
A-UG-EXC_ARM_HARDWARE-1.0

Hardware Design Tutorial

Excalibur ARM-Based

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

User Guide
January 2001

Version 1.0

http://www.altera.com

ii Altera Corporation

Excalibur ARM-Based Hardware Design Tutorial User Guide

Altera, APEX, Excalibur, FineLine BGA, MegaCore, MegaWizard, NativeLink, Quartus, and SignalTap are trademarks and/or
service marks of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other
organizations for their respective products or services mentioned in this document, including the following: AMBA is a trademark
and ARM, Thumb and the ARM-Powered logo are registered trademarks of ARM Limited. Verilog is a registered trademark of
Cadence Design Systems, Incorporated. ModelSim is a trademark of Model Technologies. Altera products are protected under
numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of
its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves
the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

Copyright  2001 Altera Corporation. All rights reserved.

About this User Guide

User Guide
This user guide provides comprehensive information about the Altera®
Excalibur™ ARM®-based hardware design tutorial.

Table 1 shows the user guide revision history.

How to Find
Information

� The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click on the binoculars icon in the top toolbar to open the
Find dialog box.

� Bookmarks serve as an additional table of contents.
� Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
� Numerous links, shown in green text, allow you to jump to related

information.

Table 1. Revision History

Revision Date Description

1.0 Jan 20th 2001 Initial release
Altera Corporation iii

About this User Guide Excalibur ARM-Based Hardware Design Tutorial User Guide
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For additional information about Altera products, consult the sources
shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type Access USA & Canada All Other Locations

Altera Literature
Services

Electronic mail lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical
customer service

Telephone hotline (800) SOS-EPLD (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax (408) 544-7606 (408) 544-7606

Technical support Telephone hotline (800) 800-EPLD
(6:00 a.m. to 6:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m.
Pacific Time)

Fax (408) 544-6401 (408) 544-6401 (1)

Electronic mail support@altera.com support@altera.com

FTP site ftp.altera.com ftp.altera.com

General product
information

Telephone (408) 544-7104 (408) 544-7104 (1)

World-wide web site http://www.altera.com http://www.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
mailto:support@altera.com
mailto:support@altera.com
ftp.altera.com
ftp.altera.com
http://www.altera.com
http://www.altera.com
http://www.altera.com

Excalibur ARM-Based Hardware Design Tutorial User Guide About this User Guide
Typographic
Conventions

The Excalibur ARM-Based Hardware Design Tutorial User Guide uses
the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \maxplus2 directory, d: drive, chiptrip.gdf file.

Bold italic type Book titles are shown in bold italic type with initial capital letters. Example:
1999 Device Data Book.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75
(High-Speed Board Design).

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of Quartus and MAX+PLUS II Help
topics are shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000
Device with the BitBlaster™ Download Cable.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix _n, e.g., reset_n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\max2work\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

� Bullets are used in a list of items when the sequence of the items is not important.

� The checkmark indicates a procedure that consists of one step only.

� The hand points to information that requires special attention.

� The angled arrow indicates you should press the Enter key.

� The feet direct you to more information on a particular topic.
Altera Corporation v

Notes:

Contents

User Guide
Getting Started ...9
Installing the Tutorial ..10
Creating a Design ...10

Creating a Quartus Project ...12
Creating a New Block Design File ...13
Instantiating Alt_exc_upcore ...13
Synthesizing Pld_slave in Leonardo Spectrum ...14
Creating a .bsf for Pld_slave ...15
Instantiating Pld_slave ..15

Behavioral Simulation ...17
Generating .dat Files for Simulation ...18
Creating a ModelSim Project ..19
Compiling the Test Bench ...19
Simulating ...20

Compilation ..21
Compiler Settings ...21
Compiling the Design ...22

Timing Simulation ...23
Generating DAT files for Simulation ..23
Creating a ModelSim Project ..24
Compiling the Test bench ...24
Simulating ...25

Appendix A ...27
Appendix B ...29
Appendix C ...31
Altera Corporation vii

Notes:

Getting Started

January 2001, ver. 1.0 User Guide

1

Getting Started
The Excalibur™ solutions ARM®-based embedded processor PLDs
hardware design tutorial user guide walks you through the creation and
simulation of an ARM-based processor PLD system hardware design. The
design targets an Altera® EPXA 10 device (for more information see the
Excalibur ARM-Based Hardware Reference Manual). The design uses the
Altera ARM-based processor core and the AMBA high-performance bus
(AHB) to write to a memory-mapped slave peripheral in the PLD portion
of the device. The slave peripheral is an arithmetic unit that performs a
function based on data received from the ARM-based processor core. The
Excalibur bus transactor—a bus functional model provided in the
Quartus™ II software, is used along with the ModelSim software to
simulate the design and verify the operational interface between the
Stripe-to-PLD bridge and the slave peripheral.

This walkthrough involves the following steps:

1. Installing the tutorial

2. Creating a design

3. Behavioral simulation

4. Compiling the design in the Quartus software

5. Performing timing simulation

The instructions assume that:

� Your PC has the following software installed:
– The Quartus™ II software, version 1.0
– Exemplar Leonardo Spectrum software licensed for Verilog

HDL
– Model Technology ModelSim SE software (version 5.3d or

above)
� You have saved the arm_tutorial.zip file onto your hard drive
� You are familiar with the Quartus software
� You are familiar with the ARM-based processor PLD and its AHB

architecture
Altera Corporation 9

A-UG-EXC_HARD-01.0

Getting Started Excalibur ARM-Based Hardware Design User Guide
Excalibur designs can be implemented in VHDL, Verilog HDL, AHDL,
and graphical format. This walkthrough uses graphical entry.

� When using a third-party synthesis tool, the ARM-based
processor core is black-boxed in the HDL file. See ATLAS
solutions at http://www.altera.com for guidelines on black-
boxing functions in various EDA tools.

Installing the
Tutorial

Unzip the file arm_tutorial.zip onto your hard drive. Table 1 shows the
folder structure that is created.

Note:
(1) The slave peripheral design comprises the following lower-level Verilog files: ahb_slave_sm.v, alu.v, regfile.v, and

wait_state_gen.v.

Creating a
Design

This section walks you through creating an example of a design—
arm_top.bdf (see Figure 1).

Table 1. Folder Structure

Folder Description

\arm_tutorial Contains the Verilog HDL files for the tutorial.

pld_slave.v The slave peripheral design. (1)

ahb_slave_sm.v The AHB interface state machine that contains all of the logic
necessary for the ARM-based processor core to interface with a slave
in the PLD part of the ARM-based device through the AHB2PLD
bridge.

alu.v The arithmetic unit that performs the calculations on the two operands.

regfile.v Contains the operand, operator, and data registers.

wait_state_gen.v Ensures that the current result is output.

ahb_slave_include.v Logic that ensures the current include file defines the required
parameters.

input.dat Command language file that contains bus transaction commands.

\behavioral_sim\ Contains files for behavioral simulation.

alt_exc_upcore_0.v Embedded processor simulation model.

input.dat Command language file that contains bus transaction commands.

slavememory.cfg.dat Memory configuration file required when using the Excalibur bus
transactor.

sim_arm_top.do ModelSim command file that contains stimulus for simulation.

wave.do ModelSim waveform command file
10 Altera Corporation

http://www.altera.com

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
This design includes the ARM-based processor core, alt_exc_upcore, and
a memory-mapped slave peripheral, pld_slave. Pld_slave accepts two
operands and an operator that tells it whether to add, subtract, or multiply
the operands. The result is written to a location in a register file.

Figure 2 shows a block design file representation of the pld_slave.

Figure 1. Arm_top.bdf
Altera Corporation 11

Getting Started Excalibur ARM-Based Hardware Design User Guide
Figure 2. Pld_slave

Creating a design involves the following:

� Creating a new Quartus project and a top-level block design file
(.bdf). The .bdf contains alt_exc_upcore and pld_slave.

� Synthesizing pld_slave in Leonardo Spectrum and importing the
EDIF output into the Quartus software via a block symbol file (.bsf).

� Using the Quartus software to place and route the top-level design
see Compilation on page 21).

Creating a Quartus Project

To create a new project, perform the following steps:

1. Open the Quartus software.

2. Select New Project Wizard (File menu).

3. Browse to the \arm_tutorial directory.

4. Type in arm_tutorial as the project name.
12 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
5. Type in arm_top as the top-level entity name.

6. Click Next.

7. Click Finish to create the project.

Creating a New Block Design File

To create the top-level design entity (arm_top.bdf) of the arm_tutorial
project, perform the following steps:

1. Select New (File menu).

2. In the Design Files tab, select Block Diagram/Schematic File.

3. Click OK. A new Block Editor window appears.

4. Select Save As (File menu).

5. Specify \arm_tutorial as the folder for saving the file.

6. In the File Name box, type in arm_top.bdf.

7. Ensure Add File to Current Project is turned on.

8. Click Save. This saves the file and adds it to the project.

Instantiating Alt_exc_upcore

To instantiate the alt_exc_upcore into the top-level design file,
arm_top.bdf, perform the following steps:.

1. Select Symbol (Insert menu).

2. In the Symbol dialog box Libraries list, expand the
\quartus\libraries folder, expand the megafunctions folder, and
expand the embedded_logic folder.

3. In the embedded_logic folder, select the alt_exc_upcore symbol.

4. Click OK.

5. Place the symbol by clicking on an empty space in the Block Editor
window.
Altera Corporation 13

Getting Started Excalibur ARM-Based Hardware Design User Guide
Synthesizing Pld_slave in Leonardo Spectrum

The Quartus software synthesizes pld_slave.v into EDIF format before
being included in a top-level design. To synthesize pld_slave.v using
Leonardo Spectrum, perform the following steps:

1. Open Leonardo Spectrum.

2. Select New Project (File menu), to create a new project.

3. In the Technology tab, select APEX™ 20KE as the device family,
EP20K1000EFC672 as the device, and –1 as the speed grade.

4. Ensure the Map I/O Registers option is unchecked.

5. In the Input tab, click on the Working Directory icon and select
\arm_tutorial as your working directory.

6. Click on the Open Files icon and select pld_slave.v, alu.v,
ahb_slave_sm.v, regfile.v, and wait_state_gen.v.

7. Click Open to include the files in the project.

8. In the Optimize tab, ensure the Add I/O Pads option is unchecked.

9. In the Output tab, specify pld_slave.edf as the output filename.

10. Click Apply.

11. Click Run Flow to begin synthesis.

� Leonardo Spectrum issues several messages that do not affect
the design:

- ahb_slave_include.v”, line 73: Warning text macro (OPER)
redefined - replace with new definition

- ahb_slave_include.v”, line 74: Warning text macro
(RELOW) redefined - replace with new definition

- ahb_slave_include.v”, line 74: Warning text macro (REHIG)
redefined - replace with new definition

12. When the synthesis is finished, select Save Project (File menu) and
save as pld_slave.lsp.

13. The synthesis run results in the pld_slave.edf file. Close Leonardo
Spectrum.
14 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
Creating a .bsf for Pld_slave

You must create a block symbol file (.bsf) representation of the .edf file
generated by Leonardo Spectrum synthesis, before it can be included in
the top-level Quartus .bdf.

To create the .bsf file for pld_slave.edf, perform the following steps:

1. Open pld_slave.edf.

2. Select Create Symbol Files for Entities in Current File.

The Quartus software completes the generation of the symbol.
pld_slave.bsf is available for instantiation in the top-level design file.

Instantiating Pld_slave

To instantiate pld_slave.bsf, into the top-level design file, arm_top.bdf,
perform the following steps:

1. Select Symbol (Insert menu).

2. Expand the Project folder and select pld_slave.bsf.

3. Click OK.

4. Instantiate the symbol by clicking on an empty space in the .bdf.

5. Connect the logic and I/O Pins

To complete the top-level design, you must connect the signals between
the blocks and also connect the necessary I/O pins to the input and output
ports. To connect the signals, perform the following steps:

1. Click the Orthogonal Node Tool button on the toolbar.

2. Click the pin stub of the alt_exc_upcore node (see Table 2) to define
the start of the node. Drag the pointer to draw a line that connects to
the corresponding pld_slave node (see Table 2).

3. Repeat step 2 for each pair of signals (see Table 2).

Table 2. Nodes

Alt_exc_upcore Node Pld_slave Node

masterhwrite HWRITE
Altera Corporation 15

Getting Started Excalibur ARM-Based Hardware Design User Guide
You must instantiate input and output pins in the arm_top.bdf file.

To enter I/O pins, perform the following steps:

1. Click the Symbol Tool button on the Block Editor toolbar. The
Symbol dialog box opens with the Repeat-insert mode option
turned on.

� When the Repeat-insert mode option is on, an outline of the
selected symbol remains attached to the cursor, regardless of
how many times you click, which allows you to place multiple
copies of the symbol. When you want to stop placing copies of a
symbol, press Esc or choose Cancel (right mouse button pop-up
menu).

2. In the Symbol dialog box, in the Libraries list, expand the
d:\quartus\libraries folder, expand the primitives folder, and
expand the pin folder.

3. In the pin folder, select the input primitive.

4. Click OK.

5. Click an empty space four times to insert a total of four input
symbols on the left-hand side of the file. Press Esc.

6. Repeat steps 1 to 5 to insert and position an output pin symbol in the
file. Figure 1 shows the locations.

masterhaddr[31..0] HADDRESS[31..0]

masterhtrans[1..0] HTRANS[1..0]

masterhsize[1..0] HSIZE [1..0]

masterburst[2..0] HBURST[2..0]

masterhwdata[31..0] HWDATA[31..0]

masterhrdata[31..0] HRDATA[31..0]

masterhresp[1..0] HRESP[1..0]

masterhready HREADY
16 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
7. Name the pins by double clicking on them. Table 3 shows the input
pin names; Table 4 shows the output pin names.

After entering the inputs and outputs, you must connect them to the
appropriate ports on alt_exc_upcore, and pld_slave.

To connect the pins and primitives by drawing node and bus lines,
perform the following steps:

1. Click the Orthogonal Node Tool button on the toolbar.

2. Click the pin stub of the clk input pin to define the start of the node,
and then drag the pointer to draw a line that connects to the pin stub
of the alt_up_core masterhclk port. Draw another line to connect it
to the clock port of pld_slave.

3. Repeat step 2 for each pair of signals (see Tables 3 and 4). The symbol
where each node is located is specified in parentheses.

Behavioral
Simulation

You can perform behavioral simulation on the design before performing
compilation and place and route in the Quartus software. You can create
a top-level Verilog HDL file from your arm_top.bdf using the Create
HDL File utility in the Quartus software. You can use the resulting
arm_top.v and lower level Verilog HDL files to simulate the ARM-based
processor-PLD system in ModelSim. The Excalibur bus transactor
supplies the .dat files required to simulate bus transactions.

� For more information on the Excalibur bus transactor, refer to the
Excalibur Bus Transactor User Guide.

To generate the arm_top.v file, perform the following steps:

Table 3. Input Pin Names

Input Pin Name Connect To

HCLOCK masterhclk (alt_exc_upcore); HCLOCK (pld_slave)

HGRANT masterhgrant (alt_exc_upcore)

HSEL HSEL (pld_slave)

HRESETn HRESETn (pld_slave)

Table 4. Output Pin Names

Output Pin Name Connect To

READ_DATA[31..0] read_data[31..0] (pld_slave)
Altera Corporation 17

Getting Started Excalibur ARM-Based Hardware Design User Guide
1. Open arm_top.bdf in the Quartus software.

2. Select Create HDL Design File for Current File (Tools menu).

3. Click Yes, if you are prompted to save changes to the file.

4. Verify that HDL file generation is successful, in the Quartus
software.

5. Cut and paste the arm_top.v file from the \arm_tutorial folder into
the \arm_tutorial\behavioral_sim folder.

� Arm_top.v must not be left in the \arm_tutorial folder, as it
causes conflicts with arm_top.bdf in the Quartus compilation
section.

Generating .dat Files for Simulation

The Excalibur bus transactor is an executable that supports functional
simulation of the ARM stripe master and slave ports. It accepts input.dat
as its input and generates a mastercommands.dat file. The
mastercommands.dat file is interpreted by ALTERA_MF.V, which
simulates read/write instructions issued to the PLD by the embedded
processor via the STRIPE-to-PLD interface.

The input.dat file (see Appendix B for an example) specifies the bus
transactions to be simulated. The first command idles the AHB system for
seven clock cycles. The second command writes a burst of data to address
0x4, 0x8, and 0xc. In the pld_slave, the register at address 4 is operand 1,
the register at address 8 is operand 2, the operation to be done is stored at
address 12, and the result is stored at address 16. An operation value of 5
specifies addition, 6 specifies subtraction, and 7 specifies multiplication.
The second command writes 9 to operand 1, 6 to operand 2, and 5 to the
operation register. The expected result from the third command is to read
the value 15 (0xf), the sum of operand 1 and 2, from the result register. The
next series of writes and read exercises the subtraction function of the
slave. The last series of commands specifies multiplication of the
operands.

� The format of input.dat for the bus transactor must be specified
in decimal format.

To translate the input.dat file to a mastercommands.dat file, which can be
used with the ALTERA_MF.V file in ModelSim, perform the following
steps:
18 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
1. Open a command prompt window and navigate to the \<Quartus
path>\bin directory.

2. At the command prompt type in exc_bus_translate\
<arm_tutorial folder path>\behavioral_sim\input.dat.

3. The mastercommands.dat file is now in the \<Quartus path>\bin.

4. Cut and paste the mastercommands.dat file from the \<Quartus
path>\bin folder into the \arm_tutorial\behavioral_sim folder.

Creating a ModelSim Project

To create a ModelSim project, perform the following steps:

1. Start ModelSim and select Run ModelSim.

2. Click on Create a Project in the next window.

3. In the New Project’s Home: window select \arm_tutorial.

4. In the New Project’s Name: window type in behavioral_sim.

5. Click OK.

6. Select No when prompted for a new HDL source file.

7. Click Done on the ModelSim Welcome window.

ModelSim creates a work directory in the \arm_tutorial\behavioral_sim
folder.

Compiling the Test Bench

To compile the test bench, perform the following steps:

1. Select Compile (Design menu).

2. To add the include file directory, select Default Options.

3. Select the Verilog Tab and click the Add Include Dir button.

4. Browse to \arm_tutorial.

5. Click Open.
Altera Corporation 19

Getting Started Excalibur ARM-Based Hardware Design User Guide
6. Click OK.

7. Compile these files in order: alu.v, regfile.v, wait_state_gen.v,
ahb_slave_sm.v, pld_slave.v.

8. Browse to \arm_tutorial\behavioral_sim.

9. Compile arm_top.v.

10. Compile alt_exc_upcore_0.v.

11. Browse to <Quartus path>\eda\sim_lib.

12. Compile ALTERA_MF.V.

13. Click Done.

Simulating

To simulate, perform the following steps:

1. Select Load New Design (Design menu).

2. Scroll down and find the arm_top module, select it and click Load.

� Several timescale warnings, which do not affect the simulation,
may appear.

3. Select Execute Macro (Macro menu).

4. Select wave.do and click OK.

5. Select Execute Macro (Macro menu).

6. Select sim_arm_top.do and click OK.

Wave.do sets up the format of the ModelSim waveform window with
particular signals in the design. It shows the main AHB signals, inputs,
and outputs from the design.

� You may see errors regarding unknown options in the waveform
depending on your ModelSim version. If the signals are not
displayed on the waveform, add the signals (see Figure 3) and re-
execute sim_arm_top.do.
20 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
Sim_arm_top.do contains the following commands that provide stimulus
to the Modelsim simulation:

restart -f
force -drive -repeat 10ns /slave/HCLOCK 0 0ns, 1 5ns
force -drive /slave/HSEL 1 0ns
force -drive /slave/HGRANT 1 0ns
force -drive /slave/HRESETn 0 0ns
force -drive /slave/HRESETn 1 10ns
run 30000ns

Open the ModelSim wave window to view the simulation results. Figure
3 shows the wave window, values are shown in decimal format for
readability.

Figure 3. Wave Output

The results can also be seen in text format in the output.dat file located in
the \arm_tutorial\behavioral_sim folder. The output shows the master
commands, addresses, and data values for each transaction specified in
the mastercommands.dat file. See Appendix A, which shows the
mastercommands.dat contents. The simulation confirms that writes and
read to the pld_slave were performed correctly using the AHB interface.

Compilation The Quartus Compiler consists of a series of modules that check the
design for errors, synthesize the logic, fit the design into an Altera device,
and generate output files for simulation, timing analysis, and device
programming.

Compiler Settings

To create Compiler settings, specify EDA tool settings, and compile the
design, perform the following steps:

1. Select Compile Mode (Processing menu).
Altera Corporation 21

Getting Started Excalibur ARM-Based Hardware Design User Guide
2. Choose Compiler Settings (Processing menu). The General tab of
the Compiler Settings dialog box appears automatically.

The General tab displays only the default compiler general settings
created by the Quartus software, when the project was initially created.
These default settings are given the name of the top-level design entity in
the project, arm_top.

To select the device family and device, perform the following steps:

1. In the Compiler Settings dialog box, click the Chips and Devices
tab.

2. In the Family list, select EXCALIBUR_ARM.

3. Under Target Device tab, select Specific device selected in
Available Devices list.

4. In the Available Device list, select EPXA10F1020C1.

5. To accept the defaults for the remaining compiler settings, click OK.

Before compiling the design, you must specify EDA tool settings in the
Quartus software.

To specify the appropriate EDA tool settings for use when compiling a
design synthesized with the Leonardo Spectrum software, perform the
following steps:

1. Choose EDA Tool Settings (Project menu). The EDA Tool Settings
dialog box appears.

2. Under Design entry/synthesis tool, select Leonardo Spectrum.

3. Under Simulation tool, select ModelSim (Verilog HDL output from
the Quartus software)

4. Click OK.

Compiling the Design

To compile the arm_top design, choose Start Compilation (Processing
menu).
22 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
The compiler begins to compile the arm_top design entity, and any
subordinate design entities, using the arm_top compiler settings. The
results of the compilation are updated in the Compilation Report
window. Compilation takes approximately 10 minutes.

The compiler may generate one or more of the following warning
messages that do not affect the outcome of your design.

� Port slavehwrite of type altupcore and instance inst9 is missing a
source signal

� Port slavehreadyi of type altupcore and instance inst9 is missing a
source signal

� Timing characteristics of device EPXA10F1020C1 are preliminary
� Found pins functioning as undefined clocks and/or memory enables

Timing
Simulation

Compiling alt_up_core in the Quartus software generates the files you
need to simulate the design in ModelSim. Three files, arm_top.vo,
arm_top_v.sdo, and arm_top_modelsim.xrf, are created in the
\altera\arm_tutorial\simulation\modelsim folder. You can use these
files, and the Excalibur bus transactor, to simulate the ARM-based
embedded processor PLD system in ModelSim.

� In the absence of a stripe model, simulation of alt_exc_upcore is
not performed; functional simulation of the stripe master and
slave ports is performed.

Generating DAT files for Simulation

� For further information on the input.dat file, the mastercommands.dat
file see Generating .dat Files for Simulation on page 18

To translate the input.dat file to a mastercommands.dat file to be used
with the apex20ke_atoms.v file in ModelSim, perform the following steps:

1. Open a DOS command window and navigate to the \<Quartus
path>\bin directory.

2. At the command prompt type exc_bus_translate\<arm_tutorial
path>\input.dat.

3. There should now be a mastercommands.dat file in the \<Quartus
path>\bin folder.

4. Cut and paste the mastercommands.dat file from the
\<Quartus path>\bin folder into the
\arm_tutorial\simulation\modelsim folder.
Altera Corporation 23

Getting Started Excalibur ARM-Based Hardware Design User Guide
Creating a ModelSim Project

To create a ModelSim project, perform the following steps:

� If ModelSim is open, select End Simulation (Design menu) and
select Yes, which exits any previous project simulations. Select
New and New Project (File menu) and continue with step 3
below.

1. Start ModelSim and choose Run ModelSim from the selection of
choices.

2. Click on Create a Project in the next window.

3. In the New Project’s Home window select \altera\arm_tutorial\
simulation.

4. In the New Project’s Name window type modelsim.

5. Click OK. If you are prompted to unload the loaded project, select
OK.

6. Select No when prompted for a new HDL source file.

7. Click Done on the ModelSim Welcome window.

ModelSim creates a work directory in the \simulation\modelsim
directory that the Quartus software created at the end of compilation.

Compiling the Test bench

To compile the test bench, perform the following steps:

1. Copy the files slavememory.cfg.dat and sim_arm_top.do from the
\arm_tutorial directory into the
\arm_tutorial\simulation\modelsim sub-directory.

2. Select Compile (Design menu).

3. In the Files of type box select All files(*.*).

4. Ensure you are in the \altera\arm_tutorial\simulation\modelsim
directory, select arm_top.vo and click Compile.

5. In the \<Quartus path>\eda\sim_lib folder select
apex20ke_atoms.v and click Compile.
24 Altera Corporation

Excalibur ARM-Based Hardware Design User Guide Getting Started

1

Getting Started
6. Click on Done.

Simulating

To simulate, perform the following steps:

1. Select Load New Design (Design menu).

2. Find and select the arm_top module and click Load.

3. Select Execute Macro (Macro menu).

4. Select sim_arm_top.do and click OK.

� It can take up to 30 minutes for simulation to complete, if you are
using the ModelSim Altera OEM version.

Sim_arm_top.do contains the following commands that provide stimulus
to the Modelsim simulation.

restart -f
force -drive -repeat 100ns /arm_top/HCLOCK 0 0ns, 1
50ns
force -drive /arm_top/HSEL 1 0ns
force -drive /arm_top/HGRANT 1 0ns
force -drive /arm_top/HRESETn 0 0ns
force -drive /arm_top/HRESETn 1 10ns
run 30000ns

� The simulation runs at 30 MHz corresponding to the fMAX of the
arm_top design. Without the arithmetic logic unit, the design
runs at up to 81 MHz. The multiplication operation is the main
contributor to the design’s critical path.

View the simulation results by opening the output.dat file (in the
\arm_tutorial\simulation\modelsim) folder. The output shows the
master commands, addresses, and data values for each transaction
specified in the mastercommands.dat file. Appendix A details the
mastercommands.dat contents; Appendix C the expected output.dat
simulation results. The simulation confirms that writes and read to the
pld_slave were performed correctly using the AHB interface. You can also
view the simulation result in the ModelSim waveform window by adding
the input pins, output pins, and desired signals to the wave window.
Altera Corporation 25

Notes:Notes:

Appendix A
Contents of Mastercommands.dat

User Guide

2

Appendix A
The contents of the mastercommands.dat are:

///
// FORMAT
// / __________________________________| reserved (0000)
/// /
//| | ++++++++++++++++++++++++++++++++++ valid transaction 1=USE BUS 0=SILENT
//| |+ _______________________________
//| |+ / _________________________| address
//| |+/ /
//| |+| | +++++++++++++++++++++++++ write 1=WRITE 0=READ
//| |+| |+ _______________________
//| |+| |+ / _______________| write data / expected read data
//| |+| |+/ /
//| |+| |+| | ++++++++++++++++ reserved (0) (1=>lock)
//| |+| |+| |+
//| |+| |+| |+ /-------------- reserved (0) (1=>check read data)
//| |+| |+| |+/
//| |+| |+| |+| ************** transaction 0=IDLE, 1=BUSY, 2=NONSEQ, 3=SEQ
//| |+| |+| |+|*
//| |+| |+| |+|* /------------ reserved (0)
//| |+| |+| |+|*/
//| |+| |+| |+|*| ++++++++++++ burst 0=SINGLE, 1=INCR, 2=WRAP4, 3=INCR4, 4=WRAP8,
//| |+| |+| |+|*|+ 5=INCR8, 6=WRAP16, 7=INCR16
//| |+| |+| |+|*|+
//| |+| |+| |+|*|+ /---------- size 0=BYTE, 1=16 BIT, 2=32 BIT
//| |+| |+| |+|*|+/ ________
//| |+| |+| |+|*|+| / ______| repeat 0000..FFFF
//| |+| |+| |+|*|+|/ /
//| |+| |+| |+|*|+|| |
// / / / / / / / // /
// / / / / / / / // /
// |+| |+| |+|*|+|| | Line 1, idle(7);
00000000000000000000000000000007//0: idle CYCLES=7h=7
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 8, write(4, 32, 3, 9, 6, 5);
00001000000041000000090020120000//1: write 32-bits NONSEQ INC DATA=9h=9 ADDR=4
00001000000081000000060030120000//2: write 32-bits SEQ INC DATA=6h=6 ADDR=8
000010000000c1000000050030120000//3: write 32-bits SEQ INC DATA=5h=5 ADDR=12
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 17, read(16, 32, 1);
00001000000100000000000020020000//4: read 32-bits NONSEQ SINGLE ADDR=16
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 19, write(4, 32, 1, 10);
000010000000410000000a0020020000//5: write 32-bits NONSEQ SINGLE DATA=ah=10 ADDR=4
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 20, write(8, 32, 1, 5);
00001000000081000000050020020000//6: write 32-bits NONSEQ SINGLE DATA=5h=5 ADDR=8
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 21, write(12, 32, 1, 6);
000010000000c1000000060020020000//7: write 32-bits NONSEQ SINGLE DATA=6h=6 ADDR=12
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 22, read(16, 32, 1);
Altera Corporation 27

Appendix A Excalibur ARM-Based Hardware Design User Guide
00001000000100000000000020020000//8: read 32-bits NONSEQ SINGLE ADDR=16
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 24, write(4, 32, 1, 10);
000010000000410000000a0020020000//9: write 32-bits NONSEQ SINGLE DATA=ah=10 ADDR=4
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 25, write(8, 32, 1, 5);
00001000000081000000050020020000//10: write 32-bits NONSEQ SINGLE DATA=5h=5 ADDR=8
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 26, write(12, 32, 1, 7);
000010000000c1000000070020020000//11: write 32-bits NONSEQ SINGLE DATA=7h=7 ADDR=12
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| | Line 27, read(16, 32, 1);
00001000000100000000000020020000//12: read 32-bits NONSEQ SINGLE ADDR=16
// |+| |+| |+|*|+|| |
// |+| |+| |+|*|+|| |
28 Altera Corporation

Appendix B
Contents of Input.dat

User Guide

Appendix B

3

The contents of input.dat are:

idle(7);

write (4, 32, 3, 9 ,6, 5); /* burst test */
read (16, 32, 1); /* read the 32-bit value from address 16*/

write (4, 32, 1, 10); /* write the 32-bit value 10 into address 4 */
write (8, 32, 1, 5); /* write the 32-bit value 5 into address 8 */
write (12, 32, 1, 6); /* write the 32-bit value 6 into address 12 to add the operands */
read (16, 32, 1); /* read the 32-bit value from address 16*/

write (4, 32, 1, 10); /* write the 32-bit value 10 into address 4 */
write (8, 32, 1, 5); /* write the 32-bit value 5 into address 8 */
write (12, 32, 1, 7); /* write the 32-bit value 7 into address 12 to add the operands */
read (16, 32, 1); /* read the 32-bit value from address 16*/
Altera Corporation 29

Notes:

Appendix C
Contents of Output.dat

User Guide

Appendix C

4

The contents of output.dat are:

MASTER: trans=[2] addr=[00000004] WRITE data=[00000009] expected=[00000009] WORD OKAY

MASTER: trans=[3] addr=[00000008] WRITE data=[00000006] expected=[00000006] WORD OKAY

MASTER: trans=[4] addr=[0000000c] WRITE data=[00000005] expected=[00000005] WORD OKAY

MASTER: trans=[5] addr=[00000010] READ data=[0000000f] expected=[00000000] WORD OKAY

MASTER: trans=[6] addr=[00000004] WRITE data=[0000000a] expected=[0000000a] WORD OKAY

MASTER: trans=[7] addr=[00000008] WRITE data=[00000005] expected=[00000005] WORD OKAY

MASTER: trans=[8] addr=[0000000c] WRITE data=[00000006] expected=[00000006] WORD OKAY

MASTER: trans=[9] addr=[00000010] READ data=[00000005] expected=[00000000] WORD OKAY

MASTER: trans=[10] addr=[00000004] WRITE data=[0000000a] expected=[0000000a] WORD OKAY

MASTER: trans=[11] addr=[00000008] WRITE data=[00000005] expected=[00000005] WORD OKAY

MASTER: trans=[12] addr=[0000000c] WRITE data=[00000007] expected=[00000007] WORD OKAY

MASTER: trans=[13] addr=[00000010] READ data=[00000032] expected=[00000000] WORD OKAY
Altera Corporation 31

Notes:

	Excalibur ARM-Based Hardware Design Tutorial User Guide, ver 1.0, January 2001
	How to Find Information
	How to Contact Altera
	Typographic Conventions
	Getting Started
	Installing the Tutorial
	Creating a Design
	Creating a Quartus Project
	Creating a New Block Design File
	Instantiating Alt_exc_upcore
	Synthesizing Pld_slave in Leonardo Spectrum
	Creating a .bsf for Pld_slave
	Instantiating Pld_slave

	Behavioral Simulation
	Generating .dat Files for Simulation
	Creating a ModelSim Project
	Compiling the Test Bench
	Simulating

	Compilation
	Compiler Settings
	Compiling the Design

	Timing Simulation
	Generating DAT files for Simulation
	Creating a ModelSim Project
	Compiling the Test bench
	Simulating

	Appendix A
	Appendix B
	Appendix C

