
101 Innovation Drive
San Jose, CA 95134
www.altera.com

MNL-01017-6.0

Advanced Synthesis Cookbook

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
July 2011

Advanced Synthesis Cookbook

http://www.altera.com

Advanced Synthesis Cookbook July 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

July 2011 Altera Corporation
Contents
Chapter 1. Introduction
Blocks and Techniques . 1–1
Simulating the Examples . 1–1
Using a C Compiler . 1–2

Chapter 2. Arithmetic
Introduction . 2–1
Basic Addition . 2–2
Ternary Addition . 2–2
Grouping Ternary Adders . 2–3
Combinational Adders . 2–3
Double Addsub/ Basic Addsub . 2–3

Two’s Complement Arithmetic Review . 2–4
Traditional ADDSUB Unit . 2–4

Compressors (Carry Save Adders) . 2–5
Compressor Width 6:3 . 2–5
Compressor Width 3:2 . 2–5
Compressor Width 12:4 . 2–5
Compressor Width 36:6 . 2–6
Compressor Width 64:7 . 2–6
Combining Compressors (Compressor Width 4:2) . 2–6

Bit Population Count . 2–7
Splitting Adder Chains . 2–7
Pipelined Adder Chains . 2–8
Carry Select Adders . 2–8
Adder Trees . 2–9
Basic Multiplication . 2–10
Multiplication With Rotate and Shift Modes . 2–11
High-Speed LCell-Based Multiplication . 2–11
Multiplication of Large Integers (Karatsuba Algorithm) . 2–13
Division (Unsigned Integer) . 2–15
CORDIC . 2–16

Chapter 3. Floating Point Tricks
Floating Point to Fixed Point Conversion . 3–1
Approximate Square Root . 3–1
Approximate Inverse Square Root . 3–2
Approximate Floating Point Divide (Single Precision) . 3–2

Chapter 4. Translation and Format Conversion
One-Hot Decoder (Binary to One-Hot) . 4–1
One-Hot to Binary . 4–1
Mask Generation . 4–1
Binary-to-Gray Conversion . 4–2
Gray-To-Binary Conversion . 4–3
Seven Segment Display Driver . 4–3
Binary-to-ASCII Hexadecimal Conversion . 4–4
ASCII to 32 Character Liquid Crystal Display (LCD) . 4–4
Advanced Synthesis Cookbook

iv Contents
ASCII Hexadecimal-to-Binary Conversion . 4–5
Binary-to-Decimal/Binary-Coded Decimal Adders . 4–5

Chapter 5. Video
YCbCr (4:4:4) to RGB Conversion . 5–1
RGB to Hue Conversion . 5–1
Sum of Absolute Difference (SAD) . 5–2
VGA Monitor Control . 5–3
Character Display . 5–4

Chapter 6. Arbitration
Bitscan (Priority Masking) . 6–1
Arbiters with Fairness . 6–1
Priority Encoding . 6–2
Channel Arbiter . 6–2

Chapter 7. Multiplexing
Basic Multiplexing (Binary Encoded) . 7–1
Decode/Select Multiplexing . 7–1
If/Else Multiplexing (?: Multiplexing) . 7–2
Priority Multiplexing . 7–3
8-to-1 Multiplex Building Blocks . 7–4
Barrel Shift . 7–5
Use of Register Secondary Signals for Multiplexing . 7–6
Bus Multiplexing . 7–7
Pipelined Bus Multiplexing . 7–7
Word Muxing 20:5 . 7–8
Word Muxing 20:8 . 7–8

Chapter 8. Comparison and Adder Detection
Bus Equality (A == B) . 8–1
Mapping Wide Single-Output Functions to the Carry Chain . 8–1
Equal to Constant . 8–2
Less than Constant . 8–2
Address in Range Comparison (LOWER <= addr < UPPER) . 8–3
Match or Inverse Match . 8–4
Min and Max / Variable Sign Comparison . 8–5

Chapter 9. Storage
Register Banks . 9–1
24-Bit/16-Bit Stream Buffers (RGB/Memory Buffer) . 9–2
RAM-Based Shift Register . 9–2
RAM-Based Shift Register (MLAB Variant) . 9–3
FIFO (Dual Clock) . 9–3
Dual Clock FIFO (MLAB Variant) . 9–4
Simple Quad Port RAM . 9–5
Ternary Content Addressable Memory (TCAM) . 9–6

Register-Based Ternary CAM . 9–6
RAM-Based Ternary CAM . 9–8

Backpressure Skid Buffer . 9–9
Register Based Buffer FIFO . 9–10

Chapter 10. Counters
Advanced Synthesis Cookbook July 2011 Altera Corporation

Contents v
Basic Binary Counter . 10–1
Up/Down Counter . 10–1
Seconds Timer . 10–2
System Timer . 10–2
Modulus Counter with Lookahead . 10–2
Basic Gray Counter and Gray Lookahead . 10–4

Chapter 11. Communication
8B10B Encoder/ Decoder . 11–1
Chaining 8B10B coders . 11–2
Universal Asynchronous Receiver Transmitter (UART) . 11–3
Interface to Parallax Global Positioning System (GPS) Receiver . 11–4
Gearbox . 11–5
Scrambler . 11–8
Interlaken . 11–9

TX Lane Implementation . 11–9
Gearbox . 11–10
64/67-Bit Encoding . 11–10
Interlaken Scrambler . 11–11
CRC32 . 11–11
Framing schedule . 11–11

RX Lane Implementation . 11–11
Gearbox . 11–12
Word Alignment . 11–12
Decode 67/64 . 11–12
Scrambler . 11–12
Framing schedule . 11–13
CRC32 . 11–13

Lane Test Environment . 11–13

Chapter 12. Cyclic Redundancy Check
Introduction . 12–1
CRC XOR Decomposition . 12–2
CRC-16 Fixed Data Width . 12–2
CRC-24 Fixed Width . 12–3
CRC-32 Fixed Data Width . 12–3
CRC-32C (Castagnoli) Fixed Width . 12–4
CRC-32 Variable Data Width (Residues) . 12–4
CRC-32 Ethernet FCS . 12–5
CRC Decomposition and Pipeline . 12–5

Chapter 13. Error Correction Codes
64/72-Bit ECC Encoder/ Decoder . 13–1
64/72-Bit ECC Dual-Port Internal RAM . 13–3
ECC 32/39-Bit Variation . 13–4
ECC 16/22-Bit Variation . 13–4
ECC 8/13-Bit Variation . 13–4
ECC 2/6-Bit Variation . 13–5
Reed-Solomon Forward Error Correction (FEC) . 13–5

Reed-Solomon Transmitter . 13–5
Reed-Solomon Receiver . 13–6
Galois Field Multiplication . 13–8
July 2011 Altera Corporation Advanced Synthesis Cookbook

vi Contents
Chapter 14. Random and Pseudorandom Functions
Linear Feedback Shift Register . 14–1
Built-In Logic Block Observer . 14–1
C Library Random Number Generator . 14–2
True Random Numbers . 14–2

Race Condition-Based True Random Numbers . 14–3
Word Stream Scrambling . 14–6

Chapter 15. Cryptography
Data Encryption Standard . 15–1
Triple DES . 15–2
UNIX Password Encryption . 15–3
Advanced Encryption Standard/ Rijndael . 15–3

The Rijndael S-BOX/sub_bytes . 15–4
Rijndael shift_rows . 15–5
Rijndael mix_columns and Round Keying . 15–5
Rijndael Key Evolution . 15–5
Rijndael 128 Encipher . 15–6
Rijndael 128 Decipher . 15–6
Rijndael 256-Bit Key Size (AES 256) . 15–7
Rijndael 192-Bit Key Size (AES 192) . 15–7

RC4 Stream . 15–8
Secure Hash Algorithm . 15–8

Chapter 16. Synchronization
System Reset Control . 16–1
Clock Multiplexing . 16–4
Synchronizer Chain . 16–5

Chapter 17. Debugging
Temperature Sensor . 17–1
Frequency Monitor . 17–1
JTAG To C Probe . 17–2

Additional Information
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
1. Introduction
Blocks and Techniques
The Advanced Synthesis Cookbook is a collection of circuit building blocks and related
discussions, and presumes you are familiar with Altera® hardware cells and the
Quartus® II software tools. The Stratix® Adaptive Logic Module (ALM) is powerful,
which helps the synthesis tools achieve good results without hand tuning. The cell
features open up opportunities for dramatic hand-crafted “tricks.” These building
blocks are intended to demonstrate these tricks.

f For more information about HDL coding styles, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook. For more information about
Stratix series architecture, refer to the data sheet section in volume 1 of the handbook
for the device family you are using.

Each section includes a list of example files. Many of these example files contain more
than one method of implementation controlled by a parameter. You can use these
example files for testing and to better understand the derivation of some of the more
complex optimizations. There are also many cases where the ideal implementation
depends on the surrounding circuitry. The discussion and comments should help
with selection. The example files are available on the Altera website at the following
URL: www.altera.com/literature/manual/cookbook.zip.

1 If you have a favorite optimization trick, or are struggling with a particular block of
logic, file a mySupport request on the Altera website (www.altera.com/mysupport).

Simulating the Examples
Some of the examples in this document use WYSIWYG cells for direct mapping
control. The Quartus II Integrated Synthesis and third-party synthesis tools
automatically recognize WYSIWYG cells. To use the ModelSim simulator to simulate
these examples, you must load the Stratix IV atom library located in the
<Quartus II installation directory>/eda/sim_lib directory. When you simulate the
examples using the ModelSim simulator, you may receive an error similar to the
following example:

Error: (vsim-3033) decoder_8b10b.v(351): Instantiation of
‘stratixii_lcell_comb’ failed. The design unit was not found.

Type the following command in the ModelSim simulator at a system command
prompt to correct this error (adjust to your quartus root location):

vlog d:/quartus/eda/sim_lib/stratixiv_atoms.v r

1 For Modelsim executables 6.3 and newer it is necessary to add the parameter +acc to
the vlog command to specify visibility of internal signals. For SystemVerilog files it is
necessary to add the parameter -sv to the vlog command.
Advanced Synthesis Cookbook

1–2 Chapter 1: Introduction
Using a C Compiler
Some of the examples in this document also use RAM or DSP megafunction blocks
that are located in the altera_mf.v file in the <Quartus II installation
directory>/eda/sim_lib directory.

Using a C Compiler
Some of the examples in this document include small computer programs written in
C (.CPP files). These programs generate Verilog HDL files provided for the interest of
readers who may have some software background. Note that these C files are not
directly useful for programming Altera devices or embedded processors.

The sample files listed in this document were originally compiled with
Microsoft 32-bit C/C++ Optimizing Compiler Version 12.00.8804 for 80x86. The
command line compile command is cl filename.cpp to create <filename>.exe. You can
use the free Microsoft C Compiler Visual Studio Express Edition available from the
Microsoft website.
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
2. Arithmetic
Introduction
The Stratix II, Stratix III, Stratix IV, and Stratix V logic cells contain a dedicated adder
chain for fast carry propagation with optional logic on the input side (see Figure 2–1).

You can use the cell in shared arithmetic mode, which changes the input pattern to
facilitate implementing 3:2 compressors in the LUT logic. Use shared mode to add
three binary words in a single chain (see Figure 2–2).

Synthesis tools restructure arithmetic and absorb logic that feeds adder chains
opportunistically. The absorption is heuristic and occasionally produces sub optimal
groupings. Quality problems occur often occur when arithmetic structures feed each
other and blend together. It is helpful for designers to think about the target hardware
and structure the HDL accordingly, to ensure the densest possible packing, and limit
runtime. Some of the example files use WYSIWYG cells to make the intent explicit
independent of surrounding logic. Separation with pipeline registers is another way
to make the grouping explicit.

Figure 2–1. Logic Cell

Figure 2–2. Shared Arithmetic Mode

LUT 4

F0

dataa

datab

datac

datad

dataf

cin

sumout

coutshareout

LUT 4

F2

LUT 4

F2

+

LUT 4
F0

dataa
datab
datac
datad

cin

sumout

LUT 4
F2

coutshareout

sharein

+

Advanced Synthesis Cookbook

2–2 Chapter 2: Arithmetic
Basic Addition
Basic Addition
Standard binary adders are packed into two bits per Adaptive Logic Module (ALM).
The HDL “+“ operator is the easiest way to specify an adder chain. This format is
portable and generally leads to the best minimization.

If you need to bit slice an adder, WYSIWYG cells are the most reliable option. The use
of WYSIWYG is preferred to other bit slicing methods because it clearly identifies the
intended carry-in and carry-out signals.

When experimenting with small adders, try to avoid extremely narrow bit widths,
such as adders two bits wide. The Quartus II Analysis and Synthesis and third-party
synthesis engines recognize cases where the wide LUT is faster than the carry chain.
This is helpful in system, but can be unwelcome when experimenting.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Ternary Addition
The Quartus II Analysis and Synthesis recognizes sums of three binary words and
applies the shared arithmetic mode automatically. Area cost is one cell per bit, packed
in two cells per ALM, as compared to two cells per bit on a device without share chain
support (see Figure 2–3).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file arithmetic/basic_adder.v

Figure 2–3. Ternary Addition

Example file arithmetic/ternary_add.v

ALM 0

ABC[0]
Out = A + B + C

ABC[1]

ALM 1

ABC[2] ABC[3]

out[0] out[1] out[2] out[3]

…

Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–3
Grouping Ternary Adders
Grouping Ternary Adders
When combining ternary additions with other arithmetic logic or as part of adder
trees, it is best to place them in a submodule. Verilog HDL and VHDL consider “+“ a
binary operator, potentially creating ambiguity about which adders to group as a
ternary block. The example file ternary_sum_nine.v computes the sum of nine binary
words using two levels of pipelined ternary adders (see Figure 2–4).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Combinational Adders
For narrow data widths combinational logic is faster than carry ripple propagation.
Quartus Integrated synthesis will convert tiny adders to LUT logic automatically. To
explicitly specify combinational logic use a script to generate a small table lookup.
The example below computes the sum of two 3 bit numbers. It will map to four LUTs.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Double Addsub/ Basic Addsub
Apply the shared arithmetic mode to build a two-word add/subtract unit with
independent sign control on each word. For example:

out = (negate_a ? –a[] : a[]) + (negate_b ? –b[] : b[]);

The arithmetic/double_addsub.v example file shows both a behavioral
implementation and an equivalent version using explicit hardware cells. The
hardware cell version guarantees the intended structure in the presence of
minimizations. The behavioral version is more flexible.

Figure 2–4. Grouping Ternary Adders

Example file arithmetic/ternary_sum_nine.v

A B C

+

D E F

+

reg

+

G H I

+

reg reg reg

Example file arithmetic/sum_of_3bit_pair.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–4 Chapter 2: Arithmetic
Double Addsub/ Basic Addsub
Two’s Complement Arithmetic Review
To negate a number in two’s complement form, invert the bits of the number, and then
add 1. This process works in both directions. Negative numbers have a “1“ in the MSB
(Figure 2–5).

You can implement (+/-A) as A when the sign is + and invert (A) + 1 when the sign
is –. Because A and B are in the process of being summed, the +1s can be implemented
at the same time (+0 when both are positive, +1 when exactly one is negative, and +2
when both are negative).

The XOR arrays feeding the adder A and B ports implement the invert step. The adder
“C“ channel implements +0, +1, or +2 as appropriate to finish the two’s complement.
Area cost is one cell per bit, packed in two cells per ALM (see Figure 2–6).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Traditional ADDSUB Unit
This example contains a single traditional ADDSUB unit for comparison and reference.
The METHOD parameter switches between inference-based and explicit XOR techniques.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 2–5. Two’s Complement

Figure 2–6. Invert Step

Example file arithmetic/double_addsub.v

0 0 1 0 0 1

1 1 0 1 1 0

Invert

1 1 0 1 1 1

Add 1

0 0 1 0 0 1

1 1 0 1 1 1+

0 0 0 0 0 0

(9)
(9)

(0)

(-9)

(-9)

add

Negate_a
Negate_b

A[] B[]B[]

out[]

+012

Example file arithmetic/addsub.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–5
Compressors (Carry Save Adders)
Compressors (Carry Save Adders)
Compressor-based addition is useful where a large number of low bit width inputs
must be summed (see “Bit Population Count” on page 2–7). You can also use
compressor-based stages in adder trees to relieve routing pressure in very regular
designs. Unlike a ripple carry, the compressor bits do not require adjacent placement.
Typically, a compressor-based solution is larger and faster than a ripple-based
solution.

Compressor Width 6:3
The 6-LUT capability enables non-carry arithmetic with good depth. You can
implement a 6:3 bit compressor circuit in three 6-LUTs with a depth of one (see
Figure 2–7 on page 2–5).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Compressor Width 3:2
3:2 compressors are used internally for the ternary add capability. The two 3-LUT
implementation can be merged easily with surrounding logic. There are enough spare
inputs to absorb the AND gates associated with the first stage of a multiplier.
Programmable negation XOR gates are another likely application.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Compressor Width 12:4
This 12:4 compressor is composed from two 6:3 compressors and a 3 bit combinational
adder. It maps well to the ALM architecture and provides greater placement flexibility
than equivalent ripple carry based logic.

Figure 2–7. Three 6-LUTs With Depth One

Example file arithmetic/six_three_comp.v

Inputs A..F (common)

Binary sum (A+B+C+D+E+F)
Output 7 (111) does not occur

6 LUT 6 LUT 6 LUT

Example file arithmetic/three_two_comp.v

Example file arithmetic/twelve_four_comp.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–6 Chapter 2: Arithmetic
Compressors (Carry Save Adders)
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Compressor Width 36:6
This 36:6 compressor is composed from six 6:3 compressors and a 3 bit combinational
adder. It maps well to the ALM architecture and provides greater placement flexibility
than equivalent ripple carry based logic.

Compressor Width 64:7
This 64:7 compressor is composed from five 12:4 compressors, a 6:3 compressor, and a
3 bit combinational adder. It maps well to the ALM architecture and provides greater
placement flexibility than equivalent ripple carry based logic.

Combining Compressors (Compressor Width 4:2)
4:2 compression is shown in Figure 2–8.

The structure shown in Figure 2–8 is well known among multiply hardware
designers. Note that the carry path cannot propagate along the width, so delay is
limited to a depth of two. This is efficient, although it does not fill the cells the way a
6:3 compressor does. The example design is left unstructured to allow flattening for
speed, and can absorb input side logic such as multiplier AND gates.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file arithmetic/thirtysix_six_comp.v

Example file arithmetic/sum_of_64.v

Figure 2–8. 4:2 Compression

Example file arithmetic/wide_compress.v

3:2

3:2 carry_in

3:2

3:2

carry_out

a1 b1 c1 d1 a0 b0 c0 d0
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–7
Bit Population Count
Bit Population Count
An efficient method to count the number of ones or zeros in a binary word is to use
compressors followed by an adder tree. The C-style method of using a “for“ loop with
a shift and conditional +1 tends to create a stick-like structure which is difficult for the
synthesis tools to interpret. In the best case, it requires a significant amount of runtime
for analysis and balancing (see Figure 2–9).

The ideal crossover from compression to propagate addition is width specific. For bit
width of 4 or 5 use propagate adders. For lower bit widths use compressors. The
example thirtysix_six_comp.v shows a 36-input compressor suitable for bit
population counting on 32-bit numbers.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Splitting Adder Chains
The Stratix II ALM contains a hard-wired adder chain to speed up the propagation of
the carry signal for arithmetic functions. In some instances, it is desirable to break up a
long chain by exiting the chain for one hop and then resuming, as shown in
Figure 2–10.

Because wire C is on standard rather than carry chain routing, the adders (AL+BL) and
(AH+BH) can be placed separately. For example, use this technique to relieve routing
pressure on a long chain in where the L and H inputs are driven by separate sources.
This technique does not always make the design faster, but it does simplify placement
and routing. To accelerate long chains, see “Pipelined Adder Chains” on page 2–8.

Figure 2–9. Bit Population Count

Example file arithmetic/thirtysix_six_comp.v

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

6:3 6:3

…

…+

+

+

+

+

Further compression
if necessary

Final propagate add

6:3

Figure 2–10. Breaking Up a Long Chain

Example file arithmetic/split_add.v

ALBLAHBH

C
+ +
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–8 Chapter 2: Arithmetic
Pipelined Adder Chains
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Pipelined Adder Chains
Build a pipelined adder to accelerate a long carry chain when an extra tick of latency
is available.

The example file implements the structure illustrated in Figure 2–11. It looks a bit odd
due to the asymmetry of the high and low halves; however, it is equivalent to a simple
adder followed by two registers. It is slightly less than twice as fast as an equivalent
unpipelined adder.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Carry Select Adders
Carry select is a method of accelerating addition by supposing both possible carry in
values, and then selecting the correct one. This technique is commonly used in
computer hardware design (Figure 2–12).

Stratix II ALM implementation requires about three times the area of a simple ripple
carry, and is faster than a standard ripple on long chains. 40 bits is a reasonable
guideline. The exact crossover point depends on the surrounding logic. In a bench
test, a fully registered carry select on a 2S15C3 device ran at 317 MHz using four
blocks of 14-bit ripple. The equivalent 56-bit pure ripple ran at 271 MHz.

Figure 2–11. Pipelined Adder Chains

Example files
arithmetic/pipeline_add.v

arithmetic/pipeline_add_tb.v

ALBLAHBH

DQ+ +

DQ

DQDQ

DQDQ

Figure 2–12. Carry Select Adders

+
+
+

+
+ 0

1

0

1

A B A B A B
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–9
Adder Trees
The ripple length within a carry select block is a parameter to the example Verilog
HDL. A typical setting for a Stratix II device is 14. This allows the adders to fit within
single LABs with two bits of extra space. The extra positions are used to collect the
carry out signal and to increase the flexibility for placing the carry out multiplexer. A
small speed testing “jig” is included in the select_add_speed_test.v example file.
Some experimentation may be required for the best block width setting at a given
input size.

It is possible to use the SLOAD port to reduce the area cost from triple to double. There
is a parameter in the example file that activates this feature; however, it appears to
negate the speed advantage.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Adder Trees
Adder trees are a common building block in digital filters and multipliers. They are
typically implemented with high levels of pipeline. The ALM supports both binary
and ternary adder trees. Roughly speaking, the ternary tree is one-half of the area of a
binary tree, and has one-third fewer levels. Ternary trees are strongly favored in
area-sensitive applications. When favoring speed, the pipelined binary tree is the
more common method. The binary tree has a slightly lower carry delay within each
adder due to lower function complexity. The cost decision can change depending on
routing pressure in the surrounding circuitry and latency requirements.

1 The DSP blocks contain a variety fo adders suitable for chaining and accumulation.
The details are specific to individual members of the Stratix family. This discussion is
limited to cell fabric adders which are similar in all members.

This example is a parameterized binary adder tree. The input words for summation
are concatenated to form the in_words bus. The parameters NUM_IN_WORDS x
BITS_PER_IN_WORD control the size. The parameter OUT_BITS controls the expected
result size. Some attempt is made to store intermediate results with the minimum
number of bits (for example, 8 bits + 8 bits = 9 bits). The synthesis tools perform the
remaining trimming. The Boolean parameter SIGN_EXT selects sign versus 0 extension
for adding signed numbers. REGISTER_OUTPUT enables pipeline registers. When the
REGISTER_OUTPUT value is 1, a pipeline register is inserted on the output of every
adder node. REGISTER_MIDDLE enables additional registers embedded in the carry
chains. This is intended for high speed applications where the carry propagation time
within a word is too high.

Example files
arithmetic/select_add.v

arithmetic/select_add_speed_test.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–10 Chapter 2: Arithmetic
Basic Multiplication
The SHIFT_DIST parameter specifies a shift between input words. This is used for
multiplication. SHIFT_DIST = 0 indicates simple addition of a list of numbers. The
EXTRA_BIT parameter and the I/O signals are used to match the pipeline latency of an
extra signal for convenience in signed multiplication. The lc_mult_signed example
files use this adder in a multiplication context.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Basic Multiplication
Stratix II devices use native 36 x 36 multiply-accumulate (MAC) blocks to implement
most multipliers. There is special hardware for packing 18x18 and 9x9 data widths.
The report file lists the number of 9x9 DSP elements used. One 36x36 multiplier uses
all 8 elements in the MAC block. You can access the basic multiplier through the
Verilog HDL/VHDL “*“ operator or through the lpm_mult megafunction. The more
complex output summation and accumulator modes are accessible through the
altmult_add and altmult_accum megafunctions. Direct use of the underlying
MAC_MULT and MAC_OUT WYSIWYG gates can be challenging due to the large number of
ports and parameters with complex legality constraints.

f Stratix V devices use a more elaborate 27 x 27 bit block with switching capability. For
more information refer to the Stratix V Device Handbook.

The module mult_32_32 in the example file mult_shift.v implements a
32 x 32=>64-bit multiply with registered inputs and outputs, and individual
signed/unsigned control on the data. It uses a single Stratix II MAC block (eight DSP
elements) implemented with WYSIWYG gates.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

arithmetic/adder_tree.v

arithmetic/adder_tree_tb.v

arithmetic/adder_tree_layer.v

arithmetic/adder_tree_node.v

Example files
arithmetic/mult_shift.v (mult_32_32 module)

arithmetic/mult_shift_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf

Chapter 2: Arithmetic 2–11
Multiplication With Rotate and Shift Modes
Multiplication With Rotate and Shift Modes
You can enhance a multiplier with a modest amount of external logic (138 ALUTs) to
implement shift and rotate as well as multiply. Using the Quartus II Analysis
Synthesis speed optimization, the 2^n and OR/MUX logic fits within two levels of
logic, allowing the unit to operate at the speed of the multiplier. This example is based
on the Nios II ALU multiplier (Figure 2–13 on page 2–11).

Table 2–1 lists the control signals used in the example file.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

High-Speed LCell-Based Multiplication
LCell multiplication is an interesting mapping problem. There are two reasonable
first-stage architectures which are the AND-array and the Booth encoder. There are
several reasonable architectures for the summation of partial products.

1 If you are a novice FPGA user, note that Altera FPGAs contain DSP blocks designed
for multiply-accumulate operations. As a rule of thumb, it is best to exhaust these
before going to LCell-based multiplication.

Figure 2–13. Multiply With Rotate

*

A 2^B

Asign 0000

signed

A SHR N-B A SHL B
A ASR N-B

A0000 0000

0

A ROL B

*

A 2^B

Table 2–1. Control Signals Used in Example file

Input Signal Name Value Value Value Value Value Value

shift_not_mult 0 1 1 1 1 1

direction_right x 1 1 0 1 0

shift_not_rot x 1 1 1 0 0

sign_a x 0 1 x x x

output (1) A * B (1) A shr B (1) A asr B (1) A shl B (1) A ror B (1) A rol B (1)

Table 2–1 note:

(1) Output behavior is based on the input signal setting.

Example files
arithmetic/mult_shift.v (mult_shift_32_32 module)

arithmetic/mult_shift_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–12 Chapter 2: Arithmetic
High-Speed LCell-Based Multiplication
In the AND-based first stage each partial product is implemented as the A signal and
one bit from the B signal. The partial product is A if B is one, and zero if B is zero. When
shifted and summed, the result is the product (Figure 2–14).

The ALM has sufficient capacity to absorb the AND gates into the first adder layer. In
other words, they are free in most cases. The Booth encoder operates using the same
high-level principle, but considers more bits of B at a time. This enables the selection
of other A multiples, for example, 2A, A. For more information about Booth encoding,
refer to any computer architecture textbook.

In the relatively sophisticated ALM cell, the Booth and AND methods are closely
matched. The AND method appears to be better for speed, and the Booth method is
widely preferred for area. Booth encoding is better for working with fine grained cells.
Altera libraries use both methods depending on the context.

The sum of partial products is typically done in a binary or ternary adder tree. For
high speeds, pipeline the tree at the output of each adder. Compressor network
variants are preferred in finer grained cells, and used internally, but these variants are
generally not efficient in ALMs. The dedicated carry chain provides sufficient speed
unless the data width is high, for example, 50 to 70-bit range. For higher widths it is
necessary to pipeline within ripple chains. See “Pipelined Adder Chains” on page 2–8
for an example. Ternary chains use less area and latency in return for lower operating
speed. See “Adder Trees” on page 2–9 for an example.

The following example design is a heavily pipelined LCell-based signed multiplier. It
uses the AND style front end and a binary adder tree to maximize speed at the expense
of area. Note that a signed multiplication requires an extra inversion in the most
significant partial product word, and a final addition to finish the two’s complement.
For unsigned multiplication, remove these special steps to reduce latency by one tick.

Data input width is controlled by the WIDTH_A and WIDTH_B parameters. For
asymmetric cases, there is a complex speed-area-latency relationship in the ordering.
It is best to evaluate both orders.

The pipeline in the example is controlled by the REGISTER_LAYERS and
REGISTER_MIDPOINTS parameters. Use layer registering for all applications. Layer
registering installs pipeline registers between adder layers, as well as partial product
and output registers. For extreme speed, or high data widths, the midpoint setting
installs an additional pipeline layer midway through each adder chain. Layer and
midpoint latency numbers are logarithmic in the B width. The exact numbers are
displayed in simulation as a convenience. For this 16 x 13 example, the layer latency
is 6, and the additional midpoint latency is 4.

Figure 2–14. Partial Product

A3 A2 A1 A0 B1 A3 A2 A1 A0 B0

partial product P1
(shift by 1)

partial product P0
(shift by 0)
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–13
Multiplication of Large Integers (Karatsuba Algorithm)
Note that the synthesis tools may infer RAM-based shift registers to implement some
of the excess pipeline. The RAM is generally slower than cell registers. Setting the
Quartus II Synthesis Optimization Technique to SPEED disables this inference, or you
can explicitly disable this inference on a project or by entity using various settings.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Multiplication of Large Integers (Karatsuba Algorithm)
The Karatsuba multiplication algorithm is an efficient way to build high bit width
integer multiplication, suitable for conserving DSP blocks in return for additional
latency and cell area.

For example, when multiplying a pair of 64-bit numbers “A” and “B” consider the
number split into 32-bit halves, {AH,AL} and {BH,BL}. The product is equivalent to
(2**32 * AH + AL) * (2**32 * BH + BL). Multiplying through yields (2**64 * AH * BH) +
(2**32 (AH*BL + AL*BH)) + (AL*BL). This is the familiar sum of four partial products
structure.

The key of the Karatsuba algorithm is the observation that the middle term (2**32
(AH*BL + AL*BH)) is equivalent to 2**32 ((AH+AL) * (BH+BL) - (AH*BH) - (AL*BL)).
AH*BH and AL*BL are already available. The remaining expression uses only one
multiplier, allowing reformulation of the full product using only three product terms
as shown in the following example:

pphh = AH*BH (64 bit)
ppll = AL*BL (64 bit)
pphl = (AH+AL)*(BH+BL) (66 bit)
product = {pphh,ppll} + (pphl - pphh - ppll) << 32

This formulation requires additional add/subtract logic, and uses three rather than
four multipliers. For high widths, you can recursively apply the algorithm to the
partial product multipliers. Stratix II and Stratix III device families support extremely
efficient DSP block multiplication up to 36 x 36 bits, making this is a good size for
partial products. Adding numbers in the 64-bit range with adequate system speed
requires some care. In particular, it requires considerable time to route from the DSP
block output registers to adder inputs. To alleviate DSP routing pressure, the example
file uses 3:2 compressors rather than carry chain adders to group the results. The final
propagate adder is pipelined with latency two.

Example files
arithmetic/lc_mult_signed.v

arithmetic/lc_mult_signed_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–14 Chapter 2: Arithmetic
Multiplication of Large Integers (Karatsuba Algorithm)
The partial product summation in the example file is optimized to exploit the shifting
pattern of the inputs, as shown in Figure 2–15.

In Figure 2–15, the product breaks into three distinct regions which are handled
separately. The extra “ones” on the least significant end of the middle region complete
the two’s complement negations (negative x = ~x + 1). The low order region is simply
ppll[31:0] and requires no further work.

The first compressor array handles a part of the middle region of the product. The
term pphl generates one clock cycle later and is not yet included in the pattern shown
in Figure 2–15. Note that the +ones are deferred to make the implementation more
efficient.

As shown in Figure 2–16 on page 2–14, the second compressor incorporates pphl and
completes the deferred +one, and it is followed by a propagate adder to form the final
sum. The final sum is positive and is equal to {pphh,ppll}[96:32] + AH*BL + AL*BH.

Figure 2–15. Shifting Pattern

Figure 2–16. Second Compressor

 x127 x126 …x97 x96 x95 …x32 x31 x30 …x0

1 1 … 1 1 x’95 …x’32
 1

1 1 … 1 1 x’95 …x’32
 1

 x97 x96 x95 …x32

31 bits 65 bits 32 bits

{pphh,ppll}

-pphh

-ppll

+pphl

31 bits 65 bits 32 bits

{pphh,ppll}

-pphh

-ppll

sum

carry

x96 x95 …x33 x32

 1 x’95 …x’33 x’32

 1 x’95 …x’33 x’32

x96 y95 …y33 y32

y96 y95 …y33 1 1

Owe 2

Owe 1
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–15
Division (Unsigned Integer)
As shown in Figure 2–17, the high order region of the product is equal to pphh[63:33]
+ s97 from the second compressor. To improve speed, pphh[63:33] + 1 is precomputed,
and s97 is used to select between pphh[63:33] and the precomputed increment.

The example design is a fully pipelined 64 x 64 bit multiply with a latency of 6. It uses
three 36 x 36 bit pipelined DSP block multipliers implemented in the sample file
mult_3tick.v. The adder/compressor logic occupies 431 combinational cells. The
pipeline registers are implemented in 520 cell registers and a small inferred
RAM-based shifter. You can disable the RAM inference with synthesis assignments or
a “synthesis preserve” attribute. Operating frequency on a 2S15C3 device is
approximately 265 MHz.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Division (Unsigned Integer)
The lpm_divide megafunction implements a full division network with variable
pipeline, producing one result per clock tick, but uses substantial area to do so. If N or
N/2 ticks are available to operate on an N bit problem, then a much more efficient
iterative algorithm is available.

Figure 2–17. Second Compressor

Example files

arithmetic/compress_32.v

arithmetic/pipeline_add_msb.v

arithmetic/mult_3tick.v

arithmetic/karatsuba_mult.v

arithmetic/karatsuba_mult_tb.v

31 bits 65 bits 32 bits

Owe 1
sum y96 y95 …y33 y32

carry y96 y95 …y33 1 1

+pphl y97 y96 y95 …y33 y32

sum z96 z95 …z33 z32

carry z96 z95 …z33 z97 1

 y’97

final sum s96 s95 …s33 s32 s97

Figure 2–18. Division

-

Circular shift

Division datpath

numeratorworkspace

denominator

difference
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–16 Chapter 2: Arithmetic
CORDIC
The circuit works using the elementary school algorithm of studying the numerator
from left to right. When “difference“ is negative, the next quotient bit is 0 and
“workspace“ is untouched. When “difference“ is zero or positive, the next quotient bit
is set to one and “workspace“ is overwritten with the “difference“ value. The quotient
bits accumulate in the “numerator“ register, and the remainder accumulates in the
“workspace“ as the clock progresses. The “ready“ signal indicates completion in the
example files (Figure 2–18).

It is possible to reduce the computation latency by studying more bits in parallel. For
the radix-4 (two bits), case differences are computed for the denominator,
2*denominator, and 3*denominator using three parallel subtractors. Each tick decides
the next two bits of quotient.

The example file and test bench file contain regular and radix-4 unsigned iterative
dividers. For 32x32 bit data, the regular divider uses 154 ALUTs and operates at
257 MHz. The radix-4 uses 270 ALUTs and operates at 211 MHz.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CORDIC
CORDIC is an iterative approximation algorithm for computing trigonometric
functions. The hardware is a shift-add system which can be easily tailored for
precision/area tradeoff. The algorithm was designed in 1959 by Jack Volder for a
navigation system called the Coordinate Rotation Digital Computer. Modern
applications are typically resource constrained DSP systems.

The CORDIC equations start with basic vector rotation:

x' = x cos (A) - y sin (A)

y' = y cos (A) + x sin (A)

These are manipulated with trig identities to become:

x' = cos (A) * (x - y tan (A))

y' = cos (A) * (y + x tan (A))

CORDIC restricts the angle A to cases where tan(A) is a power of two. Multiplying by
powers of two is equivalent to shifting in binary hardware. Each iteration considers a
rotation of either A or -A. The angle A decreases by roughly half with each iteration
converging toward the result. The value of cos (A) is the same as cos (-A) so the
decision equations can be reformulated to:

x[i+1] = K[i] * x[i] - y[i] * d[i] * 2^-i

y[i+1] = K[i] * y[i] + x[i] * d[i] * 2^-i

where d is a decision constant 1 or -1 for the rotation direction, K is a scaling constant,
and i is the iteration number from 0 up to the desired iteration count. Each iteration
will add approximately 1 bit of precision to the computed result.

Example files
arithmetic/divider.v

arithmetic/divider_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 2: Arithmetic 2–17
CORDIC
The example design has X and Y registers that directly implement the functions
above. The division by powers of two is implemented by selecting earlier output taps.
Some extra logic is necessary to handle sign extension as the bits are exhausted. The
third register Z is an angle accumulator. It follows the d variable using a small inverse
tangent ROM implemented in LUTs. The angle accumulator does not directly interact
with X or Y, it could be changed to a different angle unit without changing overall
functionality.

CORDIC has two basic modes called rotation and vectoring. In rotation mode X is
initialized to a constant, Y to 0, and Z to an angle. The system iteratively minimizes
the angle Z from available steps. The final result is the scaled sine and cosine of the
input angle in Y and X respectively, with Z approximately 0. If the X constant is
initialized to the inverse of the rotator gain (about 0.607) then the outputs are
unscaled. Other X constants can be used to save a multipler in DSP contexts.

Vectoring mode starts with a point X,Y with Z=0. The vector is rotated to the X axis by
minimizing Y. The Z result is the rotation angle of the original point, Y is
approximately zero, and X is the magnitude of the original vector multiplied by a gain
constant (about 1.647).

Figure 2–19. CORDIC rotation mode

Figure 2–20. CORDIC vectoring mode

Given angle A

Goal y = sin(A), x = cos(A)

Given point x,y

Goal

z = A, x = magnitude
July 2011 Altera Corporation Advanced Synthesis Cookbook

2–18 Chapter 2: Arithmetic
CORDIC
The example supports both modes controlled by an input signal. The testbench
includes the exact gain constants in fixed point signed binary. A variety of related
trigonometric, hyperbolic, and linear functions can be computed with minor
hardware modifications.

In FPGA hardware there are three reasonable CORDIC implementations: Bit serial
iterative, word iterative, and unrolled. Bit serial iterative uses 1 clock tick per bit per
iteration. The hardware is tiny and fast. Word iterative is not attractive because the
2^-i terms in X and Y require barrel shifters. Barrel shifters are relatively expensive
and slow. The bit serial version can largely bridge the throughput gap with increased
clock speed. The fully unrolled topology is interesting because the shifts become
wiring, the ROM becomes constant inputs, and the control logic disappears. The
unrolled CORDIC can be pipelined to generate a result on every clock cycle. The
unrolled area is significant, approximately (3 * bits per word * rounds) / 2 ALEs.
Speed is limited by the word sized addsub unit.

The example design implements a bit serial iterative CORDIC processor with 14
rounds on 16 bit words. It costs approximately 40 ALEs and operates at over 400
MHz. Data shifts in and results out during the valid signal as demonstrated in the test
bench. The rotation / vectoring mode signal is unregistered. You need to exercise
some care to avoid switching modes during a computation.

The numbers used in the example design are signed fixed point format with bit
weights [-2, 1, 1/2, 1/4, 1/8, 1/16, … 1/16384]. X and Y must use the same
numbering system Z could use a different one if desired. The Z inputs are restricted to
the range -pi/2 .. pi/2 radians by the algorithm assumptions. X and Y inputs must not
overflow when summed in the first round so for this example X+Y must be less than
2. The C program attached converts floating point numbers to this format, and
generates the appropriate arctangent table in verilog syntax. It is provided to facilitate
modifications to the example design.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

f For more discussion of CORDIC, refer to Anraka, Ray "A survey of CORDIC
algorithms in FPGA based computers" appearing in FPGA 98.

Example files

arithmetic/cordic.v

arithmetic/cordic_tb.v

arithmetic/iter_addsub.v

arithmetic/cordic_angle_table.cpp
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
3. Floating Point Tricks
Floating Point to Fixed Point Conversion
Single precision IEEE floating point numbers are stored in 32 bits in the following
format:

bit 31 : sign
bits 30:23 : exponent
bits 22:0 mantissa

The equivalent value is 1.mantisa x 2**(exponent – 127).

1 Exceptional cases for dealing with infinity and denormalized numbers are not
supported by these example files.

When operating in a tight range of numbers, convert to fixed point to reduce
hardware cost. Fixed point numbers are viewed as integers multiplied by an
unspoken power of 2. The exact power of two can be changed during calculation with
bit shifting.

Moving from fixed to floating point requires scaling to obtain the implied leading 1.
This is best accomplished with a modified barrel shifter. The barrel shifter must have a
self-determined select which moves the data left until the most significant bit becomes
a 1. The barrel shift method is demonstrated in the sample file scale_up.v. For more
efficient iterative versions, use a linear or logarithmic shift register instead. For faster
pipelined versions, embed registers between barrel shift layers. The hardware speed
and cost are heavily dependent on the fixed point size.

Moving from floating to fixed point is more efficient because the shift distance can be
computed directly from the float exponent.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Approximate Square Root
The computer graphics community has developed an impressive series of techniques
for approximating floating point computations involving casting floating point
numbers to 32-bit integers, then manipulating them directly.

Example file

float/scale_up.v

float/fixed_to_float.v

float/float_to_fixed.v

float/fixed_to_float_tb.v (uses both example files)
Advanced Synthesis Cookbook

3–2 Chapter 3: Floating Point Tricks
Approximate Inverse Square Root
The example file computes sqrt(x) using two adders and a shift. The adders have a
large string of zeros on the less significant end, and the shifter is free. The resulting
circuit cost is 17 ALUTs and has a provable maximum error of 6 percent.

Approximate Inverse Square Root
Computing 1 / (sqrt (x)) is useful for normalizing vectors. This example contains a
very efficient first order approximation similar to the square root example.
Additionally, it also has a parameter CORRECTION_ROUND, which adds a Newton
refinement step.

This function is difficult to analyze in terms of error bound. For an engineering proof,
the test bench evaluates 100,000 random x values. With the first order approximation,
there are 64,891 values, which have an error of two to five percent. The rest have less
than two percent error. When the correction round is enabled, all values have less than
two percent error. Always confirm the results on the typical data range of your
application.

With correction the circuit uses approximately 250 ALUTs and three 18x18 multipliers.
The correction circuitry is fully pipelined with a latency of six. Without correction the
circuit is one 32-bit subtractor.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

The test bench uses a table of sample problems and error ranges loaded from the
example file inv_sqrt.tbl. The C program was used to generate the table. It is included
for experimenting with other data ranges.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Approximate Floating Point Divide (Single Precision)
The IEEE single-precision floating-point divide function requires considerable logic
area. The Altera floating-point divide megafunction uses approximately 1700 ALUTs
and 845 memory bits for the default implementation. The example file demonstrates
an approximation algorithm which allows 2% computational error in return for area
reduction. This approximation requires 152 ALUT and one DSP multiplier block. It is
fully pipelined with a latency of 5.

Example files
float/approx_fp_sqrt.v

float/approx_fp_sqrt_tb.v

Example files
float/approx_fp_inv_sqrt.v

float/approx_fp_inv_sqrt_tb.v

Example files
float/test_stimulus.cpp

float/inv_sqrt.tbl
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 3: Floating Point Tricks 3–3
Approximate Floating Point Divide (Single Precision)
The quotient “A/B” is represented as the product of “A” and “1/B.” The “1/B” term
is an approximation based on the most significant fraction bits of “B,” as shown in the
following example:

E 1/B = 1 / (1.B[22]B[21]B[20]B[19]B[18]B[17] + 0.000001)
where B = 1.B[22]B[21]…B[0]

The “E” computation is implemented as a 6-input 7-output look up implemented in
the example file approx_fp_div_lut.v. The contents were generated with the small C
program div_tbl_gen.cpp. “E” is always an underestimate of “1/B.” The exponent
portion is computed directly by subtraction, and the multiplication is implemented in
a fully pipelined DSP block as shown in example file mult_3tick.v. It is difficult to
attain the fastest pipeline implementation with a generic “*” implementation.

Test bench simulation of this example requires a floating-point helper DLL. The DLL
source files are in the utility directory. The build script is in the example file
build_float_vpi.sh.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file

float/approx_fp_div.v

float/approx_fp_div_lut.v

float/approx_fp_div_tb.v

float/mult_3tick.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
4. Translation and Format Conversion
One-Hot Decoder (Binary to One-Hot)
To convert a binary number to one-hot outputs, use single LUTs for up to 64 outputs
(6 encoded inputs). Each LUT produces one output signal. For higher input counts,
partition the input into 6-bit groups, then decode each group and merge the group
with AND gates to create the final outputs.

The Quartus II Analysis and Synthesis automatically maps decoder structures in this
way. Use the following simple formulation:

always @(in) begin
out = 0;
out[in] = 1'b1;

end

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

One-Hot to Binary
To convert an array of one-hot lines to binary, use an array of OR gates. Each OR gate
reads half of the one-hot lines. The input pattern corresponds to the binary
representation of the one-hot signal index: OR gate “0” reads every other input line,
OR gate “1” reads alternate pairs, OR gate “2” reads alternate groups of four, and so on.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Mask Generation
Generating binary bit masks for clipping data or masking RAM inputs is similar to
implementation of one-hot decoding. Arbitrary functions of up to six inputs can be
implemented in single LUTs per output bit by using a simple case statement as
shown in the following example:

always @(in) begin
case (in)

4'd0: mask=16'b1000000000000000;
4'd1: mask=16'b1100000000000000;
4'd2: mask=16'b1110000000000000;
4'd3: mask=16'b1111000000000000;
4'd4: mask=16'b1111100000000000;
4'd5: mask=16'b1111110000000000;
4'd6: mask=16'b1111111000000000;

Example files
translation/one_hot.v

translation/one_hot_tb.v

Example file translation/onehot_to_bin.v
Advanced Synthesis Cookbook

4–2 Chapter 4: Translation and Format Conversion
Binary-to-Gray Conversion
4'd7: mask=16'b1111111100000000;
4'd8: mask=16'b1111111110000000;
4'd9: mask=16'b1111111111000000;
4'd10: mask=16'b1111111111100000;
4'd11: mask=16'b1111111111110000;
4'd12: mask=16'b1111111111111000;
4'd13: mask=16'b1111111111111100;
4'd14: mask=16'b1111111111111110;
4'd15: mask=16'b1111111111111111;
default: mask=0;

endcase

In this example, the extracted logic is 16 4-LUTs. Note that some minimization and
factoring occurs. For example, the MSB is stuck at 1, and output bit 7 is equivalent to
the most significant input bit. When the optimization technique value is set to SPEED,
the resulting logic has depth of one. When using the default value BALANCED, the logic
may be factored to improve area at the expense of depth.

The example files contain several variations of 16 and 32-bit masking, including the
small C program used to generate the example files.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Binary-to-Gray Conversion
An efficient binary-to-gray conversion is implemented using an array of 2 input
XOR gates. WIDTH -1 gates are required to convert a WIDTH bit value. Note that the
output of the converter is not necessarily glitch-free and must be reregistered before
passing across clock boundaries.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

translation/mask_16.v

translation/mask_32.v

translation/make_mask.cpp

translation/mask_tb.v

Example file translation/bin_to_gray.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 4: Translation and Format Conversion 4–3
Gray-To-Binary Conversion
Gray-To-Binary Conversion
Gray-to-binary conversion is less economical than binary-to-gray conversion (see
“Binary-to-Gray Conversion” on page 4–2 for more information on binary-to-gray).
The functionality of this conversion is essentially a chain of 2-input XOR gates with
taps representing the binary outputs. To avoid deep propagation paths, the synthesis
tool duplicates and flattens portions of the XOR chain, creating wider, shallower gates,
implementing up to six bits in single LUTs. Beyond this width, the synthesis tool
evaluates speed versus area, and makes trade-off determinations. This causes a
certain amount of speed and area variability.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Seven Segment Display Driver
As with one-hot decoders, it is best to treat the seven segment display as a small ROM
implemented in a case statement. The following example uses one 4-LUT for each of
the 7 output bits. This pattern is dependent on all inputs for all output bits, so no
additional minimization takes place.

case(bin)
4'h0: seg = 7'b1000000; // out = 0 indicates lit
4'h1: seg = 7'b1111001; // ---0---
4'h2: seg = 7'b0100100; // | |
4'h3: seg = 7'b0110000; // 5 1
4'h4: seg = 7'b0011001; // | |

 4'h5: seg = 7'b0010010; // ---6---
4'h6: seg = 7'b0000010; // | |
4'h7: seg = 7'b1111000; // 4 2
4'h8: seg = 7'b0000000; // | |
4'h9: seg = 7'b0011000; // ---3---
4'ha: seg = 7'b0001000;
4'hb: seg = 7'b0000011;
4'hc: seg = 7'b1000110;
4'hd: seg = 7'b0100001;
4'he: seg = 7'b0000110;
4'hf: seg = 7'b0001110;
default : seg = 7'b1111111;

endcase

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

This example implements an 8-bit input rather than a 4-bit input. It approximates
alphabetic letters stored in normal ASCII coding, and can be driven from Verilog HDL
strings by using double quotation characters, as shown in the following example:

wire foo [15:0] = "ALTR";

Example files
translation/bin_to_gray.v

translation/gray_tb.v

Example file translation/bin_to_7seg.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

4–4 Chapter 4: Translation and Format Conversion
Binary-to-ASCII Hexadecimal Conversion
1 Some of these approximations are incomplete alphabetic letters, but still useful for
debugging.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Binary-to-ASCII Hexadecimal Conversion
Translating four bits of binary code to an ASCII hexadecimal byte requires two 3-LUTs
and three 4-LUTs operating in parallel. In this translation, output bit 7 is stuck, and
bits 4, 5, and 6 are derived from the same function.

The METHOD=0 version uses a readable compare/subtract function rather than
proceeding directly to the LUT functions, causing some additional work for the
synthesis tools. METHOD=1 is a case statement generated from METHOD=0 to make the
expected implementation more obvious. This example accepts arbitrary length binary
words, which are padded up to the appropriate 4-bit boundary.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

ASCII to 32 Character Liquid Crystal Display (LCD)
The common 32 character LCD component uses an asynchronous 9 bit wide bus
interface. One bit switches between character data and control instructions. The
remaining eight bits are used to load characters to the peripheral's memory buffer.
The requested initialization procedure is somewhat involved.

This example design is a small state machine that initializes and continuously updates
the display. It uses approximately 140 ALMs. The timing information is derived from
the CLOCK_MHZ parameter. The state machine is interesting because it contains a
subroutine starting with the ST_WRITE state. The subroutine structure is more
readable and slightly smaller than dividing into separate data schedule and write
state machines. It is substantially smaller than duplicating the write behavior where
required.

The input can be set in string format, for example

assign disp_text = "Hello 123"; // 32 characters total

Changes in the input data will be reflected on the display after approximately 1ms.

1 If you connect this controller to your display and experience erratic behavior try over
specifying the CLOCK_MHZ value to get more division. The embedded timing is fast,
relative to typical commercial display specifications.

Example file translation/asc_to_7seg.v

Example file translation/bin_to_asc_hex.v

Example file translation/asc_to_lcd.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 4: Translation and Format Conversion 4–5
ASCII Hexadecimal-to-Binary Conversion
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

ASCII Hexadecimal-to-Binary Conversion
This example translates an uppercase or lowercase ASCII hexadecimal byte to four
bits. There are two versions controlled by the METHOD parameter:

■ METHOD=0—Invalid bytes must generate an output of 4'b0000. This version requires
15 ALUTs and depth two because all eight inputs must be examined by each
output bit.

■ METHOD=1—This version simplifies the requirement to processing valid hex bytes,
requiring four ALUTs and depth one. This illustrates the importance of careful
default behavior selection.

1 Replacing the default condition of METHOD=0 with 4'bxxxx creates a circuit between
zero and one. Industrial CAD tools make local “greedy” decisions on “don’t care”
assignment values due to a combination of infrequent occurrence, high analysis
runtime, and generally disappointing returns. For best results, set “don’t-care” values
by hand.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Binary-to-Decimal/Binary-Coded Decimal Adders
The example discussed in this section includes circuitry for converting 32-bit binary
numbers to binary-coded decimal (BCD), for example, 4'hF converting to 16'h15. The
patterns in the decimal representation of the powers of two cause interesting
minimization opportunities. The most efficient method is to compress bit results
followed by an adder tree, similar to the binary bit population count problem.

The adder tree needs modifications to carry at 10 rather than 16. The bcd_add_chain()
module strings together 4-bit bcd_digit_add() modules to form a variable size BCD
adder.

There are four versions of the digit adder controlled by the METHOD parameter:

■ METHOD=0—Case statement with “don’t cares.” This version does not minimize
well because of the complexity of the ideal “don’t care” pattern.

■ METHOD=1—Adder variant.

■ METHOD=2—Adder variant.

■ METHOD=3—WYSIWYG cells based on METHOD=2. For most applications, METHOD=3 is
the best option.

Example file translation/asc_hex_to_nybble.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

4–6 Chapter 4: Translation and Format Conversion
Binary-to-Decimal/Binary-Coded Decimal Adders
The example file bin_to_dec.v implements a 32-bit to 10-decimal digit translation
using the adder chain discussed above in conjunction with customized compressors.
Each compressor takes 6 wires of the binary input and generates a BCD summation.
The adder tree combines these summations to form the final output. This
implementation uses 514 ALUTs which compares well to alternate structures. Note
that this implementation is not high speed (approximately 14 ns of pin-to-pin delay
on a 2S15C3 device). Additional registers may be required for satisfactory
performance with high input data width.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

translation/bcd_add_chain.v

translation/bin_to_dec.v

translation/bin_to_dec_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
5. Video
YCbCr (4:4:4) to RGB Conversion
The Y (luma) Cb (chroma blue) Cr (chroma red) format is a common intermediate
format in digital video applications. The most common set of formulas takes Y with a
nominal range of 16..235 and Cb and Cr in the 16..240 range. The RGB output range is
from 0 to 255. Signals out of the range saturate to the appropriate values.

Use 9x9 fixed point multipliers in FPGA hardware design. The constants work out
well to 9-bit signed numbers when scaled by 128 with the exception of the blue
constant 2.017. Fortunately, the scaled value of 258 decomposes nicely into 2^8 (256)
and 2^1 (2). The example file implements the majority of the terms in multipliers and
decomposes the last blue term into a shift and add unit.

The test bench compares the result against a real number implementation. Note that
errors can occur from the conversion to fixed point and truncation. The test bench
requirement is that in over a million trials no 8-bit RGB term may deviate from the
ideal result by more than +/–2. The test bench does allow inputs outside the nominal
range. The error bar is smaller with realistic stimulus.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

RGB to Hue Conversion
Hue is a color metric that is independent of lighting conditions. It is combined with
lumience (L) and saturation (S) to form the HLS color system. The commonly used PC
Paint program supports RGB as well as HLS in the color editing dialog for
experimenting. Hue is typically stored as a number between 0 and 239. See
Figure 5–2.

Table 1.

Example files
video/ycbcr_to_rgb.v

video/ycbcr_to_rgb_tb.v

Figure 5–1. Color Arrangement

red 0

green 80 yellow 40

cyan 120

blue 160 magenta 200
Advanced Synthesis Cookbook

5–2 Chapter 5: Video
Sum of Absolute Difference (SAD)
The example design computes an 8-bit hue from 8-bit RGB values. It is designed
around a ROM table of 4096 6-bit words. The 12-bit address limitation costs accuracy,
but keeps the table within one 4K memory block. To recover accuracy when min
(RGB) and max (RGB) are close, use the scaling stage in front of the table address
lines. The test bench compares against the standard hue formula implemented with
real numbers. In over 1 million trials no result deviates by more than +/–2 from the
ideal value.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Sum of Absolute Difference (SAD)
Summing the difference of pixel values is a common step in video processing. It is the
traditional bottleneck of MPEG4 encoding. Two pairs of 8-bit pixels can be compared
efficiently in Stratix II hardware using two subtractors followed by a double addsub
unit. Area cost is 27 arithmetic cells, using nine for each subtractor and nine for the
double addsub chain.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Eight pair_sad units are combined with an adder tree to process a 4x4 array of pixels
to make a typical MPEG-4 SAD unit. Area cost is 260 arithmetic mode cells
(Figure 5–2).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Table 2.

Example files
video/rgb_to_hue.v

video/rgb_to_hue_tb.v

Table 3.

Example file arithmetic/pair_sad.v

Figure 5–2. Sum of Absolute Difference

Table 4.

Example file arithmetic/fourbyfour_sad.v

Image A

SAD = abs(a0-b0) + abs (a1-b1) + ...
+ abs (aF-bF)

Image B

b0

b4

b8

bC

b1

b5

b9

bD

b2

b6

bA

bE

b3

b7

bB

bF

a0

a4

a8

aC

a1

a5

aD

a2

a6

aA

aE

a3

a7

aB

aF

a9
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 5: Video 5–3
VGA Monitor Control
This example is a larger 8x8 SAD computation. The first layer uses the same double
addsub unit as the 4x4 example. The remaining tree is a pipelined binary summation.
Total area is 1200 arithmetic cells. Total latency is 5 cycles. The full pipeline allows the
clock to operate close to the device maximum speed.

The high number of primary input signals (1024) may be a challenge to place and
route. If you are disappointed with the speed it may be worthwhile to experiment
with reordering the X,Y pixel pairs. The first layer of logic pulls together groups of 4
pixels which might otherwise be physically separated.

This is a simple shift register wrapper for speed testing.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

VGA Monitor Control
The most common pitfall when designing a VGA monitor controller is to completely
abandon good synchronous design practices. The relatively low clock speed
requirement tends to prompt unusual structures. Because of the predictable cycle
behavior, it is easy to generate good registered outputs. Refraining from slow
compare paths simplifies placement, leading to better results quality elsewhere in the
design, and an advantage when moving to higher resolution modes.

The example uses a 27 MHz VGA clock and has parameter settings for the common
640x480 video mode. You can modify the timing parameters for other video modes.
The appropriate timing (in microseconds) is available on numerous manufacturer
websites. Divide by the desired clock period to convert from microseconds to clock
ticks (1 microsecond is 10^–6 seconds, the reciprocal of the clock speed in Hz is the
clock period in seconds). When experimenting with the hardware, older CRT displays
are more tolerant of errors than newer LCDs. Most displays include the actual
horizontal and vertical rates in the menu mode.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Table 5.

Example file
video/eightbyeight_sad.v

video/eightbyeight_sad_tb.v

Table 6.

Example file video/eightbyeight_sad_test.v

Table 7.

Example files video/vga_driver.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

5–4 Chapter 5: Video
Character Display
Character Display
This example design inserts simple characters into a video raster memory. The loaded
character set includes upper and lower case alphabet letters, numbers, and a few
punctuation symbols. It does not support alpha blending or other transformations,
but should be adequate for debug or as a starting point for customizations.

The easiest way to get bitmapped representations of a character set into an FPGA is to
use a scripting environment to create a small ROM from a TIFF or BMP graphics file.
The GNU package GIMP (www.gimp.org) or the Paint program included with
Windows XP is suitable for creating the rubric image. This example uses a small C
program to split the image into discrete bitmaps.

The C program reads a 24 bit BMP file. It will analyze the pixels and divide the image
into a character grid from top to bottom, left to right. The characters are converted to a
Verilog ROM, which is captured in font_rom.v

Figure 5–3. font.bmp With Automatically Recognized Rows and Columns

Figure 5–4. Generated ROM Mask For “A”

A B C D E F G
a b c d e f g
0 1 2 3 4 5 6

 11'd0 : out <= 24'b00001111111100000000000;
 11'd1 : out <= 24'b00001111111110000000000;
 11'd2 : out <= 24'b00001111111110000000000;
 11'd3 : out <= 24'b00000001111111000000000;
 11'd4 : out <= 24'b00000001111111000000000;
 11'd5 : out <= 24'b00000011110111100000000;
 11'd6 : out <= 24'b00000011110111100000000;
 11'd7 : out <= 24'b00000011100011100000000;
 11'd8 : out <= 24'b00000111100011110000000;
 11'd9 : out <= 24'b00000111000001110000000;
 11'd10 : out <= 24'b00001111000001111000000;
 11'd11 : out <= 24'b00001111111111111000000;
 11'd12 : out <= 24'b00011111111111111100000;
 11'd13 : out <= 24'b00011111111111111100000;
 11'd14 : out <= 24'b00111100000000011110000;
 11'd15 : out <= 24'b00111100000000011110000;
 11'd16 : out <= 24'b11111111000001111111100;
 11'd17 : out <= 24'b11111111000001111111100;
 11'd18 : out <= 24'b11111111000001111111100;
 11'd19 : out <= 24'b00000000000000000000000;
 11'd20 : out <= 24'b00000000000000000000000;
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 5: Video 5–5
Character Display
Quartus II Analysis & Synthesis will automatically recognize this table as a ROM with
2048 words of 24 bits. It uses 24 memory segments and fits conveniently on all Altera
devices.

The display_char module contains the font_rom block and uses it to schedule writes
to video raster memory. It handles the addressing of the font ROM, the conversion of
font bit slices to horizontal pixels, and the position of the horizontal lines in the raster
memory. This is a good example of how a smart peripheral can simplify the higher
level design.

The raster RAM bus utilization is sparse. The character display only needs write
access. Read cycles can be safely ignored. It makes sense to connect the raster port to a
FIFO or arbiter to allow other components access during the unused cycles.

Display_char_tb.sv is a testbench that triggers a character write and dumps the result
to a text file. After a write the image of the letter B will appear in the raster content in
the frame.bin file.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Table 8.

Example files

video/bmp_to_font.cpp

video/font.bmp

video/font_rom.v

video/display_char.v

video/display_char_tb.sv
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
6. Arbitration
Bitscan (Priority Masking)
The bitscan function takes a set of request lines and allows only the least significant
“1” to propagate. This function is handy for prioritizing interrupt request lines.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Arbiters with Fairness
Bus arbiters generally require a fairness scheme in addition to priority selection. The
most common fairness scheme it to add a “next” signal which indicates a starting
point for request consideration. For example, with request lines numbered 0..7 and
“next” equal to 4, the request on line 4 is considered for a grant first, followed by 5..7,
then by 0..3.

The example design implements an arbiter with a fairness index. The index must be
delivered in one-hot format for this implementation. To accomplish this, generate it
from a round-robin shift register. If this is not possible, it needs a one-hot decoder. The
decoder method is illustrated in the test bench file arbiter_tb.v. The addition of the
one-hot fairness index to a bitscan is an advanced technique that is smaller and faster
than the more common shift-and-OR method.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 6–1. Bitscan Function

Example files
arbitration/bitscan.v

arbitration/bitscan_tb.v

10001110010000

00000000010000

add

request -1

select

Example files
arbitration/arbiter.v

arbitration/arbiter_tb.v
Advanced Synthesis Cookbook

6–2 Chapter 6: Arbitration
Priority Encoding
Priority Encoding
When a binary encoded output is desired from prioritized request lines, there are two
reasonable methods. For smaller input counts, the best implementation is the case
statement. A small C program is the best way to build these. The example file
implements a 6-input priority encoder in exactly 3 LUTs using the case method.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

For larger input sizes, the case statement method becomes infeasible. A reasonable
alternative is to implement a bitscan function as described above followed by a
one-hot to binary conversion array. An appropriate OR gate array is discussed in
Chapter 4, Translation and Format Conversion, in “One-Hot to Binary” on page 4–1.
An additional gate is required to deal with the all-lines-0 case.

Channel Arbiter
This is a sample application of the basic arbiter circuit incorporating fairness. Four
channels with data and packet boundary controls feed a pipelined MUX which is
controlled by a four port arbiter.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files
arbitration/prio_encode.v

arbitration/prio_encode.cpp

Example files
arbitration/tx_4channel_arbiter.v

arbitration/tx_4channel_arbiter_tb.sv
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
7. Multiplexing
Basic Multiplexing (Binary Encoded)
The Stratix II 6-LUT is perfectly suited for 4:1 multiplexer building blocks (4 data and
2 select inputs). The extended input mode facilitates implementing 8:1 blocks, and the
fractured mode handles residual 2:1 multiplexer pairs (Figure 7–1).

Express non-pipelined multiplexers in array notation as shown in the following
example:

assign out = data [sel] ;

The Quartus II Synthesis automatically decomposes large multiplexers into suitable
building blocks. More complex data arrangements can be implemented using case
statements and generate loops. See “Decode/Select Multiplexing” on page 7–1.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Decode/Select Multiplexing
Decode/select multiplexing consists of decoding the select lines, using them to index
data, and recombining the selected data (Figure 7–2).

Figure 7–1. 6-LUT

Example file muxing/simple_mux.v

6 LUT

d0
d1
d2
d3

s0
s1

Figure 7–2. Decode/Select Multiplexing

Data[8]Sel[3]

One-hot
decoder

Selector
(one-hot multiplexer)
Advanced Synthesis Cookbook

7–2 Chapter 7: Multiplexing
If/Else Multiplexing (?: Multiplexing)
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

As a rule of thumb, LUT implementation of binary encoded multiplexers is more
efficient than equivalent decode-select multiplexers. Synthesis tools generally identify
decode-select pairs and convert them to encoded multiplexing logic. The notable
exception is if the select signals already exist in one-hot form. This occurs frequently
when the select lines are driven by a state machine.

The HDL case statement is interpreted as decode-select logic. The following code
implements an 8-output one-hot decoder, and an 8-to-1 selector with several repeated
data bits.

always @(sel or dat) begin
case (sel)

3'd0: out = dat[0];
3'd1: out = dat[1];
3'd2: out = dat[3];
3'd3: out = dat[2];
3'd4: out = 1'b1;
3'd5: out = 1'b0;
3'd6: out = dat[0];
3'd7: out = dat[1];
default: out=0;

endcase

When using decode-select multiplexer logic, it is important to remember that the
synthesis tool studies it closely for an encoded equivalent structure. Adding logic
between the decoder and selector can cause recognition failures and reduced
performance. For example, do not AND a chip select signal with the decoder output
array. Instead, move the AND forward to the multiplexer output.

If/Else Multiplexing (?: Multiplexing)
The extended 7-LUT mode of the Stratix II cell is well suited to if-else structures, and
is automatically applied (Figure 7–3).

The 2:1 multiplexing derived from if-else logic fits naturally into this structure. For
example, this selection fits in a single cell:

Figure 7–3. Multiplexing

E

C

G

ABDF 5 LUT

5 LUT

0
1

Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 7: Multiplexing 7–3
Priority Multiplexing
if (E) begin
if (C) out = A;
else out = B;

end
else begin

if (G) out = D;
else out = F;

end

When using if-else multiplexing, it is important to remember that the statements have
a priority order which can lead to chains of alarming depth.

HDL example:

if (A) out = B;
else if (C) out = D;
else if (E) out = F;
else if (G) out = H;
else ...

The synthesis tools must assume that the select (A, C, E, G) signals require priority
treatment, although this can be an artifact. If you are aware of the relationship of the
select lines or repetition in the data lines, change the HDL to share more of this
information with the CAD tool. This improves runtime and solution quality.

Priority Multiplexing
Speed optimization of true priority multiplexing is an interesting architecture
problem. This section is intended for cases where N select lines pull from N data bits
to create each output bit. The select lines have a priority relationship. The data and
select lines are assumed to be non-constant unique signals. As the proportion of
constants or duplicates increases, the logic should be left to the synthesis tools for
general Boolean factoring.

The 3-bit priority multiplexer fits naturally in a 6 LUT. Two 3-bit units combine with a
5 LUT to form a 6-bit priority multiplexer.

Figure 7–4. Corresponding Logic

0

B

A
0

D

C
0

F

0

H

E…

0
1

0
1

0
1

0
1

G
…

Figure 7–5. Priority Multiplexing

s4
s5

s3

s2
s1
s0
d0

d2
d1

s5
s4
s3
d3

d5
d4
July 2011 Altera Corporation Advanced Synthesis Cookbook

7–4 Chapter 7: Multiplexing
8-to-1 Multiplex Building Blocks
To grow beyond 6 bits, each 6-bit multiplexer block verifies that the more significant
select lines are inactive. The select lines can be ORd together in groups of six. The OR
gates are reusable within a multiplexer as well as across output bits if a bus is being
implemented. The select logic can be implemented as an AND-OR chain in the style
used for the 6:1, or each 6:1 unit can be screened with all of the higher select lines, and
the output fed to a wide OR gate. The former method is more area-efficient. The later
offers more speed for most data widths. The example file implements the speed
method. Expected results with synthesis optimization technique set to SPEED are
depth 2 for 6 bits, depth 3 for 18 bits, and depth 4 for 36 bits.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

8-to-1 Multiplex Building Blocks
To build efficient pipelined multiplexers on Stratix II devices, it is helpful to
understand the 8-to-1 building blocks. The extended mode of the ALM allows
implementation of an 8:1 multiplexer in two cells rather than two and a half cells
using 4:1 and 2:1 blocks. There are two different structures available to implement 8:1
in two ALM (Figure 7–6).

The two 5 LUTs of the 5-5-7 structure share two inputs and can therefore occupy the
same ALM. The 5-5-7 structure offers more place-and-route flexibility, although it has
two cell-to-cell links. The 7-7 structure has less flexibility, but is generally faster and
has the benefit of a single cell-to-cell link and four data signals rather than two
appearing at depth one.

The example design has cell-level Verilog HDL for both implementations, as well as a
generic 8:1 for comparison.

Example files
muxing/priority_mux.v

muxing/priority_mux_tb.v

Figure 7–6. Building Blocks

Example file muxing/eight_to_one.v

5 LUT

d0
d1
d2

s0
s1

5 LUT

d4
d5
d6

s0
s1

7 LUT

d4
d5
d6
d7

s2
s1

7 LUT7 LUT

d0
d1
d2
d3

s2
s1
s0

d7

s0
s1

s2

d3
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 7: Multiplexing 7–5
Barrel Shift
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Barrel Shift
The barrel shift (rotate) function is most efficiently implemented by a sorting network.
For a 2:1 multiplex-based network, each layer resolves one of the select lines. A rotate
right of 8-bit data by distance of 0 to 7 is shown in Figure 7–7 on page 7–5. The first
layer takes the select 0 line and rotates the full data either 0 or 1 step. The second layer
rotates 0 or 2 steps and the third layer rotates 0 or 4 steps. Note that rotating by 5 is
equivalent to rotating by 4 and then further by 1. The order of layers is not important
as long as the wiring pattern is maintained.

For optimal depth on Stratix II devices, use 4:1 multiplexers at each node. Area cost is
generally (# outputs * # distance lines / 2) 6 LUTs. For example, the full range rotation
of a 16-bit word requires log2(16) = 4 distance lines. Each level of 4:1 multiplexing
resolves two distance lines, so implementation requires two levels of 16-4:1
multiplexers for a total cost of 32 6 LUTs. Odd distance line counts require an
additional level of 2:1 multiplexing.

Constants or unusual repetition in the input data can cause the synthesis tool to
disturb the sorting network, negatively affecting speed. To avoid this problem, select
SPEED optimization for barrel shift networks, and inspect the results closely for any
undesired changes.

At a high level, the barrel shifter can be expressed as a shift of concatenated input
data, as shown in the following example:

// out = tmp rotate right by dist
tmp = {din,din}
out = tmp >> dist;

Non-rotating shift-left and shift-right are implemented as barrel shifters, with GND
replacing data on the fringes and subsequent minimization. The area requirements are
difficult to express, but bounded by the barrel shift area.

Figure 7–7. Barrel Shift

Rotate by
0 or 1

Rotate by
0 or 2

Rotate by
0 or 4

d0
d1

s0

d2

d3

d4

d5

d6

d7

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

s1
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

s2
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

July 2011 Altera Corporation Advanced Synthesis Cookbook

7–6 Chapter 7: Multiplexing
Use of Register Secondary Signals for Multiplexing
Building an explicit sorting network, as demonstrated in the example design, is
necessary for custom pipelining. Additionally, it saves synthesis runtime for larger
barrel systems, although it is not likely to change the final result.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Use of Register Secondary Signals for Multiplexing
The Stratix II register has built-in LAB-wide secondary signals that you can use to
enhance pipelined multiplexing (Figure 7–8). The use of secondary signals introduces
place-and-route restrictions, so inspect them carefully. The synthesis tools have
built-in heuristics for analyzing routing impact, and infer secondary logic as
appropriate. Always use caution when forcing secondary use through assignments or
WYSIWYG. See Chapter 9, Storage, for more information.

The synchronous load (SLOAD) signal is most applicable to multiplexer construction. It
can be driven by a select line to implement an additional level of 2:1 multiplexing in a
pipeline stage without using additional LUT logic. This is useful in barrel shifting
contexts where the select line fan-out is naturally high.

Example file muxing/barrel_shift.v

Figure 7–8. Use of Stratix II Register Secondary Signals for Multiplexing

aclrsclrsload

datain

clk

aload

regoutCLR

LD

D Q

DATA
EN

adatasdata
0
1

ena

Figure 7–9. Pipelined Sorting Networks

S0,1 S2,3 S4,5

Sorting network is based on 4:1
multiplexer blocks, 6 lines resolved
in latency three.

Sorting networkis based on 4:1 multiplexer
blocks and SLOAD registers, 6 lines
resolved in latency two.

S0,1 S3,4

SLOAD=S2SLOAD=S5

register

register

register

register

register
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 7: Multiplexing 7–7
Bus Multiplexing
Bus Multiplexing
The ideal architecture for selecting between N independent K-bit words is an array of
K N to 1 multiplexers. The structure can change a bit if the data words are repetitive.
The synthesis tools can analyze repetition in the data and adapt accordingly. If certain
data words are not needed, it is a good rule of thumb to connect the unused words to
adjacent used data. The use of don’t care (X) can result in odd simulation behaviors.
You can also use ground (000...) for unused data.

Bus multiplexers can be expressed concisely using two-dimensional array notation
using System Verilog, but this practice is often unused due to historically inconsistent
support. Instead, you can store data words concatenated together. The example file
barrel_shift.v selects between words of concatenated data. For example, with data
input {dog, cat, bear, fish}, and select = 2'b01, the “bear” data word is routed to the
output.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Pipelined Bus Multiplexing
This example file pipelined_word_mux.v adds pipeline registers to the bus
multiplexer structure. For high-speed operation, it is best to register between 4:1
multiplexer layers. This is controlled by the SELECTS_PER_LAYER parameter. The
default setting is 2, and this setting corresponds to 2^2 or 4 to 1 multiplexers. You can
also use a setting of 3 which uses 8:1 multiplexers. Pipelining after each 2:1
multiplexers works well in 4-LUT families, but tends to overuse routing in 6-LUTs.
The data-to-output latency is:

(log base 2 (data words) / SELECTS_PER_LAYER)

The parameter BALANCE_SELECTS controls the select line latency. When the
BALANCE_SELECTS parameter value is set to the default of 1, the design inserts
additional registers to balance the select and data latency. In other words, the design is
functionally equivalent to a multiplexer followed by output registers. With balancing
turned off, the select line latency varies between a value of 1 and the maximum data
latency. This feature can save some registers in cases where the control logic can
handle the variable latency.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file muxing/barrel_shift.v

Example file
muxing/pipelined_word_mux.v

muxing/pipelined_word_mux_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

7–8 Chapter 7: Multiplexing
Word Muxing 20:5
Word Muxing 20:5
A common need in streaming applications is to resize the number of data words. The
circuitry is a restricted case of gearboxing, refer to communication section. Word
muxes typically do not require slipping capability and operate on smaller more
regular widths. As with gearboxing it is more efficient in FPGA fabric to use flow
control signals than to change the clock rate.

This example converts between a 20 word stream and a 5 word stream with four times
more activity.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Word Muxing 20:8
This example is analogous to the 20:5 word MUX, using 8 words rather than 5. Due to
20 not being divisible by 8 the internal state is slightly more complex.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

muxing/five_to_twenty.v

muxing/twenty_to_five.v

muxing/twenty_to_five_tb.sv

Example files

muxing/eight_to_twenty.v

muxing/twenty_to_eight.v

muxing/twenty_to_eight_tb.sv
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
8. Comparison and Adder Detection
Bus Equality (A == B)
Equality comparison is easy to implement with the Verilog HDL “==“ operator. Poor
depth decompositions can result from bitwise “for“ loop implementation, so compare
at the bus level. For hand-pipelining, the optimal structure is 6-LUT leaves feeding a
wide output comb gate.

The example file implements a pipelined 64-bit equality compare. It has a latency of
three, and a single level of LUT logic between registers.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Mapping Wide Single-Output Functions to the Carry Chain
Most wide-input Boolean functions can be rephrased for implementation on the
built-in carry and shared arithmetic chains. Chain implementation guarantees that
cell-to-cell connections use the fast dedicated routing links rather than general
purpose routing. Carry chains fix relative cell placement, restricting the
place-and-route tool. It is not unusual for carry chain implementations to be slightly
slower than unstructured logic; however, the worst case routing is better (Figure 8–1).

The carry chain has no internal general routing links and the LUT equivalent has six
routing links. For some speed loss, you can eliminate the scenario where one internal
link is extremely slow. This routing risk-averse style is common in CPU, ALU, and
microcontroller designs.

The Stratix II cell has enough input signals to implement 1, 2, or 3 bits of AND gate per
arithmetic cell. 1-bit per cell is shown in the code sample:

and_out = carry out (and_ins + 1'b1);

The addition carries out only when the and_ins constant is 1'b111...111. You can
implement 2- or 3-bits per cell using the LUT in front of the adder to pre-AND pairs or
triplets.

Example file compare/pipe_equal.v

Figure 8–1. Carry Chain Versus Unstructured Logic

30 input carry chain
Area 5 ALM

30 LUT function
Area ~5 ALM
Advanced Synthesis Cookbook

8–2 Chapter 8: Comparison and Adder Detection
Equal to Constant
Table 8–1 lists the area and longest register-to-register delay for the carry_and.v
example design surrounded by registers for various input widths.

Table 8–1 shows some falloff in the rate of speed improvement as the number of
bits-per-cell increases due to increased routing difficulty. Essentially, the maximum
density chain AND gate is slightly worse than the unstructured AND, however, the
routing is guaranteed.

Other functions can be constructed by applying Demorgan’s theorem or manipulating
the constant addition. It is not possible to obtain all wide functions in this manner due
to the fixed carry backbone circuitry (for example, XORs).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Equal to Constant
Comparing a bus input to a constant value is a special case of the wide AND gate,
where input signals associated with 0 bits are inverted. It maps efficiently to 6 LUTs
with log base 6 (number of inputs) depth, and can be implemented using a carry chain
AND gate for predictability, as shown in METHOD=1 of the example file.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Less than Constant
You can efficiently compare an input bus to a constant value in unstructured logic
using the following:

assign out = dat < CONST_VAL;

Table 8–1. Area and Longest Register-to-Register Delay for the carry_and.v Example Design
(Implemented in Stratix II devices)

AND width Plain 1 Per Cell 2 Per Cell 3 Per Cell

16
1.153 ns 1.396 ns 1.242 ns 1.208 ns

5 comb 16 comb 8 comb 7 comb

32
1.483 ns 2.183 ns 1.546 ns 1.445 ns

9 comb 32 comb 16 comb 12 comb

64
1.900 ns 3.749 ns 2.464 ns 2.015 ns

19 comb 64 comb 32 comb 23 comb

128
2.418 ns 6.874 ns 4.033 ns 3.217 ns

37 comb 128 comb 64 comb 44 comb

Example file compare/carry_and.v

Example file compare/equal_const.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 8: Comparison and Adder Detection 8–3
Address in Range Comparison (LOWER <= addr < UPPER)
You can also use the carry chain implementation. For example, one bit-per-cell is a
simple subtraction, as shown in the following construction:
A < B

Equivalent to A–B < 0
Equivalent to A–B most significant bit is a 1 in two’s complement.

The following code fragment expresses the example in Verilog HDL:

wire [WIDTH:0] chain;
assign chain = dat - CONST_VAL;
assign out = chain[WIDTH];

Increasing the density to two and three bits-per-cell is more complex. The subtraction
result is rephrased in terms of generate and propagate carry, exploiting the fact that
the SUM signal is not required, only the CARRY signal is required. All of these methods
are demonstrated in the example file less_than_const.v. The LESS–THAN function has a
linear inherent structure making the carry chain a natural implementation choice. In
many cases the carry LESS-THAN is faster than random logic.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Address in Range Comparison (LOWER <= addr < UPPER)
This function occurs frequently when generating device select signals. When
detecting multiple adjacent ranges, reuse comparators for efficiency (Figure 8–2).

When generating only one in-range signal or dealing with non-adjacent ranges, there
is a clever implementation which allows you to merge the comparator logic
(Figure 8–3).

Given that the upper bound constant is greater than the lower bound constant, at
some point there is a 1 in the upper position and a 0 in the lower position, searching
from the most significant end. The bits above that point match and are denoted with a
“C.“ The address is in range when the following conditions are true:

Example file compare/less_than_const.v

Figure 8–2. Address in Range Comparison Function

Figure 8–3. Comparator Logic Merging Derivation

< 100< 1a0< 200

Address[]

Select[0]Select[1]Select[2]Select[3]

< 2f00

Upper bound

Address

Lower bound

<

<=

C

Address

C

<

<=

1

0

U

L

July 2011 Altera Corporation Advanced Synthesis Cookbook

8–4 Chapter 8: Comparison and Adder Detection
Match or Inverse Match
■ The most significant address bits match C

■ The remainder of the address bits are between the bounds 1U and 0L

If the address bit in the 1/0 position is a 1, then it is above the lower bound, and needs
only to be compared to the upper bound constant U. Similarly, if the 1/0 address bit is
a 0, it needs only to be checked against the lower bound constant L (Figure 8–4).

You can merge and pack the selectable comparison (shown on the right in Figure 8–3)
into the same shared carry chain to achieve two bits of comparison per cell. Setting the
WYSIWYG LUT masks for this function can be delicate. It is implemented in the
over_under.v example file.

The equality comparator can be implemented as a continuation of the carry chain
with 3 bits per cell; however, the general logic fabric is superior in the majority of
cases. The in_range.v example combines an equality compare and an over_under unit
to implement the entire range comparison operation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Match or Inverse Match
Note that this function is a generalized version of the Ethernet FCS error detect with
“stomping.” To determine if binary words are matching or opposite, you can use the
following function, however, do not use this directly in Verilog HDL:

(bus_a == bus_b) || (bus_a == ~bus_b)

There is an efficient 6 LUT structure that reuses the leaf nodes to implement both
halves of the comparison simultaneously. It is roughly half the size of the traditional
dual comparator, and in most cases faster (Figure 8–5 on page 8–4).

Figure 8–4. Logic Merging

Example files
compare/over_under.v

compare/in_range.v

>=L

common 1/0

< U

remaining

1 0

In range

Address []

 == C

Figure 8–5. Matching

eq || op

a b

eq || op

a b

eq || op

a b

eq || op
…Extend to
desired width
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 8: Comparison and Adder Detection 8–5
Min and Max / Variable Sign Comparison
Decompose the problem recursively into 3-bit sub problems implemented in 6--LUTs.
The rightmost LUT in Figure 8–5 compares bits 2..0 from the A and B busses. Its
output is a 1 when the 3-bit signals are equal or opposite, for example, A=“110“ and
B=“110,“ or A = “101“ and B = “010.“ Additional comparisons are necessary to verify
that the clusters of three agree on the sense of the match. The leftmost LUT in
Figure 8–5 operates on one bit from each sub problem to verify that the other LUTs are
in agreement on matching, or in agreement on inverted matching, and not a mixture.
You can extend the structure to arbitrary bus width. The maximum depth grows
slowly (log base 6) with the width of the output AND gate.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Min and Max / Variable Sign Comparison
Generating the min and max of two numbers (min = (a<b) ? a : b) is required in
many video processing contexts. The circuit requires a “less than“ comparator and an
array of 2:1 multiplexers for each output bus. Min- or max-only variants are common
in Viterbi implementations.

Comparison with a dynamic signed/unsigned control is surprisingly efficient. The
sign control is used only when comparing the most significant bit pair of the data.
There are two reasonable implementations of the comparator: flattened logic and
carry chain. For Stratix II devices, the flattened logic is generally more efficient. There
are also two reasonable implementations of the 2:1 mulitplexer array: 3-LUT and
register SLOAD MUX. The SLOAD MUX results in area savings, and the 3-LUT
variant produces higher clock speeds. The example design uses a random logic
comparator and has parameter control for the multiplexer.

The modules min_max_signed and min_max_unsigned are generic fixed sign units
provided for testing. The module min_max_8bit is a hand-factored variable sign
version designed for video. To change the data width, you must extend the
comparator.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file compare/match_or_inv.v

Example files
compare/min_max.v

compare/min_max_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
9. Storage
Register Banks
Figure 9–1 illustrates a Stratix II LE register:

The following code sample is the Verilog HDL equivalent of Figure 9–1 (excluding
aload):

always @(posedge clk or posedge aclr) begin
if (aclr) q <= 0;
else begin

if (ena) begin
if (sclr) q <= 0;
else if (sload) q <= sdata;
else q <= d;

end
end

end

The aload port can be difficult to use without introducing ambiguities and race
conditions to the logic. Whenever possible, use the ACLR for system reset and the
SLOAD to load the desired state.

The synthesis tools automatically infer the use of register secondary signals, taking
into account surrounding logic and routability concerns. It is important to remember
that secondary signals are LAB-wide, so creating a very large number of low fan-out
secondary signals can harm fitting. As a conservative guideline, assume that only
registers that use the same set of control signals [ENA, CLK, ACLR, SLOAD, SCLR] can
occupy the same LAB, and that any secondary signal should feed at least 16 registers
with a target of 32 or higher.

Cautions aside, the register bank is an excellent construct for dictating secondary
signals: there is guaranteed minimum fan-out and closely related functionality. The
common functionality and use as a block tends to draw the bits together during
place-and-route. If place-and-route benefits from having the registers together, then
the secondary signals become added information.

Figure 9–1. Stratix II LE Register

Example file storage/register_bank.v

aclrsclrsload

datain

clk

aload

regout
CLR

LD

QD

DATA
EN

adatasdata
0

1

ena
Advanced Synthesis Cookbook

9–2 Chapter 9: Storage
24-Bit/16-Bit Stream Buffers (RGB/Memory Buffer)
f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

24-Bit/16-Bit Stream Buffers (RGB/Memory Buffer)
This example converts a 24-bit input stream to a 16-bit stream, and back. The original
application moved an RGB video stream through a word oriented RAM buffer. This is
a good example of complex shift register behavior, and you do not have to go through
the difficult process of figuring out the necessary states on paper.

The storage shift registers are the bulk of the area cost; 73 ALUTs for the 2 to 3-byte
case, and 91 ALUTs for the 3 to 2-byte side. In general, the control logic mapping is
determined by the synthesis tool. The Quartus II software, version 6.1 and later, takes
advantage of the SCLR parameter for the rst signal, and some SLOAD and ENABLE.
These can fluctuate if the acknowledge and valid signals are driven by external gates.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

RAM-Based Shift Register
Use RAM blocks to implement larger shift registers. The Quartus II Synthesis infers
RAM-based shift registers (altshift_taps) automatically. There are restrictions on the
number and placement of output taps. RAM shift registers are most efficient when
taps are evenly spaced and widely separated.

You can build a simple delay line-type shift register by hand. The example file
ram_delay_reg.v implements a 7-tick 64-bit delay line. Latency two accounts for the
RAM input and output register layers. RAM blocks are stitched together
automatically to satisfy the size requirements, and the DEPTH parameter should be
greater than two.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

storage/buf_3to2.v

storage/buf_2to3.v

storage/buffer_tb.v

Example files storage/ram_delay_reg.v
storage/ram_delay_reg_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 9: Storage 9–3
RAM-Based Shift Register (MLAB Variant)
RAM-Based Shift Register (MLAB Variant)
The example file mlab_delay.v implements a 7-tick 64-bit delay line in Stratix IV
MLAB blocks. The Stratix IV MLAB cells used in this example, instantiated in
mlab_sr_cells.v, are automatically recognized by the Quartus II software. Setting the
LATENCY parameter to 10 accounts for the increased latency.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

FIFO (Dual Clock)
Dual clock FIFO is a notoriously temperamental building block. This implementation
is provided for users who want to gain understanding or get a head start on a special
purpose modification. For typical use, you can use the dcfifo megafunction in the
Quartus II software.

The central issue is comparing the read and write address pointers across unrelated
clock domains. The FIFO system must always elect the more conservative response
when data is incompletely transferred. The standard solution is to cross domains
using gray-coded pointers (Figure 9–2 on page 9–3).

When properly arranged, the gray-coded signals ensure that a clock collision results
in the use of the older pointer value. For example, if the read and write pointers are
both at address 7, the FIFO is empty and read is not allowed. When a write arrives,
the write pointer advances to 8. For this example, suppose a write occurs a very short
time before the next read clock edge. The write pointers update reliably, but the read
side observes the write pointers during transition. The binary encoded write address
switches from “0111” to “1000.” All of the bits change, and the read side can observe
any possible value. The arbitrary value would cause havoc with the “used words”
and “read empty” decisions. Gray coding defeats this scenario; the gray-coded write
address switches from “0100” to “1100.” The MSB may still not capture properly, but
the others will capture properly. This limits the possible outcomes to the old value of 7
and the new value of 8, both of which are acceptable in terms of functionality.

Example files

storage/mlab_delay.v
storage/mlab_delay_tb.sv
storage/mlab_sr_cells.v
storage/ram_delay_reg_tb.v

Figure 9–2. Gray-Coded Pointers

Read Pointer Simple Dual Port
RAM

Gray Code

Gray Code

Read Domain

Write Domain

Write Pointer
July 2011 Altera Corporation Advanced Synthesis Cookbook

9–4 Chapter 9: Storage
Dual Clock FIFO (MLAB Variant)
For some high-reliability applications, you may want to enhance the clock crossing
logic. Some aerospace applications execute the clock domain crossing in triplicate and
use a majority circuit on the recovery side. In most cases, the additional circuitry
simply reduces latency. In the previous example, a majority circuit increases the
probability that the fresh write became available immediately, rather than one read
clock cycle later. Additional clock crossing logic or synchronizer registers also lower
the probability of a catastrophic system failure due to metastability. In practice,
modern FPGA registers converge extremely fast, and because they converge quickly,
it is common practice to not add extra registers.

The example FIFO file fifo.v includes full and empty flags, and read and write side
“used words.” Similar to the DCFIFO, the used words exhibit some lag, and has
built-in overflow/underflow protection. Data and address width are controlled by
parameters at the top. The SIMULATION parameter selects a simple array instead of the
altsyncram megafunction for clarity. The asynchronous clear is internally
synchronized, and must be held high for at least one read and write positive edge. It
handles removal internally. The empty and full flags are both 1 during the internal
reset to suppress any reads or writes before the FIFO is ready.

The fifo_hw_test.v example file is a platform for testing or comparing FIFOs on a
development board. This example generates and checks stimulus internally and
signals mismatches. The USE_LPM_DCFIFO parameter switches between fifo.v and the
Altera dcfifo.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Dual Clock FIFO (MLAB Variant)
The mlab_dcfifo.v example is a 32-bit deep variable width dual-clock FIFO optimized
for use with Stratix IV memory LABs (MLABs). Width is determined by the
LABS_WIDE parameter in 20-bit increments. There are often many more MLABs than
block RAMs in a given physical device region. The Stratix IV MLAB cells used in this
example, instantiated in mlab_sr_cells.v, are automatically recognized by the
Quartus II software.

The parameter SIM_DELAYS is a simulation-only feature that causes the FIFO to jitter
when the clock edges are nearly coincident, providing a rough approximation of jitter
that would occur in a hardware system.

Example files

storage/fifo.v

storage/fifo_tb.v

storage/fifo_hw_test.v

storage/fifo_hw_test_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 9: Storage 9–5
Simple Quad Port RAM
The SIM_DELAYS parameter triggers the introduction of randomized delay (using the
module in random_delay.v) in the domain synchronizers to cause simulation to
mimic clock jitter in hardware for detection of timing bugs in simulation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Simple Quad Port RAM
This example uses the Stratix II device true dual-port RAM and a small register array
to emulate a simple quad port (2 read and 2 write). The method is shown in
Figure 9–3.

As illustrated in Figure 9–3, the RAM blocks Q and R cover the same space. RAM Q
accepts all port A write requests, and RAM R accepts all port B write requests. Read
requests are handled by both RAMs. The flags array is implemented in registers and
keeps track of which RAM holds the more current data for each address. Flagging
requires one register per address in contrast with the RAMs which serve larger data,
for example, 32-bit words. To obtain two simultaneous reads, this structure is
duplicated. The flag storage array is reused. This type of simple quad RAM is
attractive for CPU-style register files. For 32 words of 32 bits, the area required is
approximately 160 ALUTs and 4 Kilobits (Kb) of memory. The circuit operates at the
speed and latency of the normal RAM block.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

storage/mlab_dcfifo.v

storage/mlab_fifo_cells.v

storage/random_delay.v

storage/gray_to_bin.v

storage/mlab_dcfifo_tb.sv

Figure 9–3. Simple Quad Port RAM

Example files

storage/simple_quad.v

storage/simple_quad_tb.v

storage/flag_array.v

RAM Q

RAM R

Flags

wr A

rd A

wr B
July 2011 Altera Corporation Advanced Synthesis Cookbook

9–6 Chapter 9: Storage
Ternary Content Addressable Memory (TCAM)
Ternary Content Addressable Memory (TCAM)
Content Addressable Memory (CAM) refers to RAM that is addressable by data
rather than address. Ternary CAM (TCAM) means that the data may contain “don’t
care” bits. CAM is analogous to a hash table.

The most common FPGA application is the storage of routing tables. An address
comes into the table and is directed to one or more output links based on a subset of
the address bits (Figure 9–4).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Some older Altera FPGA devices contain programmable pterm arrays suitable for
CAM. However, for newer device families, CAM must be implemented using register
arrays or standard RAM. Binary CAM implementation using standard RAM is
straight forward; the role of address and data are reversed. However, as the data
width increases, this method is no longer feasible; 32-bit data would require 4 billion
addressable words. Some form of external stitching is necessary to control memory
use. Ternary CAM is more challenging to build because the “don’t care” requirement
necessitates additional logic or encoding. Techniques to solve this problem based on
available resources are shown in the example file.

Register-Based Ternary CAM
Register-based CAM is similar to a traditional register file on the write side. Each
storage word has a data mask and a “don’t care” mask. The traditional read
multiplexer is replaced with an array of ternary comparators. Figure 9–5 illustrates a
single storage word. It is equivalent to the reg_cam_cell.v example file.

Figure 9–4. Grouping Ternary Adders

01.23.45.xx

0a.ee.33.44

27.xx.xx.xx

27.01.xx.xx

Where is
27.01.ab.03?

here

here
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 9: Storage 9–7
Ternary Content Addressable Memory (TCAM)
Variable sized register-based CAMs are easy to construct by changing the register file
parameters. Memory bit efficiency is high, and access time is low. The example file
reg_cam_cell.v has single tick read and write access. The area cost in registers is
considerable as shown by the sample benchmark numbers in Table 9–1. This method
is only suitable for small CAMs where write access time is important.

Table 9–1 lists the register file parameters used in the example file reg_cam_cell.v.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 9–5. Variable Sized Register-Based CAMs

Table 9–1. Register File Parameters Used in reg_cam_cell.v

Bits Words Registers fMAX (MHz 2S15C3)

32 16 1173 296

64 16 2293 271

96 16 3413 235

128 16 4533 227

32 64 4391 232

32 128 8680 206

Example files

storage/reg_cam_cell.v

storage/reg_based_cam.v

storage/reg_based_cam_tb.v

Data bits

Don’t Care bits

Ternary
comparator

Lookup dataWrite data

matchDecoded write
addr
July 2011 Altera Corporation Advanced Synthesis Cookbook

9–8 Chapter 9: Storage
Ternary Content Addressable Memory (TCAM)
RAM-Based Ternary CAM
The main issue in building CAM from standard RAM is how to handle “don’t care.”
The ideal RAM would be a RAM that uses different read and write access patterns, as
shown in Figure 9–6 on page 9–8.

For example, when writing data 01x to address 2, you can write the entire address = 2
column, checking the 010 and 011 bits (as shown in Figure 9–6), and clearing the other
bits. Then, for lookup access, read the entire data row to generate address match lines.
Unfortunately, the FPGA RAM blocks are not arranged for asymmetric read write
patterns. The example design approximates the column write with a small state
machine that writes each location in turn.

For Stratix II device 4Kbit memory blocks, the best configuration for this application is
128 words. 128 is the maximum number of words you can use at the maximum
hardware output width of 36. Only 32 of the outputs are connected in the example file
to create a power of two. You can remove this restriction in return for some additional
stitching complexity. The example file cam_ram_block.v implements a RAM-based
CAM building block with 128 words (7 data bits) and a 5-bit address. Lookups are
fully pipelined at the RAM latency of 2, and writes use the state machine to iterate
through the 128 storage words. Therefore, write latency is 128 ticks plus 2 to initiate
the cycle. Note that it is not possible to pipeline writes. The example file
ram_based_cam.v demonstrates stitching the blocks horizontally to build wider data.

Increasing address space beyond 32 words can be done directly in the ADDR_WIDTH
parameter through the altsyncram megafunction. This underlying megafunction
builds wider data words by stitching RAMs together, increasing the size of the match
logic. You can also manually stitch together the blocks by partitioning the address
space. To do so, you can use the highest order address bits to select between
independent CAMs. If the write latency of 128 is too high, but 64 or 32 is acceptable,
reduce the data width of the building block. This results in lower RAM efficiency
because the maximum output width does not increase beyond 36 bits. An alternate
solution is to provide more intelligent “don’t care” support. It may not be necessary to
review all 128 data words for all writes.

Figure 9–6. Variable Sized Register-Based CAMs

XData 000
Data 001
Data 002

X
X

…

A
ddr 0

A
ddr 1

A
ddr 2

A
ddr 3

A
ddr 4

A
ddr 5

A
ddr 6
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 9: Storage 9–9
Backpressure Skid Buffer
Multiple stitched CAM blocks may use identical state machines. By default, the
Quartus II software recognizes this duplication and merges the blocks appropriately.
For high-speed implementations, you can maintain the duplicate blocks using
hierarchical synthesis or a /*synthesis preserve*/ attribute. This allows the driving
logic to stay physically close to the memory blocks.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Backpressure Skid Buffer
It is common for the backpressure flow control signals to become critical on a large
data path. Signals with high fanout tend to have high propagation delay due to high
capacitance. They are also likely to be promoted to global H-tree networks.

The length of wire and number of routing buffers traversed on the path from source to
any destination is constant. This property is highly desirable for clock signals which
must arrive at all registers with a minimum of skew. Unfortunately the source to
destination path is longer than it would be on standard routing. The time to insert a
signal on a global network can be as high as 2 to 3 nanoseconds in some cases.

The best way to deal with the delay of backpressure signals it to periodically break up
the path with registers. Simply inserting a register will damage the functionality in
most cases. It is possible to insert a small 2 word buffer which has the desired effect.
These buffers are commonly referred to as "skid buffers" because they allow the
inbound data one additional tick to stop when the output side refuses data.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

storage/ram_block.v

storage/cam_ram_block.v

storage/ram_based_cam.v

storage/ram_based_cam_tb.v

Figure 9–7. Global “H-Tree” Network

Example files
storage/ready_skid.v

storage/ready_skid_tb.sv

source
July 2011 Altera Corporation Advanced Synthesis Cookbook

9–10 Chapter 9: Storage
Register Based Buffer FIFO
Register Based Buffer FIFO
At high data widths and low depths the bit utilization of hard memory blocks is
generally poor. Register based FIFO can provide a viable alternative if the number of
bits involved is tractable. In many cases the register version will be faster due to more
place and route flexibility. It also gives the opportunity to customize the logic. For
example a register memory can cheaply include CAM style matching or out of order
read.

It is generally not safe to use a register based memory for a clock domain crossing.
Please do a careful analysis if modifying this example to work across clock domains.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

storage/rx_buffer_fifo_2.v

storage/rx_buffer_fifo_2_tb.sv

storage/tx_buffer_fifo_8word.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
10. Counters
Basic Binary Counter
The following Verilog HDL example implements a basic binary “up” counter with the
full set of register secondary signals:

always @(posedge clk or posedge rst) begin
if (rst) q <= 0;

else begin
if (ena) begin

if (sclear) q <= 0;
else if (sload) q <= sdata;
else q <= q + 1'b1;

end
end

end

The area cost is one ALUT per bit (two per ALM). The LUT logic in front of the
dedicated adder remains available for special control signals including enable,
direction, or varying increments.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Up/Down Counter
When enhancing a counter with additional controls, it is advantageous to express
them in terms of the inputs to the addition rather than multiplexing the adder output.
The following example illustrates the best manner in which to express up/down
control:

q <= q + (inc_not_dec ? 1'b1 : {WIDTH{1'b1}});

This structure mirrors the available LUT hardware, establishing the one cell per bit
intention explicitly. The synthesis tools can recognize a wide variety of output side
logic and move this logic to the input side, but there remains some risk of an
unintentional increase in area.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file counter/cntr.v

Example file counter/cntr_updn.v
Advanced Synthesis Cookbook

10–2 Chapter 10: Counters
Seconds Timer
Seconds Timer
This example implements a stopwatch timer based on a 100 MHz reference clock. The
straight forward implementation as a 27 bit modulus counter has a few drawbacks.
Foremost, a 27-bit carry chain and output comparator require significant propagation
time. Although it is acceptable to run at 100 MHz, it is safer to add some pipeline to
simplify timing closure. Additionally, it is likely that future revisions will require
more output precision. Any expansion is likely to be decimal rather than binary
oriented. For example, hundredths of a second would be more useful than 1/128ths.

This implementation separates the counter into two divide-by 1000 stages and a
divide-by 100 stage. This separation breaks up the propagation path and puts the
internal storage in decimal format, with negligible additional area cost. It is important
to avoid the temptation to ripple the clock between stages. The clock ripple may be
advantageous for power consumption, but creates routing and timing analysis
problems on the FPGA. Most CAD tools issue warnings when riple clocking is used.

The “tick” output pin pulses high for one clock cycle every second. The count_val
register indicates the elapsed time in seconds from the last reset. Note that the internal
register div_three is hundredths of a second. If you are modifying the counters for a
different grouping or reference frequency, the lowest counter needs to compare
against the maximum value minus 1 (998), while the others compare the maximum
(999 or 99) to maintain the proper look-ahead behavior.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

System Timer
This example is a multistage modulus counter that reports elapsed operational time.
The outputs report days, hours, minutes, seconds, milliseconds, and microseconds
based on the system clock. It wraps to zero after 1024 days. The pulse outputs can be
handy for periodic updates in control systems.

Quartus Synthesis will remove the coarser resolution outputs if they are left
unconnected.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Modulus Counter with Lookahead
Due to the relatively high cost of a modulus computation for arbitrary constants, you
may want to use the maximum value comparison, as shown in the following example:

Example file
counter/seconds_counter.v

counter/seconds_counter_tb.v

Example file
counter/system_timer.v

counter/system_timer_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 10: Counters 10–3
Modulus Counter with Lookahead
wire maxed = (q == MOD_VAL-1) /* synthesis keep */;
always @(posedge clk or posedge rst) begin

if (rst) q <= 0;
else begin

if (ena) begin
if (sclear) q <= 0;
else if (sload) q <= sdata;
else q <= (maxed ? 0 : q) + (maxed ? 0 : 1'b1);

end
end

end

The implementation shown in this example saves the complexity of a divider,
however, it does not behave like a true modulus if the counter leaves the range, for
example, through an SLOAD.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

To increase the count speed in return for additional complexity, you can check for the
modulus value one cycle ahead. This is essentially a register retiming operation that
exploits the known counting sequence (Figure 10–1).

The wrap comparator looks for a value one less than the maximum value due to the
additional latency. The critical path delay is roughly halved in typical contexts. Using
WIDTH=16 and MOD_VAL=50223, the example file operates at 541 MHz in the look ahead
configuration, compared to 311 MHz for the standard modulus using a 2s15C3 device,
and the Quartus II software version 6.1. The test bench example file exercises all of the
counter examples for correctness.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file counter/cntr_modulus.v

Figure 10–1. Standard Modulus Versus Lockahead Modulus

Example file
counter/cntr_modulus_la.v

counter/counter_tb.v

+ regWrap?

+ regWrap? reg

Critical path, lookahead modulus

+

register

Wrap?

+Wrap?

Critical path, standard modulus

register

register
July 2011 Altera Corporation Advanced Synthesis Cookbook

10–4 Chapter 10: Counters
Basic Gray Counter and Gray Lookahead
Basic Gray Counter and Gray Lookahead
Incrementing a gray-coded number can be awkward. There are several reasonable
implementations; the most straightforward method is to build a binary counter
followed by a binary-to-gray converter (see Chapter 4, Translation and Format
Conversion for more information). Because the underlying state is not gray, the
outputs must be reregistered to be glitch free. To count directly in gray, use the logic
structure shown in Figure 10–2.

The example design gray_cntr.v implements the structure shown in Figure 10–2. The
conversions and increment are implemented in simple combinational logic to
encourage the synthesis tools to flatten through. For widths up to 6 bits, the logic fits
into single cells. If you are using higher widths, you may encounter significant
propagation time. For best depth, use the optimize=speed setting in the Quartus II
Integrated Synthesis.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

At the cost of additional code complexity, you can build faster gray counters using the
lookahead technique as described in “Seconds Timer” on page 10–2. The example
design that follows can implement width 5 to 35 counters, with a single level of logic
between registers.

The counter width is decomposed into blocks of five registers, implemented in the
gray_cntr_la_reg module. The MSB depends on six input signals for one level of logic.
The adv_lower and adv_upper signals control the increment pattern. The LSB toggles
on every other cycle, and the MSBs toggle when the bits below them hold the pattern
100... in binary.

always @(*) begin
d[0] = q[0] ^ adv_lower;
d[1] = q[1] ^ (adv_upper & q[0]);
d[2] = q[2] ^ (adv_upper & !q[0] & q[1]);
d[3] = q[3] ^ (adv_upper & !q[0] & !q[1] & q[2]);
d[4] = q[4] ^ (adv_upper & !q[0] & !q[1] & !q[2] & q[3]);

end

Figure 10–2. Logic Structure

Example file counter/gray_cntr.v

Gry to bin +1 Bin to gry DFF
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 10: Counters 10–5
Basic Gray Counter and Gray Lookahead
Figure 10–3 on page 10–5 shows a sample counting pattern.

The least significant block of five bits does a straightforward alternation between
lower and upper increments. The more significant blocks use registered comparators
from the lower blocks to compute advance signals. Each block has a registered
comparator for the maximum (10000) and minimum (00000) value. The blocks use
these to generate advance signals for following blocks, adv_lower[] and adv_upper[].
The lowest block also generates an “early“ version of the advance upper signal so that
subsequent signals can use an extra cycle of latency to maintain depth 1.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 10–3. Counting Pattern

Example files
counter/gray_cntr_la.v

counter/gray_cntr_tb.v

Sample counting pattern:

0

0

0

0

1

0

0

0

1

1

0

0

0

1

0

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

1

1

1

1

0

1

1

1

0

1

0

1

1

1

0

1

1

0

0

1

0

0

0

1

July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
11. Communication
8B10B Encoder/ Decoder
8B10B encoder/decoder coding is designed to maintain an equal number of ones and
zeros on the coded stream, and to limit run length to five bits. Additionally, it has a
mechanism for sending control characters and some error detection capability. The
8B10B encoder is composed of a 5B/6B coder and a 3B/4B coder operating in a
loosely coupled fashion as illustrated in Figure 11–1.

The running disparity, or rd, signals balance ones and zeros over time. If an encoded
result contains a surplus of either bit, the rd signal directs downstream coders to
restore the balance. The 5-bit run-length is enforced by construction.

The K signal is used to transmit control characters. Only some of the 8-bit inputs
represent legal control characters. K28.5 is the standard link synchronization or idle
character, although K28.7 and K28.1 are also suitable.

The following list shows the legal K control characters:

K28.0 8'b000_11100
K28.1 8'b001_11100
K28.2 8'b010_11100
K28.3 8'b011_11100
K28.4 8'b100_11100
K28.5 8'b101_11100 (comma)
K28.6 8'b110_11100
K28.7 8'b111_11100
K23.7 8'b111_10111
K27.7 8'b111_11011
K29.7 8'b111_11101
K30.7 8'b111_11110

Decoding is essentially the reverse of the encoding lookup. It is unnecessary to know
the running disparity to recover the data, which simplifies the process. The example
decoder file decoder_8b10b.v has optional logic to detect disparity errors and general
coding errors.

Figure 11–1. 8B10B Encoder

A
B
C
D
E

a
b
c
d
e
i
f
g
h
j

F
G
H

8B 10B

5B/6B

3B/4B

Rd out

Rd inK
Advanced Synthesis Cookbook

11–2 Chapter 11: Communication
Chaining 8B10B coders
In terms of synthesis behavior, these example designs are a fascinating case study for
speed optimization. The original paper that introduced 8B10B contains a carefully
optimized version for implementation in 2- and 3-input MECL logic gates. To some
extent, this structure has propagated to the modern HDL descriptions. The high reuse
of duplicate signals, coupled with intentionally redundant expressions, makes the
logic very misleading to modern FPGA synthesis tools. The typical result is a
sub-optimal depth of four due to overuse of common sub expressions. The
optimizations in the example files work by removing some of the gate structure using
case tables, and by recreating the most difficult signals as WYSIWYG gates.

The example encoder has a maximum depth of two levels and uses 56 ALUTs. The
decoder has a maximum depth of two levels on all paths except the kerr output
which is depth three, using 42 ALUTs with both error check outputs enabled.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Chaining 8B10B coders
For higher bandwidth it may be necessary to combine multiple 8B10B encoders in a
chain. To have proper behavior the first encoder uses the registered running disparity
of the last one on the chain. The others use the combinational running disparity
output of the previous unit. Chaining of decoders follows the same structure.

There is no widely recognized standard for ordering the 8b10b code words. If you
encounter running disparity errors while using the 4-word 8b10b chain, the words are
most likely reversed (ABCD vs DCBA).

Example files

communication/encoder_8b10b.v

communication/decoder_8b10b.v

communication/encoder_tb.v

Figure 11–2. Chaining of 8B10B Encoders

 enc

enc

Din_byte[1]

Din_byte[0]

code[0]

code[1]

Running disparity (comb)

Running disparity (registered)
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–3
Universal Asynchronous Receiver Transmitter (UART)
This example aggregates the encoder and decoder blocks to operate on four bytes of
data per clock tick, corresponding to a 40 bit interface to serdes pins.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Universal Asynchronous Receiver Transmitter (UART)
The universal asynchronous receiver transmitter (UART) provides a simple and
efficient mechanism for communicating with a host PC. For example, a basic UART
implementing the 115200 baud N81 protocol costs only 62 ALUTs. The example
design file uart.v implements a variable baud N81 UART. Because other protocols are
rarely used, they are not included in the example file, however, you can implement
these protocols by modifying the TX and RX shift registers. The example transmitter
can operate up to the system fMAX of approximately 420 MHz. The receiver requires
over sampling to recover data reliably, with the theoretical receive speed limit of
roughly 84 million baud. Because PC COM ports and typical RS232 cables are
incapable of 84 million baud, 115200 baud is the practical PC port limit. Some special
purpose PC expansion cards are reaching into the five to ten million range,
approaching standard cable limits.

On the host end, you can communicate with a COM port using Hyper Terminal,
found in Accessories on Windows, or any similar terminal emulation program. You
must disable the flow control, also referred to as XON/XOFF. For automated
interfacing, a COM port can be opened as a file from C. The method to set the data
rates and timeouts is platform-specific and may require some research.

 The example design uart_hw_test implements a simple demo for use with a terminal
app. It takes input characters on the receive side and sends the following character
(for example, “a” –> “b”) out the transmitter.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

communication/x4_encoder_8b10b.v

communication/x4_decoder_8b10b.v

communication/x4_encoder_tb.sv

Example files

communication/uart.v

communication/uart_tb.v

communication/uart_hw_test.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

11–4 Chapter 11: Communication
Interface to Parallax Global Positioning System (GPS) Receiver
Interface to Parallax Global Positioning System (GPS) Receiver
This example is a simple driver for the GPS module available from Parallax Inc.
(www.parallax.com, Part #28146). It is a good starting point for interfacing with other
Parallax or BASIC Stamp peripherals.

The GPS module uses a single wire 4800 baud serial interface. The example design
uses the cookbook UART with an additional layer of control logic. The control logic
continuously polls the ten available information words on the GPS unit. The most
recent values are displayed as registered outputs for convenient use by the FPGA
system.

The datasheet from Parallax does not list expected response times. The unit tested
took up to a second to respond to some requests. The counter reply_cntr sets the
communications timeout period, in character times. A count of timeout events is
reported on the timeouts output bus for debug purposes. If the unit is experiencing a
significant number of timeouts increase the size of reply_cntr by one bit, and double
check for problems with the hardware connection.

Note that not all FPGA demo boards can accept a 5 Volt input signal. It may be
necessary to insert a small level shifting and clamp circuit on the link to remain within
specifications. Refer to the board data sheets for acceptable voltage range information.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 11–3. Connecting to GPS

Example file communication/parallax_gps.v

GPS

Module

+5V

GND

SIO

FPGA bidir

*5V tolerant

s_dout

s_din

s_oe
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–5
Gearbox
Gearbox
Gearboxing is the term used for adapting a serial flow to a different word size. Altera
FPGAs typically deliver serial data in 20 or 40 bit segments. Communications
protocols such as Ethernet and Interlaken expect framed words of 66 or 67 bits.

Typically a RX gearbox uses framing bits in the data stream to identify the protocol
word boundaries. Framing is governed by a small state machine which causes the
gearbox to "slip" to another alignment until the protocol words are suitably framed.

The traditional ASIC gearbox architecture is to fill a bit FIFO at one clock rate and
drain it at another. If the clock ratio is carefully controlled this will have the desired
functionality. This method is prohibitively expensive in an FPGA due to the relative
scarcity of clock resources. FPGA gearboxes should use a "valid" signal for rate
adaptation rather than switching to a new clock domain.

Gearbox internal architecture is essentially barrel shifting. The indices of the barrel
must be perfectly controlled to avoid corrupting data. To minimize area it is important
to determine exactly which cases are possible for your pipeline. Details such as a
guarantee that data will not arrive on consecutive ticks can enable area reductions.
For the slip functionality to work properly it is important that slipping can create all
possible offsets in the data stream.

Figure 11–4. RX Side Serial Data Stream, TX is Reversed

plus 1 plus 3 Mod 16

0 0 0

1 3 3

2 6 6

3 9 9

4 12 12

5 15 15

6 18 2

7 21 5

8 24 8

9 27 11

10 30 14

 High speed serial bitstream

Parallel transfer

to FPGA core

Gearbox conversion

to protocol words

Protocol word stream
July 2011 Altera Corporation Advanced Synthesis Cookbook

11–6 Chapter 11: Communication
Gearbox
The table illustrates that when looking for a 16 bit word alignment within a serial data
stream a slip distance of three is acceptable. All possible offsets are tested, although
not in order. A slip distance of two would not be acceptable because half of the
possible offsets are not reachable. A high slip distance will require more data bits to
find a locking position. Word locking is nearly instantaneous at typical data rates so
selecting a convenient slip distance can simplify the gearbox shifter without adverse
effects.

The logic cell area of a gearbox circuit is a volatile function of the ratio of input and
output bit widths. Clean multiples tend to produce smaller multiplexers, but more
difficulty in slip logic. When designing a gearbox it is a good idea to experiment with
a few variants.

This example is a 20:67 gearbox using the Interlaken framing rules.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

This example is a 40:67 gearbox using the Interlaken framing rules. The 40 bit data
width implies a significant barrel shift to align data words appropriately. With some
experimentation it is possible to rearrange the mux network to achieve better speed
and area. The two small C programs are experimental simulations that were used to
derive the schedule used in the Verilog.

11 33 1

12 36 4

13 39 7

14 42 10

15 45 13

Example file

communication/gearbox_20_67.v

communication/gearbox_20_67_tb.sv

communication/gearbox_67_20.v

communication/gearbox_67_20_tb.sv

plus 1 plus 3 Mod 16

Figure 11–5. Possible implementation of 40 to 67 network

 Storage buffer

67 bit output word
Barrel

shifter

Shift by 67 capability

40 bit input
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–7
Gearbox
The barrel shifter needs to cover a wide output distance which makes it a significant
liability. Pipelining the barrel shifter is necessary to maintain a reasonable clock rate.
Instead of a simple pipelined barrel shifter it is possible to move some of the MUX
functionality forward into the storage shift and output network. This configuration
uses less total logic, and makes better use of the LUTs associated with otherwise
required registers.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

This example is a 32:66 gearbox using the Ethernet 40/100G framing rules. It uses a
composition of 32:33 and 33:66 gearboxes which have better area and speed
characteristics than a direct 32:66 implementation.

Figure 11–6. Improved Alternative

Example file

communication/gear_expt.cpp

communication/gear_expt2.cpp

communication/gearbox_40_67.v

communication/gearbox_67_40.v

communication/gearbox_40_67_tb.sv

Storage buffer

Barrel

shifter 40 bit input

Shift by 33,34,40,47

pipeline 67 bit output word

Example file

communication/gearbox_66_32.v

communication/gearbox_66_32_tb.sv

communication/gearbox_32_66.v

communication/gearbox_32_66_tb.sv

communication/gearbox_33_32.v

communication/gearbox_32_33.v

communication/gearbox_33_32_tb.sv

communication/two_to_one.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

11–8 Chapter 11: Communication
Scrambler
These examples implement 66:40 and 66:20 gearboxing using the 10G/40G/100G
Ethernet framing rules.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Scrambler
This self-synchronizing scrambler, used in the 10/40/100Gb Ethernet line-encoding,
implements an LFSR using the polynomial x^58 + x^39 + 1. The advantage of a
self-synchronizing scrambler is that it does not require any external mechanism to
synchronize the transmitter and receiver. After a disruption the receiver reaquires
synchronization within 57 bits of data. The disadvantage of a self-synchronizing
scrambler is error replication. A single bit error on the channel will create three bit
errors in the received data corresponding to the thre LFSR taps. The example is
written for ease of width manipulation, making it highly suitable for experimental
SERDES protocols.

For contrast, refer to “Scrambler” on page 11–12 for an Interlaken-specific scrambler
implementation using the same polynomial using free-running rather than self-
synchronizing topology.

The testbench shows a count pattern moving through a scrambler and descrambler to
recover the original data stream. In parallel it shows a simple 1 bit LFSR iterative
implementation of the same scrambler for equivalence. The parameter SCRAM_INIT
controls the starting point for the scrambling. The scrambler state is a function of
previously transmitted data. The initial state is not particularly important as long as
there is some variation in transmitted data between nearby physical channels.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file

communication/gearbox_20_66.v

communication/gearbox_66_20.v

communication/gearbox_66_20_tb.sv

communication/gearbox_20_22.v

communication/gearbox_66_40.v

communication/gearbox_40_66.v

communication/gearbox_66_40_tb.sv

Example file

communication/scrambler.v

communication/descrambler.v

communication/scrambler_tb.sv
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–9
Interlaken
Interlaken
Interlaken is a high-speed serial communication protocol. For a full definition, see
www.interlakenalliance.com. This discussion is based on protocol revisions 1.1 and
1.2.

The transmit and receive lanes must agree on metaframe length in order to achieve
and maintain synchronization. The length is controlled by the parameter
META_FRAME_LEN which is typically set in the 4K to 64K range. Smaller values
reduce lock time. Larger values reduce bandwidth overhead.

TX Lane Implementation
Figure 11–8 shows the top level of a TX lane implementation.

Figure 11–7. Metaframe

...

Synchronization

Scrambler State

Skip

Data Payload

Data Payload

Lane Diagnostic

Nominal ~8K

64-bit words

Figure 11–8. TX per lane blocks

Example file interlaken_lane/lane_tx.v

Gearbox 64/67
Encoder

Scrambler

CRC32

Framing
Schedule

20
(at 318 Mhz)

67 67 64
July 2011 Altera Corporation Advanced Synthesis Cookbook

11–10 Chapter 11: Communication
Interlaken
Table 11–1 shows the approximate resource use for the entities on the transmitter side
of the Interlaken interface. Results vary slightly with Quartus II synthesis settings and
metaframe period lengths.

Gearbox
The gearbox implements an intelligent shift register. 67-bit data arrives periodically,
20 times per 67 cycles. 20-bit words leave on every tick to the SERDES output pin. The
most significant bit is transmitted first in contrast with Ethernet. For efficient area use
the storage needs to be as small as possible. To validate that the gearbox is properly
synchronized with the transmit schedule the verilog contains simulation only
overflow checking.

64/67-Bit Encoding
This module implements 64-67 disparity encoding. The input is a 64 bit data word
plus one control bit. The encoder uses a compressor based adder tree to count the
relative balance of ones and zeros in the data to be transmitted. Data words will be
inverted as appropriate to keep the average running disparity at zero.

For more information about compressor based addition, refer to “Compressors (Carry
Save Adders)” on page 2–5.

Table 11–1. Approximate Transmission-Side Resource Usage

Module Combinationals Registers

Encoder 64-67 152 175

Gearbox 67-20 290 91

CRC-32 395 202

Scrambler 65 58

Lane transmitter 1053 669

Example file
interlaken_lane/gearbox_67_20.v

interlaken_lane/gearbox_67_20_tb.sv

Example file
interlaken_lane/enc_64_67.v

interlaken_lane/enc_64_67_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–11
Interlaken
Interlaken Scrambler
The scrambler implements a free running LFSR using the polynomial x^58 + x^39 + 1.
The polynomial is borrowed from the Ethernet protocol, however the scrambling
procedure is different. The testbench shows direct equivalence to the verilog sample
in the specification appendix. The verification signals are unused by the transmit side.
The receiver uses them to check and reload scrambler state upon loss of
synchronization. Transmit lanes have a parameter "SCRAMBLER_RESET" that
controls the initial state of the scrambler LFSR. The scramblers will not function
properly if the initial value is set to zero. The lanes should use different reset values to
reduce cross talk.

CRC32
This module computes and inserts the CRC32 of each meta frame for lane diagnostic
purposes. The CRC uses the typical all ones starting value and the Castagnoli CRC32
polynomial. The XOR networks are decomposed to some extent to have the CRC
ready for the diagnostic word ready without additional latency. The insertion is
controlled by a trivial state machine embedded in the HDL.

For information on building optimized CRC XOR networks for Stratix series devices
refer to Chapter 12, Cyclic Redundancy Check.

Framing schedule
Meta frame insertion is governed by a small state machine embedded in the lane_tx
verilog. It is responsible for coordinating the other blocks and acknowledging input
data at the appropriate rate.

RX Lane Implementation
Figure 11–9 shows the top level of a TX lane implementation.

Example file
interlaken_lane/scrambler_lfsr.v

interlaken_lane/scrambler_tb.sv

Example file interlaken_lane/lane_tx_crc.v

Figure 11–9. RX per lane blocks

Example file interlaken_lane/lane_rx.v

Gearbox 64/67
Decoder

CRC32

20
(at 318 Mhz)

67 65 65

Word
Aligner

Framing
Schedule Scrambler
July 2011 Altera Corporation Advanced Synthesis Cookbook

11–12 Chapter 11: Communication
Interlaken
Table 11–2 shows the approximate resource use for the entities on the receiver side of
the Interlaken interface. Results vary slightly with Quartus II synthesis settings and
metaframe period lengths.

Gearbox
The RX gearbox takes a continuous 20 bit data stream and converts it to a periodic 67
bit stream. It has slipping controls for use by the word aligner.

Word Alignment
The gearbox interacts with a small word alignment state machine to identify the word
boundaries in the incoming serial stream. 64-bit to 67-bit framing guarantees that bits
65 and 64 will be different in properly framed words. The state machine declares word
lock when 64 consecutive words are properly framed. Word lock is lost when there are
more than 16 framing errors in a 64-word window.

Decode 67/64
The disparity decoder is a simple XOR array that inverts the data word if bit 66 is a
one.

Scrambler
The RX scrambler LFSR is identical to the TX side scrambler. During normal operation
it is free running. The RX side uses additional control signals to compare the received
scrambler state to the actual and load if necessary to resynchronize.

Table 11–2. Approximate Reciever-Side Resource Usage

Module Combinationals Registers

Decoder 64-67 65 0

Gearbox 20-67 173 122

CRC-32 279 201

Descrambler 87 60

Word alignment 18 15

Lane receiver 732 548

Example file
interlaken_lane/gearbox_20_67.v

interlaken_lane/gearbox_20_67_tb.sv

Example file interlaken_lane/word_align_control.v

Example file interlaken_lane/dec_67_64.v

Example file
interlaken_lane/scrambler_lfsr.v

interlaken_lane/scrambler_tb.sv
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 11: Communication 11–13
Interlaken
Framing schedule
The framing state machine is responsible for locating the meta frame boundaries in
the word stream.

CRC32
The CRC unit on the RX side repeats the computation done by the TX side and flags
any mismatches.

For information on building optimized CRC XOR networks for Stratix series devices
refer to Chapter 12, Cyclic Redundancy Check.

Lane Test Environment
The RX side lanes will bear the brunt of transmission noise and synchronization
issues. It is critical that any lane optimizations or modifications are thoroughly tested.

The testbench crc32c_tb.sv confirms that the building blocks used by the lane
diagnostic CRC are functioning properly. This test confirms the Castagnoli
polynomial and bit order using a sample meta frame header. It also confirms the
correctness of the Galois decomposition used as a delay optimization.

The testbench lane_tb.sv implements a simple TX / RX pair with error injection to
demonstrate word and meta frame locking. This is a good basic capability check and
valuable for visually inspecting the dataflow.

The testbench lane_rx_tb.sv is a thorough exercise for the RX lane capabilities as
described in the protocol document. The test uses two input data streams generated
by a small C program.

The first data stream is stored in "lane_bits.txt" and feeds twenty RX units at all
twenty possible bit offsets. The test logic verifies that all lanes successfully word align
and meta frame lock after the appropriate number of correct frames. It also checks
that the data stream is recognized as error free, and in the process confirms the
equivalence of the high level C program to the Verilog lane transmitter.

The second data stream is stored in "lane_bits_err.txt" and feeds a single RX lane. The
error stream includes a specific sequence of synchronization, scrambler, and basic
corruption problems. The test bench verifies the appropriate error flags as well as the
loss and reacquisition of lock during the process.

Example file interlaken_lane/frame_sync_control.v

Example file interlaken_lane/lane_rx_crc.v

Example file interlaken_lane/crc32c_tb.sv

Example file interlaken_lane/lane_tb.sv

Example file
interlaken_lane/make_lane_traffic.cpp

interlaken_lane/lane_rx_tb.sv
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
12. Cyclic Redundancy Check
Introduction
Cyclic redundancy checks (CRCs) in FPGAs are generally unrolled to operate on
multiple data bits per cycle, and implemented as wide XOR arrays. The Stratix II
6-LUT has a strong advantage over 4-LUT devices when implementing CRC XORs
with shallow depth.

1 32 bit CRCs with a specific bit ordering are referred to as Frame Check Sequences
(FCS) in network context. See “CRC-32 Ethernet FCS” on page 12–5.

The following code example illustrates unrolled HDL showing XORs for a CRC8 of
4-bit data:

assign crc_out[0] = c[4] ^ d[3];
assign crc_out[1] = c[4] ^ c[5] ^ d[2] ^ d[3];
assign crc_out[2] = c[4] ^ c[5] ^ c[6] ^ d[1] ^ d[2] ^ d[3];
assign crc_out[3] = c[5] ^ c[6] ^ c[7] ^ d[0] ^ d[1] ^ d[2];
assign crc_out[4] = c[0] ^ c[6] ^ c[7] ^ d[0] ^ d[1];
assign crc_out[5] = c[1] ^ c[7] ^ d[0];
assign crc_out[6] = c[2];
assign crc_out[7] = c[3];

Due to XOR input cancellation, the intermediate stages of a CRC bit computation do
not resemble the final output, giving rise to a common implementation pitfall.

Figure 12–1. Cyclic Redundancy Check

Figure 12–2. CRC Implementation Pitfalls

C2C3C5 C4 C1 C0

Data bit

N bit shift register. Polynomial is represented by feedback points

+

+

+

+

D7

D6

Unrolled for multiple data bits

C2 C2C3 C0

CRC32
8 data

CRC32
8 data

CRC32
8 data

CRC32
8 data

CRC32
32 data
Advanced Synthesis Cookbook

12–2 Chapter 12: Cyclic Redundancy Check
CRC XOR Decomposition
The two structures shown in Figure 12–2 are logically equivalent, however, the
bottom structure is considerably faster. Each 8-data unit has a natural depth of two
cells for a total of eight logic levels. The 32-data unit can also be implemented with a
depth of two. When dealing with variable width input data, for example, packet
residues, the fastest results are obtained by implementing a separate XOR network for
each data input width and multiplexing the output. CRC XOR arrays are relatively
efficient in terms of area, and due to cancellation, the area cost increases very slowly
with data width. The area premium paid for parallel speed is easily manageable in
practice.

CRC XOR Decomposition
The CRCs in the example file use explicitly factored XOR trees to minimize Stratix II
cell area while maintaining optimum depth. They use the WYSIWYG XOR cell in the
example file to make the structure completely explicit. You can override the METHOD
parameter to produce equivalent flat XORs. This switch is intended for comparison
and testing rather than actual implementation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CRC-16 Fixed Data Width
The example files use the standard 16-bit CRC polynomial 1021 (hexadecimal), and
are all depth optimal at two levels. Area cost ranges from 17 to 53 ALUT.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 12–3. CRC XOR Arrays

CRC32
16 dat

CRC32
32 dat

MultiplexerMode

Data/
CRC

Example file crc/xor6.v

Example files

crc/crc16_dat8.v

crc/crc16_dat16.v

crc/crc16_dat24.v

crc/crc16_dat32.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 12: Cyclic Redundancy Check 12–3
CRC-24 Fixed Width
CRC-24 Fixed Width
The following example uses the polynomial 328b63. This function is used in
Interlaken burst error checking.

These are specialized variations appropriate for factored decompositions.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CRC-32 Fixed Data Width
The following example files use the standard 32-bit CRC hexadecimal polynomial
04c11db7, and are all depth optimal; at two levels for 8..32, and at three levels for
40..64 bits. Area cost ranges 42 from 205 ALUT.

The following example files extend the data range up to 128 bits, and are all depth
optimal at 3 levels, with area cost ranging from 205 to 507 ALUT.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file crc/crc24_dat64.v

Example files

crc/crc24_dat64_only_flat.v

crc/crc24_zer64_flat.v

crc/crc24_zer64x2_flat.v

crc/crc24_zer64x3_flat.v

Example files

crc/crc32_dat8.v

crc/crc32_dat16.v

crc/crc32_dat24.v

crc/crc32_dat32.v

crc/crc32_dat40.v

crc/crc32_dat48.v

crc/crc32_dat56.v

crc/crc32_dat64.v

Example files

crc/crc32_dat72.v

crc/crc32_dat80.v

crc/crc32_dat88.v

crc/crc32_dat96.v

crc/crc32_dat104.v

crc/crc32_dat112.v

crc/crc32_dat120.v

crc/crc32_dat128.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

12–4 Chapter 12: Cyclic Redundancy Check
CRC-32C (Castagnoli) Fixed Width
CRC-32C (Castagnoli) Fixed Width
The following example uses the Castagnoli CRC-32 polynomial 1edc6f41. This
function is used in the Interlaken lane diagnostics. There is some research suggesting
that the Castagnoli polynomial has superior error detection properties to the common
Ethernet CRC-32. The area and speed are comparable.

These are specialized variations appropriate for factored decompositions.

This testbench has a basic correctness test and demonstrates the behavior of the
factored versions.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CRC-32 Variable Data Width (Residues)
The example file crc32_dat64_any_byte.v computes the CRC-32 of one to eight bytes
of data, as is required to handle packet residues. Typically, the various width data
inputs are driven from different subsets of the same 64-bit register, but there is no
additional cost to drive them from different sources, even though generally different
sources cost more.

There are two reasonable implementations of the 8:1 output multiplexer (see “8-to-1
Multiplex Building Blocks” on page 7–4 in Chapter 7, Multiplexing). The 7-7 method
allows the design to have a maximum LUT depth of four, with the four deeper CRC
units feeding the output side cell. The 5-5-7 method produces a depth five
implementation, which is in return more routable. Both methods require roughly
1100 ALUTs. The multiplexing format selection is left to the synthesis tool in this
example.

The example files contain 4-byte (32-bit) and 16-byte (128-bit) variants. The 4-byte unit
has a maximum LUT depth of three, and uses roughly 375 ALUTs. It is also used in
the Ethernet example file crc_ethernet.v (see “CRC-32 Ethernet FCS”). The 16-byte
unit has maximum LUT depth of five, and uses roughly 4143 ALUTs.

Example files
Example file : crc/crc32c_dat32.v

Example file : crc/crc32c_dat64.v

Example files
crc/crc32c_dat64_only.v

crc/crc32c_zer64.v

Example files crc/crc32c_tb.sv

Example file crc/crc32_dat64_any_byte.v

Example files
crc/crc32_dat32_any_byte.v

crc/crc32_dat128_any_byte.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 12: Cyclic Redundancy Check 12–5
CRC-32 Ethernet FCS
The crc32_tb.v example file contains a test bench showing the proper transitivity of
the 32- and 64-byte variable units. The crc32_128_tb.v example file contains further
exercise of the 128 any byte unit.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CRC-32 Ethernet FCS
The example file implements a 1..4 byte parallel CRC-32 unit, a register bank, and the
bit order shuffling you typically use in Ethernet:

■ The CRC output bits are reversed and inverted.

■ The CRC register is synchronously initialized to 32'hffffffff using the init signal

■ Data residues appear on the less significant end of the data bus.

■ The LSB of the most significant byte enters the calculation first.

The test bench at the bottom of the example file demonstrates the popular
“123456789” test to help resolve any confusion.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

CRC Decomposition and Pipeline
For data widths beyond the 128 to 256 range the standard CRC XOR network becomes
a bottleneck. Current high speed serial protocols including 100G Ethernet and
Interlaken require pipelined CRC units to operate in an FPGA fabric.

The feedback structure of a CRC XOR network makes pipelining challenging.
Operating on the assumption that new data arrives on every clock cycle it is not
possible to arbitrarily insert latency into the XOR network. Doing so would cause the
computation to use a stale copy of the previous CRC and become incorrect.

Example file
crc/crc32_tb.v

crc/crc32_128_tb.v

Example files
crc/crc_ethernet.v

crc/crc_register.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

12–6 Chapter 12: Cyclic Redundancy Check
CRC Decomposition and Pipeline
Note : The XOR networks in the following figures are polynomial and data width
dependent. The wiring details are best handled by customized utility programs. They
are not intended to represent the same network.

The feedback loop must remain undisturbed, but the XOR network can be modified to
extract the data dependency. The data portion can be pipelined one or more stages
without compromising the calculation.

Studying the pipelined CRC logic it is apparent that the contribution of data bits to
the final CRC can be as narrow as the CRC width. For example a CRC-32 with 128 bits
of data can be implemented with a data pipeline register that is only 32 bits wide. This
property is useful for reducing the number of signals that need to be passed over
routing to subsequent circuitry.

Figure 12–4. CRC Feedback

Figure 12–5. CRC Feedback With Pipeline Register

XOR network

CRC Register

Data Previous CRC

XOR network

CRC Register

Data

Previous CRC

XOR network

Pipeline
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 12: Cyclic Redundancy Check 12–7
CRC Decomposition and Pipeline
CRCs have an interesting mathematical property that CRC (a) xor CRC (b) is equal to
CRC (a xor b). This allows some flexibility to compute a CRC on portions of a data
stream and combine the components later. For example the CRC of datastream AB can
be expressed as the previous CRC evolved 3 times, xored with the CRC of A evolved 2
times, XOR-ed with the CRC of B.

The pipeline decomposition allows a basic CRC to expand up to a few thousand input
data bits while maintaining reasonable performance. This circuit structure is ideal for
computing CRCs on high bandwidth data with a fixed total data length. An
unfortunate detail is that data length is typically not fixed. A high bandwidth
communications core is likely to require multiple independent CRC computations
within a single tick of the data bus.

Figure 12–6. Decomposed Pipeline CRC

Figure 12–7. Hypothetical data CRC 32 on 6 words of 64 bits

XOR network

CRC Register

Previous CRC [32]

XOR network

Pipeline

Data1 [64]

XOR network

Pipeline

Data2 [64]

XOR network

Pipeline

Data0 [64]

XOR network

Pipeline Data word CRCs [32]

...

Data contribution [32]

Payload 2 Payload 1 CRC Payload 0 Payload 3 CRC
July 2011 Altera Corporation Advanced Synthesis Cookbook

12–8 Chapter 12: Cyclic Redundancy Check
CRC Decomposition and Pipeline
If there is no rule governing which words can contain a CRC the datapath must be
prepared to compute a CRC at any of the 6 positions covering any number of previous
words. As with many CRC circuits the best solution is to compute all of the necessary
components in parallel. You can use a MUX to select the appropriate terms for
combination in a final XOR.

The CRC for the third word will be an XOR combination of previous data and CRC
bits. In this case the CRC depends on the previous CRC and the two preceding data
words. If the first data word were replaced by a CRC the selector would remove the
previous CRC and payload 0 terms retaining only the payload 1 term. Note that the
sixth word might depend on the previous CRC as well as any of the previous data
words. It will inherently require the most logic. In the worst case the input words will
all be data. The timing path flows from the previous CRC through all data words. The
result is immediately required as the "previous CRC" of the following clock cycle.

Using this method in combination with the previously described pipelining
techniques a Strativ IV FPGA is capable of computing CRC-24 on eight 64 bit words in
excess of 300 MHz. At eight words the term selection logic for the final word is a
bottleneck. For significantly higher word counts it will be necessary to restrict where a
CRC may appear in the data stream.

Figure 12–8. CRC Construction for Third Word on Six Word Sample Datapath

Payload 2 Prev CRC Payload 3 CRC

Payload 0

Evolve 3x

Evolve 2x

Evolve 1x

s
e

le
c
t

 CRC Payload 0 Payload 1
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
13. Error Correction Codes
64/72-Bit ECC Encoder/ Decoder
The most common RAM error correction scheme uses eight additional parity bits per
64 bits of data. This is sufficient for the correction of any single bit error, and detection
of two bit errors. The eight parity bits form a 7-bit hamming code, and an additional
parity bit that is used to distinguish between single and double errors.

The decoder recomputes the parity of the data and compares against the saved parity
bits. For a correct code word, the result is all zeros. An incorrect code word generates
the index of the bad bit, referred to as the syndrome. This scheme is applicable to any
data width.

The examples shown in Figure 13–1 through Figure 13–3 use 7-bit data with four
parity bits to illustrate this process. For further reading, see the Wikipedia entry for
Mr. Hamming and “hamming matrix.”

Figure 13–1 shows an encoding example.

Figure 13–2 shows a decoding example with no errors.

Figure 13–1. Encoding Example

Notes to Figure 13–1:

(1) 7-bit data is interleaved with parity bits to form an 11-bit code word. The parity bits are generated by XORs of data
bits in an alternating pattern.

Figure 13–2. Decoding Example With no Errors

Notes to Figure 13–2:

(1) The recomputed parity bits, XORed with the code parity, is all 0s indicating no correction is necessary. The second
layer decoder circuitry does not toggle any bits.

0 1 1

0 1 1 1 10 0

0 1 0 0 1 1 1 1

++

+

+

0 1 1 1 1010110

0 0 1 0 0010110

++

1 1 0 0 110

0000

+

+

++ + ++ + +
decoder
Advanced Synthesis Cookbook

13–2 Chapter 13: Error Correction Codes
64/72-Bit ECC Encoder/ Decoder
Figure 13–3 shows a decoding example with an error.

The additional parity bit is needed to distinguish between single- and double-bit
errors. Any single error changes the parity of the data. 2-bit errors are recognized
because they have non-zero decoded parity, but no change in the extra parity bit.
Typically, higher error counts are misinterpreted as single or double errors.

The 64/72-bit data version is an extension of this pattern. For implementation on
Stratix II cells, the generation and reconstruction of the parity require two levels of
XOR logic. The parity decoder and correction XORs occupy another two levels,
making decoding roughly twice the delay of encoding. The depth optimal decoder
factoring is somewhat tricky.

The example files implement 64/72 encoder and decoder units. The example file
ecc_generate.cpp file generates the Verilog HDL and is for reference only. The test
bench file ecc_64bit_tb.v applies random data with 0..4 bit errors for observation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 13–3. Decoding Example With an Error

Notes to Figure 13–3:

(1) The non-zero parity value indicates the position of the error in the code word. In this case, 1001, or decimal nine,
indicates the ninth of 11 bits is incorrect. The non-zero decoder output is XORed with the data to produce the correct
output despite the corruption.

Example files

ecc/ecc_matrix_64bit.v

ecc/ecc_64bit_tb.v

ecc/ecc_generate.cpp

1 1 0 0 110

1001

+

0 0 1 0 1011010

0 1 1 1 1010010

decoder
+ + + + + + +

+
+

+

Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 13: Error Correction Codes 13–3
64/72-Bit ECC Dual-Port Internal RAM
64/72-Bit ECC Dual-Port Internal RAM
It is fairly straightforward to attach the ECC encode decode sample to an internal
RAM block. The example file implements a true dual-port memory with two
independent encoders and two decoders. For single port or simple dual-port, you can
remove half of the ALUT logic.

The example design has registers at the numbered arrows shown in Figure 13–4. The
input and output registers at points 1 and 5 are primarily for benchmarking. Points 2
and 3 (built into the RAM block) provide insulation against routing difficulty. Register
4 cuts the critical path depth from four down to two. The benchmark performance for
ports A and B with no point 4 register is 243 MHz/240 MHz. When the point 4 register
is added, the speed increases to 351 MHz/322 MHz. The area cost is approximately
230 6-LUTs per encoder/decoder pair.

1 The two RAM ports do not operate at exactly the same speed due to differences in the
allowable modes multiplexing. You can use this test design for observing the
discrepancy without the ECC logic; it varies depending on the RAM mode settings.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 13–4. Per port Module Structure

Example files
ecc/soft_ecc_ram_64bit.v

ecc/soft_ecc_ram_64bit_tb.v

RAM

ecc_encode() ecc_syndrome()

ecc_correction()

ecc_raw_data()

ecc_decode()

21 3 4 5

Example file ecc/ram_speed_test.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

13–4 Chapter 13: Error Correction Codes
ECC 32/39-Bit Variation
ECC 32/39-Bit Variation
To correct 32-bit data, 39 bits of RAM storage is required. The encoder uses 38 ALUTs
with two levels of logic. The decoder is 132 ALUTs and depth five without the point 4
register. The soft RAM depth profile is similar to that of the 64/72 variant, however,
the logic is easier to place-and-route, and it can operate at 382 MHz/387 MHz (with
register point 4 enabled).

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

ECC 16/22-Bit Variation
To correct 16-bit data, 22 bits of RAM storage is required. The RAM example file
soft_ecc_ram_16bit.v uses approximately 89 ALUT per encode/decode pair, and
operates at 424 MHz/435 MHz.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

ECC 8/13-Bit Variation
To correct 8-bit data, 13 bits of RAM storage is required. The encoding requires one
level of logic. Decoding uses three levels of logic with optimization “technique equals
speed.” By default, the point 4 register in the decoder is disabled due to the lower
depth. The area cost is approximately 32 ALUT per encoder/decoder pair, operating
at approximately 443 MHz/445 MHz.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

ecc/ecc_matrix_32bit.v

ecc/ecc_32bit_tb.v

ecc/soft_ecc_ram_32bit.v

ecc/soft_ecc_ram_32bit_tb.v

Example files

ecc/ecc_matrix_16bit.v

ecc/ecc_16bit_tb.v

ecc/soft_ecc_ram_16bit.v

ecc/soft_ecc_ram_16bit_tb.v

Example files

ecc/ecc_matrix_8bit.v

ecc/ecc_8bit_tb.v

ecc/soft_ecc_ram_8bit.v

ecc/soft_ecc_ram_8bit_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 13: Error Correction Codes 13–5
ECC 2/6-Bit Variation
ECC 2/6-Bit Variation
This example file corrects 2-bit data using 6-bit codes. Encoding is simple, consisting
of two 2-input XOR gates. Decoding uses two 6-LUTs for data, and three 6-LUTs for
error flagging (0, 1, or more errors).

The C program file ecc_2bit.cpp generates the Verilog HDL and is included for
reference only. The test bench checks all of the 0-, 1-, and 2-bit error scenarios.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Reed-Solomon Forward Error Correction (FEC)
Reed-Solomon error correction is a widely used method for protecting larger data
streams. The Digital Video Broadcast (DVB) standard represents a typical set of
parameters. 255 symbols of 8 bits each are used to transmit 239 bytes of data. The 16
check symbols are sufficient to correct up to eight bad symbols, and to detect up to 16
bad symbols. The latency is usually 1 tick per symbol (255 for DVB), in contrast with
the typical RAM ECC schemes. Smaller Reed-Solomon codes are used on audio
CD-ROMs. The operation is based on fairly complicated Galois field arithmetic.

For more information on Reed-Solomon hardware, see the BBC White Paper (July
2002), “WHP 031: Reed-Solomon error correction,“ by C.K.P Clarke. The paper
contains a digest version of the underlying Galois mathematics. For more discussion
of the underlying theory, go to www.mathworld.wolfram.com, or another pure math
website.

1 Altera offers a Reed-Solomon MegaCore IP which has more features than the example
file, including variable code sizes, sophisticated bus flow control signals, and some
throughput/area tradeoff variants. Additionally, this IP core has decoder support for
erasures.

Reed-Solomon Transmitter
The Reed-Solomon transmit side is relatively straightforward. It consists of a parity
generator and a simple state machine to alternately send data and parity symbols. The
parity generator resembles a CRC unit (Figure 13–5 on page 13–5).

Example files

ecc/ecc_2bit.v

ecc/ecc_2bit_tb.v

ecc/ecc_2bit.cpp

Figure 13–5. Parity Generator Resembling a CRC Unit

D Q D Q

data

…

Parity(n)

G(0) G(1) G(2)

Parity(0) Parity(1)

D Q D Q
July 2011 Altera Corporation Advanced Synthesis Cookbook

13–6 Chapter 13: Error Correction Codes
Reed-Solomon Forward Error Correction (FEC)
The example transmitter reed_sol_tx uses approximately 230 Stratix II ALUTs, and
operates at 440 MHz.

Reed-Solomon Receiver
The Reed-Solomon receiver is substantially more complex than the transmit side. The
first step in decoding is to derive an error syndrome. The process is similar to the
transmitter parity computation. From the syndrome it is necessary to find the error
location polynomials (ELPs) and error magnitude polynomials (EMPs) that describe
which of the symbols are in error and the nature of the error within these symbols. In
contrast to the ECC RAM process, this process involves correcting multiple errors,
making it more complex. The decoder is arranged to produce corrections in byte
order, allowing the correction to be combined with the delayed data stream as
available (Figure 13–6).

The example receiver reed_sol_rx() uses 2544 ALUT, and operates at 178 MHz. It is
designed to keep the pipeline full so that a new symbol can be accepted on every clock
tick. It has a latency of 382 cycles.

w The decoder “failure” signal (too many errors to correct) is not implemented. It
should be configured to check that the degree of the ELP is less than or equal to T (in
this case, eight). In some cases, you may also need to configure it to check that the
number of roots identified matches the degree.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 13–6. Reed-Solomon Receiver Correction Process

data

delay

data

Syndrome Computation
(similar to TX)

Error Location
Polynomial (ELP)

(successive approx)

Error Magnitude
Polynomial (EMP)

(GF mult)

Roots of ELP
(substitution)

Error values

Example files
ecc/reed_sol.v

ecc/reed_sol.cpp
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 13: Error Correction Codes 13–7
Reed-Solomon Forward Error Correction (FEC)
Table 13–1 describes the contents of the Reed-Solomon example files.

Table 13–1. Reed-Solomon Example Files

File Name/ Generator Description

reed_sol.cpp

Parameterized generator program used to build Reed-Solomon cores of
various sizes. The code parameters are in the main() function at the bottom.
Smaller examples are commented out. The default settings represent the DVB
standard.

reed_sol.v Verilog HDL modules and test benches created by the generator.

gf_mult_by_01..
gf_mult_by_ff

Multipliers for a symbol times a constant. The fixed constant makes these
cheap in terms of hardware. Most generate their 8 outputs using 8 single
LUTS, however, a few require two LUTs. Not all are used; the full set is
generated for completeness only. (1)

encoder
An iterative parity generator used by the transmitter, essentially an array of
constant GF multipliers and a shift register. It is similar in principle to a CRC
generator. (1)

syndrome_flat
A zero-latency computation of the syndrome from received data. This
implementation is not practical for the digital video code size; it is included for
use on smaller codes and for verification. (1)

syndrome_round An iterative version of the syndrome computation. (1)

syndrome_tb A correctness test bench for the flat and iterative syndrome computations. (1)

gf_mult
Galois field multiplication of two arbitrary values. This module implements
several equivalent structures, selected by the METHOD parameter for quality
comparison. (1)

gf_inverse This is a lookup table that represents GF 1/X. (1)

gf_divide This implements GF division using the inverse function followed by multiply.
(1)

error_loc_poly_round This is one round of the ELP computation. This is an implementation of the
Berlekamp algorithm. (1)

error_loc_poly_round
_ multi_step

This is a modification of the error_loc_poly_round function, using additional
latency to increase the system clock speed. (1)

error_loc_poly_roots The Chien search method for finding the roots of the ELP. (1)

error_mag_poly_roun
d This finds the EMP from the ELP and the syndrome. (1)

error_value_round This identifies the actual data correction from the EMP and the ELP roots. (1)

flat_decoder Zero latency decoder. This is not practical for the digital video code size, it is
included for use on smaller codes and for testing. (1)

flat_decoder_tb Correctness test bench for the flat decoder unit. (1)

reed_sol_tx A full iterative transmit side unit (encoder). (1)

reed_sol_rx A full iterative receive side unit (decoder). (1)

reed_sol_tb
Iterative transmitter/receiver correctness test bench that sends a random data
stream with recirculating errors and confirms that the data is successfully
reconstructed. (1)

gf_math_tb Exercises the various gf_mult implementations and the inverse function. This
is intended for optimization study. (1)

Table 13–1 notes:

(1) Module or test bench located in reed_sol.v file.
July 2011 Altera Corporation Advanced Synthesis Cookbook

13–8 Chapter 13: Error Correction Codes
Reed-Solomon Forward Error Correction (FEC)
Galois Field Multiplication
Galois field multiplication is generally the “hot spot” of Reed-Solomon coding. This
section explains the Galois multiply operation to assist with optimizations.

Operating in a Galois field, addition is an XOR operation. Subtraction is the same as
addition because there is no carry propagation. Multiplication is generally done
modulo p, where p is a field-specific constant. For the DVB standard, p = 0x11d. As
with regular binary numbers, shifting left by one position is equivalent to multiplying
by two. When the MSB becomes a 1, the modulus correction must be applied. XORing
p with the result has the effect of subtracting p and returning the MSB to zero.
Therefore, the following is true:

A*2 = (A << 1) xor (msb == 1 ? 'p' : 0)

For a standard binary multiplication, A*B = (A and B[0]) + (2A and B[1]) + (4A
and B[2]) ..., the Galois product is constructed in the same manner, except XOR
replaces “plus“ and the modulus correction is applied after each shift. Figure 13–7 on
page 13–8 shows gates for this procedure using 4-bit data and p=10010 binary.

This pattern is recognizable in the METHOD=0 implementation of module gf_mult() in
the example file. The twisting XOR array has been flattened somewhat by the C
program that built the module.

For historic reasons, synthesis tools have some difficulty dealing with the
XOR-AND-XOR structure. Sum of products (SOP) factoring techniques and XOR
factoring techniques have evolved separately, making very few algorithms good for
both techniques. To address this, METHOD=1 essentially pushes the AND gates to the
input side of the circuitry. The AND-XOR structure gets a better mapping result.
METHOD=2 is a further optimization of the METHOD=1 structure, using custom factoring
rules. The construction code is in the C file in the function build_gf_general_mult().
Cost of the METHOD=2 gf_mult is 43 ALUTs, with a depth of 2.

When one of the input busses is constant, the AND gates minimize away and you are
left with a relatively simple collection of XORs. The gf_mult_by_<xx> modules
represent these constant multipliers for all 256 possible constants. When designing
Reed-Solomon circuitry, specify the known constants to help the CAD tools. Most of
the constant multiplies fit in 8 LUTs with depth one.

Figure 13–7. Gates Using 4-Bit Data and p=10010 Binary

A0

A1

A2

A3
A 2A 4A 8A

A*B

B0 B1 B2 B3
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 13: Error Correction Codes 13–9
Reed-Solomon Forward Error Correction (FEC)
1 It is infeasible to use the DSP/Multiplier blocks to implement Galois multiply. In
order to defeat the propagation of the carry, it is necessary to spread out the input data
excessively. There are several academic and industrial proposals for hardware
multipliers with an option to disable carry propagation for Galois multiply. The
modified hardware is reasonable in terms of functionality, but so far has exhibited
unacceptable levels of slowdown for standard multiply.

Implementations in ROM are unattractive due to the large required address space—
typically 16 inputs, or 64K words. This cost is reasonable if the ROM has numerous
read ports, for example, 32. However, replacing just a few gf_mult units with a
64 Kbyte ROM is impractical.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files
ecc/reed_sol.v (search for “Galois field multiplier“)

ecc/reed_sol.cpp (search for build_gf_general_mult)
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
14. Random and Pseudorandom
Functions
Linear Feedback Shift Register
The linear feedback shift register (LFSR) provides an efficient method of generating
pseudorandom sequences of 2^N–1 words using N bit registers and a few 2-input XOR
gates corresponding to the feedback polynomial. The example file lfsr.v contains
suitable polynomials for 4- to 32-bit registers. Additional maximum period
polynomials can be found on the web. Polynomials with more ones (more feedback
taps) generally cost more to implement in hardware and produce more volatile output
patterns.

For information on larger LFSRs, refer to “CRC XOR Decomposition” on page 12–2.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Built-In Logic Block Observer
Built-in logic block observer (BILBO) blocks are useful for in-system block testing. The
example file bilbo_lfsr.v has the following four modes:

■ Mode 0—Operate as a normal pass through register bank

■ Mode 1—Scan values in as a shift register

■ Mode 2—Generate a standard LFSR output sequence

■ Mode 3—Generate a LFSR sequence based on the input values

This is so that existing register banks can be replaced by BILBO blocks operating in
mode 0. By switching an input side block to mode 2, and an output side block to
mode 3, it is possible to check the bounded circuit’s behavior under random stimulus.
Any incorrect output response dramatically changes the state of the mode 3 block,
and is detected when the block is scanned-out for checking.

The book Fundamentals of Digital Logic With VHDL Design, by Steve Brown and
Zvonko Vranesic, discusses this type of test hardware in Chapter 11.

The example design uses a 32-bit register, 32 4-LUTs, and two 5-LUTs which
implement the mode logic in front of individual registers, and the 8-tap feedback XOR.
Polynomials with fewer bits require slightly less logic.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file random/lfsr.v

Example file random/bilbo_lfsr.v
Advanced Synthesis Cookbook

14–2 Chapter 14: Random and Pseudorandom Functions
C Library Random Number Generator
C Library Random Number Generator
The pseudorandom generator used by the standard C runtime library is based on the
following 32-bit multiply–add expression:

state <= state * 32'h343fd + 32'h269EC3;

Implementation in a Stratix II device uses a DSP block-based multiplier and a 32-bit
binary adder chain, for a cost of 32 arithmetic cells and eight DSP blocks.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

True Random Numbers
There is some circuit instability in delay due to minor changes in temperature and
voltage. Use this property to build oscillators which have generally non-repeatable
output.

The counter output is difficult to predict in practice. XORing bits from four of these
counters at 50 MHz is sufficient to produce random bytes with good statistical
properties. Behavior varies by speed-grade and silicon lot. This behavior is outside of
normal device timing specifications. Altera is unable to guarantee consistent behavior
of ring oscillators or lcell delay chains.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

1 These designs intentionally violate good synchronous design practices.

Example file

random/c_rand.v

random/rand_test.v

random/rand_test.cpp

Figure 14–1. Non-Repeatable Output

Example files
random/ring_counter.v

random/unstable_counters.v

cntr

Ena
16 bit

Unsafe ring oscillator

D Q
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 14: Random and Pseudorandom Functions 14–3
True Random Numbers
Race Condition-Based True Random Numbers
The most common approach for true random number generation on FPGAs is ring
oscillator based. For security applications, it is common to use multiple independent
rings. There is some concern that multiple rings on the same chip tends to synchronize
over time. Any trend toward synchronization can create unwanted correlations in
output. This design uses a different approach to eliminate the asynchronous ring
oscillator.

The basic delay element is a carry chain fed by a one-hot decoder.

The carry chain is wired to produce an output of “0” when the registers are cleared.
When the registers are loaded with a “1”, it propagates from the entry point down to
the output. The propagation time is selected by the one-hot decoder input.

Two of these variable delay chains drive the latch circuit shown in Figure 14–3. The
output registers use the same clock as the chain input registers. The circuit is intended
to meet timing for one clock cycle despite containing latches on the critical path.

Figure 14–2. Variable Chain-Based Delay

Figure 14–3. Output Latches

O
ne-H

ot

R
egister

A first
chain "A"

chain "B "

reset

B first

stable

reset
July 2011 Altera Corporation Advanced Synthesis Cookbook

14–4 Chapter 14: Random and Pseudorandom Functions
True Random Numbers
When the clear is released on the carry chain registers, the decoded “1” races down
both chains. The latches detect which chain produced a “1” first. If the arrival times
are sufficiently close, then neither latch is set. Theoretically, both latches can set,
although this did not occur in experiments. The overall effect is a race condition with
fine programmable timing. Most decoder settings produce consistent results (that is,
always A first, always B first, always neither first) across trials. However there are a
significant number of settings which have unstable results. In unstable cases, thermal
and electrical noise influences whether a latch has time to set before the second signal
arrives.

The example file chain_delay_race implements two variable chain delays and a latch
circuit as described above, and contains a tiny state machine to run a continuous
series of propagation trials.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

To produce random numbers, the race circuit needs to use an unstable pair of one-hot
decoder settings. Unstable settings tend to vary over time and operating temperature.
It is possible that no unstable setting exists. For example, if the routing delays were
grossly imbalanced, the delays may not overlap in the programmable range.

The chain_delay_adjust example iterates through settings and counts the number of
A first and B first outputs over 255 trials. If the results are consistent, it changes the
setting and reevaluates. For unstable settings it makes no adjustment but continues to
evaluate. The adjusting output notifies the output filter when the circuit is
experimenting with settings and is therefore predictable.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file random/chain_delay_race.v

Figure 14–4. chain_delay_adjust Block Diagram

Example file random/chain_delay_adjust.v

A first Calibrate "A"

Calibrate "B"

8-Bit
Counter

stable 8-Bit
Counter

B first 8-Bit
Counter

8-Bit
Counter

Adjusting

Adjust calibration if neither
A first nor B first changed
value in the last 255 trials.

State
Machine
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 14: Random and Pseudorandom Functions 14–5
True Random Numbers
Together the race and adjustment circuits generate a series of “first” signals which
exhibit noise-based instability. Certain outcomes are more likely than others, so a von
Neumann filter on the output is required. This filter uses consecutive pairs of first
signals to generate a random output bit when appropriate. The signals are discarded
entirely during delay adjustments as well as when consecutive trials produce the
same result.

Note that if the delay becomes predictable the output circuitry stops generating bits. If
the stability persists, then the adjustment state machine switches to another setting. If
there are no unstable settings, then the output never produces a bit rather than
generating non-random bits.

The chain_delay_rand example file instantiates the race circuit using 32-bit chains
with 16 delay selections each, an adjustment state machine, and an output filter.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Experiments with the combined example circuit on Cyclone II and Stratix II devices
showed excellent balance for first, second, and third order bit distribution. Eight
megabytes of binary sample data had zero compression. None of the chains failed to
identify any unstable settings although several Stratix II chains frequently
recalibrated. Increasing the number of calibration bits creates a higher chance of
finding an unstable setting in return for a modest increase in area cost.

Figure 14–5. Output Filtering to Create a Random Bit

Example file random/chain_delay_rand.v

A first B first A first B first Behavior
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

discard
output 0
output 0
output 0
output 1
discard
output 0
output 0
output 1
output 1
discard
output 0
output 1
output 1
output 1
discard
July 2011 Altera Corporation Advanced Synthesis Cookbook

14–6 Chapter 14: Random and Pseudorandom Functions
Word Stream Scrambling
Word Stream Scrambling
The example file word_stream_scramble.v is based on a small C program that
generates word scrambler/descramblers in Verilog HDL. The data stream enters a
shift register serially and is multiplexed to the output in pseudo-random order
producing a garbled data stream where each value appears within a fixed
displacement of where it belongs (Figure 14–6).

The C program randomly creates a shuffling pattern while guaranteeing no words are
lost or duplicated, and builds an inverse pattern selectable by parameter. The tables
are stored in the case statement at the bottom of the generated Verilog HDL
(word_stream_scramble.v). For a period of 64 cycles, the pattern table fits
conveniently into single 6-LUTs. The test bench demonstrates scrambling and
unscrambling a counter sequence. The logic is heavily pipelined for high speed
operation. Note that if you change scrambling parameters by means other than word
width, you must regenerate the Verilog HDL from C.

This type of scrambling is the easiest way to generate a pseudo-random stream with
specific data distribution properties, and is suitable for low security encryption to
make data streams non-standard. To improve the randomness, increase the period
and maximum displacement parameters in the C program and replace the C runtime
random number generator with a more sophisticated function, for example, RC4.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 14–6. Word Stream Scrambling

Example files

random/make_scrambler.cpp

random/word_stream_scramble.v

random/word_stream_scramble_tb.v

Shift in

Randomized
output

patterncounter
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
15. Cryptography
Data Encryption Standard
The Stratix II 6-LUT is exceptionally well suited to data encryption standard (DES)
implementation because it allows an S-BOX to fit in a single logic level. Because of the
intentional complexity of the S-BOX, it is not possible to factor single output bits more
efficiently into smaller LUTs.

There is some minimal reuse of helper functions between output bits. For example,
the Quartus II Synthesis can implement S-BOX number 5 in 23 4-LUTs rather than the
expected 24 4-LUTs.

You can implement one DES round using 8 S-BOXes in 8*4*1 = 32 Stratix II 6-LUTs,
with one level depth while a 4-LUT device theoretically requires 8*4*6 = 192 4-LUTs
and 3 levels of depth. In practice, about 4 cells are recoverable by area sharing for a
cost of 188 cells (5.8x). A typical pipelined DES implementation uses 16 copies of the
8 S-BOX stripe.

Each DES round is composed of an S-BOX array, an expansion permutation, a straight
permutation, a 48-bit key XOR, and a 32-bit Feistel XOR. A DES encryption uses
16 rounds, with some minor initial and final permutation. Decryption uses the same
hardware and a reversed key sequence.

Permutations are cumbersome to implement in software, but “free” in hardware. The
following implementation of the DES round permute requires a change in wiring
pattern and no lcells:

Figure 15–1. DES Implementation

Figure 15–2. Pipelined DES Implementation

SBOX
n

6 LUT

Repeat for each of the four output bits

4 LUT 4 LUT 4 LUT 4 LUT

4 LUT

4 LUT

expand

32 bit

32 bit32 bit

48 bit

32 bit

Round key

32 bit

Permute

Eight S-BOXes
Advanced Synthesis Cookbook

15–2 Chapter 15: Cryptography
Triple DES
module permute (in,out);
input [31:0] in;
output [31:0] out;
wire [31:0] out;
assign out = {

in[16],in[25],in[12],in[11],in[3],in[20],in[4],in[15],
in[31],in[17],in[9],in[6],in[27],in[14],in[1],in[22],
in[30],in[24],in[8],in[18],in[0],in[5],in[29],in[23],
in[13],in[19],in[2],in[26],in[10],in[21],in[28],in[7]

};
endmodule

When pipelining a DES circuit on Stratix II devices, it is important to place the
registers so that the XORs can flatten together between adjacent rounds. This provides
depth savings compared to the traditional placement at the round output.

This DES implementation uses a customized 16-level pipeline, selected by the
PIPE_16B parameter. A new 64-bit data word, and key if desired, are used on each
cycle. You must set the default optimization technique to SPEED. The resource usage is
2,543 ALUTs. Standalone operating speed is 400 MHz, in-system speed degrades
somewhat. You can select decryption by parameter. Selecting decryption does not
change the operating speed or resource usage.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

1 The example files use zero-based MSB first-word ordering internally in contrast to the
DES standard document which uses a confusing mixture of numbering systems. The
top-level interface is identical, but the permutation arrays may look backwards.

The DES key is 56 bits long, traditionally stored as 64 with 8 unused bits
available for parity. This implementation produces synthesis warnings about
the unused key input signals.

Triple DES
Triple DES traditionally uses an encrypt-decrypt-encrypt pattern. The original
motivation was to maintain compatibility with single DES systems by setting the keys
to the same value. Security experts recommend the use of three separate keys for the
three rounds.

Triple DES is easily implemented on Stratix II devices by placing three DES units in a
series. Latency and resource usage are tripled, and speed and throughput remain
relatively constant.

Double DES is not used due to an impractical attack that assumes the availability of
2^56 words of storage space. The book Applied Cryptography, by Bruce Schneier,
discusses this issue as well as other DES-related topics.

Example files

crypto/des/round.v

crypto/des/sboxes.v

crypto/des/des.v

crypto/des/des_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 15: Cryptography 15–3
UNIX Password Encryption
UNIX Password Encryption
Traditional UNIX password implementations use a “one-way“ function that is 25 DES
encryptions of zero, using the password string as a key. The algorithm includes a
modification to the DES expansion step to make the hardware non-standard.

The inputs to the function are an 8-character password, and a 2-character “salt“ that
controls the expansion adjustment. The output is an 11-character string that is stored
with the two salt characters in front, as shown in the example on page 15–3.

Password: “foobar12”
Salt: “A3”
Encryption result: “LvH7gb4dV5Y”
Stored: “A3LvH7gb4dV5Y”

The transformation between Verilog HDL strings and binary words is handled by
helper functions in the example file ucrypt.v. Passwd_crypt() is the top module and
uses the DES examples described above for encryption.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Advanced Encryption Standard/ Rijndael
The advanced encryption standard (AES) (FIPS publication 197, 2001) describes the
Rijndael algorithm with some minor limits to block and key size parameters.

Table 15–1 shows a comparison of DES and AES-128.

Note that the fMAX values reflect the standalone pipelined cores running on small
devices, and there is some inevitable degradation when the cores are plugged into real
systems. These numbers are intended to give a ball-park rather than a guarantee. With
double data width and half the speed, AES-128 has roughly the same data throughput
as DES (about 3.2 billion bytes per second). In terms of security, the AES keyspace is
more difficult to enumerate by a factor of 2^72, and the area requirement is equivalent
to roughly six DES units.

Example file
crypto/des/ucrypt.v

crypto/des/des/des_tb.v

Table 15–1. Comparison of DES and AES-128

Parameter Data Encryption
Standard

Advanced Encryption
Standard-128

key size 56 128

data size 64 128

Rounds 16 10

Round logic depth 2 4

Total ALUT 2543 15379

Typical fMAX 402 MHz 196 MHz
July 2011 Altera Corporation Advanced Synthesis Cookbook

15–4 Chapter 15: Cryptography
Advanced Encryption Standard/ Rijndael
Rijndael is optimized for encryption on smart cards using 8-bit processors and
extremely limited memory. The decryption process uses slightly different circuitry,
and is generally slower. These can be important considerations if the FPGA device
must communicate with a lightweight embedded system.

The Rijndael S-BOX/sub_bytes
The core operation of the Rijndael Cipher is an 8-input 8-output substitution table
(S-BOX) based on an affine transformation and Galois Field (GF) multiplicative
inverses. It is analogous to the DES S-BOX, although the Rijndael underlying
derivation is public. You can implement the affine transformation in eight 5-input XOR
gates. The GF multiplicative inverse is an interesting function. It has heavy
redundancy, for example, if input A produces output B, then input B must produce
output A. However, there appears to be no way to exploit this when factoring into
gates. As such, the 8-input multiplicative inverse function requires the maximum
possible area of five 6-LUTs. The XOR gates can be absorbed, leaving a simple
ROM-style implementation.

Using the 6-LUTs to implement the S-BOX, as illustrated in Figure 15–3, results in an
area cost of five 6-LUTs per output bit, and 40 6-LUTs per S-BOX. The maximum
depth is two levels.

The S-BOX is used during round key generation and to implement the sub_bytes
step. The sub_bytes step is done once per round and consists of applying the S-BOX
to each byte of the 128-bit data (16 bytes) in place. The most reasonable
implementation is 16 independent S-BOX units, depth two, with a total area cost of
640 6-LUTs.

The C example file sub_bytes.cpp confirms the S-BOX derivation and dumps Verilog
HDL for the S-BOX and sub_bytes. By default, the S-BOX implementation uses an
8-input ROM building block with parameterized masks. You can override the METHOD
parameter to use an unstructured version for testing or experimentation. The example
file sub_bytes.v contains the generated Verilog HDL implementation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 15–3. Simple ROM-Style Implementation

Example files
crypto/aes/sub_bytes.cpp

crypto/aes/sub_bytes.v

sbox

Eight Input ROM implemented in 6-LUTs
(repeat for each output)

6LUT 6LUT 6LUT 6LUT

6LUT
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 15: Cryptography 15–5
Advanced Encryption Standard/ Rijndael
Rijndael shift_rows
Rijndael shift_rows is a cyclic permutation that is done once per round. The 128-bit
data represented here as 128'habcdefghijklmnop is treated as a 4-by-4 grid of bytes,
and rotated by the rows as shown in the pattern in Figure 15–4.

The examples in show the rotation, inverse rotation, and a small C program used to
build them. This permutation is free in hardware implementation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael mix_columns and Round Keying
Rijndael mix_columns is the diffusion step of Rijndael. Each 4-byte column undergoes
a GF constant polynomial multiply, making each of the four bytes a function of all the
others.

assign s0_o = mult2(s0_i) ^ mult3(s1_i) ^ s2_i ^ s3_i;
assign s1_o = s0_i ^ mult2(s1_i) ^ mult3(s2_i) ^ s3_i;
assign s2_o = s0_i ^ s1_i ^ mult2(s2_i) ^ mult3(s3_i);
assign s3_o = mult3(s0_i) ^ s1_i ^ s2_i ^ mult2(s3_i);

The multiplications are implemented in XOR gates. The support set is sufficiently large
to require depth two in Stratix II LUTs. Four column mixing units are required for
parallel operation.

The final step of the round operation is to XOR the 128-bit round key with the 128-bit
data. This array of 2-input XOR gates blends into the mix_columns operation with no
increase in depth.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael Key Evolution
The round keys are derived from the user key through an iterative process composed
of shifts, XORs, and the S-BOX. The exact procedure varies with the key size. The FIPS
specification allows key sizes of 128, 192, and 256 bits. The example files contain 128
and 256 implementations, but not a 192 implementation.

Figure 15–4. Rotated 4-by-4 Byte Grid

Example files
crypto/aes/shift_rows.cpp

crypto/aes/shift_rows.v

A
B
C
D

E
F
G
H

I
J
K
L

M
N
O
P

A
F
K
P

E
J
O
D

I
N
C
H

M
B
G
L

Example file crypto/aes/mix_columns.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

15–6 Chapter 15: Cryptography
Advanced Encryption Standard/ Rijndael
Each round key evolution step uses four S-BOXes (160 6-LUTs) and 128 XOR gates of
various widths up to 6-input. The maximum depth is three levels. The 256-bit version
uses a simpler method on every other step. The KEY_EVOLVE_TYPE parameter is used to
distinguish them.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael 128 Encipher
The example files implement a pipelined Rijndael encryption with 128-bit key
according to the FIPS specification. Correctness is verified using the expected results
in the specification appendix B. It has a latency of 10 cycles and can take new data and
key on every cycle.

rijn_round_128.v implements a single round of encryption and key evolution. The
merging of the key evolution with the round does not increase hardware cost, and
allows the cipher to be rekeyed on-the-fly. The C program is a simple loop that
generates ten of the round functions with the appropriate parameters. The example
file aes_128.v is the output of the C program and implements the top level.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael 128 Decipher
Rijndael is built from invertible steps, so decryption is essentially applying inverse
functions in reversed sequence. The example files contain all of the necessary inverse
functions, for example, sub_bytes() and inv_sub_bytes(). The top level design
aes_128.v also contains inv_aes_128 which performs the full pipelined decryption.

This decryption implementation uses an “inverse cipher key“ which is easily derived
from the encryption process. aes_128 has an output port which delivers the
appropriate inverse key along with the encryption result. This method is briefly
referenced in the original AES proposal document section 5.3.4.1. It appears to be the
only way to avoid ten cycles of “dead time” when a new decryption key is loaded.
Due to inverse key use, the example implementation can be rekeyed on every cycle.

Example file crypto/aes/evolve_key.v

Example files

crypto/aes/aes_round_128.v

crypto/aes/aes_128.v

crypto/aes/aes_128.cpp

crypto/aes/aes_128_tb.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 15: Cryptography 15–7
Advanced Encryption Standard/ Rijndael
The inverse column mixing function is more complex than the forward version. It
uses more area, but is still expected to absorb the key XORs and fit in two logic levels.
The complete inverse round is four levels which is the same as the forward round. In
practice, the decryption seems to be more difficult to route, and runs approximately
15 MHz to 20 MHz slower than encryption.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael 256-Bit Key Size (AES 256)
The 256-bit key requires an increase from 10 to 14 rounds, the latency of the pipeline
increases by 10 to 14, and the logic area increases by approximately 40 percent. There
are some relatively minor modifications to the key evolution circuitry. Note that every
other key round behaves a bit differently.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Rijndael 192-Bit Key Size (AES 192)
To create this key size you must make modifications to the round schedule and the
key evolution circuitry. The basic building blocks are the same as the 128- and 256-bit
key size.

Example files

crypto/aes/aes_round_128.v

crypto/aes/aes_128.v

crypto/aes/aes_128.cpp

crypto/aes/aes_128_tb.v

Example files

crypto/aes/aes_round_256.v

crypto/aes/aes_256.v

crypto/aes/aes_256.cpp

crypto/aes/aes_256_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

15–8 Chapter 15: Cryptography
RC4 Stream
RC4 Stream
This is an implementation of the RC4 stream cipher found in Applied Cryptography, by
Bruce Schneier. This is a compact algorithm that takes a key up to 256 bytes long and
generates a stream of random bytes. This implementation uses one dual-port 4K RAM
block and 154 ALUTs. It operates at approximately 382 MHz and generates a byte
every four clock cycles.

The algorithm is well respected and is used in some large-scale commercial
applications. There is an enable signal on the sample generator to facilitate running
multiple generators out of phase to increase the effective output rate.

The example files contain the hardware implementation, an equivalent C software
version for comparison, and a test bench. The RAM block is located in the altera_mf.v
file in the <Quartus II installation directory>/eda/sim_lib directory.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Secure Hash Algorithm
The secure hash algorithm (SHA) is specified in FIPS 180-2. This standard describes
several variations; only SHA-512 and SHA-384 are implemented in the example files.

SHA-512 is based on an 80-step iteration of shifts, adds, multiplexer, and majority
functions. The first 16 rounds use 64-bit message words (1024 bits total). The
subsequent 64 rounds use rotated combinations of previous message words. Each set
of 80 rounds produces a hash value. The hash value accumulates until the message
blocks are exhausted. There is a padding step to ensure that all messages are multiples
of 1024 bits long. The hash output is the 512-bit accumulation.

SHA-384 is implemented as SHA-512, discarding the upper output bits. There is also a
change to the initial state of the hash accumulator.

Figure 15–5. RC4 Stream Algorithm

Example files

crypto/rc4/rc4.v

crypto/rc4/rc4.cpp

crypto/rc4/rc4_tb.v

Byte stream

I

J

State
machine

RAM
256 byte

2 port

Key[256]
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 15: Cryptography 15–9
Secure Hash Algorithm
The algorithm is simple to follow. See Section 6.3 of the FIPS specification for the
description. The example files contain a direct implementation. Each round uses 81
clock ticks (80 for evolution, one for hash accumulation). Message blocks are 64-bit
and accepted on the first 16 cycles of each round. Implemented on a 2S60C3 device,
this SHA512 uses 2083 ALUTs and operates at 130 MHz (205 M bytes per second).
SHA384 is roughly the same. The full hash value must be accumulated despite
discarding a portion at output time.

Message padding is done by adding a 1, followed by some number of zeros, followed
by a 128-bit content length (in bits). The number of zeros is the minimum necessary
for the total length to be a multiple of 1024 bits. The best padding method is
application-specific. The example files contain a suitable padding front-end for
SHA-384 and SHA-512.

The critical paths of SHA-512 run through the 64-bit adders. It is possible to pipeline
these adders (see Chapter 2, Arithmetic). Pipelining increases the fMAX, but not the
throughput. For higher throughput, formulate a 40 round version which evolves the
abcdefgh register two steps in one tick. The arrangement of the e and a registers
makes the formulation awkward. This is by design, the security depends on the
difficulty of unrolling 80 rounds.

To improve the area in return for a small decrease in clock speed, the “K” table can be
moved to ROM. The example file includes “synthesis preserve“ attributes on the K
table input and output registers. This forces an implementation in approximately
192 LUTs. Removing the attributes allows ROM implementation.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example files

crypto/sha/sha512.v (both 384 and 512 by parameter)

crypto/sha/sha384_tb.v

crypto/sha/sha512_tb.v

Example files
crypto/sha/sha_padding.v

crypto/sha/sha_padding_tb.v
July 2011 Altera Corporation Advanced Synthesis Cookbook

July 2011 Altera Corporation
16. Synchronization
System Reset Control
Registers in Altera devices support a variety of synchronous and asynchronous reset
signals. There are several control types for forcing registers to 1, 0, or an arbitrary
signal value. In this chapter, the term “reset” is used to refer to all control types. It is
good design practice to include some mechanism for forcing your system into a
known state. In general, registers in Altera devices power up into the “0” state,
however, there are some unique situations where this is not the case.

In the past most resets were asynchronous and driven by a push button or a small RC
circuit. Because newer FPGAs have higher clock rates, asynchronous resets are not
feasible due to recovery and removal timing violations.

When the asynchronous clear signal is released, the flip-flop can begin normal
operation. Recovery or removal failures occur when the reset signal transitions too
soon before or after a clock edge to ensure reliable operation. As the clock rate
increases so does the probability that the reset release occurs extremely close to a clock
edge. The asynchronous reset must be synchronized to avoid this scenario.

When managing multiple clock domains, it can be difficult to arrive at a safe reset
sequence. To address recovery and removal violations, the reset signal must be
synchronized. For a synchronous reset, it is sufficient to feed the reset signal through
two synchronizer registers. Two registers are generally sufficient to eliminate
metastability issues.

Figure 16–1. Recovery Window

Figure 16–2. Basic Synchronizer

aclrn

D Q

D QD Q

Synchronous ResetReset Button

System Clock
Advanced Synthesis Cookbook

16–2 Chapter 16: Synchronization
System Reset Control
In some cases, a basic reset synchronizer circuit is inadequate because the behavior
requires the system clock to be stable, and the reset is not immediately asserted. For
example, if the reset input is triggered by a loss of PLL lock, it is difficult to predict
exactly when the synchronous reset will go active. The delay in activation can cause
the malfunctioning system to go into logic contention with external devices. This
problem can be corrected using the asynchronous reset hardware as shown in
Figure 16–3.

In the circuit shown in Figure 16–3, the reset signal immediately forces the registers to
“0”. If the clock is stopped, the system waits in the reset asserted state. After 2 ticks,
the logical 1 propagates through and the reset is released. Because the release is
synchronous to the clock there are no recovery/removal timing failures. The selection
of an active low reset is convenient because the FPGA registers naturally power up to
0. This creates an automatic reset on power up. It is safe to cut the timing path from
the external reset signal to the register aclr ports. The synchronized reset operates
properly independent of the asynchronous input timing. This reset filter is
implemented in the example file.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 16–3. Improved Reset Filter

Example files synchronization/reset_filter.v

D QD Q

aclraclr

Synchronous Reset
(Active Low)

Reset Button

System Clock
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 16: Synchronization 16–3
System Reset Control
The reset filter in Figure 16–3 is adequate for single trigger single clock domain
situations. Typical FPGA systems need multiple reset triggers and multiple
domain-specific reset outputs. To create a robust system, it is best to independently
filter reset triggers before combining.

Note that Altera registers support programmable inversion of the asynchronous clear
port. Inverting reset signals does not incur any area or timing cost. Given the reset
triggers are asynchronous, it is acceptable, in principle, combine the triggers before
filtering, but the individual filter method shown in Figure 16–4 is viewed as more
robust against glitching on the trigger signals.

Once a single system reset signal is available, it must be synchronized to each of the
client clock domains. The same reset filtering circuit works for distribution, and has a
convenient property where if the “1” in the filter registers is replaced with the
previous filter’s output, the resets release sequentially. This is convenient for bringing
up a multi-domain system in a reasonable deterministic order.

The reset signals in the reset_control example design can release either as available or
sequential, depending on the SEQUENTIAL_RELEASE parameter setting. The number of
trigger inputs and number of controlled domains are also parameterized.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 16–4. Combining Asynchronous Reset Triggers

Figure 16–5. Sequential Release

Example files
synchronization/reset_control.v

synchronization/reset_control_tb.v

D QD Q

aclraclr

sys_rstn

sys_clkrstn_button

D QD Q

aclraclr

pll_lock

System reset (N)

Rstn[0]

Rstn[1]

Rstn[2]
July 2011 Altera Corporation Advanced Synthesis Cookbook

16–4 Chapter 16: Synchronization
Clock Multiplexing
Clock Multiplexing
Though common, clock multiplexing is generally considered an unsafe practice.
Clock multiplexers trigger warnings from a wide range of design rule checking and
timing analysis tools. Altera devices support dynamic PLL reconfiguration which is
the safest method of changing clock rates, however, they are complex to implement
and not always practical. Additionally, dedicated clock multiplexer hardware is
available which may be adequate if the number of clocks involved is low. Please refer
to the altclkctrl Megafunction User Guide available on the Altera website for more
information.

When implementing a clock multiplexer in logic cells, it is important to consider
simultaneous toggle and glitch-free transition.

The Altera datasheet statement is that LUT outputs may glitch during simultaneous
toggle of input signals, independent of the LUT function. However, in practice the 4:1
multiplexer function does not generate any detectable glitches during simultaneous
data input toggles. This property appears to hold when designs are converted to
HardCopy II or similar logic cells. It is possible to construct cell implementations
which exhibit significant glitches, so this simple clock multiplexer structure is not
recommended. A further problem with this implementation is that the output
behaves erratically during a change in the clk_select signals which can create timing
violations on all registers fed by the system clock and possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and
switching problems.

Figure 16–6. Simple Clock Multiplexer in 6-LUT

clk0
clk1
clk2
clk3

clk_select (static)

sys_clk

Figure 16–7. Glitch Free Clock Multiplexer

clk_out

sel0

sel1

clk1

clk0

DQ DQ DQ

DQ DQ DQ
Advanced Synthesis Cookbook July 2011 Altera Corporation

Chapter 16: Synchronization 16–5
Synchronizer Chain
This structure can be generalized for any number of clock channels. The clock_mux
example contains a parameterized version. The circuit essentially enforces that no
clock will activate until all others have been inactive for some time, and that
activation will occur while the clock is low. Adding a synthesis_keep directive to the
right hand side AND gates guarantees that there will be no simultaneous toggles on the
input of the clk_out OR gate. It is important to note that switching from clock A to
clock B requires that clock A continues to operate for at least a few cycles. If the old
clock stops immediately the circuit gets stuck. The select signals are implemented as a
one-hot control here, but they can easily be encoded. The input side logic is
asynchronous and not critical. The circuit can tolerate extreme glitching during the
switch process.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Synchronizer Chain
The synchronizer chain is the basic building block of metastability hardening. When
an asynchronous signal enters a flip flop it has a fair chance of violating the flip flop's
setup and hold timing requirements. A faster clock produces a higher probability of
violation. When a violation occurs it is possible for the flip flop may take on a state
which is between 0 and 1.

Typically the metastability converges to 0 or 1 very quickly. In an extreme case the
metastability could persist for a full clock cycle and cause a setup hold failure in the
next register. This scenario is called a synchronization failure. To reduce the
probability of failure it is recommended to have several registers on the capture side.
This gives metastable data multiple chances to resolve to 0 or 1 before entering the
core logic.

Example files
synchronization/clock_mux.v

synchronization/clock_mux_tb.v

Figure 16–8. Metastability Hill Analogy

Figure 16–9. Synchronizer

0 1

metastable

clkA
clkB
July 2011 Altera Corporation Advanced Synthesis Cookbook

16–6 Chapter 16: Synchronization
Synchronizer Chain
Raising the number of registers on clock domain B will exponentially reduce the
probability of failure. For typical modern applications two clkB registers are sufficient.
High reliability applications occasionally use four or five, which correspond to
thousands of years or more between expected synchronizer chain failures even at
high clock rates.

When moving a data bus across clock domains with a synchronizer it is important to
keep in mind that the bits may become skewed. For example if the source data bus
transitions from 1111 to 0000 a synchronizer might capture 1111, 1010, 0000. If the data
represents a count value gray encoding is sufficient to address the problem. See
discussion of gray coding in the translation section.

Quartus has synchronizer detection and mean time between failure (MTBF) analysis
capability. A synchronizer failure does not necessarily imply that the broader system
will cease to function, but in high speed designs it does require some scrutiny.

The example file contains a bus synchronizer with parameterized data width and
synchronization chain length.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file synchronization/synchronizer.v
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
17. Debugging
Temperature Sensor
This example shows how fluctuations in voltage across the temperature sensing diode
(TSD) in Stratix III and Stratix IV devices can be measured and converted to a
temperature reading in user logic.

The TSD samples approximately once per second using a small, on-die, 8-bit ADC.
Different architecture in Stratix V devices allows sampling hundreds of times per
second. Accuracy is specified to +/- 4 degrees Celsius; however, most of the
uncertainty occurs at the extreme ends of the range. Under typical lab conditions,
accuracy is closer to +/- 1 degree Celsius.

The TSD is located in the upper-right corner of the device. The reading may be
distorted slightly by highly active logic placed in that corner. It is possible to create
approximately 4 degrees Celsius of temperature gradient between the opposite
corners of the die.

The example file debug/temp_sense.v is suitable for Stratix III and Stratix IV devices.
The temp_sense_s5.v example is modified slightly to interface with the Stratix V
ADC.

Other active user logic in that area of the device can cause the TSD to report
temperature that is not a reflection of the overall temperature of the device.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Frequency Monitor
This reference design provides a way to monitor, and in some cases easily identify,
multiple clock signals in a design. Frequencies for a number of clock signals specified
with the NUM_SIGNALS parameter are monitored in kilohertz.

The frequencies are measured by counting the number of pulses per second relative to
a reference clock. Only one signal (per frequency monitored) crosses betwen the clock
domains of the reference clock and the measured signals, and that clock domain
crossing is hardened against metastability with a five-register synchronization chain.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file
debug/temp_sense.v

debug/temp_sense_s5.v

Example file debug/frequency_monitor.v
Advanced Synthesis Cookbook

17–2
JTAG To C Probe
JTAG To C Probe
This example is a low level interface for moving binary data streams from the FPGA
to a PC binary file for detailed analysis. It is intended for users completely familiar
with binary data files who desire automation and control beyond the available user
interfaces.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

The stream_grabber module collects valid samples of data until the sample memory is
full. Once full it drains the sample memory through the output byte stream. Data
arriving during the drain cycle is not captured. The initial content of the output shift
register is used to insert a tag to identify the data stream.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Example file debug/jtag_to_c_probe.v

Figure 17–1. stream_grabber Structure

Example file
debug/stream_grabber.v

debug/stream_grabber_tb.sv

Sample

RAM
data_in[72]

data_in_valid

State

Machine

Shift out bytes

Address

cntr
Advanced Synthesis Cookbook July 2011 Altera Corporation

17–3
JTAG To C Probe
The quad_stream_grabber module combines four stream_grabber modules with
muxing and clock-crossing logic. The data is captured concurrently on the four
asynchronous input channels. The resulting streams are concatenated and delivered
to the output port as a byte stream.

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

This example contains a quad_stream_grabber attached to a 16 bit JTAG probe and
some triggering control logic. The data sent to the JTAG port is expanded from 8 bit
binary to 16 bit ASCII hex as an error detection mechanism. The C program attaches
to the JTAG link and dumps binary capture data to a file c_probe.bin.

To build the C program in a Windows environment use the following command:

cl read_c_probe.cpp jtag_client.lib

f The example files are available on the Altera website at the following URL:
www.altera.com/literature/manual/cookbook.zip.

Figure 17–2. quad_stream_grabber Structure

Example file

debug/stream_mux.v

debug/clock_crossing_fifo.v

debug/quad_stream_grabber.v

debug/quad_stream_grabber_tb.sv

Stream

grabber

Stream

grabber

Stream

grabber

Stream

grabber

FIFO

FIFO

FIFO

FIFO

Stream_mux

Concatenated streams

0123

Stream 0

Stream 1

Stream 2

Stream 3

Example file
debug/four_lane_jtag_probe.v

debug/read_c_probe.cpp
July 2011 Altera Corporation Advanced Synthesis Cookbook

17–4
JTAG To C Probe
Altera offers a variety of solutions for debugging your system with a PC, via the JTAG
port. Refer to the documentation on the SignalTap II Logic Analyzer, In-System
Sources and Probes Editor, In System Memory Editor, and the JTAG UART for more
information.
Advanced Synthesis Cookbook July 2011 Altera Corporation

July 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”
Advanced Synthesis Cookbook

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-documentation-index.html
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

Visual Cue Meaning
Advanced Synthesis Cookbook July 2011 Altera Corporation

	Advanced Synthesis Cookbook
	Contents
	1. Introduction
	Blocks and Techniques
	Simulating the Examples
	Using a C Compiler

	2. Arithmetic
	Introduction
	Basic Addition
	Ternary Addition
	Grouping Ternary Adders
	Combinational Adders
	Double Addsub/ Basic Addsub
	Two’s Complement Arithmetic Review
	Traditional ADDSUB Unit

	Compressors (Carry Save Adders)
	Compressor Width 6:3
	Compressor Width 3:2
	Compressor Width 12:4
	Compressor Width 36:6
	Compressor Width 64:7
	Combining Compressors (Compressor Width 4:2)

	Bit Population Count
	Splitting Adder Chains
	Pipelined Adder Chains
	Carry Select Adders
	Adder Trees
	Basic Multiplication
	Multiplication With Rotate and Shift Modes
	High-Speed LCell-Based Multiplication
	Multiplication of Large Integers (Karatsuba Algorithm)
	Division (Unsigned Integer)
	CORDIC

	3. Floating Point Tricks
	Floating Point to Fixed Point Conversion
	Approximate Square Root
	Approximate Inverse Square Root
	Approximate Floating Point Divide (Single Precision)

	4. Translation and Format Conversion
	One-Hot Decoder (Binary to One-Hot)
	One-Hot to Binary
	Mask Generation
	Binary-to-Gray Conversion
	Gray-To-Binary Conversion
	Seven Segment Display Driver
	Binary-to-ASCII Hexadecimal Conversion
	ASCII to 32 Character Liquid Crystal Display (LCD)
	ASCII Hexadecimal-to-Binary Conversion
	Binary-to-Decimal/Binary-Coded Decimal Adders

	5. Video
	YCbCr (4:4:4) to RGB Conversion
	RGB to Hue Conversion
	Sum of Absolute Difference (SAD)
	VGA Monitor Control
	Character Display

	6. Arbitration
	Bitscan (Priority Masking)
	Arbiters with Fairness
	Priority Encoding
	Channel Arbiter

	7. Multiplexing
	Basic Multiplexing (Binary Encoded)
	Decode/Select Multiplexing
	If/Else Multiplexing (?: Multiplexing)
	Priority Multiplexing
	8-to-1 Multiplex Building Blocks
	Barrel Shift
	Use of Register Secondary Signals for Multiplexing
	Bus Multiplexing
	Pipelined Bus Multiplexing
	Word Muxing 20:5
	Word Muxing 20:8

	8. Comparison and Adder Detection
	Bus Equality (A == B)
	Mapping Wide Single-Output Functions to the Carry Chain
	Equal to Constant
	Less than Constant
	Address in Range Comparison (LOWER <= addr < UPPER)
	Match or Inverse Match
	Min and Max / Variable Sign Comparison

	9. Storage
	Register Banks
	24-Bit/16-Bit Stream Buffers (RGB/Memory Buffer)
	RAM-Based Shift Register
	RAM-Based Shift Register (MLAB Variant)
	FIFO (Dual Clock)
	Dual Clock FIFO (MLAB Variant)
	Simple Quad Port RAM
	Ternary Content Addressable Memory (TCAM)
	Register-Based Ternary CAM
	RAM-Based Ternary CAM

	Backpressure Skid Buffer
	Register Based Buffer FIFO

	10. Counters
	Basic Binary Counter
	Up/Down Counter
	Seconds Timer
	System Timer
	Modulus Counter with Lookahead
	Basic Gray Counter and Gray Lookahead

	11. Communication
	8B10B Encoder/ Decoder
	Chaining 8B10B coders
	Universal Asynchronous Receiver Transmitter (UART)
	Interface to Parallax Global Positioning System (GPS) Receiver
	Gearbox
	Scrambler
	Interlaken
	TX Lane Implementation
	Gearbox
	64/67-Bit Encoding
	Interlaken Scrambler
	CRC32
	Framing schedule

	RX Lane Implementation
	Gearbox
	Word Alignment
	Decode 67/64
	Scrambler
	Framing schedule
	CRC32

	Lane Test Environment

	12. Cyclic Redundancy Check
	Introduction
	CRC XOR Decomposition
	CRC-16 Fixed Data Width
	CRC-24 Fixed Width
	CRC-32 Fixed Data Width
	CRC-32C (Castagnoli) Fixed Width
	CRC-32 Variable Data Width (Residues)
	CRC-32 Ethernet FCS
	CRC Decomposition and Pipeline

	13. Error Correction Codes
	64/72-Bit ECC Encoder/ Decoder
	64/72-Bit ECC Dual-Port Internal RAM
	ECC 32/39-Bit Variation
	ECC 16/22-Bit Variation
	ECC 8/13-Bit Variation
	ECC 2/6-Bit Variation
	Reed-Solomon Forward Error Correction (FEC)
	Reed-Solomon Transmitter
	Reed-Solomon Receiver
	Galois Field Multiplication

	14. Random and Pseudorandom Functions
	Linear Feedback Shift Register
	Built-In Logic Block Observer
	C Library Random Number Generator
	True Random Numbers
	Race Condition-Based True Random Numbers

	Word Stream Scrambling

	15. Cryptography
	Data Encryption Standard
	Triple DES
	UNIX Password Encryption
	Advanced Encryption Standard/ Rijndael
	The Rijndael S-BOX/sub_bytes
	Rijndael shift_rows
	Rijndael mix_columns and Round Keying
	Rijndael Key Evolution
	Rijndael 128 Encipher
	Rijndael 128 Decipher
	Rijndael 256-Bit Key Size (AES 256)
	Rijndael 192-Bit Key Size (AES 192)

	RC4 Stream
	Secure Hash Algorithm

	16. Synchronization
	System Reset Control
	Clock Multiplexing
	Synchronizer Chain

	17. Debugging
	Temperature Sensor
	Frequency Monitor
	JTAG To C Probe

	Additional Information
	How to Contact Altera
	Typographic Conventions

