
© October 2008 Altera Corporation

MII51010-1.8
9. Using User Flash Memory in MAX II
Devices
Introduction
MAX® II devices feature a user flash memory (UFM) block that can be used similar to
a serial EEPROM for storing non-volatile information up to 8 Kbits. The UFM
provides an ideal storage solution supporting any possible protocol for interfacing
(SPI, parallel, and other protocols) through bridging logic designed into the MAX II
logic array.

This chapter provides guidelines for UFM applications by describing the features and
functionality of the MAX II UFM block and the Quartus® II altufm megafunction.

This chapter contains the following sections:

■ “UFM Array Description” on page 9–1

■ “UFM Functional Description” on page 9–3

■ “UFM Operating Modes” on page 9–9

■ “Programming and Reading the UFM with JTAG” on page 9–12

■ “Software Support for UFM Block” on page 9–13

■ “Creating Memory Content File” on page 9–40

■ “Simulation Parameters” on page 9–46

UFM Array Description
Each UFM array is organized as two separate sectors with 4,096 bits per sector. Each
sector can be erased independently. Table 9–1 shows the dimension of the UFM array.

Memory Organization Map
Table 9–2 shows the memory organization for the MAX II UFM block. There are 512
locations with 9 bits addressing a range of 000h to 1FFh. Each location stores 16-bit
wide data. The most significant bit (MSB) of the address register indicates the sector in
operation.

Table 9–1. UFM Array Size

Device Total Bits Sectors Address Bits Data Width

EPM240

EPM570

EPM1270

EPM2210

8,192 2 (4,096 bits per sector) 9 16
MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–2 Chapter 9: Using User Flash Memory in MAX II Devices
UFM Array Description
Using and Accessing UFM Storage
You can use the UFM to store data of different memory sizes and data widths. Even
though the UFM storage width is 16 bits, you can implement different data widths or
a serial interface with the altufm megafunction. Table 9–3 shows the different data
widths available for the three types of interfaces supported in the Quartus II software.

For more details about the logic array interface options in the altufm megafunction,
refer to “Software Support for UFM Block” on page 9–13.

1 The UFM block is accessible through the logic array interface as well as the JTAG
interface. However, the UFM logic array interface does not have access to the CFM
block.

Table 9–2. Memory Organization

Sector Address Range

1 100h 1FFh

0 000h 0FFh

Table 9–3. Data Widths for Logic Array Interfaces

Logic Array Interface Data Width (Bits) Interface Type

I2C 8 Serial

SPI 8 or 16 Serial

Parallel Options of 3 to 16 Parallel

None 16 Serial
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–3
UFM Functional Description
UFM Functional Description
Figure 9–1 is the block diagram of the MAX II UFM block and the interface signals.

Table 9–4 summarizes the MAX II UFM block input and output interface signals.

Figure 9–1. UFM Block and Interface Signals

OSC 4

Program
Erase

Control

UFM Sector 1

UFM Sector 0

:_

Address
Register

PROGRAM

ERASE

OSC_ENA

RTP_BUSY

BUSY

OSC

Data Register

UFM Block

DRDin DRDout

ARCLK

ARSHFT

ARDin

DRCLK

DRSHFT

16 16

9

Table 9–4. UFM Interface Signals (Part 1 of 2)

Port Name Port Type Description

DRDin Input Serial input to the data register. It is used to enter a data word when
writing to the UFM. The data register is 16 bits wide and data is shifted
serially from the least significant bit (LSB) to the MSB with each
DRCLK. This port is required for writing, but unused if the UFM is in
read-only mode.

DRCLK Input Clock input that controls the data register. It is required and takes
control when data is shifted from DRDin to DRDout or loaded in
parallel from the flash memory. The maximum frequency for DRCLK is
10 MHz.

DRSHFT Input Signal that determines whether to shift the data register or load it on a
DRCLK edge. A high value shifts the data from DRDin into the LSB of
the data register and from the MSB of the data register out to DRDout.
A low value loads the value of the current address in the flash memory
to the data register.

ARDin Input Serial input to the address register. It is used to enter the address of a
memory location to read, program, or erase. The address register is
9 bits wide for the UFM size (8,192 bits).
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–4 Chapter 9: Using User Flash Memory in MAX II Devices
UFM Functional Description
f To see the interaction between the UFM block and the logic array of MAX II devices,
refer to the MAX II Architecture chapter in the MAX II Device Handbook (Figure 2–16 for
EPM240 devices and Figure 2–17 for EPM570, EPM1270, and EPM2210 devices).

ARCLK Input Clock input that controls the address register. It is required when
shifting the address data from ARDin into the address register or
during the increment stage. The maximum frequency for ARCLK is 10
MHz.

ARSHFT Input Signal that determines whether to shift the address register or
increment it on an ARCLK edge. A high value shifts the data from
ARDin serially into the address register. A low value increments the
current address by 1. The address register rolls over to 0 when the
address space is at the maximum.

PROGRAM Input Signal that initiates a program sequence. On the rising edge, the data in
the data register is written to the address pointed to by the address
register. The BUSY signal asserts until the program sequence is
completed.

ERASE Input Signal that initiates an erase sequence. On a rising edge, the memory
sector indicated by the MSB of the address register will be erased. The
BUSY signal asserts until the erase sequence is completed.

OSC_ENA Input This signal turns on the internal oscillator in the UFM block, and is
optional but required when the OSC output is used. If OSC_ENA is
driven high, the internal oscillator is enabled and the OSC output will
toggle. If OSC_ENA is driven low, the internal oscillator is disabled and
the OSC output drives constant low.

DRDout Output Serial output of the data register. Each time the DRCLK signal is
applied, a new value is available. The DRDout data depends on the
DRSHFT signal. When the DRSHFT signal is high, DRDout value is
the new value that is shifted into the MSB of the data register. If the
DRSHFT is low, DRDout would contain the MSB of the memory
location read into the data register.

BUSY Output Signal that indicates when the memory is BUSY performing a
PROGRAM or ERASE instruction. When it is high, the address and data
register should not be clocked. The new PROGRAM or ERASE
instruction will not be executed until the BUSY signal is deasserted.

OSC Output Output of the internal oscillator. It can be used to generate a clock to
control user logic with the UFM. It requires an OSC enable input to
produce an output.

RTP_BUSY Output This output signal is optional and only needed if the real-time ISP
feature is used. The signal is asserted high during real-time ISP and
stays in the RUN_STATE for 500 ms before initiating real-time ISP to
allow for the final read/erase/write operation. No read, write, erase, or
address and data shift operations are allowed to be issued once the
RTP_BUSY signal goes high. The data and address registers do not
retain the contents of the last read or write operation for the UFM block
during real-time ISP.

Table 9–4. UFM Interface Signals (Part 2 of 2)

Port Name Port Type Description
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii51002.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–5
UFM Functional Description
UFM Address Register
The MAX II UFM block is organized as a 512 × 16 memory. Since the UFM block is
organized into two separate sectors, the MSB of the address indicates the sector that
will be in action; 0 is for sector 0 (UFM0) while 1 is for sector 1 (UFM1). An ERASE
instruction erases the content of the specific sector that is indicated by the MSB of the
address register. Figure 9–2 shows the selection of the UFM sector in action using the
MSB of the address register.

Refer to “Erase” on page 9–11 for more information about ERASE mode.

Three control signals exist for the address register: ARSHFT, ARCLK, and ARDin.
ARSHFT is used as both a shift-enable control signal and an auto-increment signal. If
the ARSHFT signal is high, a rising edge on ARCLK will load address data serially from
the ARDin port and move data serially through the register. A clock edge with the
ARSHFT signal low increments the address register by 1. This implements an auto-
increment of the address to allow data streaming. When a program, read, or an erase
sequence is executing, the address that is in the address register becomes the active
UFM location.

UFM Data Register
The UFM data register is 16 bits wide with four control signals: DRSHFT, DRCLK,
DRDin, and DRDout. DRSHFT distinguishes between clock edges that move data
serially from DRDin or to DRDout and clock edges that latch parallel data from the
UFM sectors. If the DRSHFT signal is high, a clock edge moves data serially through
the registers from DRDin to DRDout. If the DRSHFT signal is low, a clock edge
captures data from the UFM sector pointed by the address register in parallel. The
MSB is the first bit that will be seen at DRDout. The data register DRSHFT signal will
also be used to enable the UFM for reading data. When the DRSHFT signal is low, the
UFM latches data into the data register. Figure 9–3 shows the UFM data register.

Figure 9–2. Selection of the UFM Sector Using the MSB of the Address Register

1

0

ARDin

ARClk

Address Register

Sector 0

Sector 1

UFM Block

UFM Block

A0 A1 A2 A3 A4 A5 A6 A7 A8

LSB MSB
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–6 Chapter 9: Using User Flash Memory in MAX II Devices
UFM Functional Description
UFM Program/Erase Control Block
The UFM program/erase control block is used to generate all the control signals
necessary to program and erase the UFM block independently. This reduces the
number of LEs necessary to implement a UFM controller in the logic array. It also
guarantees correct timing of the control signals to the UFM. A rising edge on either
PROGRAM or ERASE causes this control signal block to activate and begin sequencing
through the program or erase cycle. At this point, for a program instruction, whatever
data is in the data register will be written to the address pointed to by the address
register.

Only sector erase is supported by the UFM. Once an ERASE command is executed,
this control block will erase the sector whose address is stored in the address register.
When the PROGRAM or ERASE command first activates the program/erase control
block, the BUSY signal will be driven high to indicate an operation in progress in the
UFM. Once the program or erase algorithm is completed, the BUSY signal will be
forced low.

Oscillator
OSC_ENA, one of the input signals in the UFM block, is used to enable the oscillator
signal to output through the OSC output port. You can use this OSC output port to
connect with the interface logic in the logic array. It can be routed through the logic
array and fed back as an input clock for the address register (ARCLK) and the data
register (DRCLK). The output frequency of the OSC port is one-fourth that of the
oscillator frequency. As a result, the frequency range of the OSC port is 3.3 to 5.5 MHz.
The maximum clock frequency accepted by ARCLK and DRCLK is 10 MHz and the
duty cycle accepted by the DRCLK and ARCLK input ports is approximately 45% to
50%.

When the OSC_ENA input signal is asserted, the oscillator is enabled and the output is
routed to the logic array through the OSC output. When the OSC_ENA is set low, the
OSC output drives constant low. The routing delay from the OSC port of the UFM
block to OSC output pin depends on placement. You can analyze this delay using the
Quartus II timing analyzer.

Figure 9–3. UFM Data Register

LSB MSB

MAX II UFM Block

DRDin

DRCLK

DRDout

Data Register

D0 D1 D3 D4 D11 D12 D13 D14 D15D5 D6 D7 D8 D9 D10

16 16

D2
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–7
UFM Functional Description
The undivided internal oscillator, which is not accessible, operates in a frequency
range from 13.33 to 22.22 MHz. The internal oscillator is enabled during power-up, in-
system programming, and real-time ISP. At all other times, the oscillator is not
running unless the UFM is instantiated in the design and the OSC_ENA port is
asserted. To see how specific operating modes of ALTUFM handle OSC_ENA and the
oscillator, refer to “Software Support for UFM Block” on page 9–13. For user
generated logic interfacing to the UFM, the oscillator must be enabled during
PROGRAM or ERASE operations, but not during READ operations. OSC_ENA can be tied
low if you are not issuing any PROGRAM or ERASE commands.

1 During real-time ISP operation, the internal oscillator automatically enables and
outputs through the OSC output port (if this port is instantiated) even though the
OSC_ENA signal is tied low. You can use the RTP_BUSY signal to detect the beginning
and ending of the real-time ISP operation for gated control of this self-enabled OSC
output condition.

1 The internal oscillator is not enabled all the time. The internal oscillator for the
program/erase operation is only activated when the flash memory block is being
programmed or erased. During the READ operation, the internal oscillator is activated
whenever the flash memory block is reading data.

Instantiating the Oscillator without the UFM
You can use the IO/MAX II oscillator megafunction selection in the MegaWizard®
Plug-In Manager to instantiate the UFM oscillator if you intend to use this signal
without using the UFM memory block. Figure 9–4 shows the altufm_osc
megafunction instantiation in the Quartus II software.

This megafunction is in the I/O folder on page 2a of the MegaWizard® Plug-In
Manager, as shown in Figure 9–5. You can start the MegaWizard Plug-In Manager on
the Tools menu.

Figure 9–4. The Quartus II altufm_osc Megafunction
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–8 Chapter 9: Using User Flash Memory in MAX II Devices
UFM Functional Description
Figure 9–6 shows page 3 of the IO/MAX II oscillator megafunction. You have an
option to choose to simulate the OSC output port at its maximum or minimum
frequency during the design simulation. The frequency chosen is only used as a
timing parameter simulation and does not affect the real MAX II device OSC output
frequency.

Figure 9–5. Selecting the altufm_osc Megafunction in the MegaWizard Plug-In Manager

Figure 9–6. Page 3 of the OSC Megafunction MegaWizard Plug-In Manager
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–9
UFM Operating Modes
UFM Operating Modes
There are three different modes for the UFM block:

■ Read/Stream Read

■ Program (Write)

■ Erase

During program, address and data can be loaded concurrently. You can manipulate
the UFM interface controls as necessary to implement the specific protocol provided
the UFM timing specifications are met. Figure 9–7 through Figure 9–10 show the
control waveforms for accessing UFM in three different modes. For PROGRAM mode
(Figure 9–9) and ERASE mode (Figure 9–10), the PROGRAM and ERASE signals are not
obligated to assert immediately after loading the address and data. They can be
asserted anytime after the address register and data register have been loaded. Do not
assert the READ, PROGRAM, and ERASE signals or shift data and address into the UFM
after entering the real-time ISP mode. You can use the RTP_BUSY signal to detect the
beginning and end of real-time ISP operation and generate control logic to stop all
UFM port operations. This user-generated control logic is only necessary for the
altufm_none megafunction, which provides no auto-generated logic. The other
interfaces for the altufm megafunction (altufm_parallel, altufm_spi, altufm_i2c)
contain control logic to automatically monitor the RTP_BUSY signal and will cease
operations to the UFM when a real-time ISP operation is in progress.

1 You can program the UFM and CFM blocks independently without overwriting the
other block which is not programmed. The Quartus II programmer provides the
options to program the UFM and CFM blocks individually or together (the entire
MAX II Device).

f Refer to the In-System Programmability Guidelines for MAX II Devices chapter in the
MAX II Device Handbook for guidelines about using ISP and real-time ISP while
utilizing the UFM block within your design.

f Refer to the MAX II Architecture chapter in the MAX II Device Handbook for a complete
description of the device architecture, and for the specific values of the timing
parameters listed in this chapter.

Read/Stream Read
The three control signals, PROGRAM, ERASE, and BUSY are not required during read or
stream read operation. To perform a read operation, the address register has to be
loaded with the reference address where the data is or is going to be located in the
UFM. The address register can be stopped from incrementing or shifting addresses
from ARDin by stopping the ARCLK clock pulse. DRSHFT must be asserted low at the
next rising edge of DRCLK to load the data from the UFM to the data register. To shift
the bits from the register, 16 clock pulses have to be provided to read 16-bit wide data.
You can use DRCLK to control the read time or disable the data register by
discontinuing the DRCLK clock pulse. Figure 9–7 shows the UFM control waveforms
during read mode.
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii51013.pdf
http://www.altera.com/literature/hb/max2/max2_mii51002.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–10 Chapter 9: Using User Flash Memory in MAX II Devices
UFM Operating Modes
The UFM block can also perform stream read operation, reading continuously from
the UFM using the address increment feature. Stream read mode is started by loading
the base address into the address register. DRSHFT must then be asserted low at the
first rising edge of DRCLK to load data into the data register from the address pointed
to by the address register. DRSHFT will then assert high to shift out the 16-bit wide
data with the MSB out first. Figure 9–8 shows the UFM control waveforms during
stream read mode.

Program
To program or write to the UFM, you must first perform a sequence to load the
reference address into the address register. DRSHFT must then be asserted high to load
the data serially into the data register starting with the MSB. Loading an address into
the address register and loading data into the data register can be done concurrently.
After the 16 bits of data have been successfully shifted into the data register, the
PROGRAM signal must be asserted high to start writing to the UFM. On the rising edge,
the data currently in the data register is written to the location currently in the address
register. The BUSY signal is asserted until the program sequence is completed. The

Figure 9–7. UFM Read Waveforms

Figure 9–8. UFM Stream Read Waveforms

tDCO

tDCLKtDSS

tDSH

tADH

tADS

tASU
tACLK tAH

ARShft

ARClk

ARDin

DRShft

DRClk

DRDin
DRDout

Program

Erase

Busy

16 Data Bits

9 Address Bits

OSC_ENA

ARShft

ARClk

ARDin

DRShft

DRClk

DRDin

DRDout

Program

Erase

Busy

16 Data Bits

Increment
Address

9 Address Bits

OSC_ENA

Increment
Address
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–11
UFM Operating Modes
data and address register should not be modified until the BUSY signal is de-asserted,
or the flash content will be corrupted. The PROGRAM signal is ignored if the BUSY
signal is asserted. When the PROGRAM signal is applied at exactly the same time as the
ERASE signal, the behavior is undefined and the contents of flash is corrupted.
Figure 9–9 shows the UFM waveforms during program mode.

Erase
The ERASE signal initiates an erase sequence to erase one sector of the UFM. The data
register is not needed to perform an erase sequence. To indicate the sector of the UFM
to be erased, the MSB of the address register should be loaded with 0 to erase the
UFM sector 0, or 1 to erase the UFM sector 1 (Figure 9–2 on page 9–5). On a rising
edge of the ERASE signal, the memory sector indicated by the MSB of the address
register will be erased. The BUSY signal is asserted until the erase sequence is
completed. The address register should not be modified until the BUSY signal is de-
asserted to prevent the content of the flash from being corrupted. This ERASE signal
will be ignored when the BUSY signal is asserted. Figure 9–10 illustrates the UFM
waveforms during erase mode.

1 When the UFM sector is erased, it has 16-bit locations all filled with FFFF. Each UFM
storage bit can be programmed no more than once between erase sequences. You can
write to any word up to two times as long as the second programming attempt at that
location only adds 0s. 1s are mask bits for your input word that cannot overwrite 0s in
the flash array. New 1s in the location can only be achieved by an erase. Therefore, it is
possible for you to perform byte writes since the UFM array is 16 bits for each
location.

Figure 9–9. UFM Program Waveforms

tADS

tASU tACLK

tADH

tAH

tDDS

tDCLKtDSS
tDSH

tDDH

tPB tBP

tPPMX

tOSCS tOSCH

ARShft

ARClk

ARDin

DRShft

DRClk

DRDin

DRDout

Program

Erase

Busy

16 Data Bits

9 Address Bits

OSC_ENA
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–12 Chapter 9: Using User Flash Memory in MAX II Devices
Programming and Reading the UFM with JTAG
Programming and Reading the UFM with JTAG
In Altera MAX II devices, you can write or read data to/from the UFM using the IEEE
Std. 1149.1 JTAG interface. You can use a PC or UNIX workstation, the Quartus II
Programmer, and the ByteBlasterTM MV or ByteBlasterTM II parallel port download
cable to download Programmer Object File (.pof), JamTM Standard Test and
Programming Language (STAPL) Files (.jam), or Jam Byte-Code Files (.jbc) from the
Quartus II software targeting the MAX II device UFM block.

1 The POF, Jam File, or JBC File can be generated using the Quartus II software.

Jam Files
Both Jam STAPL and JBC files support programming for the UFM block.

Jam Players
Jam Players read the descriptive information in Jam files and translate them into data
that programs the target device. Jam Players do not program a particular device
architecture or vendor; they only read and understand the syntax defined by the Jam
file specification. In-field changes are confined to the Jam file, not the Jam Player. As a
result, you do not need to modify the Jam Player source code for each in-field
upgrade.

There are two types of Jam Players to accommodate the two types of Jam files: an
ASCII Jam STAPL Player and a Jam STAPL Byte-Code Player. Both ASCII Jam STAPL
Player and Jam STAPL Byte-Code Player are coded in the C programming language
for 16-bit and 32-bit processors.

f For guidelines on UFM operation during ISP, refer to the In-System Programmability
Guidelines for MAX II Devices chapter in the MAX II Device Handbook.

Figure 9–10. UFM Erase Waveforms

ARShft

ARClk

ARDin

DRShft

DRClk

DRDin

DRDout

Program

Erase

Busy

9 Address Bits
tASU

tACLK tAH

tADH

tADS

tEB

tEPMX

tOSCS tOSCH

OSC_ENA

tBE
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii51013.pdf
http://www.altera.com/literature/hb/max2/max2_mii51013.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–13
Software Support for UFM Block
Software Support for UFM Block
The Altera Quartus II software includes sophisticated tools that fully utilize the
advantages of UFM block in MAX II device, while maintaining simple, easy-to-use
procedures that accelerate the design process. The following section describes how
the altufm megafunction supports a simple design methodology for instantiating
standard interface protocols for the UFM block, such as:

■ I2C

■ SPI

■ Parallel

■ None (Altera Serial Interface)

This section includes the megafunction symbol, the input and output ports, a
description of the MegaWizard Plug-In Manager options, and example MegaWizard
screen shots. Refer to Quartus II Help for the altufm megafunction AHDL functional
prototypes (applicable to Verilog HDL), VHDL component declaration, and
parameter descriptions. Figure 9–11 shows altufm megafunction selection (Flash
Memory) in the MegaWizard Plug-In Manager. This megafunction is in the memory
compiler directory on page 2a of the MegaWizard Plug-In Manager. You can start the
MegaWizard Plug-In Manager on the Tools menu.

The altufm MegaWizard Plug-In Manager has separate pages that apply to the MAX
II UFM block. During compilation, the Quartus II Compiler verifies the altufm
parameters selected against the available logic array interface options, and any
specific assignments.

Figure 9–11. altufm Megafunction Selection in the MegaWizard Plug-In Manager
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–14 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Inter-Integrated Circuit
Inter-Integrated Circuit (I2C) is a bidirectional two-wire interface protocol, requiring
only two bus lines; a serial data/address line (SDA), and a serial clock line (SCL).
Each device connected to the I2C bus is software addressable by a unique address. The
I2C bus is a multi-master bus where more than one integrated circuit (IC) capable of
initiating a data transfer can be connected to it, which allows masters to function as
transmitters or receivers.

The altufm_i2c megafunction features a serial, 8-bit bidirectional data transfer up to
100 Kbits per second. With the altufm_i2c megafunction, the MAX II UFM and logic
can be configured as a slave device for the I2C bus. The altufm megafunction’s I2C
interface is designed to function similar to I2C serial EEPROMs.

The Quartus II software supports three different memory sizes:

■ (128 × 8) 1 Kbits

■ (256 × 8) 2 Kbits

■ (512 × 8) 4 Kbits

■ (1,024 × 8) 8 Kbits

I2C Protocol
The following defines the characteristics of the I2C bus protocol:

■ Only two bus lines are required: SDA and SCL. Both SDA and SCL are
bidirectional lines which remain high when the bus is free.

■ Data transfer can be initiated only when the bus is free.

■ The data on the SDA line must be stable during the high period of the clock. The
high or low state of the data line can only change when the clock signal on the SCL
line is low.

■ Any transition on the SDA line while the SCL is high is one such unique case
which indicates a start or stop condition.

Table 9–5 summarizes the altufm_i2c megafunction input and output interface
signals.

Table 9–5. altufm_i2c Interface Signals

Pin Description Function

SDA Serial Data/Address Line The bidirectional SDA port is used to transmit and receive serial data from the
UFM. The output stage of the SDA port is configured as an open drain pin to
perform the wired-AND function.

SCL Serial Clock Line The bidirectional SCL port is used to synchronize the serial data transfer to and
from the UFM. The output stage of the SCL port is configured as an open drain
pin to perform a wired-AND function.

WP Write Protect Optional active high signal that disables the erase and write function for
read/write mode. The altufm_i2c megafunction gives you an option to protect
the entire UFM memory or only the upper half of memory.

A2, A1, A0 Slave Address Input These inputs set the UFM slave address. The A6, A5, A4, A3 slave address bits
are programmable, set internally to 1010 by default.
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–15
Software Support for UFM Block
START and STOP Condition

The master always generates start (S) and stop (P) conditions. After the start
condition, the bus is considered busy. Only a stop (P) condition frees the bus. The bus
stays busy if the repeated start (Sr) condition is executed instead of a stop condition.
In this occurrence, the start (S) and repeated start (Sr) conditions are functionally
identical.

A high-to-low transition on the SDA line while the SCL is high indicates a start
condition. A low-to-high transition on the SDA line while the SCL is high indicates a
stop condition. Figure 9–12 shows the start and stop conditions.

Acknowledge

Acknowledged data transfer is a requirement of I2C. The master must generate a clock
pulse to signify the acknowledge bit. The transmitter releases the SDA line (high)
during the acknowledge clock pulse.

The receiver (slave) must pull the SDA line low during the acknowledge clock pulse
so that SDA remains a stable low during the clock high period, indicating positive
acknowledgement from the receiver. If the receiver pulls the SDA line high during the
acknowledge clock pulse, the receiver sends a not-acknowledge condition indicating
that it is unable to process the last byte of data. If the receiver is busy (for example,
executing an internally-timed erase or write operation), it will not acknowledge any
new data transfer. Figure 9–13 shows the acknowledge condition on the I2C bus.

Figure 9–12. Start and Stop Conditions

SDA

SCL

SDA

SCL
S P

Start Condition Stop Condition

Figure 9–13. Acknowledge on the I2C Bus

Data Output
By Transmitter

Data Output
By Receiver

SCL From
Master

S

Start Condition
Clock Pulse For

Acknowledgement

Acknowledge

Not Acknowledge
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–16 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Device Addressing
After the start condition, the master sends the address of the particular slave device it
is requesting. The four most significant bits (MSBs) of the 8-bit slave address are
usually fixed while the next three significant bits (A2, A1, A0) are device address bits
and define which device the master is accessing. The last bit of the slave address
specifies whether a read or write operation is to be performed. When this bit is set to
1, a read operation is selected. When this bit is set to 0, a write operation is selected.

The four MSBs of the slave address (A6, A5, A4, A3) are programmable and can be
defined on page 3 of the altufm MegaWizard Plug-In Manager. The default value for
these four MSBs is 1010. The next three significant bits are defined using the three A2,
A1, A0 input ports of the altufm_i2c megafunction. You can connect these ports to
input pins in the design file and connect them to switches on the board. The other
option is to connect them to VCC and GND primitives in the design file, which
conserves pins. Figure 9–14 shows the slave address bits.

After the master sends a start condition and the slave address byte, the altufm_i2c
logic monitors the bus and responds with an acknowledge (on the SDA line) when its
address matches the transmitted slave address. The altufm_i2c megafunction then
performs a read or write operation to/from the UFM, depending on the state of the
bit.

Byte Write Operation
The master initiates a transfer by generating a start condition, then sending the correct
slave address (with the R/W bit set to 0) to the slave. If the slave address matches, the
altufm_i2c slave acknowledges on the ninth clock pulse. The master then transfers an
8-bit byte address to the UFM, which acknowledges the reception of the address. The
master transfers the 8-bit data to be written to the UFM. Once the altufm_i2c logic
acknowledges the reception of the 8-bit data, the master generates a stop condition.
The internal write from the MAX II logic array to the UFM begins only after the
master generates a stop condition. While the UFM internal write cycle is in progress,
the altufm_i2c logic ignores any attempt made by the master to initiate a new transfer.
Figure 9–15 shows the Byte Write sequence.

Figure 9–14. Slave Address Bits

Notes to Figure 9–14:

(1) For the 4-Kbit memory size, the A0 location in the slave address becomes the MSB (a8) of the memory byte address.
(2) For the 8-Kbit memory size, the A0 location in the slave address becomes a8 of the memory byte address, while the

A1 location in the slave address becomes the MSB (a9) of the memory byte address.

14-Kbit Memory Size (1)

MSB LSB

0 1 0 A2 A1 a8 R/W

18-Kbit Memory Size (2)

MSB LSB

0 1 0 A2 a9 a8 R/W

11- or 2-Kbit Memory Size

MSB LSB

0 1 0 A2 A1 A0 R/W
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–17
Software Support for UFM Block
Page Write Operation
Page write operation has a similar sequence as the byte write operation, except that a
number of bytes of data are transmitted in sequence before the master issues a stop
condition. The internal write from the MAX II logic array to the UFM begins only after
the master generates a stop condition. While the UFM internal write cycle is in
progress, the altufm_i2c logic ignores any attempt made by the master to initiate a
new transfer. The altufm_i2c megafunction allows you to choose the page size of 8
bytes, 16 bytes, or 32 bytes for the page write operation, as shown in Figure 9–24 on
page 9–24.

A write operation is only possible on an erased UFM block or word location. The
UFM block differs from serial EEPROMs, requiring an erase operation prior to writing
new data in the UFM block. A special erase sequence is required, as discussed in
“Erase Operation” on page 9–18.

Acknowledge Polling

The master can detect whether the internal write cycle is completed by polling for an
acknowledgement from the slave. The master can resend the start condition together
with the slave address as soon as the byte write sequence is finished. The slave does
not acknowledge if the internal write cycle is still in progress. The master can repeat
the acknowledge polling and can proceed with the next instruction after the slave
acknowledges.

Write Protection
The altufm_i2c megafunction includes an optional Write Protection (WP) port
available on page 4 of the altufm MegaWizard Plug-In Manager (see Figure 9–24 on
page 9–24). In the MegaWizard Plug-In Manager, you can choose the WP port to
protect either the full or upper half memory.

When WP is set to 1, the upper half or the entire memory array (depending on the
write protection level selected) is protected, and the write and erase operation is not
allowed. In this case the altufm_i2c megafunction acknowledges the slave address
and memory address. After the master transfers the first data byte, the altufm_i2c
megafunction sends a not-acknowledge condition to the master to indicate that the
instruction will not execute. When WP is set to 0, the write and erase operations are
allowed.

Figure 9–15. Byte Write Sequence

S A Byte AddressSlave Address A Data A P

From Master to Slave

From Slave to Master

R/W

"0" (write)S – Start Condition
P – Stop Condition
A – Acknowledge
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–18 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Erase Operation
Commercial serial EEPROMs automatically erase each byte of memory before writing
into that particular memory location during a write operation. However, the MAX II
UFM block is flash based and only supports sector erase operations and not byte erase
operations. When using read/write mode, a sector or full memory erase operation is
required before writing new data into any location that previously contained data.
The block cannot be erased when the altufm_i2c megafunction is in read-only mode.

Data can be initialized into memory for read/write and read-only modes by including
a memory initialization file (.mif) or hexidecimal file (.hex) in the altufm MegaWizard
Plug-In Manager. This data is automatically written into the UFM during device
programming by the Quartus II software or third-party programming tool.

The altufm_i2c megafunction supports four different erase operation methods shown
on page 4 of the altufm MegaWizard Plug-In Manager:

■ Full Erase (Device Slave Address Triggered)

■ Sector Erase (Byte Address Triggered)

■ Sector Erase (A2 Triggered)

■ No Erase

These erase options only work as described if that particular option is selected in the
MegaWizard Plug-In Manager before compiling the design files and programming
the device. Only one option is possible for the altufm_i2c megafunction.

Erase options are discussed in more detail in the following sections.

Full Erase (Device Slave Address Erase)

The full erase option uses the A2, A1, A0 bits of the slave address to distinguish
between an erase or read/write operation. This slave operation decoding occurs when
the master transfers the slave address to the slave after generating the start condition.
If the A2, A1, and A0 slave address bits transmitted to the UFM slave equals 111 and the
four remaining MSBs match the rest of the slave addresses, then the Full Erase
operation is selected. If the A6, A5, A4, A3 A2, A1, and A0 slave address bits transmitted
to the UFM match its unique slave address setting, the read/write operation is
selected and functions as expected. As a result, this erase option utilizes two slave
addresses on the bus reserving A6, A5, A4, A3, 1, 1, 1 as the erase trigger. Both sectors of
the UFM block will be erased when the Full Erase operation is executed. This
operation requires acknowledge polling. The internal UFM erase function only begins
after the master generates a stop condition. Figure 9–16 shows the full erase sequence
triggered by using the slave address.

If the memory is write-protected (WP = 1), the slave does not acknowledge the erase
trigger slave address (A6, A5, A4, A3, 1, 1, 1) sent by the master. The master should then
send a stop condition to terminate the transfer. The full erase operation will not be
executed.
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–19
Software Support for UFM Block
Sector Erase (Byte Address Triggered)

This sector erase operation is triggered by defining a 7- to 10-bit byte address for each
sector depending on the memory size. The trigger address for each sector is entered
on page 4 of the altufm MegaWizard Plug-In Manager, as shown in Figure 9–24 on
page 9–24. When a write operation is executed targeting this special byte address
location, the UFM sector that contains that byte address location is erased. This sector
erase operation is automatically followed by a write of the intended write byte to that
address. The default byte address location for UFM Sector 0 erase is address 0x00. The
default byte address location for UFM Sector 1 erase is [(selected memory size)/2].
You can specify another byte location as the trigger-erase addresses for each sector.

This sector erase operation supports up to eight UFM blocks or serial EEPROMs on
the I2C bus. This sector erase operation requires acknowledge polling.

Sector Erase (A2 Triggered)

This sector erase operation uses the received A2 slave address bit to distinguish
between an erase or read/write operation. This slave operation decoding occurs when
the master transmits the slave address after generating the start condition. If the A2 bit
received by the UFM slave is 1, the sector erase operation is selected. If the A2 bit
received is 0, the read/write operation is selected. While this reserves the A2 bit as an
erase or read/write operation bit, the A0 and A1 bits still act as slave address bits to
address the UFM. With this erase option, there can be up to four UFM slaves cascaded
on the bus for 1-Kbit and 2-Kbit memory sizes. Only two UFM slaves can be cascaded
on the bus for 4-Kbit memory size, since A0 of the slave address becomes the ninth bit
(MSB) of the byte address. After the slave acknowledges the slave address and its
erase or read/write operation bit, the master can transfer any byte address within the
sector that must be erased. The internal UFM sector erase operation only begins after
the master generates a stop condition. Figure 9–17 shows the sector erase sequence
using the A2 bit of the slave address.

Figure 9–16. Full Erase Sequence Triggered Using the Slave Address

Figure 9–17. Sector Erase Sequence Indicated Using the A2 Bit of the Slave Address

Note to Figure 9–17:

(1) A2 = 0 indicates a read/write operation is executed in place of an erase. In this case, the R/W bit determines whether
it is a read or write operation.

S
Slave Address
A6A5A4A3111

A P

From Master to Slave

From Slave to Master

S – Start Condition
P – Stop Condition
A – Acknowledge

R/W

'0' (write)

S
Slave Address

A2 = '1' A Byte Address A P

From Master to Slave

From Slave to Master

S – Start Condition
P – Stop Condition
A – Acknowledge

R/W

'0' (write) (1)
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–20 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
If the altufm_i2c megafunction is write-protected (WP=1), the slave does not
acknowledge the byte address (which indicates the UFM sector to be erased) sent in
by the master. The master should then send a stop condition to terminate the transfer
and the sector erase operation will not be executed.

No Erase

The no erase operation never erases the UFM contents. This method is recommended
when UFM does not require constant re-writing after its initial write of data. For
example, if the UFM data is to be initialized with data during manufacturing using
I2C, you may not require writing to the UFM again. In that case, you should use the no
erase option and save logic element (LE) resources from being used to create erase
logic.

Read Operation
The read operation is initiated in the same manner as the write operation except that
the R/W bit must be set to 1. Three different read operations are supported:

■ Current Address Read (Single Byte)

■ Random Address Read (Single byte)

■ Sequential Read (Multi-Byte)

After each UFM data has been read and transferred to the master, the UFM address
register is incremented for all single and multi-byte read operations.

Current Address Read

This read operation targets the current byte location pointed to by the UFM address
register. Figure 9–18 shows the current address read sequence.

Random Address Read

Random address read operation allows the master to select any byte location for a
read operation. The master first performs a “dummy” write operation by sending the
start condition, slave address, and byte address of the location it wishes to read. After
the altufm_i2c megafunction acknowledges the slave and byte address, the master
generates a repeated start condition, the slave address, and the R/W bit is set to 1. The
altufm_i2c megafunction then responds with acknowledge and sends the 8-bit data
requested. The master then generates a stop condition. Figure 9–19 shows the random
address read sequence.

Figure 9–18. Current Address Read Sequence

‘1’ (read)

S A DataSlave Address P

From Master to Slave

From Slave to Master

S – Start Condition
P – Stop Condition
A – Acknowledge

R/W
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–21
Software Support for UFM Block
Sequential Read

Sequential read operation can be initiated by either the current address read operation
or the random address read operation. Instead of sending a stop condition after the
Slave has transmitted one byte of data to the master, the master acknowledges that
byte and sends additional clock pulses (on SCL line) for the slave to transmit data
bytes from consecutive byte addresses. The operation is terminated when the master
generates a stop condition instead of responding with an acknowledge. Figure 9–20
shows the sequential read sequence.

Figure 9–19. Random Address Read Sequence

‘1’ (read)‘0’ (write)

S
Slave

Address
Byte

Address
Slave

AddressA A Sr DataA P

From Master to Slave

From Slave to Master

S – Start Condition
Sr – Repeated Start
P – Stop Condition
A – Acknowledge

R/W R/W

Figure 9–20. Sequential Read Sequence

…

‘0’ (write)

S
Slave

Address
Byte

Address
Slave

AddressA A Sr A Data A Data P

From Master to Slave

From Slave to Master

S – Start Condition
Sr – Repeated Start
P – Stop Condition
A – Acknowledge

R/W R/W

‘1’ (read) Data (n - bytes) + Acknowledgment (n - 1 bytes)
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–22 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
ALTUFM I2C Interface Timing Specification
Figure 9–21 shows the timing waveform for the altufm_i2c megafunction read/write
mode.

Table 9–6 through Table 9–8 list the timing specification needed for the altufm_i2c
megafunction read/write mode.

Instantiating the I2C Interface Using the Quartus II altufm Megafunction
Figure 9–22 shows the altufm megafunction symbol for a I2C interface instantiation in
the Quartus II software.

Figure 9–21. Timing Waveform for the altufm_i2c Megafunction

SDA

SCL

tSU:STA tHD:STA
tHD:DAT tSU:DAT tSU:STO

tBUF

tLOW

tHIGH

tSCLSDA

Table 9–6. I2C Interface Timing Specification

Symbol Parameter Min Max Unit

FSCL SCL clock frequency — 100 kHz

tSCL:SDA SCL going low to SDA data out — 15 ns

tBUF Bus free time between a stop and start condition 4.7 — µs

tHD:STA (Repeated) start condition hold time 4 — µs

tSU:STA (Repeated) start condition setup time 4.7 — µs

tLOW SCL clock low period 4.7 — µs

tHIGH SCL clock high period 4 — µs

tHD:DAT SDA data in hold time 0 — ns

tSU:DAT SDA data in setup time 20 — ns

tSU:STO STOP condition setup time 4 — ns

Table 9–7. UFM Write Cycle Time

Parameter Min Max Unit

Write Cycle Time — 110 µs

Table 9–8. UFM Erase Cycle Time

Parameter Min Max Unit

Sector Erase
Cycle Time

— 501 ms

Full Erase Cycle
Time

— 1,002 ms
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–23
Software Support for UFM Block
Figure 9–23 shows page 3 of the altufm MegaWizard Plug-In Manager when selecting
I2C as the interface. On this page, you can choose whether to implement the
read/write mode or read-only mode for the UFM. You also have an option to choose
the memory size for the altufm_i2c megafunction as well as defining the four MSBs of
the slave address (default 1010).

1 The UFM block’s internal oscillator is always running when the altufm_i2c
megafunction is instantiated for both read-only and read/write interfaces.

Figure 9–24 shows page 4 of the altufm MegaWizard Plug-In Manager. You can select
the optional write protection and erase operation methods on this page.

Figure 9–22. altufm Megafunction Symbol For the I2C Interface Instantiation in the Quartus II
Software

Figure 9–23. Page 3 of the altufm MegaWizard Plug-In Manager (I2C)
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–24 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Serial Peripheral Interface
Serial peripheral interface (SPI) is a four-pin serial communication subsystem
included on the Motorola 6805 and 68HC11 series microcontrollers. It allows the
microcontroller unit to communicate with peripheral devices, and is also capable of
inter-processor communications in a multiple-master system.

The SPI bus consists of masters and slaves. The master device initiates and controls
the data transfers and provides the clock signal for synchronization. The slave device
responds to the data transfer request from the master device. The master device in an
SPI bus initiates a service request with the slave devices responding to the service
request.

With the altufm megafunction, the UFM and MAX II logic can be configured as a
slave device for the SPI bus. The OSC_ENA is always asserted to enable the internal
oscillator when the SPI megafunction is instantiated for both read only and
read/write interfaces.

The Quartus II software supports both the Base mode (which uses 8-bit address and
data) and the Extended mode (which uses 16-bit address and data). Base mode uses
only UFM sector 0 (2,048 bits), whereas Extended mode uses both UFM sector 0 and
sector 1 (8,192 bits). There are only four pins in SPI: SI, SO, SCK, and nCS. Table 9–9
describes the SPI pins and functions.

Figure 9–24. Page 4 of the altufm MegaWizard Plug-In Manager (I2C)
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–25
Software Support for UFM Block
Data transmitted to the SI port of the slave device is sampled by the slave device at
the positive SCK clock. Data transmits from the slave device through SO at the
negative SCK clock edge. When nCS is asserted, it means the current device is being
selected by the master device from the other end of the SPI bus for service. When nCS
is not asserted, the SI and SCK ports should be blocked from receiving signals from
the master device, and SO should be in High Impedance state to avoid causing
contention on the shared SPI bus. All instructions, addresses, and data are transferred
with the MSB first and start with high-to-low nCS transition. The circuit diagram is
shown in Figure 9–25.

Opcodes
The 8-bit instruction opcode is shown in Table 9–10. After nCS is pulled low, the
indicated opcode must be provided. Otherwise, the interface assumes that the master
device has internal logic errors and ignores the rest of the incoming signals. Once nCS
is pulled back to high, the interface is back to normal. nCS should be pulled low again
for a new service request.

Table 9–9. SPI Interface Signals

Pin Description Function

SI Serial Data Input Receive data serially.

SO Serial Data Output Transmit data serially.

SCK Serial Data Clock The clock signal produced from the master device to
synchronize the data transfer.

nCS Chip Select Active low signal that enables the slave device to
receive or transfer data from the master device.

Figure 9–25. Circuit Diagram for SPI Interface Read or Write Operations

Read, Write, and Erase
State Machine

Op-Code Decoder

Eight-Bit Status Shift Register

Address and Data Hub

 UFM Block
SPI Interface
Control Logic

SI SO SCK nCS
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–26 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
The READ and WRITE opcodes are instructions for transmission, which means the data
will be read from or written to the UFM.

WREN, WRDI, RDSR, and WRSR are instructions for the status register, where they do
not have any direct interaction with UFM, but read or set the status register within the
interface logic. The status register provides status on whether the UFM block is
available for any READ or WRITE operation, whether the interface is WRITE enabled,
and the state of the UFM WRITE protection. The status register format is shown in
Table 9–11. For the read only implementation of ALTUFM SPI (Base or Extended
mode), the status register does not exist, saving LE resources.

The following paragraphs describe the instructions for SPI.

READ

READ is the instruction for data transmission, where the data is read from the UFM
block. When data transfer is taking place, the MSB is always the first bit to be
transmitted or received. The data output stream is continuous through all addresses
until it is terminated by a low-to-high transition at the nCS port. The READ operation
is always performed through the following sequence in SPI, as shown in Figure 9–26:

Table 9–10. Instruction Set for SPI

Name Opcode Operation

WREN 00000110 Enable Write to UFM

WRDI 00000100 Disable Write to UFM

RDSR 00000101 Read Status Register

WRSR 00000001 Write Status Register

READ 00000011 Read data from UFM

WRITE 00000010 Write data to UFM

SECTOR-ERASE 00100000 Sector erase

UFM-ERASE 01100000 Erase the entire UFM
block (both sectors)

Table 9–11. Status Register Format

Position Status Default at Power-Up Description

Bit 7 X 0 —

Bit 6 X 0 —

Bit 5 X 0 —

Bit 4 X 0 —

Bit 3 BP1 0 Indicate the current level of block write protection (1)

Bit 2 BP0 0 Indicate the current level of block write protection (1)

Bit 1 WEN 0 1= SPI WRITE enabled state

0= SPI WRITE disabled state

Bit 0 nRDY 0 1 = Busy, UFM WRITE or ERASE cycle in progress

0 = No UFM WRITE or ERASE cycle in progress

Note to Table 9–11:

(1) Refer to Table 9–12 and Table 9–13 for more information about status register bits BPI and BPO.
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–27
Software Support for UFM Block
1. nCS is pulled low to indicate the start of transmission.

2. An 8-bit READ opcode (00000011) is received from the master device. (If internal
programming is in progress, READ is ignored and not accepted).

3. A 16-bit address is received from the master device. The LSB of the address is
received last. As the UFM block can take only nine bits of address maximum, the
first seven address bits received are discarded.

4. Data is transmitted for as many words as needed by the slave device through SO
for READ operation. When the end of the UFM storage array is reached, the
address counter rolls over to the start of the UFM to continue the READ operation.

5. nCS is pulled back to high to indicate the end of transmission.

For SPI Base mode, the READ operation is always performed through the following
sequence in SPI:

1. nCS is pulled low to indicate the start of transmission.

2. An 8-bit READ opcode (00000011) is received from the master device, followed by
an 8-bit address. If internal programming is in progress, the READ operation is
ignored and not accepted.

3. Data is transmitted for as many words as needed by the slave device through SO
for READ operation. The internal address pointer automatically increments until
the highest memory address is reached (address 255 only since the UFM sector 0 is
used). The address counter will not roll over once address 255 is reached. The SO
output is set to high-impedance (Z) once all the eight data bits from address 255
has been shifted out through the SO port.

4. nCS is pulled back to high to indicate the end of transmission.

Figure 9–26. READ Operation Sequence for Extended Mode

0 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23 24 25 26 27 36 37 38 39

nCS

SCK

SI

SO
High Impendance

03H

MSB

MSB MSB

MSB

16-bit Data Out 1 16-bit Data Out 2

8-bit
Instruction

16-bit
Address
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–28 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Figure 9–27 shows the READ operation sequence for Base mode.

WRITE

WRITE is the instruction for data transmission, where the data is written to the UFM
block. The targeted location in the UFM block that will be written must be in the
erased state (FFFFH) before initiating a WRITE operation. When data transfer is taking
place, the MSB is always the first bit to be transmitted or received. nCS must be driven
high before the instruction is executed internally. You may poll the nRDY bit in the
software status register for the completion of the internal self-timed WRITE cycle. For
SPI Extended mode, the WRITE operation is always done through the following
sequence, as shown in Figure 9–28:

1. nCS is pulled low to indicate the start of transmission.

2. An 8-bit WRITE opcode (00000010) is received from the master device. If internal
programming is in progress, the WRITE operation is ignored and not accepted.

3. A 16-bit address is received from the master device. The LSB of the address will be
received last. As the UFM block can take only nine bits of address maximum, the
first seven address bits received are discarded.

4. A check is carried out on the status register (see Table 9–11) to determine if the
WRITE operation has been enabled, and the address is outside of the protected
region; otherwise, Step 5 is bypassed.

5. One word (16 bits) of data is transmitted to the slave device through SI.

6. nCS is pulled back to high to indicate the end of transmission.

For SPI Base mode, the WRITE operation is always performed through the following
sequence in SPI:

1. nCS is pulled low to indicate the start of transmission.

2. An 8-bit WRITE opcode (00000010) is received. If the internal programming is in
progress, the WRITE operation is ignored and not accepted.

3. An 8-bit address is received. A check is carried out on the status register (see
Table 9–11) to determine if the WRITE operation has been enabled, and the address
is outside of the protected region; otherwise, Step 4 is skipped.

Figure 9–27. READ Operation for Base Mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

nCS

SCK

SI

SO

High Impendance

03H

MSB

MSB MSB

MSB

8-bit Data Out 1 8-bit Data Out 2

8-bit
Instruction

8-bit
Instruction

20 21 22 23 23
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–29
Software Support for UFM Block
4. An 8-bit data is transmitted through SI.

5. nCS is pulled back to high to indicate the end of transmission.

Figure 9–29 shows the WRITE operation sequence for Base mode.

SECTOR-ERASE

SECTOR-ERASE is the instruction of erasing one sector of the UFM block. Each sector
contains 256 words. WEN bit and the sector must not be protected for SE operation to
be successful. nCS must be driven high before the instruction is executed internally.
You may poll the nRDY bit in the software status register for the completion of the
internal self-timed SECTOR-ERASE cycle. For SPI Extended mode, the SE operation is
performed in the following sequence, as shown in Figure 9–30:

1. nCS is pulled low.

2. Opcode 00100000 is transmitted into the interface.

3. The 16-bit address is sent. The eighth bit (the first seven bits will be discarded) of
the address indicates which sector is erased; a 0 means sector 0 (UFM0) is erased,
and a 1 means sector 1 (UFM1) is erased.

Figure 9–28. WRITE Operation Sequence for Extended Mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

nCS

SCK

SI

SO

High Impendance

03H

MSB

MSB MSB

MSB

8-bit Data Out 1 8-bit Data Out 2

8-bit
Instruction

8-bit
Instruction

20 21 22 23 23

Figure 9–29. WRITE Operation Sequence for Base Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

nCS

SCK

SI

SO
High Impendance

02H

MSB MSB

8-bit Data In

8-bit
Instruction

8-bit
Address
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–30 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
4. nCS is pulled back to high.

For SPI Base mode, the SE instruction erases UFM sector 0. As there are no choices of
UFM sectors to be erased, there is no address component to this instruction. The SE
operation is always done through the following sequence in SPI Base mode:

1. nCS is pulled low.

2. Opcode 00100000 is transmitted into the interface.

3. nCS is pulled back to high.

Figure 9–31 shows the SECTOR-ERASE operation sequence for Base mode.

Figure 9–30. SECTOR-ERASE Operation Sequence for Extended Mode

0 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23

nCS

SCK

SI

SO
High Impendance

20H

MSB MSB

8-bit
Instruction

16-bit
Address

Figure 9–31. Sector_ERASE Operation Sequence for Base Mode

0 1 2 3 4 5 6 7

nCS

SCK

SI

SO

High Impendance

20H

MSB

8-bit
Instruction
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–31
Software Support for UFM Block
UFM-ERASE

The UFM-ERASE (CE) instruction erases both UFM sector 0 and sector 1 for SPI
Extended Mode. While for SPI Base mode, the CE instruction has the same
functionality as the SECTOR-ERASE (SE) instruction, which erases UFM sector 0 only.
WEN bit and the UFM sectors must not be protected for CE operation to be successful.
nCS must be driven high before the instruction is executed internally. You may poll
the nRDY bit in the software status register for the completion of the internal self-
timed CE cycle. For both SPI Extended mode and Base mode, the UFM-ERASE
operation is performed in the following sequence as shown in Figure 9–32:

1. nCS is pulled low.

2. Opcode 01100000 is transmitted into the interface.

3. nCS is pulled back to high.

Figure 9–32 shows the UFM-ERASE operation sequence.

WREN (Write Enable)

The interface is powered-up in the write disable state. Therefore, WEN in the status
register (see Table 9–11) is 0 at power-up. Before any write is allowed to take place,
WREN must be issued to set WEN in the status register to 1. If the interface is in read-
only mode, WREN does not have any effect on WEN, since the status register does not
exist. Once the WEN is set to 1, it can be reset by the WRDI instruction; the WRITE and
SECTOR-ERASE instruction will not reset the WEN bit. WREN is issued through the
following sequence, as shown in Figure 9–33:

1. nCS is pulled low.

2. Opcode 00000110 is transmitted into the interface to set WEN to 1 in the status
register.

3. After the transmission of the eighth bit of WREN, the interface is in wait state
(waiting for nCS to be pulled back to high). Any transmission after this is ignored.

4. nCS is pulled back to high.

Figure 9–32. UFM-ERASE Operation Sequence

0 1 2 3 4 5 6 7

nCS

SCK

SI

SO

High Impendance

60H

MSB

8-bit
Instruction
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–32 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
WRDI (Write Disable)

After the UFM is programmed, WRDI can be issued to set WEN back to 0, disabling
WRITE and preventing inadvertent writing to the UFM. WRDI is issued through the
following sequence, as shown in Figure 9–34:

1. nCS is pulled low.

2. Opcode 00000100 is transmitted to set WEN to 0 in the status register.

3. After the transmission of the eighth bit of WRDI, the interface is in wait state
(waiting for nCS to be pulled back to high). Any transmission after this is ignored.

4. nCS is pulled back to high.

RDSR (Read Status Register)

The content of the status register can be read by issuing RDSR. Once RDSR is received,
the interface outputs the content of the status register through the SO port. Although
the most significant four bits (Bit 7 to Bit 4) do not hold valuable information, all eight
bits in the status register will output through the SO port. This allows future
compatibility when Bit 7 to Bit 4 have new meaning in the status register. During the

Figure 9–33. WREN Operation Sequence

Figure 9–34. WRDI Operation Sequence

0 1 2 3 4 5 6 7

nCS

SCK

SI

SO
High Impendance

06H

MSB

8-bit
Instruction

0 1 2 3 4 5 6 7

nCS

SCK

SI

SO
High Impendance

04H

MSB

8-bit
Instruction
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–33
Software Support for UFM Block
internal program cycle in the UFM, RDSR is the only valid opcode recognized by the
interface (therefore, the status register can be read at any time), and nRDY is the only
valid status bit. Other status bits are frozen and remain unchanged until the internal
program cycle is ended. RDSR is issued through the following sequence, as shown in
Figure 9–35:

1. nCS is pulled low.

2. Opcode 00000101 is transmitted into the interface.

3. SI ignores incoming signals; SO output the content of the status register, Bit 7
first and Bit 0 last.

4. If nCS is kept low, repeat step 3.

5. nCS is pulled back to high to terminate the transmission.

WRSR (Write Status Register)

The block protection bits(BP1 and BP0) are the status bits used to protect certain
sections of the UFM from inadvertent write. The BP1 and BP0 status are updated by
WRSR. During WRSR, only BP1 and BP0 in the status register can be written with valid
information. The rest of the bits in the status register are ignored and not updated.
When both BP1 and BP0 are 0, there is no protection for the UFM. When both BP1
and BP0 are 1, there is full protection for the UFM. BP0 and BP1 are set to 0 upon
power-up. Table 9–12 describe more on the Block Write Protect Bits for Extended
mode, while Table 9–13 describes more on the Block Write Protect Bits for Base mode.
WRSR is issued through the following sequence, as shown in Figure 9–36:

1. nCS is pulled low.

2. Opcode 00000001 is transmitted into the interface.

3. An 8-bit status is transmitted into the interface to update BP1 and BP0 of the status
register.

4. If nCS is pulled high too early (before all the eight bits in Step 2 or Step 3 are
transmitted) or too late (the ninth bit or more is transmitted), WRSR is not executed.

Figure 9–35. RDSR Operation Sequence

Status Register Out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

nCS

SCK

SI

SO
High Impendance

05H

MSB MSB

MSB MSB

8-bit
Instruction
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–34 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
5. nCS is pulled back to high to terminate the transmission.

ALTUFM SPI Timing Specification
Figure 9–37 shows the timing specification needed for the SPI Extended mode
(read/write). These nCS timing specifications do not apply to the SPI Extended read-
only mode nor any of the SPI Base modes. However, for the SPI Extended mode (read
only) and the SPI Base mode (both read only and read/write), the nCS signal and SCK
are not allowed to toggle at the same time. Table 9–14 shows the timing parameters
which only apply to the SPI Extended mode (read/write).

Figure 9–36. WRSR Operation Sequence

Table 9–12. Block Write Protect Bits for Extended Mode

Level

Status Register Bits
UFM Array Address

ProtectedBP1 BP0

0 (No protection) 0 0 None

3 (Full protection) 1 1 000 to 1FF

Table 9–13. Block Write Protect Bits for Base Mode

Level

Status Register Bits
UFM Array Address

ProtectedBP1 BP0

0 (No protection) 0 0 None

3 (Full protection) 1 1 000 to 0FF

Figure 9–37. SPI Timing Waveform

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nCS

SCK

SI

SO
High Impendance

01H

MSB MSB

Status Register In

8-bit
Instruction

nCS

SCK

tHNCSHIGH

tNCS2SCKtSCK2NCS
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–35
Software Support for UFM Block
Instantiating SPI Using Quartus II altufm Megafunction
Figure 9–38 shows the altufm megafunction symbol for SPI instantiation in the
Quartus II software.

You can select the desired logic array interface on page 3 of the altufm MegaWizard®
Plug-In Manager. Figure 9–39 shows page 3 of the altufm MegaWizard Plug-In
Manager, selecting SPI as the interface protocol. On this page, you can choose whether
to implement the Read/Write or Read Only mode as the access mode for the UFM.
You can also select the configuration mode (Base or Extended) for SPI on this page.
You can specify the initial content of the UFM block in page 4 of the altufm
MegaWizard Plug-In Manager as discussed in “Creating Memory Content File” on
page 9–40.

Table 9–14. SPI Timing Parameters for Extended Mode

Symbol Description Minimum (ns) Maximum (ns)

tSCK2NCS The time required for the SCK signal falling
edge to nCS signal rising edge

50 —

tHNCSHIGH The time that the nCS signal must be held
high

600 —

tNCS2SCK The time required for the nCS signal falling
edge to SCK signal rising edge

750 —

Figure 9–38. altufm Megafunction Symbol for SPI Instantiation
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–36 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
1 The UFM block’s internal oscillator is always running when the altufm_spi
megafunction is instantiated for read/write interface. The UFM block’s internal
oscillator is disabled when the altufm_spi megafunction is instantiated for read
only interface.

Parallel Interface
This interface allows for parallel communication between the UFM block and outside
logic. Once the READ request, WRITE request, or ERASE request is asserted (active low
assertion), the outside logic or device (such as a microcontroller) are free to continue
their operation while the data in the UFM is retrieved, written, or erased. During this
time, the nBUSY signal is driven “low” to indicate that it is not available to respond to
any further request. After the operation is complete, the nBUSY signal is brought back
to “high” to indicate that it is now available to service a new request. If it was the
Read request, the DATA_VALID is driven “high” to indicate that the data at the DO port
is the valid data from the last read address.

Asserting READ, WRITE, and ERASE at the same time is not allowed. Multiple requests
are ignored and nothing is read from, written to, or erased in the UFM block. There is
no support for sequential read and page write in the parallel interface. For both the
read only and the read/write modes of the parallel interface, OSC_ENA is always
asserted, enabling the internal oscillator. Table 9–15 summarizes the parallel interface
pins and functions.

Figure 9–39. Page 3 altufm MegaWizard Plug-In Manager (SPI)
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–37
Software Support for UFM Block
Even though the altufm megafunction allows you to select the address widths range
from 3 bits to 9 bits, the UFM block always expects full 9 bits width for the address
register. Therefore, the altufm megafunction will always pad the remaining LSB of the
address register with '0's if the register width selected is less than 9 bits. The address
register will point to sector 0 if the address received at the address register starts with
a '0'. The address register will point to sector 1 if the address received starts with a '1'.

Even though you can select an optional data register width of 3 to 16 bits using the
altufm megafunction, the UFM block always expects full 16 bits width for the data
register. Reading from the data register always proceeds from MSB to LSB. The altufm
megafunction always pads the remaining LSB of the data register with 1s if the user
selects a data width of less than 16-bits.

ALTUFM Parallel Interface Timing Specification
Figure 9–40 shows the timing specifications for the parallel interface. Table 9–16
parallel interface instruction signals. The nREAD, nWRITE, and nERASE signals are
active low signals.

Table 9–15. Parallel Interface Signals

Pin Description Function

DI[15:0] 16-bit data Input Receive 16-bit data in parallel. You can select an optional width of 3 to
16 bits using the altufm megafunction.

DO[15:0] 16-bit data Output Transmit 16-bit data in parallel. You can select an optional width of 3 to
16 bits using the altufm megafunction.

ADDR[8:0] Address Register Operation sequence refers to the data that is pointed to by the address
register. You can determine the address bus width using the altufm
megafunction.

nREAD READ Instruction Signal Initiates a read sequence.

nWRITE WRITE Instruction Signal Initiates a write sequence.

nERASE ERASE Instruction Signal Initiates a SECTOR-ERASE sequence indicated by the MSB of the
ADDR[] port.

nBUSY BUSY Signal Driven low to notify that it is not available to respond to any further
request.

DATA_VALID Data Valid Driven high to indicate that the data at the DO port is the valid data from
the last read address for read request.
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–38 Chapter 9: Using User Flash Memory in MAX II Devices
Software Support for UFM Block
Instantiating Parallel Interface Using Quartus II altufm Megafunction
Figure 9–41 shows the altufm megafunction symbol for a parallel interface
instantiation in the Quartus II software.

Figure 9–42 shows page 3 of the altufm MegaWizard Plug-In Manager, selecting the
Parallel Interface as the interface. On this page, you can choose whether to implement
the Read/Write mode or Read Only mode for the UFM. You also have an option to
choose the width for address bus (up to 9 bits) and for the data bus (up to 16 bits). You
can specify the initial content of the UFM block on page 4 of the altufm MegaWizard
Plug-In Manager as discussed in “Creating Memory Content File” on page 9–40.

Figure 9–40. Parallel Interface Timing Waveform

nBusy

Command

Data or Address Bus

tCOMMAND

tHNBUSY

tHBUS

Table 9–16. Parallel Interface Timing Parameters

Symbol Description Minimum (ns) Maximum (ns)

tCOMMAND The time required for the command signal
(nREAD/nWRITE/nERASE) to be asserted and held low to initiate
a read/write/erase sequence

600 3,000

tHNBUSY Maximum delay between command signal’s falling edge to the
nBUSY signal’s falling edge

— 300

tHBUS The time that data and/or address bus must be present at the data
input and/or address register port after the command signal has
been asserted low

600 —

Figure 9–41. altufm Megafunction Symbol for Parallel Interface Instantiation
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–39
Software Support for UFM Block
1 The UFM block’s internal oscillator is always running when the altufm_parallel
magafunction is instantiated for read/write interface. The UFM block’s internal
oscillator is disabled when the altufm_parallel megafunction is instantiated for read
only interface.

None (Altera Serial Interface)
None means using the dedicated UFM serial interface. The built-in UFM interface
uses 13 pins for the communication. The functional description of the 13 pins are
described in Table 9–4 on page 9–3. You can produce your own interface design to
communicate to/from the dedicated UFM interface and implement it in the logic
array.

Instantiating None Using Quartus II altufm Megafunction
Figure 9–43 shows the altufm megafunction symbol for None instantiation in the
Quartus II software.

Figure 9–42. Page 3 altufm MegaWizard Plug-In Manager (Parallel)

Figure 9–43. altufm Megafunction Symbol for None Instantiation
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–40 Chapter 9: Using User Flash Memory in MAX II Devices
Creating Memory Content File
Figure 9–44 shows page 3 of the altufm MegaWizard Plug-In Manager, selecting none
for the interface protocol. By selecting none, all the other options are grayed out or
unavailable to you. However, you still can specify the initial content of the UFM block
on page 4 of the altufm MegaWizard Plug-In Manager as discussed in “Creating
Memory Content File” on page 9–40.

Creating Memory Content File
You can initialize the content of the UFM through a memory content file. Quartus II
software supports two types of initial memory content file format: Memory
Initialization File (.mif) and Hexadecimal File (.hex). A new memory content file for
the UFM block can be created by clicking New on the File menu. Select the HEX file or
MIF in the Other Files tab (Figure 9–45).

Figure 9–44. Page 3 altufm MegaWizard Plug-In Manager (None)
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–41
Creating Memory Content File
Immediately after clicking OK, a dialog box appears. In this dialog box, the Number
of words represents the numbers of address lines while the Word size represents the
data width. To create a memory content file for the altufm megafunction, enter 512
for the number of words and 16 for the word size, as shown in Figure 9–46.

Figure 9–45. Create New File Dialog Box

Figure 9–46. Number of Words and Word Size Dialog Box
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–42 Chapter 9: Using User Flash Memory in MAX II Devices
Creating Memory Content File
Figure 9–47 shows the memory content being written into a HEX file.

This memory content file is then included using the altufm megafunction. On the
Tools menu, click MegaWizard Plug-In Manager. The memory content file (data.hex)
is included on page 5 of the altufm megafunction (Figure 9–48). Click Yes, and use this
file for the memory content file. Click Browse to include the memory content file.

Figure 9–47. Hexadecimal (Intel-Format) File
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–43
Creating Memory Content File
Memory Initialization for the altufm_parallel Megafunction
For the parallel interface, if a HEX file is used to initialize the memory content for the
altufm megafunction, you have to fully specify all 16 bits in each memory address,
regardless of the data width selected. If your data width is less than 16 bits wide, your
data must be placed in the MSBs of the data word and the remaining LSBs must be
padded with 1’s.

For an example, if address_width = 3 and data_width = 8 are selected for the
altufm_parallel megafunction, the HEX file should contain eight addresses of data (23
addresses), each word containing 16 bits. If the initial content at the location 000 is
intended to be 10101010, you should specify 1010101011111111 for address 000
in the HEX file.

1 This specification applies only to HEX files used with the parallel interface. MIFs do
not require you to fully specify 16 bits for each data word. However, both MIF and
HEX files require you to specify all addresses of data according to the
address_width selected in the megafunction.

Memory Initialization for the altufm_spi Megafunction
The same 16-bit data padding mentioned for altufm_parallel is required for HEX files
used with the SPI Base (8 bits) and Extended (16 bits) mode interface. In addition, for
SPI Base and Extended mode, you must fully specify memory content for all
512 addresses (both sector 0 and sector 1) in the HEX file and MIF, even if sector 1 is
not used. You can put valid data for SPI Base mode addresses 0 to 255 (sector 0), and
initialize sector 1 to all ones.

Figure 9–48. Page 4 of the altufm Megafunction
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–44 Chapter 9: Using User Flash Memory in MAX II Devices
Creating Memory Content File
Memory Initialization for the altufm_i2c Megafunction
The MAX II UFM physical memory block contains a 16-bit wide and 512 deep (9-bit
address) array. The altufm_i2c megafunction uses the following smaller array sizes:

■ An 8-bit wide and 128 deep (7-bit address) mapping for 1 Kbit memory size

■ An 8-bit wide and 256 deep (8-bit address) mapping for 2 Kbits memory size

■ An 8-bit wide and 512 deep (9-bit address) mapping for 4 Kbits memory size

■ An 8-bit wide and 1,024 deep (10-bit address) mapping for 8 Kbits memory size

Altera recommends that you pad the MIF or HEX file for both address and data width
to fill the physical memory map for the UFM block and ensure the MIF/HEX file
represents a full 16-bit word size and a 9-bit address space.

Memory Map for 1-Kbit Memory Initialization

Figure 9–49 shows the memory map initialization for the altufm_i2c megafunction of
1-Kbit memory size. The altufm_i2c megafunction byte address location of 00h to
3Fh is mapped to the UFM block address location of 000h to 03Fh. The altufm_i2c
megafunction byte address location of 40h to 7Fh is mapped to the UFM block
address location of 1C0h to 1FFh. Altera recommends that you pad the unused
address locations of the UFM block with all ones.

Memory Map for 2-Kbit Memory Initialization

Figure 9–50 shows the memory map initialization for the altufm_i2c megafunction of
2 Kbits of memory. The altufm_i2c megafunction byte address location of 00h to 7Fh
is mapped to the UFM block address location of 000h to 07Fh. The altufm_i2c
megafunction byte address location of 80h to FFh is mapped to the UFM block
address location of 180h to 1FFh. Altera recommends that you pad the unused
address location of the UFM block with all ones.

Figure 9–49. Memory Map for 1-Kbit Memory Initialization

Upper Half – Addresses
40h to 7Fh

Lower Half – Addresses
00h to 3Fh

00h

000h

3Fh

03Fh

40h

7Fh

1C0h

1FFh
Address 40h in logical memory maps to

1C0h in the MIF/HEX file. Address 7Fh in logical
memory maps to 1FFh in the MIF/HEX file, and all

data in between follows the order in the
logical memory

Address 00h in logical memory maps to
address 000h in the MIF/HEX file. Address 3Fh in
logical memory maps to 03Fh in the MIF/HEX file,

and all data in between follows the order in the
logical memory

040h

1BFh

This section of the UFM is unused –
the MIF/HEX file contents should be set to

all '1' for addresses 040h to 1BFh

1-Kbit altufm_i2c Megafunction
Logical Memory Contents

MIF or HEX File Contents – to represent
the actual data and address size for the UFM block
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–45
Creating Memory Content File
Memory Map for 4-Kbit Memory Initialization

Figure 9–49 shows the memory map initialization for the altufm_i2c megafunction of
4-Kbit memory. The altufm_i2c megafunction byte address location of 00h to FFh is
mapped to the UFM block address location of 000h to 0FFh. The altufm_i2c
megafunction byte address location of 100h to 1FFh is mapped to the UFM block
address location of 100h to 1FFh.

Memory Map for 8-Kbit Memory Initialization

Figure 9–52 shows the memory map initialization for the altufm_i2c megafunction of
8-Kbit memory. The altufm_i2c megafunction of
8-Kbit memory fully utilizes all the memory locations in the UFM block.

Figure 9–50. Memory Map for 2-Kbit Memory Initialization

Upper Half – Addresses
80h to FFh

Lower Half – Addresses
00h to 7Fh

00h

000h

7Fh

07Fh

80h

FFh

180h

1FFh

Address 80h in logical memory maps to
address 180h in the MIF/HEX file. FFh in logical

memory maps to 1FFh in the MIF/HEX file, and all
data in between follows the order in the

logical memory

Address 00h in logical memory maps to
address 000h in the MIF/HEX file. Address 7Fh in
logical memory maps to 07Fh in the MIF/HEX file,

and all data in between follows the order in the
logical memory

080h

17Fh
This section of the UFM is unused –

the MIF/HEX file contents should be set to
all '1' for addresses 080h to 17Fh

2-Kbit altufm_i2c Megafunction
Logical Memory Contents

MIF or HEX File Contents – to represent
the actual data and address size for the UFM block

Figure 9–51. Memory Map for 4-Kbit Memory Initialization

Upper Half – Addresses
100h to 1FFh

Lower Half – Addresses
00h to FFh

00h 000h

FFh 0FFh

100h

1FFh

100h

1FFh

Address 100h in logical memory maps to
100h in the MIF/HEX file. Address 1FFh in logical
memory maps to 1FFh in the MIF/HEX file, and all

data in between follows the order in the
logical memory

Address 00h in logical memory maps to
000h in the MIF/HEX file. Address FFh in logical

memory maps to 0FFh in the MIF/HEX file, and all
data in between follows the order in the

logical memory

4-Kbit altufm_i2c Megafunction
Logical Memory Contents

MIF or HEX File Contents – to represent
the data and address size for the UFM block
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–46 Chapter 9: Using User Flash Memory in MAX II Devices
Simulation Parameters
Padding Data into Memory Map

The altufm_i2c megafunction uses the upper 8 bits of the UFM 16-bit word; therefore,
the 8 least significant bit (LSB) should be padded with 1, as shown in Figure 9–53.

Simulation Parameters
Figure 9–48 on page 9–43 shows page 4 of the altufm megafunction where you can
have an option to choose to simulate the OSC output port at the maximum or the
minimum frequency during the design simulation. The frequency chosen is only used
as the timing parameter for the Quartus II simulator and does not affect the real MAX
II device OSC output frequency.

Conclusion
The MAX II UFM block is a user-accessible, programmable non-volatile flash memory
block that provides significant flexibility in its interfacing. MAX II devices fill the
need for on-board non-volatile storage in any application, minimizing board space
and reducing total system cost.

Figure 9–52. Memory Map for 8-Kbit Memory Initialization

000h

0FFh

100h

1FFh

200h

2FFh

300h

3FFh

Upper 8-bit (byte) Lower 8-bit (byte)

16-bit data in UFM

000h

0FFh

100h

1FFh

8-Kbit altufm_i2c Megafunction
Logical Memory Contents

Upper Quarter Addresses
300h to 3FFh

Mid-Upper Quarter Addresses
200h to 2FFh

Mid-Lower Quarter Addresses
100h to 1FFh

Lower Quarter Addresses
100h to 1FFh

MIF or HEX File Contents - to represent the
actual data and address size for the UFM Block

The upper quarter of
logical memory maps
to the upper byte of
sector 1. Address 300h
in logical memory
maps to address 100h
in physical memory
and all addresses
follow the order in
logical memory.

The mid-upper quarter of
logical memory maps
to the lower byte of
sector 1. Address 200h
in logical memory
maps to address 100h
in physical memory
and all addresses
follow the order in
logical memory.

The lower quarter of
logical memory maps
to the lower byte of
sector 0. Address 000h
in logical memory
maps to address 000h
in physical memory
and all addresses
follow the order in
logical memory.

The mid-lower quarter of
logical memory maps
to the lower byte of
sector 0. Address 100h
in logical memory
maps to address 000h
in physical memory
and all addresses
follow the order in
logical memory.

Figure 9–53. Padding Data into Memory Map

8-bit valid data to be placed
in the upper byte

Pad the lower byte with eight '1's

1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

Chapter 9: Using User Flash Memory in MAX II Devices 9–47
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ In-System Programmability Guidelines for MAX II Devices chapter in the MAX II
Device Handbook

■ MAX II Architecture chapter in the MAX II Device Handbook

Document Revision History
Table 9–17 shows the revision history for this chapter.

Table 9–17. Document Revision History

Date and Revision Changes Made Summary of Changes

October 2008,

version 1.8

■ Updated “Using and Accessing UFM Storage”, “Oscillator”, “UFM
Operating Modes”, “ALTUFM SPI Timing Specification”, and “ALTUFM
Parallel Interface Timing Specification” sections.

■ Updated New Document Format.

—

December 2007,
version 1.7

■ Corrected Figure 9–3.

■ Added “Referenced Documents”.

—

December 2006,
version 1.6

■ Changed signal format in Table 9–4. Added Revision History section. —

August 2005,
version 1.5

■ Added I2C row to Table 9-3.

■ Added a new Inter-Integrated Circuit section.

■ Added a new Memory Initialization for the altufm_i2c Megafunction
section

■ Updated Figure 9-39.

—

June 2005,
version 1.4

■ Added the Instantiating the Oscillator without the UFM section.

■ Updated Figure 9-14.

—

January 2005,
version 1.3

■ Previously published as Chapter 10. No changes to content. —
© October 2008 Altera Corporation MAX II Device Handbook

http://www.altera.com/literature/hb/max2/max2_mii51013.pdf
http://www.altera.com/literature/hb/max2/max2_mii51002.pdf
http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

9–48 Chapter 9: Using User Flash Memory in MAX II Devices
Document Revision History
December 2004
v1.2

■ Updated text to RTP_BUSY in Table 9-4.

■ Updated text in the Oscillator section.

■ Updated text in the UFM Operating Modes section.

■ Updated text in the Serial Peripheral Interface section.

■ Added a row to Table 9-6.

■ Updated Table 9-7.

■ Updated text to the READ section.

■ Updated text to the WRITE section.

■ Updated text to the SECTOR-ERASE section.

■ Added a new UFM-ERASE section.

■ Updated text to the WRSR section.

■ Updated Table 9-8.

■ Added Table 9-9.

■ Added section ALTUFM SPI Timing Specification.

■ Added Figures 9-13, 9-15, 9-16, 9-21, and 9-24.

■ Added Table 9-10.

■ Added section ALTUFM Parallel Interface Timing Specification.

■ Added section Simulation Parameters.

■ Added Table 9-12

—

June 2004
v1.1

■ Updated Figures 9-4 through 9-7. —

Table 9–17. Document Revision History

Date and Revision Changes Made Summary of Changes
MAX II Device Handbook © October 2008 Altera Corporation

http://www.altera.com/literature/hb/max2/max2_mii5v1.pdf

	9. Using User Flash Memory in MAX II Devices
	Introduction
	UFM Array Description
	Memory Organization Map
	Using and Accessing UFM Storage

	UFM Functional Description
	UFM Address Register
	UFM Data Register
	UFM Program/Erase Control Block
	Oscillator

	UFM Operating Modes
	Read/Stream Read
	Program
	Erase

	Programming and Reading the UFM with JTAG
	Software Support for UFM Block
	Inter-Integrated Circuit
	Serial Peripheral Interface
	Parallel Interface
	None (Altera Serial Interface)

	Creating Memory Content File
	Simulation Parameters
	Conclusion
	Referenced Documents
	Document Revision History

