
© April 2009 Altera Corporation

© April 2009
AN 462: Implementing Multiple Memory
Interfaces Using the ALTMEMPHY

Megafunction

AN-462-1.3
Introduction
Many systems and applications use external memory interfaces as data storage or
buffer mechanisms. As system applications require increasing bandwidth, become
more complex, and devices get more expensive, designers prefer to have multiple
memory interfaces in a single device to save cost and space on the board, along with
removing partitioning complexity. To implement multiple memory interfaces on the
same device that are efficient and optimized for the device architecture, designers
must pay attention to the device and the physical interface (PHY) features.

This application note describes the steps to implement multiple memory interfaces in
which there are independent memory transactions, but the interfaces are operating at
the same frequency. Such implementations require multiple instantiations of the PHY,
which in turn may necessitate device resource sharing, such as the delay-locked loops
(DLLs), phase-locked loops (PLLs), and clock networks, and may require extra steps
to create the interfaces in a Quartus® II project. Multiple memory interfaces may also
involve different types of memory standards, for example, if you have DDR2 SDRAM
and RLDRAM II interfaces in a single Stratix® II device. Width and depth expansion of
a memory interface are not covered in this document as they are natively supported
by the PHY. The memory interfaces described in this document use the ALTMEMPHY
megafunction that is available for Arria® GX, Arria II GX, Cyclone® III, HardCopy® II,
HardCopy III, HardCopy IV, Stratix II, Stratix II GX, Stratix III, and Stratix IV devices.

1 The ALTMEMPHY megafunction supports DDR3/DDR2/DDR SDRAM and
QDRII+/QDRII SRAM interfaces depending on the target device family. The
ALTMEMPHY megafunction creates all the logic needed to calibrate the
resynchronization clock dynamically during initialization to remove process (P)
variation, and to track voltage and temperature (VT) variation when the system is
running. This scheme ensures that the resynchronization data has the optimal setup
and hold time margins in any PVT condition of the system. You can also use the
ALTMEMPHY megafunction with your own memory controller. Arria GX,
Arria II GX, Cyclone III, HardCopy II, HardCopy III, HardCopy IV, Stratix III, and
Stratix IV memory interfaces require the use of the ALTMEMPHY megafunction.

A design example (top.qar) demonstrating multiple memory interfaces in a Stratix II
device is downloadable along with this application note.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 2 Introduction
f If you are targeting HardCopy II, Stratix II, or Stratix II GX devices and are unsure
whether you can use a memory controller that uses the ALTMEMPHY megafunction
as a data path, as in the DDR and DDR2 SDRAM High-Performance Controller, refer
to Technical Brief 091: External Memory Interface Options for Stratix II Devices.

f For information on multiple memory interfaces using the legacy integrated static data
path and controller, refer to AN 392: Implementing Multiple DDR/DDR2 SDRAM
Controller Interfaces.

f Designs targeting the Stratix II devices are migrated to HardCopy II devices. Any
discussion referring to Stratix II devices in this application note also applies Arria GX,
HardCopy II, or Stratix II GX devices. However, for additional requirements imposed
by HardCopy II devices, refer to AN 463: Using ALTMEMPHY Megafunction with
HardCopy II Structured ASICs.

f If the multiple memory interfaces in your design do not share any resources, you can
treat them as independent modules in your design. For more information on creating
your own memory controller, refer to the ALTMEMPHY Megafunction User Guide. For
more information on using the Altera® MegaCore® function as your memory
controller, refer to the DDR and DDR2 SDRAM High-Performance Controller User Guide.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

http://www.altera.com/literature/tb/tb-091.pdf
http://www.altera.com/literature/an/an392.pdf
http://www.altera.com/literature/an/an392.pdf
http://www.altera.com/literature/an/AN463.pdf
http://www.altera.com/literature/an/AN463.pdf
http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf

Introduction Page 3
Figure 1 shows the design flow for implementing external memory interfaces in
FPGA devices. This application note covers the steps that are shaded in Figure 1, from
creating a Quartus II project to verifying timing for multiple memory interface
designs, assuming that the memory devices and FPGA have been chosen. This
document prepares you by reviewing the device resources and creating a topology for
your design prior to creating a multiple memory interface design in the Quartus II
software using the DDR and DDR2 High-Performance Controller MegaCore function
as an example.

1 This application note assumes that you are familiar with the ALTMEMPHY
megafunction and Altera FPGA resources.

Figure 1. Design Flow for Implementing External Memory Interfaces in Altera Devices

Note to Figure 1:

(1) Altera recommends performing this step to ensure design functionality.

Select Device

Instantiate PHY and
Controller in

a Quartus II Project

Determine Board
Design Constraints

Perform Board Level
Simulations

Adjust Termination
Drive Strength

Add Constraints

Perform RTL/
Functional Simulation

Adjust Constraints

Debug Design

Does
Simulation Give

Expected Results?

Compile Design and
Verify Timing

Does the
Design Have Positive

Margin?

Yes

No

No

No

No

Yes

Yes

Yes

Optional

Do Signals
Meet Electrical
Requirements?

Verify Design
Functionality on Board

Is Design Working?

Design Done

Debug Design

Start Design
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 4 Before Creating a Design in the Quartus II Software
Before Creating a Design in the Quartus II Software
Figure 2 shows a single memory interface using the ALTMEMPHY megafunction. The
interface consists of user logic connected to a memory controller that connects to the
ALTMEMPHY megafunction, which connects with the memory devices via the read
data, address/command, and write data path modules. These modules are unique per
memory interface and cannot be shared.

The sequencer block displayed in Figure 2 is used to calibrate and adjust the
resynchronization clock. The ALTMEMPHY megafunction in version 9.0 of the
Quartus II software does not allow this block to be shared.

The clock and reset management block generates all the clock and reset signals for the
ALTMEMPHY megafunction. This block instantiates the DLL, the PLL, the PLL
reconfiguration circuit, and the reset signals which may be shared between memory
interfaces.

1 Note that the controllers have to be running at the same frequency when DLL, PLL, or
clock networks are shared.

When creating multiple memory interfaces to be fitted in a single device, first ensure
that there are enough device resources for the different interfaces. These device
resources include the number of pins, DLLs, PLLs, and clock networks, where
applicable. The DLLs, PLLs, and clock network resources from the clock and reset
management block are shared between multiple memory interfaces, but there are
sharing limitations that you must pay close attention to. These limitations are
discussed in “Getting to Know Your Altera Device” on page 5.

Figure 2. Block Diagram of a Memory Controller Using ALTMEMPHY Megafunction Data Path

External
Memory
Device

ALTMEMPHY

Write Path

Address and Command Path

Clock and Reset
Management

Sequencer

Read Path

Memory
Controller

User
Logic

PLL

Altera Device

DLL
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Before Creating a Design in the Quartus II Software Page 5
Getting to Know Your Altera Device
Knowing the target device means:

■ Comparing the requirement for the multiple interface design with the resources
available on the device.

■ Determining which resources limit multiple interfaces.

■ Deciding which resources are shared in order to fit more memory interfaces in the
device.

The following sections discuss the device resources to be considered for your multiple
memory interface design:

■ “I/O Banks” on page 5

■ “I/O Pins” on page 8

■ “DLLs” on page 9

■ “PLLs and Clock Network Resources” on page 10

■ “Other Resources” on page 14

Once you have compared the required and available resources, you can start defining
resources to be shared. This in turn determines the topology of your system. If no
resources are to be shared, you can create the memory controllers as two different
modules in the device. If you are sharing resources, the following sections offer
guidance for sharing the DLL or PLL clock outputs, or both.

I/O Banks
You must determine the I/O bank placement of your memory interface. Arria GX,
Stratix II, and Stratix II GX devices only support ALTMEMPHY-based memory
interfaces on the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). You can have
multiple memory interfaces in a Stratix II I/O bank, provided that you are able to
share the DLL and you have enough pins and clock networks for those interfaces. If
you do not have enough clock networks, you must be able to share some of the clocks
between the interfaces.

Stratix III and Stratix IV devices support memory interfaces in all I/O banks. These
two device families have up to 24 I/O banks, as shown in Figure 3. You can also have
multiple memory interfaces in a Stratix III or Stratix IV I/O banks, provided that you
have enough pins and clock network resources. However, Stratix III and Stratix IV
devices have a restriction whereby you can only have one memory interface in each
I/O sub-bank (for example, I/O sub-banks 1A, 1B, and 1C) if you are using leveling
delay chain. This is because there is only one leveling delay chain per I/O sub-bank.
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 6 Before Creating a Design in the Quartus II Software
Figure 3 shows the Stratix III and Stratix IV device families that have up to 24 I/O
banks.

Arria II GX devices support memory interfaces in top, bottom, and right sides of the
I/O banks. This device family has up to 12 I/O banks, as shown in Figure 4. You can
have multiple memory interfaces in an Arria II GX I/O bank, provided that you have
enough pins and clock network resources.

Figure 3. Stratix III and Stratix IV External Memory Support (Note 1)

Note to Figure 3:

(1) The number of I/O banks and PLLs available depends on the device density. For more information on the availability of the I/O bank and PLL for
each device, refer to Stratix III or Stratix IV pin-out files at www.altera.com/literature/lit-dp.jsp.

DLL1
8A 8B 8C 7C 7B 7A

1A

1B

1C

2C

2B

2A

3A 3B 3C 4C 4B 4A

5A

5B

5C

6C

6B

6A

PLL_T1 PLL_T2

PLL_L2

PLL_L3

PLL_R2

PLL_R3

PLL_B2PLL_B1

PLL_L1

DLL4

PLL_R1

PLL_R4

DLL3

PLL_L4

DLL2

Stratix III and Stratix IV Device
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

http://www.altera.com/literature/lit-dp.jsp

Before Creating a Design in the Quartus II Software Page 7
Figure 4 shows the Arria II GX device family that has up to 12 I/O banks.

After deciding which I/O banks to use, ensure that you have enough I/O pins in the
chosen I/O banks for your memory interfaces.

Figure 4. Arria II GX External Memory Support (Note 1)

Note for Figure 4:

(1) The number of I/O banks and PLLs available depends on the device density. For more information on the availability of I/O banks and PLLs for
each device, refer to the Arria II GX pin-out file at www.altera.com/literature/lit-dp.jsp.

DLL1

8B 8A 7A 7B

3B 3A 4B

5B

5A

6A

6B

PLL_5

PLL_6

 PLL 1

PLL_2

PLL_3

DLL2

Arria II GX Device

PLL 4 4A
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

www.altera.com/literature/lit-dp.jsp

Page 8 Before Creating a Design in the Quartus II Software
I/O Pins
DQS and DQ pins are listed in the device pin-outs and fixed at specific locations in the
device. These locations are optimized in routing to minimize skew and maximize
margin. Altera recommends you to always check the pin table and the external
memory interfaces chapters for the number of DQS/DQ groups supported in a
particular device.

1 You cannot share any I/O pins for multiple memory interfaces described in this
document.

To check if the memory interfaces fit in the FPGA, compare the number of pins
available in the FPGA with the number of pins required for the memory interfaces.

Table 1 shows a summary of the number of pins required for various memory
interfaces.

1 Table 1 assumes that series on-chip termination (OCT) with calibration, parallel OCT
with calibration, or dynamic calibrated OCT are used. The type of OCT selected is
shown by the usage of RUP and RDN pins.

Table 1. Example of Pin Counts for Various Memory Interfaces (Note 1), (2) (Part 1 of 2)

Memory
Interface

FPGA
Bus

Width

Number
of DQ
Pins

Number
of DQS
Pins

Number
of

DM/BWSn
Pins

Number
of

Address
Pins (3)

Number of
Command

Pins

Number
of

Clock
Pins

RUP/RDN
Pins
(10)

Total
Pins

DDR3 SDRAM
(4), (5)

×4 4 2 0 (6) 14 10 2 2 34

×8 8 2 1 14 10 2 2 39

×16 16 4 2 14 10 2 2 50

×72 72 18 9 16 15 4 2 136

DDR2 SDRAM
(7)

×4 4 1 0 (6) 15 9 2 2 33

×8 8 1 1 15 9 2 2 38

×16 16 2 2 14 9 2 2 47

×72 72 9 9 14 12 6 2 124

DDR SDRAM
(5)

×4 4 1 0 (6) 14 7 2 2 28

×8 8 1 1 14 7 2 2 33

×16 16 2 2 14 7 2 2 43

×72 72 9 9 13 9 6 2 118

QDRII+ SRAM ×9 18 2 1 19 3 (8) 4 2 49

×18 36 2 2 18 3 (8) 4 2 67

×36 72 2 4 17 3 (8) 4 2 104

QDRII SRAM ×9 18 2 1 19 2 4 2 48

×18 36 2 2 18 2 4 2 66

×36 72 2 4 17 2 4 2 103
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Before Creating a Design in the Quartus II Software Page 9
f For the device DQS/DQ pin count, refer to the External Memory Interfaces chapter of
the respective device family handbook.

1 When using the ALTMEMPHY megafunction for Arria GX, HardCopy II,
Stratix II, and Stratix II GX devices, you can only target the top and bottom
of the I/O banks (I/O banks 3, 4, 7, and 8).

1 Arria II GX, HardCopy III, HardCopy IV, Stratix III, and Stratix IV devices
support external memory interfaces in every I/O bank.

DLLs
A single DLL can support any number of interfaces (limited by pins, PLLs, clock
networks, and logic element resources) running at the same frequency and using the
same DLL frequency mode. For information on the DLL in each device family and to
decide whether you must share the DLLs for your multiple memory controllers based
on your frequency and memory data width requirements, refer to “HardCopy III,
HardCopy IV, Stratix III, and Stratix IV Devices” on page 10, “Arria II GX Devices” on
page 10, and “Arria GX, HardCopy II, Stratix II, and Stratix II GX Devices” on
page 10.

RLDRAMII CIO
(9)

×9 9 2 1 22 7 (8) 4 2 47

×18 18 2 1 21 7 (8) 6 2 57

×36 36 2 1 20 7 (8) 8 2 76

RLDRAM II SIO
(9)

×9 18 2 1 22 7 (8) 4 2 56

×18 36 2 1 21 7 (8) 6 2 75

×36 72 2 1 20 7 (8) 8 2 112

Notes to Table 1:

(1) These example pin counts are derived from memory vendor data sheets. Check the exact number of addresses and command pins
of the memory devices in the configuration that you are using.

(2) PLL and DLL input reference clock pins are not counted in this calculation.
(3) The number of address pins depend on the memory device density.
(4) The TDQS and TDQS# pins are not counted in this calculation, as these pins are not used in the memory controller.
(5) Numbers are based on 1-GB memory devices.
(6) Altera FPGAs do not support DM pins in ×4 mode.
(7) Numbers are based on 2-GB memory devices without using differential DQS, RDQS, and RDQS# pin support.
(8) The QVLD pin, used to indicate read data valid from the QDRII+ SRAM or RLDRAM II device, is included in this number.
(9) The ALTMEMPHY megafunction in version 8.0 of the Quartus II software does not support RLDRAM II interfaces.
(10) Some DQ/DQS pins are dual purpose and can also be used as RUP, RDN, or configuration pins. A DQ/DQS group is lost if you use

these pins for configuration or as RUP or RDN pins for calibrated OCT. Pick RUP/RDN pins in a DQS/DQ group that is not being used
for memory interface purposes. You may need to place the DQS and DQ pins manually if you place the RUP and RDN pins in the same
DQS/DQ group pins.

Table 1. Example of Pin Counts for Various Memory Interfaces (Note 1), (2) (Part 2 of 2)

Memory
Interface

FPGA
Bus

Width

Number
of DQ
Pins

Number
of DQS
Pins

Number
of

DM/BWSn
Pins

Number
of

Address
Pins (3)

Number of
Command

Pins

Number
of

Clock
Pins

RUP/RDN
Pins
(10)

Total
Pins
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 10 Before Creating a Design in the Quartus II Software
HardCopy III, HardCopy IV, Stratix III, and Stratix IV Devices

HardCopy III, HardCopy IV, Stratix III, and Stratix IV device DLLs are located in each
corner of the device, allowing them to shift any DQS pins located on the adjacent
sides to the DLLs. There are a total of four DLLs per device, so HardCopy III,
HardCopy IV, Stratix III, and Stratix IV devices can have a maximum of four memory
interfaces with unique frequencies. For information on the method to share DLLs in
these devices, refer to “Sharing DLLs” on page 18.

Arria II GX Devices

There are two DLLs in an Arria II GX device, located in the top-left and bottom-right
corners of the device. These two DLLs can support a maximum of two unique
frequencies, with each DLL running at one frequency. Each DLL can access the top,
bottom, and right side of the device. This means that each I/O bank is accessible by
two DLLs, giving more flexibility to create multiple frequencies and multiple-type
interfaces. The DLL outputs the same DQS delay settings for the different sides of the
device. For information on the method to share DLLs in the Arria II GX device, refer
to “Sharing DLLs” on page 18.

1 Version 9.0 of the Quartus II software only supports the hybrid mode for top and right
sides and bottom and right sides of the device. The hybrid mode for top, bottom and
right sides of the device will be supported in the future version of the Quartus II
software.

Arria GX, HardCopy II, Stratix II, and Stratix II GX Devices

For Arria GX, HardCopy II, Stratix II, and Stratix II GX devices, there is one DLL on
the top and one DLL on the bottom of each device. Each DLL can only shift the DQS
pins located on the same side as the DLL. Since there are only two DLLs, the Stratix II
device can have a maximum of two memory interfaces with unique frequencies. For
information on the method to share DLLs in these devices, refer to “Sharing DLLs” on
page 18.

Cyclone III Devices

Cyclone III devices do not use a DLL to interface with memory devices.

PLLs and Clock Network Resources
The ALTMEMPHY megafunction uses a PLL that is instantiated in the ALTMEMPHY
MegaWizard® Plug-In Manager. The PLL is responsible for generating the various
clocks needed in the memory interface data path and controller.

Table 2 shows a summary of the clocks used in the ALTMEMPHY megafunction. All
the clocks run at the same frequency as the I/O frequency, except for the
phy_clk_1x clock, which runs at half the frequency of the interface if the controller
is in half-rate mode, or at the same frequency as that of the memory interface in
full-rate mode. The resynch_clk_2x and measure_clk_2x clocks use the PLL
reconfiguration ability to change the phase shift at run-time to adjust for voltage and
temperature (VT) variations.

1 Half-rate DDR/DDR2 ALTMEMPHY megafunction for Stratix III devices cannot
interleave memory controller within each other due to the half-rate resynchronization
clock (resynch_clk_1x) which is cascaded from DQ group to DQ group.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Before Creating a Design in the Quartus II Software Page 11
Table 2. Clocks Used in the ALTMEMPHY Megafunction (Note 1), (2)

 Clock Name Usage Description

phy_clk_1x Static system clock for the half-rate data path and controller.

mem_clk_2x Static DQS output clock used to generate DQS, CK/CK# signals,
the input reference clock to the DLL, and the system clock for the
full-rate datapath and controller.

mem_clk_1x This clock drives the aux_clk output or clocking DQS and as a
reference clock for the memory devices.

write_clk_2x Static DQ output clock used to generate DQ signals at 90o earlier
than DQS signals. Also may be used to generate the address and
command signals.

mem_clk_ext_2x This clock is only used if the memory clock generation uses
dedicated output pins. Applicable only in HardCopy II or Stratix II
prototyping for HardCopy II designs.

resynch_clk_2x Dynamic-phase clock used for resynchronization and postamble
paths. Currently, this clock cannot be shared by multiple
interfaces.

measure_clk_2x/

measure_clk_1x (3)

Dynamic-phase clock used for VT tracking purposes. Currently,
this clock cannot be shared by multiple interfaces.

ac_clk_2x

ac_clk_1x

Dedicated static clock for address and command signals.

scan_clk Static clock to reconfigure the PLL

seq_clk Static clock for the sequencer logic

Notes to Table 2:

(1) For more information on the clocks used in the ALTMEMPHY megafunction, refer to the Clock Networks and PLL
chapter of the respective device family handbook for more details.

(2) For more information on the clock usage and clock network type, refer to the ALTMEMPHY Megafunction User Guide.
(3) This clock should be of the same clock network clock as the resync_clk_2x clock.
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

http://www.altera.com/literature/ug/ug_altmemphy.pdf

Page 12 Before Creating a Design in the Quartus II Software
Table 3 and Table 4 show a comparison of the number of PLLs and dedicated clock
outputs available respectively in Arria GX, Arria II GX, Cyclone III, HardCopy II,
HardCopy III, HardCopy IV, Stratix II, Stratix II GX, Stratix III, and Stratix IV devices.

Table 3. Number of PLLs Available in Altera Device Families (Note 1)

Device Family Fast PLL (2) Enhanced PLL

Arria GX 2-4 2-4

Arria II GX N/A 4-6 (3)

Cyclone III N/A 2-4 (3)

HardCopy II 2-8 2-4

HardCopy III N/A 4-12 (3)

HardCopy IV N/A 4-12 (3)

Stratix II 4-8 2-4

Stratix II GX 2-4 2-4

Stratix III N/A 4-12 (3)

Stratix IV N/A 3-12 (3)

Notes to Table 3:

(1) For more details, refer to the Clock Networks and PLL chapter of the respective device family handbook.
(2) You cannot use Stratix II and Stratix II GX Fast PLLs in the ALTMEMPHY megafunction, as they do not have enough

clock outputs to meet the requirements of the ALTMEMPHY megafunction.
(3) Arria II GX, Cyclone III, HardCopy III, Stratix IV, HardCopy IV, and Stratix III PLLs are not the same as Stratix II

Enhanced PLLs, but compared with Stratix II PLLs, they are more similar to the Enhanced PLLs than to the Fast
PLLs.

Table 4. Number of Enhanced PLL Clock Outputs and Dedicated Clock Outputs Available in Altera
Device Families (Note 1) (Part 1 of 2)

Device Family Number of Enhanced PLL
Clock Outputs

Number Dedicated Clock
Outputs

Arria GX 6 clock outputs each Three differential or six
single-ended total (top and
bottom I/O banks only)

Arria II GX (2) 7 clock outputs each Single-ended or 1
differential pair

3 single-ended or 3
differential pairs (3)

Cyclone III 5 clock outputs each 1 single-ended or 1
differential pair total (not
for memory interface use)

HardCopy II 6 clock outputs each Three differential or six
single-ended total (top and
bottom I/O banks only)

HardCopy III Left/right: 7 clock
outputs

Top/bottom: 10 clock
outputs

Left/right: 2 single-ended
or 1 differential pair

Top/bottom: 6
single-ended or 4
single-ended and 1
differential pair
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Before Creating a Design in the Quartus II Software Page 13
Table 5 shows the number of clock networks available in the Altera device families.

HardCopy IV Left/right: 7 clock
outputs

Top/bottom: 10 clock
outputs

Left/right: 2 single-ended
or 1 differential pair

Top/bottom: 6
single-ended or 4
single-ended and 1
differential pair

Stratix II 6 clock outputs each Three differential or six
single-ended total (top and
bottom I/O banks only)

Stratix II GX 6 clock outputs each Three differential or six
single-ended total (top and
bottom I/O banks only)

Stratix III Left/right: 7 clock
outputs

Top/bottom: 10 clock
outputs

Left/right: 2 single-ended
or 1 differential pair

Top/bottom: 6
single-ended or 4
single-ended and 1
differential pair

Stratix IV Left/right: 7 clock
outputs

Top/bottom: 10 clock
outputs

Left/right: 2 single-ended
or 1 differential pair

Top/bottom: 6
single-ended or 4
single-ended and 1
differential pair

Note to Table 4:

(1) For more details, refer to the Clock Networks and PLL chapter of the respective device family handbook.
(2) PLL_5 and PLL_6 of Arria II GX device do not have dedicated clock outputs.
(3) The same PLL clock output drives 3 single-ended or 3 differential I/O pairs. This is only supported in PLL_1 and

PLL_3 of the EP2AGX95, EP2AGX125, EP2AGX190, and EP2AGX260 devices.

Table 5. Number of Clock Networks Available in Altera Device Families (Note 1) (Part 1 of 2)

Device Family Global Clock Network Regional Clock Network

Arria GX 16 32

Arria II GX 16 48

Cyclone III 10-20 N/A

HardCopy II 16 32

HardCopy III 16 88

HardCopy IV 16 88

Table 4. Number of Enhanced PLL Clock Outputs and Dedicated Clock Outputs Available in Altera
Device Families (Note 1) (Part 2 of 2)

Device Family Number of Enhanced PLL
Clock Outputs

Number Dedicated Clock
Outputs
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 14 Before Creating a Design in the Quartus II Software
1 You must decide whether you need to share clock networks, PLL clock outputs, or
PLLs for your multiple memory interfaces.

Other Resources
You must pay attention to other device resources that are used in an external memory
interface, for example the TriMatrix™ embedded memory blocks. If your design
requires many TriMatrix embedded memory blocks for other modules in the design,
ensure that there are enough for the memory interfaces as well.

Resources Planning for DLL and PLL Static Clocks
Below are the different scenarios for the resources sharing for DLL and PLL static
clocks:

■ Multiple Controllers with No Sharing — You need to check the number of PLLs
and DLLs that available in the targeted device and the number of PLLs and DLLs
that needed in your design. If you have enough resources for the controllers, you
do not need to share the DLL and PLL static clocks.

■ Multiple Controllers with Sharing DLL only — If you have enough resources on
PLL clocks output and only need to share DLL, ensure that the controllers are
running at the same memory clock frequency.

■ Multiple Controllers with Sharing PLL Static Clocks only — If the controllers are
on the opposite device edge, you can only share the PLL static clocks. Each
controller has their own DLL as the DLL can only access the adjacent sides from its
location. Cyclone III devices do not use DLL to interface with memory devices,
thus only PLL static clocks are shared.

■ Multiple Controllers with Sharing DLL and PLL Static Clocks — The PLL static
clocks and DLL are shared when the controllers are on the same side or adjacent
side of the device and provided they are running at the same memory-clock
frequency. Arria GX, Stratix II, and Stratix II GX devices only support memory
interfaces on the top and bottom I/O banks. Only Arria II GX, Stratix III, and
Stratix IV devices can support hybrid mode as the DLL for these devices families
can access the adjacent side from its location in the device.

1 It is recommended to use dedicated clock input pin for the PLL reference clock input.
If you do not use dedicated clock input pin, Quartus II software will give critical
warning due to increased jitter and worse timing margin.

Stratix II 16 32

Stratix II GX 16 32

Stratix III 16 64-88

Stratix IV 16 64-88

Note to Table 5:

(1) For more information on the number of available clock network resources per device quadrant to
better understand the number of clock networks available for your interface, refer to the Clock
Networks and PLL chapter of the respective device family handbook.

Table 5. Number of Clock Networks Available in Altera Device Families (Note 1) (Part 2 of 2)

Device Family Global Clock Network Regional Clock Network
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 15
For Stratix III and Stratix IV devices, the adjacent PLLs on the same side of the device
can share a dedicated input clock for their PLL reference clock input. If LVDS is used
on the left/right side of the device (which must be powered by 2.5 V), you can also
use a 2.5-V LVDS input clock for PLL reference input clock for PLL at top or bottom
side of the device.

Creating the Project Topology
After understanding the device resource limitations, you must determine the
resources to share for your multiple controller design. You can use this as a
framework for your Quartus II design constraints. For example, Stratix II external
memory interfaces with an ALTMEMPHY megafunction data path are supported
only on the top and bottom side of the device. If you also have a PCI interface in your
design, you must leave at least one bank (either on the top or the bottom of the device)
for the PCI interface. For this particular example interface, you may need to share a
DLL.

Creating PHY and Controller in a Quartus II Project
You can instantiate multiple controllers using either one of the following flows:

■ “SOPC Builder Flow”

■ “MegaWizard Plug-in Manager Flow”

The SOPC Builder flow provides useful validation and automatically generates all the
wiring in SOPC Builder system and assignment. For the MegaWizard Plug-in
Manager flow, you must manually set the assignment for the PLL sharing but this
flow gives you more flexibility.

There are some regulations that you must follow when you want to share the clock
between controllers:

■ The controllers must be configured to have the same local interface clock
frequency, either in full-rate or half-rate mode

■ The controllers must have the same PLL input and output frequencies

■ The controllers must have compatible memory types (DDR SDRAM and DDR2
SDRAM are mixed in the same system but the DDR3 SDRAM controller is not
compatible with DDR/DDR2 SDRAM)

■ The controllers must have their ref_clk input connected to the same signal

SOPC Builder Flow
The SOPC Builder in version 8.1 and onwards of the Quartus II software allows you to
add multiple controllers directly to a new or existing SOPC Builder system. The SOPC
Builder supports sharing static PHY clocks between multiple controllers in the SOPC
Builder that are running on the same frequency and sharing the same PLL reference
clock. To share the static clocks, you must turn on the Clock source from another
controller option in the Controller Settings page of the DDR3/DDR2/DDR SDRAM
High Performance Controller, as shown in Figure 5. This option must be turned on for
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 16 Creating PHY and Controller in a Quartus II Project
the slave controllers. Turning on this option adds a new clock input connection point
to the slave controller named shared_sys_clk. You must connect the sys_clk
signal from the master controller to the shared_sys_clk signal of the slave
controller as shown in Figure 6. The Force Merging of PLL Clock Fanouts assignment
will automatically be assigned in the Quartus II software.

Figure 5. Enabling Multiple Controllers Sharing Clock for Slave Controllers
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 17
After the system generation, you must add the SDC file and run the pin assignment
TCL scripts as usual.

When an SOPC Builder multiple controllers system does not share the sys_clk, the
SOPC Builder inadvertently insert clock-crossing adaptors between the controller and
the NIOS II processor. In this situation, the system cannot achieve the maximum
performance for both controllers.

The SOPC Builder checks all the conditions listed in the regulation section and
prevents you from generating the system when they are not met.

f For more information on how to use controllers with SOPC Builder, refer to AN 517:
Using High-Performance DDR, DDR2, and DDR3 SDRAM With SOPC Builder.

f For more information on DDR, DDR2, and DDR3 SDRAM High Performance
Controllers, refer to DDR and DDR2 SDRAM high-Performance Controller User Guide
and the DDR3 SDRAM High-Performance Controller User Guide.

f For more information on simulating SOPC Builder systems, refer to AN 351:
Simulating Nios II Systems.

Figure 6. Connection Between Master and Slave Controller
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/an/an517.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/ug/ug_ddr3_sdram.pdf

Page 18 Creating PHY and Controller in a Quartus II Project
MegaWizard Plug-in Manager Flow
If you are creating multiple instances of the same controller with the same parameters
(frequency of operation, data width, burst mode, etc.), you only need to generate the
controller once. You can then instantiate this controller variation multiple times in
your top-level design file. If you are using controllers with different parameters, or
plan to modify the RTL generated by the MegaWizard Plug-In Manager (as required
for resource sharing in some cases), you must generate each variation of the memory
controller individually.

The high-performance memory controller is generated with a top-level design,
<variation_name>_example_top.v/.vhd, in which variation_name is the name of the
memory controller that you entered in the first page of the MegaWizard Plug-In
Manager. This top-level design example instantiates the memory controller
(<variation_name>.v/.vhd) and an example driver which performs a comparison test
after reading back data that was written to the memory. You can also generate
simulation files for each high-performance controller or ALTMEMPHY megafunction.

When creating a multiple memory interface design, you have the option to combine
certain aspects of the design flow, for example:

■ You can use one of the top-level designs to instantiate all the memory controllers
in the design, or create a new top-level design.

■ You can either modify one of the example drivers to test all the memory interfaces
in the design, or instantiate an example driver with each memory controller.

■ You can simulate each memory interface separately, or create a testbench which
combines all the memory interfaces in the design.

1 For more information on how to use the ALTMEMPHY megafunction, refer to the
ALTMEMPHY Megafunction User Guide and the DDR and DDR2 SDRAM
High-Performance Controller User Guide.

Sharing DLLs
If the controllers are sharing a DLL, ensure that the Instantiate DLL externally option
is turned on in the PHY Settings page of the DDR3/DDR2/DDR SDRAM
High-Performance Controller or the ALTMEMPHY MegaWizard Plug-In Manager, as
shown in Figure 4. This option must be checked for every interface that is sharing a
DLL.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_altmemphy.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf

Creating PHY and Controller in a Quartus II Project Page 19
Figure 7 shows you how to allow the DLL to be instantiated externally for controllers
sharing DLLS.

1 For more information on instantiating the controllers, refer to the DDR and DDR2
SDRAM High-Performance Controller User Guide.

When the Instantiate DLL externally option is checked, the MegaWizard Plug-In
Manager generates a file called
<variation_name>_phy_alt_mem_phy_dll_<device_family>.v/.vhd, in which the device
family is:

■ sii when targeting Arria GX, HardCopy II, Stratix II, or Stratix II GX devices

■ siii when targeting HardCopy III, HardCopy IV, Stratix III, or Stratix IV devices

■ aii when targeting Arria II GX devices

Figure 7. Allowing the DLL to be Instantiated Externally for Controllers Sharing DLLs
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf

Page 20 Creating PHY and Controller in a Quartus II Project
The example top design then instantiates the DLL in addition to instantiating the
memory controller and the example driver. You can then instantiate the other memory
controllers for the design and either modify the example driver to create the test
pattern for all controllers or create another design example for each controller that is
instantiated.

1 If you do not need to share any other clock networks or PLLs, you can
continue to “Adding Constraints to the Design” on page 24.

Sharing PLL Clock Outputs or Clock Networks
You can share the static clock networks in multiple memory controllers using
ALTMEMPHY megafunction. Although a PLL instance is used for each
ALTMEMPHY instance, the static clocks are shared, which uses fewer clocking
resources. This is an easy-to-implement option that reduces the required number of
clocks. Figure 8 shows a diagram of the connection between the DLL and the PLL for
this scheme.

The maximum number of interfaces that are shared in this scheme is limited by the
number of PLLs and the number of pins available in the device. You must ensure that
the memory devices that are accessed by the different controllers are laid out on the
board with the same trace lengths.

Figure 8. Two Controllers Static Clocks with Separate Resynchronization Clocks from Different PLLs

Memory Memory

FPGA

ALTMEMPHY

PLL

ALTMEMPHY ALTMEMPHY

Slave ControllerMaster Controller

DLL

6

resynch_clk_2x

measure_clk_2xwrite_clk_2x
mem_clk_ext_2x

phy_clk_1x
mem_clk_2x

resynch_clk_2x
measure_clk_2x

PLL
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 21

l

_

l

_

l

_

l

_

You can share the static clock networks in multiple memory controllers by setting the
Force Merging of PLL Clock Fanouts assignment to On. You need to manually add
the two PLL merging assignments using the Assignment Editor or directly update the
.qsf file.

Table 6 shows a list of PLL merging assignments.

Table 6. PLL Merging Assignments (Note 1) (Part 1 of 3)

Device (2) Rate Assigments

Arria II GX Half set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[0] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[0]

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[3] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[3]

Full set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[1] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[1]

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[3] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[3]
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 22 Creating PHY and Controller in a Quartus II Project

l

_

l

_

l

_

l

_

l

_

l

_

l

_

l

_

Cyclone III Half set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[0] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[0]

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[2] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[2]

Full set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[1] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[1]

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*:auto_generated|clk[2] -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*:auto_generated|clk[2]

Stratix II Half set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*clk0 -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*clk0

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*clk2 -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*clk2

Full set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*clk1 -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*clk1

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|<SLAVE>_phy_alt_mem_phy_p
l:*:altpll_component|*clk2 -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|<MASTER>_phy_alt_mem_phy
pll:*:altpll_component|*clk2

Table 6. PLL Merging Assignments (Note 1) (Part 2 of 3)

Device (2) Rate Assigments
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 23

s
To check if the Quartus II software has applied the assignments, you need to read the
Compilation Report - PLL Usage window (available only if the Fitter step is
successful), which shows the two merged clocks.

Figure 9 shows PLL usage in the compilation report which shows the two clocks have
been merged (clk0 and clk2)

1 If the report does not show the clocks merged as expected you must check the
FORCE_MERGE_PLL_FANOUTS assignment carefully for incorrect clock names. You
can also open your <projectname>_fit.rpt file and look for Merged PLL.

Stratix III Half and Full set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|write_clk_2x -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|write_clk_2x

set_instance_assignment -name FORCE_MERGE_PLL_FANOUTS ON -from
*|<SLAVE>_phy_alt_mem_phy_clk_reset:clk|phy_clk_1x -to
*|<MASTER>_phy_alt_mem_phy_clk_reset:clk|phy_clk_1x

Notes to Table 6:

(1) In these assignments, if you are using the ALTMEMPHY megafunction, you must replace <SLAVE>_phy and <MASTER>_phy by the variation
names of your two variations. If you are using the high performance controller, you must replace <SLAVE> and <MASTER> by the variation name
of your two variations.

(2) Stratix II includes Arria GX, HardCopy II, Stratix II, or Stratix II GX devices; Stratix III includes HardCopy III, HardCopy IV, Stratix III, or Stratix IV
devices.

Table 6. PLL Merging Assignments (Note 1) (Part 3 of 3)

Device (2) Rate Assigments

Figure 9. Compilation Report PLL Usage
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 24 Creating PHY and Controller in a Quartus II Project
1 QDRII ALTMEMPHY does not have dynamic clocks, thus you can share the static
clocks among the QDRII ALTMEMPHYs. Use regional clock networks for high-speed
interfaces. For lower-speed interfaces, use global clock network if the FPGA output
clock meets the QDRII SRAM input jitter specification.

1 You cannot merge dynamic clocks of the ALTMEMPHY megafunction or
High-Performance Controller. The Quartus II software may not give a warning, but
this will not work in the hardware.

Adding Constraints to the Design
The MegaWizard Plug-In Manager generates an .sdc file for timing constraints and
.tcl scripts for I/O standard and DQS/DQ grouping constraints of each controller. The
TimeQuest timing analyzer is the default timing analyzer for the Arria GX,
Arria II GX, Cyclone III, Stratix III, and Stratix IV device families. To manually
optimize timing with the Quartus II compiler and to use the timing report script
created by the MegaWizard Plug-In Manager, you must enable the TimeQuest timing
analyzer. To enable the TimeQuest timing analyzer manually for Stratix II and Stratix
II GX designs, you must perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.

2. In the Category list, select Timing Analysis Settings. The Timing Analysis
Settings page appears.

3. Under Timing analysis processing, select Use TimeQuest Timing Analyzer
during compilation (Figure 10 shows how the Settings dialog box).

4. Click OK.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 25
You must then add the .sdc file for each controller. If you are using two or more
different memory controller variations, you must add the .sdc files generated for each
variation. However, if your design consists of multiple instantiations of the same
controller, you only need to add the .sdc file once without modification. The
Quartus II software is able to apply the .sdc file for all the interfaces using the same
variation.

The High-Performance Memory Controller MegaWizard Plug-In Manager also
generates two .tcl scripts per variation to set the I/O standard, output enable
grouping, termination, and current strength for the memory interface pins. These .tcl
scripts use the default MegaWizard Plug-In Manager names, for example,
mem_dq[71..0], local_ready, and mem_ras_n. Every variation of the
high-performance memory controller uses this naming convention. However, if there
are multiple memory controllers in the design, you must change the names of the
interface pins in the top-level file to differentiate each controller. You can add prefixes
to the controller pin names in the Quartus II Pin Planner by performing the following
steps:

1. Open the Assignment menu and click on Pin Planner.

2. Right-click in any area under Node Name, and select Create/Import
Megafunction as shown in Figure 11.

Figure 10. Enabling TimeQuest Timing Analyzer
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 26 Creating PHY and Controller in a Quartus II Project
3. Turn on the Import an existing custom megafunction radio button and choose the
<variation_name>.ppf file.

4. Type the prefix that you want to use under the Instance name as shown in
Figure 12.

You may also want to set the default I/O standard for your design in the Voltage
section of the Device and Pin Options, by navigating to Assignment and clicking
Setting as shown in Figure 13.

Figure 11. Create/Import Megafunction Option in the Pin Planner

Figure 12. Adding Prefix to the Memory Interface Pin Names
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Creating PHY and Controller in a Quartus II Project Page 27
1 Take note of the number of available pins per I/O bank to ensure that the Quartus II
software can successfully compile the design.

Figure 13. Setting a Default Voltage for Your Design
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 28 Compiling the Design to Generate a Timing Report
Compiling the Design to Generate a Timing Report
After compiling the design, open the Tools menu and select TimeQuest Timing
Analyzer. Double click on Report DDR (refer to Figure 14) to get the timing report for
all ALTMEMPHY-based memory controllers in the design.

1 For more information on analyzing memory interface timing in the Cyclone III and
Stratix III devices, refer to AN 438: Constraining and Analyzing Timing for External
Memory Interfaces in Stratix III and Cyclone III Devices.

Some of the timing failures that you may encounter are as follow:

■ If read capture setup time is negative, you must decrease the delay chain used in
the DQ pins by setting the Input Delay from Pin to Input Register to 0 or a lower
number than the current setting in the Assignment Editor. However, if hold time
is negative, you must do the opposite; increment the Input Delay from Pin to
Input Register setting to a higher number than the current setting in the
Assignment Editor.

■ If you are experiencing any write and address/command timing failures, you can
resolve them by setting:

Figure 14. Report DDR in TimeQuest Timing Analyzer for ALTMEMPHY-Based Controller
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

http://www.altera.com/literature/an/an438.pdf
http://www.altera.com/literature/an/an438.pdf

Stratix II Design Example Page 29
set_instance_assignment -name CLOCK_TO_OUTPUT_DELAY 0 -to
<address/command/CK/CK# pin>

■ If the resynchronization path does not meet the timing, you must move the
resynchronization registers closer to the IOE. Report DDR shows information
messages with the names of the source and destination registers of the worst case
setup path. You must copy the name of the destination register from the message
and move it as close as possible to the source register using the Assignment
Editor. Similarly, if the postamble path is not meeting recovery timing, move the
postamble registers closer to the IOE.

■ Setup failures for transfers from the measure clock (clk5) to the PHY clock (clk0
for half-rate interfaces or clk1 for full-rate interfaces) must be ignored. Due to the
dynamic nature of the measure clock, these must be treated as asynchronous
transfers.

f For more information on other issues that may cause timing failures in your design,
refer to the latest version of the Quartus II Release Notes.

f For an example of step-by-step flow for closing timing with ALTMEMPHY-based
controllers, refer to AN 328: Interfacing DDR2 SDRAM with Stratix II, Stratix II GX, and
Arria GX Devices.

Once your design meets timing requirements, you can continue your design flow by
either performing a gate-level simulation or determining the board design
constraints.

Stratix II Design Example
To illustrate the flow described above, you must consider a Stratix II EP2S90F1508C3
device with the following memory requirements:

■ One controller interfacing with a ×72 DDR2 SDRAM DIMM device running at
267 MHz

■ Two controllers interfacing with ×8 DDR2 SDRAM devices running at 267 MHz

All three controllers use the Altera DDR2 SDRAM High-Performance Controllers in
half-rate mode.

1 Half-rate mode means that the clock frequency of the memory controller is half the
frequency of the actual memory device’s clock rate. In half-rate mode, ALTMEMPHY
multiplexes and demultiplexes data between the memory controller and the memory
devices to transfer data between the two frequencies.
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

http://www.altera.com/literature/lit-rn.jsp
http://www.altera.com/literature/an/an328.pdf
http://www.altera.com/literature/an/an328.pdf

Page 30 Stratix II Design Example
Comparing I/O Pin Number Requirements
Table 1 indicates that a DDR2 SDRAM DIMM interface requires about 124 pins, while
a ×8 DDR2 SDRAM interface requires around 38 pins. As noted in the Stratix II Device
Handbook, Stratix II has a maximum of 9 groups of ×8 DQS/DQ groups, such that the
DIMM interface needs to take one side of the FPGA. Furthermore, the Quartus II Pin
Planner indicates that there are 94 pins in I/O bank 3, and 102 pins in I/O bank 4, so
the whole DIMM interface can fit in the top bank.

I/O banks 7 and 8 have 100 and 95 user I/O pins, respectively, so the two ×8 DDR2
SDRAM interfaces can share one I/O bank. However, for this exercise, the ×8 DDR2
SDRAM interfaces are placed in two different I/O banks so that the separation
between the two interfaces are clearer.

To summarize, the DIMM interface is going to be located on the top of the device (I/O
banks 3 and 4), while one ×8 DDR2 SDRAM controller is located on I/O bank 7, and
the other on I/O bank 8.

Deciding DLL Requirements
Because there are two interfaces on the bottom side of the design, these interfaces
must share a single DLL.

This example uses two DLLs.

Creating PHY and Controller for the Design Example
You must create the DIMM interface as a single interface without any special handling
(called top.v in the design example) because it is not sharing any resources.

The two memory interfaces at the bottom of the device are exactly the same. They
both receive their static clocks from the top.v module. In this design example, because
they are identical, you can create one variation and instantiate the same variation
twice in the top-level file.

f For more information on instantiating the controllers, refer to the DDR and DDR2
SDRAM High-Performance Controller User Guide.

1 For easy organization of the files, Altera recommends that you create each
controller as subfolders of the top project.

Sharing the DLLs Between the Two Bottom Controllers
The DLL is shared between the two bottom controllers and the steps for sharing are in
the “Sharing DLLs” section.

Sharing the PLL Clock Outputs
The design in this example is in half-rate mode. Refer to the “Sharing PLL Clock
Outputs or Clock Networks” section for the Force Merge PLL assignments.
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf
http://www.altera.com/literature/ug/ug_ddr_ddr2_sdram_hp.pdf

Stratix II Design Example Page 31
Figure 15 shows the snapshot of the assignment for Force Merge PLLs in .qsf file.

Adding Constraints to the Design Example
To add constraints to the design example, you must enable TimeQuest timing
analyzer and add all the .sdc files for the three controllers. Next, perform the
following steps:

1. In the Quartus II software, open the Pin Planner.

2. Right-click Create/Import Megafunction and follow the instructions described on
“Adding Constraints to the Design” on page 24 to add prefixes to match your
actual top-level pin names for each controller (use prefixes top, bot1, and bot2
for the design example).

1 Each controller comes with its own <variation_name>_pin_assignments.tcl file. The
pin assignments contained in this script use default pin names that must be changed
so that they are unique for each controller instance.

You can also use the Pin Planner to assign actual locations to the pins. You may also
want to set the default I/O standard for your design in the Voltage section of the
Device and Pin Options by navigating to the Assignment menu and click Setting.

Compiling the Design Example
Add the two .sdc files from the two controller variations to the design. You must also
add another .sdc file to the list of TimeQuest timing analyzer .sdc files to describe the
frequency of the input PLL reference clock pins of all the controllers in the design. The
design example uses a file called top.sdc which has the following lines:

create_clock -period 10 top_pll_ref_clk
create_clock -period 10 bot1_pll_ref_clk
create_clock -period 10 bot2_pll_ref_clk

1 If you place the controllers in a different folder than the top-level project,
you must add the directories of your controllers to the project library.

Compiling the Design Example to Verify Timing
You must compile the design and select the TimeQuest Timing Analyzer from the
Tools menu. Double-click on the Report DDR macro to check if the design meets all
timing requirements. If not, you must fix the timing by either adding or removing
delay chains, or by moving the registers closer using placement constraints.

Figure 15. Assignments for Force Merge PLLs
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 32 Stratix II Design Example
1 To ensure faster timing closure, you can close timing on each controller and
place the controller logic in a LogicLockTM block before creating the
multiple interface top level design.

Figure 16 shows the initial timing analysis results for the three controllers in the
design.

If you look into the failing path, you can see that the failing path is on the mimic
register. You must move this path closer to the IOE that is feeding the register in Chip
Planner and recompile the design.

Figure 17 shows the final timing analysis result for the design.

Once your design meets timing, you can continue your design flow by either
performing a gate-level simulation or determining the board design constraints.

Figure 16. Initial Timing Analysis Result for the Design Example

Figure 17. Final Timing Analysis Result for the Design Example
AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Conclusion Page 33
Conclusion
The ALTMEMPHY megafunction allows Altera FPGAs to interface with
high-performance external memory interfaces. The architecture of the device further
allows the FPGAs to interface with multiple memory interfaces.

As shown in this application note, there are several ways to create multiple-controller
design using the ALTMEMPHY megafunction data path. Pick one that is optimal for
your system as both the ALTMEMPHY megafunction data path and the
high-performance controller are modified to meet your needs.

Knowing the requirements and limitations for the multiple memory interface in the
initial design allows you to architect your system better.
© April 2009 Altera Corporation AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction

Page 34 Document Revision History
Document Revision History
Table 7 shows the revision history for this application note.

Table 7. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

April 2009 v1.3 ■ Updated the “Introduction” section.

■ Updated the Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 7,
Figure 8, Figure 15, Figure 16, and Figure 17.

■ Updated the Table 1, Table 2, Table 3, Table 4, and Table 5.

■ Updated the “Before Creating a Design in the Quartus II Software”
section.

■ Updated the “Getting to Know Your Altera Device” section.

■ Updated the “HardCopy III, HardCopy IV, Stratix III, and Stratix IV
Devices” section.

■ Updated the “Arria II GX Devices” section.

■ Updated the “Arria GX, HardCopy II, Stratix II, and Stratix II GX
Devices” section.

■ Updated the “PLLs and Clock Network Resources” section.

■ Added the “Resources Planning for DLL and PLL Static Clocks”
section.

■ Updated the “Creating PHY and Controller in a Quartus II Project”
section.

■ Added the “SOPC Builder Flow” section.

■ Updated the “MegaWizard Plug-in Manager Flow” section.

■ Updated the “Sharing DLLs” section.

■ Updated the “Sharing PLL Clock Outputs or Clock Networks” section.

■ Updated the “Adding Constraints to the Design” section.

■ Updated the “Compiling the Design to Generate a Timing Report”
section.

■ Updated the “Deciding DLL Requirements” section.

■ Updated the “Creating PHY and Controller for the Design Example”
section.

■ Updated the “Sharing the DLLs Between the Two Bottom Controllers”
section.

■ Updated the “Sharing the PLL Clock Outputs” section.

■ Updated the “Adding Constraints to the Design” section.

■ Updated the “Compiling the Design Example to Verify Timing” section.

—

May 2008 v1.2 ■ Removed “Appendix A: Stratix III RTL Modification for DLL Sharing”.

■ Updated the “Stratix III PLL Static Clock Sharing” section.

■ Updated the “Sharing PLL Clock Outputs or Clock Networks” section.

■ Removed original Figure 5.

■ Completed minor text edits.

—

AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction © April 2009 Altera Corporation

Document Revision History
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

October 2007 v1.1 ■ Updated the sections “Introduction”, “Before Creating a Design in the
Quartus II Software”, “PLLs and Clock Network Resources”, “Creating
PHY and Controller in a Quartus II Project”, “Sharing DLLs”, “Sharing
PLL Clock Outputs or Clock Networks”, “Adding Constraints to the
Design”, “Compiling the Design to Generate a Timing Report”,
“Creating PHY and Controller for the Example Design”, and “Sharing
the PLL Clock Outputs”

■ Added the section “Stratix II, Stratix II GX, Arria GX, HardCopy II, and
Cyclone III PLL Static Clock Sharing”, “Stratix II Design Example”
(removed section Verifying Timing for the Design), “Appendix A:
Stratix III RTL Modification for DLL Sharing”, and “Referenced
Documents”.

■ Updated Figure 1, Figure 5, Figure 14, Figure 15, Figure 16, and
Figure 17.

■ Added Figure 7, Figure 12.

■ Removed original Figure 4 and Figure 8.

■ Updated Table 2.

Added text, removed
text, included new
sections, section titles,
updates to figures and
tables, and added new
figures.

June 2007 v1.0 Initial Release. —

Table 7. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

http://www.altera.com
http://www.altera.com/support

	AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction
	Introduction
	Before Creating a Design in the Quartus II Software
	Getting to Know Your Altera Device
	Resources Planning for DLL and PLL Static Clocks
	Creating the Project Topology

	Creating PHY and Controller in a Quartus II Project
	SOPC Builder Flow
	MegaWizard Plug-in Manager Flow
	Sharing DLLs
	Sharing PLL Clock Outputs or Clock Networks
	Adding Constraints to the Design

	Compiling the Design to Generate a Timing Report
	Stratix II Design Example
	Comparing I/O Pin Number Requirements
	Deciding DLL Requirements
	Creating PHY and Controller for the Design Example
	Adding Constraints to the Design Example
	Compiling the Design Example
	Compiling the Design Example to Verify Timing

	Conclusion
	Document Revision History

