
© August 2009 Altera Corporation

© August 2009
AN 585: Simulation Debugging Using
Triple Speed Ethernet Testbench
AN-585-1.0
Introduction
This application note shows how you can leverage the verification environment in the
testbench provided in the Altera® Triple Speed Ethernet MegaCore® function to debug
your system design. You can use the different types of loopback in the testbench to
simulate your system design, and create various common scenarios by configuring
the parameters and the state machine in the testbench.

The Triple Speed Ethernet MegaCore function consists of a 10/100/1000 Mbps
Ethernet media access controller (MAC), a 1000BASE-X physical coding sub-layer
(PCS), and an optional physical medium attachment (PMA). The Triple Speed
Ethernet MegaCore function supports seamless interface to commercial Ethernet PHY
devices via medium independent interface (MII) and gigabit medium independent
interface (GMII). The MegaCore function also supports reduced gigabit medium
independent interface (RGMII) in 10/100/1000 Mbps.

The Triple Speed Ethernet MegaCore function provides a testbench that supports
simulation of all basic Ethernet packet transactions, and has an easy-to-use simulation
environment for any standard HDL simulator. The testbench consists of device under
test (DUT) modules which are the custom MegaCore function variations, the Ethernet
frame generators, and clock and reset generators.

The testbench is intended for simulating common configurations and may not cover
all the possible configurations of the Triple Speed Ethernet MegaCore function.

f For more information about the Triple Speed Ethernet MegaCore function, refer to the
Triple Speed Ethernet MegaCore Function page of the Altera website.

Types of Loopback
You can use the following types of loopback in the testbench to debug your system
design:

■ No loopback—you can disable loopback through the testbench settings.

■ MAC local loopback—you can enable the MAC local loopback through the
MegaWizard™ interface.

■ PHY loopback—you can enable the PHY loopback through the testbench settings.

■ External loopback—you can enable the external loopback through the testbench
settings.

If you turn on the Enable MII/GMII/RGMII loopback logic option in the
MegaWizard interface, the testbench by default configures the Triple Speed Ethernet
core to enable the MAC local loopback. You must ensure that the
ENABLE_GMII_LOOPBACK parameter in the testbench is set to 0 when you set the
testbench to operate in the external loopback or PHY loopback.
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

http://www.altera.com/products/ip/iup/ethernet/m-alt-ethernet-mac.html

Page 2 Types of Loopback
1 The ENABLE_GMII_LOOPBACK parameter is listed under the Core settings in the
testbench file. With the exception of the ENABLE_GMII_LOOPBACK parameter, the
values of the other parameters in the Core settings list must not be changed.

Table 1 shows which loopback is available for the different DUT or variations of the
Triple Ethernet MegaCore function.

The following sections describe the types of loopback in detail.

No Loopback
Figure 1 shows the block diagram of the testbench when loopback is disabled.

To operate the testbench without a loopback, you must set the TB_RXFRAMES
parameter to a value higher than zero in the MAC only core variation.

Table 1. Debugging Modes Support for Variations of Triple Speed Ethernet MegaCore Function

Core Variation
Internal (MAC)
Local Loopback

External
Loopback

PHY Loopback
(GXB) No Loopback

MAC only Yes Yes No Yes

MAC and PCS Yes Yes No No

MAC, PCS and PMA Yes Yes Yes No

PCS only No Yes No No

PCS and PMA No Yes Yes No

Figure 1. Block Diagram of Triple Speed Ethernet Testbench with No Loopback

Av
al

on
-S

T
In

te
rfa

ce

M
II/

G
M

II/
R

G
M

II
Testbench

DUT

Generator

Monitor Receive

Transmit

Generator

Monitor
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

Types of Loopback Page 3
MAC Local Loopback
Figure 2 shows the block diagram of the testbench when the MAC local loopback is
enabled.

By enabling the MII/GMII/RGMII loopback logic, you set the testbench parameter
ENABLE_GMII_LOOPBACK to 1, which in turn sets the LOOP_ENA bit to 1 in the
command_config register.

PHY Loopback
You can enable the PHY loopback in designs that have GX transceivers as PMA
modules.

Figure 3 shows the block diagram of the testbench when the PHY loopback is enabled.

To enable the PHY loopback, you set the sd_loopback bit in the PCS control register
to 1. To set the sd_loopback bit, you need to do a configuration write to the PCS
control register.

Figure 2. Triple Speed Ethernet Testbench with MAC Local Loopback Enabled

Av
al

on
-S

T
In

te
rfa

ce

M
II/

G
M

II/
R

G
M

II

Testbench
DUT

MAC

Generator

Monitor Receive

TransmitTX

RX Generator

Monitor

Figure 3. Triple Speed Ethernet Testbench in PHY Loopback

Av
al

on
-S

T
In

te
rfa

ce

Testbench
DUT

PMA

Generator

Monitor Receive

TransmitTX

RX
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 4 Customizing a Test Case
External Loopback
Figure 4 shows the block diagram of the testbench when the external loopback is
enabled.

You can enable the external loopback in all core variations, on the following three
interfaces:

■ Serial interface—For core variations that include PMA, the external loopback is
implemented on the serial interface. When a core variation that includes PMA
module is selected, the loopback on the serial interface is generated in the
testbench by default. You do not need to make any changes to the configuration.

■ Ten-bit interface (TBI)—The transceiver data is looped back to the receiver on the
TBI. The TBI applies to PCS only, and MAC and PCS core variations.

■ MII/GMII/RGMII—The loopback on the MII/GMII/RGMII applies to MAC only
core variations. The TB_RXFRAMES parameter must be set to 0 to activate the
external loopback on the MII/GMII/RGMII.

Customizing a Test Case
You can use the testbench to accelerate the debugging process by duplicating test
cases with problems. The testbench, by default, is configured with the following
features:

■ Gigabit mode enabled (ETH_MODE = 1000)

■ Loopback mode (TB_RXFRAMES = 0)

■ The MAC function transmits five normal Ethernet frames (TB_TXFRAMES = 5)

■ First transmit packet with payload length of 100 bytes (TB_LENSTART = 100)

■ Increment of one byte in payload length for every subsequent frame
(TB_LENSTEP = 1)

■ Maximum payload length of 1500 bytes (TB_LENMAX = 1500)

■ Inter packet frame of 12 clocks (TB_IPG_LENGTH = 12)

Figure 4. Triple Speed Ethernet Testbench in External Loopback

Av
al

on
-S

T
In

te
rfa

ce

Testbench
DUT

Generator

Monitor Receive

Transmit

Generator

Monitor

M
II/

G
M

II/
R

G
M

II/
TB

I/S
er

ia
l I

nt
er

fa
ce
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

Customizing a Test Case Page 5
In addition to the default test case, you can create your own customized test cases by
simply configuring the testbench parameters, or the VHDL or Verilog HDL codes in
the testbench.

Configuring Parameters
You can use the functionality configuration parameters to enable or disable specific
functionality of MAC and PCS. You can use the test configuration parameters to
create custom test scenarios.

Table 2 shows how you can configure certain parameters to carry out specific tasks.

Table 2. Manipulating Parameters for Specific Tasks (Part 1 of 2)

Task Parameter Description

Changing Ethernet
speed

ETH_MODE You can configure the Ethernet speed using the ETH_MODE
parameter. The valid values for this parameter are 10, 100, and
1000.

The value of the ETH_MODE parameter directly affects the
value of the ETH_SPEED and ENA_10 bits in the
command_config register. The Triple Speed Ethernet
testbench sets these 2 bits accordingly with respect to the
value of the ETH_MODE parameter.

When the ETH_MODE parameter is set to 10 or 100, the MII is
enabled and the Ethernet speed is set to 10 Mbps and
100 Mbps respectively.

With the value of 1000, the GMII is enabled and the Ethernet
speed is at 1000 Mbps.

Varying frame length TB_LENSTART,
TB_LENSTEP, TB_LENMAX

To modify the frame length of the Ethernet packets, you can
configure the TB_LENSTART, TB_LENSTEP, and
TB_LENMAX parameters.

The TB_LENSTART parameter defines payload length in bytes
for the first frame.

The subsequent frames have payload lengths of
(previous_payload_length + TB_LENSTEP).

The TB_LENMAX parameter defines the maximum payload
length. When the payload length hits the maximum, the
payload length rolls back and starts to increment from 0.

Generating different
frame types

TB_ENA_VLAN,
TB_TRIGGERXOFF,
TB_TRIGGERXON

By default, the frames generated are normal ethernet packets.
The TB_ENA_VLAN, TB_TRIGGERXOFF, and
TB_TRIGGERXON parameters trigger the generation of the
virtual local area network (VLAN) frames and pause frames.

You can generate the VLAN frame by setting a non-zero value
to the TB_ENA_VLAN parameter.

You can generate the pause frames by setting a non-zero value
to the TB_TRIGGERXOFF or TB_TRIGGERXON
parameters. The TB_TRIGGERXOFF parameter triggers the
generation of pause frame with non-zero pause quanta, while
the TB_TRIGGERXON parameter triggers the generation of
pause frame with zero pause quanta.
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 6 Customizing a Test Case
f For more information on the testbench simulation parameters, refer to Appendix B,
Simulation Parameters in the Triple Speed Ethernet MegaCore Function User Guide.

Modifying VHDL or Verilog HDL Code
The following sections describe how to configure the Ethernet frame generator, and
change the state machine in the testbench by modifying the VHDL or Verilog HDL
code.

Configuring the Ethernet Frame Generator
The Ethernet frame generator is a bus functional model that constructs Ethernet
frames to be sent to and from the MAC function. The frame generation is controlled
by input parameters in the Ethernet frame generator. For the Ethernet frame generator
on the Avalon® Streaming (Avalon-ST) interface, the parameters are prefixed with
ff_, and for the Ethernet frame generator on the MII/GMII/RGMII, the parameters
are prefixed with gm_. You can modify the input parameters in Table 3 to generate
different test cases by substituting <intf> with ff_ and gm_ for the respective
Ethernet frame generators.

Controlling the
streaming of frames

TB_TXFRAME, TB_RXFRAME,
TB_IPG_LENGTH

The number of frames generated by the generator is controlled
by the TB_TXFRAME and TB_RXFRAMES parameters.

You can control the interpacket gap by varying the
TB_IPG_LENGTH parameter.

Inducing collision in
half-duplex mode

RX_COL_FRM, RX_COL_GEN,
TX_COL_FRM, TX_COL_GEN,

TX_COL_NUM

The collision test case is only applicable when half-duplex
mode is enabled (HD_ENA = 1).

You can configure these parameters to specify the location of
the intended collision.

Table 2. Manipulating Parameters for Specific Tasks (Part 2 of 2)

Task Parameter Description

Table 3. Input Parameters (Part 1 of 2)

Input Parameter Description

<intf>_mac_reverse When enabled, the destination address and source address are sent to the
most significant byte (MSB) first.

<intf>_dst Hexadecimal value for the destination address field.

<intf>_src Hexadecimal value for the source address field.

<intf>_prmble_len Number of preamble bytes to be generated.

<intf>_pquant Pause quanta value.

<intf>_vlan_ctl Two bytes, VLAN information for the VLAN tagged frame.

<intf>_len Payload length.

<intf>_frmtype Two bytes, when non null, this value is inserted in the type or frame field
instead of the payload length.

<intf>_cntstart Decimal value. Payload length of the first frame.

<intf>_cntstep Decimal value. Number of bytes to increment on subsequent frames.

<intf>_ipg_len Inter-packet gap in decimals.

<intf>_payload_err When set to 1, induces data corruption in payload by corrupting last byte of
data.
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_ethernet.pdf

Customizing a Test Case Page 7
1 In the testbench, the parameters in Table 3 have default values assigned to them. To
change the values, look for the strings that begin with assign <parameter name> in
the Ethernet frame generator configuration settings and modify the parameters to suit
your test case requirements.

Changing the State Machine
The state machine in the testbench controls the sequence of the DUT register
configuration and the simulation flow. The state machine also implements the control
interface signals; mainly the read, write, and waitrequest signals that control the
read and write of the MAC and PCS registers.

<intf>_prmbl_err When set to 1, induces data corruption in preamble bytes.

<intf>_crc_err When set to 1, inserts incorrect Cyclic Redundancy Check (CRC) to frame.

<intf>_vlan_en When set to 1, VLAN tagged frame is generated.

<intf>_stack_vlan_en When set to 1, stacked VLAN tagged frame is generated.

<intf>_pad_en When set to 1, zero padding to frame is enabled.

<intf>_phy_err When set to 1, asserts the rx_err signal.

<intf>_end_err When set to 1, the rx_dv signal only deasserts one clock cycle after end of
frame.

<intf>_data_only When set to 1, omits preamble bytes, zero paddings, and CRC.

<intf>_pause_gen When set to 1, generates a pause frame. This parameter is always set to 1 for
the Ethernet frame generator on the Avalon-ST interface. The MAC function
generates pause frame for its transmit path.

<intf>_carrier_sense (1) When set to 1, simulates the carrier sense.

<intf>_false_carrier (1) When set to 1, simulates the false carrier.

<intf>_carrier_extend (1) When set to 1, simulates the carrier extension.

<intf>_carrier_extend_error (1) When set to 1, simulates the carrier extension with error.

Note to Table 3:

(1) This parameter is only applicable for the Ethernet frame generator on the MII/GMII/RGMII.

Table 3. Input Parameters (Part 2 of 2)

Input Parameter Description
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 8 Customizing a Test Case
Figure 5 shows the simulation flow of the Triple Speed Ethernet testbench.

The sequence of the DUT register configuration is fixed in the testbench. To change
the sequence, you must change the states prefixed with stm_ in the state machine.

At each state, a value is assigned to reg_data_in and updated in the MAC register,
for example:

reg_data_in = # (2) 32'h 00000000;

Change the value on this assignment so that the value is written to the targeted
register.

Test Case Samples
The following section describes test cases that demonstrate how to use the testbench
to configure parameters, the Ethernet frame generator, and the state machines.

You can obtain these test cases from the AN585_test_case.zip file from the
Literature: Application Notes page of the Altera website. Download and unzip the
AN585_test_case.zip file to the <your project> folder. Run the simulation for the test
cases by executing the corresponding .tcl files from the
<your project>\tse_debug_with_tb\testbench\tse_debug_with_tb directory.

1 You can compare the testbench files of these test cases (tb_testcase<number>.v) with
the default testbench file (tb_default.v) to find out the changes made.

Figure 5. Testbench Simulation Flow

Out of Reset?

IDLE
(stm_typ_idle)

No

Yes

Start Simulation
(stm_typ_sim)

Read Statistic
Counter Registers

End of Simulation
(stm_typ_end_sim)

MAC and/or PCS
Register Configuration
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

http://www.altera.com/literature/lit-an.jsp

Customizing a Test Case Page 9
Test Case 1
In this test case, the MAC function is operating at the speed of 1000 Mbps. The MAC
function transmits four normal packets; with the first packet starting with a payload
length of 110 bytes, the second with 120 bytes, the third with 130 bytes, and the fourth
with 140 bytes. While the MAC function transmits its second packet, the xoff signal
is asserted to generate a pause frame with pause quanta of 8 (4,096 ns).

To reproduce this test case, set the following parameter values:

ENABLE_GMII_LOOPBACK = 0;

TB_TXFRAMES = 4;

TB_LENSTART = 110;

TB_LENSTEP = 10;

TB_TRIGGEROFF = 300;

TB_MACPAUSEQ = 8

When you run the simulation, the MAC function is operating at the speed of 1000
Mbps and in duplex mode. You can observe data on the gm_tx_d and gm_rx_d
signals as the testbench is set to do an external loopback on the GMII. The MAC
function transmits four frames: the first with a payload length of 110 bytes, the second
with 120 bytes, the third with 130 bytes, and the fourth with 140 bytes. The xoff_gen
signal is asserted at 9,528 ns during the transmission of the second frame. The pause
frame is sent out by the MAC function as soon as the transmission of the second frame
is complete. After the transmission of the third frame, the transmission pauses for
4,096 ns before transmitting the fourth frame. The pause in the transmission indicates
the MAC function's response to the pause frame which is being looped back on its
receive path.

Test Case 2
In this test case, the MAC function is configured to half-duplex mode and operates at
100 Mbps. The MAC function transmits two frames and receives three frames. A
collision occurs on the first frame.

To reproduce this test case, set the following parameter values:

ETH_MODE = 100;

HD_ENA = 1'b 1;

TB_RXFRAMES = 3;

TB_TXFRAMES = 2;

TX_COL_FRM = 1;

TX_COL_GEN = 100

When you run the simulation, the MAC function is operating at the speed of 100
Mbps, and in half-duplex mode. You can observe data on the m_tx_d and m_rx_d
signals on the MII. As the MAC function operates in half-duplex mode, the
transaction is only one way at any given time. The MAC function only starts
transmitting the frames after its receive operation is complete. A collision is induced
on the first frame. Once the collision takes place, the MAC function stops its
transmission and sends out a 32-bit jam pattern. After an interval as long as the
backoff period, the MAC function retransmits the first packet.
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 10 Customizing a Test Case
Test Case 3
In this test case, the MAC function operates at 1000 Mbps. The destination address of
the transmit frame is 0xabcdef221100. The MAC function transmits seven Ethernet
packets while the payload length is arbitrary. On the MAC receive path, the MAC
function receives four normal Ethernet frames, two pause frames, and a VLAN tagged
frame. Frame 3 and Frame 6 are pause frames, Frame 7 is a VLAN tagged frame, and
the rest are normal frames.

To reproduce this test case, set the following parameter values:

TB_RXFRAMES = 7;

TB_TXFRAMES = 7;

assign ff_dst = 48'h ABCDEF221100;

assign gm_pquant = 2;

assign gm_pause_gen = rxframe_cnt == 2|rxframe_cnt == 5 ? 1'b1 : 1'b0;

assign gm_vlan_en = rxframe_cnt == 6 ? 1'b1 : 1'b0;

Figure 6 shows the reproduction of this test case when the simulation is run. When the
MAC function receives the pause frames on its receive path, the MAC function stops
transmitting on gm_tx_d after TX frame 3 and TX frame 5 for a period of time before
resuming the transmission.

Test Case 4
In this test case, the MAC function operates at 1000 Mbps with external loopback. The
MAC receive datapath is disabled, and the transmit datapath is enabled. The MAC
function transmits two normal Ethernet frames.

By default, the testbench state machine writes to all writable registers during the
register configuration. In this test case, the register configuration stops after writing to
the tx_almost_full register at address offset 0x38.

Figure 6. Timing Diagram for Test Case 3

RX Frame 1

TX Frame 1 TX Frame 2

RX Frame 2

TX Frame 3

RX Frame 3

TX Frame 4

RX Frame 4

TX Frame 5

Pause Frame Pause Frame

TX Frame 6

VLAN Tagged Frame

TX Frame 7

gm_rx_data valid

gm_rx_data

gm_tx_en

gm_tx_data 000000

00 0000 00 0000

00

00

00 00 00 00
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

Customizing a Test Case Page 11
To reproduce this test case, perform the following steps:

1. Specify the value of parameter TB_TXFRAMES to 7;

2. Look for the control state stm_typ_wr_tx_af; and assign the next state to
stm_typ_sim:

stm_typ_wr_tx_af:

begin

if (reg_busy == 1'b 0 && reg_busy_reg == 1'b1)

begin

nextstate <= stm_typ_sim;

end

3. In the if statement, look for:

else if(nextstate == stm_typ_mac_config)

reg_data_in[1] <=#(2) 1’b 0;

and assign 1 b’1 to reg_data_in[1] as in the following:

else if(nextstate == stm_typ_mac_config)

reg_data_in[1] <=#(2) 1’b 1;

Figure 7 shows the behavior of this test case when the simulation is run. The register
configuration stops after the tx_almost_full register is configured. The MAC
function transmits two frames, which are then looped back to the receive path on the
GMII. You detect the two frames on gm_rx_d but not on ff_rx_data because
during register configuration, the rx_en bit of the command_config register is set to
0.

Test Case 5
In this test case, the MAC function transmits packets with payload length of zero, and
receives error packets with no payload from the cable.

The receiver frame format has the following field sizes:

■ Preamble = 7 bytes

■ Start frame delimiter (SFD) = 1 byte

Figure 7. Timing Diagram for Test Case 4

address

write_data

write

ff_tx_data

gm_tx_data

gm_tx_en

gm_rx_data

gm_rx_data_valid

ff_rx_data

00x0e

0x0a 000

tx data 1 tx data 2 00

0 tx data 1 0 tx data 2 0

rx data 1 0 0000

00

rx data 2

0

© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 12 Customizing a Test Case
■ Destination address = 6 bytes

■ Source address = 6 bytes

■ Payload length = 2 bytes

■ CRC = 4 bytes

To reproduce this test case, perform the following steps:

1. To transmit packets with payload length of zero, set the following parameter
values:

TB_LENSTEP = 0;

TB_LENSTART = 0

2. To send error packets to the MAC function, configure the Ethernet generator on
the GMII as indicated:

assign gm_pad_en = 0;

assign gm_len <= 0

1 Ensure that the TB_RXFRAMES parameter's value is more than zero for the Ethernet
frame generator on the MII/GMII/RGMII to generate frames. When the
TB_RXFRAMES parameter equals zero, a loopback is enabled causing the Ethernet
frame generator on the MII/GMII/RGMI not to generate frames to the DUT.

Figure 8 and Figure 9 show the reproduction of this test case when the simulation is
run.

In Figure 8, the packet with zero payload length is detected on gm_tx_d. The field
length of the packet is 0×0000. The MAC function inserts bytes of zeroes to meet the
frame length minimum requirement of 64 bytes.

Figure 8. Timing Diagram for Test Case 5: Transmitter Frame

rx_clk

gm_tx_err

gm_tx_en

gm_tx_d 00 55 00

Preamble SFD Destination
Address

Source
Address

Payload Length
(0x0000)

CRC
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

Customizing a Test Case Page 13
In Figure 9, an erroneous packet with no payload is received on gm_rx_d.

Test Case 6
In this test case, the MAC function receives packets in the following sequence: normal
packet with no error; packet with CRC error, followed by packet with a length that
exceeds the maximum packet length setting.

To reproduce this test case, perform the following steps:

1. Set the TB_MACLENMAX parameter to the following maximum length configuration
for the MAC function:

TB_MACLENMAX = 200;

2. Specify the following packet length value of packet 1:

assign gm_len = 160;

3. Set the subsequent packet lengths to increment by 10 bytes by specifying the
following TB_LENSTEP parameter:

TB_LENSTEP = 20;

4. Set the following zero based counter, rxframe_cnt, to generate CRC error on the
second frame:

assign gm_crc_error = rxframe_cnt = 1? 1'b1 : 1'b0

Figure 9. Timing Diagram for Test Case 5: Receiver Frame

Preamble SFD Destination
Address

Source
Address

Length
(0x0000)

CRC

rx_clk

gm_rx_err

gm_rx_en

gm_rx_d 00 55 00
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

Page 14 Conclusion
Figure 10 shows the reproduction of this test case when the simulation is run. The
rx_err[2] signal is asserted at the end of the second receiver packet when the CRC
error is detected. The rx_err[1] signal is asserted in the third frame to indicate that
an invalid frame length is detected.

Conclusion
This application note provides ways to accelerate the debugging process using the
Triple Speed Ethernet testbench. By configuring the testbench parameters and states,
and reproducing test cases, you can make comparisons between the expected and
abnormal signal behaviors.

Figure 10. Timing Diagram for Test Case 6

ff_rx_data Packet 1 Packet 2 Packet 3

ff_rx_sop

ff_rx_eop

rx_err[5:0]

rx_err[5]

rx_err[4]

rx_err[3]

rx_err[2]

rx_err[1]

rx_err[0]
AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench © August 2009 Altera Corporation

Document Revision History Page 15
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

Document Revision History
Table 4 shows the revision history for this application note.

Table 4. Document Revision History

Date and Revision Changes Made Summary of Changes

August 2009,

version 1.0

Initial Release. —
© August 2009 Altera Corporation AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench

http://www.altera.com
http://www.altera.com/support

	AN 585: Simulation Debugging Using Triple Speed Ethernet Testbench
	Introduction
	Types of Loopback
	No Loopback
	MAC Local Loopback
	PHY Loopback
	External Loopback

	Customizing a Test Case
	Configuring Parameters
	Modifying VHDL or Verilog HDL Code
	Test Case Samples

	Conclusion
	Document Revision History

