
Altera Corporation  2–1
July 2005

2. Stratix Architecture

Functional 
Description

Stratix® devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. A series of column and row 
interconnects of varying length and speed provide signal interconnects 
between logic array blocks (LABs), memory block structures, and DSP 
blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each 
LAB. An LE is a small unit of logic providing efficient implementation of 
user logic functions. LABs are grouped into rows and columns across the 
device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus 
parity (576 bits). These blocks provide dedicated simple dual-port or 
single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are 
grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus 
parity (4,608 bits). These blocks provide dedicated true dual-port, simple 
dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. 
These blocks are grouped into columns across the device in between 
certain LABs. 

M-RAM blocks are true dual-port memory blocks with 512K bits plus 
parity (589,824 bits). These blocks provide dedicated true dual-port, 
simple dual-port, or single-port memory up to 144-bits wide at up to 
269 MHz. Several M-RAM blocks are located individually or in pairs 
within the device’s logic array.

Digital signal processing (DSP) blocks can implement up to either eight 
full-precision 9 × 9-bit multipliers, four full-precision 18 × 18-bit 
multipliers, or one full-precision 36 × 36-bit multiplier with add or 
subtract features. These blocks also contain 18-bit input shift registers for 
digital signal processing applications, including FIR and infinite impulse 
response (IIR) filters. DSP blocks are grouped into two columns in each 
device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the 
end of LAB rows and columns around the periphery of the device. I/O 
pins support numerous single-ended and differential I/O standards. 
Each IOE contains a bidirectional I/O buffer and six registers for 
registering input, output, and output-enable signals. When used with 
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dedicated clocks, these registers provide exceptional performance and 
interface support with external memory devices such as DDR SDRAM, 
FCRAM, ZBT, and QDR SRAM devices.

High-speed serial interface channels support transfers at up to 840 Mbps 
using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology I/O 
standards.

Figure 2–1 shows an overview of the Stratix device.

Figure 2–1. Stratix Block Diagram
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The number of M512 RAM, M4K RAM, and DSP blocks varies by device 
along with row and column numbers and M-RAM blocks. Table 2–1 lists 
the resources available in Stratix devices.

Logic Array 
Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local 
interconnect, LUT chain, and register chain connection lines. The local 
interconnect transfers signals between LEs in the same LAB. LUT chain 
connections transfer the output of one LE’s LUT to the adjacent LE for fast 
sequential LUT connections within the same LAB. Register chain 
connections transfer the output of one LE’s register to the adjacent LE’s 
register within an LAB. The Quartus® II Compiler places associated logic 
within an LAB or adjacent LABs, allowing the use of local, LUT chain, 
and register chain connections for performance and area efficiency. 
Figure 2–2 shows the Stratix LAB.

Table 2–1. Stratix Device Resources

Device M512 RAM 
Columns/Blocks

M4K RAM 
Columns/Blocks

M-RAM 
Blocks

DSP Block 
Columns/Blocks

LAB 
Columns LAB Rows

EP1S10 4 / 94 2 / 60 1 2 / 6 40 30

EP1S20 6 / 194 2 / 82 2 2 / 10 52 41

EP1S25 6 / 224 3 / 138 2 2 / 10 62 46

EP1S30 7 / 295 3 / 171 4 2 / 12 67 57

EP1S40 8 / 384 3 / 183 4 2 / 14 77 61

EP1S60 10 / 574 4 / 292 6 2 / 18 90 73

EP1S80 11 / 767 4 / 364 9 2 / 22 101 91
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Figure 2–2. Stratix LAB Structure
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Figure 2–3. Direct Link Connection

LAB Control Signals
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With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [7..0] and LAB local interconnect generate the LAB-
wide control signals. The MultiTrackTM interconnect’s inherent low skew 
allows clock and control signal distribution in addition to data. Figure 2–4 
shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals
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Figure 2–5. Stratix LE
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functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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asynchronous preset load, synchronous clear, synchronous load, and 
clock enable control for the register. These LAB-wide signals are available 
in all LE modes. The addnsub control signal is allowed in arithmetic 
mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums: data1 + data2 + carry-in0 
or data1 + data2 + carry-in1. The other two LUTs use the data1 and 
data2 signals to generate two possible carry-out signals—one for a carry 
of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry 
select for the carry-out0 output and carry-in1 acts as the carry select 
for the carry-out1 output. LEs in arithmetic mode can drive out 
registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are LAB-
wide signals that affect all registers in the LAB. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs. The addnsub LAB-wide signal controls whether the LE acts 
as an adder or subtractor.
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.
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Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full 
adder. One portion of the LUT generates the sum of two bits using the 
input signals and the appropriate carry-in bit; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT generates carry-
out bits. An LAB-wide carry in bit selects which chain is used for the 
addition of given inputs. The carry-in signal for each chain, carry-in0 
or carry-in1, selects the carry-out to carry forward to the carry-in 
signal of the next-higher-order bit. The final carry-out signal is routed to 
an LE, where it is fed to local, row, or column interconnects. 

The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to TriMatrix™ 
memory and DSP blocks. A carry chain can continue as far as a full 
column.
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Figure 2–8. Carry Select Chain 
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asynchronous load, and clear signals. An asynchronous clear signal takes 
precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chip-
wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals. 

MultiTrack 
Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, 
DSP blocks, and device I/O pins are provided by the MultiTrack 
interconnect structure with DirectDriveTM technology. The MultiTrack 
interconnect consists of continuous, performance-optimized routing lines 
of different lengths and speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical design 
paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, DSP blocks, and TriMatrix 
memory within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks.
■ R4 interconnects traversing four blocks to the right or left.
■ R8 interconnects traversing eight blocks to the right or left.
■ R24 row interconnects for high-speed access across the length of the 

device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix 
memory block to drive into the local interconnect of its left and right 
neighbors and then back into itself. Only one side of a M-RAM block 
interfaces with direct link and row interconnects. This provides fast 
communication between adjacent LABs and/or blocks without using row 
interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM 
block, two LABs and one M4K RAM block, or two LABs and one DSP 
block to the right or left of a source LAB. These resources are used for fast 
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row connections in a four-LAB region. Every LAB has its own set of R4 
interconnects to drive either left or right. Figure 2–9 shows R4 
interconnect connections from an LAB. R4 interconnects can drive and be 
driven by DSP blocks and RAM blocks and horizontal IOEs. For LAB 
interfacing, a primary LAB or LAB neighbor can drive a given R4 
interconnect. For R4 interconnects that drive to the right, the primary 
LAB and right neighbor can drive on to the interconnect. For R4 
interconnects that drive to the left, the primary LAB and its left neighbor 
can drive on to the interconnect. R4 interconnects can drive other R4 
interconnects to extend the range of LABs they can drive. R4 
interconnects can also drive C4 and C16 interconnects for connections 
from one row to another. Additionally, R4 interconnects can drive R24 
interconnects. 

Figure 2–9. R4 Interconnect Connections

Notes to Figure 2–9:
(1) C4 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.

The R8 interconnects span eight LABs, M512 or M4K RAM blocks, or DSP 
blocks to the right or left from a source LAB. These resources are used for 
fast row connections in an eight-LAB region. Every LAB has its own set 
of R8 interconnects to drive either left or right. R8 interconnect 
connections between LABs in a row are similar to the R4 connections 
shown in Figure 2–9, with the exception that they connect to eight LABs 
to the right or left, not four. Like R4 interconnects, R8 interconnects can 
drive and be driven by all types of architecture blocks. R8 interconnects 
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can drive other R8 interconnects to extend their range as well as C8 
interconnects for row-to-row connections. One R8 interconnect is faster 
than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect, which vertically routes signals to and from LABs, TriMatrix 
memory and DSP blocks, and horizontal IOEs. These column resources 
include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C8 interconnects traversing a distance of eight blocks in up and 

down direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down 
from a source LAB. Every LAB has its own set of C4 interconnects to drive 
either up or down. Figure 2–11 shows the C4 interconnect connections 
from an LAB in a column. The C4 interconnects can drive and be driven 
by all types of architecture blocks, including DSP blocks, TriMatrix 
memory blocks, and vertical IOEs. For LAB interconnection, a primary 
LAB or its LAB neighbor can drive a given C4 interconnect. 
C4 interconnects can drive each other to extend their range as well as 
drive row interconnects for column-to-column connections. 
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.

C4 Interconnect
Drives Local and R4
Interconnects
up to Four Rows

Adjacent LAB can
drive onto neighboring
LAB's C4 interconnect

C4 Interconnect
Driving Up

C4 Interconnect
Driving Down

LAB

Row
Interconnect

Local
Interconnect
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C8 interconnects span eight LABs, M512, or M4K blocks up or down from 
a source LAB. Every LAB has its own set of C8 interconnects to drive 
either up or down. C8 interconnect connections between the LABs in a 
column are similar to the C4 connections shown in Figure 2–11 with the 
exception that they connect to eight LABs above and below. The C8 
interconnects can drive and be driven by all types of architecture blocks 
similar to C4 interconnects. C8 interconnects can drive each other to 
extend their range as well as R8 interconnects for column-to-column 
connections. C8 interconnects are faster than two C4 interconnects. 

C16 column interconnects span a length of 16 LABs and provide the 
fastest resource for long column connections between LABs, TriMatrix 
memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-
RAM blocks and also drive to row and column interconnects at every 
fourth LAB. C16 interconnects drive LAB local interconnects via C4 and 
R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LAB-
to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) 
connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. These blocks also have 
direct link interconnects for fast connections to and from a neighboring 
LAB. All blocks are fed by the row LAB clocks, labclk[7..0].
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Table 2–2 shows the Stratix device’s routing scheme.

Table 2–2. Stratix Device Routing Scheme
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TriMatrix 
Memory

TriMatrix memory consists of three types of RAM blocks: M512, M4K, 
and M-RAM blocks. Although these memory blocks are different, they 
can all implement various types of memory with or without parity, 
including true dual-port, simple dual-port, and single-port RAM, ROM, 
and FIFO buffers. Table 2–3 shows the size and features of the different 
RAM blocks.

Table 2–3. TriMatrix Memory Features (Part 1 of 2)

Memory Feature M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block 
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)

Maximum 
performance

(1) (1) (1)

True dual-port 
memory v v

Simple dual-port 
memory v v v

Single-port memory v v v

Shift register v v

ROM v v (2)

FIFO buffer v v v

Byte enable v v

Parity bits v v v

Mixed clock mode v v v

Memory initialization v v

Simple dual-port 
memory mixed width 
support

v v v

True dual-port 
memory mixed width 
support

v v

Power-up conditions Outputs cleared Outputs cleared Outputs 
unknown

Register clears Input and output 
registers

Input and output 
registers

Output registers

Mixed-port read-
during-write

Unknown 
output/old data

Unknown 
output/old data

Unknown output
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1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

TriMatrix memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K and M-RAM memory blocks offer a true dual-port 
mode to support any combination of two-port operations: two reads, two 
writes, or one read and one write at two different clock frequencies. 
Figure 2–12 shows true dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration

Configurations 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18

4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36

64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144

Notes to Table 2–3:
(1) See Table 4–36 for maximum performance information.
(2) The M-RAM block does not support memory initializations. However, the 

M-RAM block can emulate a ROM function using a dual-port RAM bock. The 
Stratix device must write to the dual-port memory once and then disable the 
write-enable ports afterwards.

Table 2–3. TriMatrix Memory Features (Part 2 of 2)

Memory Feature M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block 
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)

dataA[ ]
addressA[ ]
wrenA

   clockA

clockenA

qA[ ]
aclrA

dataB[ ]
addressB[ ]

wrenB

clockB   
clockenB

qB[ ]
aclrB

A B
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In addition to true dual-port memory, the memory blocks support simple 
dual-port and single-port RAM. Simple dual-port memory supports a 
simultaneous read and write and can either read old data before the write 
occurs or just read the don’t care bits. Single-port memory supports non-
simultaneous reads and writes, but the q[] port will output the data once 
it has been written to the memory (if the outputs are not registered) or 
after the next rising edge of the clock (if the outputs are registered). For 
more information, see Chapter 2, TriMatrix Embedded Memory Blocks in 
Stratix & Stratix GX Devices of the Stratix Device Handbook, Volume 2. 
Figure 2–13 shows these different RAM memory port configurations for 
TriMatrix memory.

Figure 2–13. Simple Dual-Port & Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.

data[ ]
wraddress[ ]
wren
   inclock
inclocken
inaclr

rdaddress[ ]
rden

q[ ]
outclock   
outclocken

outaclr

data[ ]
address[ ]
wren
   inclock
inclocken
inaclr

q[ ]
outclock   
outclocken

outaclr

Single-Port Memory (1)

Simple Dual-Port Memory
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TriMatrix memory architecture can implement pipelined RAM by 
registering both the input and output signals to the RAM block. All 
TriMatrix memory block inputs are registered providing synchronous 
write cycles. In synchronous operation, the memory block generates its 
own self-timed strobe write enable (WREN) signal derived from the global 
or regional clock. In contrast, a circuit using asynchronous RAM must 
generate the RAM WREN signal while ensuring its data and address 
signals meet setup and hold time specifications relative to the WREN 
signal. The output registers can be bypassed. Flow-through reading is 
possible in the simple dual-port mode of M512 and M4K RAM blocks by 
clocking the read enable and read address registers on the negative clock 
edge and bypassing the output registers.

Two single-port memory blocks can be implemented in a single M4K 
block as long as each of the two independent block sizes is equal to or less 
than half of the M4K block size.

The Quartus II software automatically implements larger memory by 
combining multiple TriMatrix memory blocks. For example, two 
256 × 16-bit RAM blocks can be combined to form a 256 × 32-bit RAM 
block. Memory performance does not degrade for memory blocks using 
the maximum number of words available in one memory block. Logical 
memory blocks using less than the maximum number of words use 
physical blocks in parallel, eliminating any external control logic that 
would increase delays. To create a larger high-speed memory block, the 
Quartus II software automatically combines memory blocks with LE 
control logic.

Clear Signals

When applied to input registers, the asynchronous clear signal for the 
TriMatrix embedded memory immediately clears the input registers. 
However, the output of the memory block does not show the effects until 
the next clock edge. When applied to output registers, the asynchronous 
clear signal clears the output registers and the effects are seen 
immediately.

Parity Bit Support

The memory blocks support a parity bit for each byte. The parity bit, 
along with internal LE logic, can implement parity checking for error 
detection to ensure data integrity. You can also use parity-size data words 
to store user-specified control bits. In the M4K and M-RAM blocks, byte 
enables are also available for data input masking during write operations.
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Shift Register Support

You can configure embedded memory blocks to implement shift registers 
for DSP applications such as pseudo-random number generators, multi-
channel filtering, auto-correlation, and cross-correlation functions. These 
and other DSP applications require local data storage, traditionally 
implemented with standard flip-flops, which can quickly consume many 
logic cells and routing resources for large shift registers. A more efficient 
alternative is to use embedded memory as a shift register block, which 
saves logic cell and routing resources and provides a more efficient 
implementation with the dedicated circuitry.

The size of a w × m × n shift register is determined by the input data 
width (w), the length of the taps (m), and the number of taps (n). The size 
of a w × m × n shift register must be less than or equal to the maximum 
number of memory bits in the respective block: 576 bits for the M512 
RAM block and 4,608 bits for the M4K RAM block. The total number of 
shift register outputs (number of taps n × width w) must be less than the 
maximum data width of the RAM block (18 for M512 blocks, 36 for M4K 
blocks). To create larger shift registers, the memory blocks are cascaded 
together.

Data is written into each address location at the falling edge of the clock 
and read from the address at the rising edge of the clock. The shift register 
mode logic automatically controls the positive and negative edge 
clocking to shift the data in one clock cycle. Figure 2–14 shows the 
TriMatrix memory block in the shift register mode.
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Figure 2–14. Shift Register Memory Configuration

Memory Block Size

TriMatrix memory provides three different memory sizes for efficient 
application support. The large number of M512 blocks are ideal for 
designs with many shallow first-in first-out (FIFO) buffers. M4K blocks 
provide additional resources for channelized functions that do not 
require large amounts of storage. The M-RAM blocks provide a large 
single block of RAM ideal for data packet storage. The different-sized 
blocks allow Stratix devices to efficiently support variable-sized memory 
in designs.

The Quartus II software automatically partitions the user-defined 
memory into the embedded memory blocks using the most efficient size 
combinations. You can also manually assign the memory to a specific 
block size or a mixture of block sizes.
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M512 RAM Block

The M512 RAM block is a simple dual-port memory block and is useful 
for implementing small FIFO buffers, DSP, and clock domain transfer 
applications. Each block contains 576 RAM bits (including parity bits). 
M512 RAM blocks can be configured in the following modes:

■ Simple dual-port RAM
■ Single-port RAM
■ FIFO
■ ROM
■ Shift register

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.

The memory address depths and output widths can be configured as 
512 × 1, 256 × 2, 128 × 4, 64 × 8 (64 × 9 bits with parity), and 32 × 16 
(32 × 18 bits with parity). Mixed-width configurations are also possible, 
allowing different read and write widths. Table 2–4 summarizes the 
possible M512 RAM block configurations.

When the M512 RAM block is configured as a shift register block, a shift 
register of size up to 576 bits is possible.

The M512 RAM block can also be configured to support serializer and 
deserializer applications. By using the mixed-width support in 
combination with DDR I/O standards, the block can function as a 
SERDES to support low-speed serial I/O standards using global or 
regional clocks. See “I/O Structure” on page 2–104 for details on 
dedicated SERDES in Stratix devices.

Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM)

Read Port
Write Port

512 × 1 256 × 2 128 × 4 64 × 8 32 × 16 64 × 9 32 × 18

512 × 1 v v v v v

256 × 2 v v v v v

128 × 4 v v v v

64 × 8 v v v

32 × 16 v v v v

64 × 9 v

32 × 18 v
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M512 RAM blocks can have different clocks on its inputs and outputs. 
The wren, datain, and write address registers are all clocked together 
from one of the two clocks feeding the block. The read address, rden, and 
output registers can be clocked by either of the two clocks driving the 
block. This allows the RAM block to operate in read/write or 
input/output clock modes. Only the output register can be bypassed. The 
eight labclk signals or local interconnect can drive the inclock, 
outclock, wren, rden, inclr, and outclr signals. Because of the 
advanced interconnect between the LAB and M512 RAM blocks, LEs can 
also control the wren and rden signals and the RAM clock, clock enable, 
and asynchronous clear signals. Figure 2–15 shows the M512 RAM block 
control signal generation logic.

The RAM blocks within Stratix devices have local interconnects to allow 
LEs and interconnects to drive into RAM blocks. The M512 RAM block 
local interconnect is driven by the R4, R8, C4, C8, and direct link 
interconnects from adjacent LABs. The M512 RAM blocks can 
communicate with LABs on either the left or right side through these row 
interconnects or with LAB columns on the left or right side with the 
column interconnects. Up to 10 direct link input connections to the M512 
RAM block are possible from the left adjacent LABs and another 
10 possible from the right adjacent LAB. M512 RAM outputs can also 
connect to left and right LABs through 10 direct link interconnects. The 
M512 RAM block has equal opportunity for access and performance to 
and from LABs on either its left or right side. Figure 2–16 shows the M512 
RAM block to logic array interface.



Altera Corporation 2–29
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Figure 2–15. M512 RAM Block Control Signals
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Figure 2–16. M512 RAM Block LAB Row Interface

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K 
RAM block is used to implement buffers for a wide variety of applications 
such as storing processor code, implementing lookup schemes, and 
implementing larger memory applications. Each block contains 
4,608 RAM bits (including parity bits). M4K RAM blocks can be 
configured in the following modes:

■ True dual-port RAM
■ Simple dual-port RAM
■ Single-port RAM
■ FIFO
■ ROM
■ Shift register

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.
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The memory address depths and output widths can be configured as 
4,096 × 1, 2,048 × 2, 1,024 × 4, 512 × 8 (or 512 × 9 bits), 256 × 16 (or 
256 × 18 bits), and 128 × 32 (or 128 × 36 bits). The 128 × 32- or 36-bit 
configuration is not available in the true dual-port mode. Mixed-width 
configurations are also possible, allowing different read and write 
widths. Tables 2–5 and 2–6 summarize the possible M4K RAM block 
configurations.

When the M4K RAM block is configured as a shift register block, you can 
create a shift register up to 4,608 bits (w × m × n).

Table 2–5. M4K RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 128 × 32 512 × 9 256 × 18 128 × 36

4K × 1 v v v v v v

2K × 2 v v v v v v

1K × 4 v v v v v v

512 × 8 v v v v v v

256 × 16 v v v v v v

128 × 32 v v v v v v

512 × 9 v v v

256 × 18 v v v

128 × 36 v v v

Table 2–6. M4K RAM Block Configurations (True Dual-Port)

Port A
Port B

4K × 1 2K × 2 1K × 4 512 × 8 256 × 16 512 × 9 256 × 18

4K × 1 v v v v v

2K × 2 v v v v v

1K × 4 v v v v v

512 × 8 v v v v v

256 × 16 v v v v v

512 × 9 v v

256 × 18 v v
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M4K RAM blocks support byte writes when the write port has a data 
width of 16, 18, 32, or 36 bits. The byte enables allow the input data to be 
masked so the device can write to specific bytes. The unwritten bytes 
retain the previous written value. Table 2–7 summarizes the byte 
selection. 

The M4K RAM blocks allow for different clocks on their inputs and 
outputs. Either of the two clocks feeding the block can clock M4K RAM 
block registers (renwe, address, byte enable, datain, and output 
registers). Only the output register can be bypassed. The eight labclk 
signals or local interconnects can drive the control signals for the A and B 
ports of the M4K RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals, as shown in Figure 2–17.

The R4, R8, C4, C8, and direct link interconnects from adjacent LABs 
drive the M4K RAM block local interconnect. The M4K RAM blocks can 
communicate with LABs on either the left or right side through these row 
resources or with LAB columns on either the right or left with the column 
resources. Up to 10 direct link input connections to the M4K RAM Block 
are possible from the left adjacent LABs and another 10 possible from the 
right adjacent LAB. M4K RAM block outputs can also connect to left and 
right LABs through 10 direct link interconnects each. Figure 2–18 shows 
the M4K RAM block to logic array interface.

Table 2–7. Byte Enable for M4K Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36

[0] = 1 [8..0] [8..0]

[1] = 1 [17..9] [17..9]

[2] = 1 – [26..18]

[3] = 1 – [35..27]

Notes to Table 2–7:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16 and 

× 32 modes.
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Figure 2–17. M4K RAM Block Control Signals

Figure 2–18. M4K RAM Block LAB Row Interface
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M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for 
applications where a large volume of data must be stored on-chip. Each 
block contains 589,824 RAM bits (including parity bits). The M-RAM 
block can be configured in the following modes:

■ True dual-port RAM
■ Simple dual-port RAM
■ Single-port RAM
■ FIFO RAM

You cannot use an initialization file to initialize the contents of a M-RAM 
block. All M-RAM block contents power up to an undefined value. Only 
synchronous operation is supported in the M-RAM block, so all inputs 
are registered. Output registers can be bypassed. The memory address 
and output width can be configured as 64K × 8 (or 64K × 9 bits), 32K × 16 
(or 32K × 18 bits), 16K × 32 (or 16K × 36 bits), 8K × 64 (or 8K × 72 bits), and 
4K × 128 (or 4K × 144 bits). The 4K × 128 configuration is unavailable in 
true dual-port mode because there are a total of 144 data output drivers 
in the block. Mixed-width configurations are also possible, allowing 
different read and write widths. Tables 2–8 and 2–9 summarize the 
possible M-RAM block configurations:

Table 2–8. M-RAM Block Configurations (Simple Dual-Port)

Read Port
Write Port

64K × 9 32K × 18 16K × 36 8K × 72 4K × 144

64K × 9 v v v v

32K × 18 v v v v

16K × 36 v v v v

8K × 72 v v v v

4K × 144 v
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The read and write operation of the memory is controlled by the WREN 
signal, which sets the ports into either read or write modes. There is no 
separate read enable (RE) signal.

Writing into RAM is controlled by both the WREN and byte enable 
(byteena) signals for each port. The default value for the byteena 
signal is high, in which case writing is controlled only by the WREN signal. 
The byte enables are available for the ×18, ×36, and ×72 modes. In the 
×144 simple dual-port mode, the two sets of byteena signals 
(byteena_a and byteena_b) are combined to form the necessary 
16 byte enables. Tables 2–10 and 2–11 summarize the byte selection.   

Table 2–9. M-RAM Block Configurations (True Dual-Port)

Port A
Port B

64K × 9 32K × 18 16K × 36 8K × 72

64K × 9 v v v v

32K × 18 v v v v

16K × 36 v v v v

8K × 72 v v v v

Table 2–10. Byte Enable for M-RAM Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36 datain ×72

[0] = 1 [8..0] [8..0] [8..0]

[1] = 1 [17..9] [17..9] [17..9]

[2] = 1 – [26..18] [26..18]

[3] = 1 – [35..27] [35..27]

[4] = 1 – – [44..36]

[5] = 1 – – [53..45]

[6] = 1 – – [62..54]

[7] = 1 – – [71..63]
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Similar to all RAM blocks, M-RAM blocks can have different clocks on 
their inputs and outputs. All input registers—renwe, datain, address, 
and byte enable registers—are clocked together from either of the two 
clocks feeding the block. The output register can be bypassed. The eight 
labclk signals or local interconnect can drive the control signals for the 
A and B ports of the M-RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals as shown in Figure 2–19.

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)

byteena[15..0] datain ×144

[0] = 1 [8..0]

[1] = 1 [17..9]

[2] = 1 [26..18]

[3] = 1 [35..27]

[4] = 1 [44..36]

[5] = 1 [53..45]

[6] = 1 [62..54]

[7] = 1 [71..63]

[8] = 1 [80..72]

[9] = 1 [89..81]

[10] = 1 [98..90]

[11] = 1 [107..99]

[12] = 1 [116..108]

[13] = 1 [125..117]

[14] = 1 [134..126]

[15] = 1 [143..135]

Notes to Tables 2–10 and 2–11:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16, × 32, 

× 64, and × 128 modes.
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Figure 2–19. M-RAM Block Control Signals

One of the M-RAM block’s horizontal sides drive the address and control 
signal (clock, renwe, byteena, etc.) inputs. Typically, the horizontal side 
closest to the device perimeter contains the interfaces. The one exception 
is when two M-RAM blocks are paired next to each other. In this case, the 
side of the M-RAM block opposite the common side of the two blocks 
contains the input interface. The top and bottom sides of any M-RAM 
block contain data input and output interfaces to the logic array. The top 
side has 72 data inputs and 72 data outputs for port B, and the bottom side 
has another 72 data inputs and 72 data outputs for port A. Figure 2–20 
shows an example floorplan for the EP1S60 device and the location of the 
M-RAM interfaces. 
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Figure 2–20. EP1S60 Device with M-RAM Interface Locations Note (1)

Note to Figure 2–20:
(1) Device shown is an EP1S60 device. The number and position of M-RAM blocks varies in other devices.

The M-RAM block local interconnect is driven by the R4, R8, C4, C8, and 
direct link interconnects from adjacent LABs. For independent M-RAM 
blocks, up to 10 direct link address and control signal input connections 
to the M-RAM block are possible from the left adjacent LABs for M-RAM 
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blocks facing to the left, and another 10 possible from the right adjacent 
LABs for M-RAM blocks facing to the right. For column interfacing, every 
M-RAM column unit connects to the right and left column lines, allowing 
each M-RAM column unit to communicate directly with three columns of 
LABs. Figures 2–21 through 2–23 show the interface between the M-RAM 
block and the logic array.
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Figure 2–21. Left-Facing M-RAM to Interconnect Interface Notes (1), (2)

Notes to Figure 2–21:
(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
(2) The right-facing M-RAM block has interface blocks on the right side, but none on the left. B1 to B6 and A1 to A6 

orientation is clipped across the vertical axis for right-facing M-RAM blocks.
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Figure 2–22. M-RAM Row Unit Interface to Interconnect
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Figure 2–23. M-RAM Column Unit Interface to Interconnect
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Table 2–12 shows the input and output data signal connections for the 
column units (B1 to B6 and A1 to A6). It also shows the address and 
control signal input connections to the row units (R1 to R11).

Table 2–12. M-RAM Row & Column Interface Unit Signals

Unit Interface Block Input SIgnals Output Signals

R1 addressa[7..0]

R2 addressa[15..8]

R3 byte_enable_a[7..0]
renwe_a

R4 -

R5 -

R6 clock_a
clocken_a
clock_b

clocken_b

R7 -

R8 -

R9 byte_enable_b[7..0]
renwe_b

R10 addressb[15..8]

R11 addressb[7..0]

B1 datain_b[71..60] dataout_b[71..60]

B2 datain_b[59..48] dataout_b[59..48]

B3 datain_b[47..36] dataout_b[47..36]

B4 datain_b[35..24] dataout_b[35..24]

B5 datain_b[23..12] dataout_b[23..12]

B6 datain_b[11..0] dataout_b[11..0]

A1 datain_a[71..60] dataout_a[71..60]

A2 datain_a[59..48] dataout_a[59..48]

A3 datain_a[47..36] dataout_a[47..36]

A4 datain_a[35..24] dataout_a[35..24]

A5 datain_a[23..12] dataout_a[23..12]

A6 datain_a[11..0] dataout_a[11..0]
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Independent Clock Mode

The memory blocks implement independent clock mode for true dual-
port memory. In this mode, a separate clock is available for each port 
(ports A and B). Clock A controls all registers on the port A side, while 
clock B controls all registers on the port B side. Each port, A and B, also 
supports independent clock enables and asynchronous clear signals for 
port A and B registers. Figure 2–24 shows a TriMatrix memory block in 
independent clock mode.
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Figure 2–24. Independent Clock Mode Notes (1), (2)

Notes to Figure 2–24
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory 

contents. This applies to both read and write operations.
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Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and 
simple dual-port memory modes. On each of the two ports, A or B, one 
clock controls all registers for inputs into the memory block: data input, 
wren, and address. The other clock controls the block’s data output 
registers. Each memory block port, A or B, also supports independent 
clock enables and asynchronous clear signals for input and output 
registers. Figures 2–25 and 2–26 show the memory block in input/output 
clock mode.
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Figure 2–25. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2)

Notes to Figure 2–25:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory 

contents. This applies to both read and write operations.
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Figure 2–26. Input/Output Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–26:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Read/Write Clock Mode

The memory blocks implement read/write clock mode for simple dual-
port memory. You can use up to two clocks in this mode. The write clock 
controls the block’s data inputs, wraddress, and wren. The read clock 
controls the data output, rdaddress, and rden. The memory blocks 
support independent clock enables for each clock and asynchronous clear 
signals for the read- and write-side registers. Figure 2–27 shows a 
memory block in read/write clock mode.
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Figure 2–27. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–27:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Single-Port Mode

The memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–28. A single 
block in a memory block can support up to two single-port mode RAM 
blocks in the M4K RAM blocks if each RAM block is less than or equal to 
2K bits in size.

Figure 2–28. Single-Port Mode Note (1)

Note to Figure 2–28:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Digital Signal 
Processing 
Block

The most commonly used DSP functions are finite impulse response (FIR) 
filters, complex FIR filters, infinite impulse response (IIR) filters, fast 
Fourier transform (FFT) functions, direct cosine transform (DCT) 
functions, and correlators. All of these blocks have the same fundamental 
building block: the multiplier. Additionally, some applications need 
specialized operations such as multiply-add and multiply-accumulate 
operations. Stratix devices provide DSP blocks to meet the arithmetic 
requirements of these functions.

Each Stratix device has two columns of DSP blocks to efficiently 
implement DSP functions faster than LE-based implementations. Larger 
Stratix devices have more DSP blocks per column (see Table 2–13). Each 
DSP block can be configured to support up to:

■ Eight 9 × 9-bit multipliers
■ Four 18 × 18-bit multipliers
■ One 36 × 36-bit multiplier

As indicated, the Stratix DSP block can support one 36 × 36-bit multiplier 
in a single DSP block. This is true for any matched sign multiplications 
(either unsigned by unsigned or signed by signed), but the capabilities for 
dynamic and mixed sign multiplications are handled differently. The 
following list provides the largest functions that can fit into a single DSP 
block.

■ 36 × 36-bit unsigned by unsigned multiplication
■ 36 × 36-bit signed by signed multiplication
■ 35 × 36-bit unsigned by signed multiplication
■ 36 × 35-bit signed by unsigned multiplication
■ 36 × 35-bit signed by dynamic sign multiplication
■ 35 × 36-bit dynamic sign by signed multiplication
■ 35 × 36-bit unsigned by dynamic sign multiplication
■ 36 × 35-bit dynamic sign by unsigned multiplication
■ 35 × 35-bit dynamic sign multiplication when the sign controls for 

each operand are different 
■ 36 × 36-bit dynamic sign multiplication when the same sign control 

is used for both operands

1 This list only shows functions that can fit into a single DSP block. 
Multiple DSP blocks can support larger multiplication 
functions.

Figure 2–29 shows one of the columns with surrounding LAB rows.



Altera Corporation 2–53
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Figure 2–29. DSP Blocks Arranged in Columns
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Table 2–13 shows the number of DSP blocks in each Stratix device.

DSP block multipliers can optionally feed an adder/subtractor or 
accumulator within the block depending on the configuration. This 
makes routing to LEs easier, saves LE routing resources, and increases 
performance, because all connections and blocks are within the DSP 
block. Additionally, the DSP block input registers can efficiently 
implement shift registers for FIR filter applications.

Figure 2–30 shows the top-level diagram of the DSP block configured for 
18 × 18-bit multiplier mode. Figure 2–31 shows the 9 × 9-bit multiplier 
configuration of the DSP block.

Table 2–13. DSP Blocks in Stratix Devices Notes (1), (2)

Device DSP Blocks Total 9 × 9 
Multipliers

Total 18 × 18 
Multipliers

Total 36 × 36 
Multipliers

EP1S10 6 48 24 6

EP1S20 10 80 40 10

EP1S25 10 80 40 10

EP1S30 12 96 48 12

EP1S40 14 112 56 14

EP1S60 18 144 72 18

EP1S80 22 176 88 22

Notes to Table 2–13:
(1) Each device has either the number of 9 ×  9-, 18 ×  18-, or 36 ×  36-bit multipliers 

shown. The total number of multipliers for each device is not the sum of all the 
multipliers.

(2) The number of supported multiply functions shown is based on signed/signed 
or unsigned/unsigned implementations.
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Figure 2–30. DSP Block Diagram for 18 × 18-Bit Configuration
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Figure 2–31. DSP Block Diagram for 9 × 9-Bit Configuration
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The DSP block consists of the following elements:

■ Multiplier block
■ Adder/output block

Multiplier Block

The DSP block multiplier block consists of the input registers, a 
multiplier, and pipeline register for pipelining multiply-accumulate and 
multiply-add/subtract functions as shown in Figure 2–32.

Figure 2–32. Multiplier Sub-Block within Stratix DSP Block

Note to Figure 2–32:
(1) These signals can be unregistered or registered once to match data path pipelines if required.
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Input Registers

A bank of optional input registers is located at the input of each multiplier 
and multiplicand inputs to the multiplier. When these registers are 
configured for parallel data inputs, they are driven by regular routing 
resources. You can use a clock signal, asynchronous clear signal, and a 
clock enable signal to independently control each set of A and B inputs 
for each multiplier in the DSP block. You select these control signals from 
a set of four different clock[3..0], aclr[3..0], and ena[3..0] 
signals that drive the entire DSP block.

You can also configure the input registers for a shift register application. 
In this case, the input registers feed the multiplier and drive two 
dedicated shift output lines: shiftoutA and shiftoutB. The shift 
outputs of one multiplier block directly feed the adjacent multiplier block 
in the same DSP block (or the next DSP block) as shown in Figure 2–33, to 
form a shift register chain. This chain can terminate in any block, that is, 
you can create any length of shift register chain up to 224 registers. You 
can use the input shift registers for FIR filter applications. One set of shift 
inputs can provide data for a filter, and the other are coefficients that are 
optionally loaded in serial or parallel. When implementing 9 × 9- and 
18 × 18-bit multipliers, you do not need to implement external shift 
registers in LAB LEs. You implement all the filter circuitry within the DSP 
block and its routing resources, saving LE and general routing resources 
for general logic. External registers are needed for shift register inputs 
when using 36 × 36-bit multipliers.



Altera Corporation 2–59
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Figure 2–33. Multiplier Sub-Blocks Using Input Shift Register Connections 
Note (1)

Note to Figure 2–33:
(1) Either Data A or Data B input can be set to a parallel input for constant coefficient 

multiplication.
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Table 2–14 shows the summary of input register modes for the DSP block.

Multiplier

The multiplier supports 9 × 9-, 18 × 18-, or 36 × 36-bit multiplication. Each 
DSP block supports eight possible 9 × 9-bit or smaller multipliers. There 
are four multiplier blocks available for multipliers larger than 9 × 9 bits 
but smaller than 18 × 18 bits. There is one multiplier block available for 
multipliers larger than 18 × 18 bits but smaller than or equal to 36 × 36 
bits. The ability to have several small multipliers is useful in applications 
such as video processing. Large multipliers greater than 18 × 18 bits are 
useful for applications such as the mantissa multiplication of a single-
precision floating-point number.

The multiplier operands can be signed or unsigned numbers, where the 
result is signed if either input is signed as shown in Table 2–15. The 
sign_a and sign_b signals provide dynamic control of each operand’s 
representation: a logic 1 indicates the operand is a signed number, a logic 
0 indicates the operand is an unsigned number. These sign signals affect 
all multipliers and adders within a single DSP block and you can register 
them to match the data path pipeline. The multipliers are full precision 
(that is, 18 bits for the 18-bit multiply, 36-bits for the 36-bit multiply, and 
so on) regardless of whether sign_a or sign_b set the operands as 
signed or unsigned numbers.

Table 2–14. Input Register Modes

Register Input Mode 9 × 9 18 × 18 36 × 36

Parallel input v v v

Shift register input v v

Table 2–15. Multiplier Signed Representation

Data A Data B Result

Unsigned Unsigned Unsigned

Unsigned Signed Signed

Signed Unsigned Signed

Signed Signed Signed
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Pipeline/Post Multiply Register

The output of 9 × 9- or 18 × 18-bit multipliers can optionally feed a register 
to pipeline multiply-accumulate and multiply-add/subtract functions. 
For 36 × 36-bit multipliers, this register will pipeline the multiplier 
function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block 
which consist of an adder/subtractor/accumulator unit, summation unit, 
output select multiplexer, and output registers. The results are used to 
configure the adder/output block as a pure output, accumulator, a simple 
two-multiplier adder, four-multiplier adder, or final stage of the 36-bit 
multiplier. You can configure the adder/output block to use output 
registers in any mode, and must use output registers for the accumulator. 
The system cannot use adder/output blocks independently of the 
multiplier. Figure 2–34 shows the adder and output stages.
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Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2–34:
(1) Adder/output block shown in Figure 2–34 is in 18 ×  18-bit mode. In 9 ×  9-bit mode, there are four adder/subtractor 

blocks and two summation blocks.
(2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.
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Adder/Subtractor/Accumulator

The adder/subtractor/accumulator is the first level of the adder/output 
block and can be used as an accumulator or as an adder/subtractor.

Adder/Subtractor
Each adder/subtractor/accumulator block can perform addition or 
subtraction using the addnsub independent control signal for each first-
level adder in 18 × 18-bit mode. There are two addnsub[1..0] signals 
available in a DSP block for any configuration. For 9 × 9-bit mode, one 
addnsub[1..0] signal controls the top two one-level adders and 
another addnsub[1..0] signal controls the bottom two one-level 
adders. A high addnsub signal indicates addition, and a low signal 
indicates subtraction. The addnsub control signal can be unregistered or 
registered once or twice when feeding the adder blocks to match data 
path pipelines.

The signa and signb signals serve the same function as the multiplier 
block signa and signb signals. The only difference is that these signals 
can be registered up to two times. These signals are tied to the same 
signa and signb signals from the multiplier and must be connected to 
the same clocks and control signals. 

Accumulator
When configured for accumulation, the adder/output block output feeds 
back to the accumulator as shown in Figure 2–34. The 
accum_sload[1..0] signal synchronously loads the multiplier result 
to the accumulator output. This signal can be unregistered or registered 
once or twice. Additionally, the overflow signal indicates the 
accumulator has overflowed or underflowed in accumulation mode. This 
signal is always registered and must be externally latched in LEs if the 
design requires a latched overflow signal.

Summation

The output of the adder/subtractor/accumulator block feeds to an 
optional summation block. This block sums the outputs of the DSP block 
multipliers. In 9 × 9-bit mode, there are two summation blocks providing 
the sums of two sets of four 9 × 9-bit multipliers. In 18 × 18-bit mode, there 
is one summation providing the sum of one set of four 18 × 18-bit 
multipliers.
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Output Selection Multiplexer

The outputs from the various elements of the adder/output block are 
routed through an output selection multiplexer. Based on the DSP block 
operational mode and user settings, the multiplexer selects whether the 
output from the multiplier, the adder/subtractor/accumulator, or 
summation block feeds to the output.

Output Registers

Optional output registers for the DSP block outputs are controlled by four 
sets of control signals: clock[3..0], aclr[3..0], and ena[3..0]. 
Output registers can be used in any mode.

Modes of Operation

The adder, subtractor, and accumulate functions of a DSP block have four 
modes of operation:

■ Simple multiplier
■ Multiply-accumulator
■ Two-multipliers adder
■ Four-multipliers adder

1 Each DSP block can only support one mode. Mixed modes in the 
same DSP block is not supported.

Simple Multiplier Mode

In simple multiplier mode, the DSP block drives the multiplier sub-block 
result directly to the output with or without an output register. Up to four 
18 × 18-bit multipliers or eight 9 × 9-bit multipliers can drive their results 
directly out of one DSP block. See Figure 2–35.
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Figure 2–35. Simple Multiplier Mode

Note to Figure 2–35:
(1) These signals are not registered or registered once to match the data path pipeline.

DSP blocks can also implement one 36 × 36-bit multiplier in multiplier 
mode. DSP blocks use four 18 × 18-bit multipliers combined with 
dedicated adder and internal shift circuitry to achieve 36-bit 
multiplication. The input shift register feature is not available for the 
36 × 36-bit multiplier. In 36 × 36-bit mode, the device can use the register 
that is normally a multiplier-result-output register as a pipeline stage for 
the 36 × 36-bit multiplier. Figure 2–36 shows the 36 × 36-bit multiply 
mode.
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Figure 2–36. 36 × 36 Multiply Mode

Notes to Figure 2–36:
(1) These signals are not registered or registered once to match the pipeline.
(2) These signals are not registered, registered once, or registered twice for latency to match the pipeline.
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Multiply-Accumulator Mode

In multiply-accumulator mode (see Figure 2–37), the DSP block drives 
multiplied results to the adder/subtractor/accumulator block configured 
as an accumulator. You can implement one or two multiply-accumulators 
up to 18 × 18 bits in one DSP block. The first and third multiplier sub-
blocks are unused in this mode, because only one multiplier can feed one 
of two accumulators. The multiply-accumulator output can be up to 52 
bits—a maximum of a 36-bit result with 16 bits of accumulation. The 
accum_sload and overflow signals are only available in this mode. 
The addnsub signal can set the accumulator for decimation and the 
overflow signal indicates underflow condition.

Figure 2–37. Multiply-Accumulate Mode

Notes to Figure 2–37:
(1) These signals are not registered or registered once to match the data path pipeline.
(2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.

Two-Multipliers Adder Mode

The two-multipliers adder mode uses the adder/subtractor/accumulator 
block to add or subtract the outputs of the multiplier block, which is 
useful for applications such as FFT functions and complex FIR filters. A 
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single DSP block can implement two sums or differences from two 
18 × 18-bit multipliers each or four sums or differences from two 9 × 9-bit 
multipliers each.

You can use the two-multipliers adder mode for complex multiplications, 
which are written as:

(a + jb) × (c + jd) = [(a × c) – (b × d)] + j × [(a × d) + (b × c)]

The two-multipliers adder mode allows a single DSP block to calculate 
the real part [(a × c) – (b × d)] using one subtractor and the imaginary part 
[(a × d) + (b × c)] using one adder, for data widths up to 18 bits. Two 
complex multiplications are possible for data widths up to 9 bits using 
four adder/subtractor/accumulator blocks. Figure 2–38 shows an 18-bit 
two-multipliers adder.

Figure 2–38. Two-Multipliers Adder Mode Implementing Complex Multiply

Four-Multipliers Adder Mode

In the four-multipliers adder mode, the DSP block adds the results of two 
first -stage adder/subtractor blocks. One sum of four 18 × 18-bit 
multipliers or two different sums of two sets of four 9 × 9-bit multipliers 
can be implemented in a single DSP block. The product width for each 
multiplier must be the same size. The four-multipliers adder mode is 
useful for FIR filter applications. Figure 2–39 shows the four multipliers 
adder mode.
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Figure 2–39. Four-Multipliers Adder Mode

Notes to Figure 2–39:
(1) These signals are not registered or registered once to match the data path pipeline.
(2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.
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For FIR filters, the DSP block combines the four-multipliers adder mode 
with the shift register inputs. One set of shift inputs contains the filter 
data, while the other holds the coefficients loaded in serial or parallel. The 
input shift register eliminates the need for shift registers external to the 
DSP block (i.e., implemented in LEs). This architecture simplifies filter 
design since the DSP block implements all of the filter circuitry.

One DSP block can implement an entire 18-bit FIR filter with up to four 
taps. For FIR filters larger than four taps, DSP blocks can be cascaded with 
additional adder stages implemented in LEs.

Table 2–16 shows the different number of multipliers possible in each 
DSP block mode according to size. These modes allow the DSP blocks to 
implement numerous applications for DSP including FFTs, complex FIR, 
FIR, and 2D FIR filters, equalizers, IIR, correlators, matrix multiplication 
and many other functions.

DSP Block Interface

Stratix device DSP block outputs can cascade down within the same DSP 
block column. Dedicated connections between DSP blocks provide fast 
connections between the shift register inputs to cascade the shift register 
chains. You can cascade DSP blocks for 9 × 9- or 18 × 18-bit FIR filters 
larger than four taps, with additional adder stages implemented in LEs. 
If the DSP block is configured as 36 × 36 bits, the adder, subtractor, or 
accumulator stages are implemented in LEs. Each DSP block can route 
the shift register chain out of the block to cascade two full columns of DSP 
blocks.

Table 2–16. Multiplier Size & Configurations per DSP block

DSP Block Mode 9 × 9 18 × 18 36 × 36 (1)

Multiplier Eight multipliers with 
eight product outputs

Four multipliers with four 
product outputs

One multiplier with one 
product output

Multiply-accumulator Two multiply and 
accumulate (52 bits)

Two multiply and 
accumulate (52 bits)

 –

Two-multipliers adder Four sums of two 
multiplier products each

Two sums of two 
multiplier products each

 –

Four-multipliers adder Two sums of four 
multiplier products each

One sum of four multiplier 
products each

 –

Note to Table 2–16:
(1) The number of supported multiply functions shown is based on signed/signed or unsigned/unsigned 

implementations.
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The DSP block is divided into eight block units that interface with eight 
LAB rows on the left and right. Each block unit can be considered half of 
an 18 × 18-bit multiplier sub-block with 18 inputs and 18 outputs. A local 
interconnect region is associated with each DSP block. Like an LAB, this 
interconnect region can be fed with 10 direct link interconnects from the 
LAB to the left or right of the DSP block in the same row. All row and 
column routing resources can access the DSP block’s local interconnect 
region. The outputs also work similarly to LAB outputs as well. Nine 
outputs from the DSP block can drive to the left LAB through direct link 
interconnects and nine can drive to the right LAB though direct link 
interconnects. All 18 outputs can drive to all types of row and column 
routing. Outputs can drive right- or left-column routing. Figures 2–40 
and 2–41 show the DSP block interfaces to LAB rows. 

Figure 2–40. DSP Block Interconnect Interface
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Figure 2–41. DSP Block Interface to Interconnect
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include clock[0..3] clocks, aclr[0..3] asynchronous clears, 
ena[1..4] clock enables, signa, signb signed/unsigned control 
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clock signals are routed from LAB row clocks and are generated from 
specific LAB rows at the DSP block interface. The LAB row source for 
control signals, data inputs, and outputs is shown in Table 2–17.

PLLs & Clock 
Networks

Stratix devices provide a hierarchical clock structure and multiple PLLs 
with advanced features. The large number of clocking resources in 
combination with the clock synthesis precision provided by enhanced 
and fast PLLs provides a complete clock management solution.

Global & Hierarchical Clocking

Stratix devices provide 16 dedicated global clock networks, 16 regional 
clock networks (four per device quadrant), and 8 dedicated fast regional 
clock networks (for EP1S10, EP1S20, and EP1S25 devices), and 
16 dedicated fast regional clock networks (for EP1S30 EP1S40, and 
EP1S60, and EP1S80 devices). These clocks are organized into a 
hierarchical clock structure that allows for up to 22 clocks per device 
region with low skew and delay. This hierarchical clocking scheme 
provides up to 48 unique clock domains within Stratix devices.

Table 2–17. DSP Block Signal Sources & Destinations

LAB Row at 
Interface

Control Signals 
Generated Data Inputs Data Outputs

1 signa A1[17..0] OA[17..0]

2 aclr0
accum_sload0

B1[17..0] OB[17..0]

3 addnsub1
clock0
ena0

A2[17..0] OC[17..0]

4 aclr1
clock1
ena1

B2[17..0] OD[17..0]

5 aclr2
clock2
ena2

A3[17..0] OE[17..0]

6 sign_b
clock3
ena3

B3[17..0] OF[17..0]

7 clear3
accum_sload1

A4[17..0] OG[17..0]

8 addnsub3 B4[17..0] OH[17..0]
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There are 16 dedicated clock pins (CLK[15..0]) to drive either the global 
or regional clock networks. Four clock pins drive each side of the device, 
as shown in Figure 2–42. Enhanced and fast PLL outputs can also drive 
the global and regional clock networks.

Global Clock Network

These clocks drive throughout the entire device, feeding all device 
quadrants. The global clock networks can be used as clock sources for all 
resources within the device—IOEs, LEs, DSP blocks, and all memory 
blocks. These resources can also be used for control signals, such as clock 
enables and synchronous or asynchronous clears fed from the external 
pin. The global clock networks can also be driven by internal logic for 
internally generated global clocks and asynchronous clears, clock 
enables, or other control signals with large fanout. Figure 2–42 shows the 
16 dedicated CLK pins driving global clock networks.
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Figure 2–42. Global Clocking Note (1) 

Note to Figure 2–42:
(1) The corner fast PLLs can also be driven through the global or regional clock 

networks. The global or regional clock input to the fast PLL can be driven by an 
output from another PLL, a pin-driven global or regional clock, or internally-
generated global signals.

Regional Clock Network

There are four regional clock networks within each quadrant of the Stratix 
device that are driven by the same dedicated CLK[15..0] input pins or 
from PLL outputs. From a top view of the silicon, RCLK[0..3] are in the 
top left quadrant, RCLK[8..11] are in the top-right quadrant, 
RCLK[4..7] are in the bottom-left quadrant, and RCLK[12..15] are in 
the bottom-right quadrant. The regional clock networks only pertain to 
the quadrant they drive into. The regional clock networks provide the 
lowest clock delay and skew for logic contained within a single quadrant. 
RCLK cannot be driven by internal logic. The CLK clock pins 
symmetrically drive the RCLK networks within a particular quadrant, as 
shown in Figure 2–43. See Figures 2–50 and 2–51 for RCLK connections 
from PLLs and CLK pins. 

 Global Clock [15..0]

CLK[15..12]

CLK[3..0]

CLK[7..4]

CLK[11..8] Global Clock [15..0]



2–76 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005

PLLs & Clock Networks

Figure 2–43. Regional Clocks

Fast Regional Clock Network

In EP1S25, EP1S20, and EP1S10 devices, there are two fast regional clock 
networks, FCLK[1..0], within each quadrant, fed by input pins that can 
connect to fast regional clock networks (see Figure 2–44). In EP1S30 and 
larger devices, there are two fast regional clock networks within each 
half-quadrant (see Figure 2–45). Dual-purpose FCLK pins drive the fast 
clock networks. All devices have eight FCLK pins to drive fast regional 
clock networks. Any I/O pin can drive a clock or control signal onto any 
fast regional clock network with the addition of a delay. This signal is 
driven via the I/O interconnect. The fast regional clock networks can also 
be driven from internal logic elements.
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Figure 2–44. EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to 
Fast Regional Clocks

Notes to Figure 2–44:
(1) This is a set of two multiplexers.
(2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.
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Figure 2–45. EP1S30 Device Fast Regional Clock Pin Connections to Fast 
Regional Clocks

Notes to Figure 2–45:
(1) This is a set of two multiplexers.
(2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.

Combined Resources

Within each region, there are 22 distinct dedicated clocking resources 
consisting of 16 global clock lines, four regional clock lines, and two fast 
regional clock lines. Multiplexers are used with these clocks to form eight 
bit busses to drive LAB row clocks, column IOE clocks, or row IOE clocks. 
Another multiplexer is used at the LAB level to select two of the eight row 
clocks to feed the LE registers within the LAB. See Figure 2–46.
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Figure 2–46. Regional Clock Bus

IOE clocks have horizontal and vertical block regions that are clocked by 
eight I/O clock signals chosen from the 22 quadrant or half-quadrant 
clock resources. Figures 2–47 and 2–48 show the quadrant and half-
quadrant relationship to the I/O clock regions, respectively. The vertical 
regions (column pins) have less clock delay than the horizontal regions 
(row pins).
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Figure 2–47. EP1S10, EP1S20 & EP1S25 Device I/O Clock Groups

IO_CLKC[7..0]

IO_CLKF[7..0] IO_CLKE[7..0]

IO_CLKA[7..0] IO_CLKB[7..0]

IO_CLKD[7..0]

IO_CLKH[7..0]

IO_CLKG[7..0]

8

8

22 Clocks in
the Quadrant

22 Clocks in
the Quadrant

22 Clocks in
the Quadrant

22 Clocks in
the Quadrant

8

8

8

8

8 8
I/O Clock Regions



Altera Corporation 2–81
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Figure 2–48. EP1S30, EP1S40, EP1S60, EP1S80 Device I/O Clock Groups

You can use the Quartus II software to control whether a clock input pin 
is either global, regional, or fast regional. The Quartus II software 
automatically selects the clocking resources if not specified.

Enhanced & Fast PLLs

Stratix devices provide robust clock management and synthesis using up 
to four enhanced PLLs and eight fast PLLs. These PLLs increase 
performance and provide advanced clock interfacing and clock-
frequency synthesis. With features such as clock switchover, spread 
spectrum clocking, programmable bandwidth, phase and delay control, 
and PLL reconfiguration, the Stratix device’s enhanced PLLs provide you 
with complete control of your clocks and system timing. The fast PLLs 
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provide general purpose clocking with multiplication and phase shifting 
as well as high-speed outputs for high-speed differential I/O support. 
Enhanced and fast PLLs work together with the Stratix high-speed I/O 
and advanced clock architecture to provide significant improvements in 
system performance and bandwidth.

The Quartus II software enables the PLLs and their features without 
requiring any external devices. Table 2–18 shows the PLLs available for 
each Stratix device.

Table 2–18. Stratix Device PLL Availability

Device
Fast PLLs Enhanced PLLs

1 2 3 4 7 8 9 10 5(1) 6(1) 11(2) 12(2)

EP1S10 v v v v v v

EP1S20 v v v v v v

EP1S25 v v v v v v

EP1S30 v v v v v (3) v (3) v (3) v (3) v v

EP1S40 v v v v v (3) v (3) v (3) v (3) v v v(3) v(3)

EP1S60 v v v v v v v v v v v v

EP1S80 v v v v v v v v v v v v

Notes to Table 2–18:
(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.
(2) PLLs 11 and 12 each have one single-ended output.
(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.
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Table 2–19 shows the enhanced PLL and fast PLL features in Stratix 
devices.

Table 2–19. Stratix PLL Features

Feature Enhanced PLL Fast PLL

Clock multiplication and division m/(n ×  post-scale counter) (1) m/(post-scale counter) (2)

Phase shift Down to 156.25-ps increments (3), (4) Down to 125-ps increments (3), (4)

Delay shift 250-ps increments for ±3 ns

Clock switchover v

PLL reconfiguration v

Programmable bandwidth v

Spread spectrum clocking v

Programmable duty cycle v v

Number of internal clock outputs 6 3 (5)

Number of external clock outputs Four differential/eight singled-ended 
or one single-ended (6)

(7)

Number of feedback clock inputs 2 (8)

Notes to Table 2–19:
(1) For enhanced PLLs, m, n, range from 1 to 512 and post-scale counters g, l, e range from 1 to 1024 with 50% duty 

cycle. With a non-50% duty cycle the post-scale counters g, l, e range from 1 to 512.
(2) For fast PLLs, m and post-scale counters range from 1 to 32.
(3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
(4) For degree increments, Stratix devices can shift all output frequencies in increments of at least 45° . Smaller degree 

increments are possible depending on the frequency and divide parameters.
(5) PLLs 7, 8, 9, and 10 have two output ports per PLL. PLLs 1, 2, 3, and 4 have three output ports per PLL.
(6) Every Stratix device has two enhanced PLLs (PLLs 5 and 6) with either eight single-ended outputs or four 

differential outputs each. Two additional enhanced PLLs (PLLs 11 and 12) in EP1S80, EP1S60, and EP1S40 devices 
each have one single-ended output. Devices in the 780 pin FineLine BGA packages do not support PLLs 11 and 12.

(7) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data 
channel to generate txclkout.

(8) Every Stratix device has two enhanced PLLs with one single-ended or differential external feedback input per PLL.
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Figure 2–49 shows a top-level diagram of the Stratix device and PLL 
floorplan.

Figure 2–49. PLL Locations
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Figure 2–50 shows the global and regional clocking from the PLL outputs 
and the CLK pins.

Figure 2–50. Global & Regional Clock Connections from Side Pins & Fast PLL Outputs Note (1), (2)

Notes to Figure 2–50:
(1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
(2) The global or regional clocks in a fast PLL’s quadrant can drive the fast PLL input. A pin or other PLL must drive 

the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

Figure 2–51 shows the global and regional clocking from enhanced PLL 
outputs and top CLK pins.

2

CLK0
CLK1

CLK2
CLK3

G0

FPLL7CLK

G1
G2

G3
RCLK0

RCLK1

RCLK4

RCLK5

G10
G11

G8
G9

RCLK9
RCLK8

RCLK15

RCLK14
Global
Clocks

Regional
Clocks

PLL 7

l0

l1

g0

PLL 1

PLL 2

FPLL8CLK

PLL 8

2

CLK10

CLK11

CLK8

CLK9

FPLL10CLK

PLL 10

PLL 4

PLL 3

FPLL9CLK

PLL 9

Regional
Clocks

l0

l1

g0

l0

l1

g0

l0

l1

g0

l0

l1

g0

l0

l1

g0

l0

l1

g0

l0

l1

g0



2–86 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005

PLLs & Clock Networks

Figure 2–51. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs Note (1)

Notes to Figure 2–51:
(1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
(2) CLK4, CLK6, CLK12, and CLK14 feed the corresponding PLL’s inclk0 port.
(3) CLK5, CLK7, CLK13, and CLK15 feed the corresponding PLL’s inclk1 port.
(4) The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 and 12.
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Enhanced PLLs

Stratix devices contain up to four enhanced PLLs with advanced clock 
management features. Figure 2–52 shows a diagram of the enhanced PLL.

Figure 2–52. Stratix Enhanced PLL

Notes to Figure 2–52:
(1) External feedback is available in PLLs 5 and 6.
(2) This single-ended external output is available from the g0 counter for PLLs 11 and 12.
(3) These four counters and external outputs are available in PLLs 5 and 6.
(4) This connection is only available on EP1S40 and larger Stratix devices. For example, PLLs 5 and 11 are adjacent and 

PLLs 6 and 12 are adjacent. The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 
and 12.
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Clock Multiplication & Division

Each Stratix device enhanced PLL provides clock synthesis for PLL 
output ports using m/(n × post-scale counter) scaling factors. The input 
clock is divided by a pre-scale divider, n, and is then multiplied by the m 
feedback factor. The control loop drives the VCO to match fIN × (m/n). 
Each output port has a unique post-scale counter that divides down the 
high-frequency VCO. For multiple PLL outputs with different 
frequencies, the VCO is set to the least common multiple of the output 
frequencies that meets its frequency specifications. Then, the post-scale 
dividers scale down the output frequency for each output port. For 
example, if output frequencies required from one PLL are 33 and 66 MHz, 
set the VCO to 330 MHz (the least common multiple in the VCO’s range). 
There is one pre-scale counter, n, and one multiply counter, m, per PLL, 
with a range of 1 to 512 on each. There are two post-scale counters (l) for 
regional clock output ports, four counters (g) for global clock output 
ports, and up to four counters (e) for external clock outputs, all ranging 
from 1 to 1024 with a 50% duty cycle setting. The post-scale counters 
range from 1 to 512 with any non-50% duty cycle setting. The Quartus II 
software automatically chooses the appropriate scaling factors according 
to the input frequency, multiplication, and division values entered.

Clock Switchover

To effectively develop high-reliability network systems, clocking schemes 
must support multiple clocks to provide redundancy. For this reason, 
Stratix device enhanced PLLs support a flexible clock switchover 
capability. Figure 2–53 shows a block diagram of the switchover 
circuit.The switchover circuit is configurable, so you can define how to 
implement it. Clock-sense circuitry automatically switches from the 
primary to secondary clock for PLL reference when the primary clock 
signal is not present.
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Figure 2–53. Clock Switchover Circuitry

There are two possible ways to use the clock switchover feature.
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During switchover, the PLL VCO continues to run and will either slow 
down or speed up, generating frequency drift on the PLL outputs. The 
clock switchover transitions without any glitches. After the switch, there 
is a finite resynchronization period to lock onto new clock as the VCO 
ramps up. The exact amount of time it takes for the PLL to relock relates 
to the PLL configuration and may be adjusted by using the 
programmable bandwidth feature of the PLL. The specification for the 
maximum time to relock is 100 µs.

f For more information on clock switchover, see AN 313, Implementing 
Clock Switchover in Stratix & Stratix GX Devices.

PLL Reconfiguration

The PLL reconfiguration feature enables system logic to change Stratix 
device enhanced PLL counters and delay elements without reloading a 
Programmer Object File (.pof). This provides considerable flexibility for 
frequency synthesis, allowing real-time PLL frequency and output clock 
delay variation. You can sweep the PLL output frequencies and clock 
delay in prototype environments. The PLL reconfiguration feature can 
also dynamically or intelligently control system clock speeds or tCO 
delays in end systems.

Clock delay elements at each PLL output port implement variable delay. 
Figure 2–54 shows a diagram of the overall dynamic PLL control feature 
for the counters and the clock delay elements. The configuration time is 
less than 20 μs for the enhanced PLL using a input shift clock rate of 
22 MHz. The charge pump, loop filter components, and phase shifting 
using VCO phase taps cannot be dynamically adjusted.
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Figure 2–54. Dynamically Programmable Counters & Delays in Stratix Device Enhanced PLLs

PLL reconfiguration data is shifted into serial registers from the logic 
array or external devices. The PLL input shift data uses a reference input 
shift clock. Once the last bit of the serial chain is clocked in, the register 
chain is synchronously loaded into the PLL configuration bits. The shift 
circuitry also provides an asynchronous clear for the serial registers.

f For more information on PLL reconfiguration, see AN 282: Implementing 
PLL Reconfiguration in Stratix & Stratix GX Devices.
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bandwidth is tuned by varying the charge pump current, loop filter 
resistor value, high frequency capacitor value, and m counter value. You 
can manually adjust these values if desired. Bandwidth is programmable 
from 200 kHz to 1.5 MHz.

External Clock Outputs

Enhanced PLLs 5 and 6 each support up to eight single-ended clock 
outputs (or four differential pairs). Differential SSTL and HSTL outputs 
are implemented using 2 single-ended output buffers which are 
programmed to have opposite polarity. In Quartus II software, simply 
assign the appropriate differential I/O standard and the software will 
implement the inversion. See Figure 2–55.
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Figure 2–55. External Clock Outputs for PLLs 5 & 6

Notes to Figure 2–55:
(1) The design can use each external clock output pin as a general-purpose output pin from the logic array. These pins 

are multiplexed with IOE outputs.
(2) Two single-ended outputs are possible per output counter⎯either two outputs of the same frequency and phase or 

one shifted 180° .
(3) EP1S10, EP1S20, and EP1S25 devices in 672-pin BGA and 484- and 672-pin FineLine BGA packages only have two 

pairs of external clocks (i.e., pll_out0p, pll_out0n, pll_out1p, and pll_out1n).
(4) Differential SSTL and HSTL outputs are implemented using two single-ended output buffers, which are 

programmed to have opposite polarity.
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Any of the four external output counters can drive the single-ended or 
differential clock outputs for PLLs 5 and 6. This means one counter or 
frequency can drive all output pins available from PLL 5 or PLL 6. Each 
pair of output pins (four pins total) has dedicated VCC and GND pins to 
reduce the output clock’s overall jitter by providing improved isolation 
from switching I/O pins. 

For PLLs 5 and 6, each pin of a single-ended output pair can either be in 
phase or 180° out of phase. The clock output pin pairs support the same 
I/O standards as standard output pins (in the top and bottom banks) as 
well as LVDS, LVPECL, 3.3-V PCML, HyperTransport technology, 
differential HSTL, and differential SSTL. Table 2–20 shows which I/O 
standards the enhanced PLL clock pins support. When in single-ended or 
differential mode, the two outputs operate off the same power supply. 
Both outputs use the same standards in single-ended mode to maintain 
performance. You can also use the external clock output pins as user 
output pins if external enhanced PLL clocking is not needed.

Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 1 of 2)

I/O Standard
Input Output

INCLK FBIN PLLENABLE EXTCLK

LVTTL v v v v

LVCMOS v v v v

2.5 V v v v

1.8 V v v v

1.5 V v v v

3.3-V PCI v v v

3.3-V PCI-X 1.0 v v v

LVPECL v v v

3.3-V PCML v v v

LVDS v v v

HyperTransport technology v v v

Differential HSTL v v

Differential SSTL v

3.3-V GTL v v v

3.3-V GTL+ v v v

1.5-V HSTL Class I v v v
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Enhanced PLLs 11 and 12 support one single-ended output each (see 
Figure 2–56). These outputs do not have their own VCC and GND signals. 
Therefore, to minimize jitter, do not place switching I/O pins next to this 
output pin.

Figure 2–56. External Clock Outputs for Enhanced PLLs 11 & 12

Note to Figure 2–56:
(1) For PLL 11, this pin is CLK13n; for PLL 12 this pin is CLK7n.

Stratix devices can drive any enhanced PLL driven through the global 
clock or regional clock network to any general I/O pin as an external 
output clock. The jitter on the output clock is not guaranteed for these 
cases.

1.5-V HSTL Class II v v v

1.8-V HSTL Class I v v v

1.8-V HSTL Class II v v v

SSTL-18 Class I v v v

SSTL-18 Class II v v v

SSTL-2 Class I v v v

SSTL-2 Class II v v v

SSTL-3 Class I v v v

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v v

CTT v v v

Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 2 of 2)

I/O Standard
Input Output

INCLK FBIN PLLENABLE EXTCLK

CLK13n, I/O, PLL11_OUT
or CLK6n, I/O, PLL12_OUT (1)

From Internal
Logic or IOE

g0
Counter
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Clock Feedback

The following four feedback modes in Stratix device enhanced PLLs 
allow multiplication and/or phase and delay shifting:

■ Zero delay buffer: The external clock output pin is phase-aligned 
with the clock input pin for zero delay. Altera recommends using the 
same I/O standard on the input clock and the output clocks for 
optimum performance.

■ External feedback: The external feedback input pin, FBIN, is phase-
aligned with the clock input, CLK, pin. Aligning these clocks allows 
you to remove clock delay and skew between devices. This mode is 
only possible for PLLs 5 and 6. PLLs 5 and 6 each support feedback 
for one of the dedicated external outputs, either one single-ended or 
one differential pair. In this mode, one e counter feeds back to the 
PLL FBIN input, becoming part of the feedback loop. Altera 
recommends using the same I/O standard on the input clock, the 
FBIN pin, and the output clocks for optimum performance.

■ Normal mode: If an internal clock is used in this mode, it is phase-
aligned to the input clock pin. The external clock output pin will 
have a phase delay relative to the clock input pin if connected in this 
mode. You define which internal clock output from the PLL should 
be phase-aligned to the internal clock pin.

■ No compensation: In this mode, the PLL will not compensate for any 
clock networks or external clock outputs.

Phase & Delay Shifting

Stratix device enhanced PLLs provide advanced programmable phase 
and clock delay shifting. These parameters are set in the Quartus II 
software.

Phase Delay
The Quartus II software automatically sets the phase taps and counter 
settings according to the phase shift entry. You enter a desired phase shift 
and the Quartus II software automatically sets the closest setting 
achievable. This type of phase shift is not reconfigurable during system 
operation. For phase shifting, enter a phase shift (in degrees or time units) 
for each PLL clock output port or for all outputs together in one shift. You 
can select phase-shifting values in time units with a resolution of 156.25 
to 416.66 ps. This resolution is a function of frequency input and the 
multiplication and division factors (that is, it is a function of the VCO 
period), with the finest step being equal to an eighth (×0.125) of the VCO 
period. Each clock output counter can choose a different phase of the 
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VCO period from up to eight taps for individual fine step selection. Also, 
each clock output counter can use a unique initial count setting to achieve 
individual coarse shift selection in steps of one VCO period. The 
combination of coarse and fine shifts allows phase shifting for the entire 
input clock period.

The equation to determine the precision of the phase shifting in degrees 
is: 45° ÷ post-scale counter value. Therefore, the maximum step size is 
45° , and smaller steps are possible depending on the multiplication and 
division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least 
sensitive to process, supply, and temperature variation.

Clock Delay
In addition to the phase shift feature, the ability to fine tune the Δt clock 
delay provides advanced time delay shift control on each of the four PLL 
outputs. There are time delays for each post-scale counter (e, g, or l) from 
the PLL, the n counter, and m counter. Each of these can shift in 250-ps 
increments for a range of 3.0 ns. The m delay shifts all outputs earlier in 
time, while n delay shifts all outputs later in time. Individual delays on 
post-scale counters (e, g, and l) provide positive delay for each output. 
Table 2–21 shows the combined delay for each output for normal or zero 
delay buffer mode where Δte, Δtg, or Δtl is unique for each PLL output.

The tOUTPUT for a single output can range from –3 ns to +6 ns. The total 
delay shift difference between any two PLL outputs, however, must be 
less than ±3 ns. For example, shifts on two outputs of –1 and +2 ns is 
allowed, but not –1 and +2.5 ns because these shifts would result in a 
difference of 3.5 ns. If the design uses external feedback, the Δte delay will 
remove delay from outputs, represented by a negative sign (see 
Table 2–21). This effect occurs because the Δte delay is then part of the 
feedback loop.

Table 2–21. Output Clock Delay for Enhanced PLLs

Normal or Zero Delay Buffer Mode External Feedback Mode

ΔteOUTPUT = Δtn − Δtm + Δte
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

ΔteOUTPUT = Δtn − Δtm − Δte (1)
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

Note to Table 2–21:
(1) Δte removes delay from outputs in external feedback mode.
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The variation due to process, voltage, and temperature is about ±15% on 
the delay settings. PLL reconfiguration can control the clock delay shift 
elements, but not the VCO phase shift multiplexers, during system 
operation.

Spread-Spectrum Clocking

Stratix device enhanced PLLs use spread-spectrum technology to reduce 
electromagnetic interference generation from a system by distributing the 
energy over a broader frequency range. The enhanced PLL typically 
provides 0.5% down spread modulation using a triangular profile. The 
modulation frequency is programmable. Enabling spread-spectrum for a 
PLL affects all of its outputs.

Lock Detect

The lock output indicates that there is a stable clock output signal in 
phase with the reference clock. Without any additional circuitry, the lock 
signal may toggle as the PLL begins tracking the reference clock. You may 
need to gate the lock signal for use as a system control. The lock signal 
from the locked port can drive the logic array or an output pin.

Whenever the PLL loses lock (for example, inclk jitter, clock switchover, 
PLL reconfiguration, power supply noise, and so on), the PLL must be 
reset with the areset signal to guarantee correct phase relationship 
between the PLL output clocks. If the phase relationship between the 
input clock versus output clock, and between different output clocks 
from the PLL is not important in the design, then the PLL need not be 
reset. 

f See the Stratix FPGA Errata Sheet for more information on implementing 
the gated lock signal in a design.

Programmable Duty Cycle

The programmable duty cycle allows enhanced PLLs to generate clock 
outputs with a variable duty cycle. This feature is supported on each 
enhanced PLL post-scale counter (g0..g3, l0..l3, e0..e3). The duty cycle 
setting is achieved by a low and high time count setting for the post-scale 
dividers. The Quartus II software uses the frequency input and the 
required multiply or divide rate to determine the duty cycle choices.

Advanced Clear & Enable Control

There are several control signals for clearing and enabling PLLs and their 
outputs. You can use these signals to control PLL resynchronization and 
gate PLL output clocks for low-power applications.
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The pllenable pin is a dedicated pin that enables/disables PLLs. When 
the pllenable pin is low, the clock output ports are driven by GND and 
all the PLLs go out of lock. When the pllenable pin goes high again, the 
PLLs relock and resynchronize to the input clocks. You can choose which 
PLLs are controlled by the pllenable signal by connecting the 
pllenable input port of the altpll megafunction to the common 
pllenable input pin.

The areset signals are reset/resynchronization inputs for each PLL. The 
areset signal should be asserted every time the PLL loses lock to 
guarantee correct phase relationship between the PLL output clocks. 
Users should include the areset signal in designs if any of the following 
conditions are true:

■ PLL Reconfiguration or Clock switchover enables in the design.
■ Phase relationships between output clocks need to be maintained 

after a loss of lock condition

The device input pins or logic elements (LEs) can drive these input 
signals. When driven high, the PLL counters will reset, clearing the PLL 
output and placing the PLL out of lock. The VCO will set back to its 
nominal setting (~700 MHz). When driven low again, the PLL will 
resynchronize to its input as it relocks. If the target VCO frequency is 
below this nominal frequency, then the output frequency will start at a 
higher value than desired as the PLL locks. If the system cannot tolerate 
this, the clkena signal can disable the output clocks until the PLL locks.

The pfdena signals control the phase frequency detector (PFD) output 
with a programmable gate. If you disable the PFD, the VCO operates at 
its last set value of control voltage and frequency with some long-term 
drift to a lower frequency. The system continues running when the PLL 
goes out of lock or the input clock is disabled. By maintaining the last 
locked frequency, the system has time to store its current settings before 
shutting down. You can either use your own control signal or a clkloss 
status signal to trigger pfdena.

The clkena signals control the enhanced PLL regional and global 
outputs. Each regional and global output port has its own clkena signal. 
The clkena signals synchronously disable or enable the clock at the PLL 
output port by gating the outputs of the g and l counters. The clkena 
signals are registered on the falling edge of the counter output clock to 
enable or disable the clock without glitches. Figure 2–57 shows the 
waveform example for a PLL clock port enable. The PLL can remain 
locked independent of the clkena signals since the loop-related counters 
are not affected. This feature is useful for applications that require a low 
power or sleep mode. Upon re-enabling, the PLL does not need a 
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resynchronization or relock period. The clkena signal can also disable 
clock outputs if the system is not tolerant to frequency overshoot during 
resynchronization.

The extclkena signals work in the same way as the clkena signals, but 
they control the external clock output counters (e0, e1, e2, and e3). Upon 
re-enabling, the PLL does not need a resynchronization or relock period 
unless the PLL is using external feedback mode. In order to lock in 
external feedback mode, the external output must drive the board trace 
back to the FBIN pin.

Figure 2–57. extclkena Signals

Fast PLLs

Stratix devices contain up to eight fast PLLs with high-speed serial 
interfacing ability, along with general-purpose features. Figure 2–58 
shows a diagram of the fast PLL.
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Figure 2–58. Stratix Device Fast PLL

Notes to Figure 2–58:
(1) The global or regional clock input can be driven by an output from another PLL or any dedicated CLK or FCLK pin. 

It cannot be driven by internally-generated global signals.
(2) In high-speed differential I/O support mode, this high-speed PLL clock feeds the SERDES. Stratix devices only 

support one rate of data transfer per fast PLL in high-speed differential I/O support mode.
(3) This signal is a high-speed differential I/O support SERDES control signal.

Clock Multiplication & Division

Stratix device fast PLLs provide clock synthesis for PLL output ports 
using m/(post scaler) scaling factors. The input clock is multiplied by the 
m feedback factor. Each output port has a unique post scale counter to 
divide down the high-frequency VCO. There is one multiply divider, m, 
per fast PLL with a range of 1 to 32. There are two post scale L dividers 
for regional and/or LVDS interface clocks, and g0 counter for global clock 
output port; all range from 1 to 32.

In the case of a high-speed differential interface, set the output counter to 
1 to allow the high-speed VCO frequency to drive the SERDES. When 
used for clocking the SERDES, the m counter can range from 1 to 30. The 
VCO frequency is equal to fIN×m, where VCO frequency must be between 
300 and 1000 MHz.
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External Clock Inputs

Each fast PLL supports single-ended or differential inputs for source 
synchronous transmitters or for general-purpose use. Source-
synchronous receivers support differential clock inputs. The fast PLL 
inputs are fed by CLK[0..3], CLK[8..11], and FPLL[7..10]CLK 
pins, as shown in Figure 2–50 on page 2–85. 

Table 2–22 shows the I/O standards supported by fast PLL input pins.

Table 2–22. Fast PLL Port I/O Standards (Part 1 of 2)

I/O Standard
Input

INCLK PLLENABLE

LVTTL v v

LVCMOS v v

2.5 V v

1.8 V v

1.5 V v

3.3-V PCI

3.3-V PCI-X 1.0

LVPECL v

3.3-V PCML v

LVDS v

HyperTransport technology v

Differential HSTL v

Differential SSTL 

3.3-V GTL

3.3-V GTL+ v

1.5-V HSTL Class I v

1.5-V HSTL Class II

1.8-V HSTL Class I v

1.8-V HSTL Class II

SSTL-18 Class I v

SSTL-18 Class II

SSTL-2 Class I v
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Table 2–23 shows the performance on each of the fast PLL clock inputs 
when using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology.

External Clock Outputs

Each fast PLL supports differential or single-ended outputs for source-
synchronous transmitters or for general-purpose external clocks. There 
are no dedicated external clock output pins. Any I/O pin can be driven 
by the fast PLL global or regional outputs as an external output pin. The 
I/O standards supported by any particular bank determines what 
standards are possible for an external clock output driven by the fast PLL 
in that bank.

Phase Shifting 

Stratix device fast PLLs have advanced clock shift capability that enables 
programmable phase shifts. You can enter a phase shift (in degrees or 
time units) for each PLL clock output port or for all outputs together in 
one shift. You can perform phase shifting in time units with a resolution 
range of 125 to 416.66 ps. This resolution is a function of the VCO period, 
with the finest step being equal to an eighth (×0.125) of the VCO period. 

SSTL-2 Class II v

SSTL-3 Class I v

SSTL-3 Class II v

AGP (1×  and 2× )

CTT v

Table 2–23. LVDS Performance on Fast PLL Input

Fast PLL Clock Input Maximum Input Frequency (MHz)

CLK0, CLK2, CLK9, CLK11, 
FPLL7CLK, FPLL8CLK, FPLL9CLK, 
FPLL10CLK

717(1)

CLK1, CLK3, CLK8, CLK10 645

Note to Table 2–23:
(1) See the chapter DC & Switching Characteristics of the Stratix Device Handbook, 

Volume 1 for more information.

Table 2–22. Fast PLL Port I/O Standards (Part 2 of 2)

I/O Standard
Input

INCLK PLLENABLE
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Control Signals

The fast PLL has the same lock output, pllenable input, and areset 
input control signals as the enhanced PLL.

If the input clock stops and causes the PLL to lose lock, then the PLL must 
be reset for correct phase shift operation.

For more information on high-speed differential I/O support, see “High-
Speed Differential I/O Support” on page 2–130.

I/O Structure IOEs provide many features, including:

■ Dedicated differential and single-ended I/O buffers
■ 3.3-V, 64-bit, 66-MHz PCI compliance
■ 3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
■ Joint Test Action Group (JTAG) boundary-scan test (BST) support
■ Differential on-chip termination for LVDS I/O standard
■ Programmable pull-up during configuration
■ Output drive strength control
■ Slew-rate control
■ Tri-state buffers
■ Bus-hold circuitry
■ Programmable pull-up resistors
■ Programmable input and output delays
■ Open-drain outputs
■ DQ and DQS I/O pins
■ Double-data rate (DDR) Registers

The IOE in Stratix devices contains a bidirectional I/O buffer, six 
registers, and a latch for a complete embedded bidirectional single data 
rate or DDR transfer. Figure 2–59 shows the Stratix IOE structure. The 
IOE contains two input registers (plus a latch), two output registers, and 
two output enable registers. The design can use both input registers and 
the latch to capture DDR input and both output registers to drive DDR 
outputs. Additionally, the design can use the output enable (OE) register 
for fast clock-to-output enable timing. The negative edge-clocked OE 
register is used for DDR SDRAM interfacing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins.
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Figure 2–59. Stratix IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix 
device. There are up to four IOEs per row I/O block and six IOEs per 
column I/O block. The row I/O blocks drive row, column, or direct link 
interconnects. The column I/O blocks drive column interconnects. 
Figure 2–60 shows how a row I/O block connects to the logic array. 
Figure 2–61 shows how a column I/O block connects to the logic array.
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Figure 2–60. Row I/O Block Connection to the Interconnect

Notes to Figure 2–60:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_clk[3..0], and four clear signals io_bclr[3..0].
(2) The 28 data and control signals consist of eight data out lines: four lines each for DDR applications 

io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_coe[3..0], four input clock enables 
io_cce_in[3..0], four output clock enables io_cce_out[3..0], four clocks io_cclk[3..0], and four clear 
signals io_cclr[3..0].

16

28

R4, R8 & R24
Interconnects

C4, C8 & C16
Interconnects

I/O Block Local 
Interconnect

16 Control Signals
from I/O Interconnect (1)
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io_clk[7:0]

Horizontal I/O
Block Contains
up to Four IOEs

Direct Link
Interconnect

to Adjacent LAB

Direct Link
Interconnect

to Adjacent LAB

LAB Local
Interconnect

LAB Horizontal
I/O Block



Altera Corporation 2–107
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
(2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications 

io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables 
io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear 
signals io_cclr[5..0].

16 Control 
Signals from I/O 
Interconnect (1)

42 Data &
Control Signals 

from Logic Array (2) Vertical I/O 
Block Contains
up to Six IOEs

I/O Block
Local Interconnect

I/O Interconnect

IO_datain[3:0]
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16 42
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Stratix devices have an I/O interconnect similar to the R4 and C4 
interconnect to drive high-fanout signals to and from the I/O blocks. 
There are 16 signals that drive into the I/O blocks composed of four 
output enables io_boe[3..0], four clock enables io_bce[3..0], four 
clocks io_bclk[3..0], and four clear signals io_bclr[3..0]. The 
pin’s datain signals can drive the IO interconnect, which in turn drives 
the logic array or other I/O blocks. In addition, the control and data 
signals can be driven from the logic array, providing a slower but more 
flexible routing resource. The row or column IOE clocks, io_clk[7..0], 
provide a dedicated routing resource for low-skew, high-speed clocks. 
I/O clocks are generated from regional, global, or fast regional clocks (see 
“PLLs & Clock Networks” on page 2–73). Figure 2–62 illustrates the 
signal paths through the I/O block.

Figure 2–62. Signal Path through the I/O Block
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Each IOE contains its own control signal selection for the following 
control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, 
clk_in, and clk_out. Figure 2–63 illustrates the control signal 
selection.

Figure 2–63. Control Signal Selection per IOE

In normal bidirectional operation, the input register can be used for input 
data requiring fast setup times. The input register can have its own clock 
input and clock enable separate from the OE and output registers. The 
output register can be used for data requiring fast clock-to-output 
performance. The OE register can be used for fast clock-to-output enable 
timing. The OE and output register share the same clock source and the 
same clock enable source from local interconnect in the associated LAB, 
dedicated I/O clocks, and the column and row interconnects. Figure 2–64 
shows the IOE in bidirectional configuration.
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Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

Note to Figure 2–64:
(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be 
activated to ensure zero hold times, input IOE register-to-logic array 
register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to 
ensure zero hold time, whereas a path in which a pin drives a register 
through combinatorial logic may not require the delay. Programmable 
delays exist for decreasing input-pin-to-logic-array and IOE input 
register delays. The Quartus II Compiler can program these delays to 
automatically minimize setup time while providing a zero hold time. 
Programmable delays can increase the register-to-pin delays for output 
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and/or output enable registers. A programmable delay exists to increase 
the tZX delay to the output pin, which is required for ZBT interfaces. 
Table 2–24 shows the programmable delays for Stratix devices.

The IOE registers in Stratix devices share the same source for clear or 
preset. You can program preset or clear for each individual IOE. You can 
also program the registers to power up high or low after configuration is 
complete. If programmed to power up low, an asynchronous clear can 
control the registers. If programmed to power up high, an asynchronous 
preset can control the registers. This feature prevents the inadvertent 
activation of another device’s active-low input upon power-up. If one 
register in an IOE uses a preset or clear signal then all registers in the IOE 
must use that same signal if they require preset or clear. Additionally a 
synchronous reset signal is available for the IOE registers.

Double-Data Rate I/O Pins

Stratix devices have six registers in the IOE, which support DDR 
interfacing by clocking data on both positive and negative clock edges. 
The IOEs in Stratix devices support DDR inputs, DDR outputs, and 
bidirectional DDR modes.

When using the IOE for DDR inputs, the two input registers clock double 
rate input data on alternating edges. An input latch is also used within the 
IOE for DDR input acquisition. The latch holds the data that is present 
during the clock high times. This allows both bits of data to be 
synchronous with the same clock edge (either rising or falling). 
Figure 2–65 shows an IOE configured for DDR input. Figure 2–66 shows 
the DDR input timing diagram.

Table 2–24. Stratix Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to logic array delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input register

Output pin delay Increase delay to output pin

Output enable register tCO delay Increase delay to output enable pin

Output tZX delay Increase tZX delay to output pin

Output clock enable delay Increase output clock enable delay

Input clock enable delay Increase input clock enable delay

Logic array to output register delay Decrease input delay to output register

Output enable clock enable delay Increase output enable clock enable delay
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Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:
(1) All input signals to the IOE can be inverted at the IOE.
(2) This signal connection is only allowed on dedicated DQ function pins.
(3) This signal is for dedicated DQS function pins only.
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Figure 2–66. Input Timing Diagram in DDR Mode

When using the IOE for DDR outputs, the two output registers are 
configured to clock two data paths from LEs on rising clock edges. These 
output registers are multiplexed by the clock to drive the output pin at a 
×2 rate. One output register clocks the first bit out on the clock high time, 
while the other output register clocks the second bit out on the clock low 
time. Figure 2–67 shows the IOE configured for DDR output. Figure 2–68 
shows the DDR output timing diagram.
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Figure 2–67. Stratix IOE in DDR Output I/O Configuration Notes (1), (2)

Notes to Figure 2–67:
(1) All input signals to the IOE can be inverted at the IOE.
(2) The tristate is by default active high. It can, however, be designed to be active low.
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Figure 2–68. Output Timing Diagram in DDR Mode

The Stratix IOE operates in bidirectional DDR mode by combining the 
DDR input and DDR output configurations. Stratix device I/O pins 
transfer data on a DDR bidirectional bus to support DDR SDRAM. The 
negative-edge-clocked OE register holds the OE signal inactive until the 
falling edge of the clock. This is done to meet DDR SDRAM timing 
requirements.

External RAM Interfacing

Stratix devices support DDR SDRAM at up to 200 MHz (400-Mbps data 
rate) through dedicated phase-shift circuitry, QDR and QDRII SRAM 
interfaces up to 167 MHz, and ZBT SRAM interfaces up to 200 MHz. 
Stratix devices also provide preliminary support for reduced latency 
DRAM II (RLDRAM II) at rates up to 200 MHz through the dedicated 
phase-shift circuitry.

1 In addition to the required signals for external memory 
interfacing, Stratix devices offer the optional clock enable signal. 
By default the Quartus II software sets the clock enable signal 
high, which tells the output register to update with new values. 
The output registers hold their own values if the design sets the 
clock enable signal low. See Figure 2–64.

f To find out more about the DDR SDRAM specification, see the JEDEC 
web site (www.jedec.org). For information on memory controller 
megafunctions for Stratix devices, see the Altera web site 
(www.altera.com). See AN 342: Interfacing DDR SDRAM with Stratix & 
Stratix GX Devices for more information on DDR SDRAM interface in 
Stratix. Also see AN 349: QDR SRAM Controller Reference Design for 
Stratix & Stratix GX Devices and AN 329: ZBT SRAM Controller Reference 
Design for Stratix & Stratix GX Devices.

From Internal
Registers

DDR output

CLK

A

B

B1 A1 B2 A2 B3 A3

A2A1 A3 A4

B1 B2 B3 B4



2–116 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005

I/O Structure

Tables 2–25 and 2–26 show the performance specification for DDR 
SDRAM, RLDRAM II, QDR SRAM, QDRII SRAM, and ZBT SRAM 
interfaces in EP1S10 through EP1S40 devices and in EP1S60 and EP1S80 
devices. The DDR SDRAM and QDR SRAM numbers in Table 2–25 have 
been verified with hardware characterization with third-party DDR 
SDRAM and QDR SRAM devices over temperature and voltage 
extremes.

Table 2–25. External RAM Support in EP1S10 through EP1S40 Devices

DDR Memory Type I/O 
Standard

Maximum Clock Rate (MHz)

-5 Speed 
Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Flip-Chip Flip-Chip Wire-
Bond

Flip-
Chip

Wire-
Bond

Flip-
Chip

Wire-
Bond

DDR SDRAM (1), (2) SSTL-2 200 167 133 133 100 100 100

DDR SDRAM - side 
banks (2), (3), (4)

SSTL-2 150 133 110 133 100 100 100

RLDRAM II (4) 1.8-V HSTL 200 (5) (5) (5) (5) (5) (5)

QDR SRAM (6) 1.5-V HSTL 167 167 133 133 100 100 100

QDRII SRAM (6) 1.5-V HSTL 200 167 133 133 100 100 100

ZBT SRAM (7) LVTTL 200 200 200 167 167 133 133

Notes to Table 2–25:
(1) These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR 

SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). 
(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.
(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS 

phase-shift circuitry. The read DQS signal is ignored in this mode.
(4) These performance specifications are preliminary.
(5) This device does not support RLDRAM II.
(6) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & 

Stratix GX Devices.
(7) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX 

Devices.
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In addition to six I/O registers and one input latch in the IOE for 
interfacing to these high-speed memory interfaces, Stratix devices also 
have dedicated circuitry for interfacing with DDR SDRAM. In every 
Stratix device, the I/O banks at the top (I/O banks 3 and 4) and bottom 
(I/O banks 7 and 8) of the device support DDR SDRAM up to 200 MHz. 
These pins support DQS signals with DQ bus modes of ×8, ×16, or ×32.

Table 2–27 shows the number of DQ and DQS buses that are supported 
per device.

Table 2–26. External RAM Support in EP1S60 & EP1S80 Devices

DDR Memory Type I/O Standard
Maximum Clock Rate (MHz)

-5 Speed Grade -6 Speed Grade -7 Speed Grade

DDR SDRAM (1), (2) SSTL-2 167 167 133

DDR SDRAM - side banks (2), (3) SSTL-2 150 133 133

QDR SRAM (4) 1.5-V HSTL 133 133 133

QDRII SRAM (4) 1.5-V HSTL 167 167 133

ZBT SRAM (5) LVTTL 200 200 167

Notes to Table 2–26:
(1) These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR 

SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). 
(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.
(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS 

phase-shift circuitry. The read DQS signal is ignored in this mode. Numbers are preliminary.
(4) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & 

Stratix GX Devices.
(5) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX 

Devices.

Table 2–27. DQS & DQ Bus Mode Support (Part 1 of 2) Note (1)

Device Package Number of ×8 
Groups

Number of ×16 
Groups

Number of ×32 
Groups

EP1S10 672-pin BGA
672-pin FineLine BGA

12 (2) 0 0

484-pin FineLine BGA
780-pin FineLine BGA

16 (3) 0 4

EP1S20 484-pin FineLine BGA 18(4) 7 (5) 4

672-pin BGA
672-pin FineLine BGA

16(3) 7 (5) 4

780-pin FineLine BGA 20 7 (5) 4
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A compensated delay element on each DQS pin automatically aligns 
input DQS synchronization signals with the data window of their 
corresponding DQ data signals. The DQS signals drive a local DQS bus in 
the top and bottom I/O banks. This DQS bus is an additional resource to 
the I/O clocks and is used to clock DQ input registers with the DQS 
signal.

Two separate single phase-shifting reference circuits are located on the 
top and bottom of the Stratix device. Each circuit is driven by a system 
reference clock through the CLK pins that is the same frequency as the 
DQS signal. Clock pins CLK[15..12]p feed the phase-shift circuitry on 
the top of the device and clock pins CLK[7..4]p feed the phase-shift 
circuitry on the bottom of the device. The phase-shifting reference circuit 
on the top of the device controls the compensated delay elements for all 
10 DQS pins located at the top of the device. The phase-shifting reference 
circuit on the bottom of the device controls the compensated delay 
elements for all 10 DQS pins located on the bottom of the device. All 
10 delay elements (DQS signals) on either the top or bottom of the device 

EP1S25 672-pin BGA
672-pin FineLine BGA

16 (3) 8 4

780-pin FineLine BGA
1,020-pin FineLine BGA

20 8 4

EP1S30 956-pin BGA
780-pin FineLine BGA
1,020-pin FineLine BGA

20 8 4

EP1S40 956-pin BGA
1,020-pin FineLine BGA
1,508-pin FineLine BGA

20 8 4

EP1S60 956-pin BGA
1,020-pin FineLine BGA
1,508-pin FineLine BGA

20 8 4

EP1S80 956-pin BGA
1,508-pin FineLine BGA
1,923-pin FineLine BGA

20 8 4

Notes to Table 2–27:
(1) See the Selectable I/O Standards in Stratix & Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2 

for VREF guidelines.
(2) These packages have six groups in I/O banks 3 and 4 and six groups in I/O banks 7 and 8.
(3) These packages have eight groups in I/O banks 3 and 4 and eight groups in I/O banks 7 and 8.
(4) This package has nine groups in I/O banks 3 and 4 and nine groups in I/O banks 7 and 8.
(5) These packages have three groups in I/O banks 3 and 4 and four groups in I/O banks 7 and 8.

Table 2–27. DQS & DQ Bus Mode Support (Part 2 of 2) Note (1)

Device Package Number of ×8 
Groups

Number of ×16 
Groups

Number of ×32 
Groups
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shift by the same degree amount. For example, all 10 DQS pins on the top 
of the device can be shifted by 90° and all 10 DQS pins on the bottom of 
the device can be shifted by 72°. The reference circuits require a maximum 
of 256 system reference clock cycles to set the correct phase on the DQS 
delay elements. Figure 2–69 illustrates the phase-shift reference circuit 
control of each DQS delay shift on the top of the device. This same circuit 
is duplicated on the bottom of the device.

Figure 2–69. Simplified Diagram of the DQS Phase-Shift Circuitry

See the External Memory Interfaces chapter in the Stratix Device Handbook, 
Volume 2 for more information on external memory interfaces.

Programmable Drive Strength

The output buffer for each Stratix device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL and 
LVCMOS standard has several levels of drive strength that the user can 
control. SSTL-3 Class I and II, SSTL-2 Class I and II, HSTL Class I and II, 
and 3.3-V GTL+ support a minimum setting, the lowest drive strength 
that guarantees the IOH/IOL of the standard. Using minimum settings 
provides signal slew rate control to reduce system noise and signal 
overshoot. 

Phase
Comparator 

Up/Down
Counter

Delay Chains

Input
Reference

Clock

Control Signals
to DQS Pins

6
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Table 2–28 shows the possible settings for the I/O standards with drive 
strength control.

Quartus II software version 4.2 and later will report current strength as 
“PCI Compliant” for 3.3-V PCI, 3.3-V PCI-X 1.0, and Compact PCI I/O 
standards.

Stratix devices support series on-chip termination (OCT) using 
programmable drive strength. For more information, contact your Altera 
Support Representative.

Open-Drain Output

Stratix devices provide an optional open-drain (equivalent to an open-
collector) output for each I/O pin. This open-drain output enables the 
device to provide system-level control signals (e.g., interrupt and write-
enable signals) that can be asserted by any of several devices.

Slew-Rate Control

The output buffer for each Stratix device I/O pin has a programmable 
output slew-rate control that can be configured for low-noise or high-
speed performance. A faster slew rate provides high-speed transitions for 
high-performance systems. However, these fast transitions may 
introduce noise transients into the system. A slow slew rate reduces 
system noise, but adds a nominal delay to rising and falling edges. Each 

Table 2–28. Programmable Drive Strength

I/O Standard IOH / IOL Current Strength Setting (mA)

3.3-V LVTTL 24 (1), 16, 12, 8, 4

3.3-V LVCMOS 24 (2), 12 (1), 8, 4, 2

2.5-V LVTTL/LVCMOS 16 (1), 12, 8, 2

1.8-V LVTTL/LVCMOS 12 (1), 8, 2

1.5-V LVCMOS 8 (1), 4, 2

GTL/GTL+
1.5-V HSTL Class I and II
1.8-V HSTL Class I and II
SSTL-3 Class I and II
SSTL-2 Class I and II
SSTL-18 Class I and II

Support max and min strength

Notes to Table 2–28:
(1) This is the Quartus II software default current setting.
(2) I/O banks 1, 2, 5, and 6 do not support this setting.
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I/O pin has an individual slew-rate control, allowing you to specify the 
slew rate on a pin-by-pin basis. The slew-rate control affects both the 
rising and falling edges.

Bus Hold

Each Stratix device I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry can weakly hold the signal on an I/O pin at its last-
driven state. Since the bus-hold feature holds the last-driven state of the 
pin until the next input signal is present, an external pull-up or pull-down 
resistor is not needed to hold a signal level when the bus is tri-stated. 

Table 2–29 shows bus hold support for different pin types.

The bus-hold circuitry also pulls undriven pins away from the input 
threshold voltage where noise can cause unintended high-frequency 
switching. You can select this feature individually for each I/O pin. The 
bus-hold output drives no higher than VCCIO to prevent overdriving 
signals. If the bus-hold feature is enabled, the programmable pull-up 
option cannot be used. Disable the bus-hold feature when using open-
drain outputs with the GTL+ I/O standard or when the I/O pin has been 
configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (RBH) of 
approximately 7 kΩ to weakly pull the signal level to the last-driven state. 
See the DC & Switching Characteristics chapter of the Stratix Device 
Handbook, Volume 1 for the specific sustaining current driven through this 
resistor and overdrive current used to identify the next-driven input 
level. This information is provided for each VCCIO voltage level.

The bus-hold circuitry is active only after configuration. When going into 
user mode, the bus-hold circuit captures the value on the pin present at 
the end of configuration.

Table 2–29. Bus Hold Support

Pin Type Bus Hold

I/O pins v

CLK[15..0]

CLK[0,1,2,3,8,9,10,11]

FCLK v

FPLL[7..10]CLK
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Programmable Pull-Up Resistor

Each Stratix device I/O pin provides an optional programmable pull-up 
resistor during user mode. If this feature is enabled for an I/O pin, the 
pull-up resistor (typically 25 kΩ) weakly holds the output to the VCCIO 
level of the output pin’s bank. Table 2–30 shows which pin types support 
the weak pull-up resistor feature.

Advanced I/O Standard Support

Stratix device IOEs support the following I/O standards: 

■ LVTTL
■ LVCMOS
■ 1.5 V
■ 1.8 V
■ 2.5 V
■ 3.3-V PCI
■ 3.3-V PCI-X 1.0
■ 3.3-V AGP (1× and 2×)
■ LVDS
■ LVPECL
■ 3.3-V PCML 
■ HyperTransport
■ Differential HSTL (on input/output clocks only)
■ Differential SSTL (on output column clock pins only)
■ GTL/GTL+
■ 1.5-V HSTL Class I and II

Table 2–30. Programmable Weak Pull-Up Resistor Support

Pin Type Programmable Weak Pull-Up Resistor

I/O pins v

CLK[15..0]

FCLK v

FPLL[7..10]CLK

Configuration pins

JTAG pins v (1)

Note to Table 2–30:
(1) TDO pins do not support programmable weak pull-up resistors.
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■ 1.8-V HSTL Class I and II
■ SSTL-3 Class I and II
■ SSTL-2 Class I and II
■ SSTL-18 Class I and II
■ CTT

Table 2–31 describes the I/O standards supported by Stratix devices.

Table 2–31. Stratix Supported I/O Standards

I/O Standard Type
Input Reference 
Voltage (VREF)

(V)

Output Supply 
Voltage (VCCIO) 

(V)

Board 
Termination 
Voltage (VTT)

(V)

LVTTL Single-ended N/A 3.3 N/A

LVCMOS Single-ended N/A 3.3 N/A

2.5 V Single-ended N/A 2.5 N/A

1.8 V Single-ended N/A 1.8 N/A

1.5 V Single-ended N/A 1.5 N/A

3.3-V PCI Single-ended N/A 3.3 N/A

3.3-V PCI-X 1.0 Single-ended N/A 3.3 N/A

LVDS Differential N/A 3.3 N/A

LVPECL Differential N/A 3.3 N/A

3.3-V PCML Differential N/A 3.3 N/A

HyperTransport Differential N/A 2.5 N/A

Differential HSTL (1) Differential 0.75 1.5 0.75

Differential SSTL (2) Differential 1.25 2.5 1.25

GTL Voltage-referenced 0.8 N/A 1.20

GTL+ Voltage-referenced 1.0 N/A 1.5

1.5-V HSTL Class I and II Voltage-referenced 0.75 1.5 0.75

1.8-V HSTL Class I and II Voltage-referenced 0.9 1.8 0.9

SSTL-18 Class I and II Voltage-referenced 0.90 1.8 0.90

SSTL-2 Class I and II Voltage-referenced 1.25 2.5 1.25

SSTL-3 Class I and II Voltage-referenced 1.5 3.3 1.5

AGP (1×  and 2° ) Voltage-referenced 1.32 3.3 N/A

CTT Voltage-referenced 1.5 3.3 1.5

Notes to Table 2–31:
(1) This I/O standard is only available on input and output clock pins.
(2) This I/O standard is only available on output column clock pins.
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f For more information on I/O standards supported by Stratix devices, see 
the Selectable I/O Standards in Stratix & Stratix GX Devices chapter of the 
Stratix Device Handbook, Volume 2.

Stratix devices contain eight I/O banks in addition to the four enhanced 
PLL external clock out banks, as shown in Figure 2–70. The four I/O 
banks on the right and left of the device contain circuitry to support high-
speed differential I/O for LVDS, LVPECL, 3.3-V PCML, and 
HyperTransport inputs and outputs. These banks support all I/O 
standards listed in Table 2–31 except PCI I/O pins or PCI-X 1.0, GTL, 
SSTL-18 Class II, and HSTL Class II outputs. The top and bottom I/O 
banks support all single-ended I/O standards. Additionally, Stratix 
devices support four enhanced PLL external clock output banks, 
allowing clock output capabilities such as differential support for SSTL 
and HSTL. Table 2–32 shows I/O standard support for each I/O bank.
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Figure 2–70. Stratix I/O Banks Notes (1), (2), (3)

Notes to Figure 2–70:
(1) Figure 2–70 is a top view of the silicon die. This will correspond to a top-down view for non-flip-chip packages, but 

will be a reverse view for flip-chip packages.
(2) Figure 2–70 is a graphic representation only. See the device pin-outs on the web (www.altera.com) and the 

Quartus II software for exact locations.
(3) Banks 9 through 12 are enhanced PLL external clock output banks.
(4) If the high-speed differential I/O pins are not used for high-speed differential signaling, they can support all of the 

I/O standards except HSTL Class I and II, GTL, SSTL-18 Class II, PCI, PCI-X 1.0, and AGP 1× /2× .

(5) For guidelines for placing single-ended I/O pads next to differential I/O pads, see the Selectable I/O Standards in 
Stratix and Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2.

LVDS, LVPECL, 3.3-V PCML, 
and HyperTransport I/O Block
and Regular I/O Pins (4)

LVDS, LVPECL, 3.3-V PCML, 
and HyperTransport I/O Block

and Regular I/O Pins (4)

I/O Banks 3, 4, 9 & 10 Support 
All Single-Ended I/O Standards

I/O Banks 7, 8, 11 & 12 Support 
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Single-Ended I/O Standards Except 
Differential HSTL Output Clocks, 
Differential SSTL-2 Output Clocks, 
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Table 2–32 shows I/O standard support for each I/O bank.

Table 2–32. I/O Support by Bank (Part 1 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)

LVTTL v v v

LVCMOS v v v

2.5 V v v v

1.8 V v v v

1.5 V v v v

3.3-V PCI v v

3.3-V PCI-X 1.0 v v

LVPECL v v

3.3-V PCML v v

LVDS v v

HyperTransport technology v v

Differential HSTL (clock 
inputs) v v

Differential HSTL (clock 
outputs) v

Differential SSTL (clock 
outputs) v

3.3-V GTL v v

3.3-V GTL+ v v v

1.5-V HSTL Class I v v v

1.5-V HSTL Class II v v

1.8-V HSTL Class I v v v

1.8-V HSTL Class II v v

SSTL-18 Class I v v v

SSTL-18 Class II v v

SSTL-2 Class I v v v

SSTL-2 Class II v v v

SSTL-3 Class I v v v
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Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 
1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard 
independently. Each bank also has dedicated VREF pins to support any 
one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one voltage-referenced 
I/O standard. For example, when VCCIO is 3.3 V, a bank can support 
LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O 
standard) to reduce reflections and maintain signal integrity. Differential 
on-chip termination simplifies board design by minimizing the number 
of external termination resistors required. Termination can be placed 
inside the package, eliminating small stubs that can still lead to 
reflections. The internal termination is designed using transistors in the 
linear region of operation. 

Stratix devices support internal differential termination with a nominal 
resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL 
signals require an external termination resistor. Figure 2–71 shows the 
device with differential termination.

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v

CTT v v v

Table 2–32. I/O Support by Bank (Part 2 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)
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Figure 2–71. LVDS Input Differential On-Chip Termination

I/O banks on the left and right side of the device support LVDS receiver 
(far-end) differential termination. 

Table 2–33 shows the Stratix device differential termination support.

Table 2–34 shows the termination support for different pin types.

The differential on-chip resistance at the receiver input buffer is 
118 Ω ±20 %.

RD
+

Ð

+

Ð

Transmitting
Device

Receiving Device with
Differential Termination

Z0

Z0

Table 2–33. Differential Termination Supported by I/O Banks

Differential Termination Support I/O Standard Support Top & Bottom 
Banks (3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Differential termination (1), (2) LVDS v

Notes to Table 2–33:
(1) Clock pin CLK0, CLK2, CLK9, CLK11, and pins FPLL[7..10]CLK do not support differential termination.
(2) Differential termination is only supported for LVDS because of a 3.3-V VC C I O.

Table 2–34. Differential Termination Support Across Pin Types

Pin Type RD

Top and bottom I/O banks (3, 4, 7, and 8)

DIFFIO_RX[] v

CLK[0,2,9,11],CLK[4-7],CLK[12-15]

CLK[1,3,8,10] v

FCLK

FPLL[7..10]CLK
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However, there is additional resistance present between the device ball 
and the input of the receiver buffer, as shown in Figure 2–72. This 
resistance is because of package trace resistance (which can be calculated 
as the resistance from the package ball to the pad) and the parasitic layout 
metal routing resistance (which is shown between the pad and the 
intersection of the on-chip termination and input buffer).

Figure 2–72. Differential Resistance of LVDS Differential Pin Pair (RD)

Table 2–35 defines the specification for internal termination resistance for 
commercial devices. 

MultiVolt I/O Interface

The Stratix architecture supports the MultiVolt I/O interface feature, 
which allows Stratix devices in all packages to interface with systems of 
different supply voltages. 

The Stratix VCCINT pins must always be connected to a 1.5-V power 
supply. With a 1.5-V VCCINT level, input pins are 1.5-V, 1.8-V, 2.5-V, and 
3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 
2.5-V, or 3.3-V power supply, depending on the output requirements. 

LVDS
Input Buffer

Differential On-Chip
Termination Resistor

9.3 Ω

9.3 Ω

0.3 Ω

0.3 Ω

RD

PadPackage Ball

Table 2–35. Differential On-Chip Termination 

Symbol Description Conditions 
Resistance

Unit
Min Typ Max

RD  (2) Internal differential termination for LVDS Commercial (1), (3) 110 135 165 W

Industrial (2), (3) 100 135 170 W

Notes to Table 2–35:
(1) Data measured over minimum conditions (Tj  = 0 C, VC C I O +5%) and maximum conditions (Tj = 85 C, 

VC C I O = –5%).
(2) Data measured over minimum conditions (Tj = –40 C, VCCIO +5%) and maximum conditions (Tj = 100 C, 

VCCIO = –5%).
(3) LVDS data rate is supported for 840 Mbps using internal differential termination. 
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The output levels are compatible with systems of the same voltage as the 
power supply (i.e., when VCCIO pins are connected to a 1.5-V power 
supply, the output levels are compatible with 1.5-V systems). When 
VCCIO pins are connected to a 3.3-V power supply, the output high is 
3.3 V and is compatible with 3.3-V or 5.0-V systems. 

Table 2–36 summarizes Stratix MultiVolt I/O support.

High-Speed 
Differential I/O 
Support

Stratix devices contain dedicated circuitry for supporting differential 
standards at speeds up to 840 Mbps. The following differential I/O 
standards are supported in the Stratix device: LVDS, LVPECL, 
HyperTransport, and 3.3-V PCML.

There are four dedicated high-speed PLLs in the EP1S10 to EP1S25 
devices and eight dedicated high-speed PLLs in the EP1S30 to EP1S80 
devices to multiply reference clocks and drive high-speed differential 
SERDES channels. 

f See the Stratix device pin-outs at www.altera.com for additional high 
speed DIFFIO pin information for Stratix devices.

Table 2–36. Stratix MultiVolt I/O Support Note (1)

VCCIO (V)
Input Signal (5) Output Signal (6)

1.5 V 1.8 V 2.5 V 3.3 V 5.0 V 1.5 V 1.8 V 2.5 V 3.3 V 5.0 V

1.5 v v v (2) v (2) v

1.8 v (2) v v (2) v (2) v (3) v

2.5 v v v (3) v (3) v

3.3 v (2) v v (4) v (3) v (3) v (3) v v

Notes to Table 2–36:
(1) To drive inputs higher than VCCIO but less than 4.1 V, disable the PCI clamping diode. However, to drive 5.0-V 

inputs to the device, enable the PCI clamping diode to prevent VI from rising above 4.0 V.
(2) The input pin current may be slightly higher than the typical value.
(3) Although VCCIO specifies the voltage necessary for the Stratix device to drive out, a receiving device powered at a 

different level can still interface with the Stratix device if it has inputs that tolerate the VCCIO value.
(4) Stratix devices can be 5.0-V tolerant with the use of an external resistor and the internal PCI clamp diode.
(5) This is the external signal that is driving the Stratix device.
(6) This represents the system voltage that Stratix supports when a VCCIO pin is connected to a specific voltage level. 

For example, when VCCIO is 3.3 V and if the I/O standard is LVTTL/LVCMOS, the output high of the signal 
coming out from Stratix is 3.3 V and is compatible with 3.3-V or 5.0-V systems.
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Table 2–37 shows the number of channels that each fast PLL can clock in 
EP1S10, EP1S20, and EP1S25 devices. Tables 2–38 through Table 2–41 
show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices.

Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 1 of 2) Note (1)

Device Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4

EP1S10 484-pin FineLine BGA Transmitter (2) 20 840 (4) 5 5 5 5

840 (3) 10 10 10 10

Receiver 20 840 (4) 5 5 5 5

840 (3) 10 10 10 10

672-pin FineLine BGA
672-pin BGA

Transmitter (2) 36 624 (4) 9 9 9 9

624 (3) 18 18 18 18

Receiver 36 624 (4) 9 9 9 9

624 (3) 18 18 18 18

780-pin FineLine BGA Transmitter (2) 44 840 (4) 11 11 11 11

840 (3) 22 22 22 22

Receiver 44 840 (4) 11 11 11 11

840 (3) 22 22 22 22 

EP1S20 484-pin FineLine BGA Transmitter (2) 24 840 (4) 6 6 6 6

840 (3) 12 12 12 12

Receiver 20 840 (4) 5 5 5 5

840 (3) 10 10 10 10

672-pin FineLine BGA
672-pin BGA

Transmitter (2) 48 624 (4) 12 12 12 12

624 (3) 24 24 24 24

Receiver 50 624 (4) 13 12 12 13

624 (3) 25 25 25 25

780-pin FineLine BGA Transmitter (2) 66 840 (4) 17 16 16 17

840 (3) 33 33 33 33

Receiver 66 840 (4) 17 16 16 17

840 (3) 33 33 33 33 
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When you span two I/O banks using cross-bank support, you can route 
only two load enable signals total between the PLLs. When you enable 
rx_data_align, you use both rxloadena and txloadena of a PLL. 
That leaves no loadena for the second PLL.

EP1S25 672-pin FineLine BGA
672-pin BGA

Transmitter (2) 56 624 (4) 14 14 14 14

624 (3) 28 28 28 28

Receiver 58 624 (4) 14 15 15 14

624 (3) 29 29 29 29

780-pin FineLine BGA Transmitter (2) 70 840 (4) 18 17 17 18

840 (3) 35 35 35 35

Receiver 66 840 (4) 17 16 16 17

840 (3) 33 33 33 33

1,020-pin FineLine 
BGA

Transmitter (2) 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Receiver 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Notes to Table 2–37:
(1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second 

row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center 
PLL. For example, in the 484-pin FineLine BGA EP1S10 device, PLL 1 can drive a maximum of five channels at 
840 Mbps or a maximum of 10 channels at 840 Mbps. The Quartus II software may also merge receiver and 
transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum 
numbers of receiver and transmitter channels.

(2) The number of channels listed includes the transmitter clock output (tx_outclock) channel. If the design requires 
a DDR clock, it can use an extra data channel.

(3) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite 
bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank 
channels simultaneously if, for example, PLL_1 is clocking all receiver channels and PLL_2 is clocking all 
transmitter channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or 
two adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on 
one side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the 
other center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 
624 Mbps.

(4) These values show the channels available for each PLL without crossing another bank.

Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 2 of 2) Note (1)

Device Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4



Altera Corporation 2–133
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

The only way you can use the rx_data_align is if one of the following 
is true:

■ The receiver PLL is only clocking receive channels (no resources for 
the transmitter)

■ If all channels can fit in one I/O bank

Table 2–38. EP1S30 Differential Channels Note (1)

Package Transmitter
/Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 

780-pin 
FineLine 
BGA

Transmitter 
(4)

70 840 18 17 17 18 (6) (6) (6) (6)

840 (5) 35 35 35 35 (6) (6) (6) (6)

Receiver 66 840 17 16 16 17 (6) (6) (6) (6)

840 (5) 33 33 33 33 (6) (6) (6) (6)

956-pin 
BGA

Transmitter 
(4)

80 840 19 20 20 19 20 20 20 20

840 (5) 39 39 39 39 20 20 20 20

Receiver 80 840 20 20 20 20 19 20 20 19

840 (5) 40 40 40 40 19 20 20 19

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (2) (7) 840 19 
(1)

20 20 19 
(1)

20 20 20 20

840 (5),(8) 39 
(1)

39 
(1)

39 
(1)

39 
(1)

20 20 20 20

Receiver 80 (2) (7) 840 20 20 20 20 19 (1) 20 20 19 (1)

840 (5),(8) 40 40 40 40 19 (1) 20 20 19 (1)

Table 2–39. EP1S40 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 

780-pin 
FineLine 
BGA

Transmitter 
(4)

68 840 18 16 16 18 (6) (6) (6) (6)

840 (5) 34 34 34 34 (6) (6) (6) (6)

Receiver 66 840 17 16 16 17 (6) (6) (6) (6)

840 (5) 33 33 33 33 (6) (6) (6) (6)
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956-pin 
BGA

Transmitter 
(4)

80 840 18 17 17 18 20 20 20 20

840 (5) 35 35 35 35 20 20 20 20

Receiver 80 840 20 20 20 20 18 17 17 18

840 (5) 40 40 40 40 18 17 17 18

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (10) 
(7)

840 18 
(2)

17 
(3)

17 
(3)

18 
(2)

20 20 20 20

840 (5), (8) 35 
(5)

35 
(5)

35 
(5)

35 
(5)

20 20 20 20

Receiver 80 (10) 

(7)
840 20 20 20 20 18 

(2)
17 
(3)

17 
(3)

18 (2)

840 (5), (8) 40 40 40 40 18 
(2)

17 
(3)

17 
(3)

18 (2)

1,508-pin 
FineLine 
BGA

Transmitter 
(4)

80 (10) 
(7)

840 18 
(2)

17 
(3)

17 
(3)

18 
(2)

20 20 20 20

840 (5), (8) 35 
(5)

35 
(5)

35 
(5)

35 
(5)

20 20 20 20

Receiver 80 (10) 
(7)

840 20 20 20 20 18 
(2)

17 
(3)

17 
(3)

18 (2)

840 (5), (8) 40 40 40 40 18 
(2)

17 
(3)

17 
(3)

18 (2)

Table 2–40. EP1S60 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 

956-pin
BGA

Transmitter 
(4)

80 840 12 10 10 12 20 20 20 20

840 (5), (8) 22 22 22 22 20 20 20 20

Receiver 80 840 20 20 20 20 12 10 10 12

840 (5), (8) 40 40 40 40 12 10 10 12

Table 2–39. EP1S40 Differential Channels (Part 2 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 
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1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (12) 
(7)

840 12 
(2)

10 
(4)

10 
(4)

12 
(2)

20 20 20 20

840 (5), (8) 22 
(6)

22 
(6)

22 
(6)

22 
(6)

20 20 20 20

Receiver 80 (10) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5), (8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

1,508-pin 
FineLine 
BGA

Transmitter 
(4)

80 (36) 
(7)

840 12 
(8)

10 
(10)

10 
(10)

12 
(8)

20 20 20 20

840 (5),(8) 22 
(18)

22 
(18)

22 
(18)

22 
(18)

20 20 20 20

Receiver 80 (36) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5),(8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10

956-pin 
BGA

Transmitter 
(4)

80 (40) 
(7)

840 10 10 10 10 20 20 20 20

840 (5),(8) 20 20 20 20 20 20 20 20

Receiver 80 840 20 20 20 20 10 10 10 10

840 (5),(8) 40 40 40 40 10 10 10 10

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

92 (12) 
(7)

840 10 
(2)

10 
(4)

10 
(4)

10 
(2)

20 20 20 20

840 (5),(8) 20 
(6)

20 
(6)

20 
(6)

20 
(6)

20 20 20 20

Receiver 90 (10) 
(7)

840 20 20 20 20 10 
(2)

10 
(3)

10 (3) 10 (2)

840 (5),(8) 40 40 40 40 10 
(2)

10 
(3)

10 (3) 10 (2)

Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 
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1,508-pin 
FineLine 
BGA

Transmitter 
(4)

80 (72) 
(7)

840 10 
(10)

10 
(10)

10 
(10)

10 
(10)

20 
(8)

20 
(8)

20 (8) 20 (8)

840 (5),(8) 20 
(20)

20 
(20)

20 
(20)

20 
(20)

20 
(8)

20 
(8)

20 (8) 20 (8)

Receiver 80 (56) 
(7)

840 20 20 20 20 10 
(14)

10 
(14)

10 
(14)

10 
(14)

840 (5),(8) 40 40 40 40 10 
(14)

10 
(14)

10 
(14)

10 
(14)

Notes to Tables 2–38 through 2–41:
(1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second 

row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center 
PLL. For example, in the 780-pin FineLine BGA EP1S30 device, PLL 1 can drive a maximum of 18 transmitter 
channels at 840 Mbps or a maximum of 35 transmitter channels at 840 Mbps. The Quartus II software may also 
merge transmitter and receiver PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive 
both the maximum numbers of receiver and transmitter channels.

(2) Some of the channels accessible by the center fast PLL and the channels accessible by the corner fast PLL overlap. 
Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and 
4 with the number of channels accessible by PLLs 7, 8, 9, and 10. For more information on which channels overlap, 
see the Stratix device pin-outs at www.altera.com.

(3) The corner fast PLLs in this device support a data rate of 840 Mbps for channels labeled “high” speed in the device 
pin-outs at www.altera.com.

(4) The numbers of channels listed include the transmitter clock output (tx_outclock) channel. An extra data 
channel can be used if a DDR clock is needed.

(5) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite 
bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank 
channels simultaneously if say PLL_1 is clocking all receiver channels and PLL_2 is clocking all transmitter 
channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or two 
adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on one 
side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the other 
center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 624 
Mbps.

(6) PLLs 7, 8, 9, and 10 are not available in this device.
(7) The number in parentheses is the number of slow-speed channels, guaranteed to operate at up to 462 Mbps. These 

channels are independent of the high-speed differential channels. For the location of these channels, see the device 
pin-outs at www.altera.com.

(8) See the Stratix device pin-outs at www.altera.com. Channels marked “high” speed are 840 MBps and “low” speed 
channels are 462 MBps.

Table 2–41. EP1S80 Differential Channels (Part 2 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10
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The high-speed differential I/O circuitry supports the following high 
speed I/O interconnect standards and applications:

■ UTOPIA IV
■ SPI-4 Phase 2 (POS-PHY Level 4)
■ SFI-4
■ 10G Ethernet XSBI
■ RapidIO
■ HyperTransport

Dedicated Circuitry

Stratix devices support source-synchronous interfacing with LVDS, 
LVPECL, 3.3-V PCML, or HyperTransport signaling at up to 840 Mbps. 
Stratix devices can transmit or receive serial channels along with a 
low-speed or high-speed clock. The receiving device PLL multiplies the 
clock by a integer factor W (W = 1 through 32). For example, a 
HyperTransport application where the data rate is 800 Mbps and the 
clock rate is 400 MHz would require that W be set to 2. The SERDES factor 
J determines the parallel data width to deserialize from receivers or to 
serialize for transmitters. The SERDES factor J can be set to 4, 7, 8, or 10 
and does not have to equal the PLL clock-multiplication W value. For a J 
factor of 1, the Stratix device bypasses the SERDES block. For a J factor of 
2, the Stratix device bypasses the SERDES block, and the DDR input and 
output registers are used in the IOE. See Figure 2–73. 

Figure 2–73. High-Speed Differential I/O Receiver / Transmitter Interface Example
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An external pin or global or regional clock can drive the fast PLLs, which 
can output up to three clocks: two multiplied high-speed differential I/O 
clocks to drive the SERDES block and/or external pin, and a low-speed 
clock to drive the logic array.

The Quartus II MegaWizard® Plug-In Manager only allows the 
implementation of up to 20 receiver or 20 transmitter channels for each 
fast PLL. These channels operate at up to 840 Mbps. The receiver and 
transmitter channels are interleaved such that each I/O bank on the left 
and right side of the device has one receiver channel and one transmitter 
channel per LAB row. Figure 2–74 shows the fast PLL and channel layout 
in EP1S10, EP1S20, and EP1S25 devices. Figure 2–75 shows the fast PLL 
and channel layout in the EP1S30 to EP1S80 devices.

Figure 2–74. Fast PLL & Channel Layout in the EP1S10, EP1S20 or EP1S25 Devices Note (1)

Notes to Figure 2–74:
(1) Wire-bond packages support up to 624 Mbps.
(2) See Table 2–41 for the number of channels each device supports.
(3) There is a multiplexer here to select the PLL clock source. If a PLL uses this multiplexer to clock channels outside of 

its bank quadrant, those clocked channels support up to 840 Mbps for “high” speed channels and 462 Mbps for 
“low” speed channels, as labeled in the device pin-outs at www.altera.com. 
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Figure 2–75. Fast PLL & Channel Layout in the EP1S30 to EP1S80 Devices Note (1)

Notes to Figure 2–75:
(1) Wire-bond packages support up to 624 Mbps.
(2) See Table 2–38 through 2–41 for the number of channels each device supports.
(3) There is a multiplexer here to select the PLL clock source. If a PLL uses this multiplexer to clock channels outside of 

its bank quadrant, those clocked channels support up to 840 Mbps for “high” speed channels and 462 Mbps for 
“low” speed channels as labeled in the device pin-outs at www.altera.com.
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The transmitter external clock output is transmitted on a data channel. 
The txclk pin for each bank is located in between data transmitter pins. 
For ×1 clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock 
bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 
622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 
1/8, or 1/10, the SERDES automatically generates the clock in the 
Quartus II software.

For systems that require more than four or eight high-speed differential 
I/O clock domains, a SERDES bypass implementation is possible using 
IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, 
RapidIO, and HyperTransport technology, the source synchronous clock 
rate is not a byte- or SERDES-rate multiple of the data rate. Byte 
alignment is necessary for these protocols since the source synchronous 
clock does not provide a byte or word boundary since the clock is one half 
the data rate, not one eighth. The Stratix device’s high-speed differential 
I/O circuitry provides dedicated data realignment circuitry for user-
controlled byte boundary shifting. This simplifies designs while saving 
LE resources. An input signal to each fast PLL can stall deserializer 
parallel data outputs by one bit period. You can use an LE-based state 
machine to signal the shift of receiver byte boundaries until a specified 
pattern is detected to indicate byte alignment.

Power 
Sequencing & 
Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they 
have been designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Although you can power up or down the VCCIO and VCCINT power 
supplies in any sequence, you should not power down any I/O banks 
that contain configuration pins while leaving other I/O banks powered 
on. For power up and power down, all supplies (VCCINT and all VCCIO 
power planes) must be powered up and down within 100 ms of each 
other. This prevents I/O pins from driving out.

Signals can be driven into Stratix devices before and during power up 
without damaging the device. In addition, Stratix devices do not drive 
out during power up. Once operating conditions are reached and the 
device is configured, Stratix devices operate as specified by the user. For 
more information, see Hot Socketing in the Selectable I/O Standards in 
Stratix & Stratix GX Devices chapter in the Stratix Device Handbook, 
Volume 2.
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