End Implementation Phase

y

| Generate Handoff Report |

:

( Archive Project for Handoff )

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010 Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices 3-5
HardCopy Development Flow

You must select a target FPGA device and a companion HardCopy device when
compiling an FPGA design that you will migrate to a HardCopy device.

During the early stages of the design process, selecting the right HardCopy device
may be difficult. The HardCopy Device Resource Guide can assist you in the selection
process. After you select an FPGA and a HardCopy device, compile the FPGA and
review the HardCopy Device Resource Guide to see if all resources are available in the
targeted HardCopy device. If there are not enough resources available in the target
HardCopy device, you must select a larger HardCopy device and recompile the FPGA
design.

Once the FPGA and the HardCopy device selections have been finalized, perform the
following tasks:

m Review the HardCopy Advisor for required and recommended tasks

m Enable the Design Assistant to run during compilation

®m Add timing and location assignments

m Compile your FPGA design

m Create your HardCopy companion revision

m Compile your design for the HardCopy companion device

m Compare the HardCopy companion device compilation with the FPGA revision

m Generate a HardCopy handoff report

m Generate a HardCopy handoff archive

m Arrange for submission of your HardCopy Handoff Archive to the Altera
HardCopy Design Center for back-end implementation

For more information about the overall design flow using the Quartus II software,
refer to the Introduction to the Quartus II Software manual, which is available on the
Literature page of the Altera website at www.altera.com.

Designing the HardCopy Device First

After you select an initial HardCopy ASIC device, you can design your HardCopy
device first, and then create your FPGA prototype second. This approach is preferred
when using the HardCopy device to achieve higher performance than the FPGA
prototype, because you can see your potential maximum performance in the
HardCopy device immediately during development, and you can create a slower
performing FPGA prototype of the design for in-system verification. This design
process is similar to the HardCopy FPGA first flow development flow, but you begin
the design with a different initial device family instead. The remaining tasks to
complete your design for both the FPGA and HardCopy devices roughly follow the
same process (Figure 3-3). The HardCopy Advisor adjusts its list of tasks based on
which device family you start with, FPGA or HardCopy, to help you complete the
process seamlessly.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/

3-6 Chapter 3: Quartus Il Support for HardCopy Series Devices

HardCopy Companion Device Selection

Figure 3-3. Designing HardCopy Device First Flow

HardCopy Device Development with the HardCopy Device First Flow

( Prepare HardCopy Design ]

!

| Select FPGA Companion Device |

¥

| Review HardCopy Advisor |

¥

| Apply Design Constraints |

¥

Any
Violations?

Create or Overwrite FPGA
Companion Revision

Y

In-System Verification |<—| Compile FPGA Companion Revision |

| Compare FPGA and HardCopy Revisions |

Any
Violations?

No

| Compile HardCopy Design |<7

Fix Violations

A

Design Submission & Back-End Implementation Phase

Y

| Generate Handoff Report |

!

( Archive Project for Handoff )

HardCopy Companion Device Selection

In the Quartus II software, you can select a HardCopy companion device to ensure
compatibility between the FPGA design and the HardCopy device’s resources. To
select your HardCopy companion device, on the Assignments menu, click Device and
select a companion device from the Companion device list.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010 Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices

HardCopy Utilities

3-7

Selecting a HardCopy companion device for your FPGA prototype constrains the
memory blocks, DSP blocks, and pin assignments, so that your design fits into the
HardCopy device resources. Pin assighments are constrained in the FPGA design
revision, so that the HardCopy device selected is pin-compatible. The Quartus II
software also constrains the FPGA design revision so that identical device resources
are targeted in both the FPGA and the HardCopy ASIC.

You can also specify your HardCopy companion device using the following tool
command language (Tcl) command:

set _gl obal _assi gnment - nane\
DEVI CE_TECHNOLOGY_M GRATI ON_LI ST <Har dCopy Devi ce Part Nunber>

For example, to select the HC230F1020 device as your HardCopy companion device
for the EP25130F1020C4 FPGA, use the following the Tcl command:

set _gl obal _assi gnnent - name\
DEVI CE_TECHNOLOGY_M GRATI ON_LI ST HC230F1020C

HardCopy Utilities

The HardCopy Utilities menu contains the main functions you use to develop your
HardCopy design and FPGA prototype companion revision. To access this menu, on
the Project menu, click HardCopy Utilities. From the HardCopy Utilities menu, you

can perform the following tasks:
m Create or overwrite HardCopy companion revisions
m  Specify the current HardCopy companion revision
m Compare the companion revisions for functional equivalence
Generate a HardCopy Handoff report for design reviews

Archive HardCopy handoff files for submission to the Altera HardCopy Design
Center

Start the HardCopy Design Readiness Check
Track your design progress using the HardCopy Advisor

Each HardCopy Utilities feature is summarized in Table 3-1.
each of these features is explained in the following sections.

The process for using

Table 3—-1. HardCopy Utilities Menu Options (Part 1 of 2)

Description Applicable Design Revision Restrictions

Create/Overwrite
HardCopy Companion
Revision

m The Auto device selected
Creates a new companion . by the Fitter option must
revision or overwrites an existing FPGA prototype design and be turned off
. . HardCopy companion )
companion revision for your m An FPGA device and a

revision

FPGA and HardCopy design HardCopy companion

device must be set

Set Current HardCopy
Companion Revision

Specifies the companion revision
to associate with the current
design revision

FPGA prototype design and
HardCopy companion
revision

A companion revision must
already exist

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



3-8

Chapter 3: Quartus Il Support for HardCopy Series Devices

HardCopy Utilities

Table 3—1. HardCopy Utilities Menu Options (Part 2 of 2)

Description

Applicable Design Revision

Restrictions

Compare HardCopy
Companion Revisions

Compares the FPGA design
revision with the HardCopy
companion design revision and
generates a report

FPGA prototype design and
HardCopy companion
revision

Both revisions must be
compiled

Generates a report containing

FPGA prototype design and

m Both revisions must be
compiled

Handoff Files

submitting the design to the
Altera HardCopy Design Center

Generate HardCopy important design information HardCopy companion m The Compare HardCopy
Handoff Report files and messages generated by revision Companion Revisions
the Quartus 1l Compiler command must be
successfully run
m Both revisions must be
compiled
Generates a Quartus Il Archive " Eg;cgmg?‘r;;%;;?::spv
Archive HardCopy File (.qar) specifically for HardCopy companion p

revision

command must be
successfully run

m The Generate HardCopy
Handoff Report command
must be successfully run

process of creating a HardCopy
project

Start HardCopy Generates a reports with the FPGA prototype design and
Design Readiness design’s settings, 1/0 check, PLL, | HardCopy companion None
Check and RAM usage checks revision
Opens the HardCopy Advisor, .
; FPGA prototype design and
HardCopy Advisor which walks you through the HardCopy companion None

revision

Companion Revisions

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

You can create multiple design revisions for both the FPGA and the HardCopy device.
For example, if your initial FPGA revision is named fop and the corresponding
HardCopy revision is named top_hc, you could create another FPGA revision, named
top_fpga, and the corresponding HardCopy revision would be named top_fpga_hc. The
Quartus II software creates specific HardCopy design revisions of the project in
conjunction with the primary project revisions. These parallel design revisions for
HardCopy devices are called companion revisions.

Although you can create multiple design revisions, Altera recommends that you
maintain only one FPGA revision once you create the HardCopy companion revision.

Once you have successfully compiled your FPGA prototype, you can create and
compile the HardCopy companion revision of your design.

You can associate only one FPGA revision to one HardCopy companion revision. If
you create more than one revision or companion revision, set the current companion
for the revision you are working on.

For more information about creating or setting a companion revision in the Quartus II
software, refer to Migrating a Design to a HardCopy or FPGA Device in Quartus II Help.

December 2010  Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migrate_hc2.htm

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-9
HardCopy Utilities

Compiling the HardCopy Companion Revision

You can compile your HardCopy design with preliminary timing information in the
Quartus II software. The timing constraints for the HardCopy companion revision can
be the same as the FPGA design used to create the revision. The Quartus II software
contains preliminary timing models for HardCopy devices and you can gauge the
degree of performance improvement you can achieve in the HardCopy device
compared to the FPGA. Altera verifies that the HardCopy companion device timing
requirements are met in the Altera HardCopy Design Center.

After you create your HardCopy companion revision from your compiled FPGA
design, select the companion revision in the Quartus II software design revision
pull-down list (Figure 3—4) or from the Revisions list. Compile the HardCopy
companion revision. After you compile your design in the Quartus II software, you
can perform a comparison check of the HardCopy companion revision to the FPGA
prototype revision.

Figure 3—-4. Changing Current Revision

File Edit Wiew Project  Assignments Processing  Tools  Window  Help

=" ﬁ demo_design_hc j

demo_design

Comparing HardCopy and FPGA Companion Revisions

Altera uses the companion revisions in a single Quartus II project to maintain
compatibility between the FPGA and HardCopy ASIC. This methodology allows you
to design with one set of RTL code that is used in both the FPGA and HardCopy
ASIC, guaranteeing functional equivalency.

When making changes to companion revisions, use the Compare HardCopy
Companion Revisions command to ensure that your design matches your HardCopy
design functionality and compilation settings.

The Comparison Revision Summary in the Compilation report identifies where
assignments were changed between revisions or if there is a change in the logic
resource count due to different compilation settings.

(@) For more information about comparing companion revisions in the Quartus II
software, refer to Migrating a Design to a HardCopy or FPGA Device in Quartus II Help.

Generating a HardCopy Handoff Report

To submit a design to the Altera HardCopy Design Center, you must generate a
HardCopy Handoff report, which provides important information about the design
that you want the Altera HardCopy Design Center to review.

After you generate the HardCopy Handoff report, you can archive the design using
the Archive HardCopy Handoff Files command, which is described in “Archiving
HardCopy Handoff Files”.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_pro_migrate_hc2.htm

3-10

Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Utilities

(@) For more information about the Generate HardCopy Handoff Report command in

the Quartus II software, refer to Generate HardCopy Handoff Report Command in
Quartus II Help.

Archiving HardCopy Handoff Files

The last step in the HardCopy design methodology is to archive the HardCopy project
for submission to the Altera HardCopy Design Center for HardCopy back-end
implementation. The Archive HardCopy Handoff command creates a unique .qar
file, which is different than the standard Quartus II project archive utility generates.
This archive contains only the necessary data from the Quartus II project required to
implement the design in the Altera HardCopy Design Center.

For more information about the Archive HardCopy Handoff Files command in the
Quartus II software, refer to Archive HardCopy Handoff Files Command in Quartus II
Help.

HardCopy Advisor

The HardCopy Advisor provides a list of tasks to help guide you through the
development of your FPGA prototype and your HardCopy design. The following
tasks highlight the checkpoints that the HardCopy Advisor reviews, including the
major checkpoints in the design process, but they do not include show every step in
the process for completing your FPGA and HardCopy designs:

Select an FPGA device.
. Select a HardCopy device.
. Turn on the Design Assistant.

. Set up timing constraints.

1.
2
3
4
5. Check for incompatible assignments.
6. Compile and check the FPGA design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy companion results.
9. Compare companion revisions.

10. Generate a Handoff report.

11. Archive handoff files and send them to Altera.

When your design uses an FPGA as your starting point, Altera recommends
following the HardCopy Advisor guidelines for your FPGA until you complete the
prototype revision.

When the FPGA design is complete, create and switch to your HardCopy companion
revision. Follow the HardCopy Advisor steps for that revision until completion, and
then submit the design to Altera for the HardCopy back-end implementation process.

For more information about the HardCopy Advisor in the Quartus II software, refer to
About the HardCopy Advisor in Quartus II Help.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_gen_hc2_handoff.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_archive_hc2_handoff.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/migrate/comp_com_hc2_advisor.htm

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-1
HardCopy Device Resource Guide

HardCopy Device Resource Guide

The HardCopy Device Resource Guide compares the resources required to
successfully compile a design with the resources available in the various HardCopy
devices. The report rates each HardCopy device and each device resource according
to how well it fits the design. The Quartus II software generates the HardCopy Device
Resource Guide for all designs successfully compiled for FPGA devices. This guide is
found in the Fitter folder of the Compilation report. Refer to Table 3-2 for an
explanation of the color codes.

Use this report to identify potential HardCopy device candidates for your design. The
HardCopy and FPGA device package must be compatible. A logic resource usage
greater than 100% or a ratio greater than 1:1 in any category indicates that the design
probably will not fit in that specific HardCopy device.

Tahle 3-2. HardCopy Device Resource Guide Color Legend

Color Package Resource (7) Device Resources

The resource quantity is within the range of the
Green The design can map to the HardCopy package and | HardGopy device and the design can likely map if all
(High) | has been fitted with target device migration enabled | other resources also fit.

in the HardCopy Companion Device dialog box. You still must compile the HardCopy revision to
ensure the design is able to route and close timing.

The resource quantity is within the range of the
HardCopy device. However, the resource is at risk of

'are:;]ge The design can map to the HardCopy package. exceeding the range for the HardCopy package.
(Medium) | However, the design has not been fitted with the If your target HardCopy device falls in this category,
target device migration enabled in the HardCopy compile your design targeting the HardCopy device
Companion Device dialog box. as soon as possible to check if the design fits and is
able to route and migrate all other resources. You
might have to select a larger device.
Red The resource quantity exceeds the range of the
(None) The design cannot map to the HardCopy package. HardCopy device. The design cannot migrate to this

HardCopy device.

Note to Table 3-2:

(1) The package resource is constrained by the FPGA for which the design was compiled. Only vertical migration devices within the same package
are able to migrate to HardCopy devices.

The HardCopy architecture consists of an array of fine-grained HCells, which are
used to build logic equivalent to FPGA adaptive logic modules (ALMs) and digital
signal processing (DSP) blocks. The DSP blocks in HardCopy devices match the
functionality of the FPGA DSP blocks, though timing of these blocks is different than
the FPGA DSP blocks because they are constructed of HCell macros. The memory
blocks in HardCopy devices are equivalent to the FPGA memory blocks. Preliminary
timing reports of the HardCopy device are available in the Quartus II software. Final
timing results of the HardCopy device are provided by the Altera HardCopy Design
Center after the HardCopy back-end implementation process is complete.
“ e For more information about the HardCopy device resources, refer to the respective
HardCopy series device handbook, which is available on the Literature page of the
Altera website at www.altera.com.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/

312

Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus I Software

The report example in Figure 3-5 shows the resource comparisons for a design
compiled for an EP25130F1020 device. Based on the report, the HC230F1020 device in
the 1,020-pin FineLine BGA package is an appropriate HardCopy device. If the
HC230F1020 device is not specified as a migration target during the compilation, its
package and migration compatibility is rated medium (orange). The migration
compatibilities of the other HardCopy devices are rated none (red), because the
package types are incompatible with the FPGA device. The 1,020-pin FBGA HC240
device is rated none (red) because it is only compatible with the EP2S180F1020 device.

Figure 3-5 shows the report after the (unchanged) design was recompiled with the
HardCopy HC230F1020 device specified as a migration target. Now the HC230F1020
device package and migration compatibility is rated high (green).

Figure 3-5. HardCopy Device Resource Guide with Target Migration Enabled

HardCopy Device Resource Guide

Color Legend:
- Green:
-- Package Resource: The HardCopy device package can be migrated from the selected FPGA device package. and the design has been fitted

with the target device migration enabled,

Resource Stratix |1
EFP25130

Migration Corpatibility
Frimary kigration Constraint Package Package Package Package Package Package
Package FBGA-1020 |FBGA - 484 |FEGA - 484 |FBGA-E72 |FEGA - 780 |FEGA-1020 |FEGA-1020 |FBGA - 1508

1
2]
Ex

HardCopy Recommended Settings in the Quartus Il Software

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

The HardCopy development flow involves additional planning and preparation in
the Quartus II software when compared to a standard FPGA design. Additional
planning and preparation is required because you are developing your design for
implementation in two devices: a prototype of your design/system in an FPGA and a
companion revision in a HardCopy device for production. Additional settings and
constraints are required to make the FPGA design compatible with the HardCopy
device, and in some cases, you must remove certain settings in the design. This
section explains the additional settings and constraints necessary for your design to
be successful in both FPGA and HardCopy ASIC devices.

Limit DSP and RAM to HardCopy Device Resources

The Limit DSP & RAM to HardCopy device resources option in the Device dialog
box maintains compatibility between the FPGA and HardCopy devices by ensuring
that your design does not use resources in the FPGA device that are not available in
the selected HardCopy device or vice versa.

(@ For more information about the Limit DSP & RAM to HardCopy device resources
option in the Quartus II software, refer to Device Dialog Box in Quartus II Help.

Enabling Design Assistant to Run During Compile

You must use the Design Assistant in the Quartus II software to check all HardCopy
designs for design rule violations before submitting the designs to the Altera
HardCopy Design Center. Additionally, you must fix all critical and high-level errors.

December 2010  Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_tab_chips.htm

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-13
HardCopy Recommended Settings in the Quartus Il Software

1=

@

Altera recommends turning on the Design Assistant to run automatically during each
compilation so that you can review the violations you must fix or waive.

For more information about the Design Assistant and its rules in the Quartus II
software, refer to About the Design Assistant in Quartus II Help.

Timing Settings

The TimeQuest Timing Analyzer is a complete static timing analysis tool that you use
as a sign-off tool for Altera FPGAs and HardCopy ASICs. The TimeQuest Timing
Analyzer guides the Fitter and analyzes timing results after compilation and is the
required timing analysis tool for all designs.

For more information about the TimeQuest Timing Analyzer, refer to the TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook and About TimeQuest
Timing Analysis in Quartus II Help.

Constraints for Clock Effect Characteristics

The create_clock and create_generated_cl ock commands create ideal clocks, but
do not account for board effects. To account for clock effect characteristics, you can use
the set _cl ock_| atency and set _cl ock_uncertainty commands.

For more information about how to use these commands, refer to the TinmeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

You can use the deri ve_cl ock_uncert ai nty command to automatically derive the
clock uncertainties in your .sdc file. This command is useful when you are unsure of
the clock uncertainties. The calculated clock uncertainty values are based on I/O
buffer, static phase errors (SPE) and jitter in the PLLs, clock networks, and core noise.

The derive_cl ock_uncertai nty command applies interclock, intraclock, and I/O
interface uncertainties. This command automatically calculates and applies setup and
hold clock uncertainties for each clock-to-clock transfer found in your design.

To determine I/O interface uncertainty, you must create a virtual clock, then assign
delays to the input/output ports with the set _i nput _del ay and set _out put _del ay
commands for that virtual clock.

These uncertainties are applied in addition to those you specified with the

set _cl ock_uncertai nty command. However, if a clock uncertainty assignment for a
source and destination pair lis already defined, the new one is ignored. In this case,
you can use either the - overw i t e command to overwrite the previous clock
uncertainty command, or manually remove them with the

remove_cl ock_uncertai nty command.

The following syntax is for the deri ve_cl ock_uncert ai nty command:

derive_clock_uncertainty [-h | -help] [-long_help] [-add]
\[-overwite]

The arguments for this command are listed in Table 3-3:

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

3-14 Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Recommended Settings in the Quartus I Software

Tahle 3-3. Arguments for derive_clock_uncertainty

Option Description
-h| -help Short help
-1 ong_hel p Long help with examples and possible return values
- add Adds results user-defined clock uncertainty assignments
-overwite Overwrites previously performed clock uncertainty assignments

When the derive_cl ock_uncertai nty command is used, a PLL]_PLLSPE_INFO.txt
file is automatically generated in the project directory. This file lists the names of the

PLLs, as well as their jitter and SPE values in the design. This text file can be used by
the HCII. DTW_CU_Calculator.

e For more information about the deri ve_cl ock_uncert ai nty command, refer to the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

L=~ Altera strongly recommends that you use the deri ve_cl ock_uncertai nty command
in the HardCopy revision. The Altera HardCopy Design Center does not accept
designs that do not have clock uncertainty constraints by either using the
derive_cl ock_uncertainty command or the HardCopy II Clock Uncertainty
Calculator, and then using the set _cl ock_uncertai nty command.

“ =@ For more information about how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty Calculator User Guide.

Quartus Il Software Features Supported for HardCopy Designs

The Quartus II software supports optimization features for HardCopy prototype
development, including the following features discussed in this section:

m  “Physical Synthesis Optimization”
m “LogicLock Regions” on page 3-15
m “PowerPlay Power Analyzer” on page 3-15

m “Incremental Compilation” on page 3-15

Physical Synthesis Optimization

The physical synthesis optimizations performed in the FPGA device are passed to the
HardCopy companion revision for placement and timing closure. When designing
with a HardCopy device first, you can enable physical synthesis optimizations for the
HardCopy device, and these post-fit optimizations are passed to the FPGA revision.

The Effort level on the Physical Synthesis Optimizations page of the Settings dialog
box for HardCopy III and HardCopy IV devices must be Fast because the
performance gain achieved compared to the compilation time is very limited.

(@) For more information about setting physical synthesis optimizations for the FPGA

revision of the designs in the Quartus II software, refer to Setting up and Running the
Fitter in Quartus II Help.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_set_fitting.htm
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/ug/ug_hc2_cuc.pdf

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-15
HardCopy Design Readiness Check

LogicLock Regions

LogicLock regions are flexible floorplan location constraints that help you place logic
on the target device. You can use LogicLock regions in FPGA designs targeted to
HardCopy devices, which are also passed onto the HardCopy companion revision.
LogicLock regions in HardCopy devices cannot have their size set to Auto. Although
floating LogicLock regions are supported, Altera recommends that you do not use
floating LogicLock regions for HardCopy devices, because floating LogicLock regions
may affect the design’s ability to meet timing closure. HardCopy LogicLock regions
must be manually sized and placed in the floorplan. When LogicLock regions are
created in a HardCopy device, they start with width and height dimensions set to
(1,1), and the origin coordinates for placement are at X1_Y1 in the lower left corner of
the floorplan. You must adjust the size and location of the LogicLock regions that you
create in the HardCopy device before compiling the design.

For more information about using LogicLock regions, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II Handbook.

PowerPlay Power Analyzer

You can initially perform power estimation and analysis of your HardCopy and
FPGA devices using the PowerPlay Early Power Estimator. You can then use the
PowerPlay Power Analyzer for a more accurate estimation of your device’s power
consumption.

For more information about using the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Incremental Compilation

Quartus Il incremental compilation within a single Quartus II project is supported for
the base family in HardCopy migration flows for both the FPGA first and HardCopy
first flows. Exporting and importing partitions is not supported in HardCopy ASIC or
FPGA device compilations when there is a migration device setting.

For more information about using Quartus II incremental compilation, refer to the
Quartus 11 Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook and About Incremental Compilation in Quartus II
Help.

HardCopy Design Readiness Check

The HardCopy Design Readiness Check (HCDRC) is available as one of the
processing steps in the default compilation of either the FPGA first or the HardCopy
first flow. This feature checks issues that must be addressed prior to handing off the
HardCopy design to the Altera HardCopy Design Center for the HardCopy back-end
process. This is different from the user-driven approach in the HardCopy Advisor, in
which you must manually open the advisor to check for any violations.

The checks performed in the HCDRC for the Quartus II software include I/Os, PLL,
RAM, ALTGX, and settings checks (global, instance, and operating settings).

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

3-16 Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Design Readiness Check

Turning the HardCopy Design Readiness Check On and Off

The HCDRC is turned on by default, but can be turned on or off using the following
.qsf file assignments:

set gl obal _assignnent -name \ FLOW HARDCOPY DESI GN_READI NESS CHECK ON
set gl obal _assignnent -name \ FLOW HARDCOPY DESI GN_READI NESS CHECK OFF

You can also turn on the HCDRC in the More Compilation Process Settings dialog
box.

Setting Check

The Setting Check report lists the results of the setting checks from the Handoff
report. The Setting Check report consists of the following sections.

Summary

The Summary section displays the number of settings that do not meet
recommendations. One of the following messages is displayed:

<nunber > gl obal setting(s) do not neet reconmendation. Please reviewthe
recommendati on and do appropriate correction as it may affect the result of
the nmigration to HardCopy.

or

<numnber >instance setting(s) do not meet recomendation. Please reviewthe
recomendation and do appropriate correction as it may affect the result of
the nmigration to HardCopy.

Global Setting

The Global Setting section displays recommendations for global settings only. Global
settings with values other than the recommended values are highlighted in red.

Instance Setting

The Instance Setting section is identical to the Global Setting section, but checks only
for instances assignments.

Operating Setting

The Operating Setting section displays checks related to the recommended operating
settings for the FPGA and the HardCopy device.

This check is primarily applicable to Stratix III devices used as prototype FPGAs
because HardCopy III devices only support 0.9 V core voltage, whereas Stratix 111
devices support both 1.1 V and 0.9 V core voltage.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices 3-17
HardCopy Design Readiness Check

The Setting Check reports also include checking for illegal assignments in the
HardCopy design flow. The illegal assignments checks are shown in Example 3-1.

Example 3-1. lllegal Assignment Checks
USE_CHECKERED_PATTERN_AS_UNI NI TI ALI ZED_RAM CONTENT ON (1)
S| GNAL_PROBE_ENABLE ON OFF

S| GNAL_PROBE_SOURCE ON| OFF  ( 2)

Notes to Example 3-1:
(1) Refer to the section “RAM Usage Check” on page 3-18.
(2) SignalProbe is not supported in HardCopy ASICs.

1/0 Check

The HCDRC I/0O check ensures that you have assigned location assignments for the
pins, I/O standard, current strength assignment, output pin load assignment,
termination assignments, and also checks for any unconnected pins. The tool issues a
warning if you have not specified the assignment for the I/O check.

For example, for missing I/O standard assignments, the HCDRC issues the following
warning;:

5 pin(s) have no explicit 1/0O Standard assi gnnents provided in the setting
file and default values are being used. Please add a specific I/O Standard
assi gnment for these pins.

Input Pin Placement for Global and Regional Clock

Due to the difference in the interconnect delays between the FPGA and HardCopy
device, the use of non-primary clock inputs as clock inputs in a design can cause
timing closure to be a problem when migrating the FPGA to the HardCopy device.
The Input Pin Placement for Global and Regional Clock check informs you of the
problem before finalizing the pin location, so that any clock inputs can be moved to
the primary clock input.

This check lists all the pins that drive the global or regional clock but are not placed in
a dedicated clock pad. All pins are required to have manual location assignments.
Pins that are missing location assignments are listed in the Missing Pin Location
Assignment report.

The following message appears in the message panel during compilation and also
appears in the I/O Check Summary:

<number> pin(s) drives global or regional clock, but is not placed in a
dedi cated clock pin position. Cock insertion delay will be different
bet ween FPGA and Har dCopy conpani on revisions because of differences in
local routing interconnect delays.

PLL Usage Check

The PLL Usage Check report lists PLL usage requirements and violations checks.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



3-18

Chapter 3: Quartus Il Support for HardCopy Series Devices
HardCopy Design Readiness Check

PLL Real-Time Reconfigurable Check

This check highlights the PLLs that do not have PLL reconfiguration. PLL
reconfiguration allows fine tuning of the PLLs in the design after manufacturing.

The following message appears in the message panel during compilation and also
appears in the Logic Check Summary:

<number> PLL(S) don't have real time reconfiguration. It is highly
recommended that each PLL to have PLL reconfiguration for designs migrating
to Har dCopy.

PLL elements that do not have PLL reconfiguration are listed in a table.

PLL Clock Outputs Driving Multiple Clock Network Types Check

This check is derived from the Design Assistant rule check for HardCopy (H102) and
lists all PLL instances in the current design that have clock outputs driving multiple
clock network types.

The following message is displayed if the tool detects violations of this type:

Found <number> PLL(S) with clock outputs that drives multiple clock network
types.

PLL with No Compensation Mode Check

This check lists all PLLs that are in No Compensation operating mode. This setting is
not recommended for a design migrating to a HardCopy device because of differences
in the clock networks and the clock delays between the FPGA and HardCopy device.

The following warning message appears during compilation when a PLL is in a No
Compensation mode:

<number> PLL(S) is operating in a "No conpensation" node.

PLL with Normal or Source Synchronous Mode Feeding Output Pin Check

When a PLL is directly feeding an output pin, it must be set to Zero Delay Buffer
operating mode. However, if a PLL is set either in Normal Compensation mode or
Source Synchronous mode, a warning message is issued during compilation.

The following warning message appears during the runtime of HC Ready:

<number> PLL(S) is in normal or source synchronous node that is not fully
conpensated because it feeds an output pin -- only PLLs in zero del ay
buffer mode can fully conpensate output pins.

RAM Usage Check

HardCopy series devices do not support initialized RAM blocks upon power-up.
However, you can use the ALTMEM_INIT megafunction to initialize the RAMs of a
HardCopy series device in your design with the content of a ROM.

For more information about the ALTMEM_INIT megafunction, refer to the RAM
Initializer (ALTMEM_INIT) Megafunction User Guide.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/ug/ug_altmem_init.pdf
http://www.altera.com/literature/ug/ug_altmem_init.pdf

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-19
HardCopy Design Readiness Check

In HardCopy series devices, RAM blocks power up uninitialized. During the RAM
Usage check, the HCDRC tool checks for RAMs that are initialized using a Memory
Initialization File (.mif). Any RAM with a .mif file is listed in a table with the
following compilation warning message:

<number> RAM's) have Menmory Initialization File (MF). HardCopy devices do
not allowinitialized RAM Pl ease ensure that no RAMis initialized by a
MF file.

Initialized Memory Dependency Testing

The Assembler module of the Compiler allows you to write an FPGA programming
file with an initialized checkerboard pattern for memory contents of M4K memory
blocks for the FPGA revision. You should not use this option in a FPGA revision used
to migrate to the HardCopy revision because it creates irreconcilable revision
differences between the FPGA and HardCopy designs because the HardCopy handoff
cannot physically have any initialized memory content. Use this option only on a
parallel copy of your compiled FPGA design that you want to test on your board.

To create a programming file with an initialized checkerboard pattern, perform the
following steps:

1. Compile your completed FPGA design revision to use for prototype testing. This
is the revision you should eventually use to create your HardCopy companion
revision.

2. Create the HardCopy companion revision.
3. Compile, compare, and generate the hand off archive files for your design.

4. Switch back to your FPGA revision, and on the Project menu, click Revisions, and
then double click <<new revision>> in the Revisions table.

5. In the Create Revision dialog box, type a revision name in the Revision name box
and turn on Copy database and Set as current revision. This step copies your
FPGA revision and sets the new revision as the current open revision in the
Quartus II software.

6. On the Assignments menu, click Settings, and then click Assembler in the
Category list. Turn on Use checkered pattern as uninitialized RAM content on
the Assembler page, or add the following line to the revision .qsf file:

set gl obal _assignnent -name
USE_CHECKERED PATTERN_AS_UNI NI Tl ALI ZED RAM CONTENT ON

7. Run the Assembler in the FPGA revision to generate a new programming file for
your FPGA.

8. Test the new programming file in your prototype environment to determine if
your design has a dependency for FPGA RAM contents initialized with zeros after
power-up and configuration.

Because the checkerboard pattern is used for testing, the patterns written into the
RAM blocks for the new programming file may not detect all cases of zero-initialized
RAM content dependencies. Some designs may detect only one bit as zero (for
example, the LSB of a memory word), so this method may not detect all cases. This
checkerboard pattern test will detect a case when a full RAM word line is expected as
zeros at startup.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



3-20 Chapter 3: Quartus Il Support for HardCopy Series Devices
Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

ALTGX Usage Check

Beginning in the Quartus II software version 10.0, the ALTGX Usage check of the
HCDRC performs checks on ALTGX instance usage for designs targeting
Stratix IV GX and HardCopy IV GX devices.

The HCDRC tool checks all the ALTGX instances that are initialized in the design for
connectivity with the ALTGX_RECONFIG instance. For ALTGX instances that do not
connect to an ALTGX_RECONFIG instance, the following warning message appears

with the respective instance HSSI_CMU atom name:

ALTGX megaf unctions do not have ALTGX RECONFI G megaf unctions connected.
Altera recomends connecting ALTGX RECONFI G megaf unction to each ALTGX
megaf unction when mgrating your designs to HardCopy devices.

Performing ECOs with Quartus Il Engineering Change Management with
the Chip Planner

As designs grow larger in density, analyzing designs for performance, routing
congestion, logic placement, and executing Engineering Change Orders (ECOs)
becomes critical. In addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage your design. This process may become
difficult to manage, because ECOs are often implemented as last minute changes to
your design.

With the Altera Chip Planner, you can shorten the design cycle time significantly.
When changes are made to your design as ECOs, you do not have to perform a full
compilation in the Quartus II software. Instead, you can make changes directly to the
post place-and-route netlist, generate a new programming file, test the revised design
by performing a gate-level simulation and timing analysis, and then verify the fix on
the system. When the fix has been verified on the FPGA, switch to the HardCopy
revision, apply the same ECOs, run timing analysis and the Assembler, compare the
revisions, and then run the HardCopy Netlist Writer for design submission.

There are three types of migration scenarios:

B One-to-one changes, which are changes that can be implemented on both
architectures—FPGA and HardCopy.

m Changes that must be implemented differently on the two architectures to achieve
the same result.

m Changes that cannot be implemented on both architectures.

The following sections outline the methods for migrating each of these types of
changes.

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both architectures.
In general, such changes include those that affect only I/O cells or PLL cells. Some
examples of one-to-one changes include creating, deleting, or moving pins, changing
pin or PLL properties, or changing pin connectivity (provided the source and
destination of the connectivity changes are I/Os or PLLs). These types of changes can
be implemented identically on both architectures.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices

3-21

Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

The following list is a partial list of one-to-one change examples:

m /O creation, deletion, and moves

m 1/0 property changes (for example, I/O standards, delay chain settings, and so

forth)

m PLL property changes

m Connectivity changes between non-LCELL_COMB atoms (for example, PLL to
1/0, DSP to 1/0O, and so forth)

If such changes are exported to Tcl, directly reapplying the generated Tcl script (with a
minor text edit) on the companion revision implements the appropriate changes as
described in the following steps:

1. Export the changes from the Change Manager to Tcl.

2. Open the generated Tcl script and change the proj ect _open <proj ect>-revi si on
<revi si on> to refer line to the appropriate companion revision.

3. Apply the Tcl script to the companion revision.

Migrating Changes that Must Be Implemented Differently

Some changes must be implemented differently on the two architectures, such as
changes affecting the logic of the design. Examples include LUTMASK changes,
LC_COVB/HSADDER creation and deletion, connectivity changes not described in the
previous section, and different PLL settings for the FPGA and the HardCopy

revisions.

<o For more information about how to use different PLL settings for the FPGA and

HardCopy devices, refer to AN 432: Using Different PLL Settings Between Stratix Il and

HardCopy 11 Devices.

Table 3—4 summarizes suggested implementation of various changes.

Tahle 3-4. Implementation Suggestions for Changes that Must Be Implemented Differently

Change Type Suggested Implementation
Because a single FPGA atom can require multiple HardCopy atoms to
LUTMASK changes implement, you may need to change multiple HardCopy atoms to

implement the change, including adding or modifying connectivity.

Make/Delete LC_COMB

If you are using an FPGA LC_COMB in extended mode (7-LUT) or are
using a SHARE chain, you must create multiple atoms to implement the
same logic functions in the HardCopy device. Additionally, the
placement of the LC_COMVB cell has no meaning in the companion
revision because the underlying resources are different.

Make/Delete LC_FF

Basic creation and deletion is the same on both architectures; however,
similar to LC_COMB creation and deletion, the location of an LC FFin a
HardCopy and FPGA revision do not translate.

Editing logic connectivity

Because a LCELL_COVB atom might have to be broken up into several
HardCopy LCELL_COWVB atoms, the source or destination ports for
connectivity changes might have to be analyzed to properly implement
the change in the companion revision.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/an/AN432.pdf

3-22 Chapter 3: Quartus Il Support for HardCopy Series Devices
Performing ECOs with Quartus Il Engineering Change Management with the Chip Planner

Changes that Cannot he Migrated

A small set of changes are incompatible and cannot be implemented in both
architectures. The best example of this incompatibility occurs when moving logic in a
design; because the logic fabric is different between the two architectures, locations in
the FPGA are not compatible in HardCopy, and vice versa.

Overall Migration Flow

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful revision comparison
such that the design can be submitted to the Altera HardCopy Design Center.

Preparing the Revisions

The general procedure for migrating changes between devices is the same, whether
migrating from the FPGA to HardCopy device or vice versa. The steps are described
below:

1. Compile the design on the initial device.

2. Migrate the design from the initial device to the target device in the companion
revision.

3. Compile the companion revision.

4. Run the Compare HardCopy Companion Revisions command. Both revisions
should pass the revision comparison.

If testing identifies problems requiring ECO changes, equivalent changes can be
applied to both FPGA and HardCopy revisions, as described in the following section.

Applying ECO Changes
The general flow for applying equivalent changes in companion revisions is described

below:

1. Make changes in one revision using the Chip Planner tools (Chip Planner,
Resource Property Editor, and Change Manager), and then, to verify and export
these changes, follow these steps:

a. Make changes using a Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist Changes
command.

c. Verify correctness using timing analysis, simulation, and prototyping (FPGA
only). If more changes are required, repeat steps a and b.

d. Export change records from the Change Manager to Tcl scripts, or .csv or .txt
file formats. This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using a Chip Planner tool.
As stated previously, some changes can be reapplied directly to the companion
revision (either manually or by applying the Tcl commands), while others require
some modifications.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 3: Quartus Il Support for HardCopy Series Devices 3-23
Formal Verification of FPGA and HardCopy Revisions

4. Run the Compare HardCopy Revisions command. The revisions should match.
5. Verify the correctness of all changes, which may require running timing analysis.

6. Run the HardCopy Assembler command and the HardCopy Netlist Writer
command for design submission along with handoff files.

The following command is the Tcl command for running the HardCopy
Assembler:

n

execute _nodul e -tool asm-args
wite settings files=off"

--read_settings_files=off --

The following command is the Tcl command for the HardCopy Netlist Writer:

execute _nodul e -tool cdb \
-args "--generate_hardcopy files"\

=@ For more information about using the Chip Planner, refer to the Quartus II Engineering

Change Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Formal Verification of FPGA and HardCopy Revisions

Third-party formal verification software, Cadence Encounter Conformal verification
software, is used for several FPGA and HardCopy families.

The formal verification flow for HardCopy ASIC designs is a two-step process. First,
run formal verification on the FPGA netlist to ensure that the FPGA netlist matches
the RTL. Second, use the Compare HardCopy Revisions command in the Quartus II
software to ensure that the HardCopy implementation matches the FPGA.

While this flow is enabled, performing formal verification is not necessary due to the
one-to-one mapping of logic between the FPGA prototype and the HardCopy ASIC.

To use the Conformal software with the Quartus II software project for your FPGA
design revision, you must enable the EDA Netlist Writer so it can generate the
necessary netlist and command files required to run the Conformal software. To
automatically run the EDA Netlist Writer during the compilation of your FPGA
revision, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, under EDA Tool Settings, select Formal Verification, and
then in the Tool name list, select Conformal LEC.

3. Compile your FPGA and HardCopy design revisions.

The Quartus II EDA Netlist Writer produces the netlist for the FPGA when run on that
revision. You can compare your FPGA post-compilation netlist to your RTL source
code using the scripts generated by the EDA Netlist Writer.

After both the FPGA and HardCopy revisions have been compiled, you can run the
Compare HardCopy Revisions command to ensure that the HardCopy
implementation matches the FPGA.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf

3-24 Chapter 3: Quartus Il Support for HardCopy Series Devices
Formal Verification of FPGA and HardCopy Revisions

=@ TFor more information about using the Cadence Encounter Conformal verification
software, refer to the Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook.

HardCopy Floorplan View

The Quartus II software displays the floorplan and placement of your HardCopy
companion revision. This floorplan shows the preliminary placement and
connectivity of all I/O pins, PLLs, memory blocks, HCell macros, and DSP HCell
macros. Congestion mapping of routing connections can be viewed using the Layers
Setting dialog box (from the View menu of the Chip Planner). This is useful in
analyzing densely packed areas of your floorplan that can reduce the peak
performance of your design. The Altera HardCopy Design Center verifies final HCell
macro timing and placement to guarantee that timing closure is achieved.

Figure 3-6 shows an example of the HC230F1020 device floorplan.

Figure 3-6. HC230F1020 Device Floorplan

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii53011.pdf

Chapter 3: Quartus Il Support for HardCopy Series Devices 3-25
Document Revision History

In this small example design, the logic is placed near the bottom edge. You can see the
placement of a DSP block constructed of HCell macros, various logic HCell macros,
and an M4K memory block. A labeled close-up view of this region is shown in
Figure 3-7.

Figure 3-7. Close-Up View of Floorplan

The Altera HardCopy Design Center performs final placement and timing closure on
your HardCopy design based on the timing constraints provided in the FPGA design.

“ e TFor more information about the Altera HardCopy Design Center process, refer to the

respective HardCopy series device handbook, which is available on the Literature
page of the Altera website at www.altera.com.

Document Revision History

Table 3-5 shows the revision history for this chapter.

Tahle 3-5. Document Revision History (Part 1 of 2)

Date Version Changes

m Edited the “Timing Settings” on page 3—14 section to remove support for the Classic
Timing Analyzer
December 2010 10.1.0

m Changed to new document template
m Editorial changes
m Added new section “ALTGX Usage Check” on page 3-21
m Updated “LogicLock Regions” on page 3—16 to reflect updated companion revision
support
July 2010 10.0.0 | m Updated “Incremental Compilation” on page 3-16 to reflect updated companion revision
support

m Linked sections throughout the chapter to Quartus Il Help
m Removed “Referenced Documents”

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/

3-26

Chapter 3: Quartus Il Support for HardCopy Series Devices
Document Revision History

Table 3-5. Document Revision History (Part 2 of 2)

Date Version Changes
m Removed HardCopy Stratix legacy support information
m Updated “Physical Synthesis Optimization” on page 3-15
November 2009 9.1.0 |m Updated “Quartus Il Software Features Supported for HardCopy Designs” on page 3-15
m Updated “Referenced Documents”
m Updated the tables and figures for HardCopy Series devices
m Updated “RAM Usage Check” on page 3—19
March 2009 9.0.0
m Updated “Referenced Documents”
m Added HardCopy IV E support information
November 2008 8.1.0 | = Added notes for Initialized Memory Dependency testing
m Changed page size t0 8.5” x 11”
m Updated “RAM Usage Check” on page 3—19
May 2008 8.0.0
m Updated “Referenced Documents”
“%e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
ae®

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

Take an online survey to provide feedback about this handbook chapter.

December 2010  Altera Corporation


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

A |:| =N 4. Quartus Il Design Separation Flow

Ql151019-10.1.0

This chapter contains rules and guidelines for creating a floorplan with the design
separation flow, and assumes familiarity with the Quartus® II incremental
compilation flow and floorplanning with the LogicLock™ feature.

The basic principle of a secure and reliable system is that critical subsystems in the
design have physical and functional independence. Systems with redundancy require
physical independence to ensure fault isolation—that a failure or corruption of any
single subsystem will not adversely affect any other part of the system. Furthermore,
if errors occur, physical independence simplifies analysis by allowing developers to
evaluate each subsystem separately.

Traditionally, systems that require redundancy implement critical IP structures using
multiple devices. The Quartus II design separation flow, used in Cyclone® III LS
devices, provides the ability to design physically independent structures on a single
device. This functionality allows system designers to achieve a higher level of
integration on a single FPGA, and alleviates increasingly strict Size Weight and Power
(SWaP) requirements. Figure 4-1 illustrates this concept.

Figure 4-1. Achieving Higher Level Integration on a Single Cyclone Il LS Device

Critical Critical Critical Critical
Subsystem Subsystem Function Function
1 2 1 2
—>
Other subsystems Other user logic
Complex System Cyclone Il LS FPGA

Other subsystems

The Quartus II design separation flow introduces the constraints necessary to create
secured regions and floorplan a secured system. When implemented in Cyclone III LS
devices, a secured region provides physical independence through controlled routing
and a boundary of unused resources. By restricting routing resources and providing a
physical guard band of unused logic array blocks (LABs), faults or unintended signals
originating in one secured region are prevented from adversely affecting other design
blocks on the device.

L=~ The Quartus II design separation flow features require specific licensing in addition to
licensing the Quartus II software. For further details, contact your local Altera sales
representative or Altera distributor.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010
Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51019

4-2

Chapter 4: Quartus Il Design Separation Flow
Design Flow Overview

The Quartus II design separation flow incorporates additional LogicLock and
floorplanning features into the incremental compilation flow. The following three
chapters in the Quartus II Handbook serve as companion references to this chapter:

m  Quartus Il Incremental Compilation for Hierarchical and Team-Based Design—Describes
the Quartus II incremental compilation flow

m Best Practices for Incremental Compilation Partitions and Floorplan Assignments—
Contains guidelines for using the incremental compilation flow and creating a
design floorplan

B Analyzing and Optimizing the Design Floorplan—Describes various attributes
associated with LogicLock location constraints and introduces the Chip Planner
for creating and modifying a floorplan

Design Flow Overview

The design separation flow is based on the incremental compilation flow. You begin
with an incremental compilation design flow and then apply design separation
constraints to each design partition that you want to physically isolate from the rest of
the design. This section provides an overview of the design separation flow steps.

Figure 4-2 shows a flow chart of the design separation flow. Red boxes in the flow
chart highlight steps that are specific to the design separation flow, while the
remaining boxes in the flow chart are common to both the design separation and
incremental compilation flows. A brief description is given for each step in the flow
chart below and serves as a quick-start guide for the design separation flow.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

Chapter 4: Quartus Il Design Separation Flow
Design Flow Overview

Figure 4-2. Design Separation Compilation Flow

Set Up Design Hierarchy for Secure Partitioning

Y

Perform Analysis and Elaboration

v

Create Design Partitions for Secured Regions

Create Floorplan Assignments

\ J

Create a Design Floorplan
with Security Attributes

v

Assign Design Partitions to Secured Regions

v

Add 1/0 Pins that Directly Interface to a Secured
Region as a Member of the Secured Region

v

Create Security Routing Interfaces to and
from Secured Regions

Assign 1/0 Pins

v

Make Design Changes

A

v

Set Netlist Type for Each Design Partition

v

Compile the Design

Repeat as Required during
the Design, Verification, and
Debugging Stages

1. Set up design hierarchy for secured partitioning—Prepare your design for
implementation of the design separation flow, by setting up your design hierarchy
for secured partitioning along logical hierarchical boundaries. If necessary, create
wrapper files to create logical boundaries in the design hierarchy to support the
design entities that you must separate from the remainder of the design.

2. Perform analysis and elaboration—Run analysis and elaboration to identify the

hierarchy in your design.

3. Create design partitions for secured regions—For each design entity that requires
physical independence, create a logical design partition for each design entity.
Partition logic using guidelines from the incremental compilation flow.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-4 Chapter 4: Quartus Il Design Separation Flow
Creating Design Partitions for the Design Separation Flow

Refer to “Creating Design Partitions for the Design Separation Flow” on page 4—4
for more information.

4. Create a design floorplan with security attributes—After creating design
partitions, create LogicLock location assignments and a floorplan, at minimum, for
all the entities to be secured in your design. Use the security attributes in the
LogicLock Regions window to specify the security level of each LogicLock region.
When you apply this attribute, fencing regions are automatically created in your
floorplan to isolate the secured LogicLock regions. Refer to “Creating a Design
Floorplan with Secured Regions” on page 4-6 for more information.

5. Assign design partitions to secured regions—Assign design partitions to secured
LogicLock regions to separate them from each other and from all other hierarchy
blocks. Refer to “Using Secured Regions” on page 4-9 for more information.

6. Add I/O pins that directly interface with a secured region as a member of the
secured region—If a secured region interfaces with one or more I/O pins, make
the I/O pins members of the secured region. If a secured region has I/O pins as
members, that region must overlap the I/O pads. Refer to “Adding I/O Pins as
Members of Secured Regions” on page 4-9 for more information.

7. Create security routing interfaces to and from secured regions—Create security
routing interfaces by applying the security routing interface attribute to LogicLock
regions.

Only routing resources can be used within a security routing interface; no logic can
be placed. Each security routing interface must abut one or two secured regions.
After you create an interface region for each signal or group of signals entering or
exiting a secured region, assign the signals to the appropriate routing interfaces.

For signals routing between secured regions with different security attributes or
between a secured region and an unsecured region, you must lower the security
attribute for the signal exiting the stricter security region. Refer to “Making Signal
Security Assignments” on page 4-19 for more information.

8. Assign I/O pins—After creating secured regions and security routing interfaces, if
the secured regions contain I/O pins as members, assign I/O pins to meet design
separation flow requirements. For example, I/O banks cannot be shared between
secured regions. If a secured region contains I/O pins as members, the entire I/O
bank is usable only by the secured region that sinks or sources the I/O pin. Refer
to “Assigning /O Pins” on page 4-25 for more information.

9. Make design changes, set the netlist type for each design partition, and compile
the design—After making the necessary I/O pin assignments, you complete the
design separation flow-specific steps, and you can start the iterative process of
making design changes, setting the netlist type for each design partition, and then
compiling your design until you achieve a floorplan that meets your design
requirements.

The design separation flow-specific steps, step 1 and steps 4 through 8, are described
in further detail in subsequent sections in this chapter.

Creating Design Partitions for the Design Separation Flow

After setting up your design to support secured partitioning and running analysis
and elaboration, you can create design partitions.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-5
Creating Design Partitions for the Design Separation Flow

Each secured region floorplan assignment uses a single design partition in the
incremental compilation flow to identify the functional elements belonging to a
secured region. Design partition assignments are made along entity boundaries in the
hierarchy of your RTL design.

Because only a single design partition may be used in a secured region, you must plan
your design entities such that logic that requires physical isolation from the rest of the
design is packed into a single design entity. Additionally, you should create wrapper
files where necessary to reorganize your hierarchy, so that all your secured regions are
contained within a single entity or module in your RTL. The incremental compilation
feature allows functional independence of each design partition because it disables
netlist optimizations across partition boundaries.

Most of the rules, guidelines, and tools for creating design partitions used in the
incremental compilation flow are applicable in the design separation flow. You can
use the Incremental Compilation Advisor, the Design Partition Planner, and the Chip
Planner features in the Quartus II software to help you create design partition
assignments.

When creating design partitions, the following considerations are important:

m Register the inputs and outputs of a design partition to avoid cross-boundary logic
optimizations and to maintain timing performance along the signal path.

m Minimize the number of I/O paths that cross partition boundaries to keep logic
paths within a single partition for optimization. Minimizing the number of
cross-boundary I/O paths makes partitions more independent for both logic and
placement optimization.

m Avoid logic that requires cross-boundary logic optimizations.

For more details about guidelines for creating design partitions, refer to the Best
Practices for Incremental Compilation Partitions and Floorplan Assignments chapter in
volume 1 of the Quartus II Handbook.

When creating your design in the design separation flow, you must be aware of some
restrictions and special considerations that differ from the incremental compilation
flow. These considerations are discussed in the following “Merging PLL Resources”
and “Avoiding Multiple Design Partitions With a Secured Region” sections.

Merging PLL Resources

In the Quartus II incremental compilation flow without design separation constraints,
the Fitter can use the same PLL resource on the device when multiple design
partitions instantiate a PLL with the same parameters. This resource merge occurs
even if optimization across design partitions is required. When the design separation
flow is enabled and a design contains one or more secured regions, PLL merging
across design partitions is disabled, which helps to maintain the physical separation
between design partitions. PLL merging is disabled for the entire design, even if
LogicLock regions in a Cyclone III LS design contain no security attributes. For
partitions that require shared PLL resources, the PLL must be instantiated outside of
the design partitions.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf

4-6 Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

Avoiding Multiple Design Partitions With a Secured Region

Multiple design partitions, including child partitions and multi-hierarchy partitions,
are not allowed in a secured region. Each secured region, which you designate after
creating design partitions, must contain only a single design partition.

Child partitions are design partitions created from a subentity of an existing design
partition and would potentially create multiple design partitions in a secured region,
so they are not allowed in the design separation flow.

Multi-hierarchy partitions are created by merging multiple design partitions from
different branches of the hierarchy. These partitions are merged into a single netlist
during elaboration to allow cross-boundary optimizations during synthesis and
fitting, and result in a single incremental result for each multi-hierarchy partition.
Multi-hierarchy partitions function similarly as single-hierarchy partitions, but must
contain hierarchies from a common parent partition and are not allowed in the design
separation flow.

Creating a Design Floorplan with Secured Regions

After creating design partitions, you can create a design floorplan with secured
regions with the Chip Planner and security attributes in the LogicLock Regions
window.

The Quartus II software uses LogicLock location assignments to map logic in your
design hierarchy to physical resources on the device. The Chip Planner provides a
visual floorplan of the entire device and allows you to move and resize your
LogicLock location constraints on the floorplan of the device. The design separation
flow adds an security attribute constraint to each LogicLock region to further
constrain routing to achieve physical isolation between LogicLock regions. Signals
that require connectivity between two secured regions or between a secured region
and unsecured logic are assigned to a special LogicLock region known as a security
routing interface. A security routing interface is a controlled region that limits the
routing of the contained signals to only the one or two LogicLock regions that this
region abuts.

To create fault isolation between secured regions, the design separation flow
selectively shuts off routing around the periphery of a secured region. Because signal
connectivity at the boundary of the secured region is unused, any faults that occur
within the secured region are prevented from adversely affecting neighboring
regions. Fault isolation, when using the design separation flow, is possible because no
physical connection exists to propagate the fault outside of the region.

Cyclone III LS devices use a MultiTrack interconnect architecture consisting of row
and column interconnects that span fixed distances to achieve signal connectivity
between LABs. In the horizontal direction, row interconnects use wire resources that
span 1 LAB, 4 LABs, and 24 LABs. These row-routing resources are direct link
interconnects, R4 interconnects, and R24 interconnects, respectively. In the vertical
direction, routing resources span distances of 1 LAB, 4 LABs, and 16 LABs. These
column routing resources are register chain interconnects, C4 interconnects, and

C16 interconnects, respectively. In the design separation flow, LogicLock region
routing wires (C4, C16, R4, and R16) that cross outside the border of a boundary are
turned off. Each secured region uses an unused boundary (or a fence) of LABs to
guard against the faults from wire resources spanning a length of one-LAB (direct link

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-7
Creating a Design Floorplan with Secured Regions

and register chain routing resources) from affecting a neighboring region.

The rules and guidelines for floorplanning in the design separation flow are similar to
those in a typical compilation flow. However, there are some special considerations
for the relative placement of secured regions in your design floorplan. Because each
secured region is a keep-out region for routing resources from other LogicLock
regions, ensure that a routing path with valid communication interfaces exists
between secured regions. Furthermore, the routing path (encapsulated in a security
routing interface) should not follow a circuitous path and must be simple enough to
meet your timing requirements.

A Fitter-generated floorplan is not possible while a security attribute is applied to a
LogicLock region; that is, the size attribute cannot be Auto, and the state attribute
cannot be Floating for any LogicLock region in a secured design.

"=~ You can use a Fitter-generated floorplan, created without security attributes, as a
starting point to create a final floorplan for the design separation flow.

To use a Fitter-generated floorplan as an initial floorplan, apply Reserved attributes to
LogicLock regions that must be physically isolated from the rest of the design. A
Fitter-generated floorplan with Reserved attributes generates non-overlapping
LogicLock regions. You can modify the initial floorplan by adjusting the relative
placement for each secured region, taking into account the connectivity requirements
for each region.

Subsequent sections further detail the rules and guidelines for floorplanning that are
specific to the design separation flow.
“ e For more information about using the Chip Planner settings and options, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus I1
Handbook.

Using Security Attributes

The Security Attributes column in the LogicLock Regions window and the Security
tab in the LogicLock Regions Properties dialog box are available when your version
of the Quartus II software is licensed specifically for the design separation feature.
Setting the Security attribute applies a constraint to a LogicLock region, making the
region either a secured region or a security routing interface, from where signals enter
or exit a secured region.

The Signals list is populated after analysis and synthesis with the inputs and outputs
of secured regions. Columns in the Signals list describe the Security Level, the
security routing interface the signal is assigned to, and whether the signal is an output
or input to the region.

The design separation flow security features are highlighted in the LogicLock Regions
window and the LogicLock Regions Properties dialog box shown in Figure 4-3 and
Figure 44, respectively.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www/literature/hb/qts/qts_qii52006.pdf

4-8 Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

Figure 4-3. Security Attribute Column Available in the Design Separation Flow

Region Mame | Size | Width | Height | State | Origin | Reserved Security Attribute
£ CPU_to_top Fixed g 7 Locked #96_Y2 On Security routing interface
51 CPU_wiap_2_Pattern_gen Fixed 18 3 Locked ®ET_r5I On Securily routing interface
1 Ethl_to_Eth2 Fixed o] | Locked K24 W32 On Security routing interface
B EthZ_to Pattern_check Fixed 17 8 Locked i e On Secunty routing interface
= (31 Ethemet_1_wiapEthemet_1_wrap.. Fixed Locked On 1
.g (1 Ethemet_2_wiapEthemet_2_wrap.. Fixed 59 25 Locked =0_YT On 1
o 51 Palten_checker_wiap:Pattein_ch... Fixed 19 8 Locked HPE YT On 1
é (21 Pattem_gen_to_Etherl Fixed 1 B Locked X7E_TE3 On Security routing interface
o
E @ ‘Recﬂmmendallnn Tof1 for |CPU_to_tep j J J |F!un Fitter with Full Incremental Compilation on to obtain more recommendations

Figure 4-4. Security Tah Available in the Design Separation Flow

Table 4-1 lists a summary of the Security Attributes available for the design
separation flow.

Table 4-1. Security Attributes for LogicLock Regions (Part 1 of 2)

Security
Attribute

Unsecured Removes the constraint for physical isolation.

Creates a secured region. Physically isolates the LogicLock region by restricting routing resources from
leaving the region. Creates a one-lab width border of unused LABs around the LogicLock region.

Applying this attribute to a LogicLock region sets the global assignment
LL_REG ON SECURI TY_LEVEL 1 forthe LogicLock region.

Description

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-9
Creating a Design Floorplan with Secured Regions

Table 4-1. Security Attributes for LogicLock Regions (Part 2 of 2)

Security -
Attribute Description
Creates a secured region. Security attribute 2 typically represents a stricter level of fault isolation than
security attribute 1. For Cyclone 11 LS devices, implementation of security attribute 2 is the same as
security attribute 1; however, this may not be true in subsequent architectures supporting the design
2 separation flow. When selected for the Cyclone III LS family, the Quartus Il software creates a one-lab
width border of unused LABs around the LogicLock region.
Applying this attribute to a LogicLock region sets the global assignment
LL_REG ON_SECURI TY_LEVEL 2 for the LogicLock region.
) Creates a routing interface for signals entering or exiting a secured region. Only routing resources (no
SRZCH[T[']W logic) may be used within a security routing interface.
uti
Interfacge Applying this attribute to a LogicLock region sets the global assignment

LL_SECURI TY_RQUTI NG_| NTERFACE ONfor the LogicLock region.

Using Secured Regions

When you apply a secured region attribute (1 or 2) to an existing LogicLock region,
the LogicLock region must have a fixed size with a locked origin. Each secured region
must have a minimum size of eight-LABs in both the horizontal and vertical
dimensions. A region smaller than 8 x 8 LABs may be non-routable when using the
design separation flow.

Child regions are not allowed when creating a secured region because a secured
region contains only a single partition. In the non-secured compilation flow, child
regions are used primarily to ensure that logic in a child partition is physically
contained inside the LogicLock region of the parent partition.

Adding 1/0 Pins as Members of Secured Regions

A secured region must contain all physical device resources required to complete
compilation. I/O pads that are members of a secured region must be contained within
the boundaries of the secured region that sources or sinks it. That is, a secured region
must overlap the I/O pads that are members of the region. If the logic in the secured
region instantiates a PLL or a clock block, those physical device resources must also be
overlapped by the region.

You can add I/O pins as members of a secured region using the LogicLock Region
Properties dialog box.

Using Security Routing Interfaces

A LogicLock region with the security routing interface security attribute creates a
routing channel for signals to and from a secured region. No logic may be placed in a
security routing interface. Each security routing interface can connect two secured
regions, or a secured region with one or more unsecured regions. If you are
connecting two secured regions, a fencing region is automatically placed around the
interface region. You can assign each signal entering or exiting a secured region to a
security routing interface on the Security tab in the LogicLock Regions Properties
dialog box.

For information about assigning signals to a security routing interface, refer to
“Making Signal Security Assignments” on page 4-19.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-10 Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

For information about the number of signals that can be contained in a security
routing interface, refer to “Routing Restrictions” on page 4-26.

Making Design Separation Flow Location Assignments in the Chip Planner

The Chip Planner allows you to visually modify the size and location of LogicLock
regions. This section describes the attributes of LogicLock regions within the context
of the design separation flow.

When the design separation flow is enabled, the fencing region around each secured
region in the Chip Planner is shaded grey. Security routing interfaces are shaded
green. Illegal placements that violate secured region boundaries are highlighted in red
at the location where the violation occurs. Figure 4-5 shows the LogicLock regions
with security attributes in the Chip Planner.

Figure 4-5. LogicLock Regions With Security Attributes

CUlL  yiEw  JOOs NV

Editing Mode: |ECO - N/A v
2 ”,

vd

1

SSlerjo|® @ i@ @) @2 Fre AR el VY R 5 30 L5

Secured_Regionl

Unsecured_Regi

Notes to Figure 4-5:

(1) Floorplan Editing Mode task.

(2) Unused fence around a secured region

(3) Security violation, created by a LogicLock region placement within a fencing region of a secured region
(4) Security routing interface region connecting two secured regions

(5) Security routing interface region connecting secured region and unsecured logic

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-11
Creating a Design Floorplan with Secured Regions

Understanding Fencing Regions

The Quartus II software automatically adds a fencing region, which is a border of
unused LABs, when you apply security attribute 1 or security attribute 2 to a
LogicLock region. No logic may be placed into a fencing region. The Fitter does not
use any routing wires that exit the fence boundary of a secured region. Because direct
drive and carry chains can be used at the edge of a secured region, the fencing region
prevents signals driven on one length one wires (in the horizontal and vertical
directions) from exiting the secured region.

The fencing region around a secured region is generally one-LAB horizontally and
one-LAB vertically. There are two regions that require special fencing regions:

m Vertical I/O regions
B Areas around the configuration engine

I/0O banks along the top and bottom of the chip use only vertical routing wires to and
from the I/O Elements (IOEs). The heavy use of C4 wires from IOEs creates a

four- LAB fence between the vertical I/O banks and a secured region. Secured regions
requiring a connection to I/O in the top or bottom banks of the device optimally use
resources if you add the I/O signals as members of the secured region and overlap the
corresponding I/O pads in the floorplan. In Figure 4-6, Secured_Region?2 is five
LABs away from the bottom of the device and Secured-Region1 is four LABs away
from the bottom of the device.

Figure 4-6. Vertical Fencing Near 1/0 Banks

Secured_Regioni

A configuration engine is a hard IP block that manages the configuration of the
device. Additionally, the configuration engine routes the control signals for the CRC
detection circuit and the internal oscillator into the core logic on the device. In the

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-12

Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

design separation flow, a one-LAB fence is automatically added around the
configuration engine whenever a secured region occupies the same LAB column as
the configuration engine. The configuration engine is a region notched out of the left
side in the middle of the device.

All control signals to and from the configuration engine route from its right edge. If
you use an instantiated WYSIWYG that uses any control signals to and from the
configuration engine, the signals must either interface with unsecured logic or they
must interface with a secured region through a security routing interface.

If your design routes signals to and from the configuration engine, placing a secured
region that directly abuts the configuration engine signal interface (along the right
side of the configuration engine) causes a Fitter error.

Figure 4-7 shows a configuration engine with a fencing region in the floorplan.

Figure 4-7. Configuration Engine

Configuration Engine

Configuration Engine
Signal Interface

Secured_Regionl

Fencing regions between two secured regions are allowed to overlap. That is, two
adjacent secured regions can be separated by a one-LAB fence. The Chip Planner
issues a security warning violation if a LogicLock region is placed within the
boundary of a secured region. Security violations are highlighted in red and the
tooltip of a secured region indicates the locations of all security violations. You may
receive an error if you try to compile a design with a security violation. Figure 4-8
shows two regions with overlapping fences and a security violation from an
unsecured region.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-13
Creating a Design Floorplan with Secured Regions

Figure 4-8. Overlapping Regions

Unsecured_Rec

on

Secured_Region1

[ I ) |
(44, 12)
Block utilization: 0 of 2
Routing utilization: 0 of 96
User-assigned LogicLock Region
LogicLock region: Secured_Regionl
Parent: Root Region
width: 14
Height: 7
Origin: X43_Yo
Reserved: On
Secu d
curity/Fence Violations:

52, 13) to (57, 13)

Enabled
Members:
None
NfA until Partiion MergeFencing region polygon list:
(42,5, 1, 9)
(43, 5, 14, 1)
(43, 13, 14, 1)
(57,5, 1, 9)
+ Secured_Regionl
Resource: DSP_X44_Y12_NO

Creating Non-Rectangular Regions

You can create non-rectangular regions by creating multiple rectangular regions and
then merging them.

(?) For more information about creating non-rectangular regions in the Chip Planner in
the Quartus II software, refer to Creating and Manipulating LogicLock Regions in
Quartus II Help.

Non-rectangular LogicLock regions in the design separation flow make circuitous
routes more likely. As such, non-rectangular regions can have an adverse affect on
performance when used with the design separation flow.

If a secured non-rectangular region contains a subregion that is less than 8 x 8 LABs,
the chances of a non-routable situation occurring increases. Subregions that
deterministically require the use of certain routing resources may not fit successfully
if a violation of the secured region is occurs. As a general guideline, each subregion
should be 8 x 8 LABs or larger, to ensure that routing resources with a length four
LABs are readily available. In Figure 4-9, each subregion of Region 2 (labeled A, B, C,
and D) are less than 8 x 8 LABs in dimension. These subregions can potentially cause
a no-fit situation. Depending on the placement and connectivity of LABs, certain
routes may be difficult to achieve. For example, the Fitter would not be able to route a
connection from LAB 1 to LAB 2 in region A directly. While another path may be
possible, a series of hops that do not leave the LogicLock region may not be available
and may not satisfy the timing requirements of the route.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/lock/flp_pro_def_logiclock_reg.htm

4-14

Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

Figure 4-9. Non-Rectangular LogicLock Regions

Guidelines for the Relative Placement of Secured LogicLock Regions

Because each secured region is a keep-out region for placement and routing of any
logic that is not a member of the secured region, you should be aware of the
guidelines in this section as you lay out your floorplan. Placement that does not
account for the connectivity requirements between LogicLock regions may cause poor
performance or a non-routable design. The guidelines for floorplanning when using
the design separation flow include:

m Create a complete floorplan, including location assignments for unsecured logic.

m Create a non-circuitous route between secured regions requiring a routing region.
Generally, routing regions between secured regions should be rectangular.

m Create security routing interfaces between secured regions that do not intersect
with other routing regions; secured regions and their routing edges must fit on a
single plane. A secured region must overlap any physical resources (such as I/Os,
PLLs, and CLKCTRL) that are instantiated by the design partition contained in the
secured region.

m  Abut the secured region to the edge of the device whenever possible.

Creating a Complete Floorplan

You should allocate a region for all logic in your design. If you have a large secured
region that divides the device into multiple disjointed regions, and you have
unsecured logic that is not floorplanned, the design may not be routable.

If an unsecured partition does not contain any location assignments, the placement
algorithms may make logic assignments on any unallocated space on the device. In
the floorplan shown in Figure 4-10, the source and sink registers do not have a valid
path through the device, because all routing channels are occupied by Secured
Region 1 and Secured Region 2.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-15
Creating a Design Floorplan with Secured Regions

Figure 4-10. Non-Routable Placement Example

If a complete floorplan is not possible for all partitions in your design, you can use
empty LogicLock regions with the Reserved attribute to prevent the Fitter from
placing any logic in a region that can potentially cause a no-fit. For the example
provided in Figure 4-10, an empty region can be placed in the upper-left corner of the
device to prevent any logic that has not been floorplanned from being placed there,
which is then shown in Figure 4-11.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-16

Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

Figure 4-11. Empty Reserved Region Preventing Fitter From Placing Logic

Ensuring Routability Between Regions

The Quartus II software cannot create auto-generated location constraints for any
region with a security attribute. If you use a Fitter-generated placement as a starting
point for a floorplan with security attributes, an optimal floorplan in a design without
separation may not work in the same design. In a floorplan without secured regions,
only the placement of logic is restricted. All routing resources on the device are
available for the Fitter, and may be routed through a region. Secured regions reserve
all routing resources within the LogicLock boundary to the design partition contained
in the region.

Having a circuitous route between two regions degrades performance and may cause
a non-routable design. Modify any regions that have signal connectivity and must
route around a secured region to achieve a connection. Figure 4-12 shows a floorplan
that does not contain disjointed parts. However, the source region must route around
a secured region to connect to the sink region.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-17
Creating a Design Floorplan with Secured Regions

Figure 4-12. Relative Placement of Regions Containing a CGircuitous Path

Secure
Region

Source | Sink
Region Region

Ensuring Planarity

A fence is automatically created around a security routing interface connecting two
secured regions. Because no other routing resources may pass through a security
routing interface connecting two secured regions, you should model all secured
regions as nodes in a routing graph and all security routing interfaces as the edges,
and all nodes and their edges must fit on a planar graph (that is, none of the edges can
intersect). If you have five or more secured regions on the device, and each secured
region contains signals that fan-out to multiple secured regions, a planar floorplan
may not be possible. Figure 4-13 shows a routing graph with five nodes. A complete
graph having each pair of distinct vertices connected by an edge is not possible
without having any of the edges cross. If the topology of your floorplan contains such
a non-routable arrangement, your design hierarchy must be rearranged to collapse
related design partitions into a single design partition.

Figure 4-13. Non-Planar Routing Graph: Connection BD Not Possible

If your secured regions and security routing interfaces can be modeled as a planar
graph, but have a high degree of connectivity between the components, you may have
to rearrange the shape, size, or location of the secured regions to generate a routable
floorplan. For instance, the hypothetical floorplan shown in Figure 4-14 does not have
a valid routing path BD (between region B and region D). The modified floorplan in
Figure 4-15 shows how all of the required connections can be achieved on a planar
surface.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-18 Chapter 4: Quartus Il Design Separation Flow
Creating a Design Floorplan with Secured Regions

Figure 4-14. Floorplan with Non-Routahle Connection BD

Device Boundary

Secure
Region

B

Secure
Secure Region
Region C
A Non-Routable
Connection BD
Connection

Figure 4-15. Floorplan Arranged to Accommodate Connection BD

Device Boundary

Secure
Reglon

Secure
Region
A
Secure
Region
Secure

E
Reglon

Secure
Region
B

You can use the Design Partition Planner for a visual representation of the
connectivity between design partitions. This tool helps you determine if the secured
regions in the design can be arranged on a planar floorplan. Figure 4-16 shows the
Design Partition Planner.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-19
Making Signal Security Assignments

Figure 4-16. Design Partition Planner

:

46% of total design, 5054 Total |..
11 Children:

- -
E thernet_1_wrap_1

42 \
23% of total desian, 2.,
9 Children: E kL] VARSI W

3 S

Ethernet_1_wrap_1}.

E thernet_2_wrap_1

" 23% of total design, 2.
B Children;

Ethernet_2_wrap_1j

Placing Physical Resources

All physical resources that are required by the secured region must be contained
inside the boundary of the secured region, including I/O pins connected to the
secured region and primitives that have been instantiated within the secured region,
such as PLLs and clock control blocks.

Making Signal Security Assignments

Each signal that enters or exits a secured region must have a security level attribute
and be explicitly assigned to a security routing interface. The security level for each
signal is automatically assigned a default value and matches the secured region that is
the source of the signal. Possible security levels of a signal include: Auto, Unsecured,
1, and 2. An assignment of Auto sets the default security level for the signal.

A signal with a security attribute may connect to a region with an equivalent or higher
security level. For example, a signal with a security level of Unsecured can drive logic
in a region set to Unsecured, 1, or 2 and a signal with a security level of 1 can drive
logic in a region set to 1 or 2. A signal originating from a secured region may not drive
logic in a region with a lower security level. If you have a signal from a higher security
level that must drive logic in a lower security level, you can direct the Fitter to honor
the connection by explicitly lowering the security level of the signal.

At most, each security routing interface connects two regions. If a signal fans out to
multiple regions, assign the signal to multiple security routing interface regions; one
interface region per destination.

You can assign signals to security routing interfaces and the security level of signals
with the Security tab in the LogicLock Region Properties dialog box, as shown in
Figure 4—4.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-20 Chapter 4: Quartus Il Design Separation Flow
Making Signal Security Assignments

To assign a signal to a security routing interface, follow these steps:

1. On the Security tab of the LogicLock Regions Properties dialog box, select a
signal name in the Signals list, and then click Edit. The Edit Security
Assignments for Signal dialog box appears, as shown in Figure 4-17.

& Alternatively, you can select multiple names in the Signal list by pressing
the Ctrl key, clicking multiple names, and then clicking Edit.

The Signals list is populated with the names of signals entering and exiting the
secured region after analysis and synthesis and a partition merge have been run

successfully.

Figure 4-17. Edit Security Assignments for Signal Dialog Box

Edit Security Assisnments for Signal g

Specify zecurity azzsignments for the signal

Signal name:

|et_2_wrap:Ethemet_2_wrap_1 [Ethemet_2_control_port_readdata[10] .

Security level:
-

Security routing interface:

CPU_CSRA_interface
CPU_ta_Ethernetl
CPU_ta_eth2
CPU_ta_top
Eth1_to_Eth2
EthZ_ta_Pattern_check
Pattern_gen_to_Etherl

OOo0ROrROO

(] 8 | Cancel |

2. If necessary, lower the security level of the signal by specifying the Security level.

3. Select the security routing interface for signal(s) assignment. Signals that fan-out
or fan-in to multiple regions can be assigned to multiple security routing
interfaces.

Understanding Signal Names

The list of signals entering and exiting a secured region are signal names from the
post-map netlist. Signal outputs from a secured region are derived from the output
port name, as specified in the top-level RTL entity contained in the secured region.
Signal inputs to a secured region are derived from the name of the output port name
that feeds the secured region. In the design separation flow, output port names are
preserved through the compilation process, and are used as an alias for the logic or
register that feed them.

The post-map region output signals listed in the signal list coincide with the signal
name in the post-fit netlist. However, combinational signal names from unsecured or
unpartitioned logic that feed a secured region may change through the compilation
process. Many of the RTL signals are optimized during the process of synthesis and

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-21
Making Signal Security Assignments

place-and-route. Frequently, RTL signal names may not appear in the post-fit netlist
after optimization. For example, the compilation process can add tildes (~) to nets that
fan out from a node, making it difficult to decipher which signal nets they actually
represent. Use the post-compilation filter in the node finder to add additional signals
to a security routing interface. When possible, use registered signals as inputs into a
secured region, and register the output signals from a secured design partition.

Working with Global Signals

Global signals are low-skew routing lines that drive throughout the device. Global
signals do not require an interface region to drive into a secured region. In

Cyclone III LS devices, there are 20 global routing resources for use with high fan-out
signals, such as clocks or control signals. Each global signal is accessed by a clock
control block, which are located on the periphery boundary of the device. Each clock
control block can be driven directly by external clock pins, PLL outputs, or a signal
generated from internal logic.

For more information about the clock networks in Cyclone III LS devices, refer to the
Clock Networks and PLLs in Cyclone 11l LS Devices chapter in volume 1 of the Cyclone III
Device Handbook.

In a compilation flow without security assignments, signals with a high fan-out (such
as clock pins and control signals) are automatically promoted to use global clock
resources. In the design separation flow, automatic global promotion is not turned on.
Signals with high fan-out requiring global routing resources must be manually
promoted to drive a clock control block.

Signals cannot be promoted onto a global routing resource through a global signal
assignment from within a secured region. The Fitter only allows a clock promotion
assignment to a signal if the signal is in an unsecured region. If you have a signal
inside of a secured region that must use a global routing resource, you must first route
the signal outside of the secured region before applying a global promotion
assignment. The signal must be assigned to a security routing interface and the
security level of the signal must be lowered.

For a global promotion assignment to be honored, there must be an available clock
control block that is not overlapped by a secured region, and an available routing path
to the clock control block. There are five clock control blocks located on each side of
the device, along the horizontal and vertical axes that run through the center of the
device. Figure 4-18 shows the location of the clock control blocks and the PLLs for a
3CLS70 device in the Chip Planner floorplan.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/cyc3/cyc3_ciii51006.pdf

4-22 Chapter 4: Quartus Il Design Separation Flow
Making Signal Security Assignments

Figure 4-18. PLL and Clock Control Block Location on a EPC3SL70 Device

Block wtiliz
Block utiiz
Resource

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-23
Making Signal Security Assignments

PLLs and clock control blocks can be manually instantiated in the design partition of a
secured region using the ALTPLL and ALTCLKCTRL megafunctions, respectively.
Instantiation of the ALTCLKCTRL megafunction within a secured partition forces the
global promotion of the signal driving the clock control block. To generate a valid
placement when you instantiate PLLs or a clock control block, the secured region
containing the physical resource must overlap a free PLL, a free clock control block, or
both.

There are certain restrictions you should be aware of when you instantiate a PLL
within a secured region. Secured regions with a PLL that are fed by an external clock
pin must contain the PLL and a valid clock pin that can drive the PLL. Each PLL has a
set of dedicated clock control blocks that it can access, located to the right (clockwise)
of the PLL in the device floorplan.

Because automatic promotion of signals onto a global resource is not allowed, a PLL
and the clock control block it drives must not be located in the same secured region. If
your design has a PLL inside of a secured region, you must assign the PLL output to a
security routing interface and then lower the security level of the PLL output.

The clock control block associated with the PLL must not be covered by any secured
region. There are two sets of dedicated clock pins that can drive a PLL input. The pads
for the clock input pins are co-located with the clock control blocks. If you use the
clock input pin that is co-located with the clock control block associated with the PLL,
the clock pin cannot be added as a member of the secured region. Instead, you must
either assign the clock pin to a security routing interface that is connected with the
secured region, or you can apply the LL_| GNORE_| O_PI N_SECURI TY_CONSTRAI NT
assignment to relax the fitter restriction on the clock input pin.

For more information about the LL_I| GNORE_| O _PI N_SECURI TY_CONSTRAI NT
assignment, refer to “Assigning I/O Pins” on page 4-25.

Figure 4-19 shows examples of valid placement and invalid placement of secured
regions that instantiate PLLs, if the LL_| GNORE_I O_PI N_SECURI TY_CONSTRAI NT
assignment has not been applied.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-24

Chapter 4: Quartus Il Design Separation Flow
Making Signal Security Assignments

Figure 4-19. Location of Valid and Invalid PLL, Clock Pin, and Clock Control Block Placement in a Cyclone Il LS Device

DPCLK[9:8]

<_—J1DPCLK7

4
< < CLK[7:4]

—%—<1DPCLK6

< 4 N
> B
5 Remote Clock from
Two Clock Pins
A at Adjacent Edge
d of Device (2)
41
>
N
. \\\
HEA Clock Control
. Blocks (1)
DPCLKO>———
CLK(3:0 o= >
DPCLK1 Co>—A——
.
Secured Region
Clock Control S
Blocks (1) .
\\
Y
5
4 3) | I 4
| € meeenmmnn o
2 ﬁi/;t
N & F
& o= &
£ 8 <
= c 3
o g0
o
a v o
A
HEA
DPCLKO C>—————
CLK[3:0] ool

DPCLKI Co>——F—

\\

A
/E/ Valid Placement (4)
3
ot pococooooo Selennannnsan
3
Remote Clock from
Two Clock Pins
at Adjacent Edge
of Device (2)
>
‘\\
Clock Control
Blocks (1)
—F——<—ppcikz
4

- —<<ciKi74)
——+————<IDPCLke

N Secured Region\

Clock Control N\
N

Blocks (1)

Invalid Placement (5)

Notes to Figure 4-19:
(1) There are five clock control blocks on each side.
(2) Remote clocks cannot be used to feed the PLLs.
(3

(4
(5

N &%
a5 9
[
S &0
=
o v o

)
) Dedicated clock paths can feed into this PLL. However, these are not fully-compensated paths.

) This secured region contains a PLL that is fed by an external clock pin, whose outputs drive the clock control block through an unsecured region.
) This secured region contains a PLL whose output drives an clock control block within the same secured region. This placement is invalid.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-25

Assigning 1/0 Pins

Assigning I/0 Pins

CAUTION

After ensuring that signals that enter or exit a secured region contain a security level
attribute and are explicitly assigned to a security routing interface, you must also
ensure that I/O pin assignments adhere to design separation flow guidelines.
Consider the following three rules, in addition to the typical pin assignment rules,
when assigning I/0 pins with the design separation flow enabled:

m [/O pins that are connected to a secured region must be assigned as a member of
that secured region or assigned to a security routing interface region that abuts the
secured region.

m Secured regions with I/O pins as members cannot share the I/O banks with any
other region.

m I/O pins associated with different secured regions or security levels may not use
adjacent pins.

I/0 pins may be added as members of a secured region, typically when directly
connected to the secured region. To add I/O pins as members of a secured region, in
the LogicLock Regions Properties dialog box, on the General tab, click Add node. If
anI/O pin is a member of a secured region, the I/O pad must be physically contained
within the region, and the secured region must overlap the I/O resource.

If you do not add the I/O pin as a member of the secured region, you must assign the
I/0O signal to a security routing interface that abuts the secured region. This security
routing interface must connect the secured region to the root region or another
unsecured region. Explicitly lower the security level of any output signals from the
secured region that are connected to I/O pins.

1/0 signals that are routed out to unsecured logic are no longer guaranteed to be
physically isolated from other signals in the design.

Each I/0 pin is adjacent to eight other pins: four along the horizontal and vertical
axes, and four in the two diagonal axes, as shown in Figure 4-20.

Figure 4-20. Pin Adjacency

1 2 3 4 5 6 7

O
SVAOLOLOEGZOIC)

Pins D4 and D5
Set to GND

Pins E4

Eight Pins Adjacent L
to Pin E4

G

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-26

Chapter 4: Quartus Il Design Separation Flow
Making Post Compilation Edits

—
[ =
=

Pins from different I/O banks may not share an adjacent I/O pin if one of the I/O
banks contains pins that are members of a secured region. User I/O pins that are
adjacent to a signal in a secured region, which belong to a different I/O bank than the
secured signal, should be assigned to GND in the Quartus II software. For example, in
Figure 4-20, pin E4 is assigned a signal from a secured region, and I/O banks 1 and 7
belong to different LogicLock regions. Pins D4 and D5 are assigned to GND to ensure
that no signal adjacencies exist between the I/O banks.

As a general rule, all unused I/O pins should be assigned to GND in the Quartus II
software and assigned to a ground plane on the PCB. By default, the Quartus II
software assigns unused pins to GND. You can configure this option in the Unused
Pins page of the Device and Pin Options dialog box.

If you must relax a particular I/O restriction for specific signals to meet your design

requirements, you may use the LL_| GNORE_I O_PI N_SECURI TY_CONSTRAI NT assignment,
which is used to bypass normal I/O pin checks for a specific signal. For example, you
can apply this assignment to a clock pin assigned to one of the dedicated clock inputs.

Apply the LL_I GNORE_| O_PI N_SECURI TY_CONSTRAI NT assignment in the Quartus
Settings File (.qsf) located within the project directory of the active design. Note that
there is a single .qsf per project revision.

To disable the I/O signal rule check for the specified pin name in the .qsf, add the
assignment line:

set _instance_assignment -name LL_| GNORE | O PIN_SECURI TY_CONSTRAINT ON -to
<pi n_name>

For more information about the pinouts and pin adjacencies for Cyclone III LS
devices, refer to the Cyclone I1I Device Pin-Out tables. For more information and
guidance about I/O assignments, refer to the Cyclone Il Device Family Pin Connection
Guidelines for Cyclone III LS devices and the I/O Management chapter in volume 2 of
the Quartus I Handbook.

Making Post Compilation Edits

@

Engineering Change Orders (ECOs) and the Rapid Recompile feature make
incremental changes to routing in a post-fit netlist. ECOs are small changes made to
the functionality of a design after the design has been fully compiled. A design is fully
compiled when synthesis and place-and-route are completed.

Any ECOs that do not affect routing, such as changing the LUT mask on an ALM, are
supported. ECOs that affect routing or make incremental changes to the routing in a
post-fit netlist are not permitted in the design separation flow.

For more information about Rapid Recompile option in the Quartus II software, refer
to Incremental Compilation Page (Settings Dialog Box) in Quartus II Help.

Routing Restrictions

During the overall planning of your design, you should be aware of specific design
separation flow routing restrictions, especially during the floorplanning stages. These
routing restrictions are discussed in this section.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/dp/cyclone3/PCG-01003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_tab_qid_incremental_mode.htm

Chapter 4: Quartus Il Design Separation Flow
Routing Restrictions

4-27

Column and row interconnect routing resources on Cyclone III LS devices are
staggered, with a group of routing elements starting at each LAB location. Each

routing element is driven by the LAB location where the wire starts and can reach any
LAB destination along the length of the routing element. Figure 4-21 shows a set of

staggered R4 interconnects.

Figure 4-21. Staggered R4 Interconnects

R4

Interconnects

ENDPOINT
coL coL coL coL CcoL CcoL CcoL CcoL
7 6 5 4 3 2 1 0
—
~
LABs

The Fitter disables routing wires near the edge of a secured region, where routing is

confined within the region. Figure 4-22 shows the Chip Planner displaying used

routing elements in a design with secured regions, using options in the Layer Settings

dialog box and using the background color map I/O banks, with only the Global
Routing and Used Resources options turned on.

Figure 4-22. Chip Planner View of Used Resources

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-28

Chapter 4: Quartus Il Design Separation Flow
Routing Restrictions

Figure 4-22 shows that no routing resources reach outside of LogicLock region
boundaries, except for global routing signals and signals through interface regions.

Long wires are often unusable in secured regions because their length extends beyond
the border of the region. If a secured region abuts the device boundary, you can often
attain an increase in routability, because all of the routing interconnects that start
inside the region and drive toward the edge of the device can be used.

I/0 pads along the top and bottom of the device can only use column interconnects to
drive into the device fabric. The shortest routing element from the I/O to core logic is
a C4 routing wire. I/O pads on the left and right sides of the device can use both C4
and R4 routing elements to reach their LAB destinations. Because column I/Os are
restricted to using C4 interconnects going into the device, a four-LAB fence is created
around secured regions when the boundary of the secured region is within four-LABs
of the top and bottom I/O pads.

Secured regions should be sized at a minimum of 8 x 8 LABs. If a region is smaller
than 8 x 8 LABs, a connection between two LABs that violates the secured region
boundary may occur. For example, in Figure 4-23, any elements along the middle axis
of the 7 x 7 LAB array cannot use any C4 or R4 routing elements, because a C4 routing
element would reach outside the secured region.

Figure 4-23. 7x7 LAB Array

L/IR

Y

LR

LR

L/R,

u/D u/D u/D u/D u/D u/D

LR

LR

L/IR

Number of Signals in Routing Interfaces

In Cyclone III LS devices, every LAB location has 68 routing elements (R4) driving
horizontally in each direction and 48 routing elements (C4) driving vertically in each
direction. The number of connections that can be directly driven by an individual
LAB is 17 connections in the horizontal direction and 12 in the vertical direction. To
guarantee routability, Altera recommends that you have a routing interface height of
at least one-LAB for every 17 signals routing either left or right, and a routing
interface width of one-LAB for every 12 signals routing either up or down.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-29
Routing Restrictions

Figure 4-24, Table 4-2, and Table 4-3 illustrate this concept. Figure 4-24 shows three
secured regions with two security routing regions; one routing signals horizontally
and the other routing signals vertically. Table 4-2 and Table 4-3 list the maximum and
the recommended number of signals crossing each security region.

In Figure 4-24, Hpis both the smaller of the height of the region and the height of the
routing interface. The minimum Wy is one-LAB. Wp( is both the smaller width of the
region and the width of the routing interface. The minimum Hpgc is one-LAB.
Changing W,p or Hpc does not affect the values in Table 4-3.

Figure 4-24. Signals Crossing a Routing Interface

T
s
B

S
S

o
e

-
e
e
e
e
S
S

T
e
T

e

i

i
e
e

e
e
-

R

e
-

e

P

e

-
-
o
o
=
o
-
e
T

R

-
o
iy
iy
iy
o
e

i
B

R
R
e B
o

i
=
-
s
T
o
o
o
o
o
=
=
=
e

i
-
-
=
o
o
o
-
e
=
-
=
e

i
i

L
L
o

i

e
e
SREE e
e

4
i
o
o
o

S
i
-

i

R

s
st
B
P

-
e

e
g%?
i

i

=
e e
i -
i

*‘8‘
-
L
i
a

R

i

o
S

i

i

i

i

e L
T
e

¢¢
e
o
o
o

”
e
T

YW
o
e

b
=
o
-
-
i
)
o
o
o
e
e
L
-
o
o
e
-
e
o
o
-

i
i

4‘3‘

=

e
ey

s
daiaa

4

-
-
o

ey

“3‘

.

e
e

e o0 S oS

“3’
=
e
T
o
A

‘3‘*‘3‘
e
o
=
4&
=
o
o
o
o
o
=
-
.
=
P

o
-
o
o
o
o
o
o
e
o
o
o
o
s
o

o
o
e

P
2

=
o
o
o
e
e
e

e
nannn e

i
o
L

T
o
i

Table 4-2. Maximum Number of Signals Assigned in an Interface Region

From
To
A B C
- 68 X HAB -
68 X HAB i 48 e WBC
- 48 X VVBC -

Table 4-3. Recommended Number of Signals to Ensure Routability

From
To
A B C
—_— 17XHAB -
B 17XHAB - 12><WBC
— 12 x Wi —

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-30

Chapter 4: Quartus Il Design Separation Flow
Routing Restrictions

As a general guideline, keep the security routing interface channel width between the
two connecting secured regions as short as possible and the depth of the channel as
wide as possible. The channel width is the number of LABs that a security routing
interface abuts and the depth of the channel is the number of LABs a signal passes as
it goes through the routing channel.

In Figure 4-25, an optimal security interface for routing AB would have a channel
width equal to the height of secured region A (Hp) and a channel depth of one-LAB
(Wap). Having a wide channel with a short depth increases the number of routing
resources available between two secured regions.

You can use the Routing Congestion task in the Chip Planner for a visual
representation of the routing utilization between secured regions. Routing resources
are filtered by type. Utilization of each routing resource type is highlighted on a color
gradient over the range that you specify. This tool can help you adjust region sizes
and security routing interface channel widths to help you achieve an optimal
floorplan. A design with the Routing Congestion task in the Chip Planner and R24
routing utilization is shown in Figure 4-25.

Figure 4-25. Routing Congestion

Metherret s |{Mleaiter Generatdlicru |

¥ Routing Utilization Settings X

Routing utlzation is caloulated as total resource usage divided
by total avalsble resources on a per lab bass

Interconnect Type

=[] Al mtereannect

R4 interconnact
R24 interconnect
|| C4interconnect

__| C16 imercannect

0% 100%

Mandmum Utiization: 75%

e

Threshold percentage: (65 &

fpattern_checker |

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-31
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow

Application Example: Modifying a Fitter-Generated Floorplan for the
Design Separation Flow

In this application example, the design contains five partitions that must be packed
into secured regions. Figure 4-26 shows a block diagram of the design, the entities of
the design, and the connectivity between the five secured partitions.

Figure 4-26. Connectivity hetween Five Secured Partitions

Connection to /O <¢——» Secure Region 1 <—

.

. <>
Connection to /O <¢——® Secure Region 2 Secure Region 4
o] <> ¢}

;

Connection to /O <¢—® Secure Region 3

Secure Region 5

The following steps outline a recommended design flow for creating a floorplan for
this design:

1. Create a LogicLock region for each partition that must be packed into a secured
region.

2. Set each LogicLock region with the Auto, Floating, On, and Unsecured attributes
for the Size, State, Reserved, and Security Attributes columns, respectively.
Running an initial placement with these settings generates non-overlapping
LogicLock regions that can be used as an initial floorplan.

3. On the Processing menu, point to Start and click Start Early Timing Estimate to
run an initial place and route. The initial place and route approximates the size of
each region and the general placement of the LogicLock regions relative to other
LogicLock regions to achieve timing closure. The floorplan generated by the early
timing estimate is shown in Figure 4-27.

Figure 4-27. Initial Fitter-Generated Floorplan

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-32 Chapter 4: Quartus Il Design Separation Flow
Application Example: Modifying a Fitter-Generated Floorplan for the Design Separation Flow

4. In the LogicLock Regions window, select the LogicLock regions, right-click, and
then click Set Size and Origin to Previous Fitter Results.

5. Use the Design Partition Planner to view the connectivity between the different
regions. You can experiment with the relative placement of the blocks by dragging
and dropping each design partition. The wire bundles between design partitions
help you to determine a placement that has non-overlapping routing channels.

I'=" You must also consider the connectivity to the I/O banks when arranging
your floorplan. You can toggle the display of the connections between the
partitions and the I/O banks within the Design Partition Planner to help
you properly allocate I/O resources, as well as avoid conflicts between I/O
connections and inter-partition signals. To display routing between
partitions and the I/O banks, turn on Display connections to I/O banks in
the Bundle Configuration dialog box.

6. Set each LogicLock region to the desired security attribute.

7. In the Chip Planner, adjust the size and placement of each LogicLock region using
the relative placement you created with the Design Partition Planner. Note the
following considerations when modifying the floorplan:

m The floorplan must be complete. If there is unsecured logic that is
non-contiguous due to the placement of a secured region, use an empty
reserved LogicLock region to prevent a non-routable placement.

m  Each secured region must be a minimum of 8 x 8 LABs.

m Each region that has I/O pins added as members of the LogicLock region
should overlap the I/O bank to which it is connected. You can use the I/O
bank background color map to visualize the boundaries between the I/O
banks (Figure 4-28).

m All global resources (such as clock pins and PLLs) that are required by
unsecured logic must not be covered by a secured region.

Figure 4-28. 1/0 Banks Layers Setting for Viewing Connectivity of LogicLock Regions to 1/0 Banks

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-33
Report Panels

8. Create security routing interfaces between each of the secured regions. Assign all
signals entering or exiting a region to a security routing interface.

The final floorplan result for this application example is shown in Figure 4-29.

Figure 4-29. Final Floorplan

Report Panels

After the Fitter successfully places and routes a design with secured regions, the
Quartus II software generates security reports. Use the security reports to review the
secured regions, their associated routing interfaces, all inputs and outputs from each
secured region, and the I/O bank usage for each secured region. The security reports
are located in the Fitter section of the Compilation reports.

Secured LogicLock Region Summary

This report provides a summary of all secured regions in your design. Table 4—4
describes each column in the Secured LogicLock Region Summary report.

Table 4-4. Secured LogicLock Region Report (Part 1 of 2)

Column Name Description

Secured LogicLock Region | Lists all secured LogicLock regions in the design.

Security Attribute Ir_éztlzrt]he security attribute (unsecured,1, 2, or security routing interface) of the LogicLock
Partition Assigned Lists the design partition assigned to the secured region.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-34

Chapter 4: Quartus Il Design Separation Flow
Report Panels

Table 4-4. Secured LogicLock Region Report (Part 2 of 2)

Column Name

Description

Number of Input Signals
(Total Fanout)

Lists the number of inputs and fan-outs into a region. The input counts the number of unique
drivers that feed a secured region. The fan-out counts the total number of unique destinations
being fed by the input signals into the secured region. Figure 4-30 illustrates input signals and
fan-outs to a region.

Number of Qutput Signals
(Total Fanout)

Lists the number of outputs and fan-outs from a region. The output counts the number of
unique drivers sourcing a signal from the secured region. The fan-out counts the total number
of unique destinations fed by the output signal.

Figure 4-30. Input Signals and Fan-Quts to a Region

Secured Region B

Secured Region A Set

D Q
|/ CLRN
I_ Set

CLRN

w)
O

Secured Region A - Number of Output Signals (Total Fanout) : 1
Secured Region B - Number of Input Signals (Total Fanout) : 1

Security Routing Interfaces

This report summarizes the security routing interfaces. Table 4-5 describes each
column in the Security Routing Interfaces report.

Table 4-5. Security Routing Interface Report

Column Name

Description

Interface Name

Lists all security routing interfaces in the design.

Abutting Region A

First region that the security routing interface abuts (touches the border of the secured
region).

Abutting Region B

Second region that the security routing interface abuts (touches the border of the secured
region).

Number of Signals A to B
(Total Fanout in B)

Lists the number of signal connections between region A and region B. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region A. Fan-out lists
the number of unique destinations in region B that are fed by region A.

Number of Signals B to A
(Total Fanout in A)

Lists the number of signal connections between region B and region A. The counts are shown
as signals and fan-outs. Signals list the number of unique drivers from region B. Fan-out lists
the number of unique destinations in region A that are fed by region B.

Secured LogicLock Region Inputs and Outputs

This set of reports provides a detailed list of every signal that enters or exits a secured
region. There is one report per secured region.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 4: Quartus Il Design Separation Flow 4-35
Quartus Settings File Syntax

Security 1/0 Bank Usage

This report displays the secured LogicLock region associated with each I/O bank, lists
the number of pins within each region, and lists the number of pins in use. Table 4-6
describes each column in the Secured LogicLock Region Inputs and Outputs report.

Table 4-6. Secured LogicLock Region Input and Output Report

Column Name Description
I/0 Bank Lists all available I/0 banks on the device.

An I/0 bank becomes associated with a secured LogicLock region if any portion of the I/0 bank
Associated Region is covered by the region. If no secured region covers an I/0 bank, “Unsecured Logic” is

displayed, and all pins of the 1/0 bank are available for unsecured use.

Pin Locations Used /
Pin Locations Covered
by Region

Displays the ratio of pins with a signal assignment in the I/0 bank to the number of possible 1/0
pin assignments.

Quartus Settings File Syntax

This section contains the syntax description for each Quartus Settings File (.qsf)
assignment in the design separation flow.

LL_SECURITY_ROUTING_INTERFACE
This command changes a LogicLock region assignment to a security routing interface.
Type: Boolean; (ON/OFF - Defaults to OFF)
Syntax:

set gl obal _assi gnnent -name LL_SECURI TY_ROUTI NG | NTERFACE <val ue> \ -section_id
<section_identifier>.L_REG ON SECURITY_ LEVEL

LL_REGION_SECURITY_LEVEL

This command identifies the security level of a LogicLock region.
Type: Enumeration—defaults to UNSECURED

1

m 2

s UNSECURED
Syntax:

set gl obal _assignnent -name LL_REG ON SECURI TY_LEVEL <val ue> \
-section_id <section_identifier>

LL_MEMBER_OF_SECURITY_ROUTING_INTERFACE

This command assigns an I/O pin from a secured region to a security routing
interface. Both <value> and <section_id> denote the name of the routing interface
region. <to> specifies the name of the signal.

Type: String

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



4-36

Chapter 4: Quartus Il Design Separation Flow
Document Revision History

Syntax:

set _instance_assignment -name \ LL_MEMBER OF SECURI TY_ROUTI NG_| NTERFACE
<value> -to <to> \
-section_id <section_id>

LL_SIGNAL_SECURITY_LEVEL

This command sets the security level of a signal. The default value is the security level
of the region that generates the signal. This assignment may be used only to lower a
security level.

Type: Enumeration

m  UNSECURED

1

m 2

Syntax:

set _instance_assi gnnent -nane LL_SI GNAL_SECURI TY_LEVEL <val ue> \
-to <to> -section_id <section_id>

Document Revision History

Table 4-7 shows the revision history for this chapter.

Table 4-7. Document Revision History

Date Version Changes

m Modified the former “Avoiding Child Partitions” section into the new “Avoiding Multiple
Design Partitions With a Secured Region” on page 46 section and added information
about multi-hierarchy partitions

m Updated the “Using Secured Regions” on page 4-9 section

m Updated the “Making Design Separation Flow Location Assignments in the Chip Planner”
on page 4-10 section

m Updated the “Creating a Complete Floorplan” on page 4—14section

December 2010 10.1.0 | = Updated the “Working with Global Signals” on page 4-21 and “Assigning 1/0 Pins” on

page 4-25 sections with information about the
LL_| GNORE_| O_PI N_SECURI TY_CONSTRAI NT assignment

m Added the “Making Post Compilation Edits” on page 4-26 section

m Updated the “Number of Signals in Routing Interfaces” on page 4-28 section

m Added feature licensing information

m Updated figures and overall editorial update

m Template update

July 2010

10.0.0

Initial release. Content originated from AN 567: Quartus Il Design Separation Flow.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

«o Take an online survey to provide feedback about this handbook chapter.

December 2010  Altera Corporation


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

=)y Section Il. System Design with Qsys

CAUTION

Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

This section provides information about Qsys. Qsys is a powerful system integration
tool which is included as part of the Quartus II software. Qsys automates the task of
capturing of integrating customized HDL components, which may include IP cores,
verification IP, and other design modules. You can use Qsys to integrate your own
components with the components that Altera® or third-party developers provide. In
some cases, you can implement an entire design using components from the Qsys
component library.

This section includes the following chapters:
m Chapter 5, Creating a System with Qsys

This chapter describes the Qsys system integration tool.
m Chapter 6, Creating Qsys Components

This chapter describes Qsys components and how to define Qsys components
using a GUL

m Chapter 7,Qsys Interconnect

This chapter discusses the Qsys interconnect, a high-bandwidth structure for
connecting components that use Avalon® interfaces.

m Chapter 8, Component Interface Tcl Reference

This chapter describes an alternative method for defining Qsys components by
declaring their properties and behaviors in a Hardware Component Description
File (_hw.tcl). It also provides a reference for the Tool Command Language (Tcl)
commands that describe Qsys components.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

-2 Section II: System Design with Qsys

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



A\ [

=\ 5. Creating a System with Qsys

Q1151020-10.1.0

CAUTION

Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

Qsysis a powerful system integration tool which is included as part of the Quartus® I
software. Qsys captures system level hardware designs at a relatively high level of
abstraction and also automates the task of defining and integrating customized HDL
components, which may include IP cores, verification I, and other design modules.
Qsys facilitates design reuse by packaging and making available your custom
components and systems. Qsys integrates your custom components with Altera® and
third-party developer components. In some cases, you can implement an entire
design using components from the Altera component library. During system
generation, Qsys automatically creates high-performance interconnect logic from the
connectivity options you specify, eliminating the error-prone and time-consuming
task of writing HDL to specify the system-level connections.

Qsys provides the following advantages for hardware system design:
®m Automates the process of customizing and integrating components
Supports modular system design

Supports visualization of large systems

Supports optimization of interconnect fabric and pipelining within the system

Fully integrated with the Quartus II software

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
e

and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective hol

1s as described at

www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010

Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51020
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

5-2

Chapter 5: Creating a System with Qsys
Qsys GUI

Qsys GUI

Qsys supports hierarchical system design. You can include any Qsys system that
exports an interface as a component in another Qsys system. Figure 5-1 shows the top
level of a Qsys example design that implements a PCI Express to Ethernet bridge. This
example combines separate PCI Express and Ethernet subsystems with Altera’s DDR3
SDRAM Controller with UniPHY IP core. Different members of the design team could
develop the various subsystems simulataneously, decreasing time-to-market for the
complete design. For a detailed discussion of this example design refer to “Example
Hierarchical System” on page 5-12.

Figure 5-1. Top-Level Block Diagram for a PCI Express to Ethernet Bridge

PCI Express

DDR3 Subsystem
SDRAM Mem
Controller CSR

PHY
Cntl

Mem Embedded Cntl
Slave

Ethernet

Hierarchical system design in Qsys offers the following advantages:
m Enables team-based, modular design by dividing large designs into subsystems
m Enables design reuse by allowing you to use any Asys system as a component

m Enables scalability by allowing you to instantiate multiple instances of a Qsys
system

Qsys supports enhanced component parameterization, allowing you to design for
maximum efficiency and utility. For example, you can specify parameters that can be
fed to a program that generates the RTL at run time, allowing unlimited
parameterization.

This chapter introduces Qsys, including the following sections:
m “Qsys GUI” on page 5-2
B “Qsys Design Flow” on page 5-8

m “Example Hierarchical System” on page 5-12

You can launch Qsys from the Quartus II software GUI or from a command prompt.
To start Qsys from the Quartus II software, on the File menu click New. In the New
dialog box, click Qsys System File. To start Qsys at the command line, type
gsys-edit «.

(?) For more information about the Qsys GUI, refer to About Qsys in Quartus 1T Help.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_about_qsys.htm

Chapter 5: Creating a System with Qsys 5-3

Qsys GUI

Qsys Component Library

The Qsys component library contains all the components found on the component
search path that you specify, whether or not they are included in a Quartus II project.
These components include Altera-provided IP cores, third-party IP cores, and custom
IP cores that you provide. Qsys components are listed in the component library and
can be used in designs if they have exported interfaces. The component library also
includes all the components that are used the Qsys interconnect.

Altera recommends that you use standard Avalon interfaces in your component
designs. By using these standard interfaces, you can create components that
interoperate with the components in the Qsys component library. In addition, you can
take advantage of bus functional models (BFMs), monitors, and other verification IP
when verifying your design. However, Qsys allows you to design with any interface
that your design requires. If a set of signals cannot adhere to the Avalon Interface
Specifications, you can encapsulate any arbitrary collection of signals as a conduit
interface. You can connect conduit interfaces inside of Qsys or export them for
connection outside of the immediate module.

For more information all interface types, refer to the Avalon Interface Specifications. For
more information about BFMS, refer to the Avalon Verification IP Suite User Guide.

Altera and third-party developers provide ready-to-use Qsys components. The
component library has many different types of components including all of the
following:

m  Microprocessors, such as the Nios II processor

m DSP IP cores, such as the FIR Compiler I

m Interface protocols, such as the PCI Express Compiler IP core

m Transceiver PHYs, such as the XAUI PHY IP core

m  Memory controllers, such as the RLDRAM II Controller with UniPHY

m Avalon Streaming (Avalon-ST) components, such as the Avalon-ST Multiplexer IP
core

m  Qsys interconnect components, such as the Qsys master router which decodes
addresses

These components are installed automatically with the Quartus II software, and are
available in the Qsys component library.

Integrating Custom Components

You can use the following steps to integrate you custom components into a Qsys
system:

1. Determine the interfaces that interact with your custom component.
2. Create the component logic using either Verilog HDL or VHDL.

3. Use the Qsys component editor to define the_hw.tcl file.

4. Instantiate the component in the system.

Once you have created a Qsys component, you can use the component in other Qsys
systems and share the component with other design teams.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

5-4 Chapter 5: Creating a System with Qsys
Qsys GUI

e TForinstructions on developing a custom Qsys component, details about the file
structure of a component, or the component editor, refer to the Creating Qsys
Components chapter in volume 1 of the Quartus II Handbook.

Integrating Third-Party Components

You can also use Qsys components created by third-party IP developers. Altera
awards the Qsys Certified label to IP cores that are fully supported in Qsys. These
cores support Avalon interfaces and may include timing and placement constraints,
software drivers, simulation models, and reference designs.

To find Qsys third-party components that you can use in Qsys systems, follow these
steps:

1. On the Tools menu in Qsys, click Download Components.

2. On the Intellectual Property & Reference Designs web page, type
®ys Certified+ in the Search box labeled Search IP and Reference Designs
products by their descriptions.
“ e Youcanalso do advanced searches by clicking on Launch the Altera Product Selector
Guide from the Altera Product Selector web page and then clicking the IP Selector
tab.

Adding System Contents

The System Contents tab displays the components that you have added to your
system.

Adding Components

To add a component to your system, click on the component in the Component
Library and then click the Add button. A parameter editor appears allowing you to
customize the component.

['=” Youcan type some or all of the component’s name in the Component Library search
box to display all components including that string.

Connecting Components

You specify connections at the interface level; individual signals within connected
interfaces are connected automatically. You connect interfaces of compatible types
and opposing directions. For example, you can connect an Avalon Memory-Mapped
(Avalon-MM) master interface to an Avalon-MM slave interface, and an interrupt
sender interface to an interrupt receiver interface. To see the possible connections for
an interface, click the System Contents tab and then click the interface name. Hover

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/products/selector/psg-index.html

Chapter 5: Creating a System with Qsys 5-5

Qsys GUI

your cursor in the Connections column. To see the connectivity matrix where open
circles represent possible connections and black circles indicate connections that you
have made. To make a connection, click on the open circle at the intersection of the
two interface names. Clicking a second time removes the connection. Figure 5-2
illustrates the connectivity matrix.

Figure 5-2. Connections Column

System Contents rSystem Inspector rAddress Map rclock Settings r Project Settings r Ceneration r_I-

Use Connections Module Description
B sgdma_0 Scatter-Gather DMA Controller
o— clk Clock Input
ct—?—c—f)—o—o—o—o Csr Avalon Memory Mapped Slave
L descriptor_read Avalon Memory Mapped Master
descriptor_write Avalon Memory Mapped Master
m_read Avalon Memory Mapped Master
out Avalon Streaming Source
B triple_speed_etherne... Triple-Speed Ethernet
L transmit Avalon Streaming Sink
T ?—D— receive_clock_conn... |Clock Input
receive Avalon Streaming Source
%)—) transmit_clock_con... |Clock Input
i i i control_port Avalon Memory Mapped Slave
(I>—> control_port_clock_..|Clock Input
[ ey conduit_connection |Canduit Endpoint
0= cal_blk_clk Conduit Endpaoint
B sgdma_1 Scatter-Gather DMA Controller
— clk Clock Input
i \(—<|>—()—0—< Csr Avalon Memory Mapped Slave
L descriptar_read Avalon Memory Mapped Master
descriptor_write Avalon Memory Mapped Master
[ ( m_write Avalon Memory Mapped Master
(r (| ¢ in Avalon Streaming Sink

(@ For more information, refer to Connecting Qsys Components in Quartus IT Help.

Filtering Components

You can use the Filters dialog box to filter the display of your system in the System
Contents tab. You can filter the display of your system by interface type, instance
name; interface type, or using custom tags. For example, you can use filtering to view
only instances that include an Avalon-MM interface or instances that are connected to
a particular Nios II processor.

(?) For more information, refer to the Filters Dialog Box in Quartus II Help.

Using the System Inspector

The System Inspector tab displays the underlying model of your complete system.
The System Inspector provides comprehensive details about your system such as the
following information:

m The connections between all signals.
m The signal names of all signals included in exported interfaces.

m The internal connections of Qsys subsystems that are included as components.

In contrast, the System Contents tab, displays only the exported interfaces
of Qsys subsystems included as components.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_conn_comps.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_db_filter.htm

5-6

Chapter 5: Creating a System with Qsys
Qsys GUI

m The global parameter settings that you specified on the Project Settings tab.

You can use the System Inspector tab to review and change component parameters
and to review interface timing. For example, Figure 5-3 shows the timing for the
Avalon-MM DMA write master for the PCI Express-to-Ethernet system illustrated in
Figure 5-8 on page 5-14.

Figure 5-3. Avalon-MM Write Master Timing Waveforms Available on Project Settings Tah

[~ Write Waveform

« ML
write.n [\ T
chipselect \ i v
waitrequest || 7 1\ I
address  __ Jao  Jar |
burstcount 1 )z |
byteenable _ Jeeo  Jeer | Yee2 ) |
writedata | Joo Jor | Yoz ) |

|' Read Waveform

clke
write_n

%

chipselect

waitreguest

address
byteenakle
readdata oo Yo AN Moz

| BED f

]

To display the timing for an interface, expand the component to display its interfaces
and click on the interface name.

Defining the Address Map

The Address Map tab provides a table including all the Avalon-MM slaves in your
designand the address range that each connected Avalon-MM master uses to address
that slave. The table shows the slaves on the left and masters along the top, with the
address span of the connection shown in each cell. A blank cell implies that there is no
connection between that master and slave.

Follow these steps to change or create a connection between master and slave
components:

1. In Qsys, click the Address Map tab.

2. Locate the table cell that represents the connection between the Avalon-MM
master and slave component pair.

3. Either type in a base address or update the current base address in the cell.

=~ You can design a system where two Avalon-MM masters see Avalon-MM slave at

different addresses. If you use this feature, the Base and End address columns of the
System Contents tab are labeled mixed rather than providing the address range.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 5: Creating a System with Qsys 5-7
Qsys GUI

Specifying Clock Settings

You can use the Clock Settings tab to define the clocks in your system. The Clock
Settings tab defines the Name, Source, and frequency (MHz) of each clock. Clicking
the Add button adds a new clock. To change the default values, click in the
appropriate column, backspace, and type the new value.

(@) For more information, refer to the Adding Components to a Qsys System (To define clock
domains in a system) in Quartus II Help.

Specifying Project Settings

You can use the Project Settings tab to view and change the properties of your Qsys
system. Table 5-1 describes system-level parameters available on the Project Settings
tab.

Table 5-1. Project Settings Parameters

Parameter Name Description

Specifies the Altera device family. If your final design targets.a HardCopy® series device,

Bvice Family specify that device here.

Specifies the default implementation for automatically inserted clock crossing adapters. The
following choices are available:

m Handshake-This adapter uses a simple hand-shaking protocol to propagate transfer
control signals and responses across the clock boundary. This methodology uses fewer
hardware resources because each transfer is safely propagated to the target domain
before the next transfer can begin. The Handshake adapter is appropriate for systems
with low throughput requirements.

Clock Crossing Adapter Type | w FIFO-This adapter uses dual-clock FIFOs for synchronization. The latency of the
FIFO-based adapter is a couple of clock cycles more than the handshaking clock crossing
component, but the FIFO-based adapter can sustain higher throughput because it can
support multiple transactions in flight at any given time. The FIFO-based clock crossers
require-more resources. The FIFO adapter is appropriate for memory mapped transfers
requiring high throughput across clock domains.

m Auto-if you select Auto, Qsys specifies the FIFO adapter for bursting links and the
Handshake adapter for all other links.

Specifies the maximum number of pipeline stages on each command and response path
that Qsys may insert to increase the fyax at the expense of additional latency. You can
specify between 0—4 pipeline stages, where 0 means that the interconnect has a

Max Additional Latency combinatorial datapath.This setting is per-Qsys system or subsystem, meaning that each
subsystem can have a different setting. Note that this additional latency is for both the
command and response directions for the two Qsys systems even if you combine them into
a single Quartus Il project.

When this option is on, Qsys creates a global reset bus for your design. Turn this option off
if you want control over reset connectivity. If you turn this option off, you must avoid reset
loops and system lockup. For example, resetting an Avalon-MM slave while it is responding
to a burst read request results in system lockup. The default setting for this option is on.

Global Reset

If you turn this option on, Qsys uses the SOPC Builder naming conventions for port names
and exports the interfaces that were exported in the original SOPC Builder system. This
option is only for backwards compatibility for legacy designs created in SOPC Builder.

Use SOPC Builder Port
Naming

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_add_comp.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_add_comp.htm

5-8 Chapter 5: Creating a System with Qsys
Qsys Design Flow

System Generation

You specify the files you want to generate on the Generation tab. You can generate
simulation models, HDL files for Quartus II synthesis, or a Block Symbol File (.bsf)
for schematic design. By default, Qsys places these output files in a subdirectory of
your project directory. To change the default behavior, click on the Output Path
directory, specify a new directory.

You must add the Quartus II IP File (.qip) file to your Quartus II project. The .qip file
is stored in the synthesis directory. It lists the files necessary for Quartus II
compilation. The .qip file includes references to the following information:

m HDL files used in the Qsys system
m TimeQuest Timing Analyzer Synopsys Design Constraint (.sdc) files
m Component definition files for archiving purposes

(@ For more information about adding files to your Quartus II project, refer to Managing
Files in a Project in Quartus II Help.

Viewing the HDL Example

The HDL Example tab provides the top-level HDL definition of your Qsys sytem in
either Verilog HDL or VHDL. This tab also displays VHDL component declarations.
You can copy this example and paste it into a top-level HDL file that instantiates the
Qsys system, if the system is not the top-level module in your Quartus II project.

Qsys Design Flow

Figure 54 illustrates an example bottom-up design flow in Qsys which starts with
component design. As this flow diagram illustrates, the typical design flow includes
the following high-level steps:

1. Package your component for Qsys using the Component Editor.

2. Simulate at the unit-level, possibly incorporating Avalon BFMs to verify the
system.

3. Complete the Qsys design by adding other components, specifying interrupts,
clocks, resets, and addresses.

Generate the Qsys system.
Perform system level simulation.
Constrain and compile the design.

Download the design to an Altera device.

®© N o 9

Test in hardware.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm/#mergedProjects/program/pgm/pgm_intro.thm
http://quartushelp.altera.com/10.1/master.htm/#mergedProjects/program/pgm/pgm_intro.thm

Chapter 5: Creating a System with Qsys
Qsys Design Flow

5-9

Figure 5-4. Complete Qsys Design Flow

@ Package Component
Using Component Editor

\4

@2 Simulation at Unit-Level,
Possibly Using Avalon BFMs

Simulation Give Yes

Expected Results?

Debug Design

~ | Complete System, Adding
| Components, IRQs, Addrs

\ 4

@ Generate Qsys
System

\ 4

Perform System-Level
Simulation

V@

Simulation Give
Expected Results?

Debug Design

Yes

Constraint, Compile

in Quartus Il Generating .sof

\ 4
@ Download .sof to PCB
y | with Altera FPGA

©

HW Testing Give
Expected Results?

Qsys System Complete

Modify Design or

Constraints

[l=" In the alternative top-down valid design flow, you begin by designing the Qsys
system and then define and instantiate custom Qsys component. This approach

clarifies the system requirements earlier in the design process.

Designs targeting HardCopy devices are require specific design constraints.

Consequently, if you are targeting a HardCopy series device, you must verify you

design for the HardCopy companion device.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



5-10 Chapter 5: Creating a System with Qsys
Qsys Design Flow

Follow these guidelines to verify your design for both devices:

1. In the Quartus II Device dialog box, select both the FPGA and the appropriate
HardCopy companion device.

2. In Step 8 of the design flow shown in Figure 54, compile for both the FPGA and
HardCopy device.

3. After Step 10 of the design flow shown in Figure 5-4, if FPGA passes all functional
simulation and hardware verification tests, generate the HardCopy handoff
archive and send this archive to the HardCopy Design Center for the backend flow
and tapeout.

(@) For more information about designing for HardCopy devices, refer to About Designing
HardCopy Devices in Quartus II Help.

Generating Output Files

Qsys system generation creates the interconnect between components. In addition to
the files for simulation and synthesis, Qsys creates a .bsf and an HTML datasheet.

Figure 5-5 illustrates the directory structure for the output files.

Figure 5-5. Qsys Generated Files Directory Structure

<project_name>.
<qsys_design>.qsys
<qsys_design>.bsf
<qsys_design>.sdc
<qgsys_design>.html
<qsys_design>.qip
<qsys_designs.sopcinfo

<qsys_design>/synthesis
<qsys_design>.v

(2] <component_name>

C:l <qsys_design>/sim_verilog
<qsys_design>/sim_vhdl|

ﬁ <component_name>  or
<component_name>.v or .vhd

Table 5-2 describes the files that Qsys generates. Each time you generate your system,
Qsys overwrites these files. If you have additional constraints, such as board-level
timing constraints, Altera recommends that you create a separate Synopsys Design
Constraints File (.sdc) and include that file in your Quartus II project.

Table 5-2. Qsys Generated Files (Part 1 of 2)

File Name or Directory Name Description

Qsys System File (.qsys). The .gsys file contains a list of system components,

<system_name>. ; . o
system_name>.qsys connections and their parameterizations.

A Block Symbol File (.bsf) representation of the top-level Qsys system for use in

<system_name>.bst Quartus 11 Block Diagram Files (.bd).

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/quartus/common/help/master.htm#mergedProjects/comp/migrate/comp_view_design_hc2.htm

Chapter 5: Creating a System with Qsys 5-11
Qsys Design Flow

Table 5-2. Qsys Generated Files (Part 2 of 2)

File Name or Directory Name Description

This is a datasheet for the system which provides a system overview including the
following information:

m All external connections for the system

= A memory map showing the address of each Avalon-MM slave with respect to
each Avalon-MM master to which it is connected

m All parameter assignments for each component

Qsys information file (.sopcinfo) that describes all of the components and
connections in your system. This file is a complete system description, and is used
by downstream tools such as the Nios Il tool chain. It also describes the
parameterization of each component in the system; consequently, you can parse its
contents to get requirements when developing software drivers for Qsys
components.

Synopsys Design Constraints File (.sdc). Provides constraints for timing analysis
for Timequest. This file only includes constraints for the Qsys system.

This directory includes the files that the Quartus 1 software uses to synthesize your
design. These files are over-written each time you generate your system.

This file lists the Quartus Il software needed to compile your design. You must add
the .qip file to your Quartus Il project.

<system_name>.html

<system_name>.sopcinfo

<system_name>.sdc

synthesis

<system_name>.qip

<system_name>.v or

<system_name>.vhd An HDL file for the top-level Qsys system and for each component in the system.
<component_names>. or The files under the <system_name>/ynthesis directory are used for synthesis.
<component_name>.vhd

sim_verilog This directory includes the files to simulate your design.
<system_name>. or
<system_name>.vhd An HDL file for the-top-level Qsys system and for each component in the system.
<component_name>.N or The files under the <system_name>/imulation directory are used for simulation.

<component_name>.vhd

Simulating a Qsys System

To simulate your Qsys system, first use Qsys to create a simulation model. Enable
Create Verilog simulation model and click Generate on the Generation tab. This
command creates Verilog simulation model files in the specified Output Directory,
along with a ModelSim® example simulation script that compiles the system design
files in the correct order and sets up the ModelSim simulation environment. You can
use the generated ModelSim script mti_setup.tcl as an example for your testbench
and simulation environment, or to create scripts for the VCS and NC-Sim simulators.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



5-12

Chapter 5: Creating a System with Qsys
Example Hierarchical System

You can add monitors to Avalon-MM and Avalon-ST interfaces in your system to
verify protocol correctness and test coverage with a SystemVerilog simulator.

Figure 5-6 demonstrates the use of monitors. It places an Avalon-MM monitor
between the previously connected pcie_compiler bar 1_0_Pr ef et chabl e Avalon-MM
master interface and the dma_0 control _port _sl ave Avalon-MM slave interface.

Figure 5-6. Inserting an Avalon-MM Monitor between Avalon-MM Master and Slave Interfaces

E pcie_compiler_0 PCl Express Compiler
avalon_clk Clock Input
— cal_blk_clk Clock Input
— barl_0_Prefetchable |Avalon Memory Mapped Master
Control_Register_A... |Avalon Memory Mapped Slave
Tx_Interface Avalon Memory Mapped Slave
L exported_connection |Conduit Endpaoint
E mm_monitor_0 Altera Avalon MM Maonitor
T clk Clock Input
s0 Avalon Memory Mapped Slave
mio Avalon Memory Mapped Master
B dma_0 DMA Controller
— clk Clock Input,
( control_port_slave Avalon Memory Mapped Slave
read_master Avalon Memory Mapped Master
[ r——‘—< write_master k Avalon Memary Mapped Master

In a similar manner, you can insert an Avalon-ST monitor between Avalon-ST source
and sink interfaces. You can also add BEM components that drive the external
interfaces of your system components.

For more information about using BEMs and system monitors, including tutorials
demonstrating sample systems, refer to the Avalon Verification IP Suite User Guide.

To simulate a Nios II processor running software code, you must generate a Nios II
memory initialization file in the Nios II Software Build Tools (Nios II SBT) for Eclipse.
Right-click on the application project in Eclipse, point to Make Targets, and choose
Build, then select the mem_init_install and click Build. This Tcl file provides an
example of a script that compiles the design files and sets up the ModelSim
simulation environment.

In the Quartus II software version 10.1, you can simulate application code for one
Nios II processor in your system at a time, using one info.meminit file.

For more information about the Nios II SBT for Eclipse, refer to Getting Started with the
Graphical User Interface in the Nios II Software Developer’s Handbook. For more
information on the status of simulation in the beta release of Qsys in the Quartus II
version 10.1, refer to the Quartus II Release Notes.

Example Hierarchical System

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

Figure 5-7 shows the details of the PCI Express example subsystem which is also
illustrated at a very high level in Figure 5-1 on page 5-2. In this example system, a
software application running on the root complex processor programs the DMA
controller. The DMA controller’s Avalon-MM read and write master interfaces initiate
transfers to and from the DDR3 memory and to the PCI Express Avalon-MM Tx data
port. The system exports the DMA master interfaces through an Avalon-MM pipeline
bridge. As the figure illustrates, all three masters connect to a single slave interface.

December 2010  Altera Corporation


http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 5: Creating a System with Qsys 5-13
Example Hierarchical System

During system generation, Qsys automatically inserts arbitration logic to control
access to this slave interface. By default, the arbiter provides equal access to all
requesting masters; however, you can weight the arbitration by changing the number
of arbitration shares for the requesting masters. A second Avalon-MM pipeline bridge
allows the control and status interfaces to be connected internally and also exported.
“ e For more information, refer to “Arbitration” in the Qsys Interconnect chapter in
volume 1 of the Quartus II Handbook.

Figure 5-7. PCI Express Subsystem Block Diagram

PCI Express Subsystem

DMA

PCI Express
Controller

IP Core

CSR CSR

PCle Link

(exported
to PCle root port)

\ 4 A
Avalon-MM Plpeline Avalon-MM Plpeline
Bridge (Qsys) Bridge (Qsys)
? Cntl and Status Avalon-MM Slave

|

(exported to Embedded Controller)

DMA Avalon-MM Master
(exported to DDR3 Controller)

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf

5-14

Chapter 5: Creating a System with Qsys
Example Hierarchical System

Figure 5-8 shows the Qsys representation of the PCI Express subsystem.

Figure 5-8. Qsys Representation of the PCI Express Subsystem

Figure 5-9 shows the details of the Ethernet example subsystem from Figure 5-1. In
this subsystem, the transmit (TX) DMA receives data from the DDR3 memory and
writes it to the Altera Triple-Speed Ethernet IP core using an Avalon-ST source
interface. The receive (RX) DMA accepts data from the Triple-Speed Ethernet IP core
on its Avalon-ST sink interface and writes it to DDR3 memory.

The read and write masters of both Scatter-Gather DMA controllers and the
Triple-Speed Ethernet IP core connect to the DDR3 memory through an Avalon-MM
pipeline bridge. This Ethernet example subsystem exports all three control and status
interfaces through an Avalon-MM pipeline bridge which connects to a controller
outside of the Qsys system.

Figure 5-9. Scatter-Gather DMA-to-Ethernet Example Subsystem

Ethernet Subsystem

Qsys inserts

Scatter Gather
DMA

CSR

arbitration
logic
Avalon-MM
Pipeline
< DDR3. mBridge |
(Qsys) B

Scatter Gather
DMA

CSR?

m Ethernet

Triple Speed
Ethernet

f

Avalon-MM Pipeling
Bridge (Qsys)

CSR

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 5: Creating a System with Qsys

Example Hierarchical System

5-15

Figure 5-10 shows the Qsys representation of the Ethernet subsystem.

Figure 5-10. Qsys Representation of the Ethernet Subsystem

Use Connections Module Description
B sgdma_0 Scatter-Gather DMA Controller
——— Csr Avalon Memory Mapped Slave
descriptor_read Avalon Memory Mapped Master
descriptor_write Avalon Memory Mapped Master
— csr_irg Interrupt Sender
m_read Avalon Memory Mapped Master
out Avalon Streaming Source
[ = triple_speed_ethernet_0 Triple-Speed Ethernet
transmit Avalon Streaming Sink
— receive Avalon Streaming Source
—_— control_port Avalon Memory Mapped Slave
— conduit_connection Conduit Endpoint
L cal_blk_clk Conduit Endpaoint
B sgdma_1 Scatter-Gather DMA Controller
Csr Avalon Memory Mapped Slave
descriptor_read Avalon Memory Mapped Master
descriptor_write Avalon Memory Mapped Master
— csr_irg Interrupt Sender
m_write Avalon Memory Mapped Master
in Avalon Streaming Sink
E amm_bridge_0 Avalon-MM Bridge
C— avalon_slave Avalon Memory Mapped Slave
avalon_master0 Avalon Memory Mapped Master
— avalon_masterl Avalon Memory Mapped Master
— avalon_master2 Avalon Memory Mapped Master
E mm_bridge_0 Avalon-MM Pipeline Eridge (Qsys)
s0 Avalon Memory Mapped Slave
<H mi Avalon Memore Manoed Master

This example system includes two clock domains. The PCI Express and Ethernet
subsystems run at 125 MHz. The DDR3 SDRAM controller runs at 200 MHz. Qsys
automatically inserts clock crossing logic to synchronize the DDR3 SDRAM
Controller with the with the PCI Express and Ethernet subsystems. Figure 5-11 shows
the top level of the example system.

Figure 5-11. PCI Express-to-Ethernet Bridge Example System

Qsys System
Qsys inserts PCI Express
arbitration and Subsystem
Clock crossing 125 MHz
logic PCle link
(125 MHz-200MHz)
DDR3 \ csk Pl Avalon-MM
SDRAM Plpeline
Controller ridge (stmS) —>
to CPU
200 MHz DDR3 CsR El<€— 125 MHz
Calibration
Ethernet
Subsystem
Ethernet [l — P>
125 MHz

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



5-16

Chapter 5: Creating a System with Qsys
Example Hierarchical System

Figure 5-12 shows the Qsys representation of the complete design.

Figure 5-12. Qsys Representation of the Complete PCI Express to Ethernet Bridge

Using Pipeline Bridges

The PCI Express to Ethernet bridge example system uses several pipeline bridges.
These bridges must be configured to accommodate the address range of all of
connected components, including the components in the originating subsystem and
the components in the next higher level of the system hierarchy. As the name
suggests, the pipeline bridge inserts a pipeline stage between the connected
components. Altera recommends registering signals at the subsystem interface level
for the following reasons:

m Decreases the amount of combinational logic that must be completed in one cycle
making it easier to close timing.

m Raises the potential frequency, or fy;ax, of your design at the expense of an
additional cycle of latency which might adversely affect system throughput.

m Incremental compilation can get better fysx results if the subsystem boundary is
registered.

For more information about incremental compilation, refer to Quartus II Incremental
Compilation for Hierarchical and Team-Based Design in volume 1 of the Quartus 11
Handbook.

Creating Hierarchical Components

Any Qsys system that exports an interface is available for use in other Qsys systems.
Figure 5-13 shows the component library including the PCI Express and Ethernet
subsystems as components in the component library for the PCI Express to Ethernet
bridge example system. To include this Qsys component in other designs, you can
add it to the component library or include the directory for this component in
component search path for Qsys.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 5: Creating a System with Qsys 5-17
Document Revision History

Figure 5-13. Qsys Component Library

L*rary
2 Clock Source

o= Avalon Verification Suite

o= Bridges and Adapters

o= Custom Instruction Modules

o= Interface Protocals

o= Memaories and Memory Controllers

o= Merlin Components

o= PE Message Passing

o= Peripherals

o= PLL

o= Processor Additions

o= Processors

o= 5LS

¢ System
o alt_interlaken_12lane_10g
@ alt_interlaken_20lane_Bg
@ alti_interlaken_4lane_3g
@ alt_interlaken_8lane_Bg
2 altera_eth_l0g_mac_base_r
2 altera_eth_l0g_mac_xaui
2 ethernet_dma_subsystem
o pcie_subsystem

o= Video and Image Processing

“ e For more information about your IP search path, refer to the “Component Search

Path” section in the Creating Qsys Components chapter in volume 1 of the Quartus II
Handbook.

“ e For more information about adding components to your library, refer to the

“Installing Additional Components” section in the Creating Qsys Components
chapter in volume 1 of the Quartus II Handbook.

Document Revision History

Table 5-3 shows the revision history for this document.

Table 5-3. Document Revision History

Date Version Changes
December 2010 10.1.0 | Initial release.

e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

“ e Take an online survey to provide feedback about this handbook chapter.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
message URL http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

5-18 Chapter 5: Creating a System with Qsys
Document Revision History

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



A |:| = 0)/) 6. Creating Qsys Components

Ql151022-10.1.0

CAUTION

Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

A Qsys component is a hardware design block available within Qsys that can be
instantiated in a Qsys system. You can use Altera-provided or define custom Qsys
components as hierarchical building blocks in creating Qsys systems. This chapter
describes the structure of Qsys components, with an emphasis on the using the
component editor to create and edit the Hardware Component Description Files
(Uhw.tcl) that describes a component to Qsys.

This chapter includes the following major sections:
m “Qsys Components” on page6-1

m “Component Editor” on page 6-9

Qsys Components

A Qsys component includes the following elements:
m The HDL description of the component’s hardware.

m A description of the interface to the component hardware, such as the names and

types of I/O signals.
B A description of the parameters that determine the operation of the component.
m A parameter editor for customizing an instance of the component in Qsys.

m Scripts and other information Qsys requires to generate the HDL files for the
component and integrate the component into the Qsys system.

m  Other component-related information, such as references to software drivers,
necessary for development steps downstream of Qsys.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
e

and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective hol

1s as described at

www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010

Subscribe


https://www.altera.com/servlets/subscriptions/alert?id=QII51022
http://www.altera.com/common/legal.html
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

6-2

Chapter 6: Creating Qsys Components
Qsys Components

Component Providers

Qsys components are provided by multiple sources, including the following:

Altera provides a great variety of components automatically installed with the
Quartus® II software.

You can use the Qsys component editor to define your won custom Qsys
components.

Third-party IP developers provide Qsys-compliant components. You can display a
list of third-party components by clicking Download Components on the Tools
menu. Then, on the Intellectual Property & Reference Designs web page, type
®ys Certified «in the Search box labeled Search for IP and Reference Designs
products by their descriptions.

Altera® development kits which are listed on the All Development Kits web page.

Component Interfaces

You can design Qsys components with any combination of the following Avalon
interface types:

Avalon Memory-Mapped (Avalon-MM)—for Avalon-MM master and slaves that
communicate using read and write. commands.

Avalon Streaming (Avalon-ST)—for point-to-point connections between
Avalon-ST sources and sinks that stream data.

Tristate conduits—for a tristate conduit controller in your Qsys system to tristate
devices on your PCB.

Interrupts—for point-to-point connections between interrupt senders that
generate interrupts and interrupt receivers that service interrupts.

Clocks—for point-to-point connections between clock sources and clock sinks.
Resets—for point-to-point connections between reset sources and reset sinks.

Conduits—for point-to-point connections between conduit interfaces. You can use
the conduit interface type to define an arbitrary collection of signals that do not fit
into any of the other Avalon interface categories.

A single component can use as many of these interface types as it requires. For
example, a component might provide an Avalon-ST source port for high-throughput
data, in addition to an Avalon-MM slave for control. All components must include the
clock interface type.

Component Types

You can build more flexibility into your components by writing a generation callback
routine which generates your HDL programmatically. The following sections
describe the different component types.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.altera.com/products/ip/ipm-index.html

Chapter 6: Creating Qsys Components 6-3
Qsys Components

Static HDL Components

A static _hw.tcl file defines the top-level HDL file and associated component files. The
HDL that describes a static component is created by the component author and is not
changed by users of the component. HDL parameters are available when instantiating
the component.

Generated HDL Components

Alternatively, you can also define a component whose HDL is generated based on the
value of its declared parameters. These components use a custom callback to generate
the HDL for each instance of the component.

For example, you could write a custom callback to include a control and status
interface based on the value of a status interface parameter.The callback overcomes a
limitation of HDL languages which do not allow runtime parameters.

Composed HDL Components

Composed components are constructed from combinations of other components.You
can use a compose callback to connect and parameterize a composed component.
Composed components can static or generated.
“ e For more information about defining your own generation or compose callback
procedure, refer to the “Generation Callback” and “Compose Callback” sections in
the Component Interface Tcl Reference chapter in volume 1 of the Quartus II Handbook.

Component Structure

Components are defined with a _hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. You can author an _hw.tcl file by
creating a text file manually orusing the component editor. This section describes the
structure of _hw.tcl components and how they are stored.

Component Description File (_hw.tcl)
Component files include the following elements:

m A component description file, which is a Icl file with file name of the form <entity
name>_hw.tcl.

m SystemVerilog, Verilog HDL, or VHDL files that define the custom component.

The _hw.tcl file defines everything that Qsys requires about the name and location of
component design files, including files for simulation and constraint files.

The component editor simplifies the process of creating components and
automatically saves components in the _hw.tcl format. You can use these Tcl files as a
template for editing components by hand. When you edit a previously saved _hw.tcl
file, Qsys automatically backs up the earlier version as _hw.tcl~.

For more information about _hw.tcl file details, refer to the Component Interface Tcl
Reference chapter in volume 1 of the Quartus I Handbook.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

6-4 Chapter 6: Creating Qsys Components
Qsys Components

Component File Organization

A typical component uses the following directory structure. The precise names of the
directories are not significant.

m  <component_directory>/

m <hdl>/— a directory that contains the component HDL design files and the
_hw.tcl file.

m  <component name>_hw.tcl—the component description file.
m  <component name>.v or .vhd—the HDL file that contains the top-level module.

m  <component_name>_sw.tcl—the software driver configuration file. This file
specifies the paths for the .c and .h files associated with the component.

m  <software>/—a directory that contains software drivers or libraries related to
the component, if any. Altera recommends that the software directory be
subdirectory of the directory that contains the _hw.tcl file.

“ e For information on writing a device driver or software package suitable for
use with the Nios II processor, refer to the Hardware Abstraction Layer
section of the Nios II Software Developer’s Handbook. The Nios 11 Software Build
Tool Reference chapter of the Nios II Software Developer’s Handbook describes
the commands you can use in the Tel script.

Component Versioning

You can create and maintain multiple versions of the same component using one of
the following options:

m Define the module property ver si on in your _hw.tcl file.

m If multiple versions of the component are defined in your component libraries,
you can add a different the version of a component by right-clicking on the
component and selecting Add version <version_number>.

® You can create an .ipx file in the same directory as your Qsys project to control the
search path for your project.

Component Search Path

Qsys searches for component files each time you open the tool. Qsys locates and
displays the list of available components in the Component Library. Qsys searches
the directories in the IP search path for the following component file types:

m Hardware Component Description Files (_hw.tcl) files. Each _hw.tcl file defines a
single component.

m [P Index (.ipx) files. Each file indexes a collection of available components, or a
reference to other directories to search.In general, .ipx files facilitate faster startup
for Qsys and other tools because fewer files need to be read and analyzed.

Qsys searches the directories recursively, while others only to a specific depth. In the
following list of search locations, a recursive descent is annotated by **. The * signifies
any file. When a directory is recursively searched, the search stops at any directory
containing a _hw.tcl or .ipx file; subdirectories are not searched.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 6: Creating Qsys Components 6-5

Qsys Components

m $$PRQJECT DIR/ *
m $$PRQJECT DIR/ip/**/*
m $QUARTUS | NSTALLDIR/ .. /i p/**/*

Complete the following steps to extend the default search path by specifying
additional directories:

1. On the Tools menu click Options.

2. In the Category list, click IP Search Path.

3. Click Add.

4. Browse to locate additional directories and click Open to add them to your search

path.

& These additional paths apply to all projects; that is, the paths are global to
the current version of Qsys. The search path is ultimately defined by the
file, <§QUARTUS_INSTALLDIR>/sopc_builder/bin/root_components.ipx.

Adding Components to the Library

Use one of the following methods to add components to the Component Library:

Copy to the IP Root Directory

The simplest method to add a new component is to copy your components into the
standard IP directory provided by Altera. This approach is useful in the following
situations:

B You want to associate your components with a specific release of the Quartus II
software

B You want toand have the same components available across multiple projects

Figure 6-1 illustrates this approach.

Figure 6-1. User Library Included In Subdirectory of $IP_ROOTDIR

<install_dir>

altera

altera_components.ipx
<components>

| user_components

@ "] component1

componentl_hw.tcl
componentl.v

@ L—{"Jcomponent2

component2_hw.tcl
component2.v

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



6-6 Chapter 6: Creating Qsys Components
Qsys Components

In Figure 6-1, the circled numbers identify three steps of the algorithm that Qsys
follows during initialization. These steps are explained in the following paragraphs.

1. Qsys recursively searches the <install_dir>/ip/ directory by default. It finds the
file in the al t er a subdirectory, which tells it about all of the Altera components.
altera_library.ipx includes listings for all components found in its subdirectories.
The recursive search stops when Qsys finds this .ipx file.

2. As part of its recursive search, Qsys also looks in the adjacent user_components
directory. Qsys finds the component1 directory, which contains
componentl_hw.tcl. When Qsys finds that component, the recursive search stops
so that no components in subdirectories of component1 are found.

3. Qsys then searches in the adjacent component?2 directory, which includes
component2_hw.tcl. If Qsys finds that component, the recursive search stops.

[l If you save your _hw.tcl file in the <install_dir>/ip/ directory, Qsys finds your _hw.tcl
file and stops. Qsys does not conduct the search just described.

Reference Components in an .ipx File

Alternatively, you can specify the search path in a user_components.ipx file under
<install_dir>/ip path. This method allows you to store components in a location that is
not linked to your Quartus II installation and to add a location that is independent of
the default search path. Figure 6-2llustrates this approach.

Figure 6-2. Specifying A User .ipx directory

<install_dir>

altera

altera_components.ipx
<components>

user_components
user_components.ipx

The user_components.ipx file includes a single line of code redirecting Qsys to the
location of the user library. Example 6-1 shows the code for this redirection.

Example 6-1. Redirect to User Library

<library>
<pat h path="<user _|ib_dir>/user_ip/**/*" [>

/<library>

I = For both of these approaches, if you install a new version of the Quartus II software,
pp y
you must also repeat the steps to include your components.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 6: Creating Qsys Components 6-7

Qsys Components

You can verify that components are available and also decrease the time it takes to
launch Qsys by using the utilities, i p- cat al og and i p- make-i px commands. The
following sections describe these commands.

ip—catalog
This commands displays the a catalog of available components in either plain text or
XML format.

Usage

i p-catalog --project-dir[=<directory>] --nane[=<val ue>]

--verbose[ =<true|fal se>] --xm[=<true|false>] --help

Options

m --project-dir[=<directory>].Optional. Components can be found in

certain locations relative to the project, if any. By default, the current directory,
’” is used. To exclude any project directory, use “.

m --nane[=<val ue>]. Optional. This argument provides a pattern to filter the
names of the components found. To show all components, use a * or “*. By
default, all components are shown. The argument is not case sensitive.

m --verbose[ =<t r ue| f al se>]. Optional. When true, reports the progress of
the command.

m --xm[=<true|fal se>].Optional. When true, prints the output in XML
format instead of a line- and colon-delimited format.

m --hel p. Shows help for the i p- catal og command.

ip-make-ipx

This command creates an index file for the directory specified. It returns a 0 for
successful completion and a non-zero value for failure.

i p-

make-i px --source-directory[=<directory>] --output[=<file>]

--rel ative-vars[=<val ue>] --thorough-descent
--nessage- bef or e[ =<val ue>] --nessage-after[=<value>] --help

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



6-8

Chapter 6: Creating Qsys Components
Qsys Components

Options

--sour ce-directory=<di r ect or y>. Optional. The directory to index. The
default directory is “.”. You can also provide a comma separated list of
directories.

--out put [=<f i | &>]. Optional. The name of the file to generate. The default
name is ./components.ipx.

--rel ative-vars[=<val ue>]. Optional. Causes the output file to include
references relative to the specified variable or variables where possible. You
can specify multiple variables as a comma-separated list.

--thor ough- descent [ =<t r ue| f al se>]. Optional. If set, a component or .ipx
file in a directory does not prevent subdirectories from being searched.

- -message- bef or e[ =<val ue>] . Optional. A message to print to st dout when
indexing begins

--message- af t er[ =<val ue>] . Optional. A message to print to st dout when
indexing completes

- - hel p. Show help for this command

Understanding IPX File Syntax

An .ipx file is an XML file whose top-level element is </ibrary> with a <path>
subelements are <path> and <component>.

A <path> element contains a single attribute, also called pat h and may reference a
directory with a wildcard, (*), or reference a single file. Two asterisks designate any
number of subdirectories. A single asterisk designates a match to a single file or
directory. In searching down the designated path, the following three types of files are
identified:

®m .ipx—additional index files

B _hw.tcl—Qsys component definitions

m _sw.tcl—Nios Il board support package (BSP) software component definitions

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 6: Creating Qsys Components 6-9
Component Editor

A <component> element contains several attributes to define a component. If you
provide all the required details for each component in an .ipx file, the start-up time for
Qsys is less than if Qsys must discover the files in a directory. Example 6-2 shows two
<component> elements. Note that the paths for file names are specified relative to the
ipx file.

Example 6-2. Component Elements

<library>
<conponent
nane="A (sys Conponent"”
di spl ayNane="Qsys FIR Filter Conponent"
version="2.1"
file="./conponents/qgsys_filters/fir_hwtcl"
/>
<conponent
nanme="r gb2cnyk_conponent"
di spl ayName="RGB2CMYK Converter (Col or Conversion Category!)"
ver si on="0. 9"
file="./conponents/qgsys_converters/col or/rgh2cnyk_hw tcl"
/>
</library>

Component Editor

The Qsys component editor is a GUI that allows you to define a component and its
parameter editor GUL You use the component editor to do the following:

m  Specify the SystemVerilog, Verilog HDL, or VHDL files that describe the modules
in your component, and simulation and constraint files

m Conversely, create an HDL template for a component by first defining its interface
using the HDL Files tab of the component editor.

m  Specify the signals for each of the component’s interfaces, and define the behavior
of each interface signal.

m Specify relationships between interfaces, such as determining which clock
interface is used by a slave interface.

m Declare any parameters that alter the component structure or functionality, and
define a user interface to let users parameterize instances of the component.

After you define your component in the component editor the component is available
in the component library. The following sections explain how to use the component
editor.

Component Hardware Structure

The component editor allows you to define components with one or more interfaces.
For a description of the available interface types refer to “Component Interfaces” on
page 6-2. You can specify exported interfaces which appear at the top-level of the
Qsys system. You can connect exported interfaces to devices on the PCB or to other
Qsys subsystems in hierarchical designs.

You can also use the component editor to generate an early version of the _hw.tcl file
and then manually edit this file to complete the component definition.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



6-10

Chapter 6: Creating Qsys Components
Component Editor

Starting the Component Editor

To start the component editor in Qsys, on the File menu, click New Component.
When the component editor starts, the Introduction tab describes how to use the
component editor.

Each tab in the component editor provides on-screen information that describes how
to use the tab. Click the triangle labeled About at the top-left of each tab to view these
instructions. You can also refer to Component Editor (Qsys) in Quartus II Help for
additional information about the component editor.

HDL Files Tab

CAUTION

The HDL Files tab allows you to create an Qsys component from existing Verilog
HDL or VHDL files, or to create an HDL template in either Verilog HDL or VHDL for
a Qsys component by first specifying its interfaces. The following sections describe
both the bottom-up and top-down approaches to component design.

Bottom-Up Component Design

You can use the HDL Files tab to specify Verilog HDL or VHDL files that describe the
component logic. Files are provided to downstream tools such as the Quartus II
software and ModelSim® in the same order as they appear in the HDL Files table.

You can also use the component editor to define the interface to components outside
the Qsys system. In this case, you do not provide HDL files. Instead, you use the
component editor to interactively define the hardware interface.

After you specify an HDL file, the Quartus II Analysis and Elaboration analyzes
signals and parameters declared for all modules in the top-level file. After successful
analysis, the component editor Signals tab lists all design modules in the Top Level
Module list. If your HDL contains more than one module, you must select the
appropriate top-level module from the Top Level Module list.

All files are managed in a single table, with options for Synth and Sim. You can select
the Top option to select the top-level file for synthesis. When the top-level module is
changed, the component editor performs best-effort signal matching against the
existing port definitions. If a port is absent from the module, it is removed from the
port list. You can use the up and down arrows to specify the HDL file analysis order.

By default, all files are added with both Synth and Sim options turned on. To add a
simulation-only file, turn off the Synth option for that file. Simulation files are passed
to ModelSim for simulation. To add a synthesis-only file, turn off the Sim file option.

The component editor determines the signals on the component when only the
top-level module or entity is added to the table, but all of the files required for the
component must be added for the component to compile in Quartus II software or
work in simulation.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_com_new_comp.htm

Chapter 6: Creating Qsys Components 6-11
Component Editor

Top-Down Component Design

The Create HDL Template button on the HDL Files tab allows you to create an HDL
template for a component if you have not provided a HDL description for it. Clicking
the Create HDL Template button shows you the component HDL and lets you choose
between Verilog HDL and VHDL. Altera recommends that you define your signals,
interfaces, parameters and basic component information, including the component
name, before creating the HDL template by clicking Save. The component editor
writes <component_name>.v or <component_name>.vhd to your project directory.

After you have created the component’s HDL code, you can add other files that are
required to define your component, including the _hw.tcl file, and synthesis and
simulation files using the Add button on the HDL Files tab.

Signals Tab

You use the Signals tab to specify the purpose of each signal on the top-level
component module. If you specified a file on the HDL Files tab, the signals on the
top-level module appear on the Signals tab.

The Interface list also allows creation of a new interface so that you can assign a
signal to a different interface without first switching to the Interfaces tab. Each signal
must belong to an interface and be assigned a legal signal type for that interface. In
addition to Avalon-MM and Avalon-ST interfaces, components may have clock,
interrupt, reset, tristate conduit and conduit interfaces.

Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the names of
signals in the source HDL file, if they conform to the following naming conventions:

Signal associated with a specific interface—<interface type>_<interface name>_<signal
type>[_n]

For any value of <interface_name> the component editor automatically creates an
interface by that name, if necessary, and assigns the signal to it. The <signal_type>
must match one of the valid signal types for the type of interface. Refer to the Avalon
Interface Specifications for the signal types available for each interface type. You can
append _n to indicate an active-low signal. Table 6-1 lists the valid values for
<interface_type>.

Table 6-1. Valid Values for <Interface Type> (Part 1 of 2)

Value Meaning
avs Avalon-MM slave
avm Avalon-MM master
aso Avalon-ST source
asi Avalon-ST sink
S0 Clock output
csi Clock input
coe Conduit
inr Interrupt receiver
ins Interrupt sender

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

6-12 Chapter 6: Creating Qsys Components
Component Editor

Tahle 6-1. Valid Values for <Interface Type> (Part 2 of 2)

Value Meaning
ncm Nios Il custom instruction master
ncs Nios Il custom instruction slave

rsi Reset sink

rso Reset source

tecm Tristate conduit master
tcs Tristate conduit slave

Example 6-3 shows a Verilog HDL module declaration with signal names that infer
two Avalon-MM slaves.

Example 6-3. Verilog HDL Module With Automatically Recognized Signal Names

nmodul e ny_sl ave_i rg_conponent (

csi_clockreset _clk; // clock interface
csi _clockreset _reset_n;//reset clock interface

avs_sl address;//sl slave interface

avs_sl read; //sl slave interface

avs_sl wite; //sl slave.interface

avs_sl witedata; //sl slave interface

avs_sl readdata; //sl slave .interface
ins_irq0_irq; //irg0 interrupt sender interface

)

i nput csi_cl ockreset_cl k;

i nput csi_cl ockreset_reset_n;
input [7:0] avs_sl _address;

i nput avs_sl read;

input avs_sl wite;

input [31:0] avs_sl witedata,;
output wire[31:0] avs_sl_readdat a;
output wire ins_irq0_irgq;

/* Insert your logic here */

endnodul e

Templates for Interfaces to External Logic

You can use the Create HDL Template command to generate an HDL template for the
component. Then, you connect these signals outside of the Qsys system. If your
component uses an Avalon interface to interface outside of the Qsys system, you can
use the Templates menu in the component editor to add typical interface signals to
your signal list. There are templates for the following interfaces:

m Avalon-MM Slave

m Avalon-MM Slave with Interrupt
m Avalon-MM Master

m Avalon-MM Master with Interrupt

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 6: Creating Qsys Components 6-13

Component Editor

® Avalon-ST Source
® Avalon-ST Sink
m Nios Custom Instruction Slave

After adding a typical Avalon interface using a template, you can add or delete
signals to customize the interface.

Interfaces Tab

The Interfaces tab allows you to configure the interfaces on your component and
specify a name for each interface. The interface name identifies the interface and
appears in the Qsys connection panel. The interface name is also used to uniquely
identify any signals that are ports on the top-level Qsys system.

The Interfaces tab allows you to configure the type and properties of each interface.
For example, an Avalon-MM slave interface has timing parameters that you must set
appropriately. The Interfaces tab displays waveforms that illustrate the timing that
you specify. If you update the timing parameters, the waveforms automatically
update to illustrate the new timing. The waveforms are available for the following
interface types:

m Avalon-MM
m Avalon-ST

m Interrupts

HDL Parameters Tah

You specify the parameters that users of your component can set to configure your
component on the HDL Parameters tab. The Parameters table included on this tab
displays Verilog HDL parameters or VHDL generics that you declared in the top-
level HDL module. Using the Parameters table, you can specify the following
information about each parameter:

m Default value

B Whether or not it is user-editable

m Type

m Group

m Tool tip

Click Preview the GUI at any time to see how the component GUI appears.

The following rules apply to HDL parameters exposed via the component parameter
editor:

m Editable parameters cannot contain computed expressions.

m If a parameter <n> defines the width of a signal, the signal width must be of the
form <n-1>:0.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



6-14

Chapter 6: Creating Qsys Components
Component Editor

When a VHDL component is used in a Verilog HDL Qsys system, or a Verilog
HDL component is used in a VHDL Qsys system, numeric parameters must be
32-bit decimal integers. When passing other numeric parameter types,
unpredictable results occur. (The interconnect fabric is written in Verilog HDL and
SystemVerilog.)

«o Refer to Component Interface Tcl Reference chapter in volume 1 of the Quartus 11

Handbook for detailed information about creating and displaying parameters using Tcl
scripts.

Library Info

The Library Info tab allows you to specify the following information about your
component:

Name—Specifies the component name. When you save your component, the
component editor saves your component to the string that you specified
concatenated to the _hw.tcl suffix, for example, my_component_hw.tcl

Display Name—Specifies the user-visible name for this component in Qsys.
Version—Specifies the version number of the component.

Group—Specifies which group in Qsys displays your component in the list of
available components. If you enter a previously unused group name, Qsys creates
a new group by that name.

Description—Allows you to describe the component.
Created By—Allows you to specify the author of the component.

Icon—Allows you to place an image in the title bar of your component, in place of
the MegaCore logo. The icon can be a .jpg, .gif, or .png file. The directory for the
icon is relative to the directory that contains the _hw.tcl file.

Documentation—Allows you to specify multiple documents that pertain to your
component. You can use this property to specify a file on the internet or in your
company’s file system. The specified file can be in either .html or .pdf format. To
specify an internet file, begin your path with http://, for example:
http://mydomain.com/datasheets/my_memory_controller.html. To specify a file
in your company’s file system, you begin you path with file:/// for Linux and
file://// for Windows, for example: file:////company_server/datasheets/
my_memory_controller.pdf. For handwritten _hw.tcl files, you can specify
documentation using the add_docunent ati on_| i nk Tcl command. shows how to
specifiy documentation that is included in the component directory.

Example 6-4. Documentation Link for Documentation Stored with Component HDL Files

set _nodul e_property DATASHEET URL
"file:/[get_nodul e_property MODULE DI RECTORY] Modul ar _SGDVA _Di spat cher _Core_UG pdf "

e For more information refer to the add_docunent ati on_| i nk command in the

Component Tcl Interface Reference.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

Chapter 6: Creating Qsys Components 6-15
Component Editor

Saving a Component

You can save the component by clicking Finish on any of the tabs, or by clicking Save
on the File menu. Based on the settings you specify in the component editor, the
component editor creates a component description file with the file name
<class-name>_hw.tcl. The component editor saves the file in the same directory as the
HDL file that describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you choose.

You can relocate component files later. For example, you could move component files
into a subdirectory and store it in a central network location so that other users can
instantiate the component in their systems. The _hw.tcl file contains relative paths to
the other files, so if you move the _hw.tcl file you should move all the HDL and other
files associated with it.

[l=~ Altera recommends that you store _hw.tcl files for a project in the
ip/<class-name> directory for the project. You should store the HDL and other files in
the same directory as the _hw.tcl file.

Editing a Component

After you save a component and exit the component editor, you can edit it in Qsys. To
edit a component, right-click it in the list of available components on the System
Contents tab and click Edit Component. The component editor appears.

"=~ You cannot edit components that were created outside of the component editor, such
as Altera-provided components.

If you edit the HDL for.a component and change the interface to the top-level module,
you need to edit the component to reflect the changes you made to the HDL.

Registering Software Assignments

You can use Tcl commands to create software assignments.You can register any
software assignment that you want, as arbitrary key-value pairs. Example 6-5 shows
a typical Tel API script:

Example 6-5. Typical Software Assignment with Tcl API Scripting

set _nodul e_assi gnnent nane val ue
set _interface_assi gnnent nane val ue

The assignments are added to the Qsys information file (.sopcinfo), available for use
for downstream components.

“ e For more information about these software assignments, refer to the Publishing

Component Information to Embedded Software chapter in the Nios II software
Developer’s Handbook.

Component Parameterization

To edit component instance parameters, select a component in the System Contents
tab of Qsys and click Edit.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

6-16 Chapter 6: Creating Qsys Components
Document Revision History

Document Revision History

Table 6-2 shows the revision history for this document.

Tahle 6-2. Document Revision History

Date Version Changes
December 2010 10.1.0 | Initial release.

e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

“ e Take an online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

A |:| =N 7. Qsys Interconnect

Q1151021-10.1.0

CAUTION

Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

The Qsys interconnect is a high-bandwidth structure for connecting components that
use Avalon® interfaces. This chapter describes the Qsys interconnect. The
interconnect uses algorithmic transformations to insert interconnect components in
implementing the Qsys system. This chapter also provides brief descriptions of the
Qsys interconnect components that implement the interconnect. All Qsys interconnect
components are available to be used in your own designs. The Qsys interconnect
connects the following Avalon interface types:

B Avalon-ST—connects Avalon-ST sources and sinks that stream unidirectional
data.

B Avalon-MM—connects Avalon-MM master and slaves that communicate using
read and write commands.

m Tristate conduits— connects tristate conduit controllers in the FPGA to tristate
devices on the PCB using a three-signal encoding of tristate information.

m Interrupts—connects interrupt senders and the interrupt receivers of the
component that service them.

m Clocks—connects clock sources and clock sinks.
B Resets—connects reset sources and reset sinks.

m Conduits—connects point-to-point conduit interfaces. You can use the conduit
interface type to define an arbitrary collection of signals that does not fit into any
of the other Avalon interface categories.

For more information about the Avalon interfaces, refer to the Avalon Interface
Specifications.

For Avalon-ST interfaces, Qsys provides adapters that allow flexibility in creating
point-to-point connections. For example, the Avalon-ST data format adapter allows
you to connect streaming interfaces of different widths.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
e

and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective hol

1s as described at

www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010

Subscribe


https://www.altera.com/servlets/subscriptions/alert?id=QII51021
http://www.altera.com/common/legal.html
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

7-2

Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

For Avalon-MM interfaces, the implementation of the Qsys interconnect is based on a
network-on-chip architecture. Transactions between masters and slaves are
encapsulated in packets and transmitted on a network that carries the packets
between masters and slaves. The master command network transports read and write
command packets from master interfaces to slave interfaces. The slave response
network transports read response packets from slave interfaces to master interfaces.

This chapter includes the following sections:

m “Avalon-MM Interface Components” on page 7-2
m “Avalon-ST Interfaces” on page 7-18

m “Tristate Conduit Components” on page 7-21

m “Interrupt Interfaces” on page 7-27

m “Clock Interfaces” on page 7-29

m “Reset Interfaces” on page 7-29

m “Conduits” on page 7-30

Avalon-MM Interface Components

Qsys interconnect for memory-mapped interfaces connects Avalon-MM master and
slave interfaces. It supports the following items:

B Any number of master and slave components. The master-to-slave relationship
can be one-to-one, one-to-many, many-to-one, or many-to-many.

m  Master and slaves of different data widths.
m  Components operating in different clock domains.

m Components with different interface properties and signals. Qsys can adapt the
component interfaces so that interfaces with the following types differences can be
connected:

m Interfaces that use active-high and active-low signalling
m Interfaces with different burst characteristics

m Interfaces with different latencies

m Interfaces with different port signatures

Figure 7-1 is a simplified representation of the Qsys interconnect for an Avalon-MM
system with multiple masters. As this figure illustrates, the underlying
implementation of the master and slave connections uses a network topology. When
you generate a Qsys system, Qsys implements the interconnect connectivity that you
specified, replacing the point-to-point connections you created in the Connections
column with a network topology.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-3
Avalon-MM Interface Components

Figure 7-1. Qsys interconnect—Example System

PCB
Qsys Design s
in Altera FPGA Processor CI_,ontrol
Instruction Data DMA Controller

m m Read Write

[m]  [w]

Interconnect

Master Network Interface

Command Switch Response Switch
(Avalon-ST) (Avalon-ST)

Slave Network Interface

< ] e 5]

Instruction Data DDR3 Tristate Conduit
Memory Memory Controller Pin Sharer and Bridge
A A

—» Master Command Connectivity

—» Slave Response Connectivity —
-------- P Interface to Off-Chip Device
IE Avalon-MM Master Port

Avalon-MM Slave Port

Tristate Conduit

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-4 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

Figure 7-2 shows the format of the Qsys packet that encapsulates the Avalon-MM
master commands and Avalon-MM slave responses.

Figure 7-2. Qsys Packet Format

Address UEi el Data 2 Source ID R Byte count | Burstwrap | Protection
type enable 1D

Table 7-1 describes the fields of Qsys packet.

Table 7-1. Qsys Packet Format

Field Description
Addr ess Specifies the byte address for the lowest byte in the current cycle.
Transaction_type Indicates the transaction type. Table 7-2 lists the 5 transaction types.

For command packets, carries the data to be written. For read response packets, carries the

Data data that has been read.
Specifies which symbol of the data are valid. The following values are legal for Avalon-MM
master and slaves transferring 32-bit data:
m 1111 writes full 32 bits
m 0011 writes lower 2 bytes
Byt eenabl e = 1100 writes upper 2 bytes
= 0001 writes byte 0 only
= 0010 writes byte 1 only
= 0100 writes byte 2 only
= 1000 writes byte 3 only
Source_ID The ID of the master or slave that initiated the command or response.
Destination_ID The ID master or slave to which the command or response is directed.

The burstwrap.value specifies the wrapping behavior of the current burst. The burstwrap
value is of the form 2<™-1. The following types are defined:

m Variable wrap—Variable wrap bursts can wrap at any integer power of 2 value. When the
burst reaches the wrap boundary, it wraps back to the previous burst boundary so that
only the low order bits are used for addressing. For example, a burst starting at address
0x1C, with a burst wrap boundary of 32 bytes and a burst size of 20 bytes, would write to
addresses 0x1C, 0x0, 0x4, 0x8, and 0xC. For a burst wrap boundary of size <m>,

Bur st wr ap Bur st wrap = <m>- 1, or for this case Bur st w ap = (32 - 1) = 31 which is 25 -1.

m Sequential-Sequential bursts increment the address for each transfer in the burst. For
sequential bursts, the Bur st wr ap field is set to all 1s. For example, with a 6-bit
Bur st wr ap field, the value for a sequential burst is 6'b111111 or 63, which is 26 - 1.

In version 10.1 of the Quartus Il software, adaptation logic sets a hardwired value for the

burstwrap field, according the declared master burst properties. For example, for a master
which declares sequential bursting, the burstwrap field is set to all 1-bits. Similarly, masters
that declare linewrap burst have their burstwrap field set to the appropriate constant value.

Access level protection. When 0, the packet has normal access. When 1, the packet has
Protection privileged access. For Avalon-MM interfaces, this field maps directly to the privileged access
signal, which allows an Avalon-MM master to write to an on-chip memory ROM instance.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-5
Avalon-MM Interface Components

Table 7-2 lists the transaction type encodings.

Table 7-2. Transaction Types

Bit Name Definition
0 PKT_TRANS_READ When asserted, indicates a read transaction.
For read transactions, specifies whether or not the read command
1 PKT_TRANS_COVPRESSED READ can be expressed in a single cycle, that is whether or not it has all
byteenables asserted on every cycle.
PKT_TRANS_VRI TE: When asserted, indicates a write transaction.
PKT_TRANS_POSTED When asserted, no response is required.
4 PKT_TRANS LOCK \é\;réiztzsserted, indciates arbitration is locked. Applies to write

The fields of the Qsys packet format are variable length to minimize the resources
used. However, if the majority of components in a design have a single data width,
for example 32 bits, and a single component has a data width of 64 bits, Qsys inserts a
width adapter to accommodate 64-bit transfers.

Component Interconnect Domains

A group of connected Avalon-MM masters and slaves is called an interconnect domain.
The components in a single interconnect domain share the same packet format. The
following two examples illustrate this point.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-6

Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

Using Two Separate Domains
Figure 7-3 illustrates the use of two separate domains. The first domain includes two,

64-bit masters connected to two, 64-bit slaves. The second domain includes one, 16-bit
master connected to two, 16-bit slaves. Because the interfaces in Domain 1 and
Domain 2 do not share any connections, Qsys can optimize the packet format for the
two separate domains. In this example, the first domain uses a 64-bit data width and
the second domain uses 16-bit data.

Figure 7-3. Two Domains

Component 1 Component 2
64-bit 64-bit 16-bit
Avalon-MM Avalon-MM Avalon-MM
Master Master Master
M M M

: : L

Domain 1 Domain 2

\ 4 i V| A |

s ] s | [s] s ]
64-bit 64-bit 16-bit 16-bit
Avalon-MM Avalon-MM Avalon-MM Avalon-MM
Slave Slave Slave Slave

—— Command Network = ———  Response Network

Using One Domain with Width Adaptation

Figure 74 illustrates a Qsys system that includes two, 64-bit masters that access two,
64-bit slaves. It also includes one, 16-bit Master, accessing two, 16-bit slaves and one,
64-bit slave. Because one of the masters connects to all of the slaves, Qsys creates a
single domain with two packet formats: one with 64-bit data and one with 16-bit data.
A width adapter manages accesses between the 16-bit master and 64-bit slaves.

Figure 7-4. One Domain with 1:4 and 1:4 Width Adapters

Single Domain with 1:4 and 4:1 Width Adapters

64-bit 64-bit 16-bit
Avalon-MM Avalon-MM Avalon-MM
Master Master Master
M M M

+ A J Al (A

v | JW
\ 4 \ 4

1:4 4:1
s ] s ]
I 16-bit 16-bit
Avalon-MM Avalon-MM
Slave Slave
A\A 4 | \ 4
S S
64-bit 64-bit
Avalon-MM Avalon-MM
Slave Slave

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-7
Avalon-MM Interface Components

Qsys Transformations

Figure 7-5 provides a more detailed view of the transformation that occurs when you
generate a Qsys system with Avalon-MM master and slave components. As this figure
illustrates, the Avalon-MM master and slave components connect to network
interface modules that encapsulate the transaction in Avalon ST packets. The
Avalon-MM interfaces have no information about the encapsulation or the function of
the layer transporting the packets and simply operate in accordance with Avalon-MM
protocol, using the read and write signals and transfers as defined in the Avalon
Interface Specifications.

Figure 7-5. Qsys Transform from Avalon-MM to Avalon-ST

Avalon-ST Avalon-MM

Master
Interface

Master
Interface

Slave
Interface

Slave
Interface

—» Master Command Connectivity
—» Slave Response Connectivity

Master Command and Slave Response Networks

Many Qsys components implement the Qsys interconnect and network interfaces
represented by the Avalon-ST Network (Command) and Avalon-ST Network
(Response) blocks in Figure 7-5. All of these Qsys components are provided by Altera
and included in the Component Library available in Qsys. They are available for you
to be used stand-alone in your designs. For example, you may want to include the
Avalon-ST pipeline stage in your datapath to pipeline a streaming connection, thus
increasing the clock frequency of your design.

The subsequent sections describe the components that are part of the Avalon-ST
master command and Avalon-ST slave response network, including the following
components:

m Merlin Master Translator
m Merlin Master Agent

m Merlin Router

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-8 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

m  Merlin Traffic Limiter

m Merlin Slave Translator

m Merlin Slave Agent

Figure 7-6 provides a block diagram for the Master command network showing the

Merlin master translator, agent, router and limiter.

Figure 7-6. Qsys Components in the Master Command Network

Master Network Interface

—» Router

p-| Translator «—» Agent

Merlin Master Translator

The Merlin master translator interfaces to an Avalon-MM master component. It
converts the Avalon-MM master interface to a simpler representation that the Qsys
network uses. It performs the following functions:

m Translates active low signalling to active high signalling

m Inserts wait states to prevent an Avalon-MM master from reading invalid data
m Translates word and symbol addresses

m Translates word and symbol burst counts

m Handles burst count timing and sequencing

B Removes unnecessary address bits

Merlin Master Agent

The agent translates Avalon-MM master transactions into Qsys command packets
and translates the Qsys Avalon-MM slave response packets into Avalon-MM
responses.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 7: Qsys Interconnect 7-9
Avalon-MM Interface Components

Merlin Router

The router routes command packets from the master to the slave and response
packets from the slave to the master. For master command packets, the router uses the
Avalon-MM address to set the Desti nati on_| Dand Avalon-ST channel. For the slave
response packet, the router uses the Dest i nati on_| D to set the Avalon-ST channel.
The demultliplexers use the Avalon-ST channel to route the packet to the correct
destination.

Merlin Traffic Limiter

The limiter ensuresthe responses arrive in order. It prevents any command from
being sent if the response could conflict with the response for a command that has
already been issued. By guaranteeing in-order responses, the limiter simplifies the
response network.

Merlin Slave Translator

The Merlin slave translator interfaces to an Avalon-MM slave component as
Figure 7-7 illustrates. It converts the Avalon-MM slave interface to a simplified
representation that the Qsys network uses. An Avalon-MM Merlin slave translator
performs the following functions:

m Drives the begi nt ransf er, begi nburst t ransf er,.and wri t ebyt eenabl e signals

m Supports Avalon-MM slaves that operate using fixed timing and or slaves that use
the readdat aval i d signal to identify valid data

m Translates the read, write, and chipselect signals into the representation that the
Avalon-ST slave response network uses

m  Converts active low signals to active high signals

m Translates word and symbol addresses and burstcounts
m Handles burstcount timing and sequencing

m Removes unnecessary address bits

Figure 7-7 shows the Qsys components that comprise the slave response network.

Figure 7-7. Qsys Components in the Slave Response Network

Slave Network Interface

Agent |« »|Translator

_ overflow error

command
waitrequest

\ 4

response

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-10 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

Merlin Slave Agent

The agent accepts command packets, and issues the resulting transactions to the
Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores information about
pending transactions. The size of this FIFO is the maximum number of pending
responses that you specify when creating the slave component.

The agent also backpressures the Avalon-MM master command interface when the
FIFO is full if the slave component includes the wai t r equest signal.

Arbitration

When multiple masters contend for access to a slave, Qsys automatically inserts
arbitration which grants access in fairness-based, round-robin order. In a
fairness-based arbitration scheme, each master has an integer value of transfer shares
with respect to a slave. One share represents permission to perform one transfer. The
default arbitration sheme is equal share round-robin granting equal, sequential access
to all requesting masters. You can change the arbitration scheme to weighted round
robin by specifying a relative number of arbitration shares to the masters that access a
particular slave. To display arbitration settings, on the View menu, click Show
Arbitration.

Figure 7-8 illustrates the arbitration shares.

Figure 7-8. Arbitration Settings on the System GContents Tab

E cpu
———* clic

- reset_n
jtag_debug_module_reset
instruction_master

data_masterk
jtag_debug_module
custom_instruction_master
E onchip_ram
S clicl
sl
B jtag_uart
— clic
—* reset
[J] avalon_jtag_slave
= leds
S clic
—* reset
i) 51
fes external_connection
B pipeline_bridge
— clic
—* reset

sl
ml

—=
L

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-1
Avalon-MM Interface Components

Arbitration Examples

Figure 7-9 illustrates the timing for two Avalon-MM masters continuously accessing a
single Avalon-MM slave to perform back-to-back transfers. Master 1 has three shares
and Master 2 has four shares. The Merlin arbiter grants Master 1 access for three
transfers, then Master 2 for four transfers. This cycle repeats indefinitely.

Figure 7-9. Arhitration of Continuous Transfer Requests from Two Masters

M1_transfer_request .

M1_waitrequest - / \ / \

M2_transfer_request .

M2_waitrequest - \ / \ /

Current_Master [N Master 1 Master 2 X Master1 X Master 2 X Master 1

If a master stops requesting transfers before it exhausts its shares, it forfeits all of its
remaining shares, and the Merlin arbiter grants access to another requesting master as
Figure 7-10 illustrates. After completing one transfer, Master 2 stops requesting for
one clock cycle. As a result, the arbiter grants access back to Master 1, which gets three
shares.

Figure 7-10. Arbitration of Two Masters with a Gap in Transfer Requests

M1_transfer_request -

M1_waitrequest - / \ / \ /
M2_transfer_request - \ /
M2_waitrequest - \ / \ / \

Current_Master-( Master 1 Master 1 X Master 2 X Master 1 XMasterZ

Merlin Arbiter

The input to the Merlin arbiter is the Avalon-MM master command packet for all
masters requesting access to the a particular slave. The arbiter outputs the channel
number for the selected master. This channel number controls the output of a
multiplexer that selects slave device. Figure 7-11 illustrates this logic.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-12 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

In Figure 7-11, four Avalon-MM masters connect to four Avalon-MM slaves. In each
cycle, an arbiter positioned in front of each Avalon-MM slave, selects among the
requesting the Avalon-MM masters.

Figure 7-11. Arhitration Logic

Logic included in the Avalon-ST Command Network

Master 0
Command | > Arbiter
packet for Il | o
master 0 I | siave 0
-
Master 1 _ >
Command Il >
packet for >
master 1 Il_ Selected request
| -
Ll
>
P>
'j Selected request
Master 2
Command —
packet for 1{ Il
master 2 ]
Master 3
Command
packet for Selected request
master 3 >
P Arbiter
p| for
> slave 3

Selected request

Il = Pipeline stage, masters 0-3

= Pipeline stage, selected request

If you specifed a Max Additional Latency parameter greater than zero on the Qsys
Project Settings tab, the output of the arbiter is registered. Registering this output
reduces the amount of combinational logic between the master and fabric, increasing
the fy;ax of the system.
“ e For more information about the Max Additional Latency parameter refer to the
“Project Settings” section in the Creating a System with Qsys chapter in volume 1 of the
Quartus II Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation


http://www.altera/com/literature/hb/qts/qsys_intro.pdf

Chapter 7: Qsys Interconnect 7-13
Avalon-MM Interface Components

Interconnect Pipelining

If you set the Max Additional Latency parameter to a value greater than 0 on the
Project Settings tab, Qsys automatically inserts Avalon-ST pipeline stages when you
generate your design. The pipeline stages increase the fyax of your design by
reducing the combinational logic depth. The cost is additional latency and logic.

Figure 7-12 shows the placement of up to four potential pipeline stages inserted by
Qsys in the following locations:

m Before the input to the demultiplexer
m At the output of the multiplexer
m Between the arbiter and the multiplexer
m At the outputs of the demultiplexer
m Please add an additional paragraph:
L=~ The insertion of pipeline stages depends upon the existence of certain interconnect
components. For example, in a single-slave system, no multiplexer exists; therefore
multiplexer pipelining does not occur. In an extreme case, of a single-master to

single-slave system, no pipelining occurs, regardless of the value of Max Additional
Latency.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-14 Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

Figure 7-12. Pipeline Placement in Arbitration Logic

Logic included in the Avalon-ST Command Network

Master 0
Command B
packet for J_E Il
master 0 |

Master 1

Command ]
packet for II |
master 1 — Selected request

Arbiter
for
slave 0

F VY Y

AAAA

YV VY

YVYVY

Selected request

Master 2 > ¥
Command =l Arbiter
packet for 1{ Il | for
master 2 ] slave 2
>
Master 3 >
Command >j
packet for o Selected request
master 3 >
P Arbiter
p| for
> slave 3

‘'YY

Selected request

II = Pipeline stage, masters 0-3

= Pipeline stage, selected request

Additional Qsys Interconnect Components

The following sections describe additional components used by the Qsys
interconnect. All of these components are in the Qsys Component Library for use in
your designs.

m “Clock Bridge” on page 7-15

m “Avalon-MM Clock Crossing Bridge (Qsys)” on page 7-15
m “Avalon-MM Pipeline Bridge (Qsys)” on page 7-15

m “Merlin Width Adapter” on page 7-16

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 7: Qsys Interconnect 7-15
Avalon-MM Interface Components

Clock Bridge

The clock bridge allows you to route clocks between Qsys subsystems. You can use
this bridge to connect a single clock source to the input clocks of multiple Qsys
subsystems. Figure 7-13 illustrates the use of this bridge.

Figure 7-13. Clock Bridge

external clock from PCB o ormal clock from PO
\ 4
i A
ClockBridge
Dual Port Nios II
On-Chip Memory Processor
| Export Export
Qsys Subsystem
PIO DMA
Qsys Subsystem

Avalon-MM Clock Crossing Bridge (Qsys)

The Avalon-MM clock crossing bridge transfers Avalon-MM commands and
responses between asynchronous clock domains. It uses asynchronous FIFOs to
implement the clock crossing logic. The Avalon-MM clock crossing bridge has a
number of parameters, including parameters to control the depth of the
synchronization FIFO in both the master and slave clock domains.

)

&~ The Avalon-MM clock clocking bridge (Qsys) core is implemented to work with the
Qsys interconnect. The legacy Avalon-MM clock crossing bridge core is available for
SOPC Builder systems. If you port an SOPC Builder design that includes the
Avalon-MM clock crossing bridge to Qsys, Qsys automatically changes the older
version to the Qsys version.

Avalon-MM Pipeline Bridge (Qsys)

The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon-MM command
and response paths. It accepts commands on its Avalon-MM slave port and
propagates them to its Avalon-MM master port. It provides separate parameters to
turn on pipelining in the command and response networks.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-16

Chapter 7: Qsys Interconnect
Avalon-MM Interface Components

Because you can turn the pipelining feature of this bridge off, you can also use the
Avalon-MM bridge to export a single Avalon-MM slave interface that can used to
control multiple Avalon-MM slave devices. In this configuration, it transfers
commands received on its Avalon-MM slave interface to its Avalon-MM master port.
Figure 7-14 illustrates its use.

Figure 7-14. Avalon Bridge

Exported to Embedded
Processor on PCB

XAUI PHY *
Pipeline

Bridge (Qsys)

Interconnect

Transceiver Low Latenc
Reconfiguration Y -
Controller
Controller

Alt_PMA

— N

Because the Avalon-MM slave interface is exported to the pins of the device, having a
single Avalon-MM slave port, rather than separate ports for each Avalon-MM slave
device, reduces the pin count of the FPGA.

The Avalon-MM pipeline bridge (Qsys) is implemented to work with the Qsys
interconnect. The older Avalon-MM pipeline bridge is available for SOPC Builder
systems. If you upgrade from SOPC Builder to Qsys, Qsys automatically replaces the
bridge.

Merlin Width Adapter

The Merlin width adapter converts between Avalon-MM master and slaves with
different data and byteenable widths. This adapter is used in the Avalon-ST domain
and operates with information contained in the packet format illustrated Figure 7-2
on page 7-4. It accepts packets on its sink interface with one data width and produces
output packets on its source interface with a different data width. The ratio of the
wider data width to the narrower width must be a power of two, such as 4:1, 8:1, and
16:1. This adapter assumes that the field ordering of the input and output packets is
the same, with the only difference being the width of the data and accompanying byte
enable signals.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 7: Qsys Interconnect 7-17
Avalon-MM Interface Components

When the width adapter converts from a wide data to a narrow data, the narrower
data is transmitted over several beats. The first output beat contains the lowest
addressed segment of the input data and byte enables. Figure 7-15 illustrates the
timing for a 4:1 width adapter.

When the width adapter converts from narrow data to wide data, each input beat’s
data and byte enables are copied to the appropriate segment of the wider output data
and byte enables signals.

Figure 7-15. Width Adapter Timing for a 4:1 Adapter

clock | | |
oo )
Input to
Adapter 1\ 1 ioenable_in[3:0] ¢

wide_data[31:0] AABBCCDD

addr_out[7:0] - 08 X 09 !
AOE:,%:;? f narrow_data[7:0] - BB X AA i
write / \

Burst Transfers

Avalon-MM burst transactions grant a master uninterrupted access to an Avalon-MM
slave for a specified number of transfers. The master specifies the number of transfers
when it initiates the burst using the bur st count signal. Once a burst begins between a
master-slave pair, arbiter logic is locked until the burst completes. For burst masters,
the size of the burst is the number of cycles that the master has access to the slave, and
the selected arbitration shares have no effect.

Merlin Burst Adapter

The Qsys interconnect uses the Qsys Merlin burst adapter to accommodate the burst
capabilities of each interface in the system, including interfaces that do not support
burst transfers. The maximum burst length for each interface is a property of the
component interface and is independent of other interfaces in the system. Therefore, a
particular master might be capable of initiating a burst longer than a slave’s
maximum supported burst length. In this case, the burst adapter translates the large
master burst into smaller bursts, or into individual slave transfers if the slave does not
support bursting. Until the master completes the burst, the arbiter logic prevents
other masters from accessing the target slave. For example, if a master initiates a burst
of 16 transfers to a slave with maximum burst length of 8, the burst adapter initiates 2
bursts of length 8 to the slave.

Avalon-MM masters always issue addresses that are aligned to the size of the
transfer. However, in some cases, when a narrow-to-wide width adaptation is used,
the resulting address may be unaligned. In the case of unaligned addresses, the burst
adapter issues the maximum possible sized bursts, with appropriate byte enables, to
bring the burst-in-progress up to an aligned slave address. Then, it completes the
burst on aligned addresses.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-18

Chapter 7: Qsys Interconnect
Avalon-ST Interfaces

Burst Types

The burst adapter supports variable wrap or sequential burst types to accommodate
the different properties of the Avalon-MM masters. Refer to Table 7-1 on page 7—4 for
definitions of these burst types. Some bursting masters can issue more than one burst

type.

Avalon-ST Interfaces

The interconnect for Avalon-ST connects high-bandwidth, low-latency components
that use the Avalon-ST interface. This interconnect creates datapaths for
unidirectional traffic including multichannel streams, packets, and DSP data. The
Avalon-ST interconnect is flexible and can be used to implement on-chip interfaces for
industry standard telecommunications and data communications cores, such as
Ethernet, Interlaken, and video. In all cases, you can define bus widths, packets, and
error conditions.

You specify how Avalon-ST source and sink ports connect in Qsys. If your source and
sink interfaces have different properties, selecting Insert Avalon-ST adapters on the
XXXX menu Qsys inserts the necessary adapters which are visible in the System
Contents tab.

Avalon-ST Examples

Figure 7-16 illustrates the simplest system example with an Avalon-ST connection
between the source and sink. This source-sink pair includes only the dat a signal. The
sink must be able to receive data as soon as the source interface comes out of reset.

Figure 7-16. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Data Source data p| Data Sink

Figure 7-17 illustrates a more extensive interface that includes signals indicating the
start and end of packets, channel numbers, error conditions, and back pressure.

Figure 7-17. Avalon Streaming Interface for Packet Data

P ready
valid
channel
startof packet
endofpacket
empty
error
data

Data Source Data Sink

YYVVVYVYY

All data transfers using Avalon-ST interconnect occur synchronously to the rising
edge of the associated clock interface. Throughput and frequency of a system depends
on the components and how they are connected.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-19

Avalon-ST Interfaces

“ =@ Tor details about the Avalon-ST interface protocol, refer to the Avalon Interface

Specification.

Avalon-ST Components

The Qsys Component Library includes a number of Avalon-ST components that you
can use to create datapaths, including datapaths whose input and output streams
have different properties. Generated systems that include Avalon-MM master and
slave components may also use these Avalon-ST components because the generation
process creates an interconnect whose structure resembles a network topology as
“Qsys Transformations” on page 7-7 describes. The following sections introduce the
Avalon-ST components.

Avalon-ST Handshake Clock Crosser

The Avalon-ST handshake clock crossing adapter connects streams that operate at
different frequencies. This adapter uses a simple hand-shaking protocol to propagate
transfer control signals and responses across the clockboundary and responses in the
other direction. This methodology uses fewer FPGA resources because each transfer
is safely propagated to the target domain before the next transfer can begin. The
Avalon-ST handshake clock crosser is appropriate for lithotripsy connections because
the handshake incurs at least four cycles of round-trip latency for every read
command, limiting throughput.

You can use the parameter editor for the Avalon-ST handshake clock crosser to
specify parameter values. Among the parameters that you can specify are the data
width, whether or not to include packet support, and synchronizer depths.

Avalon-ST Pipeline Stage

The Avalon-ST pipeline stage optionally inserts a single pipeline (register) stage in the
Avalon-ST command and response datapaths. It receives data on its Avalon-ST sink
interfaces and drives it unchanged on its Avalon-ST source interface.

The Qsys Component Library also includes an Avalon-MM pipeline bridge whose
data interfaces use the Avalon-MM protocol, rather than the Avalon-ST protocol.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-20

Chapter 7: Qsys Interconnect
Avalon-ST Interfaces

Merlin Multiplexer

The Merlin multiplexer accepts data on its Avalon-ST sink interface and multiplexes
the data for transmission on its Avalon-ST source interface. You can parameterize the
multiplexer to append channel information on the source to indicate which sink is
driving the source data. The multiplexer includes internal arbitration logic which
selects between inputs using a round-robin arbitration algorithm. Figure 7-18
illustrates the Avalon-ST multiplexer. Among the parameters that you can specify are
the option to use packet scheduling, which guarantees that the multiplexer only
changes inputs at the end of a packet.

Figure 7-18. Merlin Multiplexer

Avalon-ST Source0

Avalon-ST Sourcel Avalon-ST Source

Avalon-ST Source2

Merlin Demultiplexer

The Merlin demultiplexer accepts channelized data on its sink interfaces, and
transmits the data on one of its source interfaces. The channel bits of the source stream
indicate which port the drives the output data. Figure 7-19 illustrates the Merlin
multiplexer. Among the parameters that you can specify are the number of output
ports and the width of the channel signal.

Figure 7-19. Avalon-ST Demultiplexer

Avalon-ST Source0

Avalon-ST Source Avalon-ST Sourcel

Avalon-ST Source2

Avalon-ST and Avalon-MM Interfaces

The Avalon-ST and Avalon-MM interfaces are complementary. High bandwidth
components with streaming data typically use Avalon-ST interfaces for the high
throughput datapath. These components can also use Avalon-MM connection
interfaces to provide an access point for control. In contrast to the Avalon-MM
interconnect, which can be used to create a wide variety of topologies, the Avalon-ST
interconnect fabric always creates a point-to-point between a single data source and
data sink, as Figure 7-20 illustrates.

There are two connection pairs in this figure:
m The data source in the Rx Interface transfers data to the data sink in the FIFO.

m The data source in the FIFO transfers data to the Tx Interface data sink.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-21
Tristate Conduit Components

In Figure 7-20, the Avalon-MM interface allows a processor to access the data source,
FIFO or data sink to provide system control.

Figure 7-20. Use of the Avalon-MM Avalon-ST Interfaces

Control Plane Avalon Memory Mapped Inteface

Processor RAM UART Timer

Control
Slave

Control
Slave

Control
Slave

Data Source Data Sink
(Rx Interface ) (Tx Interface )

« ready | ready
~ vali — valid
Data |—Yvaid ol pata Data va p| Data
Source channely,|  sink Source channel BRI
data o data |
Ll -

Data Plane Avalon Streaming Interface

Tristate Conduit Components

The tristate conduit interface type allows you to design Qsys subsystems that connect
to tristate devices on your PCB. The following three components implement the
tristate conduit functionality:

m Generic Tristate Controller
m Tristate Conduit Pin Sharer
m Tristate Conduit Bridge

You can use these components to implement pin sharing, convert between
unidirectional and bidirectional signals, and create tristate controllers for devices
whose interfaces can be described using the Avalon-MM signal types.
“ e For more information about the Avalon-MM signal types, refer to the Avalon
Memory-Mapped Slave Interfaces chapter in the Avalon Interface Specifications.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7-22 Chapter 7: Qsys Interconnect

Tristate Conduit Components

Figure 7-21 illustrates the typical use of these components. This figure includes two
generic tristate conduit controllers. The first is customized to control a flash memory.
The second is customized to control an off-chip SSRAM. The tristate conduit pin
sharer multiplexes between these two controllers, and the tristate conduit bridge
converts between an onchip encoding of tristate signals and true bidirectional signals.

Figure 7-21. Tristate Conduit System to Control Off-Chip SRAM and Flash Devices

Printed Circuit Board

Altera FPGA

Generic Tristate
Controller
Parameterized
for 2 MByte
x32 SSRAM

Tristate
Conduit
Pin
Sharer

Nios Il
Processor

Tristate
Conduit

Bridge

A

Generic Tristate
Controller
Parameterized
for 8 MByte

. x16 Flash

n Avalon-MM Master Tristate Conduit Master
n Avalon-MM Slave Tristate Conduit Slave

m Conduit

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 7: Qsys Interconnect 7-23
Tristate Conduit Components

By default, the tristate conduit pin sharer and tristate conduit bridge presents byte
addresses. Each address location in many memory devices contains more than one
byte of data. In the example presented in Figure 7-21, the flash device operates on
16-bit words and must ignore the least-significant bit of the Avalon-MM address. The
SSRAM memory operates on 32-bit words and must ignore the two, low-order
memory bits. Because neither device requires a byte address, addr [ 0] is not routed on
the PCB. Figure 7-22 shows addr [ 0] as a unconnected.

Figure 7-22. Address Connections from Qsys System to PCB

PCB
Qsys Address Map
16 MBytes [
PCB_Addr[19:1] Unused
Tristate Conduit 10 MBytes
Bridge } 2 MByte SSRAM
Addr[23] . 8MBytes | (32-bit word)
Ad dr[zfz:l]"_" PCB_Addr[21:0]
Addr[0] —x
8 MByte Flash
(16-bit word)
PCB_Addr[21:0]
ol
In this example design, the flash device responds to address range
0 MBytes—8 MBytes-1. The SSRAM responds to address range 8 MBytes—10 MBytes-1.
The PCB schematic for the PCB connects addr [ 20: 2] to addr[ 18: 0] of the SSRAM
device because the SSRAM responds to 32-bit word address. The 8 MByte flash device
accesses 16-bit words; consequently, the schematic does not connect addr [ 0] .
Chipselect signals select between the two devices.
L=~ 1If you create a custom tristate conduit master with word-aligned addresses, the

tristate conduit pin sharer does nothing to change or align the address signals.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-24 Chapter 7: Qsys Interconnect
Tristate Conduit Components

Figure 7-23 illustrates this example system in Qsys.

Figure 7-23. Tristate Conduit System in Qsys

Connections Module Description Export As
E nios2_qsys_0 Mios |l Processaor
data_master Avalon Memory Mapped Master
instruction_master Avalon Memory Mapped Master
H———————————— d_irg Interrupt Receiver
— jtag_debug_module Avalon Memory Mapped Slave
= flash_controller Generic Tristate Controller
universal_avalon_slave_0 Avalon Memory Mapped Slave
tristate_conduit_master_0 Tristate Conduit Master
= SDRAM_controller Generic Tristate Controller
universal_avalon_slave_0 Avalon Memory Mapped Slave
tristate_conduit_master_0 Tristate Conduit Master
= tristate_conduit_pin_sharer Tristate Conduit Pin Sharer
— ps_tcm Tristate Conduit Master
T {=-20] Tristate Conduit Slave
tes_1 Tristate Conduit Slave
= tristate_conduit_bridge Tristate Conduit Bridge
fes out Conduit out
— tcs Tristate Conduit Slave
E multiplexer_0 Avalon-5T Multiplexer

Generic Tristate Gontroller

The generic tristate controller provides a template for a controller that you can
parameterize to reflect the behavior of an off-chip device. The generic tristate
controller has many parameters that you can use to customize this component such as
the following examples:

m The width of the address and data signals
m The read and write wait times

® The bus turnaround time

In calculating delays, the generic tristate controller chooses the larger of the
bus turnaround time and read latency. Turnaround time is measured from
the time that a command is accepted, not from the time that the previous
read returned data.

m The data hold time
The generic tristate controller always includes the following interfaces:

m Avalon-MM slave interface—This interface connects to an Avalon-MM master,
such as a Nios II processor.

m Tristate conduit master—This interface usually connects to the tristate conduit
slave interface of the tristate conduit pin sharer.

m Clock sink—The component’s clock reference. This interface must be connected to
a clock source.

m Resets sink—This interface connects to a reset source interface.

In addition, the generic tristate controller includes optional reset source and interrupt
sender interfaces.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-25
Tristate Conduit Components

To work correctly with the Nios II SBT, the controller must include appropriate
module and interface assignments. You can include these assignments by adding
assignments using the Module Assignments and Avalon Connection Point
Assignments section of the parameter editor. Downstream embedded software tools
use these assignments.

For more information about these configuration names, refer to the Publishing
Component Information to Embedded Software chapter in the Nios II Software Developer’s
Handbook.

Altera provides preset values for all configuration names for many commonly used
devices. Figure 7-24 illustrates the Module Assignments and Avalon Connection
Point Assignments for the Flash Memory Interface (CFI).

Figure 7-24. Module and Avalon Connection Point Assignments

Table 7-3 lists configuration names that you can use to identify your components to
downstream embedded software tools.

Table 7-3. Configuration Names

Assignment Value
enbeddedsw. confi guration.isNonVol ati| eSt orage Oor1
enbeddedsw. confi guration.isPrintabl eDevi ce Oort
enbeddedsw. confi gurati on. i sMermor yDevi ce Oort
enbeddedsw. confi guration. i sFl ash Oort
enbeddedsw. confi gurati on. i SEt her net MacDevi ce Oort

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

7-26

Chapter 7: Qsys Interconnect
Tristate Conduit Components

Tristate Conduit Pin Sharer

1=

The tristate conduit pin sharer multiplexes between the signals of the connected
tristate controllers. You connect all signals from the tristate controllers to the tristate
conduit pin sharer and use the parameter editor to specify the signals that are shared.
The parameter editor includes the Originating Signal name of the connected signals
and a Shared Signal Name column for you to type the shared name as Figure 7-25
illustrates.

Figure 7-25. Specifying Shared Signals Using the Tristate Conduit Pin Sharer

If the widths of shared signals differ, the signals are aligned on their 0 bit and the
higher-order pins are driven to 0 whenever the smaller signal has control of the bus.
Unshared signals always propagate through the pin sharer. The tristate conduit pin
sharer uses the round-robin arbiter that is described in “Arbitration” on page 7-10 to
select between tristate conduit controllers.

All tristate conduit components connected to a given pin sharer must be in the same
clock domain.

Tristate Conduit Bridge

The tristate conduit bridge is the final component on the edge of the Qsys system. It
instantiates bidirectional signals for each tristate triplet while passing all other signals
straight through the component. The tristate conduit bridge registers all outgoing and
incoming signals, which adds two cycles of latency for a read request. You must
account for this additional pipelining when designing a custom controller. During
reset, all outputs are placed in a high-impedance state; outputs are enabled in the first
clock cycle after reset is deasserted. The Quartus II software labels these output
signals bidirectional.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 7: Qsys Interconnect 7-27

Interrupt Interfaces

Timing

Figure 7-26 illustrates the arbitration timing. As this figure illustrates, a device can
drive valid data in the granted cycle. Figure 7-26 shows the following sequence of
events:

1. Incycle one, the arbiter grants a request. The granted device drives valid data in
cycles one and two.

2. Incycle 4, the arbiter grants a request. The granted device drives valid data in
cycles 4 and 5.

3. Incycle 6, the arbiter grants a request. The granted device drives valid data in
cycles 6and 7.

4. Cycle 3 is the only cycle that does not contain valid data.

Figure 7-26. Arhitration Timing

clock

request i H

grant J

data[31:0]

Interrupt Interfaces

In systems with interrupt sender interfaces, the Qsys interconnect includes several
components to implement interrupt handling. Qsys hndles individual, single-bit
interrupt requests (IRQs). In the event that multiple senders assert their IRQs
simultaneously, the receiver logic (typically under software control) determines
which IRQ has highest priority, then responds appropriately.

Using individual requests, the interrupt logic can handle up to 32 IRQ inputs
connected to each interrupt receiver. With this logic, the interrupt sender connected to
interrupt r eceiver_0 is the highest priority with sequential receivers being
successively lower priority. You can redefine the priority of interrupt senders by
instantiating the Merlin IRQ mapper component. For more information refer to the
“Merlin IRQ Mapper” on page 7-28.

Assigning IRQs in Qsys

You assign IRQ connections on the System Contents tab of Qsys. After adding all
components to the system, you connect interrupt senders and receivers. You can use
the IRQ column to specify an IRQ number with respect to each receiver or specify not
to connect the IRQ.

(@ For more information, refer to Connecting Qsys Components in Quartus IT Help.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/system/qsys/qsys_pro_conn_comps.htm

7-28 Chapter 7: Qsys Interconnect
Interrupt Interfaces

Qsys uses the following four components to implement interrupt handling:
m [RQ Bridge

m  Merlin IRQ Mapper

m  Merlin IRQ Clock Crosser

The following sections describe these components.

IRQ Bridge

The IRQ bridge allows you to route interrupt wires between Qsys subsystems. In
Figure 7-27, the Peripheral Subsystem has three interrupt senders that are exported to
the top level of the subsystem. These interrupts are routed to the Merlin IRQ receiver
bridge in the CPU Subsystem.

Figure 7-27. Qsys IRQ Bridge Application

Top-Level Qsys System

export

IRQ Bridge

Interrupt
Sender 4

Interrupt
Sender 1

Interrupt
Sender 2

Interrupt
Sender 3

Nios Il
Processor

n Interrupt Sender n Interrupt Receiver

Merlin IRQ Mapper

The Merlin IRQ mapper converts individual interrupt wires into a bus. In addition,
you can use the IRQ mapper to specify the interrupt number. By default, the interrupt
sender connected to receiver( interface of the IRQ mapper is highest priority with
sequential receivers being successively lower priority. You can use the IRQ Map
parameter in the parameter editor to remap the priority. For example, to reverse the
priority of the four interrupt senders connected to the IRQ mapper in Figure 7-27, you
can type the following string for the IRQ Map parameter, 0: 3, 1:2, 2:1, 0:3.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 7: Qsys Interconnect 7-29

Clock Interfaces

Merlin IRQ Clock Crosser

The Merlin IRQ clock crosser synchronizes interrupt senders and receivers that are in
different clock domains. To use this component, connect the clocks for both the
interrupt sender and receiver in addition to the interrupt sender and receiver
interfaces. Qsys automatically inserts this component when it is required.

Clock Interfaces

You can use the Clock Settings tab to define external clock sources, for example an
oscillator on your board. You can define separate reset sources for each clock domain,
a single reset source for all clocks, or any combination in between.

Reset Interfaces

You can choose to have a single global reset domain generated by Qsys or, if your
design requires more than one reset domain, you can implement you own reset logic
and connectivity.

Single Global Reset Signal Implemented by Qsys

If you turn on Global Reset on the Project Settings tab in Qsys, the Qsys interconnect
distributes a global reset bus. All of the reset requests are ORed together, synchronized
to each clock domain, and fed to the reset inputs. The duration of the reset signal is at
least one clock period.

The Qsys interconnect inserts the system-wide reset under the following conditions:
B The global reset input to the Qsys system is asserted.

® Any component asserts its r eset r equest signal.

Multiple Reset Signals

1=

The Qsys component library includes a reset controller and a reset bridge to
implement the reset functionality. You can also design your own reset logic.

If you design your own reset circuitry you must carefully consider situations which
might result in system lockup. For example, if an Avalon-MM slave is reset in the
middle of a transaction, the Avalon-MM master might wait forever.

Merlin Reset Controller

If you design a system with multiple reset inputs, the Merlin reset controller, ORs all
reset inputs and generates a single reset output. The reset controller has the following
three parameters which you can specify to customize its behavior.

® Number of reset inputs—indicates the number of individual reset interfaces the
controller ORs to create a signal reset output.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



7-30

Chapter 7: Qsys Interconnect
Conduits

Conduits

L&

=)

m  Output reset synchronous edges—specifies the level of synchronization. You can
select one the following options:

m  None—The reset is asserted and deasserted asynchronously. You can use this
setting if you have designed internal synchronization circuitry.

m  Both—The reset is asserted and deasserted synchronously.

m Deassert—The reset is deasserted synchronously and asserted
asynchronously.

m Synchronization depth—specifies the number of register stages the synchronizer
uses to eliminate the propagation of metastable events.

Qsys automatically inserts reset synchronizers under the following conditions:
m  More than one reset source is connected to a reset sink

m There is a mismatch between the reset source’s synchronous edges and the reset
sinks” synchronous edges

Reset Bridge

The reset bridge allows you to use a reset signal in two or more subsystems of your
Qsys system. You can connect one reset source to local components and export one or
more to other subsystems as required. You to specify the number of reset outputs
using the parameter editor.

You can use the conduit interface type for interfaces that do not fit any of the interface
types defined in the Avalon Interface Specifications. You can use conduit interfaces to
group any arbitrary collection of signals. Like other interface types, you can export or
connect conduit interfaces. The PCI Express link of the PCI Express IP core shown in
Figure 5-11 onpage 5-15 is an example of the use of the conduit interface for export.

To connect two conduit interfaces inside Qsys, the following conditions must be met:
m The interfaces must match exactly with the same signal roles and widths.

m The interfaces must be the opposite directions.

Conduits connections are always point-to-point connections.

Summary: Qsys Interconnect Components

Table 7—4 lists all of the Qsys components that implement the Qsys interconnect.

Table 7-4. Summary of Qsys Interconnect Components (Part 1 of 2)

Typical Applications

Component Name
Internal Qsys interconnect (Note 7) User Designs
Avalon-MM Master and Slave Network Transformation
Merlin Master Translator v —
Merlin Master Agent v —

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 7: Qsys Interconnect
Summary: Qsys Interconnect Components

7-31

Table 7-4. Summary of Qsys Interconnect Components (Part 2 of 2)

Typical Applications
Component Name
Internal Qsys interconnect (Note 1) User Designs
Merlin Router v —
Merlin Traffic Limiter v/ —
Merlin Slave Translator v —
Merlin Slave Agent v —
Avalon-ST Components
Avalon-ST Handshake Clock Crosser v v
Avalon-ST Pipeline Stage v v
Merlin Multiplexer v v
Merlin Demultiplexer v v
Bridges
Clock Bridge — v
Avalon-MM Clock Crossing Bridge (Qsys) — v
Avalon-MM Pipeline Bridge (Qsys) — v
Arhitration and Adapters
Merlin Arbiter v —
Merlin Width Adapter Vv v
Merlin Burst Adapter v v
Tristate Conduits
Generic Tristate Controller — v
Tristate Conduit Pin Sharer — v
Tristate Conduit Bridge — v/
Interrupts
IRQ Bridge — v
Merlin IRQ Mapper v/ —
Merlin IRQ Clock Crosser v v
Reset
Merlin Reset Controller v v
Reset Bridge — v

Note to Table 7-4:

(1) These components are described to enhance your understanding of the Qsys interconnect. You probably will not need to use them in your own

designs.

(2) Inthis table, a +/ means that the component is typically used for the purpose specifed by the column header, a — means that the component
is not typically used for the purpose specified by the column header.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis




7-32 Chapter 7: Qsys Interconnect
Document Revision History

Document Revision History

Table 7-5 shows the revision history for this document.

Tahle 7-5. Document Revision History

Date Version Changes
December 2010 10.1.0 | Initial release.

e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

“ e Take an online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

A |:| = A 8. Component Interface Tcl Reference

Q1151023-10.1.0

CAUTION

Altera's Qsys system integration tool is now available as beta for evaluation in the
Quartus® II software subscription edition version 10.1. Altera does not recommend
using the beta release of Qsys in the Quartus II software version 10.1 for designs that
are close to completion and are meeting design requirements. Before using Qsys,
review the Quartus II Software Version 10.1 Release Notes and AN 632: SOPC Builder to
Qsys Migration Guidelines for known issues and limitations. To submit general
feedback or technical support on the beta release of Qsys, submit a service request
through mysupport.altera.com. Alternatively, to submit general feedback, click
Feedback on the Quartus II software Help menu.

You define Qsys components in the component editor by declaring their properties
and behaviors or directly in a Hardware Component Description File (_hw.tcl). Each
_hw.tcl file represents one component which you can add to an Qsys system. You can
also share components with other designers. For your component to have maximum
flexibility, you should consider what aspects of its behavior can be parameterized so
that other users can change the default parameterization to address different design
requirements.

An Qsys component is usually composed.of the following four types of files:

m _hw.tcl file—describes the Qsys related characteristics, such as interface behaviors.
This file is required.

m HDL files—define the component’s functionality as hardware, simulation, and
constraint files. These files are optional.

m _sw.tcl—used by the software build tools to compile the component driver code.
This file is optional.

m Component driver files—defines the component register map and driver software
to allow software to control the component. These files are optional.

This chapter discusses the following topics:

m “Informationin a Hardware Component Description File”

m “Component Phases” on page 8-2

m “Writing a Hardware Component Description File” on page 8-3
m “Overriding Default Behaviors” on page 8-8

m “Hardware Tcl Command Reference” on page 8-14

An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Information in a Hardware Component Description File

A typical _hw.tcl file contains the following information:

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
e

and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective hol

1s as described at

www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010

Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51023
http://www.tcl.tk/
http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/an/an632.pdf
http://mysupport.altera.com

8-2

Chapter 8: Component Interface Tcl Reference
Component Phases

Basic component information—includes the component’s name, version, and
description, a link to its documentation, and pointers to HDL implementation files
for synthesis and simulation.

Parameter Declarations—Parameters are values that the user of your component
can set that affect how the component is implemented, such as the size of a
memory. Properties of each parameter include the parameter’s name, whether or
not it is visible, and, if visible, the text to display when describing it. When the
Qsys system is generated, the parameters can be applied to the component as
Verilog HDL parameters or VHDL generics.

Interface Properties—The interfaces of a component define how to connect it to the
rest of the system and determine how other components in the system interact
with it. When you add interfaces to a component, you declare which signals make
up each interface. You also define interface properties, such as wait states for an
Avalon® Memory-Mapped (Avalon-MM) interface.

Component Phases

The following section describes the distinct phases in the development of an Qsys
component.

Main Program—Qsys first discovers a component and adds it to the component
library. The _hw.tcl file is executed and the Tcl statements provide non-instance-
specific information to Qsys. During this phase, some component interfaces may
be incompletely described and ports may have a width of 0 or -1 to indicate that
they are variable.

Validation—Validation allows the component to generate error, warning, or
informational messages. Validation occurs when an instance of a component is
created, when its parameters are changed, or when some other property of the
system is changed.

Elaboration—Elaboration occurs as Qsys queries a component for its interface
information. Elaboration typically occurs immediately after validation and before
generation. Interfaces defined in the main program can be enabled or disabled
during elaboration. Depending on the validation callback code, elaboration and
validation may alternate a few times. Elaboration and validation always occur
before generation. Once elaboration is complete, the component must be
completely described. For example, all port widths must have positive values.

Generation—Generation creates all the information that the Quartus® II software
and HDL simulator require. The required files typically include VHDL or Verilog
HDL files, simulation models, and timing constraints.

Editor—After an instance of your component has been added to an Qsys system,
allows the user of your component to edit the GUI that displays the parameter
editor. You can change the appearance of the default editor to make it easier to
use. You also use the editor to instantiate a component.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-3
Writing a Hardware Component Description File

m Compose—compose is not really a component phase in and of itself, but it
overrides the default behavior for the validation, elaboration, and generation
phases. Compose allows you to create hierarchical components, constructing new
components from combinations of other components. You can include the Tcl
commands to compose hierarchical components in the main program or in a
compose callback.

Writing a Hardware Component Description File

This section provides detailed information about _hw.tcl files and describes the
default behavior of a component in all phases. The following example uses a simple
UART with some simple parameterization.

Providing Basic Information

A typical _hw.tcl file first declares basic information such as the name, location, and
the files it includes. The first command in a _hw.tcl file should specify the version of
the _hw.tcl API to use, with the following Tcl command:

package require —exact sopc <version>

The version number is a Quartus II release version, such as 10.1. Qsys guarantees that
avalid _hw.tcl file that requests a particular sopc package behaves identically in future
versions of the tool. Because of differences between versions of the Quartus II
software, you cannot assume that an HDL file that functions correctly one sopc
package automatically functions correctly with other versions of the package.

This chapter describes the behavior of components that request the sopc 10. 1
package.

An excellent source of information about Tcl syntax is the Tcl Developer Xchange
website.

Example 8-1. Basic Information for _hw.tcl File

# The package command nust be the first conmand in the file
package require -exact sopc 10.1

# The nane and VERSIoN of the conponent
set _nodul e_property NAME exanpl e_uart
set _nodul e_property VERSION 1.0

# The nane of the conponent to display in the library
set _nodul e_property DI SPLAY_NAME " Exanpl e Conponent "

# The conponent’s descri ption.
set _nodul e_property DESCRI PTION "An Exanpl e Conponent™

# The conponent |ibrary group that conponent belongs to
set _nodul e_property GROUP Exanpl es

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.tcl.tk/

8-4 Chapter 8: Component Interface Tcl Reference
Writing a Hardware Component Description File

Declaring Parameters

By including configuration parameters in your _hw.tcl file, you allow users of your
component to parameterize it in different ways. Each parameter has a number of
properties such as its name, type, display name, and default value that can be used to
control how the parameter is displayed and used. Example 8-2 illustrates the use of
parameters that can be configured by users of your component.

Example 8-2. Declaring Parameters

# Decl are Baud Rate paraneter as an integer with a default val ue of 9600.
add_par anet er BAUD_RATE i nt 9600

# Display this parameter as "Baud Rate" in the Parameter Editor.
set _paraneter_property BAUD RATE DI SPLAY_NAME "Baud Rate (bps)"”

# W only support three baud rates
set _paraneter_property BAUD _RATE ALLONED RANGES {9600 19200 38400}

Parameters can be divided into three types: user parameters, system information
parameters, and derived parameters. The following sections describe these parameter

types.

User Parameters

User parameters are parameters that users have control over and that are exposed in
the component parameter editor.

Derived Parameters

Derived parameters are parameters that are inferred by the component itself from
user parameters or other derived parameters. For example, a clock period parameter
can be derived from a data rate parameter. You can use derived parameters to
perform operations that cannot be performed in HDL. For example, determining the
number of address bits that a component requires using logarithmic functions is easy
in Tcl and impossible in HDL.

SYSTEM_INFO Parameters

You can use SYSTEM | NFO parameter to request that certain parameter values are
populated with information about the system. For example, you might want to know
the frequency of the clock that ends up being connected to your clock input. When
you declare SYSTEM | NFOproperties, you provide an <i nf o- t ype> and further
arguments. The <i nf o-type> is the type of information you want, such as cl ock_rat e,
and you use the additional arguments to specify things, such as which clock input
interface you require. Example 8-3 illustrates the use of the SYSTEM | NFOparameter.
For more information about the SYSTEM | NFO parameter properties refer to Table 8-5
on page 8-29.

Example 8-3. Syntax of Tcl Command using the SYSTEM_INFO Parameter

set _paraneter_property ny_paraneter SYSTEM | NFO {<info-type> [<arg>]}

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-5
Writing a Hardware Component Description File

Declaring Interfaces

To declare an interface, use the add_i nt er f ace command. Then use the

set _interface_property and add_i nterface_port commands to set its properties and
indicate which signals belong to it. The interface declaration statement includes the
name of the interface, the interface direction, and the clock interface with which it is
associated. For interfaces that are not associated with clocks (such as clock interfaces
themselves), omit the associated clock interface, or use the word asynchronous.
Example 84 illustrates interface declaration.

Example 8-4. Declare Interfaces

# Declare the clock sink interface, "clock_sink", type=clock, direction=sink
add_i nterface cl ock_sink clock sink

# The clock interface has two signals, naned "cl k" and "reset_n" of types "clk" "reset_n"
add_interface_port clock_sink clk clk input 1
add_i nterface_port clock_sink reset_n reset_n input 1

# Declare the Avalon slave interface, nane=aval on_slave_0, type=aval on,
# directon=sl ave, associated with the cl ock_sink clock interface.
add_i nterface aval on_slave_0 aval on slave cl ock_sink

# Set a nunber of properties about the Avalon Sl ave interface
set _interface_property avalon_slave 0 witeVaitTime O
set_interface_property aval on_slave 0 addressAl i gnment DYNAM C
set _interface_property avalon_slave 0 readWaitTime 1

set _interface_property aval on_sl ave_0 readLatency O

# Declare all the signals that belong to ny Avalon Slave interface
add_i nterface_port aval on_slave_0 ny_readdata readdata output 8
add_interface_port avalon_slave 0O ny_read read input 1
add_interface_port avalon_slave O my_wite wite input 1
add_interface_port aval on_slave_0 ny_waitrequest waitrequest output 1
add_interface_port aval on_slave O mny_address address input 24
add_interface_port avalon_slave O ny_witedata witedata i nput 8

Adding Files and Guiding Generation

Component description files typically provide all of the information required for
generation and downstream tools, identifying the files used by the component such as
HDL files. You also identify which of the added files is the top-level HDL file and
specify which Verilog module or VHDL entity within that file is the top-level module
for the component. Example 8-5 illustrates the files that are typically required for
generation and downstream tools.

Example 8-5. Add Files

# Add the HDL file to the conponent,to be used for synthesis and sinulation.
add_file sinmple_uart.v {SYNTHESI S SI MULATI ON}

# Add the Tinmequest file with Quartus timng constraints.
add_file sinple_uart.sdc SYNTHESI S

# I ndicate which of the added HDL files holds the top-level nodule/entity
# that describes the conponent, nane of the top-level nodule/entity

set _nodul e_property TOP_LEVEL_HDL_FILE sinple_uart.v

set _nodul e_property TOP_LEVEL_HDL_MODULE si npl e_uart

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-6 Chapter 8: Component Interface Tcl Reference
Default Behaviors

Default Behaviors

The _hw.tcl file described in the previous section has default behaviors during the
editor, validation, elaboration, and generation phases. These default behaviors apply
to instances of a component. This section describes the default Qsys behaviors for
each of these phases. To override these default behaviors, refer to “Overriding Default
Behaviors” on page 8-8.

Validation Phase Behavior

The default Qsys validation checks each parameter value against its ALLOAED_RANGES
property. If the values specified are outside the allowed ranges, an error message is
displayed.

The ALLONED RANGES property of each parameter is a list of ranges that the parameter
can take on, where each range is a single value, or a range of values defined by a start
and end value separated by a colon. Table 8-1 shows some examples of values the
ALLOAED_RANGES property can take.

Tahle 8-1. ALLOWED_RANGES Property

ALLOWED_RANGES Meaning
{abc} aorbhorc
{1248 16} 1,2,4,8,0r16.
1:3 1 through 3, inclusive
{123 7:10} 1,2, 3, or 7 through 10 inclusive

Elaboration Phase Behavior

If the main program does not explicitly define the widths of all ports to constant
values or to an expression, then default Qsys elaboration process calls quar t us_map to
determine the correct port widths. If you define all port widths in the main program,
quart us_map is not called.

Automatic Port Widths

When port widths are not specified, or have a value of -1', quart us_nmap determines
port widths as a function of the parameter set. While this process makes authoring a
component easier, it slows component generation. When using automatic port widths,
you can indicate that a certain parameter does not affect any port widths or interfaces
by setting that parameter's af f ect s_el abor at i on property to f al se, meaning that
quart us_map is not called when the parameter's value is changed by your user.
However, indicating that a parameter does not affect elaboration when it actually
does can lead to problems that are difficult to debug.

As an alternative to the automatic port widths, you can set port widths to simple HDL
expressions using the wi dt h_expr property. wi dt h_expr is a string that holds an
expression describing the port width. By using the wi dt h_expr property, you can
define port widths as an expression that is evaluated without needing to analyze the
HDL file or set them in an elaboration callback. The syntax for width expressions is
the same as the HDL language that you use; however, only the addition, subtraction,

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-7
Default Behaviors

multiplication, and division operators are allowed. For more complex port widths, the
width of the port can be set as an arbitrary function of the component’s parameters in
an elaboration callback. The width expression is the last argument to the

add_i nterface_port command. Example 8-6 illustrates the use of mathematical
operators and the wi dt h_expr property.

Example 8-6. Defining Port Widths Using Simple Mathematical Operators

add_interface_port din din_data data i nput {WDTH * SYMBOLS}
set _port_property din_data wi dth_expr WDTH

Parameterized Parameter Widths

For VHDL users, Qsys allows a st d_| ogi c_vect or parameter to have a width that is
defined by another parameter. When adding a parameter of type st d_| ogi c_vect or
you can also specify its width as a parameter property. The width can be a constant or
the name of another parameter. The commands Example 8-7 add a st d_| ogi c_vect or
parameter called nyPar anet er whose width is set by another parameter, called

dat aWdt h.

Example 8-7. Adding Parameters

add_paraneter nyParaneter STD LOG C VECTOR
set _paraneter_property myParanmeter W DTH dat aW dt h

Generation Phase Behavior

The default Qsys generation does one of the following:

m If the component defines the TOP_LEVEL_HDL_MODULE property, Qsys creates a
Verilog HDL or VHDL wrapper module to instantiate the top-level module and
applies the parameters as selected by the user of your component. Qsys does not
apply parameters in the wrapper if they are not declared in the underlying HDL
file.

or

m If the component does not define the TOP_LEVEL_HDL_MODULE property, but instead
sets the | NSTANTI ATE_I N_SYSTEM MCDULE nodul e property to f al se, the module is
not instantiated inside the Qsys system and a wrapper file is not created. Rather,
the interface to the module is exported to the top-level of the Qsys system, and the
module must be connected outside the system.

Edit Phase Behavior

The default Qsys editor phase behavior is to use all of the parameter definitions to
display the parameter editor. The properties of the parameters guide Qsys when it
builds the default parameter editor. Table 8—4 on page 8-26 lists the properties of
parameters.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-8 Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors

You can place parameters in logical groups and provide images and text to create a

custom parameter editor for your component. Example 8-8 defines four parameters
and illustrates the use of the add_di spl ay_i t emcommand and the DI SPLAY_HI NT and
ALLOAED_RANGES parameters.

Example 8-8. Defining and Customizing the parameter editor

# provide an icon for the sound group

add_di splay_itemicon Speaker speaker-inmage speaker.png
add_paraneter sound string 0 O

add_par aneter vol ume_control boolean 0 0

add_paranmeter separate_control string 0 O

# Setup display_nanes for the paraneters

set _paraneter_property sound DI SPLAY_NAME Audi o

set _paraneter_property vol une_control DI SPLAY_NAME "I ncl ude Vol une Control Interface"
set _paraneter_property separate_control DI SPLAY_NAME "Trebl e/ Bass Control s"

# Display all paraneters in the Speaker group
add_di spl ay_i t em Speaker sound paraneter

add_di spl ay_i t em Speaker vol unme_control paraneter
add_di spl ay_i tem Speaker separate_control paraneter

# There are 4 choices for the sound paraneter.

# Strings with internal spaces require double quotes

set _paraneter_property sound ALLOAED RANGES {"0O: No Audi 0" 1: Monophonic 2: Stereo

4: Quadr aphoni c}

set _paraneter_property separate_control ALLOAED RANGES {"No Control" "Single Control" "Dual
Control s"}

#Speci fy how paraneters shoul d be displ ayed
set _paraneter_property vol une_control DI.SPLAY_HI NT bool ean
set _paraneter_property separate_control DI SPLAY_HI NT radi o

Figure 8-1 shows the parameter editor that the Tcl commands in Example 8-8
produces.

Figure 8—1. parameter editor for Audio Component

<)

Audio Guadraphonic

~ Speaker

Include YWolume Control Interface |:|

Treble/Baszs Contrals () Mo Cortral
() Single Cortrol
(%) Dual Cortrals

Overriding Default Behaviors

You can override each of the default behaviors by using callbacks. This section
explains how to write callback procedures for each phase of component development.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-9
Overriding Default Behaviors

Validation Gallback

You can use the validation callback to provide validation that extends beyond the
default range checking. A validation callback is defined by setting the

VALI DATI ON_CALLBACK module property to be the name of the validation callback
procedure, as shown in Example 8-9. This validation procedure displays an error if
you select a baud rate of 38400 and odd parity.

You can also use the validation callback to set the value of derived parameters.
Derived parameters are parameters that are derived from other parameters; their
values are not editable and are not saved in the Qsys System File (.qsys). You indicate
that a parameter is derived by setting the parameter's DERI VED property to true. In
Example 8-9 BAUDRATE_PRESCALE is a derived parameter whose value is 1/16 of the
value of the BAUDRATE parameter.

Example 8-9. Custom Validation Callback Function

# Declare the validation call back.
set _nodul e_property VALI DATI ON_CALLBACK ny_val i dati on_cal | back

# Add the BAUDRATE_PRESCALE paraneter, and indicate that it's derived
add_par anet er BAUDRATE_PRESCALE int 600
set _paranet er _property BAUDRATE_PRESCALE DERI VED true

# Add the PARITY paraneter
add_paranmeter PARITY string ODD
set _paraneter_property PARITY ALLOAED_RANGES { EVEN ODD}

# The validation call back
proc ny_validation_callback {} {
# Get the current value of parameters we care about
set br [get_paraneter_val ue BAUD RATE]
set p [get_paraneter_value PARITY]
# Display an error for invalid conbinations.
if {($br==38400) && ($p=="0DD")} {
send_nessage warni ng "Qdd parity at 38400 bps i s not supported. "

# Set the val ue of our DERVED paraneter
set bp [expr $br / 16]
set _paranet er _val ue BAUDRATE_PRESCALE $bp

Elahoration Callback

You can use an elaboration callback to change interface properties or add new
interfaces as a function of parameter values. You define an elaboration callback by
setting the ELABORATI ON_CALLBACK module property to the name of the elaboration
callback function, as shown in Example 8-10. You can enable and disable interfaces
from the elaboration callback if they are only needed for some parameterizations of
the component. Example 8-10 shows how an Avalon-MM slave interface can be
included in an instance of the component, based on the USE_STATUS_| NTERFACE
parameter. All of the functionality available in the validation callback can also be used
in the elaboration callback; separate callbacks for validation and elaboration are not
required.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-10

Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors

1=

The elaboration callback is not be called when parameters with

AFFECTS_ELABORATI ON=f al se are changed by the user of the component.

Example 8-10. Elaboration Callback

# Decl are the cal | back.
set _nodul e_property ELABORATI ON_CALLBACK ny_el aborati on_cal | back

# Add the USE_STATUS_ | NTERFACE par anet er

add_par anet er

USE_STATUS_| NTERFACE bool ean

# Declare the status slave interface
add_i nterface status_slave aval on sl ave cl ock_si nk
set _interface_property status_slave ENaBLED f al se

# The el aboration call back
# Declare signals

add_i nterface_port
add_i nterface_port
add_i nterface_port
add_i nterface_port
add_i nterface_port
add_i nterface_port

status_sl ave
status_sl ave
status_sl ave
status_sl ave
status_sl ave
status_sl ave

st _readdata readdata output 16

st _read read input 1

st_wite wite input 1

st _waitrequest waitrequest output 1
st _address address input 24

st_witedata witedata i nput 16

# The el aboration cal |l back
proc ny_el aboration_cal |l back {} {

# CGet the current value of paraneters we care about
set use_status [get_paraneter_val ue USE_STATUS | NTERFACE]

# Optionally add the status interface
if { $use_status } {
set _interface_property status_slave ENABLED true

}
}

Generation Gallback

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

If you define a generation callback, Qsys does not generate an HDL wrapper file to
apply parameter values to your component. Instead, it calls the generation callback
you defined during the generation phase, allowing the component to
programmatically generate its HDL. A generation callback is defined by setting the
GENERATI ON_CALLBACK module property to be the name of the generation callback
function, as Example 8-11 illustrates.

Generation callbacks typically retrieve the current value of the component’s
parameters and the generation properties that guide the generation process, and then
generate the HDL files and supporting files in Tcl or by calling an external program.
The callback procedure also reports the required files to Qsys with the add_fil e
command. Any files added in the generation callback are in addition to the files
added in the main body of the _hw.tcl file.

The generation callback must write <output_name>.v or .sv for Verilog or
<output_name.vhd> for VHDL to the specified <output_directory>. This file is a
parameterized instance of the component. Other supporting files, such as .hex files to
initialize memory, may be written to <output_directory>. These file names must begin
with <output_name>. If the supporting files are the same for all parameterizations of
the component, you add them from the main program rather than the generation

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-11
Overriding Default Behaviors

callback. If your system includes multiple instantiations of a component with
different parameterizations, you must add the supporting files from the main
program to prevent failures. If a static supporting file is only needed in some
parameterizations of the component, you should add it from the main program and
turn it on or off by setting its SYNTHESI S and Sl MULATI ON properties appropriately
from the elaboration callback.

Example 8-11. Generation Callback Example

set _nodul e_property GENERATI ON_CALLBACK ny_generate
# My generation mnethod

proc ny_generate {} {
send_nessage info "Starting Generation"

# get generation settings

set | anguage [get_generati on_property HDL_LANGUAGE]
set outdir [get_generation_property OUTPUT_DI RECTORY ]
set out putnane [get_generation_property OUTPUT_NAME ]

# get paraneter val ues

set pl [get_paraneter_val ue PARAMETER_ONE]
set csr [get_paraneter_val ue CSR_ENABLED]

# Your callback needs to wite $outdir$out put nane.v here,
# perhaps by using exec to call an external program

# add_file creates files relative to the _hw. tcl directory; therefore specify $outdir
# for synthesis and sinulation files

exec perl ny_generate.pl |ang=$l anguage dir=%$outdir name=$out put name pl=$pl csr=$csr
add_file ${outdir}${out putnane}.v SYNTHESI S
add_file ${outdir}${output nane}_simyv SI MULATI ON

Compose Callback

You can use a compose callback to define components that are constructed from
combinations of other components. Compose can be used in one of two ways:

® You can use compose commands such as add_i nst ance,
set i nstance_par anet er _val ue, and add_connect i on in the main
program to create and parameterize subcomponent instances.

m  Or, after you have set up the basic component template in the main program, you
can then use a compose callback to instantiate and parameterize subcomponents
as a function of the component’s parameter values. You define a compose callback
by setting the COMPOSE_ CALLBACK module property to the name of the compose
callback function.

When used, compose replaces elaboration and generation. Your component's interface
information is collected by analyzing the interfaces on exported subcomponents. HDL
is generated by generating all of your subcomponents and a top-level that stitches
them all together.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-12 Chapter 8: Component Interface Tcl Reference
Overriding Default Behaviors

Exporting an interface means that you are making the interface visible from the
outside of your component, instead of connecting it internally. Set the EXPORT_CF
property of the externally visible interface to indicate that it is an exported view of the
submodule's interface. Refer to “get_interface_properties” on page 8-38 for the
format of the EXPORT_CF property. You can set this from the main program or the
compose callback.

Exporting an interface is different than connecting two interfaces together—the
exported interface is a copy of the subcomponent’s interface. For example, if the inner
interface is a 32-bit Avalon-MM master without bursting then the exported interface
will be as well.

"=~ Because the exported interface is a copy of the inner interface, no adaptation is
possible between the two interfaces.

When you create an exported interface, the properties of the exported interface are
copied from the subcomponent’s interface without modification. Ports are copied
from the subcomponents interface with only one modification—the names of the
exported ports on the composed component are chosen to ensure they are unique.

Figure 8-1 is a block diagram for the composed component that is shown
Example 8-1.

Figure 8—1. Top-Level of a Composed Component

my_component

altera
clock

SN

slave > pins
> my_phy_microcore my_regs_microcore p————pp

clk

Example 8-1 provides an example of a composed _hw.tcl file which instantiates two
subcomponents. It connects them together, also connecting the clocks and resets. Note
that a clock bridge component is required to allow both subcomponents to see a
common clock input.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-13
Overriding Default Behaviors

Example 8—1. Composed Component

package require -exact sopc 10.1
set _nodul e_property name my_conponent

édd_i nterface clk clock end
set_interface_property clk EXPORT_OF clk.in_clk

add_interface reset reset end
set_interface_property reset EXPORT_OF reset.in_reset

add_interface pins conduit end
set_interface_property pins EXPORT_OF phy. pins

add_interface slave aval on sl ave
set _interface_property slave EXPORT_OF regs. sl ave

add_i nstance cl k altera_cl ock_bridge

add_i nstance reset altera_reset_bridge

set _instance_property_val ue reset synchronous_edges deassert
add_connection clk.out_clk reset.clk

add_i nstance phy ny_phy_nicrocore
add_connection cl k.out _cl k phy.clk
add_connection reset.out_reset phy.clk reset

add_i nstance regs my_regs_mi crocore
add_connection cl k.out_clk regs.clk
add_connection reset.out_reset regs.reset
add_connecti on phy. out put regs.input
add_connection regs. out put phy.input

Editor Callback

You can use the editor callback procedure to replace the parameter editor to make it
easier to use. An editor callback is defined by setting the EDI TOR_CALLBACK module
property to the name of your editor callback procedure, as shown in the

Example 8-12. If the editor callback is defined, Qsys calls the editor callback instead of
displaying the parameter editor, typically when the component is added to a system
or updated after it is in the system.

To display your custom parameter editor, the editor callback must call another
program. Typically, an editor callback provides the current parameter values to your
program via the command line and collects the new parameter values via st dout . The
editor callback then uses the set _par anet er _val ue command to update Qsys with the
new parameter values.

The editor callback returns one of the following three values:
m  (K—indicates that the results of the edit should be applied.

m  CANCEL—indicates that the system should revert to the state it was in before the
editor callback was called.

m ERRCR—indicates that the parameter editor was unable to launch. An appropriate
error message should be displayed.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-14 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

If no value is returned, K is assumed.

Example 8-12. Editor Callback
set _nodul e_property ED TOR_CALLBACK my_editor

# Define Modul e paraneters.
add_par anmet er PARAMETER_ONE i nteger 32 "A paraneter"”
add_par anmet er CSR_ENABLED bool ean true "Enable CSR interface"

# My editor method

proc my_editor {} {

# get paraneter val ues
set pl [ get_paraneter_val ue PARAVETER ONE ]
set csr [ get_paraneter_val ue CSR_ENABLED ]

# Display U, populated with current paraneter val ues.
# The stdout returned by the U programincludes the new paranter val ues.
set result [exec my_conponent _ui.exe pl=$pl csr=$csr]

# Use the fictional "parse_for_new val ue" procedure to parse the returned text for the
# new paraneter val ues.

set pl [parse_for_new value $result pl]

set csr [parse_for_new value $result csr]

# Return the new paraneter values to (sys
set _par anet er _val ue PARAMETER ONE $pl
set _paranet er _val ue CSR_ENABLED $csr
return X

Hardware Tcl Command Reference

This section provides a reference for all hardware Tcl commands, as follows:
m “Module Definition” on page 8-17

m “Parameters” on page 8-24

m “Display Items” on page 8-33

m “Interfaces and Ports” on page 8-36

m “Compose” onpage 843

m “Generation” on page 8-49

The description of each command indicates during which phases it is available: in the
main body of the program (main), or during the validation, elaboration, compose,
generation, and editor callback phases, or any combination. Table 8-2 summarizes the
commands and provides a reference to the full description.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-15
Hardware Tcl Command Reference

[~ All Tcl commands that you can use in the validation callback are also available in the
elaboration callback. You may be able to omit the custom validation callback by
including some validation commands in your elaboration callback.

Table 8-2. Command Summary (Note 1) (Part1 of 2)

Command Full Description
Module Definition
package <require> -exact sopc <version> page 8-17
get _nodul e_properties page 8-17
get _nodul e_property <propertyName> page 8-19
set _nodul e_property <propertyName> <propertyVal ue> page 8-19
get _nodul e_ports page 8-20
get _nodul e_assi gnnents page 8-20
get _nodul e_assi gnnent <nodul eNanme> page 8-21
set _nodul e_assi gnnent <modul eName> [ val ue] page 8-21
get _files page 8-21
add_file filename [<fileProperties>. . . ] page 8-21
add_docunentation_link <docType> <title> <fileQ Ul > page 8-22
get _file_properties page 8-22
get _file_property <filename> <propertyNane> page 8-22
set file_property <filenanme> <propertyNane> <propertyVal ue> page 8-23
send_nmessage <nessagelevel > <messageText > page 8-23
Parameters
add_par anet er <paranet er Name> <par anet er Type> [ <def aul t Val ue> <descri pti on>] page 8-24
get _paraneters page 8-25
get _paraneter_properties page 8-25
get _paraneter_property <paraneter Name> <propertyName> page 8-30
set _paraneter_property <paraneterName> <propertyName> <val ue> page 8-30
get _paranet er _val ue <paranet er Nang> page 8-31
set _paranet er_val ue <paranet er Nane> <val ue> page 8-31
decode_address_map <address_map_XM._string> page 8-32
Display Items
add_di spl ay_i tem <gr oupNane> <i d> <type> [<additional | nfo>] page 8-33
get _display_itens page 8-34
get _display_item properties page 8-35
get _display_itemproperty <itenmNane> <propertyNane> page 8-35
set _display_itemproperty <itenmNane> <propertyNane> <val ue> page 8-35
Interfaces and Ports
add_interface <i nterfaceNane> <interfaceType> <direction>
[ <associ at edd ock>] page 8-37
get interfaces <interfaceName> page 8-37

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-16 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 8-2. Command Summary (Note 1) (Part2 of 2)

Command Full Description
get _interface_property <interfaceName> <propertyName> page 8-38
set _interface_property <interfaceName> <propertyName> <val ue> page 8-39

add_i nterface_port <interfaceName> <portName> <portRol e> [<direction>

<wi dt h_expr >] page 8-39
get interface_ports [<interfaceNane>] page 8-40
get _port_properties page 8-40
get _port_property <portNanme> <propertyNane> page 8—41
set_port_property <portNane> <propertyNane> [<val ue>] page 8-42
get _interface_assi gnments page 8-42
get _interface_assi gnnent <interfaceNane> <nane> page 8-42
set _interface_assignnet <interfaceNane> <name> [<val ue>] page 8-43
Compose

add_i nstance <i nstanceName> <i nst anceType> <versi on> page 8-43
get _i nstances page 8-44
get _i nstance_par anet ers <i nst anceNane> page 8-44
set _i nstance_paraneter <instanceName> <par aneter Nane> <paranet er Val ue> | page 8-44
get _i nstance_par anmet er _val ue <i nstanceName> <par anet er Nanme> page 8-44
get _instance_paraneter_properties <instanceNane> <par anet er Nane> page 8-45
get _i nstance_paranet er _property <i nstanceName> <par anet er Narme>

<pr oper t yNane> page 8-45
get _instance_i nterfaces <instanceNane> page 8-46
get _instance_interface properties <instanceNane> <interfaceNane> page 8-46
get _instance_interface_property <instanceNane> <interfaceNane>

<pr oper t yNane> page 8-46
get _instance_interface_ports <instanceName> <port Nane> page 8-47
get _instance_port_property <instanceNane> <i nterfaceNanme>

<pr oper t yNane> page 8-47
add_connection [instanceNane>] <startlnterface> <endlnterface> page 8-47
get _connections page 848
get _connection_paraneters <instanceName> page 8-48
get _connection_paraneter <connecti onNane> <par anet er Nane> page 8-49
set _connection_paraneter_val ue <connecti onNane> <par anet er Name>

<par anet er Val ue> page 8-49
Generation

get _generation_properties page 8-49
get _generation_property <propertyNanme> page 8-50

Note to Table 8-2:
(1) Arguments enclosed in []’s are optional

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-17
Hardware Tcl Command Reference

Module Definition

This section provides information about the commands that you use to define and
query a module.

package

The package command allows you to specify a particular version of the Qsys software
to avoid software compatibility issues. You should use the package command at the
beginning of your _hw.tcl file. When used, the component files behave as if they are
interpreted by the version of the Qsys software that you specify. When the package
command is not used, installed version of the Qsys software is assumed. For
components designed before 9.0, you can set the required package to 9.0. This
document describes the behavior of component which start with
package require -exact sopc 10.1 For earlier releases, refer to the documentation for
that release.

“ e package is a standard Tcl command. For more information on this command refer to

the following Package page of the Altera website.

package

g\illlitl);t?ill(ity Main (before any other commands in the file)

Usage package require -exact sopc <version>

Returns None

Arguments Versi on | The version of @sys that you require, specified as decimal number
Example package require -exact sopc 10.0

get_module_properties

This command returns the names of all the available module properties as a list of
strings. You can use the get _nodul e_property and set _nodul e_pr operty commands
to get and set values of individual properties. The value returned by this command is
always the same for a particular version of Qsys.

get_module_properties

g\ililitl):tfill(ity Main, validation, elaboration, generation, compose, and editor
Usage get _nodul e_properties

Returns Li st of strings

Arguments None

Example get _nodul e_properties

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.tcl.tk/man/tcl8.0/TclCmd/package.htm

8-18

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 8-3 lists the available module properties, their use, and the phases in which they

can be set.

Table 8-3. Module Properties (Part 1 of 2)

Property Name

Property
Type

Can Be Set

Description

ANALYZE HDL

Bool ean

Main program

When set to f al se. prevents a call to the
Quartus Il mapper to verify port widths and
directions, speeding up generation time at the
expense of fewer validation checks. If this
property is set to f al se, invalid port widths
and directions are discovered during Quartus Il
compilation.

AUTHOR

String

Main program

The module’s author.

DESCRI PTI ON

String

Main program

The description of the module, such as
“Example Qsys Module.”

DI SPLAY_NAVE

String

Main program

The name to display when referencing the
module, such as “My SOPC Component.”

EDI TABLE

Bool ean

Main program

Indicates if the component is editable in the
component editor.

EDI TOR_CALLBACK

String

Main program

The name of the editor callback. The default
parameterization Ul is displayed if this property
is not set.

ELABORATI ON_CALLBACK

String

Main program

The name of the elaboration callback. For static
and generated components, the default
elaborations used if this property is not set.

CGENERATI ON_CALLBACK

String

Main program

The name of the generation callback.

GROUP

String

Main program

The component group that the module belongs
to, such as “Example Components.”

HI DE_FROM QSYS

Bool ean

Main program

When setto t r ue, the component is not visible
in the component library.

| CON_PATH

String

Main program

A path to an icon to display in the module’s
parameter editor.

| NSTANTI ATE_I N_SYSTEM MODULE

Bool ean

Main program

When f al se the instances of the module are
not included in the generated system
interconnect fabric. Instead, interfaces to the
module are exported out of the top-level of the
Qsys system.

| NTERNAL

Bool ean

Main program

A component which is marked as internal does
not appear in the Qsys component library. This
feature allows you to hide the submodules of a
larger composed component.

MCDULE_DI RECTCRY

String

Can only be
read, not set

The directory containing the _hw.tel file. All
relative file names within the Tcl file are
resolved relative to this directory. This
directory is set as the current directory when
running the main program or a callback.

MODULE_TCL_FI LE

String

Can only be
read, not set

The path to the _hw.tel file.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-19
Hardware Tcl Command Reference

Tahle 8-3. Module Properties (Part 2 of 2)

Property Name Pr:;):;ty Can Be Set Description
NANE String Main program The name of the module, such as
my_sopc_conponent .
Indicates which of the files added by the
TOP_LEVEL_HDL_FILE String Main program | add_fi | e command contains the module’s
top-level HDL.
Indicates the name of the top-level module
TOP_LEVEL_HDL_MODULE String Main program | which must be defined in the module’s
top-level HDL file.
The name of the validation callback. This
VALI DATI ON_CALLBACK String Main program | callback is run in addition to the default
validation.
VERSI ON String Main program | The module’s version, such as 10.0
The name of the compose callback. If you
COVPCOSE_CALLBACK String Main Program | define a compose callback then you must not
define the generation or elaboration callbacks.

"=~ The | NSTANTI ATE_I N_SYSTEM MODULE, TOP_LEVEL_HDL_MODULE and
GENERATI ON_CALLBACK commands are used to select the type of generation used by the
component. You must set only one of these in the main program of your file.

get_module_property

This command returns the value of a single module property.

get_module_property

g\?;lllitl)aal;:ill(ity Main, validation, elaboration, generation, compose, and editor

Usage get _nmodul e_property <propertyName>

Returns String, bool ean,orfile

Arguments propertyNanme ‘ One of the properties listed in Table 8-3 on page 8-18
Example set ny_nane [get_nodul e_property NAME]

set_module_property

This command allows you to set the values for module properties.

set_module_property
Callback Main program
availability prog
Usage set _nmodul e_property <propertyName> <propertyVal ue>
Returns None
propert yName One of the properties listed in Table 8-3 on page 8-18
Arguments
propertyVal ue The new value of the property
Example set_nodul e_property VERSION 10.0

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-20

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_module_ports

This command returns a list of the names of all the ports which are currently defined.

get_module_ports

g\ililitl):t():ill(ity Main, validation, elaboration, generation, and editor
Usage get _nodul e_ports

Returns String

Arguments None |

Example get _nodul e_ports

get_module_assignments

This command returns names of the module assignment variables.

get_module_assignments

g\?;lllitl)aal;:ill(ity Main, validation, elaboration, and compose
Usage get _nodul e_assi gnnent s

Returns String

Arguments None

Example get _nodul e_assi gnnment s

get_module_assignment

This command returns the value of the specified argument. You can use the

get _nmodul e_assi-gnnent and set _nmodul e_assi gnnent and the

get _interface_assignment and set _interface_assi gnment commands to transfer
information about hardware components to embedded software tools and
applications.

get_module_assignment

g\?;lllitl)aal;:ill(ity Main, validation, elaboration, and compose

Usage get _nodul e_assi gnment <name>

Returns String

Arguments name | The name whose value is being retrieved
Example get _nodul e_assi gnnent enbedded. sw. CMacr 0. col or Space

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

e For more information about specifying information for software tools, refer to

Publishing Component Information to Embedded Software in the Nios II Software
Developer’s Handbook.

December 2010  Altera Corporation


http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf

Chapter 8: Component Interface Tcl Reference 8-21
Hardware Tcl Command Reference

set_module_assignment

This command sets the value of the specified argument.

set_module_assignment

g\ililitl):tfill(ity Main, validation, elaboration, and compose
Usage set _nodul e_assi gnnent <nanme> [ <val ue>]
Returns None
nane The name whose value is being set
Arguments
val ue The value of the <nanme> argument
Example set _nmodul e_assi gnment embedded. sw. CVacr o. col or Space CWK
get_files
This command returns a list of all the files that have been added to the module.
get_files
g\illlitl);t?ill(ity Main, validation, elaboration, generation, and editor
Usage get _files
Returns Li st of strings
Arguments None
Example set list_of files [get _files]
add_file

This command adds a synthesis, simulation, or TimeQuest constraints file to the
module. Files added in the main program cannot be removed. Adding files in the
generation callback allows the included files to be a function of the parameter set or to
be a result of generation. Files added in callbacks are in addition to any files added in
the main program.

add_file
Call'bac'k. Main, elaborate, and generation
availability
Usage add_file filename [<fileProperties>. . . ]
Returns String
filename The file name to be added, relative to the directory containing the _hw.tcl file
Files support the following 3 properties:
Arguments ) ) m S| MULATI ON—File for simulation
fileProperties ) )
m SYNTHESI S—File for synthesis
m SDC—TimeQuest constraints (SDC behaves like a synthesis file)
Example add_file ny_conponent.v {SI MILATI ON SYNTHESI S}

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis




8-22

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

add_documentation_link

This command allows you to add multiple documentation links for a single

component.

add_documentation_link

Callback

availability | VN
Usage add_docunmentation_link filename <docType> <title> <fileQUl>
Returns None
One of the following document types: USER_GUI DE, RELEASE_NOTES, VEBLI NK,
docType ERRATA, DATASHEET, REFERENCE_MANUAL, WAVEFORM SCHEMATI CS. TUTORI AL,
OTHER
Arguments title The title of the document for use on menus and buttons.
A path to the component documentation, using a syntax that provides the entire
fileOUl URL, not a relative path. For example: http://www.mydomain.com/my_
memory_controller.html or file:///datasheet.txt.
£ | add_docunentation_|ink USER GUIDE "Aval on Verification |P Suite User Quide"
xample

http://ww:. al tera.conliterature/ug/ug_aval on verification_ip.pdf

get_file_properties

This command returns the list of all properties that have been defined for a file.

get_file_properties

g\ilalitl);t():ill(ity Main, validation, elaboration, generation, compose, and editor
Usage get _file_properties

Returns Li st of strings

Arguments None

Example get file_properties

get_file_property

This command returns the value of a single file property. The file name passed as an
argument may be a partial as long as it is unique. For example, if the full file name is
/components/my_file.v, my_file.v is sufficient.

get_file_property

Callback . I . . .
availability Main, validation, elaboration, generation, and editor
Usage get _file_property <filename> <propertyNane>
Returns Bool ean

filename The file name whose properties are being retrieved
Arguments - —— .

pr opert yNanme The file name property whose value is being retrieved
Example set forSynthesis [get_file_property ny_file.v SYNTHESI S|

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-23
Hardware Tcl Command Reference

set_file_property

This command sets the value of a single file property. The file name passed to the
function can be a partial file name as long as it is unique. For example, if the full file
name is /components/my_file.v, my_file.v is sufficient. The available properties are
described in the add_fi | es command.

set_file_property

g\illlitl);t?ill(ity Main, elaboration, and generation
Usage set file_property <filenanme> <propertyNane> <propertyVal ue>
Returns Bool ean
filename The file name whose properties are being retrieved
Arguments pr oper t yNane Name of the file property whose value is being retrieved
propertyVal ue Value to set for the file property
Example set _file_property ny_file.v SYNTHESIS true

send_message

This command sends a message to the user of the component. The message text is
normally interpreted as HTML. The <b> element can be used to provide emphasis. If
you do not want the message text to be interpreted as HTML then pass a list like

{ info text } asthe message level.

send_message
Call'bac'k. Main, validation, elaboration, generation, compose, and editor
availability
Usage send_nessage <messagelevel > <nmessageText >
Returns None
The following 4 message levels are supported:
m Error—provides an error message. The Qsys system cannot be generated
while there are error messages.
messagelevel . . .
Arguments m \Mr ni ng—provides a warning message.
m | nf o—provides an informational message.
m Debug—provides messages when debug mode is enabled.
messageText The text of the message
Example send_nessage Error "<b>paranil</b> must be greater than paran."”

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-24

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Parameters

Parameters allow users of your component to affect its operation in the same manner

as Verilog HDL parameters or VHDL generics.

add_parameter

This command adds a parameter to your component. Most of the parameter types are

self-explanatory because they are used in the C programming language or HDL.

However, thestring_list andinteger_| i st parameters that are used to create tables

in GUISs require some explanation.

m  When you use the add_par anet er command withastring_|ist orinteger_|ist
parameter type, the parameter you define is displayed in a variable-sized table
that includes add and remove buttons.

m If you define multiple parameters of type string_li st orinteger_|ist, youcan
also use the add_di spl ay_i t emcommand to specify that parameters should each
be displayed as a column in a table, each parameter of type string_| i st or
i nteger_l i st becomes a column in the table. Example 8—13 illustrates the use of
theinteger_|list parameter types to create a multi-column table.

Example 8-13. Creating Tables Using the string_list and integer_list Parameter Types

add_par anet er
add_par anet er
add_par anet er
add_par anet er

bi t sWde | NTEGER

di vi der | NTEGER
coefficients I NTEGER LI ST
positions | NTEGER LI ST

add_di splay_item nyTabl e coefficients TABLE
add_di splay_item nyTabl e positions TABLE

add_parameter

Gallback Main program
availability prog
Usage add_par anet er <par aneter Name> <par anet er Type> [ <def aul t Val ue> <descri ption>]
Returns String
par amet er Nane A name that you, the component author, choose for your parameter
The following types are supported: I nt eger, Natural, Positive,
par anet er Type Bool ean, Std_logic,Std |ogic_vector, String,String_list,and
Arguments Integer |ist.
def aul t Val ue The default length of the parameter is derived from its range.
description Explains the use of the parameter
Example add_paraneter seed integer 17 "The seed to use for data generation."

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-25
Hardware Tcl Command Reference

get_parameters

This command returns the names of all parameters that have been previously defined
by add_par anet er as a space separated list.

get_parameters

g\ilalitl);t():ill(ity Main, validation, elaboration, generation, compose, and editor
Usage get _paraneters

Returns Li st of strings

Arguments None

Example set paraneter_summary [get _paraneters]

get_parameter_properties

This command returns a list of all the available parameter properties as a list of
strings. The get _par amet er _property and set _par amet er_property commands are
used to get and set the values of these properties, respectively.

get_parameter_properties

gjzlilitl):lgill(ity Main, validation, elaboration, generation, compose, and editor
Usage get _paranet er _properties

Returns List of strings

Arguments None

Example set property _summary [get_paranmeter_properties]

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-26

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 84 describes the properties available to describe the behaviors of each of the
parameters you can specify, their use, and when they can be set.

Table 8-4. Parameter Properties (Part 1 of 3)

Property Name

Type/
Default

Can Be Set

Description

AFFECTS_ELABORATI ON

Bool ean, true

Main program

Set AFFECTS_ELABORATI ON'to f al se for parameters
that do not affect the external interface of the module.
An example of a parameter that does not affect the
external interface is i sNonVol ati | eSt or age. An
example of a parameter that does affect the external
interface is wi dt h. When the value of a parameter
changes, if that parameter has set

AFFECTS ELABORATI ON=f al se, the elaboration phase
(calling the callback or hardware analysis) is not
repeated, improving performance. Because the default
value of AFFECTS_ELABORATI ONiis t r ue, the provided
HDL file is normally re-analyzed to determine the new
port widths and configuration every time a parameter
changes.

AFFECTS_GENERATI ON

Bool ean, refer to
description

Main program

The default value of AFFECTS_GENERATI ONis f al se if
you provide a top-level HDL module, it is t r ue if you
provide a custom generation callback. Set
AFFECTS_GENERATI ONto f al se if the value of a
parameter does not change the results of system
generation.

ALLOVNED RANGES

String,

Main program

Indicates the range or ranges that the parameter value
can have. For integers, The ALLOAED RANGES property
is a list of ranges that the parameter can take on, where
each range is a single value, or a range of values
defined by a start and end value separated by a colon,
such as 11:15. This property can also specify legal
values and display strings for integers, such as {0:None
1:Monophonic 2:Stereo 4:Quadrophonic} meaning
0,1,2,4 are the legal values. You can also assign longer
strings to be displayed in the parameter editor to string
variables. For example, ALLOAED RANGES

{"devl: Cycl one 1V &X"

"dev2: Stratix V GI"}Referto Example 8-8 on
page 8-8 and Figure 8—1 on page 8-8 for additional
examples illustrating the use of this property.

DEFAULT_VALUE

String or
Bool ean

Main program

The default value.

Validation or When t r ue, indicates that the parameter value does not
DERI VED Bool ean,f al se elaboration need to be stored, typically because it is set from the
callback validation callback. The default value is f al se.
DESCRI PTI ON String,"" Main program | A user-visible description of the parameter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation




Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

8-27

Table 8-4. Parameter Properties (Part 2 of 3)

Property Name

Type/
Default

Can Be Set

Description

DI SPLAY_HI NT

String,""

Main program

Provides a hint about how to display a property. The
following values are possible:

m bool ean—for integer parameters whose value can
be 0 or 1. The parameter displays as an option that
you can turn on or off.

m radi o—displays a parameter with a list of values as
radio buttons instead of a drop-down list.

m hexadeci mal —for integer parameters, display and
interpret the value as a hexadecimal number, for
example: 0x00000010 instead of 16.

m fixed_size—forstring_list and
i nteger _|ist parameters, the fi xed_si ze
DI SPLAY_HI NT eliminates the add and remove
buttons from tables.

Refer to Example 8-8 on page 8-8 and Figure 8-1 on
page 8-8 for examples illustrating the use of this
property.

DI SPLAY_NAME

nn

String,

Main program

This is the GUI label that appears to the left of the
parameter.

DI SPLAY_UNI TS

String,""

Main program

This is the GUI label that appears to the right of the
parameter.

ENABLED

Bool ean, true

Main program,
validation, and
elaboration,
callbacks

When f al se, the parameter is disabled, meaning that it
is displayed, but greyed out, indicating that it is not
editable on the parameter editor.

GROUP

String,""

Main

Controls the layout of parameters in GUI. Refer to
Example 8-8 for an illustration of its use.

HDL_PARAMETER

Bool ean, f al se

Main program

When t r ue, the parameter must be passed to the HDL
component description. The default value is f al se.

NEW | NSTANCE_VALUE

String,

Main program

This property allows you to change the default value of
a parameter without affecting older components that
have assigned a default value to this parameter using
the def aul t Val ue argument. The practical result is
that older components will continue to use

def aul t Val ue for the parameter and newer
components can use the value assigned by

NEW | NSTANCE_VAL UE.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-28

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 8-4. Parameter Properties (Part 3 of 3)

Type/

Property Name Default

Can Be Set

Description

SYSTEM | NFO String,""

Main program

Allows you to assign information about the instantiating
system to a parameter that you define. SYSTEM | NFO
requires a keyword argument specifying the type of
information requested, <i nf o-t ype>. <i nf o-

t ype> may also take an argument. The syntax of the
Tcl command is:

set _paraneter_property ny_paraneter
SYSTEM I NFO <i nf o-type> [<arg>]

The following values for <i nf o- t ype> are predefined:
ADDRESS_MAP, ADDRESS_W DTH, CLOCK_DOVAI N,
CLOCK_RATE, CLOCK_RESET_I NFO,

CUSTOM_| NSTRUCTI ON_SLAVES, DEVI CE,

DEVI CE_FAM LY, DEVI CE_FEATURES,

| NTERRUPTS_USED, GENERATI ON_I D,
MAX_SLAVE_DATA W DTH, RESET_DOMAI N, and

TRI STATE_ONDUI T_MASTERS

Refer to Table 8-5 for descriptions of the <i nf o_t ype>
argument.

TYPE String,

Main program

Specifies one of the following types: | NTEGER,
NATURAL, PCSI Tl VE, BOOLEAN, STD_LQOG C,
STD_LQG C VECTCR, STRI NG, STRI NG LI ST,
I NTEGER LI ST, LONG, or FLQAT.

UNI TS String,

Main program

Sets the units of the parameter. The following values
are possible: None, Pi coseconds, Nanoseconds,

M croseconds, M | | i seconds, Seconds, Hert z,

Ki | ohertz, Megahertz, G gahertz, Address, Bits,
Byt es, Ki | obyt es, Megabyt es, G gabyt es,

Bi t sPer Second, Ki | oBi t sPer second,

MegaBi t sPer Second, Bi gaBi t sPer Second,

Per cent, and Cycl es. For example,

set _paraneter_property frequency UNITS

gi gahertz

VI SI BLE Bool ean, true

Main program,
validation, and
elaboration,
callbacks

Indicates whether or not to display the parameter in the
parameterization GUI.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference

Hardware Tcl Command Reference

8-29

m Tabl e 8-5 describes the properties that you can use with the system i nfo
parameter property. For more information about how to use the syst em i nf o
parameter property, refer to “SYSTEM_INFO Parameters” on page 8—4.

Tahle 8-5. SYSTEM_INFO Properties (Part 1 of 2)

Property

Type

Description

ADDRESS_MAP

String

Assigns an XML formatted string describing the address map to the
parameter you specify.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ ADDRESS_MAP <ny_aval on- nm nast er >}

ADDRESS_W DTH

I nt eger

Assigns an integer to the parameter that you specify that is the number of
bits an Avalon-MM master must drive to address all of its slaves, using
byte addresses.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ ADDRESS_W DTH <ny_aval on- mm mast er >}

CLOCK_DOVAI N

I nt eger

Assigns an integer representing the clock domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same clock domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
clock domain, the CLOCK_DOMAI N value is guaranteed to be the same and
greater than zero.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{CLOCK_DOVAI'N <my_cl k>}

CLOCK_RATE

I nt eger or
String

Assigns a positive number which is the clock frequency in Hz to the clock
input interface you specify. Assigns 0 if the clock rate is not known.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ CLOCK_RATE <ny_cl k>}

CLOCK_RESET | NFO

String

Specifies the name of the module’s clock or reset sink interface. (Specifies
the clock sink interface for designs that use a global reset.)

CUSTOM | NSTRUCTI ON_
SLAVES

String

Provides custom instruction slave information, including the name, base
address, address span, and clock cycle type.

DEVI CE

String

Specifes the Altera part number, for example EP2S15F484C3.

DEVI CE_FAM LY

String

Assigns the family name (not the specific device part number) of the
currently selected device to the parameter you specify.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ DEVI CE_FAM LY}

DEVI CE_FEATURES

String

Creates a list of key/value pairs delineated by spaces indicating whether a
particular device feature is available in the currently selected device family.
The format of the list is suitable for passing to the Tcl array set
command. This list is assigned to the parameter you specify. The following
features are supported: M612_MEMORY, MAK_MEMORY, MBK_VEMORY,
ML44K_MENORY, MRAM MEMORY, MLAB_NMEMCRY, ESB, DSP, and EMUL.

set _paraneter_property <my_paranet er> SYSTEM | NFO
{ DEVI CE_FEATURES}

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis




8-30

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

Table 8-5. SYSTEM_INFO Properties (Part 2 of 2)

Property

Type

Description

| NTERRUPTS_USED

I nt eger or
string

Creates a mask indicating which bits of the interrupt receiver vector are
connected to an interrupt sender. This mask is assigned to the parameter
you specify. You can use this interrupt mask to optimize logic that handles
interrupts.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
(I NTERRUPTS_USED <ny_i nterrupt _recei ver >}

GENERATI ONLI D

I nt eger

Records a unique 1D for a particular generation run.

MAX_SLAVE_DATA W DTH

I nt eger

Assigns an integer to the parameter you specify that is the data width of the
widest slave connected to the specified Avalon-MM master.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ MAX_SLAVE DATA W DTH <ny_aval on_nm nast er >}

RESET_DOMAI N

I nt eger

Assigns an integer representing the reset domain to the parameter you
specify. You can use this command to determine whether multiple
interfaces in your module are on the same reset domain. The absolute
value of the integer value is arbitrary, but if two interfaces are on the same
reset domain, the RESET_DOMAI N value is guaranteed to be the same and
greater than zero.

set _paraneter_property <ny_paraneter> SYSTEM | NFO
{ RESET_DOVAI N.<my_r eset >}

get_parameter_property

This command returns a single parameter property.

get_parameter_property

g\?zlili?:lfill(ity Main, validation, elaboration, generation, compose, and editor

Usage get _paranet er _property. <paramet er Nane> <pr oper t yName>

Returns string, bool ean, or uni t s, depending on property. Refer to Table 8—4 on page 8-26.

Arguments par anmet er Nanme The name of the parameter whose property value is being retrieved
pr oper t yNanme One of the properties listed in Table 8-4 on page 8-26

Example get _paraneter property paraneterl GROUP

set_parameter_property

This command sets a single parameter property.

set_parameter_property

Callback . I .

availability Main, validation, compose, and elaboration

Usage set _paraneter_property <parameter Name> <propertyNane> <val ue>
Returns string, bool ean, or uni t s depending on property

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation




Chapter 8: Component Interface Tcl Reference 8-31
Hardware Tcl Command Reference

set_parameter_property

par amet er Nanme Specifies the parameter that is being set
Arguments or oper t yName Specifies the property of par a_mat er Nane that is being set, refer to Table 8—4 on
page 8—26 for a list of properties
val ue Provides the values
Example set _paraneter_property BAUD RATE ALLOAED RANGES {9600 19200 38400}

get_parameter_value

This command returns the current value of a parameter defined previously with the
add_par anet er command.

get_parameter_value

g\ililitl):tfill(ity Validation, elaboration (7), compose. generation, and editor

Usage get _paraneter_val ue <paranmet er Nane>

Returns String

Arguments par anet er Nare ‘ Specifies the parameter that is being retrieved
Example set fifo width [get_paraneter_val ue fifo width]

Note:

(1) If AFFECTS_ELABORATI ON=f al se for a given parameter, get _par anet er _val ue is not available for that parameter from the elaboration
callback. If af f ect s_generati on=f al se then it is not available from the generation callback.

set_parameter_value

This command sets a parameter value. The values of derived parameters can be set
from the validation and elaboration callbacks. The values of parameters which are not
marked as der i ved or syst em i nf 0 can be set from the editor callback.

set_parameter_value
Call'bac'k. Validation, elaboration, compose, and editor
availability
Usage set_paraneter _val ue <paramet er Name> <val ue>
Returns None

par anet er Nane Specifies the parameter that is being set
Arguments —

val ue Specifies the value of par anet er Nane
Example set _paranet er _val ue BAUD_RATE 19200

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-32

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

decode_address_map

This is a utility function to convert an XML-formatted address map into a list of Tcl
lists. Each inner list is in the correct format for conversion to an array. The XML code
describing each slave includes: its name, start address, and end address + 1. Figure 8-2
shows a portion of an Qsys system with three Avalon-MM slave devices.

Figure 8-2. Qsys System with Three Avalon-MM Slaves

E ext_ssram Cypress CYTC13580C SSRAM
— =1 Avalon Memory Mapped Tristate Slave  |pll_c0 0x01000000 (OxO0LLfffff
= sys_clk_timer Interval Timer
=1 Avalon Memory Mapped Slave pll_c0 0x02120800 0x0Z1Z081f
= sysid System ID Peripheral
control_slave Avalon Memory Mapped Slave pll_c0 0x021208b% (0x0Z1Z08hbf

=

Example 8-14 shows the XML that describes the address map for the Avalon-MM
master that accesses these slaves. The format of the XML string provided may differ
from that described here, it may have different white space between the elements and
could include additional attributes or elements. Using decode_addr ess_map command
to decode the XML representing an Avalon-MM master’s address map is easier and
ensures that your code will work with future versions of the XML address map.

Altera recommends that you use the code provided in the description of
Example 8-14 to enumerate over the components within an address map, rather than
writing your own parser.

Example 8-14. Address Map for an Avalon-MM Master

<addr ess- map>
<s|l ave name='ext_ssram start='"0x01000000" end='0x01200000" />
<slave name="sys_clk_timer' start="0x02120800" end='0x02120820" />
<slave name='sysid' start='0x021208B8' end='0x021208C0' />

</ addr ess- map>

decode_address_map

Callback I , ]

availability Validation, compose. elaboration, and generation

Usage decode_address_map <address_map_XM__string>

Returns List of Tcl lists, each one suitable for passing to array set

Arguments addr €SS_Mmap_ An XML string describing the address map of an Avalon-MM master.
XM__string
set address_map_xm [get_paraneter_val ue my_nap_paran
set address_map_dec [decode_address_nmap $address_map_xni ]

Example foreach i $address_map_dec {

array set info $i
send_nessage info "Connected to slave $info(name)"

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference 8-33
Hardware Tcl Command Reference

Display Items

You specify your component GUI using the display commands.

add_display_item
You can use this command to specify the following aspects of component display:

®m  You can create logical groups for a component’s parameters. For example, you
might want to create separate groups for the component’s timing, size, and
simulation parameters. A component displays the groups and parameters in the
order that you specify the display items for them in the _hw.tcl file.

® You can create multicolumn tables to present a component’s parameters. Refer to
Example 8-13 on page 8-24 for an example that illustrates multicolumn tables.

B You can specify an image to provide a pictorial representation of a parameter or
parameter group.

B You can create a button by adding a display item of type act i on. The display item
includes the name of the callback to run when the action is performed.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-34

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

You create a display group by adding display items to it.

add_display_item

Callback Main program
availability prog
Usage add_di spl ay_i t em <groupNanme> <i d> <type> [<additional | nf 0>]
Returns String
groupNane Specifies the group to which a display item belongs.
. Specifies the parameter or icon to be displayed in a group. Each display item
id . . .
associated with a component must have a different ID.
Specifies the category of the display item. The following types are defined:
m i con-a .gif, .jpg, or .png file
m par anet er—a parameter in the instance
m text—ablock of text
type m group-agroup. If the gr oupNane.is also defined, the new group is a child of
the gr oupNane group. If gr oupName is an empty string, the group is
top-level.
m action-an action defined by a callback procedure when you click the button
labeled by act i onNane.
Arquments Provides extra information required for display items. The following examples
g illustrate how you use the addi ti onal | nf o argument for the various types:
m add_di splay_item groupNarme id icon path-to-image-file
m add_di splay_item gr oupName par anet er Nane paranet er
(addi ti onal I'nf o not required)
m add_di splay_item groupNane id text "your-text"
N The your - t ext argument is a block of text that is displayed in the GUI. Some
additionallnfo simple HTML formatting is allowed, such as <b> and <i >, if the text starts
with "ht m >".
m add_di splay_item parent G oupNane chi | dG oupNane group
[tab]
The t ab is an optional parameter. If present, the group appears in separate
tab in the GUI for the instance.
m add_display_item parent G oupNane acti onNane action
buttond i ckCal | backProc
add_display_itemtining read_| atency paraneter
Examples ) ) ] ]
add_di spl ay_item sound speaker icon speaker.jpg

get_display_items

This command returns a list of all items to be displayed as part of the
parameterization GUIL

get_display_items

Callback . . — . .
availability Main, elaboration, validation, generation, compose, and editor
Usage get _display_items

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation




Chapter 8: Component Interface Tcl Reference 8-35
Hardware Tcl Command Reference

get_display_items

Returns Li st of strings
Arguments None
Example get _display_items

get_display_item_properties

This command returns a list of names of the properties of display items that are part
of the parameterization GUIL

get_display_item_properties

Callback

availability Main

Usage get _display_itemproperties
Returns Li st of strings

Arguments None

Example get _display_itemproperties

get_display_item_property

This command returns the value of specific property of a display item that is part of
the parameterization GUIL

get_display_item_property

Callback Main
availability
Usage get display_itemproperty <itemNanme> <propertyNane>
Returns String
i tenmNane The item whose property value is being retrieved
Arguments — ;
pr oper t yNane The property whose value is being retrieved
Example set ny_label [ get display itemproperty ny_action DI SPLAY_NAME ]

set_display_item_property

This command sets the value of specific property of a display item that is part of the
parameterization GUIL

set_display_item_property

Callback Main

availability

Usage set_display_itemproperty <itenNane> <propertyName> <val ue>
Returns String

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-36 Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

set_display_item_property
it emNane The item whose property value is being set
Arguments pr oper t yNane The property whose value is being set
val ue The value to set
set_display_itemproperty my_action DI SPLAY_ NAME “Click Me"
Example set _display_itemproperty ny_action DESCRIPTION “clicking this button runs the
click_nme_call back proc in the hwtcl file”

Interfaces and Ports

You can use the interface and port commands to define interfaces and ports and
retrieve their properties.

add_interface

This command adds an interface to your module. As the component author, you
choose the name of the interface. By default, interfaces are enabled. You can set the
interface property ENABLEDto f al se, to disable a component interface. If an interface is
disabled, it is hidden and its ports are automatically terminated to their default
values. Signals that you designate as active low by appending a _n are terminated to
1. All other signals are terminated to 0.
“ e The properties available for each interface type are different. The common properties,
ENABLED and ASSCCI ATED _CLOCK apply to all interface types. Refer to the Avalon
Interface Specifications for a description of other properties.

add_interface (Part1 of 2)
Callback . .
availability Main program, elaboration, and compose
Usage add_i nterface <interfaceNane> <interfaceType> <direction> [<associ atedd ock>] (7)
Returns String
i nt erfaceName A name that you choose to identify an interface.
There are 7 i nterfaceTypes. The following directions are possible for
these i nterfaceTypes
Interface Type Direction
aval on master, slave (2)
aval on_conduit_tristate mast er
interfaceTypeand | 5,41 on streaning source, sink
Arguments direction ) )
i nterrupt sender, receiver
condui t end
cl ock source, sink
reset source, si nk
ni os_custom instruction sl ave
. This defines the clock associated with the interface. It is required for all
associ at edd ock : ;
interfaces except clock interfaces.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference 8-37
Hardware Tcl Command Reference

add_interface (Part 2 of 2)
Example ‘ add_i nterface nm sl ave aval on sl ave cl ock0

Notes:

(1) Forinterfaces that are not associated with clocks, such as clock interfaces themselves, the associ at edd ock is omitted. Another option
is to specify the associ at edCl ock argument as asynchronous.

(2) The terms master, source, and start are interchangeable. The terms slave, sink, and end are interchangeable.

get_interfaces

This command returns the names of all interfaces that have been previously defined
by add_i nterf ace as a space separated list.

get_interfaces

g\?;lllitl)aal;:ill(ity Main, validation, elaboration, generation, compose, and editor
Usage get _interfaces

Returns Li st of strings

Arguments None

Example set all_interfaces [get_interfaces]

get_interface_properties

This command returns the names of all the available interface properties for the
specified interface as a space separated list.

get_interface_properties

S\E/lslili?;t():ill(ity Main program, validation, elaborations, compose, and editor
Usage get _interface_properties <i nt er f aceNane>

Returns Li st of strings

Arguments interfaceName ‘ The name of an interface that you defined
Example get interface properties nmslave

“ e The properties available for each interface type are different. Refer to the Avalon

Interface Specifications for more information about interface properties.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

8-38

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

The interface properties that are common to all interface types are listed below in

Table 8-6.

Tahle 8-6. Interface Properties Common to All Interface Types

Property

Type

Description

EXPORT_OF

String

For composed _hwl.tcl files, the EXPORT_OF property indicates which
interface of a child instance is to be exported through this interface.
Before using this command, you must have created the border interface
using add_i nt er f ace. The interface to be exported is of the form

<i nst anceNan®. i nt er f aceNane>.

Example: set _i nterface_property CSC_input EXPORT_OF
my_col or SpaceConverter.input_port

ASSOCI ATED_CLOCK

String

The name of the clock interface that this interface is synchronous to.

ENABLED

Bool ean

Specifies whether or not interface is enabled.

get_interface_property

This command returns the value of a single interface property from the specified

interface.

get_interface_property

Callback Main program, compose, and elaboration

availability program, COmpose,

Usage get _interface_property <interfaceNane> <propertyName>

Returns string, bool ean, oruni t s, depending on property. Refer to the Avalon Interface Specifications for
more information about interface properties
i nterfaceNane The name of aninterface from which you want to retrieve information

Arguments The name of the property whose value you want to retrieve. This property is
propert yNane either ENABLED or ASSOCI ATED CLOCK or a property name defined by the

interface.
Example get _interface_property nmslave readWitTime

set_interface_property

This command sets a single interface property for an interface.

set_interface_property

g\illlitl);t?ill(ity Main, compose, and elaboration

Usage set _interface_property <interfaceName> <propertyName> <val ue>

Returns String
i nterfaceName The name of an interface that includes this property

Arguments or opert yNare The name of the property whose value you want to set, which i's‘EN/-\‘BLED or

ASSOC! ATED_CLK or a name from the Avalon Interface Specifications.

val ue The value to set for the specified property

Example set _interface_property mmslave |inewapBursts false

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010 Altera Corporation



http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference 8-39
Hardware Tcl Command Reference

add_interface_port

This command adds a port to an interface on your module. As the component author,
you determine the name of the port. The port width and direction must be set by the
end of the elaboration phase. The port width can be set with one of the following
mechanisms:

m A constant width or a width expression can be set in the main program

m A constant width can be set in the elaboration callback

Il=~ Without an elaboration callback, for static components quar t us_map determines the

port width from the HDL

add_interface_port

Callback . .
availability Main program and elaboration
add_i nterface_port <interfaceName> <portName> <portRol e> [<direction>
Usage )
<wi dt h_expr >]
Returns String
i nt erfaceName The name of the interface to which the port belongs.
por t Nane The name of the port that you, the component author, have chosen.
The role of this port within the interfaces. Port roles are referred to as si gnal
Arquments portRol e types in the Avalon Interface Specification. Refer to the Avalon Interface
g Specifications for the si gnal types available for each interface type.
direction The di rection can be i nput, out put, or bi dir
. The port's width expression. In simple cases, this is just the width of the port in
wi dt h_expr bits
Example add_interface_port -nm slave sO_rdata readdata output 32

get_interface_ports

This command returns the names of all of the ports that have been added to a given
interface. If the interface name is omitted, all ports for all interfaces are returned.

get_interface_ports

gjellli?;l;:ill(ity Main, validation, elaboration, generation, and editor

Usage get _interface_ports [<interfaceNane>]

Returns String

Arguments i nterfaceName ‘ The name of the interface whose ports you want to list. (Optional)
Example get _interface_ports nmmslave

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_port_properties

This command returns a list of all available port properties.

get_port_properties

Callback
availability

Main, validation, elaboration, generation, compose, and editor

Usage

get _port_properties <portName>

Returns

String, bool ean, or uni ts, depending on property. Refer to Table 8—4 on page 8-26

Arguments

The name of the port whose properties are required. The following 7 port properties are
supported:

por t Name u

Refer to Table 8—7 for a description of these properties.

DI RECTI ON

TERM NATI ON

TERM NATI ON_VALUE
VHDL_TYPE

W DTH

W DTH_EXPR

DRI VEN_BY

ROLE

Example

get _port_properties mmslave

Table 8-7 describes the available port properties

Tahle 8-7. Port Properties (Part 1 of 2)

Name Type Description
DI RECTI ON Ib|ng|Utr output, The direction of the port from the component’s perspective.
When t r ue, instead of connecting the port to the Qsys system, it is
TERM NATI ON bool ean !eft unconnected for out put and bi di r or set to a fixed value for
i nput. Has no effect for components that implement a generation
callback instead of using the default wrapper generation.
TERM NATI ON_VALUE i nt eger The constant value to drive an input port.
std_logic indicates the type of a VHDL port. The default value, aut o, selects
VHDL_TYPE std_| ogi c_vector std_| ogi c if the width is fixed at 1, and st d_| ogi c_vect or
auto otherwise.
W DTH i nteger The width of the port in bits.
The width expression of a port. Setting the wi dt h and wi dt h_expr
properties have the same effect; they both update the effective width
expression. The wi dt h/wi dt h_expr properties can be set to an
i nt eger atany time. They can only be set to arithmetic expressions
W DTH_EXPR string in the main program.

The values of the wi dt h and wi dt h_expr properties behave
differently when get _port _property is used. wi dt h always
returns the current integer width of the port. wi dt h_expr always
returns the unevaluated width expression.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component

Interface Tcl Reference 8-41

Hardware Tcl Command Reference

Tahle 8-7. Port Properties (Part 2 of 2)

Name Type Description
Indicates that this output port is always driven to a constant value or
DRI VEN_BY integer, input by an input port. If all outputs on a component have their

dri ven_bhy property set to a valid value then the component's HDL
is generated automatically.

Specifies an Avalon signal type such as wai t r equest , r eaddat a,
string or read. For a complete list of signal types, refer to the Avalon
Interface Specifications.

get_port_property

This command returns the value of single port property for the specified port.

get_port_property

Call'bac'k. Main, validation, elaboration, generation, and editor
availability
Usage get _port_property <portName> <propertyNane>
Returns Depends on the type of the property
por t Nane The name of the port
Arguments - - -
propert yNanme One of the supported properties described in Table 8-7.
Example get _port_property rdata WDTH

set_port_property

This command sets a single port property.

set_port_property

g\?;litl);lfill(ity Main program, elaboration, and generation

Usage set_port_property <portNane> <propertyNane> [ <val ue>]

Returns String, bool ean, or uni ts, depending on property. Refer to Table 8—4 on page 8-26.
por t Nane The name of the port

Arguments propert yNanme One of the supported properties described in Table 8-7.
val ue The value to set

Example set_port_property rdata WDTH 32

get_interface_assignments

This command returns the value of all interface assignments for the specified
interface.

get_interface_assignments

Call'bac'k. Main, validation, compose, and elaboration
availability
Usage get _interface_assi gnments <interfaceNane>

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_interface_assignments

Returns String

Arguments i nt erfaceName | The name of the Avalon interface whose assignment is being retrieved
Example get _interface_assignnents sl

get_interface_assignment

This command returns the value of the specified name for the specified interface.

get_interface_assignment

g\?elllitl);giil(ity Main, validation, compose, and elaboration

Usage get interface_assignnments <interfaceName> <nane>

Returns String

Arguments i nterfaceName The name of the Avalon interface whose assignment is being retrieved
nane The assignment whose value is being retrieved

Example get _interface_assi gnment sl enbeddedsw. configuration.isFlash

set_interface_assignment

This command sets the value of the specified assignment for the specified interface.

set_interface_assignment

g\?;lllitl)aal;:ill(ity Main, validation, compose, and elaboration
Usage set _interface_assi gnment <interfaceName> <name> [<val ue>]
Returns None
i nt erfaceName The name of the Avalon interface whose assignment is being set
Arguments nane The assignment whose value is being set
val ue The value to assign
Example set_interface_assignment sl embeddedsw. configuration.isFlash 1

e For more information about the use of the set i nterface_assi gnnent command, refer

to the “Publishing Component Information to Embedded Software” chapter in the Nios 11
Software Developer’s Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf
http://www.altera.com/literature/hb/nios2/nii_sw_handbook.pdf

Chapter 8: Component Interface Tcl Reference 8-43
Hardware Tcl Command Reference

Compose

This section covers the commands that allow you to build new components by
combining other components. It also includes commands to query the module
instances in the system.

add_instance

The add_i nst ance command adds an instance of a predefined module, referred to as
a child or child module, to a new component. You can use this command to create
components that are composed of other components.

add_instance

Callback Main and compose
availability
Usage add_i nstance <i nstanceNanme> <type> [ <versi on>]
Returns String
Arguments i nst anceNane Specifies a unique local name that you can use to manipulate the module. This
name is used in the generated HDL to identify the'module.
type The t ype refers to a module available in a library, for example
altera_aval on_uart.
version The required version of the specified module. If no version is specified, the
latest version is used.
Example add_instance ny_uart altera_avalon_uart

get_instances

This command lists the instance names of all modules in the system.

get_instances

Callback Main, validation, and compose
availability

Usage get _instances

Returns Li st of strings
Arguments None

Example get _i nstances

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_instance_parameters

This command returns the names of all parameters on a child instance that can be
manipulated by the parent. It omits parameters that are derived and those that have
the SYSTEM | NFO parameter property set.

get_Instance_parameters

Callback Main, validation, and compose

availability

Usage get _i nstance_paraneters <i nstanceNane>

Returns Li st of strings

Arguments i nst anceNane Specifies the name of the instance whose parameters are being retrieved.
Example get _i nstance_par anet ers pi xel _converter

set_instance_parameter_value

This command sets a parameter on a child module. Derived parameters and
SYSTEM | NFOparameters for the child module may not be set using this command.

set_instance_parameter_value

Callback Main and compose

availability

Usage set _i nstance_paranet er _val ue <i nstanceNanme> <par anet er Nanme>
<par anet er Val ue>

Returns None

Arguments i nst anceNane Specifies the name of the child module
par anet er Name | Specifies the parameter that is being set
par anet er Val ue | Specifies the value of the parameter that is being set

Example set _i nstance_paranet er _val ue pi xel _converter input_DPl 1200

get_instance_parameter_value

This command returns the value of the named parameter. You cannot use this
command to get the value of parameters whose values are derived or those that are
defined using the SYSTEM | NFOparameter property.

get_instance_parameter_value

Callback Main and compose
availability
Usage get _i nstance_par anet er _val ue <i nstanceName> <par amet er Nane>
Returns String, bool ean, oruni t s, depending on property. Refer to Tabl e 8-4 on page 8-26
Arguments i nst anceNane Specifies the name of the instance whose parameter is being retrieved
par anet er Nane | Specifies the parameter whose value is being retrieved
Example get _i nstance_par anet er _val ue pi xel _converter input_DPI

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 8: Component Interface Tcl Reference

Hardware Tcl Command Reference

8-45

get_instance_parameter_properties

This command returns the names of all properties for the specified parameter. The
values returned are a subset of those returned from get _par anet er _properti es.
Refer to Table 8—4 for a list of parameter properties.

get_instance_parameter_properties

Callback Main and compose
availability
Usage get _i nstance_paraneter_properties <instanceName> <par anet er Name>
Returns Li st of strings
Arguments i nst anceNane Specifies the instance name of the module
par anet er Narre | Specifies the parameter that is being set
Example get _i nstance_paraneter_properties my_col or SpaceConverter col or Space

get_instance_parameter_property

This command returns the names of the specified instance parameter property. The
following parameter properties on a child instance that are visible from the parent: TYPE,
W DTH, DERI VED, VI S| BLE, ENABLED, UNI TS, DI SPLAY_NAME, ALLONED_RANGES, and

SYSTEM | NFO

get_Instance_parameter_property

Callback Main and compose

availability

Usage get _i nstance_paranet er_property <instanceName> <par anet er Nane>
<pr opert yNanme>

Returns St ring, bool ean, oruni t s, depending on property. Refer to Table 8—4 on page 8-26.

Arguments i nst anceNane Specifies the instance name of the module
par anet er Nane | Specifies the parameter for which a property is being retrieved
propertyNane Specifies the property whose value is being retrieved

Example get _i nstance_paraneter _property ny_stereo separate_control

DI SPLAY_NAMVE

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

get_instance_interfaces

This command returns the names of all of the interfaces of a child module as a list. The
interfaces can change if the parameterization of the module changes.

get_Instance_interfaces

Callback Main and compose

availability

Usage get _instance_interfaces <instanceNane>

Returns String

Arguments i nst anceNane Specifies the instance name of the module
Example get _instance_interfaces my_Col or SpaceConverter

get_instance_interface_properties

This command returns the names of all of the properties of the specified interface.

get_Instance_interface_properties
Callback Main and compose
availability
Usage get _instance_interface_properties <instanceName> <interfaceNane>
Returns String
Arguments i nst anceNane Specifies the instance name of the module
i nt erf aceNane | Specifies an interface of instance
Example get _instance_interface properties my_Col or SpaceConverter
i nputlnterface

get_instance_interface_property

This command returns the value of a property associated with the specified module
interface.

get_Instance_interface_property

Callback Main and compose

availability

Usage get _instance_interface_property <instanceNanme> <interfaceName>
<pr opert yNanme>

Returns String

Arguments i nst anceNane Specifies the instance name of the module
i nt erfaceNane | Specifies an interface of instance
pr opert yNanme Specifies the property whose value is being retrieved.

Example get _instance_interface_property ny_conponent sl setupTime

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference

Hardware Tcl Command Reference

8-47

get_instance_interface_ports

This command returns a list of the names of the ports on the specified interface.

get_Instance_interface_ports

Callback Main and compose
availability
Usage get __instance_interface_ports <instanceNane> <interfaceNane>
Returns Li st of Strings
Arguments i nst anceNane Specifies the instance name of the module
i nt erfaceNane | Specifies an interface of instance
Example get _instance_interface_ports ny_Col or SpaceConverter outputlnterface

get_instance_port_property

This command returns a information about the port property specified.

get_instance_port_property

Callback Main and compose
availability
Usage get _instance_port_property <i nstanceNane> <port Name> <propertyNanme>
Returns String
Arguments i nst anceNane Specifies the instance name of the module
port Nane Specifies a port
property Specifies the property for which information is being retrieved. Not all port
properties are visible from the parent. Those which are visible are ROLE,
DI RECTI ON, W DTH, W DTH_EXPRand VHDL_ TYPE.
Example get _i nstance_port_property my_uart wi dth

add_connection

This command connects the named interfaces together using an appropriate
connection type. Both interface names consist of a child instance name, followed by
the name of an interface provided by that module. For example, nux0. out is the
interface named out on the instance named mux0. The command returns the name of
the newly added connection in st art . poi nt/ end. poi nt format. Be careful to
connect the start to the end, and not the other way around.

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



Chapter 8: Component Interface Tcl Reference
Hardware Tcl Command Reference

add_connection
Callback Main program and compose
availability
Usage add_connection <start.Interface> [<end.|Interface>] [kind] [nane]
Returns String
Arguments start.interface | The start interface to be connected, of the form,
<i nst ance_nane>. <i nt er f ace_nane>
end.interface The end interface to be connected,
<i nst ance_name>. <i nt er f ace_nane>
ki nd Indicates the interface type. For a list of interface types refer to “add_interface”
on page 8-37.
name Specifies the name of the connection. If omitted, the name is of the form
start-nodul e. start-interface/end-nodul e. end-interface.
Example add_connecti on dma.read_naster sdram sl

get_connections

This command lists the connectivity for all modules in the system.

get_connections

Callback Main and compose
availability

Usage get _connecti ons
Returns Li st of strings
Arguments None

Example get _connections

get_connection_parameters

This command gets the names of all parameters for the connection specified.

get_connection_parameters

Callback Main and compose

availability

Usage get _connection_paraneters <connecti onNane>

Returns Li st of strings

Arguments connect i onNane | Specifies the connection whose connection parameters are required.
Example get _connection_paraneters cpu0O. data_mnast er/ dma0. csr

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

December 2010  Altera Corporation



Chapter 8: Component Interface Tcl Reference

Hardware Tcl Command Reference

8-49

get_connection_parameter_value

This command gets the value of a parameter on the connection.

set_connection_parameter_value

This command sets a property of the connection. The start and end are each interface
names of the format <i nst ance>. <i nt er f ace>. Connection parameters depend
on the type of connection, for Avalon-MM they include base addresses and arbitration

priorities.

set_connection_parameter_value
Callback Main program and compose
availability
Usage set _connection_par anet er _val ue <connNanme> <par anet er Nane>
<par anet er Val ue>
Returns None
Arguments connName Specifies the name of the connection as returned by the add_conecti on
command. It is of the form st ar t . poi nt / end. poi nt
par anet er Name | Specifies the parameter that is being set
par anmet er Val ue | Specifies the value of the parameter
Example set _connecti on_par anet er _val ue cpuO. data_mast er/ dma0. csr baseAddress
0x1000
Generation

This section covers the commands that get generation properties.

get_generation_properties

This command returns the names of all the available generation properties as a space
separated list. These properties cannot be changed by the module. Generation
properties are provided to the generation callback to support per-instance HDL

generation.

get_generation_properties

Callback Main, validation, elaboration, compose generation, and editor
availability
Usage get _generation_properties
Returns St ri ng. The following generation properties are supported:

n hdl _I anguage

n output _directory

n out put _nane

Refer to Table 8-8 for a description of the generation properties.
Arguments None
Example get _generation_properties

December 2010  Altera Corporation

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



8-50 Chapter 8: Component Interface Tcl Reference
Document Revision History

Table 8-8 describes the generation properties.

Table 8-8. Generation Properties

Name Type Description

HDL_LANGUAGE enum The HDL language to generate. Is either ver i | og or vhdl (lowercase). If
the module cannot generate the specified language, generating in the other
language is acceptable.

QUTPUT_DI RECTORY |file The location in which files must be generated. The filename components in
the directory name are separated with forward slashes.
OUTPUT_NAME string QUTPUT_NAME is nodul e_0 and the HDL_LANGUAGE is veri | og,

the file module_0.v or module_0.sv _must be generated and must contain
the module, modul e_0.

get_generation_property

This command returns the value of a single generation property.

get_generation_property

Callback Generation
availability
Usage get _generati on_property <propertyNane>
Returns String, bool ean, oruni t s, depending on property. Refer to Table 8—4 on page 8-26.
Arguments pr opert yName One of the 3 generation properties:
m HDL_LANGUAGE
m OQUTPUT_DI RECTORY
m OUTPUT_NAME
Example get _generation_property OUTPUT_DI RECTORY

Document Revision History

Table 8-9 shows the revision history for this document.

Table 8-9. Document Revision History

Date Version Changes
December 2010 10.1.0 | Initial release.

“%e For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.
a®

-o Take an online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.surveygizmo.com/s/91914/technical-documentation-survey

= Section lll. Design Guidelines

When designing for large and complex FPGAs, your design and coding styles can
impact your quality of results significantly. Designs reflecting synchronous design
practices behave predictably reliably, even when re-targeted to different device
families or speed grades. Using recommended HDL coding styles ensures that
synthesis tools can infer the optimal device hardware to implement your design.
Following best practices when creating your design hierarchy and logic provides the
most flexibility when partitioning the design for incremental compilation, and leads
to the best results. If you create floorplan location assignments to control the
placement of different design blocks (useful in team-based designs so each designer
can target a different area of the device floorplan), following best practices is
important to maintaining good design performance.

This section presents design and coding style recommendations in the following
chapters:

m Chapter 9, Recommended Design Practices

This chapter describes synchronous design practices, and provides guidelines for
combinational logic structures and clocking schemes. It also explains how to check
design rules using the Quartus® II Design Assistant. Finally, it discusses use of
clock and register-control features in device architecture.

m Chapter 10, Recommended HDL Coding Styles

This chapter discusses Altera megafunctions and provides specific Verilog HDL
and VHDL coding examples to insure the Quartus II software infers Altera
dedicated logic such as memory and DSP blocks. It also provides device-specific
coding recommendations for registers and certain logic functions such as tri-state
signals, multiplexers, and cyclic redundancy check (CRC) functions, and includes
references to other Altera documentation for low-level logic design information.

m Chapter 11, Managing Metastability with the Quartus II Software

This chapter describes ways you can use the Quartus Il software to analyze the
average mean time between failures (MTBF) due to metastability caused by
synchronization of asynchronous signals, and optimize the design to improve the
metastability MTBE.

m  Chapter 12, Best Practices for Incremental Compilation Partitions and
Floorplan Assignments

This chapter provides a set of guidelines to help you set up and partition your
design to take advantage of the compilation time savings, performance
preservation, and hierarchical design features offered by Quartus II incremental
compilation, and to help you create a design floorplan (using LogicLock™
regions) to support the flow when required.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



-2 Section lll: Design Guidelines

Use this chapter when setting up your design hierarchy and determining the
interfaces between logic blocks in your design, as well as if /when you create a
design floorplan. You can also use this chapter to make changes to a design that
was not originally set up to take advantage of incremental compilation, because it
provides tips on changing a design to work better with an incremental design
flow.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



A\ [

=N 9. Recommended Design Practices

Ql151006-10.1.0

This chapter provides design recommendations for Altera® devices and describes the
Quartus® II Design Assistant, which helps you check your design for violations of
Altera’s design recommendations. Current FPGA applications have reached the
complexity and performance requirements of ASICs. In the development of complex
system designs, good design practices have an enormous impact on the timing
performance, logic utilization, and system reliability of a device. Well-coded designs
behave in a predictable and reliable manner even when retargeted to different families
or speed grades. Good design practices also aid in successful design migration
between FPGA and HardCopy® or ASIC implementations for prototyping and
production.

For optimal performance, reliability, and faster time-to-market when designing with
Altera devices, you should adhere to the following guidelines:

m Understand the impact of synchronous design practices

m Follow recommended design techniques, including hierarchical design
partitioning

m Take advantage of the architectural features in the targeted device

This chapter contains the following sections:

m “Synchronous FPGA Design Practices” on page 9-2

m “Design Guidelines” on page 9—4

m “Checking Design Violations With the Design Assistant” on page 9-13

m “Targeting Clock and Register-Control Architectural Features” on page 9-19

m “Targeting Embedded RAM Architectural Features” on page 9-24

For specific HDL coding examples and recommendations, including coding
guidelines for targeting dedicated device hardware, such as memory and digital
signal processing (DSP) blocks, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus 1l Handbook. For information about partitioning a hierarchical

design for incremental compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

For information about migrating designs to HardCopy devices, refer to the Design
Guidelines for HardCopy Series Devices chapter in volume 1 of the HardCopy Series
Handbook.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any (})roducts and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any

information, product, or service describe

herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain tﬁe latest version of device

specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010

Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51006
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

9-2

Chapter 9: Recommended Design Practices
Synchronous FPGA Design Practices

Synchronous FPGA Design Practices

The first step in good design methodology is to understand the implications of your
design practices and techniques. This section outlines the benefits of optimal
synchronous design practices and the hazards involved in other techniques. Good
synchronous design practices can help you meet your design goals consistently.
Problems with other design techniques can include reliance on propagation delays in
a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as you ensure that
all the timing requirements of the registers are met, a synchronous design behaves in a
predictable and reliable manner for all process, voltage, and temperature (PVT)
conditions. You can easily target synchronous designs to different device families or
speed grades. In addition, synchronous design practices help ensure successful
migration if you plan to migrate your design to a high-volume solution such as a
HardCopy device or if you are prototyping an ASIC design.

Fundamentals of Synchronous Design

In a synchronous design, the clock signal controls the activities of all inputs and
outputs. On every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active clock edge, the
outputs of combinational logic feeding the data inputs of registers change values. This
change triggers a period of instability due to propagation delays through the logic as
the signals go through several transitions and finally settle to new values. Changes
that occur on data inputs of registers do not affect the values of their outputs until the
next active clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability
in the combinational logic does not affect the operation of the design as long as you
meet the following timing requirements:

m Before an active clock edge, you must ensure that the data input has been stable
for at least the setup time of the register.

m After an active clock edge, you must ensure that the data input remains stable for
at least the hold time of the register.

When you specify all of your clock frequencies and other timing requirements, the
Quartus II TimeQuest Timing Analyzer reports actual hardware requirements for the
setup times (tsy) and hold times (ty) for every pin in your design. By meeting these
external pin requirements and following synchronous design techniques, you ensure
that you satisfy the setup and hold times for all registers in your device.

To meet setup and hold time requirements on all input pins, any inputs to
combinational logic that feed a register should have a synchronous relationship with
the clock of the register. If signals are asynchronous, you can register the signals at the
input of the device to help prevent a violation of the required setup and hold times.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices 9-3
Synchronous FPGA Design Practices

@

When you violate the setup or hold time of a register, the output can be set to an
intermediate voltage level between the high and low levels, called a metastable state.
In this unstable state, small perturbations such as noise in power rails can cause the
register to assume either the high or low voltage level, resulting in an unpredictable
valid state. Various undesirable effects can occur, including increased propagation
delays and incorrect output states. In some cases, the output can even oscillate
between the two valid states for a relatively long period of time.

For information about timing requirements and analysis in the Quartus II software,
refer About TimeQuest Timing Analysis in Quartus II Help.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as ripple
counters or pulse generators in programmable logic device (PLD) designs, enabling
them to take “short cuts” to save device resources. Asynchronous design techniques
have inherent problems such as relying on propagation delays in a device, which can
result in incomplete timing constraints and possible glitches and spikes.

Some asynchronous design structures rely on the relative propagation delays of
signals to function correctly. In these cases, race conditions can arise where the order
of signal changes can affect the output of the logic. PLD designs can have varying
timing delays, depending on how the design is placed and routed in the device with
each compilation. Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices become faster due
to device process improvements, the delays in an asynchronous design may decrease,
resulting in a design that does not function as expected. Specific examples are
provided in “Design Guidelines” on page 9-4. Relying on a particular delay also
makes asynchronous designs difficult to migrate to different architectures, devices, or
speed grades.

The timing of asynchronous design structures is often difficult or impossible to model
with timing assignments and constraints. If you do not have complete or accurate
timing constraints, the timing-driven algorithms used by your synthesis and
place-and-route tools may not be able to perform the best optimizations and the
reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses
that are very short compared with clock periods. Most glitches are generated by
combinational logic. When the inputs of combinational logic change, the outputs
exhibit several glitches before they settle to their new values. These glitches can
propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of
registers are normal events that have no negative consequences because the data is
not processed until the clock edge.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_about_sta.htm

Chapter 9: Recommended Design Practices
Design Guidelines

Design Guidelines

When designing with HDL code, you should understand how a synthesis tool
interprets different HDL design techniques and what results to expect. Your design
techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal
synthesis results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your combinational logic
carefully to avoid potential problems and pay attention to your clocking schemes so
you can maintain synchronous functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend only on the
current state of the inputs. In Altera FPGAs, these functions are implemented in the
look-up tables (LUTs) of the device’s architecture, with either logic elements (LEs) or
adaptive logic modules (ALMs). For some cases in which combinational logic feeds
registers, the register control signals can implement part of the logic function to save
LUT resources. By following the recommendations in this section, you can improve
the reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability and
unreliability in digital designs. They should be avoided whenever possible. In a
synchronous design, feedback loops should include registers. Combinational loops
generally violate synchronous design principles by establishing a direct feedback loop
that contains no registers. For example, a combinational loop occurs when the
left-hand side of an arithmetic expression also appears on the right-hand side in HDL
code. A combinational loop also occurs when you feed back the output of a register to
an asynchronous pin of the same register through combinational logic, as shown in
Figure 9-1.

Figure 9-1. Combinational Loop Through Asynchronous Control Pin

—>——Db Q

Cee D
CLRN

Use recovery and removal analysis to perform timing analysis on asynchronous ports,
such as cl ear or reset in the Quartus II software.

If you are using the TimeQuest Timing Analyzer, refer to Specifying Timing Constraints
and Exceptions (TimeQuest Timing Analyzer) in Quartus II Help for details about how
the TimeQuest analyzer performs recovery and removal analysis.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_constraints.htm

Chapter 9: Recommended Design Practices 9-5
Design Guidelines

Combinational loops are inherently high-risk design structures for the following
reasons:

m Combinational loop behavior generally depends on relative propagation delays
through the logic involved in the loop. As discussed, propagation delays can
change, which means the behavior of the loop is unpredictable.

m Combinational loops can cause endless computation loops in many design tools.
Most tools break open combinational loops to process the design. The various
tools used in the design flow may open a given loop in a different manner,
processing it in a way that is inconsistent with the original design intent.

Latches

A latch is a small circuit with combinational feedback that holds a value until a new
value is assigned. You can implement latches with the Quartus II Text Editor or Block
Editor. It is common for mistakes in HDL code to cause unintended latch inference;
Quartus II Synthesis issues a warning message if this occurs.

Unlike other technologies, a latch in an FPGA architecture is not significantly smaller
than a register. The architecture is not optimized for latch implementation and latches
generally have slower timing performance compared to equivalent registered
circuitry.

Latches have a transparent mode in which data flows continuously from input to
output. A positive latch is in transparent mode when the enable signal is high (low for
negative latch). In transparent mode, glitches on the input can pass through the
output because of the direct path created. This presents significant complexity for
timing analysis. Typical latch schemes use multiple enable phases to prevent long
transparent paths from occurring. However, timing analysis cannot identify these safe
applications.

The TimeQuest analyzer analyzes latches as synchronous elements by default, and
allows you to treat latches as having nontransparent start and end points. Be aware
that even an instantaneous transition through transparent mode can lead to glitch
propagation. The TimeQuest analyzer cannot perform cycle-borrowing analysis; this
is performed instead by the Synopsys PrimeTime third-party timing analysis tool.

Due to various timing complexities, latches have limited support in formal
verification tools. Therefore, you should not rely on formal verification for a design
that includes latches.

'~ Avoid using latches to ensure that you can completely analyze the timing
performance and reliability of your design.

Delay Chains

Delay chains occur when you use two or more consecutive nodes with a single fan-in
and a single fan-out to cause delay. Inverters are often chained together to add delay.
Delay chains are sometimes used to resolve race conditions created by other
asynchronous design practices.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-6

Chapter 9: Recommended Design Practices
Design Guidelines

Delays in PLD designs can change with each placement and routing cycle. Effects
such as rise and fall time differences and on-chip variation mean that delay chains,
especially those placed on clock paths, can cause significant problems in your design.
Refer to “Hazards of Asynchronous Design” on page 9-3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to prevent these kinds
of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around
the device. This functionality is not required in FPGA devices because the routing
structure provides buffers throughout the device.

Pulse Generators and Multivibrators

You can use delay chains to generate either one pulse (pulse generators) or a series of
pulses (multivibrators). There are two common methods for pulse generation, as
shown in Figure 9-2. These techniques are purely asynchronous and must be avoided.

Figure 9-2. Asynchronous Pulse Generators

Using an AND Gate

Tr

igger

Using a Register

Trigger D Q Pulse
Clock Q HPoo{>o>o—
CLRN
7

In Figure 9-2, a trigger signal feeds both inputs of a 2-input AND gate, but the design
inverts or adds a delay chain to one of the inputs. The width of the pulse depends on
the relative delays of the path that feed the gate directly and the path that goes
through the delay. This is the same mechanism responsible for the generation of
glitches in combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

As also shown in Figure 9-2, a register’s output drives the same register’s
asynchronous reset signal through a delay chain. The register resets itself
asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse width can only
be determined after placement and routing, when routing and propagation delays are
known. You cannot reliably determine the width of the pulse when creating HDL
code, and it cannot be set by EDA tools. The pulse may not be wide enough for the
application under all PVT conditions. Also, the pulse width changes if you change to
a different device. Additionally, static timing analysis cannot be used to verify the
pulse width, so verification is difficult.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices 9-7

Design Guidelines

Multivibrators use a glitch generator to create pulses, together with a combinational
loop that turns the circuit into an oscillator. This creates additional problems because
of the number of pulses involved. Additionally, when the structures generate multiple
pulses, they also create a new artificial clock in the design that has to be analyzed by
the design tools.

When you must use a pulse generator, use synchronous techniques, as shown in

Figure 9-3.

Figure 9-3. Recommended Pulse-Generation Technique

Trigger Signal —— D Q D Q

_ ]

Clock

In this design, the pulse width is always equal to the clock period. This pulse
generator is predictable, can be verified with timing analysis, and is easily moved to
other architectures, devices, or speed grades.

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on the performance
and reliability of a design. Avoid using internally generated clocks wherever possible
because they can cause functional and timing problems in the design. Clocks
generated with combinational logic can introduce glitches that create functional
problems and the delay inherent in combinational logic can lead to timing problems.

Specify all clock relationships in the Quartus II software to allow for the best
timing-driven optimizations during fitting and to allow correct timing analysis. Use
clock setting assignments on any derived or internal clocks to specify their
relationship to the base clock.

You use global device-wide, low-skew dedicated routing for all internally-generated
clocks, instead of routing clocks on regular routing lines. For more information, refer
to “Clock Network Resources” on page 9-20.

Avoid data transfers between different clocks wherever possible. If you require a data
transfer between different clocks, use FIFO circuitry. You can use the clock uncertainty
features in the Quartus II software to compensate for the variable delays between
clock domains. Consider setting a Clock Setup Uncertainty and Clock Hold
Uncertainty value of 10% to 15% of the clock delay.

The following sections provide some specific examples and recommendations for
avoiding clocking scheme problems.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-8

Chapter 9: Recommended Design Practices
Design Guidelines

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an asynchronous
reset signal, expect to see glitches in your design. In a synchronous design, glitches on
data inputs of registers are normal events that have no consequences. However, a
glitch or a spike on the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s minimum pulse
width requirements. Setup and hold times might also be violated if the data input of
the register is changing when a glitch reaches the clock input. Even if the design does
not violate timing requirements, the register output can change value unexpectedly
and cause functional hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational
logic before you use it as a clock signal (Figure 9-4).

Figure 9-4. Recommended Clock-Generation Technique

—|Db Q[ —|D Q[
Clock [ [
D Q Generation D Q e :
Logic Internally Generated Clock

J’ ” Routed on Global Clock Resource
e

Registering the output of combinational logic ensures that the glitches generated by
the combinational logic are blocked at the data input of the register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most Altera FPGAs
provide dedicated phase-locked loop (PLL) circuitry for clock division. Using
dedicated PLL circuitry can help you to avoid many of the problems that can be
introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters
or state machines. Additionally, create your design so that registers always directly
generate divided clock signals, as described in “Internally Generated Clocks”, and
route the clock on global clock resources. To avoid glitches, do not decode the outputs
of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, avoid ripple counters in your design. In the past, FPGA
designers implemented ripple counters to divide clocks by a power of two because
the counters are easy to design and may use fewer gates than their synchronous
counterparts. Ripple counters use cascaded registers, in which the output pin of each
register feeds the clock pin of the register in the next stage. This cascading can cause
problems because the counter creates a ripple clock at each stage. These ripple clocks
must be handled properly during timing analysis, which can be difficult and may
require you to make complicated timing assignments in your synthesis and placement
and routing tools.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices 9-9
Design Guidelines

Ripple clock structures are often used to make ripple counters out of the smallest
amount of logic possible. However, in all Altera devices supported by the Quartus II
software, using a ripple clock structure to reduce the amount of logic used for a
counter is unnecessary because the device allows you to construct a counter using one
logic element per counter bit. You should avoid using ripple counters completely.

Multiplexed Clocks

Use clock multiplexing to operate the same logic function with different clock sources.
In these designs, multiplexing selects a clock source, as shown in Figure 9-5. For
example, telecommunications applications that deal with multiple frequency
standards often use multiplexed clocks.

Figure 9-5. Multiplexing Logic and Clock Sources

Multiplexed Clock Routed

Clock 1 on Global Clock Resource P ar—
Clock 2

Select Signal 0o  af

—p al—

Adding multiplexing logic to the clock signal can create the problems addressed in
the previous sections, but requirements for multiplexed clocks vary widely,
depending on the application. Clock multiplexing is acceptable when the clock signal
uses global clock routing resources and if the following criteria are met:

m  The clock multiplexing logic does not change after initial configuration
m The design uses multiplexing logic to select a clock for testing purposes
m Registers are always reset when the clock switches

B A temporarily incorrect response following clock switching has no negative
consequences

If the design switches clocks in real time with no reset signal, and your design cannot
tolerate a temporarily incorrect response, you must use a synchronous design so that
there are no timing violations on the registers, no glitches on clock signals, and no race
conditions or other logical problems. By default, the Quartus II software optimizes
and analyzes all possible paths through the multiplexer and between both internal
clocks that may come from the multiplexer. This may lead to more restrictive analysis
than required if the multiplexer is always selecting one particular clock. If you do not
require the more complete analysis, you can assign the output of the multiplexer as a
base clock in the Quartus II software, so that all register-to-register paths are analyzed
using that clock.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-10 Chapter 9: Recommended Design Practices
Design Guidelines

L=~ Use dedicated hardware to perform clock multiplexing when it is available, instead of
using multiplexing logic. For example, you can use the clock-switchover feature or
clock control block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any possible hold
time problems on the device due to logic delay on the clock line.

“ e For device-specific information about clocking structures, refer to the appropriate
device data sheet or handbook on the Literature page of the Altera website.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that controls gating
circuitry, as shown in Figure 9-6. When a clock is turned off, the corresponding clock
domain is shut down and becomes functionally inactive.

Figure 9-6. Gated Clock

—1D Qr— —|Db Q[

Clock
— 4|_/\
Gating Signal Gated Clock

You can use gated clocks to reduce power consumption in some device architectures
by effectively shutting down portions of a digital circuit when they are not in use.
When a clock is gated, both the clock network and the registers driven by it stop
toggling, thereby eliminating their contributions to power consumption. However,
gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These clocks are also
sensitive to glitches, which can cause design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For
example, you can use the clock control block in newer Altera devices to shut down an
entire clock network. Dedicated hardware blocks ensure that you use global routing
with low skew and avoid any possible hold time problems on the device due to logic
delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely
synchronous manner using a synchronous clock enable signal. However, when using
a synchronous clock enable scheme, the clock network continues toggling. This
practice does not reduce power consumption as much as gating the clock at the source
does. In most cases, use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when gating clocks
with logic, refer to “Recommended Clock-Gating Methods” on page 9-11.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-index.html

Chapter 9: Recommended Design Practices 9-11

Design Guidelines

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous clock enable
signal. FPGAs efficiently support clock enable signals because there is a dedicated
clock enable signal available on all device registers. This scheme does not reduce
power consumption as much as gating the clock at the source because the clock
network keeps toggling, but it performs the same function as a gated clock by
disabling a set of registers. Insert a multiplexer in front of the data input of every
register to either load new data or copy the output of the register (Figure 9-7).

Figure 9-7. Synchronous Clock Enahle

Data

Enable

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power reduction and
when gated clocks are able to provide the required reduction in your device
architecture. If you must use clocks gated by logic, implement these clocks using the
robust clock-gating technique shown in Figure 9-8 and ensure that the gated clock
signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or
somewhere in between. Because the clock network contributes to switching power
consumption, gate the clock at the source whenever possible, so you can shut down
the entire clock network instead of gating it further along the clock network at the
registers.

Figure 9-8. Recommended Clock-Gating Technique

—p af— —p af—

Gating Signal -

D Q Gated Clock Routed on

Enable
In the technique shown in Figure 9-8, a register generates the enable signal to ensure
that the signal is free of glitches and spikes. The register that generates the enable
signal is triggered on the inactive edge of the clock to be gated. Use the falling edge
when gating a clock that is active on the rising edge, as shown in Figure 9-8. Using
this technique, only one input of the gate that turns the clock on and off changes at a
time. This prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the falling edge, use
an OR gate to gate the clock and register the enable command with a positive
edge-triggered register.

Global Clock Resources

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-12

Chapter 9: Recommended Design Practices
Design Guidelines

When using this technique, pay attention to the duty cycle of the clock and the delay
through the logic that generates the enable signal because the enable command must
be generated in one-half the clock cycle. This situation might cause problems if the
logic that generates the enable command is particularly complex, or if the duty cycle
of the clock is severely unbalanced. However, careful management of the duty cycle
and logic delay may be an acceptable solution when compared with problems created
by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the Quartus II software. As
shown in Figure 9-8 on page 9-11, apply a clock setting to the output of the AND
gate. Otherwise, the timing analyzer might analyze the circuit using the clock path
through the register as the longest clock path and the path that skips the register as
the shortest clock path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help to reduce glitch
and clock skew, and eventually produce a more accurate timing analysis. You can set
the Quartus II software to automatically convert gated clocks to clock enables by
turning on the Auto Gated Clock Conversion option. The conversion applies to two
types of gated clocking schemes: single-gated clock and cascaded-gated clock. This
option is available for all devices that are supported by the TimeQuest analyzer
(Arria®II, Arria IT GX, Cyclone®II, Cyclone III, Cyclone IV, HardCopy series,
Stratix® II, Stratix II GX, Stratix III, Stratix IV, and Stratix V devices).

For information about the settings and limitations of this option, refer to the “Auto
Gated Clock Conversion” section of the Quartus II Integrated Synthesis chapter in
volume 1 of the Quartus II Handbook.

Power Optimization

The total FPGA power consumption is comprised of /O power, core static power,
and core dynamic power. Knowledge of the relationship between these components is
fundamental in calculating the overall total power consumption. You can use various
optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus II software offers power-driven
compilation features to fully optimize device power consumption. Power-driven
compilation focuses on reducing your design’s total power consumption using
power-driven synthesis and power-driven placement and routing.

For information about power-driven compilation flow and low-power design
guidelines, refer to the Power Optimization chapter in volume 2 of the Quartus 11
Handbook.

For information about power optimization techniques available for Stratix III devices,
refer to AN 437: Power Optimization in Stratix III FPGAs. For information about power
optimization techniques available for Stratix IV devices, refer to AN 514: Power
Optimization in Stratix IV FPGAs.

Additionally, you can use the Quartus Il PowerPlay suite of power analysis and
optimization tools to help you during the design process by delivering fast and
accurate estimations of power consumption. For information about the Quartus II
PowerPlay suite of power analysis and optimization tools, refer to About Power
Estimation and Analysis in Quartus II Help.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/optimize/pwr/pwr_about_pwr.htm
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/literature/an/an514.pdf

Chapter 9: Recommended Design Practices 9-13
Checking Design Violations With the Design Assistant

Metastability

@

Metastability in Altera designs can be caused by the synchronization of asynchronous
signals. You can use the Quartus II software to analyze the mean time between
failures (MTBF) due to metastability, thus optimizing the design to improve the
metastability MTBE. A high metastability MTBF indicates a more robust design.

For more information about how to ensure complete and accurate metastability
analysis, refer to the Managing Metastability With the Quartus II Software chapter in
volume 1 of the Quartus II Handbook.

For more information about viewing metastability reports, refer to Viewing
Metastability Reports in Quartus II Help.

Incremental Compilation

@

The incremental compilation feature in the Quartus II software allows you to partition
your design, separately compile partitions, and reuse the results for unchanged
partitions. Incremental compilation flows require more up-front planning than flat
compilations, and generally require you to be more rigorous about following good
design practices than flat compilations.

For more information about incremental compilation and floorplan assignments, refer
to the Best Practices for Incremental Compilation Partitions and Floorplan Assignments
chapter in volume 1 of the Quartus II Handbook.

For more information about incremental compilation, refer to About Incremental
Compilation in Quartus II Help.

Checking Design Violations With the Design Assistant

To improve the reliability, timing performance, and logic utilization of your design,
practicing good design methodology and understanding how to avoid design rule
violations are important. The Quartus II software provides the Design Assistant tool
that automatically checks for design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design
issues early in the design flow. The Design Assistant checks your design for adherence
to Altera-recommended design guidelines. You can specify which rules you want the
Design Assistant to apply to your design. This is useful if you know that your design
violates particular rules that are not critical, so you can allow these rule violations.
The Design Assistant generates design violation reports with clear details about each
violation, based on the settings that you specified.

This section provides an introduction to the Quartus II design flow with the Design
Assistant, message severity levels, and an explanation about how to set up the Design
Assistant. The last parts of the section describe the design rules and the reports
generated by the Design Assistant. The Design Assistant supports all Altera devices
supported by the Quartus II software.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/analyze/sta/sta_pro_viewing_metastability_reports.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/increment/comp_view_qid.htm

9-14 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant

Quartus Il Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration, Analysis and
Synthesis, fitting, or a full compilation. If you set the Design Assistant to run
automatically during compilation, the Design Assistant performs a post-fitting netlist
analysis of your design. The default is to apply all of the rules to your project. If there
are some rules that are unimportant to your design, you can turn off the rules that you
do not want the Design Assistant to use.

(@) For more information about running the Design Assistant, refer to About the Design
Assistant in Quartus II Help.

Figure 9-9 shows the Quartus II software design flow with the Design Assistant.

Figure 9-9. Quartus Il Design Flow with the Design Assistant

Design Files
Pre-Synthesis Design Assistant
Netlist Golden Rules (1)
Analysis & Elaboration L_/
Post-Synthesis Rule Violation
Netlist Report
Synthesis
(Logic Synthesis & . .
. Design Assistant
Technology Mapping) U
Fitter >
Post-Fitting Custom
Timing Analysis Netlist Rules (2)

Notes to Figure 9-9:
(1) Database of the default rules for the Design Assistant.

(2) Afile that contains the .xml codes of the custom rules for the Design Assistant. For more details about how to create
this file, refer to “Custom Rules” on page 9-15.

The Design Assistant analyzes your design netlist at different stages of the
compilation flow and may yield different warnings or errors, even though the netlists
are functionally the same. Your pre-synthesis, post-synthesis, and post-fitting netlists
might be different due to optimizations performed by the Quartus II software. For
example, a warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

m  When you run the Design Assistant after running a full compilation or fitting, the
Design Assistant performs a post-fitting analysis on the design.

m  When you start the Design Assistant after performing Analysis and Synthesis, the
Design Assistant performs post-synthesis analysis on the design.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm 
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm 

Chapter 9: Recommended Design Practices 9-15
Checking Design Violations With the Design Assistant

m  When you start the Design Assistant after performing Analysis and Elaboration,
the Design Assistant performs a pre-synthesis analysis on the design. You can also
perform pre-synthesis analysis with the Design Assistant using the command-line.
You can use the - rt| option with the quart us_dr ¢ executable, as shown in the
following example:

quartus_drc <project_name> --rtl=on ¢

(?) For more information about Design Assistant settings, refer to About the Design
Assistant and Design Assistant Page (Settings Dialog Box) in Quartus II Help.

Enabling and Disabling Design Assistant Rules

(?) For more information about enabling or disabling Design Assistant rules on
individual nodes by making an assignment in the Assignment Editor, in the
Quartus II Settings File (.qsf), with the al tera_at tri but e synthesis attribute in Verilog
HDL or VHDL, or with a Tcl command, refer to Enabling Design Assistant Rules on
Nodes, Entities, or Instances, or Disabling Design Assistant Rules on Nodes, Entities, or
Instances in Quartus II Help.

Viewing Design Assistant Results

If your design violates a design rule, the Design Assistant generates warning
messages and information messages about the violated design rule. The Design
Assistant displays these messages in the Messages window, in the Design Assistant
Messages report, and in the Design Assistant report files. You can find the Design
Assistant report files called <project_name>.drc.rpt in the <project_name> subdirectory
of the project directory.

(@ For information about the contents of the reports generated by the Design Assistant,
refer to Design Assistant Reports in Quartus II Help.

Custom Rules

In addition to the existing design rules that the Design Assistant offers, you can also
create your own rules and specify your own reporting format in a text file (with any
file extension) with the XML format. You then specify the path to that file in the
Design Assistant settings page and run the Design Assistant for violation checking.

The file that contains the default rules for the Design Assistant is located at
<Quartus 11 install path>\quartus\libraries\design-assistant\da_golden_rule.xml.

(?) For more information about how to set the file path to your custom rules, refer to
Custom Rules Settings Dialog Box in Quartus II Help. For more information about the
basics of writing custom rules, the Design Assistant settings, and coding examples on
how to check for clock relationship and node relationship in a design, refer to Creating
Custom Design Assistant Rules in Quartus II Help. To specify the rules that you want
the Design Assistant to use when checking for violations, refer to Design Assistant Page
(Settings Dialog Box) in Quartus II Help.

December 2010 Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://quartushelp.altera.com/10.1/master.htm#mergedProjects/report/rpt/rpt_file_da_summary.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_create_custom_da_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_view_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/comp_tab_doctor.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_enable_rules.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_pro_rule_suppression.htm
http://quartushelp.altera.com/10.1/master.htm#mergedProjects/verify/da/da_db_custom_rules.htm

9-16 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant

Custom Rules Coding Examples

The following examples of custom rules show how to check node relationships and
clock relationships in a design.

Checking SR Latch Structures In a Design
Example 9-1 shows the XML codes for checking SR latch structures in a design.

Example 9-1. Detecting SR Latches in a Design

<DA RULE | D="EX01" SEVERI TY="CRI Tl CAL" NAME="Checki ng Design for SR Latch"
DEFAULT_RUN=" YES" >
<RULE_DEFI NI TI ON>
<FORBI D>
<OR>
<NODE NAME="NODE_1" TYPE="SRLATCH' />
<HAS NODE NODE LI ST="NODE 1" />
<NODE NAME="NODE_1" TOTAL_FANI N="EQ@" />
<NODE NAME="NODE_2" TOTAL_FANI N="EQ@" />
<AND>
<NODE_RELATI ONSHI P FROM _NAME="NCDE_1" FROM TYPE="NAND' TO_ NAME=" NODE_2"
TO_TYPE="NAND"' />
<NODE_RELATI ONSHI P FROM_NAME="NODE_2" FROM TYPE="NAND' TO NAME="NODE 1"
TO _TYPE="NAND"' />
</ AND>
<AND>
<NODE_RELATI ONSHI P FROM NAME="NCDE_1" FROM TYPE="NOR"' TO_NAME="NCDE 2"
TO_TYPE="NOR' />
<NODE_RELATI ONSHI P FROM NAME="NCDE_2" FROM TYPE="NOR' TO NAME="NCDE 1"
TO TYPE="NOR' />
</ AND>
</ OR>
</ FORBI D>
</ RULE_DEFI NI TI ON>

<REPORTI NG_ROOT>
<MESSAGE NAME="Rul e Y%ARGL% Found %AR&2% node(s) related to this rule.">
<MESSAGE ARGUVENT NAME="ARGL" TYPE="ATTRI BUTE" VALUE="ID" />
<MESSAGE_ARGUMENT NAME="AR®X" TYPE="TOTAL_NODE" VALUE="NCDE 1" />
</ MESSAGE>
</ REPORTI NG_ROOT>
</ DA_RULE>

In Example 9-1, the possible SR latch structures are specified in the rule definition
section. Codes defined in the <AND></ AND> block are tied together, meaning that each
statement in the block must be true for the block to be fulfilled (AND gate similarity).
In the <OR></ OR> block, as long as one statement in the block is true, the block is
fulfilled (OR gate similarity). If no <AND></ AND> or <CR></ OR> block are specified, the
default is <AND></ AND>.

The <FORBI D></ FORBI D> section contains the undesirable condition for the design,
which in this case is the SR latch structures. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices 9-17
Checking Design Violations With the Design Assistant

The following examples are the undesired conditions from Example 9-1 with their
equivalent block diagrams (Figure 9-10 and Figure 9-11):

<AND>

<NODE_RELATI ONSHI P FROM_NAME="NCDE_1" FROM TYPE="NAND' TO NAME=" NODE_2"
TO_TYPE="NAND"' />

<NODE_RELATI ONSHI P FROM_NAME=" NCDE_2" FROM TYPE="NAND' TO_NAME="NODE 1"
TO _TYPE="NAND"' />
</ AND>

Figure 9-10. Undesired Condition 1

<AND>
<NODE_RELATI ONSHI P FROM_NAME=" NCDE_1" FROM TYPE="NOR' TO NAME="NODE_2" TO TYPE="NOR' />
<NODE_RELATI ONSHI P FROM_NAME=" NCDE_2" FROM TYPE="NOR' TO_NAME="NODE_1" TO _TYPE="NOR' />
</ AND>

Figure 9-11. Undesired Condition 2

Relating Nodes to a Clock Domain

Example 9-2 shows how to use the CLOCK_RELATI ONSHI P attribute to relate nodes to
clock domains. This example checks for correct synchronization in data transfer
between asynchronous clock domains. Synchronization is done with cascaded
registers, also called synchronizers, at the receiving clock domain. The code in
Example 9-2 checks for the synchronizer configuration based on the following
guidelines:

B The cascading registers need to be triggered on the same clock edge

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-18 Chapter 9: Recommended Design Practices
Checking Design Violations With the Design Assistant

m There is no logic between the register output of the transmitting clock domain and
the cascaded registers in the receiving asynchronous clock domain

Example 9-2. Detecting Incorrect Synchronizer Configuration

<DA_RULE | D="EX02" SEVERI TY="HI GH' NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN=" YES' >

<RULE_DEFI NI TI ON>
<DECLARE>
<NODE NAME="NODE_1" TYPE="REG' />

<NCDE NAME="NODE 2" TYPE="REG' />
<NODE NAME="NODE_3" TYPE="REG' />
</ DECLARE>
<FORBI D>
<NODE_RELATI ONSHI P FROM NAME="NODE_1" TO NAME="NCDE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN" />
<NODE_RELATI ONSHI P FROM_NAME="NODE_2" TO NAME="NCDE_ 3" TO PORT="D PORT"
CLOCK_RELATI ONSHI P="1 ASYN" />
<OR>
<NODE_RELATI ONSHI P FROM _NAME="NCDE_1" TO NAME="NODE 2" TO PORT="D_PORT"
REQUI RED THROUGH="YES" THROUGH TYPE="COVB" CLOCK_ RELATI ONSHI P="ASYN' />
<CLOCK_RELATI ONSHI P NAVE=" SEQ EDGE| ASYN' NODE_LI ST="NCDE_2, NODE_3" />
</ OR>
</ FORBI D>
</ RULE_DEFI NI TI ON>

<REPORTI NG_ROOT>
<MESSAGE NAME="Rul e %ARGL% Found %AR&% node(s) related to this rule.">
<MESSAGE_ARGUMENT NAME="ARGL" TYPE="ATTRI BUTE" VALUE="ID"' />
<MESSAGE_ARGUMENT NAME="ARGR2" TYPE="TOTAL_NODE" VALUE="NCDE_ 1" />
<MESSAGE NAME="Sour ce node(s): %ARG3% Destination node(s): YARAX >
<MESSAGE_ARGUMENT NAME="ARG3" TYPE="NCDE" VALUE="NODE_ 1" />
<MESSAGE_ARGUMENT NAME="ARGA" TYPE="NODE" VALUE="NCDE_ 2" />
</ MESSAGE>
</ MESSAGE>
</ REPCRTI NG_ROOT>
</DA_RULE>

The codes differentiate the clock domains. ASYNmeans asynchronous, and ! ASYNmeans
non-asynchronous. This notation is useful for describing nodes that are in different
clock domains. The following lines from Example 9-2 state that NODE_2 and NCDE_3 are
in the same clock domain, but NODE_1 is not.

<NODE_RELATI ONSH P FROM NAVE="NODE_1" TO NAME="NODE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN' />

<NODE_RELATI ONSH P FROM NAVE="NODE_2" TO NAME="NODE_3" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN' />

The next line of code states that NODE 2 and NODE_3 have a clock relationship of either
sequential edge or asynchronous.

<CLOCK_RELATI ONSHI P NAME=" SEQ_EDGE| ASYN' NCDE_LI ST="NODE_2, NODE_3" />

The <FORBI D></ FORBI D> section contains the undesirable condition for the design,
which in this case is the undesired configuration of the synchronizer. If the condition
is fulfilled, the Design Assistant highlights a rule violation.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features

9-19

The following examples are the undesired conditions from Example 9-2 with their

equivalent block diagrams (Figure 9-12 and Figure 9-13):
Example 9-3.

<NODE_RELATI ONSH P FROM_NAME="NCDE_1" TO_NAME="NODE_2" TO _PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN" />

<NODE_RELATI ONSH P FROM_NAME=" NCDE_2" TO_NAME="NODE_3" TO _PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN" />

<NODE_RELATI ONSH P FROM_NAME="NCDE_1" TO_NAME="NODE_2" TO PORT="D_PORT"
REQUI RED_THROUGH="YES" THROUGH_TYPE="COVB" CLOCK_RELATI ONSH P="ASYN' />

Figure 9-12. Undesired Condition 3

NODE_1 m NODE_2 NODE_3
o DPRE Logic DPRE DPRE e
CLOCK_1 ms———] \w\)

ENA ENA ENA
CLR CLR CLR

CLOCK_2 )

Example 9-4.

<NODE_RELATI ONSH P FROM NAVE="NODE_1" TO NAME="NODE_2" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="ASYN' />

<NODE_RELATI ONSH P FROM NAVE="NCDE_2" TO NAME="NODE_3" TO PORT="D_PORT"
CLOCK_RELATI ONSHI P="1 ASYN' />

<CLOCK_RELATI ONSHI P NAME=" SEQ EDGE| ASYN' NODE_LI ST="NODE_2, NODE_3" />

Figure 9-13. Undesired Condition 4

NODE_1 NODE_2 NODE_3
[FE | [FE | [FE |
D= D D D =0
CLOCK_1 Is———
ENA ENA ENA
CLR CLR CLR

CLOCK_2 )

Targeting Clock and Register-Control Architectural Features

In addition to following general design guidelines, you must code your design with

the device architecture in mind. FPGAs provide device-wide clocks and register

control signals that can improve performance.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-20 Chapter 9: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and dedicated
inputs. Use the FPGA'’s low-skew, high fan-out dedicated routing where available. By
assigning a clock input to one of these dedicated clock pins or with a Quartus II logic
option to assign global routing, you can take advantage of the dedicated routing
available for clock signals.

In an ASIC design, you should balance the clock delay as it is distributed across the
device. Because Altera FPGAs provide device-wide global clock routing resources
and dedicated inputs, there is no need to manually balance delays on the clock
network.

You should limit the number of clocks in your design to the number of dedicated
global clock resources available in your FPGA. Clocks feeding multiple locations that
do not use global routing may exhibit clock skew across the device that could lead to
timing problems. In addition, when you use combinational logic to generate an
internal clock, it adds delays on the clock line. In some cases, delay on a clock line can
result in a clock skew greater than the data path length between two registers. If the
clock skew is greater than the data delay, the timing parameters of the register (such
as hold time requirements) are violated and the design does not function correctly.

FPGAs offer increasing numbers of global clocks to address large designs with many
clock domains. Many large FPGA devices provide dedicated global clock networks,
regional clock networks, and dedicated fast regional clock networks. These clocks are
organized into a hierarchical clock structure that allows many clocks in each device
region with low skew and delay. There are typically several dedicated clock pins to
drive either global or regional clock networks, and both PLL outputs and internal
clocks can drive various clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in
that clock domain, assign each clock signal to one of the global high fan-out, low-skew
clock networks in the FPGA device. The Quartus II software automatically uses global
routing for high fan-out control signals, PLL outputs, and signals feeding the global
clock pins on the device. You can make explicit Global Signal logic option settings by
turning on the Global Signal option settings. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a
design (input clock pins or internally-generated clocks) need to drive only the clock
input ports of registers. In older Altera device families (such as FLEX® 10K and
ACEX® 1K), if a clock signal feeds the data ports of a register, the signal may not be
able to use dedicated routing, which can lead to decreased performance and clock
skew problems. In general, allowing clock signals to drive the data ports of registers is
not considered synchronous design and can complicate timing analysis.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices 9-21
Targeting Clock and Register-Control Architectural Features

Reset Resources

ASIC designs may use local resets to avoid long routing delays. Take advantage of the
device-wide asynchronous reset pin available on most FPGAs to eliminate these
problems. This reset signal provides low-skew routing across the device.

Three types of resets are used in synchronous circuits:
m Synchronous Reset
m  Asynchronous Reset

m Synchronized Asynchronous Reset—this type is preferred when designing an
FPGA circuit

Synchronous Reset

The synchronous reset ensures that the circuit is fully synchronous. You can easily
time it with static timing analyzer tools, such as the Quartus II TimeQuest analyzer.
The synchronous reset is easier to use with cycle-based simulators.

However, the synchronous reset might require pulse stretchers to guarantee a reset
pulse width wide enough to ensure that reset is present during an active edge of the
clock. The synchronous reset requires a clock to reset a circuit. If the clock fails to
launch, the resulting circuit is not reset.

Asynchronous Reset

The asynchronous reset is the most common form of reset used in circuit designs.
Typically, you can insert the asynchronous reset into the device, turn on the global
buffer, and connect to the asynchronous reset pin of every register in the device. This
method is only advantageous under certain circumstances—you do not need to
always reset the register. Unlike the synchronous reset, the asynchronous reset is not
inserted in the data path, and does not negatively impact the data arrival times
between registers. Reset takes effect immediately, and as soon as the registers receive
the reset pulse, the registers are reset. The asynchronous reset is not dependent on the
clock.

However, when the reset is deasserted and does not pass the recovery (utsy) or
removal (uty) time check (both times are checked by the TimeQuest analyzer
Recovery and Removal Analysis), the edge is said to have fallen in the metastability
zone. Additional time is required to determine the correct state, and the delay can
cause the setup time to fail to register downstream, leading to system failure.

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can
cause a spurious reset. You must ensure that the asynchronous reset is debounced and
filtered. You can easily enter into a reset asynchronously, but releasing a reset
asynchronously can lead to potential problems (also referred to as “reset removal”)
with metastability, including the hazards of unwanted situations with synchronous
circuits involving feedback.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



9-22

Chapter 9: Recommended Design Practices
Targeting Clock and Register-Control Architectural Features

Synchronized Asynchronous Reset

To avoid potential problems associated with purely synchronous resets and purely
asynchronous resets, you can use synchronized asynchronous resets. Synchronized
asynchronous resets combine the advantages of synchronous and asynchronous
resets. These resets are asynchronously asserted and synchronously deasserted. This
takes effect almost instantaneously, and ensures that no data path for speed is
involved, and that the circuit is synchronous for timing analysis and is resistant to
noise.

Figure 9-14 shows a method for implementing the synchronized asynchronous reset.
You should use synchronizer registers in a similar manner as synchronous resets.
However, the asynchronous reset input is gated directly to the CLRN pin of the
synchronizer registers and immediately asserts the resulting reset. When the reset is
deasserted, logic “1” is clocked through the synchronizers to synchronously deassert
the resulting reset.

Figure 9-14. Schematic of Synchronized Asynchronous Reset

urr gy UrE gy
FRH FER
D 0 o ]
CLEW : CLEW
regs W regd W
T BT
:‘-"n"n' ' '
CLEN
reql ¥
L 2
L 2
T i
ZLEW

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 9: Recommended Design Practices

9-23

Targeting Clock and Register-Control Architectural Features

December 2010  Altera Corporation

Example 9-5 shows the equivalent Verilog code. The active edge of the reset is used in
the sensitivity list for the blocks in Figure 9-14.

Example 9-5. Verilog Code for Synchronized Asynchronous Reset

nodul e sync_async_reset (

i nput cl ock,
i nput reset_n,
i nput data_a,
i nput data_b,
out put out _a,
out put out _b
);
reg regl, reg2;
reg reg3, reg4,
assign out_a = regl;
assign out_b = regz;
assign rst_n = reg4,;
al ways @ (posedge cl ock, negedge reset_n)
begin
if (!'reset_n)
begi n
reg3 <= 1' bO;
regs <= 1; b0;
end
el se
begin
reg3 <= 1'bl;
reg4d <= reg3;
end
end
al ways @ (posedge cl ock, negedge rst_n)
begin
if (!rst_n)
begin
regl <= 1’ bO;
reg2 <= 1; b0;
end
el se
begin
regl <= data_a;
reg2 <= data_b;
end
end
endnodul e // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to
increase the MTBEF, the registers should be located as close as possible in the device to
minimize routing delay. If possible, locate the registers in the same logic array block
(LAB). The input reset signal (r eset _n) must be cut with a set _f al se_pat h command, so
the reset that comes from the synchronization register (r st _n) can be timed in the
TimeQuest analyzer with Recovery and Removal Analysis.

For more information about specifying the minimum routing delay, refer to the Best
Practices for the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus I1 Handbook.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii53024.pdf
http://www.altera.com/literature/hb/qts/qts_qii53024.pdf

9-24

Chapter 9: Recommended Design Practices
Targeting Embedded RAM Architectural Features

The circuit in Figure 9-14 on page 9-22 ensures that the synchronized asynchronous
reset is at least one full clock period in length. To extend this time to n clock periods,
you must increase the number of synchronizer registers ton + 1. You must connect the
asynchronous input reset (reset _n) to the CLRN pin of all the synchronizer registers to
maintain the asynchronous assertion of the synchronized asynchronous reset.

Register Control Signals

Avoid using an asynchronous load signal if the design target device architecture does
not include registers with dedicated circuitry for asynchronous loads. Also, avoid
using both asynchronous clear and preset if the architecture provides only one of
these control signals. Stratix III devices, for example, directly support an
asynchronous clear function, but not a preset or load function. When the target device
does not directly support the signals, the synthesis or placement and routing software
must use combinational logic to implement the same functionality. In addition, if you
use signals in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the necessary control signals.
Combinational logic is less efficient and can cause glitches and other problems; it is
best to avoid these implementations.

For Verilog HDL and VHDL examples of registers with various control signals, and
information about the inherent priority order of register control signals in Altera
device architecture, refer to the Recommended HDL Coding Styles chapter in volume 1
of the Quartus II Handbook.

Targeting Embedded RAM Architectural Features

Altera’s dedicated memory architecture offers many advanced features that you can
target easily with the MegaWizard™ Plug-In Manager or with the recommended HDL
coding styles that infer the appropriate RAM megafunction (ALTSYNCRAM or
ALTDPRAM). Use synchronous memory blocks for your design, so the blocks can be
mapped directly into the device dedicated memory blocks. You can use single-port,
dual-port, or three-port RAM with a single- or dual-clocking method. Asynchronous
memory logic is not inferred as a memory block or placed in the dedicated memory

block, but is implemented in regular logic cells.

Altera memory blocks have different read-during-write behaviors, depending on the
targeted device family, memory mode, and block type. Read-during-write behavior
refers to read and write from the same memory address in the same clock cycle; for
example, you read from the same address to which you write in the same clock cycle.

It is important to check how you specify the memory in your HDL code when you use
read-during-write behavior. The HDL code that describes the read returns either the
old data stored at the memory location, or the new data being written to the memory
location.

In some cases, when the device architecture cannot implement the memory behavior
described in your HDL code, the memory block is not mapped to the dedicated RAM
blocks, or the memory block is implemented using extra logic in addition to the
dedicated RAM block. Implement the read-during-write behavior using single-port
RAM in Arria GX devices and the Cyclone and Stratix series of devices to avoid this
extra logic implementation.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Chapter 9: Recommended Design Practices 9-25

Conclusion

Conclusion

For Verilog HDL and VHDL examples and guidelines for inferring RAM functions
that match the dedicated memory architecture in Altera devices, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

In many synthesis tools, you can specify that the read-during-write behavior is not
important to your design; if, for example, you never read and write from the same
address in the same clock cycle. For Quartus Il integrated synthesis, add the synthesis
attribute ranst yl e="no_rw _check” to allow the software to choose the
read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block and, in some
cases, can allow memory inference when it would otherwise be impossible.

For details about using the r anst yl e attribute, refer to the Quartus II Integrated
Synthesis chapter in volume 1 of the Quartus II Handbook. For information about the
synthesis attributes in other synthesis tools, refer to your synthesis tool
documentation, or to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus Il Handbook.

Following the design practices described in this chapter can help you to consistently
meet your design goals. Asynchronous design techniques may result in incomplete
timing analysis, may cause glitches on data signals, and may rely on propagation
delays in a device leading to race conditions and unpredictable results. Taking
advantage of the architectural features in your FPGA device can also improve the
quality of your results.

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

9-26 Chapter 9: Recommended Design Practices
Document Revision History

Document Revision History

Table 9-1 shows the revision history for this chapter.

Tahle 9-1. Document Revision History

Date Version Changes

m Title changed from Design Recommendations for Altera Devices and the Quartus Il
Design Assistant.

m Updated to new template.

December 2010 10.1.0 = Added references to Quartus Il Help for “Metastability” on page 9-13 and
“Incremental Compilation” on page 9-13.

m Removed duplicated content and added references to Quartus Il Help for “Custom
Rules” on page 9-15.

m Removed duplicated content and added references to Quartus Il Help for Design
Assistant settings, Design Assistant rules, Enabling and Disabling Design Assistant
Rules, and Viewing Design Assistant reports.

m Removed information from “Combinational Logic Structures” on page 5-4

m Changed heading from “Design Techniques to Save Power” to “Power
July 2010 10.0.0 Optimization” on page 5-12

m Added new “Metastability” section

m Added new “Incremental Compilation” section

Added information to “Reset Resources” on page 5-23
Removed “Referenced Documents” section

November 2009 9.1.0 Removed documentation of obsolete rules.

March 2009 9.0.0 No change to content.

Changed to 8-1/2 x 11 page size

Added new section “Custom Rules Coding Examples” on page 5-18
Added paragraph to “Recommended Clock-Gating Methods” on page 5-11
Added new section: “Design Techniques to Save Power” on page 5-12

November 2008 8.1.0

Updated Figure 5-9 on page 5-13; added custom rules file to the flow
m Added notes to Figure 5-9 on page 5-13

m Added new section: “Custom Rules Report” on page 5-34

m Added new section: “Custom Rules” on page 5-34

m Added new section: “Targeting Embedded RAM Architectural Features” on
page 5-38

m Minor editorial updates throughout the chapter
m Added hyperlinks to referenced documents throughout the chapter

May 2008 8.0.0

e For previous versions of the Quartus II Handbook, refer to the Quartus IT Handbook
Archive.

“ e Takean online survey to provide feedback about this handbook chapter.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.surveygizmo.com/s/91914/technical-documentation-survey
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

QA | |:| ==V 10. Recommended HDL Coding Styles

Ql151007-10.1.0

This chapter provides Hardware Description Language (HDL) coding style
recommendations to ensure optimal synthesis results when targeting Altera® devices.

HDL coding styles can have a significant effect on the quality of results that you
achieve for programmable logic designs. Synthesis tools optimize HDL code for both
logic utilization and performance, however, synthesis tools have no information
about the purpose or intent of the design. The best optimizations often require
conscious interaction by you, the designer.

This chapter includes the following sections:

® “Quartus II Language Templates”

m “Using Altera Megafunctions” on page 10-2

m “Instantiating Altera Megafunctions in HDL Code” on page 10-3
“Inferring Multiplier and DSP Functions from HDL Code” on page 10-5
“Inferring Memory Functions from HDL Code” on page 10-13

|
|
m “Coding Guidelines for Registers and Latches” on page 10-43
m “General Coding Guidelines” on page 10-53

|

“Designing with Low-Level Primitives” on page 10-73

“ e For additional guidelines about structuring your design, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant chapter in
volume 1 of the Quartus Il Handbook. For additional handcrafted techniques you can
use to optimize design blocks for the adaptive logic modules (ALMs) in many Altera
devices, including a collection of circuit building blocks and related discussions, refer
to the Advanced Synthesis Cookbook: A Design Guide for Stratix II, Stratix III, and
Stratix IV Devices.

“ =@ The Altera website also provides design examples for other types of functions and to
target specific applications. For more information about design examples, refer to the
Design Examples page and the Reference Designs page on the Altera website.

For style recommendations, options, or HDL attributes specific to your synthesis tool
(including Quartus® II integrated synthesis and other EDA tools), refer to the tool
vendor’s documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Quartus Il Language Templates

Many of the Verilog HDL and VHDL examples in this document correspond with
examples in the Full Designs section of the Quartus II Templates. You can easily insert
examples into your HDL source code using the Insert Template dialog box in the
Quartus II software user interface, shown in Figure 10-1.

© 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Ref U.S. Pat. & Tm. Off.
and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any (})roducts and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis E

December 2010
Subscribe


http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=QII51007
http://www.altera.com/support/refdesigns/ref-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/examples/exm-index.html

Chapter 10: Recommended HDL Coding Styles

Using Altera Megafunctions

To open the Insert Template dialog box when you have a file open in the Text Editor
of the Quartus II software, on the Edit menu, click Insert Template. Alternatively, you
can right-click in the Text Editor window and click Insert Template.

Figure 10-1. Insert Template Dialog Box

=B Insert Template _‘

Language templates:

AHDL
Quartus I TCL

= RAMs and ROMs

g
Single Port RAM with Initial Contents!
Simple Dual Port RAM (single dock)
Simple Dual Port RAM (dual dock)
True Dual Port RAM (single clock)
True Dual Port RAM {dual clock)
Single Port ROM
Dual Port ROM
Mixed-Width Port RAM
Using $readmemb and $readmemh

Shift Registers

State Machines

Synthesis Attributes
Altera Primitives

Megafunctions

Preview:

/¢ Duartus II Verilog Template

/¢ Bingle port RAM with single read/write address

TimeQuest

SystemVerilog

TCL Elwodule single port_rsm

= Werilog HOL | #(parsweter DRTA WIDTH=8, parsweter ADDR_WIDTH=6)
(= Full Designs =N - -

input [ (DATA_WIDTH-1):0] data,
imput [ (ADDR_WIDTH-1) :0] =dde,
input we=, clk,

output JE(D.ﬂ.T.ﬂ._[-JIDTH—lj 0] o

/¢ Declare the RAM wvarisble

reg [DATA WIDTH-1:0] rem[2%%ADDR_WIDTH-1:0];:

/4 Warisble to hold the registered read address

Arithmetic reg [ADDR_WIDTH-1:0] addr reg;
Constructs
[ Logic always @ (posedge clk)

hegin
A4 Wrice
if [we)
ram[addr] <= data;

~
>

Save Insert Close

Using Altera Megafunctions

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis

Altera provides parameterizable megafunctions that are optimized for Altera device
architectures. Using megafunctions instead of coding your own logic saves valuable
design time. Additionally, the Altera-provided megafunctions may offer more
efficient logic synthesis and device implementation. You can scale the megafunction’s
size and specify various options by setting parameters. Megafunctions include the
library of parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as described in
“Instantiating Altera Megafunctions in HDL Code” on page 10-3.

Sometimes it is preferable to make your code independent of device family or vendor.
In this case, you might not want to instantiate megafunctions directly. For some types
of logic functions, such as memories and DSP functions, you can infer device-specific
dedicated architecture blocks instead of instantiating a megafunction. Synthesis tools,
including Quartus II integrated synthesis, recognize certain types of HDL code and
automatically infer the appropriate megafunction or map directly to device atoms.
Synthesis tools infer megafunctions to take advantage of logic that is optimized for
Altera devices or to target dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of instantiating a specific
function, follow the guidelines and coding examples in “Inferring Multiplier and DSP
Functions from HDL Code” on page 10-5 and “Inferring Memory Functions from
HDL Code” on page 10-13 to ensure your HDL code infers the appropriate function.

December 2010  Altera Corporation



Chapter 10: Recommended HDL Coding Styles 10-3
Instantiating Altera Megafunctions in HDL Code

I'=" You can infer or instantiate megafunctions to target some Altera device-specific
architecture features such as memory and DSP blocks. You must instantiate
megafunctions to target certain other device and high-speed features, such as LVDS
drivers, phase-locked loops (PLLs), transceivers, and double-data rate input/output
(DDIO) circuitry.

Instantiating Altera Megafunctions in HDL Code

The following sections describe how to use megafunctions by instantiating them in
your HDL code with the following methods:

m “Instantiating Megafunctions Using the MegaWizard Plug-In Manager”—You can
use the MegaWizard™ Plug-In Manager to parameterize the function and create a
wrapper file.

m “Creating a Netlist File for Other Synthesis Tools”—You can optionally create a
netlist file instead of a wrapper file.

m “Instantiating Megafunctions Using the Port and Parameter Definition”—You can
instantiate the function directly in your HDL code.

Instantiating Megafunctions Using the MegaWizard Plug-In Manager

Use the MegaWizard Plug-In Manager as described in this section to create
megafunctions in the Quartus II software that you can instantiate in your HDL code.
The MegaWizard Plug-In Manager provides a GUI to customize and parameterize
megafunctions, and ensures that you set all megafunction parameters properly. When
you finish setting parameters, you can specify which files you want generated.
Depending on which language you choose, the MegaWizard Plug-In Manager
instantiates the megafunction with the correct parameters and generates a
megafunction variation file (wrapper file) in Verilog HDL (.v), VHDL (.vhd), or
AHDL (.tdf), along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the files listed in
Table 10-1.

Table 10-1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a

<output file>.v]-vhd|.tdf (7)1 yeriiog HDL, VHDL, or AHDL design respectively.

<output file>.inc ADHL Include File—Used in AHDL Text Design Files (.tdf).
<output file>.cmp Component Declaration File—Used in VHDL design files.
<output file>.bst Block Symbol File—Used in Quartus Il schematic Block Design Files (.bdf).

HDL Instantiation Template for the language of the variation file—Sample instantiation of
the Verilog HDL module, VHDL entity, or AHDL subdesign.

Black box Verilog HDL Module Declaration—Hollow-body module declaration that can
<output file>_bh.v be used in Verilog HDL designs to specify port directions when instantiating the
megafunction as a black box in third-party synthesis tools.

<output file>_inst.v|.vhd|.tdf

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



10-4

Chapter 10: Recommended HDL Coding Styles
Instantiating Altera Megafunctions in HDL Code

Table 10-1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File

Description

<output file>_syn.v

Synthesis timing and resource estimation netlist—Additional synthesis netlist file
created if you enable the option to generate a synthesis timing and resource estimation
netlist. Refer to “Creating a Netlist File for Other Synthesis Tools” for details.

Note to Table 10-1:

(1) The MegaWizard Plug-In Manager generates a .v, .vhd, or .tdf file, depending on the language you select for the output file on the megafunction-
selection page of the wizard.

Creating a Netlist File for Other Synthesis Tools

When you use certain megafunctions with other EDA synthesis tools (that is, tools
other than Quartus II integrated synthesis), you can optionally create a netlist for
timing and resource estimation instead of a wrapper file.

The netlist file is a representation of the customized logic used in the Quartus II
software. The file provides the connectivity of architectural elements in the
megafunction but may not represent true functionality. This information enables
certain other EDA synthesis tools to better report timing and resource estimates. In
addition, synthesis tools can use the timing information to focus timing-driven
optimizations and improve the quality of results.

To generate the netlist, turn on Generate netlist under Timing and resource
estimation on the EDA page of the MegaWizard Plug-In Manager. The netlist file is
called <output file>_syn.v. If you use this netlist for synthesis, you must include the
megafunction wrapper file, either <output file>.v or <output file>.vhd, for placement
and routing in the project created with the Quartus II software.

Because your synthesis tool may call the Quartus II software in the background to
generate this netlist, turning on this option might not be required.

For information about support for timing and resource estimation netlists in your
synthesis tool, refer to the tool vendor’s documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus Il Handbook.

Instantiating Megafunctions Using the Port and Parameter Definition

You can instantiate the megafunction directly in your Verilog HDL, VHDL, or AHDL
code by calling the megafunction and setting its parameters as you would any other
module, component, or subdesign.

For a list of the megafunction ports and parameters, refer to the specific megafunction
in the Quartus II Help. You can also refer to the IP and Megafunction page on the
Altera website.

Altera strongly recommends that you use the MegaWizard Plug-In Manager for
complex megafunctions such as PLLs, transceivers, and LVDS drivers. For details
about using the MegaWizard Plug-In Manager, refer to “Instantiating Megafunctions
Using the MegaWizard Plug-In Manager” on page 10-3.

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation


http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

Chapter 10: Recommended HDL Coding Styles 10-5
Inferring Multiplier and DSP Functions from HDL Code

Inferring Multiplier and DSP Functions from HDL Code

The following sections describe how to infer multiplier and DSP functions from
generic HDL code, and, if applicable, how to target the dedicated DSP block
architecture in Altera devices:

m “Inferring Multipliers from HDL Code”
m “Inferring Multiply-Accumulators and Multiply-Adders from HDL Code” on
page 10-8

For synthesis tool features and options, refer to your synthesis tool documentation or
the appropriate chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

For more design examples involving advanced multiply functions and complex DSP
functions, refer to the DSP Design Examples page on the Altera website.

Inferring Multipliers from HDL Code

To infer multiplier functions, synthesis tools look for multipliers and convert them to
LPM_MULT or ALTMULT_ADD megafunctions, or may map them directly to device
atoms. For devices with DSP blocks, the software can implement the function in a DSP
block instead of logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register packing) to
improve performance and area utilization.

For additional information about the DSP block and supported functions, refer to the
appropriate Altera device family handbook and the Altera DSP Solutions Center
website.

Example 10-1 and Example 10-2 show Verilog HDL code examples, and
Example 10-3 and Example 10-4 show VHDL code examples, for unsigned and
signed multipliers that synthesis tools can infer as a megafunction or DSP block
atoms. Each example fits into one DSP block element. In addition, when register
packing occurs, no extra logic cells for registers are required.

The si gned declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 10-1. Verilog HDL Unsigned Multiplier

nodul e unsigned_nmult (out, a, b);
out put [15:0] out;
input [7:0] a
input [7:0] b;
assign out = a * b;
endrodul e

December 2010  Altera Corporation Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis


http://www.altera.com/technology/dsp/dsp-index.jsp
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/support/examples/exm-index.html

10-6 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Example 10-2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

modul e signed_nmult (out, clk, a, b);
out put [15:0] out;
i nput cl k;
i nput signed [7:0] a;
i nput signed [7:0] b;

reg signed [7:0] a_reg;

reg signed [7:0] b_reg;

reg signed [15:0] out;

wire signed [15:0] nult_out;
assign mult_out = a_reg * b_reg;

al ways @ (posedge cl k)

begin
areg <= a
b_reg <= b;
out <= rnult_out;
end
endrmodul e

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis December 2010 Altera Corporation



Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

10-7

Example 10-3. VHDL Unsigned Multiplier with Input and Qutput Registers (Pipelining = 2)

December 2010  Altera Corporation

LI BRARY i eee€;
USE ieee.std_logic_1164.all;
USE i eee. nuneric_std. all;

ENTITY unsigned_nult IS
PORT (
a: | N UNSI GNED (7 DOWNTO 0);
b: I N UNSI GNED (7 DOMNTO 0);
clk: IN STD_LOA C,
aclr: IN STD LCOG C,
result: OUT UNSI GNED (15 DOWNTO 0)
)
END unsi gned_mul t ;

ARCHI TECTURE rtl OF unsigned_nult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOANTO 0);
BEG N
PROCESS (cl k, aclr)
BEG N
IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b reg <= (OTHERS => '0");
result <= (OTHERS => '0');
ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b reg <= b;
result <= a_reg * b_reg;
END | F;
END PROCCESS;
END rtl;

Example 10-4. VHDL Signed Multiplier

LI BRARY i eee;
USE ieee.std_| ogic_1164.all;
USE i eee. nuneric_std. all;

ENTITY signed_nult IS
PORT (
a: IN SIGNED (7 DOANTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OJUT SIGNED (15 DOMNTO 0)
)
END si gned_nul t;

ARCHI TECTURE rtl OF signed_mult IS
BEG N

result <= a * b;
END rtl;

Quartus Il Handbook Version 10.1 Volume 1: Design and Synthesis



10-8 Chapter 10: Recommended HDL Coding Styles
Inferring Multiplier and DSP Functions from HDL Code

Inferring Multiply-Accumulators and Multiply-Adders from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and convert them to
ALTMULT_ACCUM or ALTMULT_ADD megafunctions, respectively, or may map
them directly t