
© August 2008 Altera Corporation

© August 2008
Embedded Programming using the 8051
and Jam Byte-Code
AN-111-1.2
Introduction
The 8051 family of microprocessors is relatively inexpensive, easy to use, and is a proven
platform for managing simple processing tasks. This application note outlines Altera
support for embedded programming and configuration using the 8051 family of
microprocessors and a JamTM Byte-Code File (.jbc). Instructions to port the 8051 Jam
Byte-Code Player are also provided.

8051 Architecture
The 8051 architecture consists of separate ROM and RAM addressing.

Figure 1 shows the 8051 interface as it applies to memory.

The 8051 processor can retrieve programming or configuration information from
configuration or FLASH devices. The 8051 processor can access up to 64 Kbytes of ROM and
64 Kbytes of RAM, and can be extended by paging additional memory. However, paging
memory requires additional discrete logic between the 8051 and associated memory, which
slows access and programming times.

Figure 1. 8051 Memory Interface

!PSEN

Up to 64 Kbytes

To JTAG Chain

8051

RAM
Data Memory

ROM
Program Memory

!OE

!OE

!WE

!RD

!WRI/O Port

FFFFh

0000h

Up to 64 Kbytes

FFFFh

0000h
Embedded Programming using the 8051 and Jam Byte-Code

Page 2 Jam Byte-Code Software
The 8051 retrieves and executes instructions from ROM or program memory. Part of
executing instructions involves controlling I/O pins that provide access to ROM,
RAM, I/O ports, and addresses. For example, when the 8051 retrieves an instruction
to access external data, or RAM, the processor automatically toggles the!RD pin such
that the information in the RAM is retrieved and stored in the appropriate internal
registers. These actions are performed automatically by the processor.

Many variants of the basic 8051 architecture exist, including different clock speeds (12
to 50 MHz), 8- or 16-bit functions, and 0 to 24 Kbytes of on-chip ROM.

1 When programming devices that contain more than 64 macrocells, Altera
recommends using the fastest 8051 for the best programming times.

Jam Byte-Code Software
The Jam Byte-Code Player and a .jbc file are needed to program or configure Altera
devices using the 8051 processor. This source code can be customized for the target
8051. For more information on how to customize source code, see “Porting the Jam
Byte-Code Player”.

JBC files can be generated using the MAX+PLUS® II software, or by compiling an
existing ASCII-based Jam File (.jam) into a Jam Byte-Code equivalent using the
stand-alone Jam Byte-Code Compiler.

You can download the compiler at http://www.jamisp.com. The Jam Byte-Code
Player source code can be obtained by contacting Altera Applications at 1 (800)
800-EPLD, or sending an e-mail to sos@altera.com.

Figure 2 shows one way to store the Jam software in an 8051 embedded system.

Figure 2. 8051 Architecture

8051 RAM

ROM

Scratch Area

Jam Byte-Code File (.jbc)

Jam Byte-Code Player Binary

RAM Size

ROM Size

!OE

!OE

!WE!WR

!RD

!PSEN

Up to 64 Kbytes

FFFFh

0000h

Up to 64 Kbytes

FFFFh

0000h
To JTAG Chain
Embedded Programming using the 8051 and Jam Byte-Code © August 2008 Altera Corporation

https://www.altera.com/support/software/download/programming/jam/jam-index.jsp
mailto:sos@altera.com

Porting the Jam Byte-Code Player Page 3
Although Figure 2 shows the .jbc file stored in ROM, the file could also be stored and
executed in RAM. In either case, the Jam Byte-Code Player must be executed by the
8051 processor, and must have access to the .jbc file.

Porting the Jam Byte-Code Player
The 8051 Jam Byte-Code Player is written in the C programming language for the
8051 architecture. The source code is provided in the jbi51.c file, which is provided
with the player and is designed to make porting as easy as possible.

Table 1 shows the source code’s default configuration.

The source code can be compiled for any 8051 variant as long as the supporting
compiler can compile C code. If any of the target system’s parameters differ from the
default, the Jam Player source code can be customized to accommodate them,
including the storage options and the execution of the Jam Byte-Code Player binary
and the .jbc file. Porting the source code requires three basic steps.

Step 1: Edit Compiler-Specific Keywords
If a compiler other than the Keil compiler is used, the keywords in Example 1 must be
changed at the beginning of the jbi51.c file:

The Keil keywords are code, xdata, pdata, idata, data, and bit. The code
keyword refers to program memory where the Jam Byte-Code Player binary is stored.
All other keywords refer to specific internal and external RAM spaces. These memory
spaces are specific to the 8051 architecture. Change these keywords to map to the
compiler you are using.

Step 2: Customize the Memory Map
You can store the .jbc file in either ROM or RAM. However, you must customize the
Jam Player according to the .jbc file location. The .jbc file’s default location is in ROM.

Table 1. 8051 Jam Byte-Code Player Configuration Options

Configuration Processor Compiler JBC File Storage

Default Dallas DS87C520 Keil ROM

Other Any 8051 Variant Any 8051
C Compiler

ROM, RAM, Or
Serial Port (1)

Note to Table 1:

(1) Programming can be accomplished by downloading the .jbc file from remote storage to local RAM via the
serial port.

Example 1. Compiler-Specific Keywords

#define CONSTANT_AREA code
#define XDATA_AREA xdata /* external RAM accessed by 16-bit pointer */
#define PDATA_AREA pdata /* external RAM accessed by 8-bit pointer */
#define IDATA_AREA idata /* internal RAM accessed by 8-bit pointer */
#define RDATA_AREA data /* internal RAM registers with direct access */
#define BIT bit /* internal RAM single bit data type */
© August 2008 Altera Corporation Embedded Programming using the 8051 and Jam Byte-Code

Page 4 Porting the Jam Byte-Code Player
ROM

To specify ROM as the .jbc file’s location, you must set the global variable, using the
following method.

1. Convert the binary .jbc file into hexadecimal data, and set jbi_program[] equal
to the hex data at the end of the jbi51.c file.

#ifndef JBC_FILE_IN_RAM
unsigned char CONSTANT_AREA jbi_program[] =
{

 0 /* insert JBC program data here */
};
#endif /* JBC_FILE_IN_RAM */

A program called jbc2data, which is provided on the Jam web site at
http://www.jamisp.com, is used to convert the binary .jbc file into a hexadecimal
array. The compiler automatically links the JBC information with the binary. If
needed, you can use the linker to specify the exact storage location within the ROM.

RAM

Loading the .jbc file into RAM requires two steps:

1. Add the following line to the beginning of the jbi51.c file.

#define JBC_FILE_IN_RAM

2. Load the .jbc file into RAM before jbi_execute() is called by copying the .jbc
file from its source to the jbi_program[] array. The jbi_program[] array
points to the .jbc file as it is stored in RAM. The Jam Player accesses the .jbc file
through jbi_program[]. By default, the code in main() reads the .jbc file from
the 8051 serial port into the jbi_program[] global array. The provided code was
used to communicate between a PC and the 8051 via the serial port. You may need
to customize the code depending on your actual target system.

Step 3: Customize the I/O Routines
The 8051 Jam Byte-Code Player source code was written so that all I/O functions are
confined to a few routines. These routines may require customization based upon the
system-level hardware.

Table 2 shows each routine and the corresponding I/O function.

jbi_jtag_io()

This routine is the interface to the IEEE Std. 1149.1 (JTAG) signals TDI, TMS, TCK, and
TDO. By default, the IEEE Std. 1149.1 signals are mapped to the hardware ports in
Table 3.

Table 2. Routines and Corresponding I/O Functions

Routine Function

jbi_jtag_io() Interface to the IEEE Std. 1149.1 JTAG signals TDI, TMS, TCK, and TDO.

jbi_message() Prints information and error text to standard output, when available.

jbi_export() Passes information such as the user electronic signature (UES) back to the
calling program.

jbi_delay() Implements the programming pulses or delay needed during execution.
Embedded Programming using the 8051 and Jam Byte-Code © August 2008 Altera Corporation

https://www.altera.com/support/software/download/programming/jam/jam-index.jsp

Porting the Jam Byte-Code Player Page 5
These signals can be remapped, depending on the hardware port and pins used. The
actual pin names are accessed with keywords defined in the library that supports the
targeted 8051 processor. By default, the source code calls for the Dallas DS87C520. The
pins of each port in the DS87C520 are designated by P<port number>_<pin number>.
For example, TDI is mapped to port 1, pin 0, which is designated P1_0. The ports and
pins should be remapped based upon the convention of the library used with the
targeted 8051.

1 You must preserve the write and read sequence to and from the ports within this
routine. Disruption of the write and read process results in Jam Player errors.

jbi_message()

The jbi_message() routine prints information and error messages to standard
output. In most applications you will not use this function, so you can either remove
the routine or comment out the call to puts().

jbi_export()

The jbi_export() routine returns information from the Jam Player to a calling
program. The most common use of this routine is to transfer the UES instruction code
back to the program that calls the Jam Player. By default, the Jam Player prints the
value using printf. If printf is not available, the UES instruction can be passed
back to the calling program, and the calling program must decide whether or not to
program the device based on the actual contents of the UES value.

jbi_delay()

Pulses of varying widths are used to program the internal EEPROM cells of Altera
MAX devices. The Jam Player uses the jbi_delay() routine to implement these
pulse widths. This routine must be customized based on the speed of the processor
and the time it takes the processor to execute a single loop. By default, the routine is
coded so that the absolute delay time (in microseconds) is divided by eight, which is
used as the number of times that the processor loops to achieve the specified delay.
The default setting is for an 8051 running at 33 MHz. If the target 8051 does not loop
eight times per microsecond, the count variable must be adjusted. The
jbi_delay() routine must perform accurately between the range of one millisecond
to one second. The function should not delay more than 10% over the time specified,
and it cannot return in less time.

With all three steps completed, the 8051 Jam Byte-Code Player is ready to be compiled
and run on the target processor.

Table 3. JTAG Mapping Hardware Ports

Signal Hardware Port

TDI P1.0

TMS P1.1

TCK P1.7

TDO P3.5
© August 2008 Altera Corporation Embedded Programming using the 8051 and Jam Byte-Code

Page 6 Porting the Jam Byte-Code Player
Executing the Jam Player
JBI_RETURN_TYPE jbi_execute
(

 PROGRAM_PTR program
 long program_size,
 char *workspace,
 long workspace_size,
 *action,
 char **init_list,
 long *error_address,
 init *exit_code

)

jbi_execute() is the main entry point for the 8051 Jam Byte-Code Player. To
successfully call and run the Jam Player, jbi_execute() must receive the correct
information. This routine is called from main() by default. The remaining code
within main() sets up the variables that are passed to jbi_execute() and handles
errors that may be returned by jbi_execute().

The call to jbi_execute() is shown below:

exec_result=jbi_execute(init_list, &error_address, &exit_code);

An initialization list tells the Jam Player which functions to perform (e.g., program
and verify) and is passed to jbi_execute(). Once the Jam Player has completed a
task, it returns with an exit code. If there are any errors, jbi_execute() returns the
location of those errors within the .jbc file as an address.

The initialization list must be passed in the correct manner. If an invalid initialization
list or no initialization list is passed, the Jam Player simply checks the .jbc file. If the
syntax check passes, the Jam Player issues a successful exit code without performing
the program function. The init_list variable is an array of pointers to an array of
characters. In other words, init_list is a two-dimensional array that is assigned a
series of string commands to provide instructions to the Jam Player. For example, you
can use the following code to set up the init_list to instruct the Jam Player to
perform a program and verify operation:

char CONSTANT_AREA init_list[][]=”DO_PROGRAM=1”, “DO_VERIFY=1”;

This code declares the init_list variable while setting it equal to the appropriate
parameters. CONSTANT_AREA is the identifier that instructs the compiler to store
init_list in program memory. The default code sets init_list differently, and is
used with a terminal program to give instructions to the Jam Player via a command
prompt. In most cases, you will not run the Jam Player with this type of interaction.

Two code types can be returned by jbi_execute(). The first code type is returned
in the variable exit_code and the second code type is returned in the variable
error_code. These codes indicate the functional result of the operation. These codes
flag problems with memory limitations or syntax errors, which indicate software
issues specific to the Jam Byte-Code Player or the Jam Byte-Code File.

Table 4 and Table 5 list the possible codes returned in the exit_code and error_code
variables.
Embedded Programming using the 8051 and Jam Byte-Code © August 2008 Altera Corporation

Porting the Jam Byte-Code Player Page 7
Each error, except JBIC_OUT_OF_MEMORY, reflects a corrupt or incorrect .jbc file, or
improper installation of the Jam Player.

Table 4. exit _code Variable Return Codes

exit _code Description

0 Success

1 Illegal flags are specified in the initialization list

2 Unrecognized device ID

3 Device version is not supported

4 Programming failure

5 Blank-check failure

6 Verify failure

7 SRAM configuration failure

Table 5. error_code Variable Error Codes

Variable error _code Description Action

JBIC_OUT_OF_MEMORY 1 Call to malloc() in
jbi_malloc() failed to allocate
dynamic memory.

Check available physical
RAM before running Jam
and compare with the
estimate explained in the
“Memory Resources”
section.

JBIC_STACK_OVERFLOW 2 Stack requires greater than
128 items.

Increase
JBI_STACK_SIZE.

JBIC_TO_ERROR 3 JBC File is corrupt. Check JBC File against a
good file. Replace the file if
necessary.

JBIC_UNEXPECTED_END 4 Unexpected end of JBC File. Check for corrupt file. If
intact, contact the vendor
who created the JBC File.

JBIC_ILLEGAL_OPCODE 5 Unexpected Byte-Code parameter. Contact vendor for new file.

JBIC_INTEGER_OVERFLOW 6 Integer value exceeded legal
range (32 bits).

Contact vendor for new file.

JBIC_DIVIDE_BY_ZERO 7 Internal error from JBC File. Contact vendor for new file.

JBIC_CRC_ERROR 8 Contents of JBC File are corrupt. Regenerate JBC File and
replace.

JBIC_INTERNAL_ERROR 9 Unexpected Jam Byte-Code
Player execution.

Contact vendor with source
code error.

JBIC_BOUNDS_ERROR 10 Error in JBC File–JBC algorithm
specifies incorrect bounds on
array size or other parameters.

Contact vendor for new JBC
File.

JBIC_VECTOR_MAP_FAILED 11 Jam Byte-Code Player does not
support VECTOR command.

Contact vendor for Jam
Player that supports the
VECTOR command.

JBIC_USER_ABORT 12 Unused. None.
© August 2008 Altera Corporation Embedded Programming using the 8051 and Jam Byte-Code

Page 8 Porting the Jam Byte-Code Player
Memory Resources
The 8051 Jam Byte-Code Player takes 29 Kbytes of program memory. You can store the
.jbc file in program memory or load it into data memory just prior to execution of the
Jam Byte-Code Player. The .jbc file size is dependent on which and how many devices
are targeted for programming or configuring, as well as whether the .jbc file uses
compression. If the .jbc file uses compression, it will take some extra time to
decompress the file, resulting in a longer programming or configuration time.

1 Altera offers the option to generate .jbc files that do not use compression.

To override the MAX+PLUS II default and disable compression, add the following
information to the [system] section of your maxplus2.ini file:

SVF_JBC_USE_COMPRESSION=OFF

This setting results in shorter programming times but uses more memory because the
.jbc file will be significantly larger. Each design must be evaluated based upon the
available memory resources to determine whether compressed or uncompressed .jbc
files should be used. Some high-density devices which require a large programming
file cannot be supported due to the 64 Kbytes program memory limitation in the 8051.

f For more information on compressed and uncompressed JBC file sizes, refer to AN
425: Using Command-Line Jam STAPL Solution for Device Programming.

Programming Times
As PLDs increase in density, performance, and complexity, so do the software tools
and algorithms that support them. As a result, the file sizes and algorithms for
EEPROM, FLASH, and SRAM-based architectures have increased in complexity. At
the same time, the complexity and performance of the 8051 has not changed.
Programming and configuration times are sub-standard when compared to other
families of processors. You should consider this factor when designing a system that
relies on timely in-field upgrades of programmable logic. Densities and complexity of
the target logic makes 8051 programming times unsuitable for certain applications.
Performance can vary widely as a function of the density of the target logic device and
the speed and efficiency of the 8051. Programming times can vary from two minutes,
for a 64-macrocells device, to more than 10 minutes for a 256-macrocells device.

1 Altera recommends using the 8051 for in-field upgrades only when reasons for
employing an 8051 outweigh the costs associated with long programming times.

In these cases, the 8051 variant with the highest performance should be chosen. Altera
also recommends using an 8051 for programming product-term device densities
below 256 macrocells.
Embedded Programming using the 8051 and Jam Byte-Code © August 2008 Altera Corporation

http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/an/AN425.pdf

Conclusion
101 Innovation Drive
San Jose, CA 95134
www.altera.com
Technical Support
www.altera.com/support

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized
Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service
marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

Conclusion
Easy in-field upgrades can be made using the 8051 family of microprocessors and the
Jam Byte-Code Player. Porting the Jam Byte-Code player can be accomplished in three
steps. Source code is provided to make porting simple and to support the ability to
upgrade to a variety of device densities. This source code is specific to the 8051 family
of microprocessors and is compatible with any 8051 device variant. You can generate
program files easily using the MAX+PLUS II software, which provides control over
programming times and memory utilization. The 8051 microprocessor is the ideal tool
for programming low-density devices.

Referenced Documents
This application note references the following documents:

■ AN 425: Using Command-Line Jam STAPL Solution for Device Programming

Document Revision History
Table 6 shows the revision history for this application note.

Table 6. Document Revision History

Date and
Document

Version Changes Made Summary of Changes

August 2008
v1.2

■ Updated “Introduction”, “Executing the
Jam Player”, and “Memory Resources”
sections.

—

October 2005
v1.1

■ Removed references to AN 122: Using Jam
STAPL for ISP & ICR via an Embedded
Processor.

—

http://www.altera.com
http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/literature/an/an111.pdf
http://www.altera.com/literature/an/an111.pdf
http://www.altera.com/literature/an/AN425.pdf
http://www.altera.com/support

	Embedded Programming using the 8051 and Jam Byte-Code
	Introduction
	8051 Architecture
	Jam Byte-Code Software
	Porting the Jam Byte-Code Player
	Executing the Jam Player
	Memory Resources
	Programming Times

	Conclusion
	Referenced Documents
	Document Revision History

