
101 Innovation Drive
San Jose, CA 95134
www.altera.com

HB-01002-1.1

Design Handbook

Altera Event-Driven Datapath Processing

Subscribe

Altera Event-Driven Datapath Processing Design
Handbook

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=HB-01002

Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

May 2011 Altera Corporation
Contents
Chapter 1. Introduction to Altera Event-Driven Datapath Processing
Design Flow Concepts . 1–1

Efficient Flow . 1–2
Flexible Flow . 1–3
Efficient and Flexible Flow . 1–4

Processing Elements in the Efficient and Flexible Flow . 1–5
Event-Driven Methodology . 1–6

Messages, Tasks, and Contexts . 1–6
Object-Oriented Programming Analogy . 1–8

Architecting an Event-Driven System . 1–8
Design Partitioning . 1–9
Context Management . 1–11

Context Data . 1–12
Message Format . 1–13
Message Interconnect . 1–13
Flow Control PEs . 1–14

Centralized Message Flow . 1–14
Centralized Message Scheduling . 1–15
Unidirectional Message Flow . 1–15
Other Flows . 1–16

Message Buffering . 1–16
Ordering . 1–16
Scaling . 1–17

Duplicating PEs . 1–17
Duplicating Systems . 1–18

Chapter 2. Message Format
Avalon-ST PE Message Interface Specification . 2–1

Interface Signals . 2–2
Ready Latency . 2–2
Packet Data Transfer Messages . 2–2
Avalon-ST PE Message Format . 2–3

Control Word . 2–3
Data Arguments . 2–4

Message Transmission . 2–4
The altera_pe_message_format Tcl Package Specification . 2–7

Tcl Command Reference . 2–7
set_message_property . 2–8
get_message_property . 2–8
set_message_subfield_property . 2–9
get_message_subfield_property . 2–9
set_message_subfield_hdl_port . 2–10
validate_and_create . 2–10

Validation of Message Interfaces . 2–11
Binding HDL ports to the Data Port . 2–11

Message Sources . 2–11
Message Sinks . 2–15
Altera Event-Driven Datapath Processing Design Handbook

iv Contents
Chapter 3. Message Interconnect
Interconnect Approaches . 3–1

Fully-Connected System with a Single Message Interconnect . 3–1
Required Connections with Multiple Switches . 3–2
Fully-Connected System with Multiple Interconnects . 3–3

Processing Element Message Switch . 3–3
Parameters . 3–4

Interface Ports and Signals . 3–7
Design Considerations . 3–7

Backpressure . 3–8
Unmatched Routing Field . 3–8
Multiple Message Interconnects in a System . 3–8
Partial-Crossbar Switches . 3–8
Multicast Routing . 3–8

Chapter 4. Processing Elements
Design Requirements Overview . 4–2

Processing Element Types by Function . 4–3
Input PEs . 4–3
Output PEs . 4–3
Computational PEs . 4–3
Context Management PEs . 4–4
Flow Control PEs . 4–4

Interfaces . 4–4
Message Interfaces . 4–4

Message Clock Interface Signals . 4–5
Message Interface Signals . 4–5

Context Management Interfaces . 4–6
Context Register Interfaces . 4–6
Other User-Defined Interfaces . 4–6

System Considerations . 4–6

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
1. Introduction to Altera Event-Driven
Datapath Processing
This document describes the Altera® event-driven datapath processing technology.
Using the technology, you can process large amounts of data at line rates, such as
Internet traffic and streaming video, with Altera FPGAs. Its modularity is ideal for
developing datapath processing solutions.

The technology consists of an event-driven data processing methodology, and
hardware and software-programmable building blocks, called processing elements (PE).
Each hardware PE and software-programmable PE, built as reusable intellectual
property (IP), provides separate, distinct functionality dedicated to perform a
particular task. Using an event-driven methodology, multiple blocks of data are
scheduled for processing and move through different PEs of the datapath
concurrently.

Altera event-driven datapath processing has the following features and benefits:

■ Greatly-improved system performance

■ Parallel processing of multiple sets of data, while maintaining the context of each
set of data

■ Hardware PEs for compute-intensive tasks

■ Software-programmable PEs for flexibility

■ Reusable IP

■ Scalable design

■ Flexibility to repartition the system at a late development stage without
architectural changes

■ Easy route to migrating processes between hardware and software domains, even
late in the design cycle

■ Independent, autonomous design of PEs

■ Software control, scheduling, and classification of high-speed datapaths

f After reading this document, Altera recommends using the Getting Started with the
Nios II DPX Datapath Processor Tutorial to familiarize yourself with a working system.

Design Flow Concepts
In any data processing scenario, data comes in, data gets processed, and data goes
out. With Altera event-driven datapath processing, data moves through the system in
discrete, pipelined blocks. Each block moves through multiple processing elements.
Multiple blocks of data move through different parts of the system concurrently. The
processing pipeline can be linear or very dynamic, depending on your hardware
design and the sophistication of your flow control.

Processing data at line rates in FPGAs requires maximum efficiency at every point
along the datapath. Efficiency is achievable with tradeoffs in the following types of
systems:
Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/tt/tt-niidpx-start.pdf
http://www.altera.com/literature/tt/tt-niidpx-start.pdf

1–2 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Design Flow Concepts
■ Efficient flow—Systems where the data is directly manipulated only by hardware
are efficient but not flexible.

■ Flexible flow—Systems where the data is directly manipulated by both hardware
and software trade some efficiency for flexibility.

■ Efficient and flexible flow—Systems where the data is manipulated by hardware,
but where control decisions, such as scheduling, are made by software based on
the data flowing through the system can be both efficient and flexible.

The following sections describe the types of flows in increasing order of complexity
and capability.

Efficient Flow
The efficient flow does not take full advantage of the power of the event-driven
methodology, but is a good starting point for explanation purposes. This approach is
useful for systems where the processing flow is fixed and data visits each PE only
once. The simplest flow uses direct, linear connections between PEs. Data moves
through the PEs sequentially in a FIFO-style pipeline. Each PE knows where to pass
control. Figure 1–1 shows an efficient linear flow.

Advantages of linear processing include the following items:

■ No time or buffer overhead.

■ Direct, predictable path.

■ No flow decisions.

Disadvantages a linear processing include the following items:

■ No flexibility.

■ One PE stalling can stall the whole pipeline.

■ Does not make full use of the power of the event-driven methodology.

Figure 1–1. Efficient Processing Flow

Processing
Element

Processing
Element

Output
Processing

Element

Input
Processing

Element

Data
In

Data
Out
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–3
Design Flow Concepts
Flexible Flow
In more complex systems, processing does not necessarily take place linearly, and
certain processing sometimes happens more than once on the same block of data.
Figure 1–2 shows a flexible design where the processing flow can take multiple paths.

Flexible flows require a mechanism to very quickly route the data through the system.
Each PE communicates with a centralized mechanism to route the data. Dedicated
interconnect circuitry or a state machine handles the routing.

Advantages of a flexible processing flow include the following items:

■ Allows for nonlinear processing.

■ Data can route through PEs more than once.

■ Minimal stalling, slower tasks ahead do not create blockage.

■ You can design PEs for reuse.

Disadvantages of a flexible processing flow include the following items:

■ Nonobvious, nondirect path.

■ Extra buffer space to handle backpressure.

Figure 1–2. Flexible Processing Flow

Mechanism to
 route flow

Input
Processing

Element

Output
Processing

Element

Data
In

Data
Out

Hardware
Processing

Element

Software-
Programmable

Processing
Element

Software-
Programmable

Processing
Element

Software-
Programmable

Processing
Element

Hardware
Processing

Element

Hardware
Processing

Element
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

1–4 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Design Flow Concepts
Efficient and Flexible Flow
Figure 1–3 shows a design that is both efficient and flexible. The processing flow can
take multiple paths, controlled by a specialized processor.

Efficient and flexible design flows use a highly-specialized soft processor core to very
quickly determine where to route the data through the system. Each PE
communicates with the processor to schedule processing of the data.

The processor approach allows for maximum flexibility. In traditional processing
systems, the processor pulls data through the system by polling peripherals or using
interrupt service routines (ISR). In Altera event-driven datapath processing systems,
the PEs push data through the system and the processor responds to PE requests.

Advantages of an efficient and flexible processing flow using a processor include the
following items:

■ Allows for nonlinear processing.

■ Data can route through PEs more than once.

■ Minimal stalling, slower tasks ahead do not create blockage.

■ You can design PEs for reuse.

■ Scheduled data processing.

Disadvantages of an efficient and flexible processing flow include the following items:

■ Slightly more time overhead than other flows.

■ Nonobvious, nondirect path.

■ Extra buffer space to handle backpressure.

Figure 1–3. Efficient and Flexible Processing Flow

Processor to
manage, schedule,

and route flow

Hardware
Processing

Element

Software-
Programmable

Processing
Element

Input
Processing

Element

Output
Processing

Element

Data
In

Data
Out

Software-
Programmable

Processing
Element

Software-
Programmable

Processing
Element

Hardware
Processing

Element

Hardware
Processing

Element
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–5
Design Flow Concepts
Processing Elements in the Efficient and Flexible Flow
Popular packet processing architectures, such as network processing units, employ a
combination of processors (microcode engines, CPUs, and hyperthread engines) to
perform control and packet processing functions while offloading the bulk of the
compute-intensive operations to hard macros.

Until now, datapath processing in FPGAs has been primarily attempted in hardware
using custom RTL or by reusing standard IP cores. Altera event-driven datapath
processing uses a combination of dedicated, optimized processors; multiple cores;
custom, accelerated hardware PEs; and tightly-integrated hardware and software to
achieve maximum optimization.

The Nios® II DPX datapath processor is a special-purpose processor with minimal
operating system overhead optimized for datapath processing.

f For more information, refer to the Nios II DPX Datapath Processor Handbook.

Altera event-driven datapath processing encourages custom solutions with a
combination of PEs and software and system development tools. Within this
framework, you build custom processing solutions by employing an optimum
combination of software-programmable and hardware PEs. You can even customize
your existing IP for use in event-driven designs.

Nios II DPX Datapath Processor for Flow Control

The Nios II DPX datapath processor offers a software design flow for control and
scheduling of datapaths.

Nios II DPX Datapath Processor for Processing Data

In addition, the Nios II DPX datapath processor handles less time-intensive
computations. Software-programmable PEs such as the Nios II DPX datapath
processor are useful for packet processing functions such as header parsing and
classification.

Hardware PEs for Processing Data

Like typical network processing units, custom hardware handles compute-intensive
operations. Hardware PEs are essential for time-critical functions such as lookups and
encryption. The following list shows some of the possible uses for PEs:

■ Encryption

■ Cyclic redundancy check (CRC)

■ Deep packet inspection

■ Search and lookup

■ Traffic management
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf

1–6 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Event-Driven Methodology
Event-Driven Methodology
Altera event-driven datapath processing uses an event-driven methodology to move
information through the system. Event messages sent to and from various parts of the
system control the flow of processing. Each PE in the system is capable of sending,
receiving, or both sending and receiving information through event messages.

This technique allows the flow of execution for a particular data item (a packet of data
for example) to pass from one PE to another. When a PE receives an event message,
the PE performs its associated task on the associated data. When finished, the PE
sends an event message to forward control on to the next PE in the processing flow.

With event-driven processing, you gain access to a scalable and flexible design
methodology, allowing you to update your system easily throughout the design cycle.
Event-driven processing allows parallel processing of multiple sets of data, while
maintaining the context of the data.

With the processing divided into discrete pieces, event-driven systems function
efficiently in pipelined architectures. Each PE provides a distinct separation of
processing in the system. This separation allows concurrent processing of multiple
sets of data, where the sets reside in different PEs, like a pipeline stage in the system.

Messages, Tasks, and Contexts
Messages carry control information, arguments, and sometimes other data between
PEs in a system.

Tasks are computational operations performed by hardware and software-
programmable PEs. When a PE receives a message, the PE performs the task
requested in the message. Hardware tasks are performed in hardware; software tasks
are loaded by a processor and executed.

Contexts are application-specific sets of information shared between PEs. A context
can be as simple as a few bytes of identifying information to something more
complex, such as a reserved set of registers for a processor and a large amount of
associated data. For example, in packet processing, a context might include the packet
data and intermediate variables that need to be passed from task to task. When a
message instructs a PE to perform a task, the context contains the data the task
references.

When the context data is minimal, it can be entirely passed in the message. More
complex contexts are stored in memory and assigned a context ID (CID), which gets
passed in the message. PEs use the CID as a handle to the context when performing
tasks.

The following list shows some possible uses for context data:

■ Variables shared by tasks in your program

■ Packet processing packet headers for various levels of the IP stack

■ Whole packets for deep packet inspection

■ Long Term Evolution (LTE) users and symbols in wireless applications

■ Lines and frames in video processing applications

■ Frames and macroblocks in coder/decoder (CODEC) applications
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–7
Event-Driven Methodology
Event-driven processing is typically implemented on multicore and multithreaded
hardware, which allows multiple blocks of data to be processed concurrently. By
using separate contexts for each block of data, each block is processed independently
and switching to process the next block of data happens more efficiently.

1 It is possible to design systems with PEs that work on the same context concurrently.
When designing your system, ensure that you process the data in the correct order.
One safeguard to maintain context is to only allow one task to work on a context at
any given time.

Each PE in the system must have a message interface capable of sending messages,
receiving messages, or both, using a common message format. For more information,
refer to Chapter 2, Message Format.

PEs in a system are connected together through a message interconnect. The message
interconnect is circuitry for passing messages from one PE to other PEs. The message
interconnect might be as simple as a set of wires where two PEs are directly
connected, or as complex as a sophisticated packet switch network.

Figure 1–1 on page 1–2 shows a system with simple, direct message interconnects
between each set of PEs in the pipeline and Figure 1–2 on page 1–3 shows a system
with a more complex, central message interconnect. For more information about the
message interconnect, refer to Chapter 3, Message Interconnect.

In these distributed computing systems, the overall process is divided into individual
tasks and distributed to PEs, which perform the tasks. The flow of processing is
controlled by the sending and receiving of messages. A task is not executed until a PE
receives a message requesting that task to be performed. Upon receipt, the PE
performs the requested task. When the task is complete the PE routes control of the
processing back through the message interconnect to another PE. This approach
requires that each task has knowledge of where to send a message when the task
completes, be it back to a central location for scheduling or directly to another PE.

This event-driven design methodology allows you more flexibility in your designs
than traditional methods, and offers the following benefits:

■ Ease of integration—By designing PEs to connect to a common message
interconnect using a common message interface, system designers can easily
integrate multiple PEs in a system. Adding and removing PEs in the system
require adjustments only to the message interconnect.

■ Ease of partitioning hardware and software—The ease of integration also covers
partitioning a design between hardware and software. To an event-driven
processing system, hardware accelerators and software tasks appear the same. The
system does not need to know how the PE performs the task, only which PE
performs the task. You can replace a processor with a hardware accelerator, or vice
versa, performing the same task without having to redesign the system.

■ IP reuse—By maintaining a common message interface, all PEs are usable in future
designs with no modifications. Every time you build a PE, you increase your IP
portfolio for future designs.
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

1–8 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
■ Resource sharing and replication—Using a message interconnect, every PE can
have access to all the PEs in the system. This method allows a PE to be shared
among all the other PEs in the system. If the bandwidth of a PE becomes limiting,
the event-driven framework easily allows you to replicate a PE and add it to the
system.

■ Pipelined architecture—By dividing the process into tasks, event-driven
processing can be pipelined.

Object-Oriented Programming Analogy
Altera event-driven datapath processing is a form of distributed computing. The
concepts of centralized versus distributed computing have parallels similar to
structured versus object oriented programming.

In object-oriented programming, the data is the main focus, as opposed to structured
programming, where the function is the main focus. The object-oriented design
describes the flow of data in the system, while a structured design describes the flow
of function calls.

Centralized computing is like a main() function which calls a(), then b(), then c().
Function a() does not need to know that b() is called next. main() takes care of the
calling order and passes any data returned from a() as input to b().

Distributed-computing software tasks operating on context data are like C++ class
member functions operating on the object’s private data members. Passing an event
message, which carries a context, is like invoking a class member function, which
massages the data defined for that class instance. The task decides where to pass the
context via a message for further processing. The CID is like an object’s this pointer.
Creation of a context and its registers is like instantiation of an object, where the
registers are like object init() member function parameters.

Architecting an Event-Driven System
Event-driven systems require proper planning and design to ensure interoperability
between PEs in the system. This section covers the following topics:

■ “Design Partitioning” on page 1–9

■ “Context Management” on page 1–11

■ “Message Format” on page 1–13

■ “Message Interconnect” on page 1–13

■ “Flow Control PEs” on page 1–14

■ “Message Buffering” on page 1–16

■ “Ordering” on page 1–16

■ “Scaling” on page 1–17
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–9
Architecting an Event-Driven System
Design Partitioning
The first step in designing your system is to divide the overall process into tasks. Each
task should have a clear processing boundary. Use the following guidelines for
partitioning your tasks:

■ Hardware and software boundaries—Consider which portions of the process are
required to be in hardware or software. For example, hardware tasks are required
to provide the interfaces into and out of the system and when the task cannot be
performed efficiently in software. Software tasks are desirable for lower
performance functions because they allow rapid reconfigurability, software
redesign, and easier debugging. Some tasks can be performed in hardware or
software allowing you the flexibility to implement the task as you wish.

■ Branch conditions—The point the processing flow branches between two or more
processing paths is a good place to separate tasks. Processing flow can jump over
portions of the process which are not needed for that particular set of data.

■ Execution time—Avoid PEs with long execution times to minimize stalling.

Consider the example packet processing system in Figure 1–4. Tasks are performed in
both hardware and software. The mechanism to manage, schedule, and route
processing flow is the combination of message interconnect components and a Nios II
DPX datapath processor.

f For information about the Nios II DPX datapath processor, refer to the Nios II DPX
Datapath Processor Handbook.

Figure 1–4. Example Packet Processing System

Processing Element
(Nios II DPX Datapath Processor)

Processing
Element

(Lookup Task)

Processing
Element

(Input Task)

Processing
Element

(Output Task)

(decisions)

Mechanism to
manage, schedule,

and route flow

(pathway)

Parse
Task

Process
Task

Filter
Task
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf

1–10 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
The processing is divided into six distinct tasks. Figure 1–5 shows a flowchart of the
data moving through the six tasks. The hardware tasks have a grey background and
the software tasks have a light blue background.

Figure 1–5. Example Packet Processing Flowchart

Discard Packet

Payload is video?
yes

no

ARP or Ping Packet?
no yes

RespondShould Host Processor
Receive Packet?

yes

Task 5
Filter

no

UDP/IP Content?
no

yes

Task 3
Lookup

Look up UDP/IP Socket

Matched Packet?
yes no

Task 4
Process

Task 6
Output Forward Packet or

Payload to Destination

Task 1
Input Receive Ethernet

Packet

Store in buffer

Parse MAC, VLAN, IP
and UDP Headers

Destination Address
Matches?

yes no
Discard Packet

Task 2
Parse
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–11
Architecting an Event-Driven System
The system receives Ethernet traffic, extracts video data from certain packets and
forwards the data on for further processing. The video data consists of MPEG-2
transport stream packets, which when received, are encapsulated inside UDP/IP for
transmission via Ethernet. The video data that is forwarded for further processing
consists of the raw MPEG-2 transport stream information. Nonvideo data is filtered
and either discarded, responded to, or forwarded to a host processor for further
processing.

The input and output tasks need to be implemented in hardware because they
provide the external interface to the system. The lookup task is better implemented in
hardware because a software task cannot perform a destination MAC lookup as
efficiently as a hardware-based content-addressable memory lookup table. The parse,
process, and filter tasks are targeted for software running on processor such as the
Nios II DPX datapath processor.

The parse task, implemented in software, falls between the input and lookup
hardware tasks, and makes decisions to bypass tasks when appropriate. Process and
filter are broken up into two software tasks, providing an entry point into the filter
task from the parse task, and allowing the process task to bypass the filter task when
appropriate. The benefit of event-driven processing is that these boundaries are
flexible, allowing you to break up a task, move a task from software to hardware (or
vice versa), and add additional tasks to the system without needing to redesign the
other PEs in the system.

Context Management
The pipelined architecture of Altera event-driven systems allows the system to
process multiple contexts concurrently. Because each context is processed
independently, the integrity of each context must be maintained and not corrupted by
other activity in the system.

In cases where the entire context is passed in the message, integrity is inherently
maintained. When a PE receives a message, the PE runs tasks that read the data,
perform processing, package the context in a new message, and send the message
down the line. Because the message routes only to its intended destination, the
context cannot be corrupted by other activity in the system.

In cases where the context is being stored rather than passed, a CID is assigned to the
context for tracking purposes. PEs use the CID to identify the context to process.

1 For systems where the complete context of the data can be passed via messages, the
use of a CID is optional.

The CID is usually passed to the PEs in messages and identifies the set of data a PE
works on. As the flow of processing moves from task to task, the CID is passed along
in the message requesting the next task, giving the task knowledge of which set of
data to work on.

When a PE receives a message requesting a task with an associated CID, the control of
processing for that set of data is transferred to that task. In most cases, to maintain the
integrity of the data, no other task should access or perform any processing on that set
of data. When the task is complete, it transfers the ownership and control of
processing to the next task by message.
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

1–12 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
The CID can also assist in maintaining order of the processing in your system. By
assigning CIDs in sequential order as data comes into the system, the processor can
use the CID to maintain the order of data leaving the system. For more information
about ordering, refer to “Ordering” on page 1–16.

Context Data
Different tasks often need different data. For example, Table 1–1 shows the data
required by each task in the system in Figure 1–4 on page 1–9.

The following sections describe ways to hold and access the data in your system.

PE Messages

The “Avalon-ST PE Message Interface Specification” on page 2–1 allows data
arguments to be passed in the messages sent between PEs and their associated tasks.
The number of data arguments allowed is determined by the PEs sending and
receiving the message. The data being transferred is specific to the task. The data can
be arguments for the task, control information, or a combination of both.

For example, in the system shown in Figure 1–4 on page 1–9, messages sent to the
lookup task contain the IP address and UDP socket. The lookup task uses the data to
find the destination MAC, which it then forwards in a message to the process task.
The output task receives control information in a message telling the task to either
discard or forward the packet.

Memory

Like most embedded systems, data can also be stored in memory and accessed
directly by PEs. The memory can either be on-chip or an external memory device.
Only PEs that need access to a memory need to interface to it. For the system in
Figure 1–4 on page 1–9, the input task writes the incoming packets to a memory
buffer. The output task reads the buffer and retrieves the packets before updating and
forwarding. The lookup PE has access to a separate RAM for the hardware-based
content-addressable memory lookup table.

Registers

For systems designed with register sets for each context, context data can be stored in
those registers, removing the need to pass the data through messages or retrieve
through memory accesses. This technique provides maximum efficiency and is
especially useful for PEs that perform multiple tasks in succession on a single context.
The storage persists for the life of the context.

Table 1–1. Example Task Data

Task Data

Input Header and packet

Parse Header (MAC, VLAN, IP, UDP, destination address)

Lookup IP address and UDP socket

Process Destination MAC and header

Filter Header (packet type)

Output Updated header and packet
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–13
Architecting an Event-Driven System
f For more information about the Nios II DPX datapath processor context registers,
refer to the Nios II DPX Datapath Processor Handbook.

Message Format
A single message format usable by all the PEs in your system is key to the flexibility
and scalability of your system. The “Avalon-ST PE Message Interface Specification”
on page 2–1 defines the message format.

The Avalon Streaming (Avalon-ST) PE message format consists of a control word and
data arguments. The fields in the control word are configurable, but must be the same
for all PEs connected together in your system. For a list of available fields for the
control word, refer to “Control Word” on page 2–3.

When defining the control word for your system, you specify which control fields to
include, each control field's bit width, and the position of each control field inside the
control word. Providing these properties as configuration options on your PEs allows
the control word to be adjusted as the needs of the system change.

Each PE within the system is required to have a unique processing element ID (PEID).
PE messages include the PEID in the message format of outgoing messages, providing
routing information to the message interconnect. Each PE you design must know the
PEIDs of the PEs it sends messages to, to correctly route messages.

For systems containing PEs that perform more than one task, the message format
must also include a task ID to differentiate between tasks in a PE. Task IDs must be
unique within PEs, but not across PEs. Each PE you design must know the task IDs of
the tasks in the PEs it sends messages to, to correctly route messages.

The task ID, passed as part of message format in outgoing messages, tells the
receiving PE which task to perform. PEs that perform only one task can ignore the
task ID on the receipt of a message.

For data arguments, define a standard ordering of the arguments so that sending and
receiving PEs correctly pass the arguments. The number of data arguments in a
message can vary, depending on the message being sent. The only requirement is that
at least one data argument is passed per message.

Refer to Chapter 2, Message Format for a detailed explanation of all message format
topics.

Message Interconnect
Messages travel to and from PEs in the system through the message interconnect. In
Altera event-driven datapath processing systems, interfaces between the message
interconnect and the PEs must follow the “Avalon-ST PE Message Interface
Specification” on page 2–1.

The simplest message interconnect is direct connections between PEs message
transmit (TX) ports and receive (RX) ports. In typical systems, the message
interconnect has intelligence built in to route the messages between PEs. Typically, the
message interconnect allows each PE to send messages to any PE in the system,
including itself. A PE sending messages to itself is useful when a PE can do multiple
tasks, such as a software programmable PE, or when the processing flow can take
multiple paths.
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf

1–14 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
1 Altera’s Processing Element Message Switch component provides a full crossbar
message interconnect switch that is customizable, allowing you to specify the number
input and output ports, as well as the location and size of the destination field. For
more information, refer to “Processing Element Message Switch” on page 3–3.

When FPGA space is at a premium or you simply want to reduce complexity, you
might choose to optimize the message interconnect in your system. Using a partial
crossbar or multiple message interconnect switches, you can reduce your message
interconnect to the minimum possible number of connections between PEs.

For example, in the system shown in Figure 1–3 on page 1–4, a Nios II DPX datapath
processor is used as a central task scheduler. Each PE sends messages only to the
processor PE and receives messages only from the processor PE. To initiate software
tasks, the processor PE sends messages through the message interconnect to itself.
One message interconnect switch going into the processor PE and one switch coming
out is all that is needed to correctly connect all the PEs.

For systems with large numbers of PEs, join multiple message interconnects together.
This technique can decrease the overall size of the message interconnect and still
allow message passing between all PEs.

Refer to Chapter 3, Message Interconnect for a detailed explanation and message
interconnect examples.

Flow Control PEs
For flexible systems, creating and designating a control PE or scheduling PE for flow
management provides a centralized point for the system management. There are
many ways to structure your system using a PE for flow control, and the common
element in each is controlling how messages move through the system.

Flow control PEs offer the following benefits:

■ Removes the need for each PE to have detailed knowledge of the entire system or
operation.

■ Allows for quick system redesign without the need for redefining the hardware.

The following sections describe some example uses of flow control PEs.

Centralized Message Flow
The system shown in Figure 1–3 on page 1–4 uses a centralized message flow. A soft
processor core handles the flow control. When new data comes into the system, the
input PE informs the processor PE. The processor receives the message and uses
software to determine where to route the data for processing. How the processor PE
knows where to send the message depends on the design of your system. You might
chose to design the processor software to look up the next PE based on the previous
task performed, or design the PEs to tell the processor where to route the flow, or
design the system in another creative way. In any case, the processor PE sends a
message to the PE in line to perform the next task. When the PE finishes its task, the
PE sends a message back to the processor PE for further routing.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–15
Architecting an Event-Driven System
Centralized Message Scheduling
In multicore and multithreaded hardware systems, multiple blocks of data are
processed concurrently by multiple processor cores or processor hardware threads.
The system shown in Figure 1–3 on page 1–4 uses a Nios II DPX datapath processor as
a flow management PE that handles task execution scheduling. When a new packet
comes into the system, the input PE informs the processor PE. The processor receives
the message and uses software to determine where to route the processing, including
routing to a processor or thread for software tasks. The processor PE sends a message
to the appropriate hardware or software-programmable PE to perform the next task.
When the PE finishes its task, the PE sends a message back to the processor PE for
further routing.

1 For the system shown in Figure 1–3 on page 1–4, the task scheduling and the software
task processing is handled by a single Nios II DPX datapath processor PE. When the
Nios II DPX task scheduler dispatches a software task, the Nios II DPX processor
sends a message to itself. This technique is a powerful way to maximize resources.

Unidirectional Message Flow
Consider the video processing system shown in Figure 1–6.

The operations performed by each PE depend on the packet type of the video input.
Using the packet type provided by the input PE, the flow management PE sends a
message to each PE with the appropriate commands. Each PE simply carries out the
given instructions, rather than determining which operations to perform, as the data
moves through the PEs. In this system, the flow management PE could be a state
machine or a processor. By using a software-programmable flow management PE,
modifications to the system can be done easily without changes to the hardware PEs.

Figure 1–6. Video Processing System
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

1–16 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
Other Flows
Altera event-driven datapath processing systems are not limited to the flows
described in the preceding sections. You can combine conceptual elements, such as
linear and flexible flows, and other approaches you determine, to create a hybrid flow
that specifically suits your needs.

For example, a distributed flow is viable and useful and does not require a flow
control PE. With the distributed flow, PE A sends a message to PE B, PE B sends a
message to PE C, PE C sends a message to PE D, and so on.

Message Buffering
When a PE cannot accept a message, the PE applies backpressure on the Avalon-ST
message interface by deasserting interface’s ready signal. Depending on the message
interconnect, this action can prevent other messages from being transmitted and stall
the message interconnect. To limit the effect of backpressure, you can design message
buffering into your message interconnect or PEs. Message buffering allows a PE or
message interconnect to store messages that cannot be handled immediately instead
of applying backpressure.

Message buffering is extremely important when flow of messages can loop back to
previously-visited PEs. If buffers are too small, a lockup condition can occur. Lockup
happens when the message buffers in the loop become full, causing them not to accept
new messages and therefore not allow the message queue to empty.

It is good practice to create buffers large enough to hold the largest message times the
number of CIDs defined in the system, and to have your input PE assign a CID to each
block of data as it enters the system. Using this approach, the input PE ensures
enough room in the system to handle backpressure situations. If no CIDs are
available, the input PE can either further buffer the packets coming in or drop them,
limiting the number of packets actively being processed in the system at any given
time.

When your system has tasks that send multiple messages, the result can be a number
of messages greater than the number of CIDs defined in the system. Creating buffers
equal to the maximum number of messages allowed in a system prevents any
message from stalling in the system.

While it is possible to place all of the buffering at one place in the loop, for example, at
the output from the DPX processor, adding a small buffer at the input of each PE
reduces the amount of backpressure applied to the message interconnect.

Ordering
Depending on the system, maintaining the order of the data being processed might be
required. Ordering can be as simple as ensuring the data leaving the system is in the
same order that it came into the system. In a linear flow system of hardware PEs,
ordering is guaranteed because there is only one path through the pipeline. In flexible
systems, you can design the system to maintain order by ensuring each context moves
through the same set of tasks, but in most cases that approach defeats the purpose of a
flexible system. For a more flexible solution, use the CID to maintain the order. By
assigning sequential CIDs in the input PE, you can use the CID to manage the data
leaving the system.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 1: Introduction to Altera Event-Driven Datapath Processing 1–17
Architecting an Event-Driven System
1 The Nios II DPX datapath processor provides two additional features for maintaining
the order, namely, the CID reorder queue and sequence numbering. For information
about the ordering features of the Nios II DPX datapath processor, refer to the Software
Programming Model chapter in the Nios II DPX Software Development section of the
Nios II DPX Datapath Processor Handbook.

Scaling
Scaling, whether by instantiating multiple instances of an individual PE in a system or
by creating multiple systems, can increase the performance and throughput of a
design.

Duplicating PEs
When duplicating PEs, consider load balancing. One simple scheme routes processing
to one of two duplicate PEs based on whether the CID is an even or odd number.

When duplicating PEs, consider maintaining context, particularly when using
multiple processor PEs. For example, a system with multiple Nios II DPX datapath
processors has multiple sets of CIDs. In this case, combine the PEID of the processor
PE and the CID to produce a unique value.

Figure 1–7 shows a system with two separate Nios II DPX datapath processor PEs
providing two sets of CIDs.

In the system in Figure 1–7, the Nios II DPX CID request interfaces route to a custom
hardware block that manages the CID going to the input PE. The input PE uses the
PEID and CID it receives to send a message to the appropriate processor PE. When the
processor PE sends a message to another PE, the receiving PE uses the PEID and CID
from the message to locate the correct context. Even when a nonprocessor PE sends a
message to another nonprocessor PE, the message includes the PEID of the processor
PE to allow the receiving PE to correctly identify the context.

Figure 1–7. Multiple Processor Scaling
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–18 Chapter 1: Introduction to Altera Event-Driven Datapath Processing
Architecting an Event-Driven System
Duplicating Systems
Another way to scale a design is to create multiple systems that run in parallel. As
long as the systems run independently, this approach is straightforward. However,
when the systems share resources (perhaps because of reaching the size limit of the
FPGA), the shared PEs must be able to properly route messages to the correct system.

Figure 1–8 shows two systems sharing a PE.

For this system to function correctly, some system identifier must exist to differentiate
the systems. One solution is to use the MSB of the PEID as the system identifier. When
a system wants to use the shared PE, it sends a message to the PE passing along the
PEID in the message. The shared PE reads the PEID from the message to determine
which system to send the return message to. A small message interconnect provides a
path from the shared PE to the systems. The message interconnect uses the MSB of the
PEID in the message to route the message back to the correct system. A second small
message interconnect gives the systems access to the shared PE.

1 The shared PE does not need a system identifier in its PEID, just a unique PEID.
Systems should not use the MSB of shared PE PEIDs as a system identifier.

Figure 1–8. Multiple System Scaling
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
2. Message Format
Altera event-driven datapath processing uses messages to pass information through
the message interconnect to PEs throughout the system. Messages are used to request
a PE to perform a task. In the process they transport task arguments and control
information between PEs.

All messages need to use a common format known and implemented by both
hardware and software engineers. Developing message interconnect and PE
interfaces to send and receive the common format ensures compatibility and
promotes flexibility throughout the system.

Messages in Altera event-driven datapath processing systems follow the Avalon-ST
PE message interface protocol. The message interconnect and all PEs connecting to it
must follow the protocol. The following section defines the protocol.

Avalon-ST PE Message Interface Specification
The Avalon-ST PE message interface uses Avalon-ST packets, with each packet
containing a single, complete message. Interfaces conforming to the Avalon-ST PE
message interface specification must also conform to the Avalon-ST specification. This
chapter assumes you are familiar with the Avalon-ST specification.

f For more information, refer to Avalon Interface Specifications.

Figure 2–1 charts the high level structure of a message over time. As data arguments
are passed, the control word remains constant.

Figure 2–1. Message Symbol Over Time

Arg0

Data

Arg1

Arg2

Arg3

Start Of Packet

End Of Packet

Ti
m

e

Control Word

One Symbol

bit 0bit N
Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2–2 Chapter 2: Message Format
Avalon-ST PE Message Interface Specification
The PE message interface uses Avalon-ST packet data transfers with backpressure and
typically has a ready latency of zero, as shown in Figure 2–2.

Interface Signals
The Avalon-ST message interface requires the signals listed in Table 2–1.

Ready Latency
Interfaces conforming to the Avalon-ST PE message interface specification typically
have a ready latency of zero. Adapters are available in Altera’s Qsys system
integration tool for mismatches in ready latency. However, these adapters use extra
FPGA on-chip memory resources and increase the latency of the message passing.

Packet Data Transfer Messages
The following rules apply to packet data transfer messages:

■ Messages must be carried as Avalon-ST data packets, using the startofpacket
and endofpacket signals defined by the Avalon-ST specification.

■ Message sources must not assert valid between packets.

■ Message sinks might exhibit undefined behavior if valid is asserted between
packets.

Figure 2–2. Two Avalon-ST Packet Data Transfers with Backpressure and Ready Latency of Zero

Table 2–1. Message Interface Signals

Name Width Description

data Variable Message data arguments and control fields.

startofpacket 1 Asserted by the source to mark the beginning of a packet.

endofpacket 1 Asserted by the source to mark the end of a packet.

ready 1 Asserted by the sink to indicate that the sink can accept data.

valid 1
Asserted by the source to qualify all other source to sink signals. The
data bus and other source to sink signals can be sampled by the sink
only on ready cycles where valid is asserted.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–3
Avalon-ST PE Message Interface Specification
Avalon-ST PE Message Format
Avalon-ST PE messages consist of one or more data arguments and a control word.
The data arguments contain the message data and the control word contains control
information. Each data argument is 32 bits wide (unless adjusted in advanced cases).
The control word width is user-configurable.

1 The message interconnect and all PEs connected to the message interconnect must use
the same control word format. Altera recommends collaboration between your
hardware and software engineers to design your control word format before
developing the hardware and software. For Nios II DPX datapath processor systems,
the default control word format is suitable without modification for most
applications. For information about the Nios II DPX datapath processor message
format, refer to “External Interfaces Tab” in the Instantiating the Nios II DPX Datapath
Processor chapter in the Nios II DPX Hardware Reference section of the Nios II DPX
Datapath Processor Handbook.

Control Word
The control word contains the control information in a message and consists of one or
more of the control fields shown in Table 2–2. Specific systems conforming to this
specification might require some or all of the fields to be present.

The width of the control word depends on the control word fields you use and the
width you specify for each field. Table 2–3 shows a 26-bit example control word.

Table 2–2. Control Word Fields

Field Name Description

destination
Contains the processing element ID of the destination PE, specifying which PE
the message should be routed to by the message interconnect.

source Contains the processing element ID of the PE that sent the message.

taskid Specifies the operation to be carried out by the destination PE.

context Contains the context of the message. (1)

user Not defined and available for use by the user.

flags Reserved for use by Altera to carry message flags.

Notes to Table 2–2:
(1) In Nios II DPX systems, this field carries the context ID.

Table 2–3. Example Control Word

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destination source taskid context user
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

2–4 Chapter 2: Message Format
Message Transmission
For future scalability, your control word total width must be defined independently to
allow for empty fields that have not yet been defined and for adjustments to field
sizes as future needs arise. Table 2–4 shows a 30-bit example expandable control word
that currently has only 21 bits defined.

The following rules allow PEs to interoperate if you need to scale your system in
future:

■ Message sinks must tolerate unknown bits in the control word. Design a message
sink to extract the control fields that it understands and ignore the other bits.

■ Message sources should drive any unknown control word bits to zero.

■ When additional control fields are added in future, PEs that use those fields need
to consider the possibility that older PEs might set the new control fields to zero.

Data Arguments
Data arguments carry the data in a message. For example, data arguments for a task
could be a location and length of a packet in memory. The following rules apply to
data arguments:

■ Each message must carry one or more data arguments. In theory, there is no limit
to the number of arguments you can send in a message. In practice, requirements
of the PEs or the message interconnect might impose limitations. For a list of
potential PE restrictions, refer to “System Considerations” on page 4–6.

■ Each data argument is normally 32 bits wide. Some advanced cases can adjust this
width.

■ Arrange multiple data arguments in a message in big endian order, with the
lowest-order (highest-numbered) argument in the least significant location.

Message Transmission
Data arguments and the control word are carried as subfields in the data signal. The
control word must reside in the most significant bits of the data signal. Data
arguments must reside in the least significant bits of the data signal. Table 2–5 shows
a data symbol containing a control word and one data argument.

Table 2–4. Example Control Word with Future Expansion

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

source destination taskid user flags

Table 2–5. One-Argument Data Symbol

MSB ... 32 31 ... 0

control arg0
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–5
Message Transmission
The data signal must carry exactly one symbol per beat. The data arguments update
in each beat, while the control word remains constant throughout the message.
Figure 2–3 shows the transmission of a message containing a control word and one
data argument per beat.

The message shown in Figure 2–3 transmits eight data arguments in eight cycles. The
lower part of the data signal, data[31:0], transmits the data arguments, sending a
new argument every beat. The upper part of the data signal, data[63:32], transmits
the control word, which stays constant throughout the entire message transmission.

1 Figure 2–3 shows the control word as 32 bits wide. However, there is no width size
requirement for the control word. The size of the control word must be provided by
the PE as a synthesis time parameter and depends on the number of fields used and
the size of those fields. For more information, refer to “Control Word” on page 2–3.

To create high-bandwidth interfaces, transmit multiple data arguments per beat. The
data signal must be wide enough to hold multiple arguments and a single copy of the
control word.

The format of a data symbol with multiple arguments has the control word in the
most significant bits, followed by a subfield for identifying empty arguments in the
final cycle of the message transmission, followed by the data arguments. The
arguments are ordered in big endian format. Table 2–6 shows a data symbol
containing a control word, a 1-bit empty subfield, and two data arguments.

The empty subfield is required whenever multiple arguments are present in the data
signal. The empty subfield indicates the number of arguments that are empty during
the last cycle of the message transmission.

The empty subfield has the same semantics as the Avalon-ST empty signal, but is
applied to the arguments subfield, rather than the whole data signal.

Figure 2–3. Message with One Data Argument per Beat

Table 2–6. Two-Argument Data Symbol

MSB ... 65 64 63 ... 32 31 ... 0

control empty arg0 arg1
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

2–6 Chapter 2: Message Format
Message Transmission
The following rules apply to the empty subfield:

■ When multiple data arguments are carried in the data signal, the empty subfield
must exist in the data signal. When only a single data argument is carried, the
empty subfield must not exist in the data signal.

■ When the empty subfield exists, it must reside in the data signal between the data
arguments and control word.

■ Where provided, the bit width of the empty subfield must be ceiling(log2(data
arguments per beat)).

■ The empty subfield is only valid when the endofpacket signal is asserted.

■ When the empty subfield exists, message sources must drive it with a value
indicating the number of empty data arguments carried in the last beat of each
message. There is no need to drive it with a valid value at other times.

■ The empty subfield is required even if the message being passed has no empty data
arguments. In this case, set the empty subfield to zero.

Figure 2–4 shows the transmission of a message containing a control word, a 1-bit
empty subfield, and two data arguments per beat.

Because there are only fifteen total arguments to send, the last beat has one empty
argument. The empty subfield goes high in the last cycle to indicate no data in
data[31:0].

Table 2–7 shows a data symbol containing a control word, a two-bit empty subfield,
and four data arguments. Two bits are required for the empty subfield because up to
three arguments could be empty in the last cycle of the message transmission.

Figure 2–4. Message with Two Data Arguments per Beat

Table 2–7. Four-Argument Data Symbol

MSB ... 130 129 128 127 ... 96 95 ... 64 63 ... 32 31 ... 0

control empty arg0 arg1 arg2 arg3
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–7
The altera_pe_message_format Tcl Package Specification
Figure 2–5 shows the transmission of a message containing a control word, a two-bit
empty subfield, and four data arguments per beat. Because there are only fifteen total
arguments to send, the last beat has one empty argument.

The altera_pe_message_format Tcl Package Specification
The altera_pe_message_format Tcl package, located at
${QUARTUS_ROOTDIR}\ip\altera\common\hw_tcl_packages\altera_pe_messa
ge_format.tcl, allows PEs to publish the parameters of their conforming interfaces.

Tcl Command Reference
Use the following Tcl commands to validate and elaborate the PE interfaces:

■ set_message_property

■ get_message_property

■ set_message_subfield_property

■ get_message_subfield_property

■ set_message_subfield_hdl_port

■ validate_and_create

f For information about the main, validation, and elaboration callbacks referenced in
the command descriptions, refer to “Overriding Default Behaviors for Components
Implemented in HDL” in the Component Interface Tcl Reference chapter in volume 1 of
the Quartus_II Handbook.

Figure 2–5. Message with Four Data Arguments per Beat
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

2–8 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
set_message_property

Table 2–8 shows the available message properties.

get_message_property

Description: Sets a property of a message interface

Callback availability: Main, validation, elaboration

Usage: set_message_property <interfaceName> <propertyName> <value>

Returns: The value set

Arguments: ■ interfaceName—The name of the message interface whose property is to be set.

■ propertyName—The name of the property whose value you want to set. Refer to Table 2–8 for a
list of the supported properties.

■ value—The value to set.

Example: set_message_property msg_out PEID 4

Table 2–8. Message Properties

Name Type Default Description

PEID Integer –1 Assigns the processing element ID associated with the interface. A
value of –1 indicates that the PEID is not set.

ZERO_OUTPUT_PORT String “”

Specifies the name of a one bit HDL output port that is driven to a
constant value of zero. This port is required for message sources
that use the set_message_subfield_hdl_port function and is
used to fill any gaps in the data signal constructed using
FRAGMENT_LIST.

UNUSED_INPUT_PORT String “”

Specifies the name of an HDL input port of parameterizable width
that is unused by the HDL. This port is required for message sinks
that use the set_message_subfield_hdl_port function and is
used to terminate any gaps in the data signal constructed using
FRAGMENT_LIST.

UNUSED_INPUT_WIDTH_PARAM String “”

Specifies the name of the parameter that specifies the width of the
unused input port specified in the UNUSED_INPUT_PORT property.
This parameter is required for message sinks that use the
set_message_subfield_hdl_port function.

Description: Retrieves a property of a message interface

Callback availability: Main, validation, elaboration

Usage: get_message_property <interfaceName> <propertyName>

Returns: The value of the property

Arguments: ■ interfaceName—The name of the message interface whose property is to be retrieved.

■ propertyName—The name of the property whose value you want to retrieve. Refer to Table 2–8
for a list of the supported properties.

■ value—The value to set.

Example: get_message_property msg_out PEID
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–9
The altera_pe_message_format Tcl Package Specification
set_message_subfield_property

Table 2–9 shows the available message subfield properties.

get_message_subfield_property

Description: Sets a property of a subfield within the data signal of a message interface

Callback availability: Main, validation, elaboration

Usage: set_message_subfield_property <interfaceName> <subfieldName> <propertyName>
<value>

Returns: The value set

Arguments: ■ interfaceName—The name of the message interface whose property is to be set.

■ subfieldName—The name of the subfield whose property is to be set. Supported values are the
field names listed in Table 2–2 on page 2–3 and argument for the data argument subfields.

■ propertyName—The name of the property whose value you want to set. Refer to Table 2–9 for a
list of the supported properties.

■ value—The value to set.

Example: set_message_subfield_property msg_out taskid SYMBOL_WIDTH 32

Table 2–9. Message Subfield Properties

Name Type Default Description

SYMBOLS_WIDTH Integer 0
The width in bits of each symbol within the given subfield. For all subfields
except argument, specify the bit width of the field. For the argument
subfield, specify the width of the argument.

SYMBOLS_PER_BEAT Integer 1
The number of symbols within a given subfield. Set to one for all subfields
except argument. For the argument subfield, specify the number of
arguments per beat of the interface.

BASE Integer –1

The location of the least significant bit of the subfield within the control word.
A value of zero indicates that the given subfield is adjacent to the data
arguments or empty subfield. The value is ignored for the argument
subfield. A value of –1 indicates that the given subfield is not present.

DEFAULT Integer 0

For message sources, this value is driven onto the given subfield if the
subfield is not driven from an HDL port. For message sinks, this value is
driven onto the associated HDL port for the given subfield if the subfield is
not present in the data signal.

Description: Retrieves a property of a subfield within the data signal of a message interface

Callback availability: Main, validation, elaboration

Usage: get_message_subfield_property <interfaceName> <subfieldName> <propertyName>

Returns: The value of the property

Arguments: ■ interfaceName—The name of the message interface whose property is to be retrieved.

■ subfieldName—The name of the subfield whose property is to be retrieved. Supported values
are the field names listed in Table 2–2 on page 2–3 and argument for the data argument
subfields.

■ propertyName—The name of the property whose value you want to retrieve. Refer to Table 2–9
for a list of the supported properties.

Example: get_message_subfield_property msg_out taskid SYMBOL_WIDTH
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

2–10 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
set_message_subfield_hdl_port

validate_and_create

Description: Binds a port on your HDL module to a subfield within the data signal of a message interface.

This command is optional and results in the data signal for the given interface to be constructed from
HDL signals using the FRAGMENT_LIST port property. Do not combine this command with manual
use of the FRAGMENT_LIST port property on the associated data signal.

Mapping of the data signal to HDL ports takes place when the validate_and_create command is
executed. For more information, refer to “Binding HDL ports to the Data Port” on page 2–11.

Callback availability: Main, validation, elaboration

Usage: set_message_subfield_hdl_port <interfaceName> <subfieldName> <portString>

Returns: The port string

Arguments: ■ interfaceName—The name of the message interface whose data signal is being configured.

■ subfieldName—The name of the data signal subfield to map to the HDL port. Supported values
are the field names listed in Table 2–2 on page 2–3, argument for the data argument subfields,
and argumentEmpty for the empty subfield.

■ portString—The string defining the HDL port name and bit range to map to the specified
subfield. This string has the following syntax:

<hdl_port_name>[@<msb>:<lsb>]

where <hdl_port_name> is the name of the HDL port, <msb> is the most significant bit of the
HDL port to use, and <lsb> is the least significant bit of the HDL port to use.

If portString contains only the HDL port name, then the width of the HDL port must match the
width of the subfield.

If portString contains a bit range, then the width of the range must match the width of the
subfield.

Example: set_message_subfield_hdl_port msg_out taskid "avs_msgout_taskid@7:0"

Description: Performs the following actions:

■ Validates the interface, as described in “Validation of Message Interfaces”.

■ Binds the data signal to HDL ports, as described in “Binding HDL ports to the Data Port” on
page 2–11.

■ Publishes information about the interface to the SOPC Information File (.sopcinfo) via interface
assignments for use by downstream tools.

validate_and_create must be the last command called when describing an interface.

Callback availability: Validation, elaboration

Usage: validate_and_create <interfaceName>

Returns: A boolean true value if interface validation and creation is successful; false otherwise.

Arguments: ■ interfaceName—The name of the message interface to validate and create.

Example: validate_and_create msg_out
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–11
The altera_pe_message_format Tcl Package Specification
Validation of Message Interfaces
The validate_and_create command performs the following checks to ensure that the
given interface correctly describes a valid message interface:

■ Checks that the interface exists.

■ Checks that the interface has the ports listed in Table 2–1 on page 2–2.

■ Checks that the user has not set the dataBitsPerSymbol property for this interface
and sets the dataBitsPerSymbol property to match the data signal width.

■ Checks that the data signal is wide enough to carry the data arguments, the empty
subfield (if required), and the control word.

■ Checks that the control fields, data arguments, and empty subfield do not overlap.

■ Checks that the control fields are located at the top of the data signal.

■ Checks that the selected bit range of any bound HDL ports matches the width of
the associated subfield for any HDL ports that were bound to the data subfields
using the set_message_subfield_hdl_port command.

Binding HDL ports to the Data Port
You can use individual ports on your HDL code for each of the subfields in the data
signal. The validate_and_create command constructs the data port from HDL ports
based on the information provided by the set_message_subfield_hdl_port
command. It is your responsibility to first define the data port using the
add_interface_port command. For example:

add_interface_port msg_in msg_in_data data Input $msg_in_data_width

f For more information about the add_interface_port command, refer to the
Component Interface Tcl Reference chapter in volume 1 of the Quartus_II Handbook.

Message Sources
The following sections describe message source creation for the cases presented.

Data Port Provided from HDL

If the name of the data port given in the add_interface_port command matches the
name of an HDL port, the HDL port is configured to directly drive the data port. If the
set_message_subfield_hdl_port command is used, an error occurs.

Figure 2–6 shows a message source whose data port is provided in its entirety by an
HDL port.

Figure 2–6. Message Source Example
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf

2–12 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
All Data Subfields Driven by HDL Ports

If all of the subfields within the data port are provided by HDL ports, the
validate_and_create command binds the HDL ports to the data port using the
FRAGMENT_LIST port property. The set_message_subfield_hdl_port command is used
for all subfields to specify the data signal in its entirety. The BASE subfield properties
determine the location of each of the HDL ports within the fragment list.

Figure 2–7 shows a message source where all subfields are provided by HDL ports.

Example 2–1 shows the _hw.tcl code that describes this case.

Unspecified Data Bits

If all subfields are bound to HDL ports as described in “All Data Subfields Driven by
HDL Ports”, but the data signal contains some bits that are not identified as subfields,
the unspecified bits are driven to zero by the validate_and_create command.

Figure 2–7. Message Source Example

Example 2–1. Message Source Code Example

altera_pe_message_format::set_message_property msgout ZERO_OUTPUT_PORT "msgout_zero"

altera_pe_message_format::set_message_subfield_property msgout destination BASE 8
altera_pe_message_format::set_message_subfield_property msgout destination SYMBOL_WIDTH
8
altera_pe_message_format::set_message_subfield_hdl_port msgout destination
"msgout_dest"

altera_pe_message_format::set_message_subfield_property msgout source BASE 0
altera_pe_message_format::set_message_subfield_property msgout source SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgout source "msgout_source"

altera_pe_message_format::set_message_subfield_property msgout argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgout argument
SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgout argument
"msgout_argument"
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–13
The altera_pe_message_format Tcl Package Specification
Figure 2–8 shows a message source where some data bits are not bound to subfields.

Example 2–2 shows the _hw.tcl code that describes this case.

Unbound Data Subfields

If some subfields are bound to HDL ports as described in “All Data Subfields Driven
by HDL Ports”, and other subfields are not bound to HDL ports, the
validate_and_create command drives the unspecified bits in the subfield to the
value specified in the subfield’s DEFAULT subfield property.

Figure 2–9 shows a message source with some subfields not bound to HDL ports.

Figure 2–8. Message Source Example

Example 2–2. Message Source Code Example

altera_pe_message_format::set_message_property msgout ZERO_OUTPUT_PORT "msgout_zero"

altera_pe_message_format::set_message_subfield_property msgout destination BASE 8
altera_pe_message_format::set_message_subfield_property msgout destination SYMBOL_WIDTH
8
altera_pe_message_format::set_message_subfield_hdl_port msgout destination
"msgout_dest"

altera_pe_message_format::set_message_subfield_property msgout argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgout argument
SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgout argument
"msgout_argument"

Figure 2–9. Message Source Example
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

2–14 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
Example 2–3 shows the _hw.tcl code that describes this case.

Unused HDL Subfield Ports

If some subfields are bound to HDL ports using the set_message_subfield_hdl_port
command, but those subfields are not defined in the data signal, the
validate_and_create command terminates the corresponding HDL port.

Figure 2–10 shows a message source providing an HDL port for a subfield missing
from data signal.

Example 2–4 shows the _hw.tcl code that describes this case.

Example 2–3. Message Source Code Example

altera_pe_message_format::set_message_property msgout ZERO_OUTPUT_PORT "msgout_zero"

altera_pe_message_format::set_message_subfield_property msgout destination BASE 8
altera_pe_message_format::set_message_subfield_property msgout destination SYMBOL_WIDTH
8
altera_pe_message_format::set_message_subfield_hdl_port msgout destination
"msgout_dest"

altera_pe_message_format::set_message_subfield_property msgout source BASE 0
altera_pe_message_format::set_message_subfield_property msgout source SYMBOL_WIDTH 8

altera_pe_message_format::set_message_subfield_property msgout argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgout argument
SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgout argument
"msgout_argument"

Figure 2–10. Message Source Example

Example 2–4. Message Source Code Example

altera_pe_message_format::set_message_property msgout ZERO_OUTPUT_PORT "msgout_zero"

altera_pe_message_format::set_message_subfield_property msgout destination BASE 8
altera_pe_message_format::set_message_subfield_property msgout destination SYMBOL_WIDTH
8
altera_pe_message_format::set_message_subfield_hdl_port msgout destination
"msgout_dest"

altera_pe_message_format::set_message_subfield_hdl_port msgout user "msgout_user"

altera_pe_message_format::set_message_subfield_property msgout argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgout argument
SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgout argument
"msgout_argument"
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–15
The altera_pe_message_format Tcl Package Specification
Message Sinks
The following sections describe message sink creation for the cases presented.

Data Port Provided from HDL

If the name of the data port given in the add_interface_port command matches the
name of an HDL port, the HDL port directly connects to the data port. If the
set_message_subfield_hdl_port command is used, an error occurs.

Figure 2–11 shows a message sink whose data port is provided in its entirety by an
HDL port.

All Data Subfields Connected to HDL Ports

If HDL ports are specified for all of the subfields within the data port, the
validate_and_create command binds the HDL ports to the data port using the
FRAGMENT_LIST port property. The set_message_subfield_hdl_port command is used
for all subfields to specify the data signal in its entirety. The BASE subfield properties
are used to determine the location of each of the HDL ports within the fragment list.

Figure 2–12 shows a message sink where all subfields are connected to HDL ports.

Figure 2–11. Message Sink Example

Figure 2–12. Message Sink Example
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

2–16 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
Example 2–5 shows the _hw.tcl code that describes this case.

Unspecified Data Bits

If all subfields are bound to HDL ports as described in “All Data Subfields Connected
to HDL Ports”, but the data signal contains some bits which are not identified as
subfields, the validate_and_create command terminates the unspecified bits.

Figure 2–13 shows a message sink where some data bits are not bound to subfields.

Example 2–6 shows the _hw.tcl code that describes this case.

Unbound Data Subfields

If some subfields are bound to HDL ports as described in “All Data Subfields
Connected to HDL Ports”, and other subfields are not bound to HDL ports, the
validate_and_create command terminates the unspecified bits.

Example 2–5. Message Sink Code Example

altera_pe_message_format::set_message_property msgin UNUSED_INPUT_PORT "msgin_unused"
altera_pe_message_format::set_message_property msgin UNUSED_INPUT_WIDTH_PARAM \
"msgin_unused_width"

altera_pe_message_format::set_message_subfield_property msgin destination BASE 8
altera_pe_message_format::set_message_subfield_property msgin destination SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgin destination "msgin_dest"

altera_pe_message_format::set_message_subfield_property msgin source BASE 0
altera_pe_message_format::set_message_subfield_property msgin source SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgin source "msgin_source"

altera_pe_message_format::set_message_subfield_property msgin argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgin argument SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgin argument "msgin_argument"

Figure 2–13. Message Sink Example

Example 2–6. Message Sink Code Example

altera_pe_message_format::set_message_property msgin UNUSED_INPUT_PORT "msgin_unused"
altera_pe_message_format::set_message_property msgin UNUSED_INPUT_WIDTH_PARAM \
"msgin_unused_width"

altera_pe_message_format::set_message_subfield_property msgin destination BASE 8
altera_pe_message_format::set_message_subfield_property msgin destination SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgin destination "msgin_dest"

altera_pe_message_format::set_message_subfield_property msgin argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgin argument SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgin argument "msgin_argument"
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 2: Message Format 2–17
The altera_pe_message_format Tcl Package Specification
Figure 2–14 shows a message sink with some subfields not bound to HDL ports.

Example 2–7 shows the _hw.tcl code that describes this case.

Unused HDL Subfield Ports

If some subfields are bound to HDL ports using the set_message_subfield_hdl_port
command, but those subfields are not defined in the data signal, the
validate_and_create command drives the corresponding HDL port to a default
value specified in the subfield’s DEFAULT subfield property.

Figure 2–15 shows a message sink providing an HDL port for a subfield missing from
data signal.

Figure 2–14. Message Sink Example

Example 2–7. Message Sink Code Example

altera_pe_message_format::set_message_property msgin UNUSED_INPUT_PORT "msgin_unused"
altera_pe_message_format::set_message_property msgin UNUSED_INPUT_WIDTH_PARAM \
"msgin_unused_width"

altera_pe_message_format::set_message_subfield_property msgin destination BASE 8
altera_pe_message_format::set_message_subfield_property msgin destination SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgin destination "msgin_dest"

altera_pe_message_format::set_message_subfield_property msgin source BASE 0
altera_pe_message_format::set_message_subfield_property msgin source SYMBOL_WIDTH 8

altera_pe_message_format::set_message_subfield_property msgin argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgin argument SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgin argument "msgin_argument"

Figure 2–15. Message Sink Example
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

2–18 Chapter 2: Message Format
The altera_pe_message_format Tcl Package Specification
Example 2–8 shows the _hw.tcl code that describes this case.

Example 2–8. Message Sink Code Example

altera_pe_message_format::set_message_property msgin UNUSED_INPUT_PORT "msgin_unused"
altera_pe_message_format::set_message_property msgin UNUSED_INPUT_WIDTH_PARAM \
"msgin_unused_width"

altera_pe_message_format::set_message_subfield_property msgin destination BASE 8
altera_pe_message_format::set_message_subfield_property msgin destination SYMBOL_WIDTH 8
altera_pe_message_format::set_message_subfield_hdl_port msgin destination "msgin_dest"

altera_pe_message_format::set_message_subfield_property msgin user DEFAULT 2
altera_pe_message_format::set_message_subfield_hdl_port msgin user "msgin_user"

altera_pe_message_format::set_message_subfield_property msgin argument SYMBOL_WIDTH 32
altera_pe_message_format::set_message_subfield_property msgin argument SYMBOLS_PER_BEAT 1
altera_pe_message_format::set_message_subfield_hdl_port msgin argument "msgin_argument"
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
3. Message Interconnect
The message interconnect is circuitry for passing messages from one PE to other PEs.
In Altera event-driven datapath processing systems, interfaces between the message
interconnect and the PEs must follow the “Avalon-ST PE Message Interface
Specification” on page 2–1.

Interconnect Approaches
The message interconnect in your system might be as simple as a set of wires where
two PEs are directly connected, or as complex as a sophisticated packet switch
network. In a system with a linear architecture, the message interconnect between two
PEs in the flow is a wire that connects the output (source) port of the upstream PE
directly to the input (sink) port of the downstream PE. In a system with a flexible
architecture, that is, a system where the processing flow can take multiple paths, the
message interconnect needs to connect PEs for every possible path that the flow can
conceivably take. The following sections describe several approaches.

Fully-Connected System with a Single Message Interconnect
One approach is to create a message interconnect that connects every PE to every
other PE regardless of whether or not a given path might ever be taken with a single
interconnect switch. Figure 3–1 shows a message interconnect that accounts for every
possible connection for the system shown in Figure 1–4 on page 1–9.

Figure 3–1. Fully-Connected System Using a Single Message Interconnect
Altera Event-Driven Datapath Processing Design Handbook

3–2 Chapter 3: Message Interconnect
Interconnect Approaches
The system contains four PEs. The message interconnect connecting the PEs has four
message input ports but only three message output ports, because the input PE only
sends messages. This approach is useful for designs that might change during the
course of development and for designs with a small number of PEs. The approach is
simple to implement; the entire message interconnect is one “Processing Element
Message Switch” on page 3–3.

Required Connections with Multiple Switches
For many reasons, such as size reduction and efficiency, you might choose to optimize
the message interconnect for your system by creating a message interconnect that
connects only the PEs that need to be connected.

One approach is to use multiple small, dedicated message interconnect switches. The
system shown in Figure 1–4 on page 1–9 is a good optimization candidate. Each PE
(including the processor PE) sends messages only to the processor PE and receives
messages only from the processor PE. No other message paths are needed.

Figure 3–2 shows an optimized message interconnect, where only the required
connections are implemented, reducing the overall size and complexity of the
message interconnect.

The message interconnect uses two switches described in “Processing Element
Message Switch” on page 3–3. One switch has four inputs and one output, and the
other switch has one input and three outputs.

Figure 3–2. Required Connections Using a Multiple Message Interconnect Switches
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 3: Message Interconnect 3–3
Processing Element Message Switch
Fully-Connected System with Multiple Interconnects
For larger systems, it might be beneficial to use multiple message interconnects that
are bridged. This approach decreases the overall size of the message interconnect
while still allowing message passing between all PEs at the expense of higher latency
for messages that pass through the bridge. Figure 3–3 shows a system connecting all
PEs through multiple message interconnects.

Processing Element Message Switch
The Processing Element Message Switch IP core, shown in Figure 3–1 on page 3–1,
provides a customizable message interconnect to pass Avalon-ST PE messages
between PEs. Avalon-ST PE messages are Avalon-ST packets, with each packet
containing a single complete message. For more information, refer to “Avalon-ST PE
Message Interface Specification” on page 2–1.

The Processing Element Message Switch offers the following features:

■ Configurable number of input and output ports

■ Number of message input ports can be different from number of output ports

■ Ability to assign one or more processing element IDs (PEID) to a message output
port

■ Configurable routing field in the message control word

■ Partial-crossbar configuration

■ Clock domain crossing

■ Message width adaptation

■ External arbitration

■ Multicast routing

Figure 3–3. Fully-Connected System Using Multiple Message Interconnects
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

3–4 Chapter 3: Message Interconnect
Processing Element Message Switch
The Processing Element Message Switch consists of dedicated input ports, dedicated
output ports, and a configurable crossbar switch fabric, allowing every input port
access to every output port. The message routing is dictated by the routing field in the
message's control word. Each output port is assigned to one or more values, which are
read from the routing field in the control word.

The routing ID is an arbitrary set of bits selected from the message control word to
select which switch output port to use. The routing ID can comprise any subset or
combination of bits from the destination, the context, the flags, or the other fields. For
example, some multicore systems route messages to different cores depending on
whether the CID is odd or even. In this case the LSB of the CID is included in the
routing ID field. However, in simple systems, the destination PEID is sufficient.

The Processing Element Message Switch receives incoming messages through the
input (sink) ports. Inside the switch, the message passes through a routing element
which reads the routing field of the control word and determines where to route the
message. The message is then routed through a crossbar switch to the appropriate
output (source) port.

The number of data arguments in the Avalon-ST message format can vary for each
input and output message port. The Processing Element Message Switch
automatically adapts the incoming port message to the outgoing port. When the
number of data arguments for an input port is less than the number of data arguments
for an output port, the switch buffers the data until enough messages are received.
When the number of data arguments for an input port is greater than the number of
data arguments for an output port, the switch sends the data out in multiple
messages. For specific setup information, including restrictions, refer to the Input’s
Number of data arguments and Output’s Number of data arguments parameter
descriptions and the footnotes in Table 3–1. For information about data argument
transmission, refer to “Message Transmission” on page 2–4.

Parameters
In Qsys, the Processing Element Message Switch parameter editor is available in the
component library under the Message Interconnect category. Table 3–1 shows the
Processing Element Message Switch parameters available in the parameter editor.

Table 3–1. Processing Element Message Switch Parameters (Part 1 of 3)

Name Value Description

Packet format

Control word
width Variable Specifies the width in bits of the control word in the message.

Routing field
base

0 to (Control
word width – 1)

Specifies the location of the LSB of the routing field relative to the LSB of the control
word, that is, LSB of the routing field = Routing field base + Data argument width.
For example, a Routing field base value of six for a system with a data argument
width of 32 indicates that the LSB of the routing field is at bit position 38. For a
typical system, align the LSB of the routing field to the base of the destination
subfield.

Routing field
width

0 to (Control
word width –
Routing field
base)

Specifies the width in bits of the routing field. Routing field width is typically set to
the width of the destination subfield. When zero, the switch forwards every
message.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 3: Message Interconnect 3–5
Processing Element Message Switch
Data argument
width

0 to 1024,
typically 32 Specifies the width in bits of the data argument.

Input’s Number
of data
arguments (1)

1 to 1014 (2)

Specifies the number of data arguments per beat in the data signals of each input
port. To specify different numbers for different ports, list a number for each port,
separated by colons. For example, when Number of message input ports = 4,
1:2:1:1 indicates two arguments for the second port and one argument each for the
other three ports.

Output’s Number
of data
arguments (1)

1 to 1014 (2)

Specifies the number of data arguments per beat in the data signals of each output
port. To specify different numbers for different ports, list a number for each port,
separated by colons. For example, with four ports listed in the Routing
configuration table, 1:2:1:1 indicates two arguments for the second port and one
argument each for the other three ports.

Features

Clock domain
crossing On/Off

Each message port has dedicated clock input and reset input signals.

When on, inserts synchronization logic to allow packet data transfer across multiple
clock domains.

When off, the switch operates in a single clock domain.

Use external
arbiter On/Off

When on and Number of message input ports > 1, exports signals from each input
port out of the switch, to connect to an external arbiter, such as the Merlin Arbiter
available on the Qsys Component Library tab. For more information, refer to
“Interface Ports and Signals” on page 3–7.

When off or when Number of message input ports = 1, round-robin arbitration
takes place in the switch.

Pipeline
arbitration On/Off When on, inserts a register in the multiplexer select inputs in the switch improving

the fMAX of the message interconnect at a cost of increasing the latency by one cycle.

Pipeline cross-
connect On/Off

When on, inserts a register between the internal demux and mux routing in the
switch improving the fMAX of the message interconnect at the cost of increasing
latency by one cycle.

Table 3–1. Processing Element Message Switch Parameters (Part 2 of 3)

Name Value Description
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

3–6 Chapter 3: Message Interconnect
Processing Element Message Switch
Cross-connect
information

0, x, X, or a
power of two

Enables and disables connections in the switch fabric, and specifies the depth of the
cross-connection FIFO buffers. Use the following formatting conventions to specify
the connections in the switch:

■ To create a full-crossbar switch with consistent FIFO buffer depths, specify a
single number (power of two) to indicate the depth at all cross-connections.
Enter 0 to remove the buffer from the full-crossbar switch.

■ To create a full-crossbar switch with differing FIFO buffer depths, list the entire
matrix using the [<in0_out0>: ... :<in0_outM>] [..] [<inN_out0>: ... :<inN_outM>]
format, and specify a separate number for each cross-connection to indicate the
FIFO buffer depth at that cross-connection. Enter 0 to indicate no buffer.

For example, [1:2] [1:2] [1:2] [1:0] represents a four-input-port, two-output-port
switch with a buffer depth of one for every connection involving the first output
port, and a buffer depth of two for every connection involving the second output
port except for the connection from the fourth input port to the second output
port, which is routed through the switch but not buffered.

■ To create a partial-crossbar switch, list the entire matrix as described for the full-
crossbar switch, and enter x or X to remove unneeded connections.

For example, [1:2] [1:2] [1:2] [1:X] represents the same switch described in the
full-crossbar example, except there is no connection from the fourth input port to
the second output port.

Cross-connect
buffering RAM
type

Varies by device Specifies the type of memory to use for buffering. For more information about
buffering, refer to “Message Buffering” on page 1–16.

Incoming ports configuration

Number of
message input
ports

Variable Specifies the number of message input ports.

Outgoing ports configuration

Routing
configuration
table

Variable

Specifies the message output (source) ports and their routing information. Click the
+ and - buttons to alter the number of output ports. The following list describes the
columns in the table:

■ Message Output Ports—The name of the message output port.

■ Routing Field Value—Associates the output port with one or more routing field
values. Typically, the destination subfield is used as the routing field, and each
output port is associated with the PEID of the attached PE. If there is only one
source port assigned to the message interconnect, no ID is needed.

PEID formats include decimal (prefix with d), hexadecimal (prefix with h), and
binary (prefix with b). Wildcards are supported in hexadecimal and binary IDs
with the ? character. Separate multiple PEIDs with plus signs.

For example, routing field values 255, 58, 22, and 23 could be represented by
hff+d58+b1011?.

Notes to Table 3–1:
(1) For each input-output connection pair, the number of input data arguments must be a common multiple of the number of output data

arguments, or vice versa. For example, with four input ports and one output port, when Input’s Number of data arguments is 1:2:3:4, Output’s
Number of data arguments can only be 1 or a multiple of 12, because 12 is the least common multiple of 1, 2, 3, and 4.

(2) 1014 = the maximum Avalon-ST interface data bus width (1024) – the maximum empty field width (10). For more information, refer to
“Message Transmission” on page 2–4.

Table 3–1. Processing Element Message Switch Parameters (Part 3 of 3)

Name Value Description
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

Chapter 3: Message Interconnect 3–7
Processing Element Message Switch
Interface Ports and Signals
The Processing Element Message Switch IP core contains the following interface ports
and signals:

■ Reset signal—A hardware reset signal that forces the core to reset immediately.

■ Clock signal—The clock signal for the IP core.

■ Message input port—An Avalon-ST PE message interface that receives messages
from connected PEs. The Number of message input ports parameter specifies the
number of message input ports for the core. For Avalon-ST PE message interface
signal information, refer to “Interface Signals” on page 2–2.

■ Message output port—An Avalon-ST PE message interface that sends messages to
connected PEs. The number of items in the Message output ports column of the
routing configuration table specifies the number of message output ports for the
system. For Avalon-ST PE message interface signal information, refer to “Interface
Signals” on page 2–2.

■ External arbiter output ports—Avalon-ST interfaces that direct the valid, data,
startofpacket, and endofpacket Avalon-ST PE message interface signals, plus a
channel signal, from each message input port to an external arbiter. The Number
of message input ports parameter specifies the number of external arbiter output
ports for the core.

■ External arbiter grant port—An Avalon-ST interface that receives a next_grant
signal from the external arbiter that indicates the input port the arbiter selected,
and directs an acknowledge signal to an external arbiter upon receipt of the grant
signal.

Table 3–2 describes the external arbiter interface signals.

Design Considerations
The following sections describe subjects to consider when using the Processing
Element Message Switch component in your designs.

Table 3–2. External Arbiter Interface Signals

Port Name Width Description

External
arbiter
output

valid

These signals route all input port information to the external arbiter. For information about
these signals, refer to “Interface Signals” on page 2–2.

data

startofpacket

endofpacket

channel
Number of
output ports

Asserted by the switch source, indicating the output port the data would
have been routed to if no arbitrator was used.

External
arbiter
grant

next_grant 1 Asserted by the external arbiter source, indicating the input port the
arbiter selected.

acknowledge 1 Asserted by the switch source, acknowledging receipt of the arbiter's
decision.
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

3–8 Chapter 3: Message Interconnect
Processing Element Message Switch
Backpressure
The flow of messages can stall due to backpressure of the message interconnect.
Stalling can happen when an output port receives backpressure by a PE or another
message interconnect, or when multiple input ports try to send a message to the same
output port. Because the routing path to each port is separate, all other input ports are
allowed to pass messages.

To minimize the effect of backpressure on the flow of messages, buffering can be
added to the message interconnect. Buffering allows messages to be stored by the
message interconnect when a PE is unable to receive a message, removing the
backpressure from the sending PE. For more information, refer to “Message
Buffering” on page 1–16.

Unmatched Routing Field
When a message is received with a routing field which does not match any of the
specified routing field values, the associated switch input port locks up. All other
ports continue as normal. This behavior is a deliberate design feature, added to aid
debugging of this critical error. Without the lockup facility, the system might keep
going for some time despite an illegal message.

To clear the lockup condition, reset the Processing Element Message Switch
component.

Multiple Message Interconnects in a System
Using multiple message interconnects can provide a reduction in resources when
compared to a single large crossbar switch. The ability to assign multiple routing field
values to a single output port allows multiple message interconnects to be connected.

Using multiple message interconnects can also provide more flexibility to the system
designer. For example, replicating PEs can increase processing bandwidth.

Partial-Crossbar Switches
For cases where you do not need every input port connected to every output port, you
can save resources by creating a partial-crossbar switch that creates only the
connections you need. For information, refer to the Cross-connect information
parameter in Table 3–1 on page 3–4.

Multicast Routing
Processing Element Message Switch supports packet multicast routing. You
automatically specify multicast routing when you assign the same routing field value
to multiple output ports. Incoming packets with a multicast routing value are routed
to the output ports that have the same multicast routing value assigned to them.

To send entire multicast packets across the switch without data loss, the depths of all
FIFO buffers involved need to be larger than the multicast packet length.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
4. Processing Elements
A PE is any component capable of sending or receiving Avalon-ST PE messages in the
Altera event-driven datapath processing framework. The main function of a PE is to
perform one or more tasks in your overall design. PE tasks can be performed either in
hardware, software, or a combination of both.

This chapter describes the requirements to create an Altera event-driven datapath
processing PE from any IP core you have developed or purchased from a third party.
Developing PEs for the Altera event-driven datapath processing framework includes
the following features:

■ A well-defined interface specification for data transfers

■ A GUI to easily add, remove, and modify PEs

■ Altera tools that generate optimum interconnect logic, saving design time and
effort

■ Bus functional models (BFM) and component authoring tools
Altera Event-Driven Datapath Processing Design Handbook

4–2 Chapter 4: Processing Elements
Design Requirements Overview
Figure 4–1 shows an example system with multiple PEs. Each PE has a message
interface that connects to a message interconnect. The message interconnect can be
generated by Altera tools or custom designed.

Design Requirements Overview
For an IP core to be an Altera event-driven datapath processing PE, it minimally
needs to have message interfaces to send, receive, or send and receive messages. The
message interface allows data and control information to pass between PEs either
directly or through a message interconnect.

Data moving to and from the PEs might also travel through additional design-specific
interfaces, to add functionality such as provide access to shared memory. Design-
specific interfaces are not explicitly defined in the message interface, but Altera
recommends using common interfaces such as the Avalon Memory-Mapped
(Avalon-MM) and Avalon-ST interfaces.

PEs must manage and buffer incoming messages as needed. Use backpressure when
the PE is unable to accept new messages. The Avalon-ST interface specification
defines signals, parameters, and hand-shaking protocols to manage backpressure
during data transfer.

f For information about the Avalon-ST interface, refer to Avalon Interface Specifications.

Figure 4–1. Example Multiple PE System

Computa�onal &
Context ID Management

Input Computa�onal Computa�onal

Output

Message Interconnect

Output Context Register I/F (Avalon MM) Input Context Register I/F (Avalon MM)

CID Free List
(Avalon ST)

External
Data
Source

External
Data Sink

Message TX (Source)

Message RX (Sink)

Memory Buffer

User Defined Interface User Defined Interface

Processing Element
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Processing Elements 4–3
Design Requirements Overview
You can use PEs to perform one specific task or fulfill multiple roles. For example, the
Nios II DPX datapath processor can run multiple software tasks.

PEs can be designed to perform tasks concurrently (the same task or different tasks)
on different sets of data. For example, a dual-core Nios II DPX datapath processor
performs up to 16 concurrent tasks by having multiple hardware threads working
independently.

Processing Element Types by Function
As Figure 4–1 shows, PEs perform many roles in Altera event-driven datapath
processing systems. The following sections describe some of the types of PEs.

Input PEs
The input PE provides the interface for data coming into the system. The input PE
manages the data flow into the system and buffers as needed. Depending on the
desired system topology, the input PE might break up and distribute the input data
stream into several substreams.

In systems that use CIDs, the input PE typically requests CIDs from the context
management PE and assigns the CIDs to the incoming data. For more information,
refer to “Context Management” on page 1–11 and “Context Management PEs” on
page 4–4.

In a typical system, the input PE sends but does not receive messages within the
system. The interface for receiving data from outside of the system is defined by the
user with interfaces such as the Avalon-MM and Avalon-ST interfaces.

Output PEs
The output PE provides the interface for data leaving the system. The output PE
manages the data flow leaving the system and frees any buffers as needed.

In systems that use CIDs, the output PE typically sends a message to the context
management PE to free the CID of the data leaving the system.

In a typical system, the output PE sends and receives messages within the system. You
define the interface for sending data outside of the system with interfaces such as the
Avalon-MM and Avalon-ST interfaces.

Computational PEs
A typical use of a PE is to perform a computational task. Both hardware and software-
programmable PEs can perform computational tasks. The following list gives
examples of computational tasks:

■ Counting Ethernet packets

■ Parsing a packet header

■ Scaling a video frame
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

4–4 Chapter 4: Processing Elements
Interfaces
Context Management PEs
Because multiple blocks of data can be processed concurrently, the data context being
processed needs to be maintained, ensuring that data is processed independently, in
its own context.

A context management PE, such as the Nios II DPX datapath processor, provides a
mechanism for maintaining the context of the data using the CID. In a typical system,
the input PE requests unique CIDs from the context management PE and assigns a
unique CID to each block of data before passing control to other PEs. The context
management PE manages CID usage.

When data exits the system through the output PE, the output PE in a typical system
informs the context management PE that the CID is no longer needed, allowing the
context management PE to free the CID for use with subsequent sets of data.

1 The Nios II DPX datapath processor can act as the context management PE while
concurrently serving other roles. Systems that include a Nios II DPX datapath
processor do not require separate context management PEs. The processor provides
mechanisms for maintaining order of data coming into and out of the system. For
more information, refer to the Software Programming Model chapter in the Nios II DPX
Software Development section of the Nios II DPX Datapath Processor Handbook.

Flow Control PEs
As described in Chapter 1, Introduction to Altera Event-Driven Datapath Processing,
flow control PEs serve an important role in flexible-architecture systems. For
information, refer to “Flow Control PEs” on page 1–14.

Interfaces
All defined interfaces in Altera event-driven datapath processing PEs are Avalon-ST
or Avalon-MM interfaces.

f For information about Avalon-ST and Avalon-MM interfaces, refer to Avalon Interface
Specifications.

The following sections discuss PE interfaces your system can potentially implement.

Message Interfaces
The message interface sends and receives messages passed throughout the system.
Typically, the sending PE sends a message requesting the receiving PE to perform a
task. Messages can be passed directly between PEs or through a messaging
interconnect. Data can be included in the message or referred to by pointers passed in
the message.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 4: Processing Elements 4–5
Interfaces
Message Clock Interface Signals
The message interfaces operate in the message clock domain. Table 4–1 shows the
message clock interface signals.

Message Interface Signals
The message interface uses Avalon-ST packet data transfer with backpressure and a
ready latency of zero. Table 4–2 shows the required signals and Figure 4–2 shows the
timing.

The data signal is design-dependant. The requirements are defined in the “Avalon-ST
PE Message Interface Specification” on page 2–1. The data signal consists of two
sections, namely, the data arguments and the control word. During the packet
transfer, the data arguments are updated each clock cycle while the control word
remains constant throughout the data packet transfer.

The data arguments carry data between PEs. The number of data arguments passed is
design and PE specific. The control word contains system specific control information.
All PEs connected to the same messaging interconnect must contain the same fields in
the control word. For more information, refer to “Avalon-ST PE Message Format” on
page 2–3.

Table 4–1. Message Clock Interface Signals

Signal Width Direction

clk 1 Input

reset_n 1 Input

Table 4–2. Message Interface Signals

Avalon-ST Signal Width Message Source Direction Message Sink Direction

ready 1 Input Output

valid 1 Output Input

startofpacket 1 Output Input

endofpacket 1 Output Input

data Variable Output Input

Figure 4–2. Message Interface Timing Diagram
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

4–6 Chapter 4: Processing Elements
System Considerations
Context Management Interfaces
The “Context Management PEs” on page 4–4 defines the interfaces used to allocate
and free CIDs. When a CID request comes in, the context management PE source
provides the input PE sink an available CID to assign to incoming blocks of data.

For example, the CID request interface in the Nios II DPX datapath processor uses an
Avalon-ST data transfer with backpressure and a ready latency of zero. The CID is
passed via the data bus. The input PE asserts a ready signal to read a CID. The context
management PE asserts a valid signal to indicate that there is at least one more CID
available. While the valid signal is de-asserted, no CIDs are available.

f For more information, including CID request interface signals and timing diagram,
refer to the Nios II DPX Architecture chapter in the Nios II DPX Hardware Reference
section of the Nios II DPX Datapath Processor Handbook.

Context Register Interfaces
As described in “Registers” on page 1–12, maintaining separate register sets for each
context allows tasks access to context-specific data without needing to pass data by
message or access data from memory. PEs access context registers through context
register interfaces.

For example, the Nios II DPX datapath processor has two context registers interfaces.
The input context register interface allows an input PE to load initial context data into
the Nios II DPX input context registers. The output context register interface allows an
output PE to read processed context data.

f For more information, including context register interface signals and timing
diagrams, refer to the Nios II DPX Architecture chapter in the Nios II DPX Hardware
Reference section of the Nios II DPX Datapath Processor Handbook.

Other User-Defined Interfaces
PEs can have custom-designed, user-defined interfaces to meet the specific needs of
your design. The following list describes some uses for user-designed interfaces:

■ External interfaces on the input and output PEs

■ Packet buffer access

■ Memory access

Interfaces inside of a Qsys system need to follow the Avalon-MM or Avalon-ST
interface specifications. For interfaces outside of Qsys, Avalon-MM or Avalon-ST
interface are recommended but not required.

System Considerations
Designing PEs with system knowledge in mind is essential to correctly integrating
PEs into the system. Be sure to consider the following subjects when designing your
PEs:
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 4: Processing Elements 4–7
System Considerations
■ CID—In systems using CIDs, all PEs must manage the context of data and
messages going into and out of the PE. The PE must ensure the correct CID is
assigned to messages sent from the PE.

■ PEID—For systems using a message interconnect to route messages based on their
destination field, each PE within the system must have a unique PEID. The PEID
provides the destination information for passing messages. To correctly create
messages, the PE must know of the PEID of the PE it wants to send a message to.

■ Message format control word—All PEs in the system must adhere to the following
rules:

■ The control word must have a compatible format for all PEs in a system.

■ Depending on the PEs and message interconnect in a system, certain control
word fields might be required. For example, systems with PEs that perform
multiple tasks require a taskid control word field. Systems that store data in
contexts require a context control word field. Flexible-architecture systems
require a destination control word field to carry the PEID of the destination
PE. For more information about control word fields, refer to “Control Word” on
page 2–3.

■ The “Avalon-ST PE Message Interface Specification” on page 2–1 allows
undefined portions of the message format. Unused bits should be ignored or
tied to ground.

■ Message format data arguments—All PEs that pass data arguments need to
adhere to the following rules:

■ The number of data arguments sent in a message is dependant on the message
being sent.

■ Your sending and receiving PEs should pass data arguments in an agreed
order. Altera recommends initially designing your message format before
designing your PEs.

■ The number of data arguments which a PE can accept varies. For example, the
Nios II DPX datapath processor can be configured to accept a variable
maximum message length. The longest message the processor can receive
contains sixteen data arguments per message.

■ As described in “Message Transmission” on page 2–4, messages can pass
multiple data arguments per beat to increase data bandwidth, but the number
of data arguments sent might be limited by the message interconnect or the
receiving PEs.

1 In the version 10.1 software release, the “Processing Element Message
Switch” on page 3–3 limits messages to one data argument per beat.

■ Qsys integration—To enable ease of IP reuse and integration, you can create a
Qsys component based on your PE which integrates directly into Qsys. A
Hardware Component Description File (_hw.tcl) defines the properties and
behaviors of your PE to Qsys. The Qsys component editor supports the creation
and editing of _hw.tcl files. The “The altera_pe_message_format Tcl Package
Specification” on page 2–7 describes the available message format Tcl commands.
May 2011 Altera Corporation Altera Event-Driven Datapath Processing Design Handbook

4–8 Chapter 4: Processing Elements
System Considerations
f For general information about _hw.tcl files, refer to the Component Interface
Tcl Reference chapter in the SOPC Builder User Guide.
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_sopc_builder.pdf

May 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

December 2010 1.0 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.
Altera Event-Driven Datapath Processing Design Handbook

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-documentation-index.html
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Altera Event-Driven Datapath Processing Design Handbook May 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Altera Event-Driven Datapath Processing Design Handbook
	Contents
	1. Introduction to Altera Event-Driven Datapath Processing
	Design Flow Concepts
	Efficient Flow
	Flexible Flow
	Efficient and Flexible Flow
	Processing Elements in the Efficient and Flexible Flow

	Event-Driven Methodology
	Messages, Tasks, and Contexts
	Object-Oriented Programming Analogy

	Architecting an Event-Driven System
	Design Partitioning
	Context Management
	Context Data

	Message Format
	Message Interconnect
	Flow Control PEs
	Centralized Message Flow
	Centralized Message Scheduling
	Unidirectional Message Flow
	Other Flows

	Message Buffering
	Ordering
	Scaling
	Duplicating PEs
	Duplicating Systems

	2. Message Format
	Avalon-ST PE Message Interface Specification
	Interface Signals
	Ready Latency
	Packet Data Transfer Messages
	Avalon-ST PE Message Format
	Control Word
	Data Arguments

	Message Transmission
	The altera_pe_message_format Tcl Package Specification
	Tcl Command Reference
	set_message_property
	get_message_property
	set_message_subfield_property
	get_message_subfield_property
	set_message_subfield_hdl_port
	validate_and_create

	Validation of Message Interfaces
	Binding HDL ports to the Data Port
	Message Sources
	Message Sinks

	3. Message Interconnect
	Interconnect Approaches
	Fully-Connected System with a Single Message Interconnect
	Required Connections with Multiple Switches
	Fully-Connected System with Multiple Interconnects

	Processing Element Message Switch
	Parameters
	Interface Ports and Signals
	Design Considerations
	Backpressure
	Unmatched Routing Field
	Multiple Message Interconnects in a System
	Partial-Crossbar Switches
	Multicast Routing

	4. Processing Elements
	Design Requirements Overview
	Processing Element Types by Function
	Input PEs
	Output PEs
	Computational PEs
	Context Management PEs
	Flow Control PEs

	Interfaces
	Message Interfaces
	Message Clock Interface Signals
	Message Interface Signals

	Context Management Interfaces
	Context Register Interfaces
	Other User-Defined Interfaces

	System Considerations

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

