
Altera Corporation
AN-489-1.0

December 2007, version 1.0
Using the UFM in MAX II
Devices
Application Note 489
Introduction This application note discusses storing non-volatile information. Most
CPLDs use serial EEPROMs to achieve non-volatile information storage,
but MAX® II CPLDs are the only CPLDs that offer User Flash Memory
(UFM), which allows a user to store non-volatile information of up to
8 Kbits. In addition to being programmable, the UFM also supports serial
and parallel interfaces and other proprietary protocols. This application
note explains how you can efficiently store and retrieve information in the
UFM and uses the I2C protocol for interfacing and accessing the UFM of
a MAX II CPLD.

User Flash
Memory

The following list contains example applications and features of the UFM:

■ You can use the UFM to store vital non-volatile information such as
ASSP or processor configuration bits, electronic ID information for a
board during manufacturing, or to store information that is to be
displayed on an LCD as soon as the processor is powered on.

■ Features include parallel and serial interfaces such as the Serial
Communication Interface (SCI), Serial Peripheral Interface (SPI),
Inter-Integrated Circuit (I2C), Microwire, and other proprietary
protocols. MAX II devices offer more interface flexibility than an
off-the-shelf EEPROM device.

■ The UFM has an internal oscillator that can be used to satisfy the
clocking needs of any design; thus, eliminating the extra space and
cost required for an external clocking circuit.

You can use MAX II CPLDs to incorporate logic and memory devices on
a design board, thereby reducing chip-to-chip delays, minimizing board
space, and reducing total system cost.

The UFM is divided into two sectors of 4 Kbits each. The address register
indicates the address of the UFM memory location where data has to be
written to or retrieved from. The data register holds the data that will be
written or retrieved from the UFM. The Program Erase Control block is
used to either program or erase the UFM and also to enable the internal
oscillator. Figure 1 shows a block diagram of the UFM.
 1

Application Note 489: Using the UFM in MAX II Devices
Figure 1. Block Diagram of the User Flash Memory (UFM)

Using the UFM
in MAX II
Devices

The UFM is divided into 2 sectors: Sector 0 and Sector 1. Each sector is
4096 bits and has an address range from 000h to 0FFh and 100h to 1FFh,
respectively. The address locations are accessed by 9 bits, and each
address location is capable of storing 8-bit data.

You can load and modify data into the UFM by Read/Stream Read,
Program, and Erase operations. The Read/Stream Read operation is used
to read the contents of the location pointed to by the address register.
Consecutive memory locations can be read by incrementing the address
register (Stream Read). The Program operation is used to load data into
the UFM, while the Erase operation is performed when the content of the
UFM has to be modified. However, erasure of a single address location is
not possible. This operation either erases the entire UFM (A2A1A0 = 111)
or the sector of the UFM indicated by the MSB of the address transmitted.

The UFM also contains an internal oscillator that can be enabled. This
signal can be routed through the logic array block and can also be fed
back to ARCLK and DRCLK.

This design uses I2C serial interface to store and retrieve data from the
UFM. The following summarizes the I2C protocol:

Address
Register

Program Erase
Control

PROGRAM

ERASE

OSC_ENA

ARCLK

RTP_BUSY

BUSY

Data Register

UFM Sector 1

UFM Sector 0

÷ 4

9

1616

OSC OSC

DRDout

ARSHIFT

ARDin

DRDin

DRCLK

DRSHFT

UFM Block
Altera Corporation 2

Application Note 489: Using the UFM in MAX II Devices
■ Uses two bidirectional bus lines: the SDA line is used for addresses
and data transfer and the SCL line is used for the I2C clock. Both lines
remain high (pulled up) when free.

■ Communication begins with a start condition indicated by a high-to-
low transition on the SDA line when SCL is high.

■ The address of the slave is then sent on the SDA. Data transfer begins
once the address is acknowledged by the slave. Data to be
transmitted has to be held stable on the SDA line while the clock is
high.

■ Communication is terminated with a stop condition indicated by a
low-to-high transition on the SDA line when the SCL is high.

Table 1 describes the signals encountered in the UFM block.

The Flash Memory megafunction is used to instantiate the UFM. It allows
the user to choose their interface, the size of the memory required, options
to write protect the data in the UFM, the option to enable the internal

Table 1. Brief Description of the Signals Encountered in the UFM Block Note (1)

Signal Description

DRDin Shifts data into the data register on each DRCLK pulse.

DRCLK Controls the shifting of data from DRDin to DRDout and the parallel loading of data from the UFM
to the Data Register.

DRSHFT High: Shifts in LSB from DRDin, shifts out MSB to DRDout.
Low: Latches data from the UFM into the data register.

ARDin Serial input to store the memory location address.

ARCLK Controls the shifting of memory location address and the incrementing of the address present in
the address register.

ARSHFT High: Shifts address serially from ARDin to address register.
Low: Increments the address in the address register.

PROGRAM On the rising edge of this signal, data from the data register is written into the memory location
pointed to by the address register.

ERASE On the rising edge of this signal, the memory sector indicated by the MSB of the address register
is erased.

OSC_ENA Signal used to enable the internal oscillator of the UFM.

DRDout Output of the data register. MSB is obtained first.

BUSY Indicates that the memory is busy in a program or erase instruction.

RTP_BUSY Needed if real-time ISP feature is enabled.

Note to Table 1:
(1) For more information, refer to the “UFM Interface Signals” table in the Using the User Flash Memory in MAX II

Devices chapter of the Altera MAX II Device Handbook.
Altera Corporation 3

Application Note 489: Using the UFM in MAX II Devices
oscillator and route it to a port on the CPLD and also set the first four bits
of the UFM slave address (bits A6-A3). It also provides the option to wire
the remaining three slave address bits (A2 to A0) on the board.

Instantiate the UFM Megafunction in the Quartus II Software

Perform the following steps to instantiate the UFM megafunction:

1. Open the project to instantiate the internal oscillator with Quartus II
software.

2. On the Tools menu, click MegaWizard Plug-In Manager. The
MegaWizard Plug-In Manager [page 1] dialog box appears.

3. Select Create a new custom megafunction variation and click Next.
The MegaWizard Plug-In Manager [page 2a] dialog box appears.
Table 2 shows you the options and settings in the MegaWizard
Plug-In Manager [page 2a] dialog box

Table 2. MegaWizard Plug-In Manager [page 2a] Options

Options Settings

Which device family will you be using? Select MAX II.

Which megafunction would you like to
customize?

Click the “+” icon to expand Memory Compiler and select
Flash Memory.

Which type of output file do you want to
create?

Select from AHDL, VHDL, or Verilog HDL.

What name do you want for the output file? Type the name of your file.
Altera Corporation 4

Application Note 489: Using the UFM in MAX II Devices
4. Click Next. The MegaWizard Plug-In Manager ALTUFM [page 3 of
5] dialog box appears. Table 3 shows the options and settings in the
ALTUFM wizard page 3.

5. Click Next.

● If you select I2C, the ALTUFM wizard page 4 appears. Table 4
shows the options and settings in the ALTUFM wizard page 4.

Click Next. The ALTUFM wizard page 3 appears.

Table 3. MegaWizard Plug-In Manager [page 3 of 5] Options

Options Settings Additional Options

What is the interface protocol? None Use arclkena port (clock enable for arclk)

Use drclkena port (clock enable for drclk)

Parallel What is the width of the address bus?

What is the width of the data bus?

Use the ‘osc’ (oscillator) output port

Serial Peripheral
Interface (SPI)

Base mode (uses 8 bit address and data)

Extended mode (uses 16 bit address and
data)

Use the ‘osc’ (oscillator) output port

I2C What is the MSB of the device address (in
binary)?

What is the size of the memory?

Use the ‘osc’ (oscillator) output port

What is the access mode for the user
flash memory?

Read/Write or Read
Only

—

Table 4. MegaWizard Plug-In Manager [page 4 of 7] Options (Part 1 of 2)

Options Settings Additional Options

What is the write configuration
for the I2C protocol?

Single byte write —

Page write Select from 8 bytes, 16 bytes, 32 bytes

Write protect Use the ‘wp’ (write protect)
input

Write protect applies to the full
memory

Write protect applies only to the
upper half of the memory
Altera Corporation 5

Application Note 489: Using the UFM in MAX II Devices
● If you select None, Parallel, or Serial Peripheral Interface (SPI),
the ALTUFM wizard page 4 appears. Table 5 shows the options
and settings in the ALTUFM wizard page 3.

6. Click Next. The ALTUFM wizard page 5 appears.

7. On the ALTUFM wizard page 5. If you select this option, the file for
that netlist is also available. A gray checkmark indicates a file that is
automatically generated, and a red checkmark indicates an optional
file. Click Next.

What erase method should be
used in I2C protocol?

Device Slave Address Full
Erase (3 LSBs are 111)

—

Sector Erase Triggered by
Byte Address (1)

Sector 0: Trigger erase when writing
to binary address (MSB is always ‘0’)

Sector 1: Trigger erase when writing
to binary address (MSB is always ‘1’)

Sector Erase Triggered by
‘a2’ bit

—

No Erase —

Note to Table 4:
(1) This option is only available when you select Single byte write under What is the write configuration for the I2C

protocol?

Table 4. MegaWizard Plug-In Manager [page 4 of 7] Options (Part 2 of 2)

Options Settings Additional Options

Table 5. MegaWizard Plug-In Manager [page 4 of 6] Options

Options Settings

Do you want to specify the initial content of the memory? No, leave it blank

Yes, use this file for
the memory content

Type or browse
the File name:

What is the oscillator frequency for the User Flash Memory?
(for simulation only)

Select 3.33 MHz or 5.56 MHz

What is the erase time for the User Flash Memory? (for
simulation only)

Type the value

What is the program time for the User Flash Memory? (for
simulation only)

Type the value
Altera Corporation 6

Application Note 489: Using the UFM in MAX II Devices
8. The ALTUFM wizard page 6 displays a list of the types of files to be
generated. The automatically generated Variation file contains
wrapper code in the language you specified on page 2a. On page 7,
you can specify additional types of files to be generated. Choose
from the AHDL Include file (<function name>.inc), VHDL
component declaration file, <function name>.cmp), Quartus II
symbol file (<function name>.bsf), Instantiation template file
(<function name>.v), and Verilog HDL black box file (<function
name>_bb.v). Click Finish.

Implementation You can implement this design example with an EPM240, or any other
MAX II CPLD. The UFM in this design example is assigned to have an I2C
interface. Access to the MAX II UFM is demonstrated with an I2C bus
environment. Implementation involves using the design example source
code attached with this application note and allocating the UFM’s I2C
interface lines to the MAX II’s GPIOs. The UFM is then accessed to read
or write with the help of an I2C simulator that is created using a PC
parallel port and interfacing hardware to create an I2C compliant 2-wire
bus. Details about setting up an I2C environment are described in the
Dallas Semiconductor’s Maxim application note AN3230, which can be
found at:

www.maxim-ic.com/appnotes.cfm/an_pk/3230

Similar free software can be downloaded at:

http://files.dalsemi.com/system_extension/AppNotes/AN3315/ParD
S2W.exe

Using this utility program with the parallel port and its interfacing
hardware interact with the MAX II CPLD and provide the SDA and SCL
connections (required on an I2C 2-wire system to access the UFM). When
implemented, this design allows the I2C Master to access the UFM to read
or write data. The I2C Master in this demonstration is the user interface
on the PC running the parallel port I2C software. The UFM is the I2C
slave.
Altera Corporation 7

https://www.maximintegrated.com/en/design/technical-documents.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3315.html

Application Note 489: Using the UFM in MAX II Devices
Table 6 shows the implementation of this design example on the MDN-B2
demo board.

Unused pins are assigned as input tri-stated in the Device and Pin
Options dialog box in the Quartus II software. The Assignment Editor in
the Quartus II software is used to enable Auto Open-Drain Pins on SCLK
and SDA pins. These settings are followed by a compilation cycle.

Refer to the following demo Notes (to demonstrate this design on the
MDN-B2 demo board):

■ Turn on the power to the demo board (using slide switch SW1).
■ Download the design on to the MAX II CPLD through the JTAG

header JP5 on the demo board and a conventional programming
cable (ByteBlaster II or USB-Blaster).

■ Keep SW4 on the demo board pressed before and during the start of
the programming process. Once complete, turn off the power and
remove the JTAG connector.

■ Set up a parallel port driven I2C environment on your PC:

● Download a software utility such as the Maxim parallel port
utility to communicate with the slave in I2C defined protocol.
Install the parallel port software. This example uses the program
ParDS2W.exe at:
http://files.dalsemi.com/system_extension/AppNotes/AN33
15/ParDS2W.exe

● You must install a parallel port driver to enable access to the
parallel port in Windows XP or Windows 2000 for this parallel
port utility. Direct-IO (www.direct-io.com) has a typical driver
that you can use and which you can download at:
www.direct-io.com/Direct-IO/directio.exe

● After installation, you must configure the Direct-IO program.
Open the Windows control panel and click on the Direct IO icon.
Enter the Begin and End addresses of your parallel port (most
often this is 378h through 37Fh, but confirm your PC's parallel
port address by looking at settings in:

Table 6. EPM240G Pin Assignment

Signal Pin

SCLK Pin 39

SDA Pin 40

a1 Pin 37

a2 Pin 38
Altera Corporation 8

https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3315.html
http://www.direct-io.com/Direct-IO/directio.exe

Application Note 489: Using the UFM in MAX II Devices
Control Panel/System/Hardware/Device Manager/Ports/
EC P Printer port (LPT)/Resources

● If your parallel port is configured to any type other than ECP,
change it to ECP by changing the BIOS settings during start-up
of your PC.

● Select the Security Tab of the Direct IO control panel and browse
to the directory path of the ParDS2W.exe program. Click Open,
and then click Add. You will see the path of this utility in the
Allowed Processes field. Click OK to close the control panel
window.

● Attach the parallel port I2C dongle that is supplied along with
the MDN-B2 demo board. Use an extension chord if necessary to
extend the parallel port connection closer to your demo board.

● Attach the 4-pin socket on the pigtail of I2C parallel port dongle
to the I2C header (JP3) of the demo board so that the red mark on
the socket meets pin#1 on the JP3 header.

● Set switches 1 and 2 of SW3 (8-way DIP switch on the MDN-B2
demo board) to their ON position.

● Open the ParDS2W program, select the appropriate parallel port
address of your PC (as seen while configuring Direct IO), and set
the 2-Wire Device Address to B0H.

● Finally, you can test the I2C setup by using the Test Circuit tab
to see if you have a Test PASS message in the Status window. If
you do, the I2C environment is now set up.

■ Using the One byte Write/Read section in the 2-Wire Utility section
of the parallel port utility program, perform a single byte WRITE
operation to any specific memory address location by specifying an
address and data (each a byte long, 2 hex digits)

■ Similarly, perform a READ operation at the same address location
and note the contents of that address location. It should be the value
that was just written. Any other address location should have a
content of FFh, unless it is written in.

■ If you want to perform a WRITE into an address location more than
once, it should be preceded by an erase operation.

■ You can do a full content erase by selecting BEh as the slave address
and doing a WRITE operation of FFh. This restores the content of the
UFM to FF.

■ You can set the 5th and 6th bit of the I2C slave address (a2, a1) using
switches 1 and 2 on SW3 of the demo board (8-way DIP switch).
These are both set to 0, and the first 4 MSB of the I2C slave address is
set (1011 or Bh in this case) during instantiation of the Flash Memory
megafunction.
Altera Corporation 9

Application Note 489: Using the UFM in MAX II Devices
Source Code The design example for this application note is implemented in Verilog
HDL and successful operation has been demonstrated using the MDN-B2
demo board. The source code, testbench, and complete Quartus II project
are available at:

www.altera.com/literature/an/an489_design_example.zip

Conclusion MAX II CPLDs are a great choice to implement a wide variety of logic
solutions that require non-volatile memory support because of their
unique on-chip user flash memory. Additionally, MAX II devices feature
low power, easy and quick power-on, multi-volt capability, and a built-in
internal oscillator, which makes them very versatile programmable logic
devices.

Additional
Resources

The following list contains additional resources:

■ MAX II CPLD homepage:
www.altera.com/products/devices/cpld/max2/mx2-index.jsp

■ MAX II Device Literature:
www.altera.com/literature/lit-max2.jsp

■ MAX II Power-Down Designs:
www.altera.com/support/examples/max/exm-power-down.html

■ MAX II Device Application Notes:
AN 428: MAX II CPLD Design Guidelines
AN 422: Power Management in Portable Systems Using MAX II CPLDs

Revision History Table 7 shows the revision history for this application note.

Table 7. Revision History

Date and Version Changes Made Comments

December 2007,
v1.0

Initial release. —
10 Altera Corporation

http://www.altera.com/literature/an/an422.pdf
http://www.altera.com/literature/an/an422.pdf
http://www.altera.com/support/examples/max/exm-power-down.html
http://www.altera.com/literature/lit-max2.jsp
http://www.altera.com/products/devices/cpld/max2/mx2-index.jsp
http://www.altera.com/literature/an/an489_design_example.zip

Application Note ???: Title
Altera Corporation 11

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Literature Services:
literature@altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

	Using the UFM in MAX II Devices
	Introduction
	User Flash Memory
	Using the UFM in MAX II Devices
	Instantiate the UFM Megafunction in the Quartus II Software

	Implementation
	Source Code
	Conclusion
	Additional Resources
	Revision History

