
January 2012 Altera Corporation

S52014-3.0

© 2012 Altera Corporation. Al
QUARTUS and STRATIX wor
Office and in other countries. A
respective holders as described
products to current specificatio
products and services at any ti
of any information, product, or
advised to obtain the latest ver
for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Altera Enhanced Configuration (EPC)
Devices

This document describes the latest enhanced configuration (EPC) device flash
memory standard with a feature-rich configuration controller. A single-chip
configuration solution provides you with several new and advanced features that
significantly reduce configuration times. This document discusses the hardware and
software implementation of the EPC device features such as concurrent and dynamic
configuration, data compression, clock division, and an external flash memory
interface. EPC devices include EPC4, EPC8, and EPC16 devices.

Concurrent Configuration
Configuration data is transmitted from the EPC device to the SRAM-based device on
the DATA lines. The DATA lines are outputs on the EPC devices and inputs to the
SRAM-based devices.

These DATA lines correspond to the Bitn lines in the Convert Programming Files
window in the Altera Quartus II software. For example, if you specify a SRAM
Object File (.sof) to use Bit0 in the Quartus II software, that .sof is transmitted on the
DATA[0] line from the EPC device to the SRAM-based device.

Supported Schemes and Guidelines
There are several different ways to configure Altera SRAM-based programmable logic
devices (PLDs) with EPC devices:

■ 1-bit passive serial (PS)

■ 2-bit PS

■ 4-bit PS

■ 8-bit PS

■ Fast passive parallel (FPP)

Additionally, you can use these configuration schemes in conjunction with the
dynamic configuration option (previously called page mode operation) for
sophisticated configuration setups.

FPP configuration mode uses the eight DATA[7..0] lines from the EPC device, which
is used to configure APEX II and Stratix series devices. To decrease configuration
time, FPP configuration provides eight bits of configuration data per clock cycle to the
target device.

f For more information about configuration schemes, refer to the Enhanced Configuration
Devices (EPC4, EPC8, and EPC16) Data Sheet and Configuring Stratix & Stratix GX
Devices chapter in the Stratix Handbook.
l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
ds and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark

ll other words and logos identified as trademarks or service marks are the property of their
 at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor
ns in accordance with Altera's standard warranty, but reserves the right to make changes to any

me without notice. Altera assumes no responsibility or liability arising out of the application or use
 service described herein except as expressly agreed to in writing by Altera. Altera customers are
sion of device specifications before relying on any published information and before placing orders

Subscribe

ISO
9001:2008
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=S52014
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html
http://www.altera.com/literature/ds/dsepc16.pdf?
http://www.altera.com/literature/ds/dsepc16.pdf?
http://www.altera.com/literature/hb/stx/ch_13_vol_2.pdf?
http://www.altera.com/literature/hb/stx/ch_13_vol_2.pdf?

Page 2 Concurrent Configuration
f For more information about additional EPC devices, refer to the PCN0506: Addition of
Intel Flash Memory As Source For EPC4, EPC8, and EPC16 Enhanced Configuration
Devices and the Using the Intel Flash Memory Based EPC4, EPC8, and EPC16 Devices
white paper.

Concurrent Configuration Using n-Bit PS Modes
The n-bit (n = 1, 2, 4, or 8) PS configuration mode allows EPC devices to concurrently
configure SRAM-based devices or device chains. In addition, these devices do not
have to be the same device family or density and they can be any combination of
Altera SRAM-based devices. An individual EPC device DATA line is available for each
targeted device. Each DATA line can also feed a daisy chain of devices.

The Quartus II software only allows the selection of n-bit PS configuration modes.
However, you can use these modes to configure any number of devices from 1 to 8.
When configuring SRAM-based devices using n-bit PS modes, refer to Table 1 to select
the appropriate configuration mode for the fastest configuration time.

1 Mode selection has an impact on the amount of memory used. For more information,
refer to “Calculating the Size of Configuration Space” on page 14.

Table 1. Recommended Configuration Using n-Bit PS Modes

Number of Devices (1) Recommended Configuration Mode

1 1-bit PS

2 2-bit PS

3 4-bit PS

4 4-bit PS

5 8-bit PS

6 8-bit PS

7 8-bit PS

8 8-bit PS

Note to Table 1:

(1) Assume that each DATA line is only configuring one device, not a daisy chain of devices.
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

http://www.altera.com/literature/pcn/pcn0506.pdf?
http://www.altera.com/literature/pcn/pcn0506.pdf?
http://www.altera.com/literature/pcn/pcn0506.pdf?
http://www.altera.com/literature/wp/wp_epc_flash.pdf?

Concurrent Configuration Page 3
For example, if you configure three SRAM-based devices, you would use the 4-bit PS
mode. For the DATA0, DATA1, and DATA2 lines, the corresponding .sof data will be
transmitted from the configuration device to the SRAM-based PLD. For the DATA3
line, you can leave the corresponding Bit3 line blank in the Quartus II software. On
the PCB, leave the DATA3 line from the EPC device unconnected. Figure 1 shows the
Quartus II Convert Programming Files window (Tools menu) setup for this scheme.

Figure 1. Software Settings for Configuring Devices Using n-Bit PS Modes
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

Page 4 Concurrent Configuration
Alternatively, you can daisy chain two SRAM-based devices to one DATA line while
other DATA lines drive one device each. For example, you could use the 2-bit PS mode
to drive two SRAM-based devices with DATA Bit0 (EP20K100E and EP20K60E
devices) and the third device (the EP20K200E device) with DATA Bit1. This 2-bit PS
configuration scheme requires less space in the configuration flash memory, but may
increase the total system configuration time as shown in Figure 2.

Figure 2. Daisy Chaining Two SRAM-Based Devices to One DATA Line
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

Dynamic Configuration (Page Mode) Implementation Overview Page 5
Design Guidelines
For debugging, Altera recommends keeping the control lines such as nSTATUS,
nCONFIG, and CONF_DONE between each PLD and the configuration device separate.
You can keep control lines separate with a switch to manage which control signals are
fed back into the EPC device. Figure 3 shows an example of the connections between
the EPC device and the targeted PLDs.

Dynamic Configuration (Page Mode) Implementation Overview
Pages in EPC devices allow you to organize and store various configurations for the
entire system that use one or more Altera PLDs. This dynamic configuration (or page
mode) feature allows systems to dynamically reconfigure their PLDs with different
configuration files.

You can use different pages to store configuration files that support different
standards (for example, I/O standards or memory). Alternatively, the different pages
place the system in different modes. For example, page 0 could contain a
configuration .sof for the PLD that only processes data packets and page 1 could
contain a configuration file for the same PLD that processes data and voice packets.

With the ability to dynamically switch pages, you can also configure Altera devices
with various revisions for debugging without having to reprogram the configuration
device. For example, you can configure a device that is on “stand-by” to perform
another function and then reconfigure it back with the original configuration file.

A page is a section of the flash memory space that contains configuration data for all
PLDs in the system. One page stores one system configuration regardless of the
number of PLDs in the system. The size of each page is dynamic and changes each
time the EPC device is reprogrammed. EPC devices support a maximum of eight
pages of configuration data. The number of pages is also limited to the density of the
configuration device.

1 The number of pages required in a system is not dependent on the number of PLDs in
the system, but depends on the number of unique system configurations.

Figure 3. Example of Using Debugging Switches for Control Lines

DCLK
DATA0

OE

nCS

nINIT_CONF

PORSEL

PGM[2..0]

DATA1

DCLK
DATA0

nSTATUS
CONF_DONE

nCONFIG

DCLK
DATA0

nSTATUS
CONF_DONE

nCONFIG

PLD

PLD

Configuration
Device
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

Page 6 Dynamic Configuration (Page Mode) Implementation Overview
External page mode input pins PGM[2..0]determine which page to use during PLD
configuration and page pointers determine the data location. Each page pointer
consists of a starting address register and a length count register. The
word-addressable starting address register (23 bits) is used to determine where the
page begins in the flash memory. The count register (25 bits) determines the length of
the page counted in nibbles (group of 4 bits equaling half of a byte). Figure 4 shows a
block diagram of the option-bit space and its address locations.

For example, a page for the EPC16 device must start between word addresses
0x08020h and 0xFFFFFh and cannot be overlap with other pages. Figure 5 shows an
example of an EPC16 page mode using three pages.

During configuration, different pages are selected by the PGM[2..0] pins. These pins
are used to select one out of eight pages. PGM[2..0] pins are sampled at least one time
before the configuration data is sent to the targeted PLDs.

Figure 4. Option-Bit Memory Map

15 ADDR0 0

24 CNT0 9

22 ADDR0 168 CNT0 0

15 ADDR1 0

24 CNT1 9

22 ADDR1 168 CNT1 0

15 ADDR7 0

24 CNT7 9

22 ADDR7 168 CNT7 0

08008h

08009h

0801Fh

Figure 5. EPC16 Page Mode Implementation Example

PAGE0_ADDR PAGE0_CNT

PAGE1_ADDR PAGE1_CNT

PAGE2_ADDR PAGE2_CNT

PAGE3_ADDR PAGE3_CNT

PAGE4_ADDR PAGE4_CNT

PAGE5_ADDR PAGE5_CNT

PAGE6_ADDR PAGE6_CNT

PAGE7_ADDR PAGE7_CNT

Configuration Data

Configuration Data

Configuration Data

Unused

Flash Memory Space
(Partial)

0x08020h

Page register residing in the flash memory

0xFFFFFh
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

Dynamic Configuration (Page Mode) Implementation Overview Page 7
Setting the PGM[2..0] pins to select an incorrect page (for example, a page that is
non-existent or a blank page) causes the EPC device to enter an erroneous state. The
only way to recover from this state is to set the PGM[2..0] pins to select a valid page
and power cycle the board.

1 To ensure proper configuration, only set the PGM[2..0]pins to select valid pages.

Within each page, you can store as many configuration files as your system needs.
There is no limitation to the length of a page except for the physical limitation
determined by the size of the flash memory (for example, 0xFFFFFFh for EPC16
devices). However, all pages must be contiguous.

Software Implementation (Convert Programming Files)
The Convert Programming Files window (Tools menu) in the Quartus II software
allows you to create the EPC device Programmer Object File (.pof) and enable the
dynamic configuration feature.

1 EPC devices do not support passive parallel asynchronous (PPA) and passive parallel
synchronous (PPS) configuration modes. If you choose one of these modes, the
Quartus II software reports an error message when the .pof is generated.

In the Convert Programming Files window, there are SOF Data entries (.sof), located
in the Input files to convert dialog box. Each SOF Data entry refers to a unique
system configuration. Figure 6 shows the setup for a system that has one APEX device
and uses page 0 and page 1. Each page has a different version of the configuration file
for the same APEX device.

Figure 6. Using Page Mode Example
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

Page 8 Dynamic Configuration (Page Mode) Implementation Overview
To set the page pointer to point to a particular page or SOF Data entry, select SOF
Data and click Properties. Clicking Properties launches the SOF Data Properties
window where you can select page pointers to point to the chosen SOF Data. If you
do not use the SOF Data Properties window to make changes, the default page is 0.
Each SOF Data entry for your configuration device must have a unique page number.
Figure 7 shows page pointer 1 assigned to the SOF Data section containing
Device1_Rev2.sof (refer to Figure 6).

Figure 8 shows a more complex setup that uses the 2-bit PS configuration mode to
concurrently configure two different APEX devices with multiple pages storing two
revisions of each design. Two configurations for the entire system requires four
configuration files (the number of devices multiplied by the number of unique system
configurations).

By selecting the Memory Map File option, the Quartus II Memory Map File (.map) is
generated, describing the flash memory address locations. This information is useful
when you are using the external flash interface feature.

Figure 7. Software Setting for Selecting Pages

Figure 8. Concurrent Configuration of Two Devices with Two System Configurations
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

External Flash Memory Interface Page 9
External Flash Memory Interface
EPC devices support an external flash interface that allows devices external to the
controller access to the EPC device’s flash memory. You can use the flash memory to
store boot or application code for processors or as general-purpose memory for
processors and PLDs.

Figure 9 shows the interfaces available on the EPC device.

Applications that require remote update capabilities for on-board programmable logic
(Stratix series devices) and applications that use soft-embedded processor cores
(Nios embedded processor) use the external flash memory interface feature.

For soft-embedded processor core applications, the controller configures the
programmable logic with the configuration data stored in the flash memory. On
successful configuration, the embedded processor uses the external flash interface to
boot up and run code from the same flash memory, eliminating the need for a
stand-alone flash memory device.

For applications requiring remote system configuration capabilities, a processor or
PLD can use the external flash interface to store an updated configuration image into
a new page in flash memory—the external flash interface coupled with dynamic
configuration. You can obtain new configuration data from a local intelligent host or
through the Internet. Reconfiguring the system with the new page updates the system
configuration.

f For more information about implementing remote and local system updates with EPC
devices, refer to the Using Remote System Configuration with Stratix & Stratix GX Devices
chapter in the Stratix Handbook or the Remote System Upgrades with Stratix II & Stratix II
GX Devices chapter in the Stratix II Handbook.

f Currently, only EPC4 and EPC16 configuration devices support the external flash
interface. For support of this feature in other EPC devices, refer to the Altera
Applications 24/7 Technical Support page.

Figure 9. EPC Device Interfaces

PLD or
Processor

External
Flash Interface

Configuration
Interface

Flash
Device

Controller
Device

PLD(s)

Stacked Chip Package
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

http://www.altera.com/literature/hb/stx/ch_15_vol_2.pdf?
http://www.altera.com/literature/hb/stx2gx/stx2_sii52008.pdf?
http://www.altera.com/literature/hb/stx2gx/stx2_sii52008.pdf?
http://www.altera.com/literature/hb/stx2gx/stx2_sii52008.pdf?
http://www.altera.com/mysupport
http://www.altera.com/mysupport

Page 10 External Flash Memory Interface
Flash Memory Map
You can divide an EPC device’s flash memory into two categories—logical with
configuration and processor space and physical with flash data block boundaries.
Configuration space consists of portions of memory used to store configuration
option bits and configuration data. Processor space consists of portions of memory
used to store boot and application code.

Logical Divisions
In all EPC devices, configuration option bits are stored ranging from word address
0x008000 to 0x00801F (byte address 0x010000 to 0x01003F). These bits are used to
enable various controller features such as configuration mode selection, compression
mode selection, and clock divider selection. In all EPC devices, configuration data is
stored starting from word address location 0x008020 or byte address 0x010040. The
ending address of configuration space is not fixed and depends on the number and
density of PLDs configured using the EPC device as well as the number of pages. All
remaining address locations above the configuration space are available for processor
application code. The boot space spans addresses 0x000000 to 0x007FFF. Both boot
and application code spaces are intended for use by an external processor or PLD.
Figure 10 shows the flash memory map inside an EPC16 device.

Physical Divisions
Physical divisions are flash data blocks that can be individually written to and erased.
For example, the Sharp flash-based EPC16 device contains 16-Mb Sharp flash memory
that is divided into 2 boot blocks, 6 parameter blocks, and 31 main data blocks. These
physical divisions vary from one flash memory or vendor to another and must be
considered if the external flash interface is used to erase or write flash memory. These
divisions are not significant if the interface is used as a read-only interface after initial
programming.

Figure 10. EPC16 Flash Memory Map

Flash Memory Map

Application Code

Unused Memory

Word
Addresses

Option Bits

Boot/Parameter Blocks

Configuration Pages

Processor
Specifications

0x000000

0x00801F
0x008020

0xFFFFFF

Configuration
Space
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

External Flash Memory Interface Page 11
Interface Availability and Connections
Flash memory ports are shared between the internal controller and the external
device. A processor or PLD uses the external flash interface to access flash memory
only when the controller is not using the interface. Therefore, the internal controller is
the primary master of the bus while the external device is the secondary master.

Flash memory ports such as address, data, and control are internally connected to the
controller device. Additionally, these ports are connected to pins on the package
providing the external interface. During in-system programming (ISP) of the EPC
device as well as configuration of the PLDs, the controller uses the internal interface to
flash memory, rendering the external interface unavailable. External devices should
tri-state all connections for the entire duration of the ISP and configuration to prevent
contention.

On completion of the ISP and configuration, the internal controller tri-states its
interface to the flash memory and enables weak internal pull-up resistors on address
and control lines as well as bus-hold circuits on the data lines. The internal flash
interface is now disabled and the external flash interface is available.

1 If you do not use the external flash interface feature, most flash-related pins must be
left unconnected on the board to avoid contention. There are a few exceptions to this
guideline which are outlined in the datasheet and pin-out tables.

f For more information about detailed schematics, refer to the Enhanced Configuration
Devices (EPC4, EPC8, and EPC16) Data Sheet.

Quartus II Software Support
You can use the Convert Programming Files window to generate flash memory
programming files. You can program flash memory in-system using JTAG or the
external flash interface. Select the .pof when programming the flash memory
in-system. You can also convert this .pof to a Jam Standard Test and Programming
Language (STAPL) Format File (.jam) or JAM Byte Code File (.jbc) for ISP. When
programming the flash memory through the external flash interface, you can create a
Hexadecimal (Intel-Format) Output File (.hexout) from this window.

1 The .hexout file used for programming EPC devices is different from the .hexout
configuration file generated for SRAM PLDs.

Along with PLD configuration files, you can program processor boot and application
code into flash memory through the Convert Programming Files window. You can
add a Hexadecimal (Intel-Format) File (.hex) containing boot code to the Bottom Boot
Data section of the window. Similarly, you can add a .hex file containing application
code to the Main Block Data section. You can store these files in the flash memory
using relative or absolute addressing. To select the type of addressing, highlight the
Bottom Boot Data or Main Block Data section and click Properties (Convert
Programming Files window).

Relative addressing mode allows the Quartus II software to pick the location of the
file in memory. For example, the Quartus II software always stores boot code starting
at address location 0x000000. This data increases to higher addresses.
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

http://www.altera.com/literature/ds/dsepc16.pdf?
http://www.altera.com/literature/ds/dsepc16.pdf?

Page 12 External Flash Memory Interface
1 The maximum boot file size for the EPC16 configuration device is 32K words or
64 Kbytes. The boot code is limited to the boot and flash memory parameter blocks.

When you select relative addressing mode for Main Block Data, the Quartus II
software aligns the last byte of information with the highest address (for example,
0x1FFFFF). Therefore, the starting address is dependent on the size of the .hex file. You
can obtain the starting address of the application code with the .map file.

The absolute addressing mode forces the Quartus II software to store the boot or
application .hex file data in address locations specified inside the .hex file itself. When
this mode is selected, create .hex files with the correct offsets and ensure there is no
overlap with addresses used for storing configuration data.

Figure 11 shows a screenshot of the Convert Programming Files window setup to
create a .pof and .map file for an EPC device.

1 Only one .hex file can be added to the Bottom Boot Data and Main Block Data
sections of this window.

You can use the Quartus II Convert Programming Files window to create two files
specific to the external flash interface feature—the .hexout and the .map files. The
.hexout file contains an image of the flash memory and the .map file contains memory
map information. The .hexout file is used by an external processor or PLD to program
the flash memory using the external flash interface. The .map file contains starting
and ending addresses for boot code, configuration page data, and application code.

Figure 11. Storing Boot and Application Code in Flash Memory
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

Data Compression Page 13
You can use the .hexout file to program blank EPC devices, update portions of the
flash memory (for example, a new configuration page), or both. This file contains
16 Mbits or 2 Mbytes of data. Table 2 lists the format of the .map file.

To perform partial flash memory updates, select the relevant portions of the .hexout
file using memory map information provided in the .map file.

1 Configuration data and processor space data could exist within the same physical
data block. In such cases, erasing the physical data block would affect both
configuration and processor data, requiring you to update both. You can avoid this
situation by storing application data starting from the next available whole data
block.

Data Compression
EPC devices support an efficient compression algorithm that compresses
configuration data by 1.9x for typical designs, effectively doubling the size of the
device. To select the right density for EPC devices, you should pre-calculate the total
size of uncompressed configuration space.

By clicking Options in the Convert Programming Files window, you can turn on the
Compression mode option in the Programming Object File Options window with the
.pof file selected as the programming file type. Figure 12 shows how to select the
compression mode.

Table 2. Memory Map File (1)

Block Start Address End Address

BOTTOM BOOT 0x00000000 0x0000001F

OPTION BITS 0x00010000 0x0001003F

PAGE 0 0x00010040 0x0001AD7F

MAIN 0x001FFFE0 0x001FFFFF

Note to Table 2:

(1) All the addresses in this file are byte addresses.

Figure 12. Selecting Compression Mode
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

Page 14 Clock Divider
Calculating the Size of Configuration Space
When using 1-bit PS configuration mode to serially configure multiple devices, all
configuration data is transmitted through the same DATA line and the devices are
daisy-chained together. Therefore, the total size of the uncompressed configuration
data is equal to the sum of the SRAM-based device’s configuration file size multiplied
by the number of pages used.

When using n-bit PS configuration mode to concurrently configure multiple devices,
each SRAM-based device has its own DATA line from the EPC devices. The total size of
the uncompressed configuration space is equal to the size of the largest device’s
configuration file size multiplied by n (where n = 1, 2, 4, or 8), which is then
multiplied by the number of pages used. For example, if three devices are
concurrently configured using 4-bit PS configuration mode, the total size of the
uncompressed configuration space is equal to the size of the largest device’s
configuration file multiplied by four.

When using FPP configuration mode, the total size of the uncompressed
configuration space is equal to the sum of the SRAM-based device’s configuration file
size multiplied by the number of pages used.

Clock Divider
The clock divider value specifies the clock frequency divisor, which is used to
determine the DCLK frequency, or how fast the data is clocked into the SRAM-based
device. You must consider the maximum DCLK input frequency of the targeted SRAM
device family while selecting the clock input and divider settings. For DCLK timing
specifications of SRAM-based devices, refer to the Configuration Handbook.

Settings and Guidelines
EPC devices use either an internal oscillator or an external clock source to clock data
into SRAM-based devices. The EPC device’s internal oscillator runs at nominal speeds
of 10, 33, 50, or 66 MHz. Additionally, the EPC device accepts an external clock source
running at speeds of up to 100 MHz.

For more information about the minimum and maximum speeds of the internal
oscillator, refer to the Enhanced Configuration Device Data Sheet.
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

http://www.altera.com/literature/ds/dsepc16.pdf?
http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Clock Divider Page 15
Figure 13 shows the clock divider unit in EPC devices.

Software Implementations
You can select the clock source and the clock speed in the Programming Object File
Options window with the .pof file selected as the programming file type in the
Convert Programming Files window. You can type the appropriate external clock
frequency in the Frequency (MHz) drop-down menu and select any value from the
divisor list regardless of the clock source setting.

Figure 14 shows how to set the clock source and clock divisor.

Figure 13. Clock Divider Unit in EPC Devices

Configuration Device

Clock Divider Unit

Divide
by N

External Clock
(Up to 100 MHz)

Internal Oscillator

10 MHz
33 MHz
50 MHz
66 MHz

DCLK

Figure 14. Software for Setting Clock Source and Clock Divisor
Altera Enhanced Configuration (EPC) DevicesJanuary 2012 Altera Corporation

Page 16 Document Revision History
Document Revision History
Table 3 lists the revision history for this document.

Table 3. Document Revision History

Date Version Changes

January 2012 3.0 Minor text edits.

December 2009 2.5 Removed “Referenced Documents” section.

October 2008 2.4
■ Added “Referenced Documents” section.

■ Updated new document format.

April 2007 2.3 Added document revision history.

October 2005 2.2 Technical content added.

July 2004 2.0
■ Added text regarding pointing to an incorrect page after Figure 2–8.

■ Renamed .hexpof to .hexout throughout chapter.

September 2003 1.0 Initial Release.
Altera Enhanced Configuration (EPC) Devices January 2012 Altera Corporation

http://www.altera.com/literature/hb/cfg/ch_14_vol_2.pdf
http://www.altera.com/literature/hb/cfg/ch_14_vol_2.pdf
http://www.altera.com/literature/wp/wp_epc_flash.pdf?
http://www.altera.com/literature/wp/wp_epc_flash.pdf?

	Altera Enhanced Configuration (EPC) Devices
	Concurrent Configuration
	Supported Schemes and Guidelines
	Concurrent Configuration Using n-Bit PS Modes
	Design Guidelines

	Dynamic Configuration (Page Mode) Implementation Overview
	Software Implementation (Convert Programming Files)

	External Flash Memory Interface
	Flash Memory Map
	Logical Divisions
	Physical Divisions

	Interface Availability and Connections
	Quartus II Software Support

	Data Compression
	Calculating the Size of Configuration Space

	Clock Divider
	Settings and Guidelines
	Software Implementations

	Document Revision History

