
© June 2008 Altera Corporation

June 2008, version 1.1
 AN423: Configuring the MicroBlaster
Passive Serial Software Driver
Introduction
The MicroBlasterTM software driver configures Altera® programmable logic devices
(PLDs) in passive serial (PS) mode for embedded configurations through the
ByteBlasterTM II and ByteBlasterMVTM download cables. You can customize the
modular source code’s I/O control routines (provided as separate files) for your
system. The MicroBlaster software driver is an embedded configuration driver that
supports the Raw Binary File (.rbf) format generated by the Quartus® II software.

This application note describes how the MicroBlaster software driver works, the
important parameters and functions of its source code, and how to port its source
code to an embedded platform.

1 The MicroBlaster software driver is developed and tested on the Windows NT
platform. This Windows NT driver’s binary file size is about 40 Kbytes.

Interface
The MicroBlaster software driver’s source code has two modules:

■ Data processing

■ I/O control

The data processing module reads the programming data from the Raw Binary File,
rearranges it, and sends it to the I/O control module. The I/O control module sends
that data to the target PLD. Periodically, the I/O control module senses certain
configuration pins to determine if errors occurred during the configuration process.
When an error occurs, the MicroBlaster source code re-initiates the configuration
process.

Block Diagram
Figure 1 shows the MicroBlaster software block diagram and its interfaces to the
programming input file and target PLD.

Figure 1. MicroBlaster Block Diagram & Interfaces

Raw Binary
 File

Data
Processor

I/O

MicroBlaster

Programming
Input File

PLD

Target Device
AN423: Configuring the MicroBlaster Passive Serial Software Driver

Page 2 Interface
Source Files
Table 1 describes the MicroBlaster source files.

1 The source files are available for download from the Altera website at
www.altera.com.

Table 2 describes the directory structure of the source files.

How To Use MicroBlaster
The MicroBlaster software drive supports the Raw Binary File programming
source file (.rbf).You can generate the (.rbf) file from the Quartus II compilation or use
the Quartus II Software Convert Programming File utility. After generating the .rbf,
type the following command line at the Windows command prompt to configure the
device:

mblaster <filename>.rbf

Table 1. Source Files

File Description

mblaster.c Contains the main () function. It manages the processing of the programming input file, instantiates the
configuration process, and handles any configuration errors. This file is platform independent.

mb_io.c

mb_io.h

These files handle the I/O control functions and are platform dependent. They support the ByteBlaster II or
ByteBlasterMV download cable for PCs running Windows NT only. You should modify these files to
support other platforms.

Table 2. Directory Structure

Folders in MicroBlaster
Driver Files Available Description

bin MBlaster.exe, MBlaster.txt Executable file for MicroBlaster driver

doc an423.pdf, readme.txt MicroBlaster documentation

source mblaster.c, mb_io.c, mb_io.h Source files
AN423: Configuring the MicroBlaster Passive Serial Software Driver © June 2008 Altera Corporation

www.altera.com

Parameters and Functions Page 3
Figure 2 shows the screenshot of the execution of MicroBlaster software using
mblaster <filename>.rbf command-line.

Parameters and Functions
Because the writing and reading of the data to and from the I/O ports on other
platform maps to the parallel port architecture, this application note uses the pin
assignments of the (PS) configuration signals to a parallel port. These pin assignments
reduce the required source code modifications. Table 3 shows the assignment of the
passive serial configuration signals to the parallel port.

Program and User-Defined Constants
The source code has program and user-defined constants. You should not change the
program constants. You should set the values for user-defined constants. Table 4
summarizes the constants.

Figure 2. Configuring the Device with mblaster <filename>.rbf command

Table 3. Pin Assignments of the Passive Serial Configuration Signals to the Parallel Port

Bit 7 6 5 4 3 2 1 0

Port 0 (1) — DATA0 — — — — nCONFIG DCLK

Port 1 (1) CONF_DONE — — nSTATUS — — — —

Port 2 (1) — — — — — — — —

Note to Table 3:

(1) This port refers to the index from the base address of the parallel port; for example, 0x378.

Table 4. Program and User-Defined Constants (Part 1 of 2)

Constant Type Description

WINDOWS_NT Program Designates Windows NT operating system.

EMBEDDED Program Designates embedded microprocessor system or other
operating system.

PORT Program Determines the platform.

SIG_DCLK Program DCLK signal (port 0, bit 0)
© June 2008 Altera Corporation AN423: Configuring the MicroBlaster Passive Serial Software Driver

Page 4 Parameters and Functions
Global Variables
Table 5 summarizes the global variables used when reading or writing to the I/O
ports. You should map the I/O ports of your system to these global variables.

SIG_NCONFIG Program nCONFIG signal (port 0, bit 1)

SIG_DATA0 Program DATA0 signal (port 0, bit 6)

SIG_NSTATUS Program nSTATUS signal (port 1, bit 4)

SIG_CONFDONE Program CONF_DONE signal (port 1, bit 7)

INIT_CYCLE User-defined The number of clock cycles to toggle after configuration is
done to initialize the device. Each device family requires a
specific number of clock cycles.

RECONF_COUNT_MAX User-defined The maximum number of auto-reconfiguration attempts
allowed when the program detects an error.

CHECK_EVERY_X_BYTE User-defined Check nSTATUS pin for error every X number of bytes
programmed. Do not use 0.

CLOCK_X_CYCLE (optional) User-defined The number of additional clock cycles to toggle after
INIT_CYCLE. Use 0 if no additional clock cycles are
required. The recommended value is 150 if this constant is
used.

Table 4. Program and User-Defined Constants (Part 2 of 2)

Constant Type Description

Table 5. Global Variables

 Variable Type Description

sig_port_maskbit[W][X] Two dimensional
integer array

Variable that tells the port number of a signal and the bit
position of the signal in the port register. (1) (2)

W = 0 refers to SIG_DCLK

W = 1 refers to SIG_NCONFIG

W = 2 refers to SIG_DATA0

W = 3 refers to SIG_NSTATUS

W = 4 refers to SIG_CONF_DONE

X = 0 refers to the port number the signal falls into. For
example, the signal SIG_DCLK falls into port number 0, and
the signal SIG_NSTATUS falls into port number 1 (refer to
Table 3).

X = 1 refers to the bit position of thesignal.

port_mode_data[Y][Z] Two dimensional
integer array

The initial values of the registers in each port in different
modes. The ports are in reset mode before and during
configuration. The ports are in user mode after configuration.
(1)

Y = 0 refers to reset mode

Y = 1 refers to user mode

Z = port number
AN423: Configuring the MicroBlaster Passive Serial Software Driver © June 2008 Altera Corporation

Parameters and Functions Page 5
Functions
Table 6 describes the parameters and the return value of some of the functions in the
source code. Only functions declared in the mb_io.c file are discussed because you
need to customize these functions in order to work on platforms other than Windows
NT. These functions contain the I/O control routines.

port_data[Z] Integer array Holds the current value of each port. The value is updated
each time a write is performed to the ports. (1)

Z = port number.

Notes to Table 5:

(1) The port refers to the index from the base address of the parallel port; for example, 0×378.
(2) The signal refers to any of these signals: SIG_DCLK, SIG_NCONFIG, SIG_DATA0, SIG_NSTATUS, and SIG_CONF_DONE.

Table 5. Global Variables

 Variable Type Description

Table 6. Functions

Function Parameters Return Value Description

readbyteblaster int port Integer This function reads the value of the port and
returns it. Only the least significant byte
contains valid data. (1)

writebyteblaster int port

int data

int test

None This function writes the data to the port. Data
of the integer type is passed to the function.
Only the least significant byte contains valid
data. Each bit of the least significant byte
represents the signal in the port, as discussed
in Table 3. (1)

The functions in mblaster.c that call the
writebyteblaster function have

organized the bits. Only the value of

specific bits are changed as needed before
passing it to the
writebyteblaster function as data.

To reduce the number of dumps to the port,
each time a signal other than DCLK is dumped
to the port (typically the DATA0 signal), the
DCLK clock signal is toggled at the same
time. The integer test
determines if the DCLK signal needs to be
toggled. (1)

Note to Table 6:

(1) The port refers to the index from the base address of the parallel port; for example, 0×378.
© June 2008 Altera Corporation AN423: Configuring the MicroBlaster Passive Serial Software Driver

Page 6 Program Flow
Program Flow
Figure 3 illustrates the program flow of the MicroBlaster software driver. The
CHECK_EVERY_X_BYTE, RECONF_COUNT_MAX, INIT_CYCLE, and CLOCK_X_CYCLE
constants determine the flow of the configuration process. Refer to Table 4 for
program and user-defined contants.

Figure 3. MicroBlaster Program Flow

Start

End

Get file
size

Get one byte and
send it to I/O port.

Increase byte
counter and
configuration

counter

Start
configuration

Read
nSTATUS

Toggle DLCK
for

CLOCK_X_CYCLE
cycles

Byte counter %
CHECK_EVERY_X_BYTE

= 0?

Byte counter
= File Size?

nSTATUS
= 0?

Configuration
count =

RECONF_COUNT_MAX

nSTATUS = 0?
or

CONF_DONE = 0?

CLOCK_X_CYCLE
= 0?

Read
nSTATUS and
CONF_DONE

Toggle DCLK
for

INIT_CYCLE
cycles

Yes

YesYes

Yes

No

No

No No

No

No

Yes

Yes
AN423: Configuring the MicroBlaster Passive Serial Software Driver © June 2008 Altera Corporation

Porting Page 7
Porting
Two separate platform-dependent routines handle the read and write operations in
the I/O control module. The read operation reads the value of the required pin. The
write operation writes data to the required pin. To port the source code to other
platforms or embedded systems, you must implement your I/O control routines in
the existing I/O control functions, readbyteblaster and writebyteblaster
(refer to Table 6). You can implement your I/O control routines between the following
compiler directives:

#if PORT == WINDOWS_NT
/* original source code */
#else if PORT == EMBEDDED
/* put your I/O control routines source code here */
#endif

Reading
The readbyteblaster function accepts port as an integer parameter and returns
an integer value. Your code should map or translate the port value defined in the
parallel port architecture (refer to Table 3) to the I/O port definition of your system.

For example, when reading from port 1, your source code should read the
CONF_DONE and nSTATUS signals from your system (defined in Table 3). Then the
code should rearrange these signals within an integer variable so the values of
CONF_DONE and nSTATUS are represented in bit positions 7 and 4 of the integer,
respectively. This behaviorally maps your system’s I/O ports to the pins in the pin
assignments of the parallel port architecture. By adding these lines of translation code
to the mb_io.c file, you can avoid modifying code in the mblaster.c file.

Writing
The writebyteblaster function accepts three integer parameters: port, data, and
test. Modify the writebyteblaster function the same way as the
readbyteblaster function. Your code maps or translates the port value that is
defined in the parallel port architecture (refer to Table 3) to the I/O port definition of
your system.

For example, when writing to port 0, your source code should identify the DATA0,
nCONFIG, and DCLK signals represented in each bit of the data parameter. The source
code should mask the data variable with the sig_port_maskbit variable (refer to
Table 5) to extract the value of the signal to write. To extract DATA0 from “data” for
example, mask “data” with sig_port_maskbit[SIG_DATA0][1].

After extracting the values of the relevant signals, each signal is mapped to the I/O
ports as defined in your system. By adding these translation code lines to the mb_io.c
file, you can avoid modifying code in the mblaster.c file.

Example
Figure 4 shows an embedded system holding five configuration signals in the data
registers D0, D1, D3, D6, and D7 of an embedded microprocessor. When reading from
the I/O ports, the I/O control routine reads the values of the data registers and maps
them to the particular bits in the parallel port registers (P0 to P2). These bits are later
accessed and processed by the data processing module.
© June 2008 Altera Corporation AN423: Configuring the MicroBlaster Passive Serial Software Driver

Page 8 Conclusion
P1 B7

P1 B4Data
Processing

Unit

P0 B6

P0 B1

P0 B0

D4

Data Processing Module

Parallel Port Architecture

D1

D6

D5

D3

D2

D0

D7

PLD

I/O Control Module

Designer I/O Port

CONF_DONE

DCLK

nCONFIG

nSTATUS

DATA0

Mapping

Target Device
Programming

 Input File

Data
RBF

When writing, the values of the signals are stored in the parallel port registers (P0 to
P2) by the data processing module. The I/O control routine then reads the data from
the parallel port registers and sends it to the corresponding data registers (D0, D1, D3,
D6, and D7).

Conclusion
The MicroBlaster passive serial embedded configuration source code is modular so
you can easily port it to other platforms. It offers a simple and inexpensive embedded
system to accomplish a PS configuration for Altera PLDs.

Figure 4. Example of I/O Reading & Writing Mapping Process
AN423: Configuring the MicroBlaster Passive Serial Software Driver © June 2008 Altera Corporation

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

Document Revision History
Table 7 shows the revision history for this document.

Table 7. Document Revision History

Date and Chapter
Version Changes Made Summary of Changes

June 2008 v1.1 ■ Added new “How To Use MicroBlaster” and “Document Revision
History” sections.

■ Added Figure 2.

Executable file for
MicroBlaster driver

June 2006 v1.0 ■ Initial Release. Source Files

	AN423: Configuring the MicroBlaster Passive Serial Software Driver
	Introduction
	Interface
	Block Diagram
	Source Files
	How To Use MicroBlaster

	Parameters and Functions
	Program and User-Defined Constants
	Global Variables
	Functions

	Program Flow
	Porting
	Reading
	Writing
	Example

	Conclusion
	Document Revision History

