
March 2017 Altera Corporation

AN-639-2.0

© 2017 Altera Corporation. Al
QUARTUS and STRATIX are 
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
AN639: Inferring Stratix V DSP Blocks for
FIR Filtering Applications
Application Note
This application note describes how to craft your RTL code to control the Quartus® II 
software-inferred configuration of variable precision digital signal processing (DSP) 
blocks in finite impulse response (FIR) filtering applications on Altera® Stratix® V 
devices. The examples demonstrate DSP block inference for multiple FIR filter 
variations. In this application note, you learn how to write your HDL code to ensure 
the Quartus II Fitter utilizes the appropriate DSP block features for your FIR filter 
application.

Stratix V DSP Block Features
Different features of the Stratix V variable precision DSP blocks are useful for efficient 
configuration of different FIR filter variations. The DSP blocks can be programmed in 
different operational modes which use different combinations of these features. Use of 
the appropriate set of features minimizes resource utilization, reduces power 
consumption, and improves data throughput and performance for your DSP 
application.

The FIR filtering applications described in this document use the following features of 
the Stratix V variable precision DSP blocks:

■ High performance, power-optimized, fully registered multiplication operations.

■ Support for 18-bit and 27-bit word lengths.

■ Built-in addition, subtraction, and 64-bit accumulation units that support efficient 
combination of multiplication results.

■ Cascading 64-bit output bus to propagate output results from one block to another 
in a systolic array without external logic support.

■ Hard pre-adders that support halving multiplier usage in symmetric filters in both 
18-bit and 27-bit modes.

■ Internal coefficient register banks for filter implementation.

■ Output adder that is optionally incorporated in cascading output bus.

The DSP block scan-in registers can form a cascading 18-bit or 27-bit input bus. This 
DSP block feature is designed to be a latency- and resource-efficient solution for 
implementing the tap-delay line for single-channel single-rate FIR filters not 
optimized for symmetric coefficients. However, these scan-in registers are not 
available in the Quartus II software v10.1 release. Therefore, all the examples use a 
tap-delay line external to the Stratix V DSP blocks.

f For more information about the Stratix V DSP blocks, refer to the Variable Precision 
DSP Blocks in Stratix V Devices chapter of the Stratix V Device Handbook.
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Page 2 FIR Filter Application Design Examples
FIR Filter Application Design Examples
The design files that accompany this application note contain HDL code for examples 
of the following different FIR filter variations:

1. Single-channel single-rate systolic FIR filter 

2. Single-channel single-rate systolic FIR filter optimized for symmetric coefficients

3. Multi-channel single-rate systolic FIR filter

4. Multi-channel single-rate systolic FIR filter optimized for symmetric coefficients

5. Multi-channel interpolation systolic FIR filter

6. Multi-channel decimation systolic FIR filter

7. Multi-channel interpolation direct-form FIR filter

8. Multi-channel decimation direct-form FIR filter

The design files include Verilog HDL code to infer variations 1, 2, 3, 5, and 6, and 
VHDL code to infer variations 2, 4, 7, and 8.

Table 1 summarizes the FIR filter design examples and the DSP block features they 
demonstrate. In this document, the number of taps is the number of coefficients in the 
FIR filter equation before any optimization. All the applications are tested for the 
parameter values in Table 1. 

Table 1. FIR Filter Design Example Features and Stratix V DSP Block Features

Example Number of 
Taps

Clock Rate as 
Multiple of Input 

Sample Rate

Number 
of 

Channels

Input Data 
Width 
(Bits)

Coefficient 
Width 
(Bits)

Demonstrated DSP Block Features

Ve
ril

og
 H

DL

1 128 1× 1 18 18 Sum of two 18×18 multipliers with 
systolic register, output adder chain.

2 128 1× 1 17 18
Pre-adder, sum of two 18×18 multipliers 
with systolic register, coefficient 
storage, output adder chain.

3 128 4× 12 18 18 Sum of two 18×18 multipliers with 
systolic register, output adder chain.

5 128 16× 4 18 18
Sum of two 18×18 multipliers with 
systolic register, coefficient storage, 
output adder chain.

6 128 16× 4 18 18
Sum of two 18×18 multipliers with 
systolic register, coefficient storage, 
output adder chain, output accumulator.

VH
DL

2 64 1× 1 25 27
Pre-adder, 27×27 multiplier, coefficient 
storage, systolic register, output adder 
chain.

4 128 4× 12 25 27
Pre-adder, 27×27 multiplier, coefficient 
storage, systolic register, output adder 
chain.

7 128 16× 4 25 27 27×27 multiplier, coefficient storage, 
output adder chain.

8 128 16× 4 25 27 27×27 multiplier, coefficient storage, 
output adder chain.
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FIR Filter Application Design Examples Page 3
Each of the example applications demonstrates HDL code from which the Quartus II 
software infers the Stratix V DSP blocks and operational modes, parallel adders, and 
memory-based shift tap registers (using the altshift_taps megafunction in some cases). 
The HDL code does not instantiate the FIR compiler, the FIR II compiler, or any other 
Altera MegaCore function or megafunction explicitly.

Downloading the Example Applications
All of the files discussed in this application note are available for you to download 
from the Design Store. 

After you unzip the file, your installation directory has the structure shown in 
Figure 1.

Example Application Structure
Each FIR filter application folder contains a Quartus II project and HDL files from 
which the Quartus II software can infer the target FIR filter structure. The project is a 
Quartus II software v10.1 project. 

In addition, all the examples include input test data and ModelSim simulation scripts, 
the Verilog HDL examples include a .do file to display the waveform in ModelSim 
after simulation, and the VHDL interpolation and decimation direct form filter 
examples each include a MATLAB script and DSP Builder Advanced Blockset design 
for input and output signal visualization.

Example Application Usage
The HDL files are already included in the Quartus II project. When you compile the 
project in the Quartus II software v10.1, the Quartus II software infers your DSP block 
usage.

Figure 1. Design File Directory Structure
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Page 4 FIR Filter Application Design Examples
After you compile the Quartus II project, you can verify the inferred DSP block 
structure by any of the following methods:

■ To confirm your module is mapped to Stratix V DSP blocks, examine the Fitter 
Resource Utilization by Entity report. The report should show no combinational 
ALUTs, ALMs, or dedicated logic registers in the implementation of the core DSP 
module.

■ To confirm the operational mode of the Stratix V DSP blocks in which your design 
is configured, examine the Analysis & Synthesis DSP Block Usage Summary 
report. The report shows Number Used and number Available per Block for 
elements such as Sum of two 18 × 18 with systolic register, DSP Block, DSP 
18-bit Element, Signed Multiplier, Dedicated Pre-Adder, Dedicated Coefficient 
Storage, Dedicated Output Adder Chain, and Dedicated Output Accumulator.

■ To confirm both the mapping to DSP blocks and the operational mode of each DSP 
block, on the Quartus II Tools menu, point to Netlist Viewers and click 
Technology Map Viewer. Each DSP block is labeled <block_instance_name>-mac. If 
you double-click on a block, the viewer shows the configured components in that 
block.

■ To confirm all details of the DSP block configuration, perform gate-level 
simulation and examine the netlist files. Altera recommends this approach only for 
advanced users.
AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications March 2017 Altera Corporation
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Example Application Signals and Parameters
You can reuse the code from any of the HDL examples in your own design. All the FIR 
filter examples have the top-level signals shown in Table 2. The key parameters are 
shown in Table 3.

Table 2. FIR Filter Top Level Signals

Signal Direction
Verilog VHDL

Name Width Name Width

Clock In clk 1 clk 1

Reset In reset_n 1 reset 1

Data in In ast_sink_data SINK_DATA_WIDTH in_data din_width_c

Valid in In ast_sink_valid 1 in_valid 1

Channel in (1) In ast_sink_chan CHAN_WIDTH in_chan channel_width_c

Data out Out ast_source_data SOURCE_DATA_WIDTH out_data dout_width_c

Valid out Out ast_source_valid 1 out_valid 1

Channel out (1) Out ast_source_chan CHAN_WIDTH out_chan channel_width_c

Note to Table 2:

(1) The channel in and channel out signals are available only for multi-channel FIR filters.

Table 3. Main FIR Filter Verilog HDL Parameters and VHDL Generics

HDL Name Description

Verilog 
HDL 
(1)

NUM_TAPS Number of taps, defined as the number of coefficients in the basic equation.

INT Rate change factor for an interpolation FIR filter. Value is set to 4.

DEC Rate change factor for a decimation FIR filter. Value is set to 4.

SINK_DATA_WIDTH Input data width in bits. Only tested with value 17.

COEF_WIDTH Coefficient width in bits. Only tested with value 18.

SOURCE_DATA_WIDTH
Output data width in bits. the value is derived from the input data width, coefficient 
data width, and NUM_TAPS.

VHDL

engine_size_c

Number of multipliers used in the FIR filter. The value depends on the number of taps 
and on the filter type. For interpolation and decimation filters, the value is the length of 
the polyphase subfilters. For single-rate symmetric filters, the value is one half the total 
number of basic equation summands 

rate_c (2) Rate change factor for interpolation or decimation FIR filter.

din_width_c Input data width in bits. Only tested with value 25.

coeff_width_c Coefficient width in bits. Only tested with value 27.

num_chan_c Number of supported channels. Only available for multi-channel FIR filters.

dout_width_c
Output data width in bits. The value is derived from the input data width, coefficient 
data width, and total number of basic equation coefficients. 

Note to Table 3:

(1) In the Verilog examples, the number of channels cannot be modified without code changes.
(2) rate_c is a constant in the VHDL package rather than a VHDL generic.
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FIR Filters Overview
The HDL code samples are intended to infer direct form and systolic FIR filters. The 
interpolation and decimation filter examples assume that polyphase decomposition 
has already been performed and that a set of coefficients is therefore available to be 
loaded in the DSP blocks’ dedicated coefficient storage.

Direct Form and Systolic Filters
This section describes and contrasts direct form FIR filters and systolic FIR filters.

In the Quartus II software v10.1, both types of FIR filters require a tap-delay line 
external to the DSP blocks, as described in “Stratix V DSP Block Features” on page 1.

Direct Form FIR Filters
In a direct form implementation of a FIR filter, an adder tree sums the outputs of the 
individual multipliers. Each Stratix V DSP block implements two 18×18 multipliers or 
one 27×27 multiplier; a dedicated output adder in the DSP block performs the first 
level of addition. However, all of the other levels of the adder tree are implemented 
outside the DSP blocks, increasing resource utilization and lowering performance due 
to routing delay. 

The number of cycles of latency is in the order of log2(<number of taps>), and the 
number of DSP blocks is <number of taps> for a FIR filter with 27-bit coefficients, or 
<number of taps>/2 for a FIR filter with 18-bit coefficients. Recall that the number of 
taps is the number of coefficients, not the physical number of taps in the tap-delay 
line.

Figure 2 shows a direct form FIR filter with 18-bit coefficients. In this implementation, 
chainout adders in the DSP blocks perform the first round of addition, halving the 
number of required adders outside the DSP blocks. Each blue block in the diagram is 
a distinct DSP block.

Figure 2. Direct Form FIR Filter with 18-Bit Coefficients
AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications March 2017 Altera Corporation



FIR Filters Overview Page 7
Figure 3 shows a direct form FIR filter with 27-bit coefficients. In this implementation, 
the chainout adders of the DSP blocks perform the first round of addition, halving the 
number of required adders outside the DSP blocks.

Figure 3. Direct Form FIR Filter with 27-Bit Coefficients

DSP Block DSP BlockDSP Block DSP Block DSP Block DSP Block DSP Block DSP Block
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Systolic FIR Filters
In a systolic implementation of a FIR filter, the addition of the multiplier results is 
implemented in an output adder chain. More generally, a systolic FIR filter is an array 
of multiplier-adders in a pipeline structure. The registers at the outputs of all the 
multiplier-adders ensure the result incorporates all the input data correctly. 
Additional registers in the input tap-delay line synchronize the input values from the 
tap-delay line with the accumulating sum in the output adder chain. The 
synchronizing registers appear in red in Figure 4, which shows a single-rate systolic 
FIR filter with 18-bit coefficients.

The number of cycles of latency through the systolic FIR filter is in the order of 
<number of taps>, and the number of DSP blocks is <number of taps> for a FIR filter 
with 27-bit coefficients, or <number of taps>/2 for a FIR filter with 18-bit coefficients. 
This type of filter uses fewer resources than the direct form FIR filter, because it does 
not require the adder tree. However, it has slightly longer latency.

Symmetric Systolic Filters
If you know that the coefficient sequence is symmetric, you can realize additional 
resource savings in your FIR filter implementation. You can halve the number of 
multipliers by adding the data before multiplying. If you have N coefficients, and 
coefficient h0 and coefficient hN–1 have the same value, then you can replace x0h0 + xN–

1hN–1 in the FIR filter computation with h0(x0 + xN–1), and so on for h1,...,hfloor(N/2), 
adjusting for odd N as required. 

Figure 4. Single-Rate 18-Bit Coefficient Systolic FIR Filter with Eight Taps

DSP Block DSP Block DSP Block DSP Block
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Figure 5 and Figure 6 show the target DSP block configuration for a symmetric 
systolic FIR filter.

Figure 5. 18×18 DSP Block with Pre-Adder and Chainout Adder for Systolic Array

Figure 6. 27×27 DSP Block with Pre-Adder and Chainout Adder for Systolic Array

Coefficient
Storage

Coefficient
Storage

Coefficient
Storage
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Figure 7 shows a possible implementation of a full symmetric single-channel systolic 
FIR filter with sixteen taps and 18-bit coefficients implemented in Stratix V DSP 
blocks. Figure 7 illustrates the structure of the Verilog HDL example single-channel 
single-rate systolic FIR filter optimized for symmetric coefficients. Other 
implementations of a single-channel single-rate symmetric systolic FIR filter are 
possible.

In this structure, the latency is <number of taps>/2, and the number of DSP blocks is 
<number of taps>/4. In the equivalent structure for 27-bit coefficients, the latency is 
also <number of taps>/2, but the number of DSP blocks is <number of taps>/2. Recall 
that the number of taps is the number of coefficients, not the physical number of taps 
in the tap-delay line.

Multi-Channel Filters
Your DSP system may require two FIR filters, with the same or different coefficients. If 
your system requirements do not imply a high-speed solution, the design can use a 
single set of FIR filter hardware resources to implement both FIR filter applications.

A multi-channel FIR filter implements multiple FIR filter applications using the same 
hardware resources. The input data are interleaved, and the output data are 
interleaved. If you implement a two-channel FIR filter, you must clock the filter at 
twice the data rate of the incoming data on each channel; if you implement a FIR filter 
with Y channels, you must clock the filter at least at Y times the data rate of a single 
channel. This clocking scheme enables the filter to calculate the output data for each 
channel at the expected data rate.

Figure 8 shows the input data format for all the multi-channel examples if the FIR 
filter operating clock rate is exactly the number of channels C multiplied by the input 
data sample rate on each channel, for C=4. This format is the required input data 
format for the Verilog HDL examples. Data sample a0 is the first data sample on 
channel a, and data sample d1 is the second data sample on channel d.

Figure 7. Sixteen-Tap Single-Channel Symmetric Systolic FIR Filter with 18-Bit Coefficients

Figure 8. Input Data Format When FIR Filter Clock Rate is C=4 Times Channel Input Sample Rate

clock

Input data a0 b0 c0 d0 a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3 a4 b4 c4 d4
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The VHDL examples also support a FIR filter clock rate greater than the number of 
channels C multiplied by the input data sample rate on each channel. For example, if a 
four-channel FIR filter runs at clock frequency 245.76 MHz and each input channel 
has sample rate 15.36 MHz, then each input channel provides one new valid data 
value every 16 clock cycles. The VHDL examples described in this application note 
assume the data format shown in Figure 9 at the input to a four-channel FIR filter with 
these example clock rates.

The user tells the FIR filter to ignore the Don’t Care inputs by pulling the Valid in bit 
low during the Don’t Care cycles. The FIR filter tells the user to ignore the output 
from the Don’t Care input data by pulling the Valid out bit low when appropriate. 
Refer to Table 2 on page 5 for signal names for the Valid in and Valid out bits.

Figure 10 shows a multi-channel single-rate systolic FIR filter with eight taps and 
18-bit coefficients. The number of channels C determines the number of delay 
elements in Z–C.

Figure 9. VHDL Example Input Data Format for Multi-Channel FIR Filters

clock

Input data a0 b0 c0 d0          a1 b1 c1 d1

Figure 10. Eight-Tap Multi-Channel Systolic FIR Filter with C Channels and 18-Bit Coefficients

DSP Block DSP Block DSP Block DSP Block

Z-C Z-C Z-C Z-C Z-C Z-C Z-C
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Symmetric Multi-Channel Filters
If you know that the coefficient sequence for each of your multiple input channels is 
symmetric, you can combine the advantages of the symmetric systolic FIR filter and 
the multi-channel FIR filter. Individual DSP blocks are configured as for a 
single-channel symmetric systolic filter, as shown in Figure 5 and Figure 6 on page 9. 
However, the tap-delay line reflects the multi-channel sampling with the addition of 
delays on both the forward and backward parts of the line. Figure 11 shows the 
resulting FIR filter structure.

C, the number of delay elements in Z–C, must be greater than or equal to the number 
of channels. When C is 1, the structure is a single-channel FIR filter. Each Z–C–1 has (C–
1) delay elements.

Figure 11. Sixteen-Tap Multi-Channel Symmetric Systolic FIR Filter with 18-Bit Coefficients

Z-C Z-C Z-C Z-C Z-C Z-C Z-C Z-C

Z-C-1Z-C-1Z-C-1Z-C-1Z-C-1Z-C-1Z-C-1
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Interpolation Filters
An interpolation filter produces M×N output samples from N input samples for rate 
change factor M. An efficient implementation of such a filter processes the data as 
polyphase decomposed subsequences: the FIR filter output samples the output of M 
parallel subfilter paths. Figure 12 shows a high-level block diagram of polyphase 
decomposition for interpolation by M. 

Figure 12. Polyphase Decomposition for Interpolation

| M h(n)
x(n)

x(n) y(n)
^

An interpolation-by-M FIR filter

A polyphase interpolation-by-M FIR filter

f  /Ms f  s

h  (n)0

h  (n)1

h     (n)M-2

h     (n)M-1

.

.

.

.

.

.
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Page 14 FIR Filters Overview
Figure 13 and Figure 14 show the effects of an interpolation FIR filter. Figure 13 shows 
sine waves before interpolation is performed, and Figure 14 shows the same sine 
waves after interpolation is performed.

Figure 13. Multi-Channel Input Data to Interpolation FIR Filter
AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications March 2017 Altera Corporation
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Figure 14. Output Data from Interpolation FIR Filter
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The polyphase decomposition filter can be implemented in hardware as a 
multi-channel FIR filter that accesses a multiple coefficient set. Figure 15 shows an 
efficient implementation of an 8×M-tap, C-channel interpolation systolic FIR filter 
with rate change factor M in Stratix V DSP blocks. D, the number of delay elements in 
Z–D, is the product of the number of channels C and the rate change factor M. The FIR 
filter runs at frequency C × M × <input data rate>. Therefore, the same data value is 
captured M times, and the coefficient value is switched M times for the same data 
value. Figure 15 shows the interpolation FIR filter structure that the Quartus II 
software infers from the Verilog HDL example code.

This application note presents examples of HDL code that use two different data 
formats for multi-channel interpolation filters. Figure 16 and Figure 18 show the two 
different input data formats that the example four-channel interpolation FIR filters are 
designed to accept. In these examples, the number of channels is four, the rate change 
factor is four, and the operating clock rate is four times the input sample rate on each 
channel. Data sample a0 is the first data sample on channel a, data sample b0 is the 
first data sample on channel b, and so on.

The output data format from the design example interpolation FIR filters depends on 
the input data format. For the Verilog HDL example, Figure 16 shows the input data 
format and Figure 17 shows the output data format. In Figure 17, xo<n> are the 
output data points related to input channel x; xo1, xo2, and xo3 are the interpolation 
data points on channel x.

Figure 15. 8×M-Tap Multi-Channel Interpolation Systolic FIR Filter with 18-Bit Coefficients

DSP Block DSP Block DSP Block DSP Block

Z-D Z-D Z-D Z-D Z-D Z-D Z-D

Figure 16. Four-Channel Interpolation FIR Filter Input Format I For Rate Change Factor 4

Figure 17. Four-Channel Interpolation FIR Filter Output For Rate Change Factor 4 and Input Data Format I

clock

Input data a0 a0 a0 a0 b0 b0 b0 b0 c0 c0 c0 c0 d0 d0 d0 d0

clock

Output data ao0 ao1 ao2 ao3 bo0 bo1 bo2 bo3 co0 co1 co2 co3 do0 do1 do2 do3
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For the VHDL example, Figure 18 shows the input data format and Figure 19 shows 
the output data format. Output data points xo<3n+i> are computed from data point 
x<n> on input channel x, for i = 0 to M. In this case M=4.

The VHDL example input format requires additional complexity in the hardware 
implementation outside the DSP blocks. Figure 20 shows the structure that the 
Quartus II software infers from the VHDL example code. 

In Figure 20, N, the number of delay elements in Z-N, is defined by 

N = floor(<clk_rate>/<sample_rate>/M

Figure 18. Four-Channel Interpolation FIR Filter Input Format II For Rate Change Factor 4

Figure 19. Four-Channel Interpolation FIR Filter Output For Rate Change Factor 4 and Input Data Format II

clock

Input data a0 b0 c0 d0          a1 b1 c1 d1

clock

Output data ao0 bo0 co0 do0 ao1 bo1 co1 do1 ao2 bo2 co2 do2 ao3 bo3 co3 do3 ao4 bo4 co4 do4

Figure 20. Multi-Channel Interpolation Direct Form FIR Filter with 27-Bit Coefficients and Rate Change Factor 4

DSP Block DSP BlockDSP Block DSP Block

.  .  . .  .  .Z-N Z-N Z-N Z-N Z-N Z-N Z-N

.  .  .
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Page 18 FIR Filters Overview
where 

■ <clk_rate> is the FIR filter operating clock frequency

■ <sample_rate> is the input sample rate

■ M is the rate change factor

If the FIR filter operating clock runs at exactly <sample_rate> times M, then N=1.

Decimation Filters
A decimation filter removes input samples from the output stream, leaving 1/M of 
the samples for rate change factor M. An efficient implementation of such a filter 
processes the data as polyphase decomposed subsequences: the FIR filter output 
samples the output of M parallel subfilter paths. Figure 21 shows a high-level block 
diagram of polyphase decomposition for decimation by M. 

Figure 21. Polyphase Decomposition for Decimation
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The polyphase decomposition filter can be implemented in hardware as a 
multi-channel FIR filter that accesses a multiple coefficient set. Figure 22 shows an 
efficient implementation of an 8×M-tap, C-channel decimation systolic FIR filter with 
rate change factor M in Stratix V DSP blocks. D, the number of delay elements in Z–D, 
is the product of the number of channels C and the rate change factor M.

In the Verilog HDL example decimation FIR filter, the input data format is the format 
shown in Figure 17 on page 16 and the output data format is the format shown in 
Figure 16 on page 16. Figure 23 summarizes the input and output data formats for the 
Verilog HDL example decimation FIR filter.

In the VHDL example decimation FIR filter, the input data format is the format shown 
in Figure 19 on page 17 and the output data format is the format shown in Figure 18 
on page 17. Figure 24 summarizes the input and output data formats for the VHDL 
example decimation FIR filter.

Figure 22. 8×M-Tap Multi-Channel Decimation Systolic FIR Filter with 18-Bit Coefficients

DSP Block

Z-D Z-D Z-D Z-D Z-D Z-D Z-D

DSP Block DSP Block DSP Block

Figure 23. Verilog HDL Example Decimation FIR Filter Input and Output Data Formats

Figure 24. VHDL Example Decimation FIR Filter Input and Output Data Formats

clock

Input data a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3 d0 d1 d2 d3

Output data a0 a0 a0 a0 b0 b0 b0 b0 c0 c0 c0 c0 d0 d0 d0 d0  ...

clock

Input data a0 b0 c0 d0 a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3

Output data a0 b0 c0 d0 a0 b0 c0 d0 a0 b0 c0 d0 a0 b0 c0 d0  ...
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Page 20 FIR Filters Overview
Handling the data format for the VHDL example decimation FIR filter complicates 
the hardware implementation. Because the output data are interleaved, the 
accumulation function cannot be implemented in the DSP blocks. Figure 25 shows the 
structure that the Quartus II software infers from the VHDL example code. N is 
defined as for Figure 20 on page 17. P, the final accumulator delay, is the FIR filter 
operating clock frequency divided by the input sample rate.

Tap-Delay Line
In the Quartus II software v10.1, all FIR filters require a tap-delay line external to the 
DSP blocks, as described in “Stratix V DSP Block Features” on page 1.

The altshift_taps megafunction can be inferred to implement a shift register chain 
with equally spaced taps in RAM. In the design examples, the VHDL code from 
which the Quartus II software infers the multi-channel single-rate, interpolation, and 
decimation filters include code to direct the software to infer an altshift_taps 
megafunction. For the multi-channel single rate systolic FIR filter that is optimized for 
symmetric coefficients, the forward, backward, and folding-point taps all have 
different depths. Therefore, the code instantiates three separate altshift_taps instances 
and concatenates them together. For the other examples, the tap-delay line is coded as 
sequences of delay registers. 

f For more information about the altshift_taps megafunction, refer to the altshift_taps 
Megafunction User Guide.

Figure 25. Multi-Channel Decimation Direct Form FIR Filter with 27-Bit Coefficients

DSP Block DSP BlockDSP Block DSP Block DSP Block DSP Block DSP Block DSP Block

Z-N Z-N Z-N Z-N Z-N Z-N Z-N

Z-P
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Verilog HDL Examples
The Verilog HDL examples demonstrate Verilog HDL code that guides the Quartus II 
Fitter to infer Stratix V DSP blocks with specific operational modes. All of the Verilog 
HDL examples require 18-bit by 18-bit multiplication. Coefficients and input data are 
18-bits wide. Therefore, the Quartus II software can configure two multiplier paths in 
a DSP block.

Inferring a Single-Channel Single-Rate Systolic FIR Filter
The design example in the Verilog/basic_fir/18x18/systolic_chainout_adder directory 
contains Verilog HDL code from which the Quartus II software infers a 128-tap 
single-rate systolic FIR filter with 18-bit coefficients. The structure of this filter is 
shown in Figure 4 on page 8. During the mapping stage of compilation, when the 
Quartus II software identifies a multiplier-adder with register, it maps the function to 
the appropriate device atoms. If the design targets a Stratix V device with DSP blocks, 
the Quartus II software can implement this function in a DSP block instead of in 
custom logic, depending on the device resources already committed.
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Example 1 shows the Verilog HDL code in the dsp_block.v file. The section that 
specifies the multiplier-adder with register is marked in red. Refer to Figure 4 on 
page 8 for the DSP block implementation that the Quartus II software infers from this 
Verilog HDL code. Each multiplier-adder plus register is mapped to an 18 × 18 DSP 
block element.

Example 1. Verilog HDL Code for Inferring 18×18 DSP Block with Chainout Adder for Systolic Array

module dsp_block (clk, aclr, ena, ay, by, chainin, chainout); 

parameter coef_a0 = 0;
parameter coef_b0 = 0;
parameter DATA_WIDTH = 18;
parameter COEF_WIDTH = 18;
parameter CHAININ_WIDTH = 44;
parameter CHAINOUT_WIDTH = 44;

input clk;
input aclr;
input ena;
input signed [17:0]ay, by;
input signed [CHAININ_WIDTH-1:0]chainin;
output signed [CHAINOUT_WIDTH-1:0]chainout;

reg signed [CHAINOUT_WIDTH-1:0]  chainout;

reg signed [COEF_WIDTH-1:0] coefa, coefb;
initial begin

coefa <= coef_a0;
coefb <= coef_b0;

end

reg signed [DATA_WIDTH-1:0] ay_reg, by_reg;
reg signed [CHAINOUT_WIDTH-1:0] sa;
always @(posedge clk  or posedge aclr) begin

if(aclr) begin
ay_reg <=  0;
by_reg <=  0;
sa <=  0;
chainout <=  0;

end
else if(ena) begin

ay_reg <=  ay;
by_reg <=  by;
sa <=  chainin + ay_reg*coefa; // Form systolic structure 
chainout <=  sa + by_reg*coefb; // from individual multiplier-adders

end
end

endmodule 
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To enable inference of the cascaded output bus in the systolic structure, the Quartus II 
software v10.1 requires that the incoming and outgoing adder chain widths be 
specified for each DSP block. The System Verilog HDL file single_fir.sv, where the 
dsp_block module instances are generated, includes the HDL code to meet this 
requirement. Example 2 shows this HDL code. 

The final outgoing adder chain width from the full systolic FIR filter and the outgoing 
adder chain width from the initial DSP block are also specified in the single_fir.sv file.

This Verilog HDL example generates a 128-tap single-channel single-rate systolic FIR 
filter with 18-bit coefficients that uses 64 DSP blocks. 

Example 2. Specification of Incoming and Outgoing Adder Chain Widths for Each DSP Block

parameter SINK_DATA_WIDTH = 18;
parameter COEF_WIDTH = 18;
parameter NUM_TAPS = 128;
localparam NUM_DSP_Block = NUM_TAPS/2;

...

genvar n; 
generate 

for (n=1; n < NUM_TAPS/2; n = n+1) begin : dsp_block 

      dsp_block u (
          .clk(clk), 

 .aclr(~reset_n), 
          .ena(ast_sink_valid),
          .ay(sink_data_array[2*n]),
          .by(sink_data_array[2*n+1]),
          .chainin(chainout_array[n-1]),

 .chainout(chainout_array[n]) 
         ); 

defparam u.DATA_WIDTH = 18;
defparam u.coef_a0 = coef_array[2*n];
defparam u.coef_b0 = coef_array[2*n+1];
defparam u.CHAININ_WIDTH = (n<2  )? SINK_DATA_WIDTH+COEF_WIDTH+1:

(n<3  )? SINK_DATA_WIDTH+COEF_WIDTH+2:
(n<5  )? SINK_DATA_WIDTH+COEF_WIDTH+3:
(n<9  )? SINK_DATA_WIDTH+COEF_WIDTH+4:
(n<17 )? SINK_DATA_WIDTH+COEF_WIDTH+5:
(n<33 )? SINK_DATA_WIDTH+COEF_WIDTH+6:
(n<65 )? SINK_DATA_WIDTH+COEF_WIDTH+7:
(n<129)? SINK_DATA_WIDTH+COEF_WIDTH+8:
(n<257)? SINK_DATA_WIDTH+COEF_WIDTH+9: 

SINK_DATA_WIDTH+COEF_WIDTH+10;

defparam u.CHAINOUT_WIDTH = (n<2  )? SINK_DATA_WIDTH+COEF_WIDTH+2:
       (n<4  )? SINK_DATA_WIDTH+COEF_WIDTH+3:
       (n<8  )? SINK_DATA_WIDTH+COEF_WIDTH+4:
       (n<16 )? SINK_DATA_WIDTH+COEF_WIDTH+5:
       (n<32 )? SINK_DATA_WIDTH+COEF_WIDTH+6:
       (n<64 )? SINK_DATA_WIDTH+COEF_WIDTH+7:
       (n<128)? SINK_DATA_WIDTH+COEF_WIDTH+8:
       (n<256)? SINK_DATA_WIDTH+COEF_WIDTH+9: 

SINK_DATA_WIDTH+COEF_WIDTH+10;
    end 
endgenerate 
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After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 4 summarizes the 
reported usage and Figure 26 shows the names of the relevant DSP block elements.

Inferring a Single-Channel Single-Rate Symmetric Systolic FIR Filter
The design example in the 
Verilog/basic_fir_symmetric/18x18/systolic_chainout_adder directory contains 
Verilog HDL code from which the Quartus II software infers a 128-tap single-channel 
single-rate systolic FIR filter with 18-bit symmetric coefficients. The structure of this 
filter is shown in Figure 7 on page 10. During the mapping stage of compilation, when 
the Quartus II software identifies a two-input adder or a multiplier-adder with 
register, it maps the function to the appropriate device atoms. If the design targets a 
Stratix V device with DSP blocks, the Quartus II software can implement this function 
in a DSP block instead of in custom logic, depending on the device resources already 
committed. 

Table 4. DSP Block Usage for Verilog HDL Example Single-Rate Systolic FIR Filter

Statistic Number Used Available per Block

Sum of two 18×18 with systolic register 64 1.00

DSP Block 64 —

DSP 18-bit Element 128 2.00

Signed Multiplier 128 —

Dedicated Output Adder Chain 63 —

Figure 26. DSP Block Element Names

Sum of two 18x18 with systolic register

Systolic register

Dedicated output adder chain
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Example 3 shows the Verilog HDL code from which the Quartus II software infers the 
structure shown in Figure 5 on page 9. You can find this HDL code in the Verilog HDL 
Verilog/basic_fir_symmetric/18x18/systolic_chainout_adder/dsp_block.v file. The 
sections that specify the two-input adder and the multiplier-adder with register are 
marked in red. Each two-input adder is mapped to a dedicated pre-adder and each 
multiplier-adder plus register is mapped to an 18 × 18 DSP block element.

Example 3. Verilog HDL Code for Inferring 18×18 DSP Blocks in Systolic Array with Pre-Adder and Chainout Adder

module dsp_block (clk, aclr, ena, ay, ax, by, bx, chainin, chainout); 

parameter coef_a0 = 0;
parameter coef_b0 = 0;
parameter DATA_WIDTH = 17;
parameter COEF_WIDTH = 18;
parameter CHAININ_WIDTH = 44;
parameter CHAINOUT_WIDTH = 44;

input clk;
input aclr;
input ena;
input signed [DATA_WIDTH-1:0] ay, ax, by, bx;
input signed [CHAININ_WIDTH-1:0] chainin;
output signed [CHAINOUT_WIDTH-1:0] chainout;

reg signed [CHAINOUT_WIDTH-1:0]  chainout;

reg signed [COEF_WIDTH-1:0] coefa, coefb;
initial begin

coefa <= coef_a0;
coefb <= coef_b0;

end

reg signed [DATA_WIDTH-1:0] ay_reg, ax_reg, by_reg, bx_reg;
wire signed [DATA_WIDTH:0] a_sum = ax_reg + ay_reg; // Two input addition
wire signed [DATA_WIDTH:0] b_sum = bx_reg + by_reg; // Two input addition
reg signed [CHAINOUT_WIDTH-1:0] sa;
always @(posedge clk  or posedge aclr) begin

if(aclr) begin
ay_reg   <=  0;
ax_reg   <=  0;
by_reg   <=  0;
bx_reg   <=  0;
sa <=  0;
chainout <=  0;

end
else if(ena) begin

ay_reg   <=  ay;
ax_reg   <=  ax;
by_reg   <=  by;
bx_reg   <=  bx;
sa <=  chainin + a_sum*coefa; // Multiplier-adder chain
chainout <=  sa + b_sum*coefb; // Multiplier-adder chain

// sa <=  chainin + (ay_reg+ax_reg)*coefa; // This code would lead the 
// chainout <=  sa + (by_reg+bx_reg)*coefb; // Quartus II software to infer 

// custom logic rather than
end // the desired DSP block structure,

end // because the bit width of the 
// pre-adder output is not
// clear to the synthesis tool.

endmodule
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The separation of the two-input addition code from the multiplier-adder chain code is 
necessary to enable the Quartus II software to infer the DSP block implementation. If 
the two functions are combined in the same line of code, as shown in blue in the 
commented code in Example 3, the Quartus II software instead infers custom logic, 
because it cannot deduce the pre-adder output width from the HDL code.

To enable inference of the cascaded output bus in the systolic structure, the Quartus II 
software v10.1 requires that the incoming and outgoing adder chain widths be 
specified for each DSP block. Refer to Example 2 on page 23 in “Inferring a 
Single-Channel Single-Rate Systolic FIR Filter” on page 21.

This Verilog HDL example generates a 128-tap single-channel single-rate systolic FIR 
filter with 18-bit symmetric coefficients that uses 32 DSP blocks. 

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 5 summarizes the 
reported usage and Figure 27 shows the names of the relevant DSP block elements not 
already introduced in Figure 26 on page 24.

Table 5. DSP Block Usage for Verilog HDL Example Single-Rate Symmetric Systolic FIR Filter

Statistic Number Used Available per Block

Sum of two 18×18 with systolic register 32 1.00

DSP Block 32 —

DSP 18-bit Element 64 2.00

Signed Multiplier 64 —

Dedicated Pre-Adder 64

Dedicated Coefficient Storage 64

Dedicated Output Adder Chain 31 —

Figure 27. DSP Block Element Names Introduced in Table 5

Dedicated Coefficient Storage

Dedicated Pre-Adder
AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications March 2017 Altera Corporation



Verilog HDL Examples Page 27
Inferring a Multi-Channel Single-Rate Systolic FIR Filter
The design example in the Verilog/multichannel_fir/18x18/systolic_chainout_adder 
directory contains Verilog HDL code from which the Quartus II software infers a 
128-tap 4-channel single-rate systolic FIR filter with 18-bit coefficients. The structure 
of this filter is shown in Figure 10 on page 11. The FIR filter must be clocked at the 
input data sample rate per channel times the number of channels (four in this case). 
The input data format understood by the FIR filter is the format shown in Figure 8 on 
page 10. If the FIR filter is clocked at four times the input data sample rate, the input 
data format is a simple interleaving of the data samples from channels a, b, c, and d, as 
shown in Figure 8. The output data format is identical.

The DSP blocks in this FIR filter are identical to those described in “Inferring a 
Single-Channel Single-Rate Systolic FIR Filter” on page 21 and shown in Figure 4 on 
page 8. The DSP block structure is inferred from code identical to the dsp_block 
module code shown in Example 1. The chan4_fir.sv file includes the following 
features:

■ Definition of the chainout adder bit width per DSP block (as shown in Example 2 
on page 23).

■ Call to instantiate the additional delay registers in the tap delay line. These delay 
registers are required to enable the multi-channel implementation.

This Verilog HDL example generates a 128-tap four-channel single-rate systolic FIR 
filter with 18-bit coefficients that uses 64 DSP blocks. 

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 6 summarizes the 
reported usage.

Inferring a Multi-Channel Interpolation Systolic FIR Filter
The design example in the Verilog/interpolation_fir/18x18/systolic_chainout_adder 
directory contains Verilog HDL code from which the Quartus II software infers a 
128-tap four-channel systolic interpolation FIR filter with 18-bit coefficients and rate 
change factor 4. The structure of this filter is shown in Figure 15 on page 16. The input 
data format understood by the FIR filter is the format shown in Figure 16 on page 16. 
The output data format is shown in Figure 17 on page 16.

During the mapping stage of compilation, when the Quartus II software identifies a 
coefficient select or a multiplier-adder with register, it maps the function to the 
appropriate device atoms. If the design targets a Stratix V device with DSP blocks, the 
Quartus II software can implement the function in a DSP block instead of in custom 
logic, depending on the device resources already committed.

Table 6. DSP Block Usage for Verilog HDL Example Multi-Channel Single-Rate Systolic FIR Filter

Statistic Number Used Available per Block

Sum of two 18×18 with systolic register 64 1.00

DSP Block 64 —

DSP 18-bit Element 128 2.00

Signed Multiplier 128 —

Dedicated Output Adder Chain 63 —
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Example 4 shows the Verilog HDL code in the dsp_block.v file. The sections that 
specify the coefficient select and the multiplier-adder with register are marked in red. 
Refer to Figure 15 on page 16 for the DSP block implementation that the Quartus II 
software infers from this Verilog HDL code. Each multiplier-adder plus register is 
mapped to an 18 × 18 DSP block element and each coefficient select is mapped to a 
dedicated coefficient storage element in the DSP block.

To ensure inference of the dedicated coefficient storage in the DSP blocks for multiple 
coefficient sets, the Verilog HDL code must specify that the coefficients are stored in 
ROM storage.
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Example 4. Verilog HDL Code for Inferring 18×18 DSP Blocks in Systolic Array, Coefficient Storage, and Chainout Adder

module dsp_block (clk, aclr, ena, ay, by, coefsela, coefselb, chainin, chainout); 

parameter coef_a0 = 0;
parameter coef_a1 = 0;
parameter coef_a2 = 0;
parameter coef_a3 = 0;
parameter coef_b0 = 0;
parameter coef_b1 = 0;
parameter coef_b2 = 0;
parameter coef_b3 = 0;
parameter DATA_WIDTH = 18;
parameter COEF_WIDTH = 18;
parameter CHAININ_WIDTH = 44;
parameter CHAINOUT_WIDTH = 44;

input clk, aclkr, ena;
input [1:0] coefsela, coefselb;
input signed [17:0] ay, by;
input signed [CHAININ_WIDTH-1:0] chainin;
output signed [CHAINOUT_WIDTH-1:0] chainout;

reg signed [CHAINOUT_WIDTH-1:0]  chainout;
reg signed [COEF_WIDTH-1:0] coefa, coefb;
reg signed [COEF_WIDTH-1:0] coefa_array[3:0], coefb_array[3:0];

initial begin
coefa_array[0] <= coef_a0; // Coefficients passed into the module 
coefa_array[1] <= coef_a1; // are assigned to the dedicated coefficient storage
coefa_array[2] <= coef_a2; // in the DSP block.
coefa_array[3] <= coef_a3;
coefb_array[0] <= coef_b0;
coefb_array[1] <= coef_b1;
coefb_array[2] <= coef_b2;
coefb_array[3] <= coef_b3;

end
always @ (coefsela)
begin

coefa = coefa_array[coefsela]; // Coefficient select signals point to different
end
always @ (coefselb)
begin

coefb = coefb_array[coefselb]; // addresses in the coefficient bank.
end
reg signed [DATA_WIDTH-1:0] ay_reg, by_reg;
reg signed [CHAINOUT_WIDTH-1:0] sa;
always @(posedge clk  or posedge aclr) begin

if(aclr) begin
ay_reg <=  0;
by_reg <=  0;
sa <=  0;
chainout <=  0;

end
else if(ena) begin

ay_reg   <=  ay;
by_reg   <=  by;
sa <=  chainin + ay_reg*coefa; // Multiplier-adder chain
chainout <=  sa + by_reg*coefb; // Multiplier-adder chain

end
end
endmodule 
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To enable inference of the cascaded output bus in the systolic structure, the Quartus II 
software v10.1 requires that the incoming and outgoing adder chain widths be 
specified for each DSP block. Refer to Example 2 on page 23 in “Inferring a 
Single-Channel Single-Rate Systolic FIR Filter” on page 21.

This Verilog HDL example generates a 128-tap four-channel interpolation systolic FIR 
filter with 18-bit coefficients and rate change factor 4 that uses 16 DSP blocks. 

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 7 summarizes the 
reported usage.

Inferring a Multi-Channel Decimation Systolic FIR Filter
The design example in the Verilog/decimation_fir/18x18/sum_of_2_chainout_adder 
directory contains Verilog HDL code from which the Quartus II software infers a 
128-tap 4-channel systolic decimation FIR filter with 18-bit coefficients and rate 
change factor 4. The structure of this filter is shown in Figure 22 on page 19. The input 
and output data formats are shown in Figure 23 on page 19.

During the mapping stage of compilation, when the Quartus II software identifies an 
accumulator, a coefficient select, a multiplier-adder with register, or a chainout adder 
function, it maps the function to the appropriate device atoms. If the design targets a 
Stratix V device with DSP blocks, the Quartus II software can implement the function 
in a DSP block instead of in custom logic, depending on the device resources already 
committed.

Example 5 shows the Verilog HDL code in the dsp_block.v file. The section that 
specifies the sum-of-two and accumulator and output adder chain is marked in red. 
Refer to Figure 22 on page 19 for the DSP block implementation that the Quartus II 
software infers from this Verilog HDL code. Each multiplier-adder plus register is 
mapped to an 18 × 18 DSP block element, each coefficient select is mapped to a 
dedicated coefficient storage element in the DSP block, and the sum-of-two plus 
accumulator plus output adder chain are mapped to the appropriate elements in the 
DSP block.

To ensure inference of the dedicated coefficient storage in the DSP blocks for multiple 
coefficient sets, the Verilog HDL code must specify that the coefficients are stored in 
ROM storage.

Table 7. DSP Block Usage for Verilog HDL Example Interpolation FIR Filter

Statistic Number Used Available per Block

Sum of two 18×18 with systolic register 16 1.00

DSP Block 16 —

DSP 18-bit Element 32 2.00

Signed Multiplier 32 —

Dedicated Coefficient Storage 32 —

Dedicated Output Adder Chain 15 —
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Example 5. Verilog HDL Code for Inferring 18×18 DSP Blocks in Systolic Array, Coefficient Storage, Chainout Adder, and 
Sum-of-Two in Accumulator Structure on Output Adder Chain

module dsp_block (clk, aclr, ena, ay, by, accum, coefsela, coefselb, chainin, chainout); 

parameter coef_a0 = 0;
parameter coef_a1 = 0;
parameter coef_a2 = 0;
parameter coef_a3 = 0;
parameter coef_b0 = 0;
parameter coef_b1 = 0;
parameter coef_b2 = 0;
parameter coef_b3 = 0;
parameter DATA_WIDTH = 18;
parameter COEF_WIDTH = 18;
parameter CHAININ_WIDTH = 44;
parameter CHAINOUT_WIDTH = 44;

input clk, aclr, ena;
input accum;
input [1:0] coefsela, coefselb;
input signed [17:0] ay, by;
input signed [CHAININ_WIDTH-1:0] chainin;
output signed [CHAINOUT_WIDTH-1:0] chainout;

reg signed [CHAINOUT_WIDTH-1:0]  chainout;
reg signed [COEF_WIDTH-1:0] coefa, coefb;
reg signed [COEF_WIDTH-1:0] coefa_array[3:0], coefb_array[3:0];
initial begin

coefa_array[0] <= coef_a0;
coefa_array[1] <= coef_a1;
coefa_array[2] <= coef_a2;
coefa_array[3] <= coef_a3;
coefb_array[0] <= coef_b0;
coefb_array[1] <= coef_b1;
coefb_array[2] <= coef_b2;
coefb_array[3] <= coef_b3;

end
always @ (coefsela)
begin

coefa = coefa_array[coefsela];
end
always @ (coefselb)
begin

coefb = coefb_array[coefselb];
end

wire signed [CHAINOUT_WIDTH-1:0] acc_sel;
assign acc_sel = accum ? chainout : 0;
reg signed [DATA_WIDTH-1:0] ay_reg, by_reg;
always @(posedge clk  or posedge aclr) begin

if(aclr) begin
ay_reg   <=  0;
by_reg   <=  0;
chainout <=  0;

end
else if(ena) begin

ay_reg   <=  ay;
by_reg   <=  by;
chainout <= acc_sel + (chainin + (ay_reg*coefa + by_reg*coefb));

end
end
endmodule
March 2017 Altera Corporation AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications



Page 32 VHDL Examples
To enable inference of the cascaded output bus in the systolic structure, the Quartus II 
software v10.1 requires that the incoming and outgoing adder chain widths be 
specified for each DSP block. Refer to Example 2 on page 23 in “Inferring a 
Single-Channel Single-Rate Systolic FIR Filter” on page 21.

This Verilog HDL example generates a 128-tap four-channel decimation systolic FIR 
filter with 18-bit coefficients and rate change factor 4 that uses 16 DSP blocks. 

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 8 summarizes the 
reported usage and Figure 28 shows the names of the relevant DSP block elements not 
already introduced in Figure 26 on page 24 and Figure 27 on page 26.

VHDL Examples
The VHDL examples demonstrate VHDL code that guides the Quartus II Fitter to 
infer Stratix V DSP blocks with specific operational modes. All of the VHDL examples 
require 27-bit by 27-bit multiplication. Coefficients are 27 bits wide and input data is 
25 bits wide. Therefore, the Quartus II software configures only a single multiplier 
path in each DSP block.

Table 8. DSP Block Usage for Verilog HDL Example Decimation FIR Filter

Statistic Number Used Available per Block

Sum of two 18×18 with systolic register 16 1.00

DSP Block 16 —

DSP 18-bit Element 32 2.00

Signed Multiplier 32 —

Dedicated Coefficient Storage 32 —

Dedicated Output Adder Chain 15 —

Dedicated Output Accumulator 16 —

Figure 28. DSP Block Element Names Introduced in Table 8

Dedicated output adder chain

Accumulator
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The VHDL coding style in these examples includes the use of multidimensional 
arrays to manage signals to multipliers. This coding style creates compact code and 
enhances readability. However, it requires custom data types, which may in turn 
require type conversion in the code. The VHDL code examples include a package 
definition file that specifies the necessary data types. The dimensions of all array 
types are fully parameterizable.

Inferring a Single-Channel Single-Rate Symmetric Systolic FIR Filter
The design example in the VHDL/systolic_fir directory contains VHDL code from 
which the Quartus II software infers a 64-tap single-channel single-rate systolic FIR 
filter with 27-bit symmetric coefficients. The structure of this filter is shown in 
Figure 7 on page 10. During the mapping stage of compilation, when the Quartus II 
software identifies a two-input adder or a multiplier-adder with register, it maps the 
function to the appropriate device atoms. If the design targets a Stratix V device with 
DSP blocks, the Quartus II software can implement this function in a DSP block 
instead of in custom logic, depending on the device resources already committed. 

Example 6 shows the VHDL code from which the Quartus II software infers the DSP 
block structure shown in Figure 6 on page 9. You can find this HDL code in the 
VHDL/systolic_fir/systolic_fir.vhd file. The sections that specify the two-input adder 
and the multiplier-adder with register are shown. Each two-input adder is mapped to 
a dedicated pre-adder and each multiplier-adder plus register is mapped to a 27 × 27 
DSP block element.

Example 6. VHDL Code for Inferring 27×27 DSP Blocks in Systolic Array with Pre-Adder and Chainout Adder

 preadder_map : for j in 0 to engine_size_c-1 generate
preadder_out(j) <= resize(taps(j), din_width_c + 1) 

+ resize(taps(engine_size_c), din_width_c + 1);    
  end generate preadder_map;

  first_mult : process (reset, clk) is
    variable current_adder_out : signed(chainout_bitwidth_c(0)-1 downto 0);
  begin  -- process mult
    if reset = '1' then
      current_adder_out := (others => '0');
    elsif rising_edge(clk) and (reg_in_valid = '1') then
      current_adder_out := preadder_out(0)*coeff(0);
    end if;
    chainout(0) <= resize(current_adder_out, dout_width_c);
  end process first_mult;

  mult_map : for n in 1 to engine_size_c -1 generate
    mult : process (reset, clk) is
      variable current_adder_out : signed(chainout_bitwidth_c(n)-1 downto 0);
    begin  -- process mult
      if reset = '1' then
        current_adder_out := (others => '0');
      elsif rising_edge(clk) and (reg_in_valid = '1') then
        -- modelsim complains width mismatch. had to use resize
        current_adder_out := resize(chainout(n-1), chainout_bitwidth_c(n)) 

+ resize(preadder_out(n)*coeff(n), chainout_bitwidth_c(n));
      end if;
      chainout(n) <= resize(current_adder_out, dout_width_c);

// Value of dout_width_c is declared at start of file to be 
//58 = din_width_c+1+coeff_width_c+ ceiling(log2(engine_size_c))

    end process mult;
  end generate mult_map;
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A single coefficient set is stored in each DSP block’s dedicated coefficient buffer. The 
Quartus II software infers internal storage for a single coefficient set if the HDL code 
declares the coefficients as constants, as is done in systolic_fir.vhd.

To enable inference of the pre-adder inside the DSP block, the summation result must 
be specified to be one bit wider than the incoming data. The VHDL resize function is 
marked in red in Example 6.

To enable inference of the cascaded output bus in the systolic structure, the Quartus II 
software v10.1 requires that the incoming and outgoing adder chain widths be 
specified for each DSP block. Example 6 shows the HDL code to meet this 
requirement, based on the VHDL package definition of a constant array 
chainout_bitwidth_c. The array values ensure that the output of each multiplication 
operation has declared width exactly the sum of the multiplicand data width, the 
coefficient data width, and the required bit growth width. The bit growth equation for 
adder n on the chain is ceiling(log2(n)) for n in 1,..., engine_size_c. The value of 
dout_width_c is also declared as a constant in the VHDL package. The VHDL package 
definition is in the systolic_type_pkg.vhd file.

This VHDL example generates a 64-tap single-channel single-rate systolic FIR filter 
with 27-bit symmetric coefficients that uses 32 DSP blocks. The number of delay 
elements in the tap-delay line is 62.

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 9 summarizes the 
reported usage.

Inferring a Multi-Channel Single-Rate Symmetric Systolic FIR Filter
The design example in the VHDL/multichan_systolic_fir directory contains VHDL 
code from which the Quartus II software infers a 128-tap 12-channel single-rate 
systolic FIR filter with 27-bit symmetric coefficients. The structure of this filter is 
shown in Figure 11 on page 12. During the mapping stage of compilation, when the 
Quartus II software identifies a two-input adder or a multiplier-adder with register, it 
maps the function to the appropriate device atoms. If the design targets a Stratix V 
device with DSP blocks, the Quartus II software can implement this function in a DSP 
block instead of in custom logic, depending on the device resources already 
committed. 

The DSP blocks that implement this FIR filter are identical to the DSP blocks inferred 
for the single-channel symmetric FIR filter, and are inferred from the same code. Refer 
to “Inferring a Single-Channel Single-Rate Symmetric Systolic FIR Filter” on page 33. 
However, the tap-delay line is different.

Table 9. DSP Block Usage for VHDL Example Single-Channel Single-Rate FIR Filter

Statistic Number Used Available per Block

Independent 27×27 (one) 32 1.00

DSP Block 32 —

DSP 27-bit Element 32 1.00

Signed Multiplier 32 —

Dedicated Output Adder Chain 31 —
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Example 7 and Example 8 show the VHDL code from which the Quartus II software 
infers the tap-delay line shown in Figure 11 on page 12. The value of C in Figure 11 is 
12 in this example. Because the forward, backward, and folding-point taps all have 
different depths, the code is written to instantiate three separate altshift_taps 
megafunction instances and concatenate them together. Example 7 shows the VHDL 
code from which an altshift_taps megafunction is inferred, and Example 8 shows the 
VHDL code for instantiating the three instances and concatenating them together. 
This code is located in the VHDL tap_delay_chain.vhd file.

Table 10 shows the parameters that support inference of the altshift_taps 
megafunction. For successful inference, in addition, the component ports must match 
the megafunction ports. 

Using the altshift_taps megafunction ensures the delay taps are implemented in 
on-chip memory.

f For more information about the altshift_taps megafunction, refer to the altshift_taps 
Megafunction User Guide.

f For more information about writing HDL code to infer an altshift_taps megafunction 
instance, refer to Recommended HDL Coding Styles in volume 1 of the Quartus II 
Handbook.

Example 7. VHDL Code for Inferring an altshift_taps Megafunction

 component shift_taps is
    generic (
      din_width_c         : natural;
      entire_tap_length_c : natural;
      tap_depth_c         : natural;
      num_taps_c          : natural);
    port (
      clk       : in  std_logic;
      reset     : in  std_logic;
      en        : in  std_logic;
      data_in   : in  signed(din_width_c-1 downto 0);
      data_taps : out tap_array_type(0 to num_taps_c-1);
      data_out  : out signed(din_width_c-1 downto 0)
      );
  end component shift_taps; 

Table 10. VHDL Generics for Inferring an altshift_taps Megafunction

VHDL Generic Description

din_width_c Width of incoming data to the tap-delay line.

entire_tap_length_c Size of the tap-delay line. Value is tap_depth_c × num_taps_c. 

tap_depth_c Number of delay elements between two adjacent taps in the tap-delay line. 

num_taps_c Number of output taps off the tap-delay line.
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Example 8 shows the VHDL code for instantiating the three instances and 
concatenating them together. 

Example 8. VHDL Code for Inferring Three altshift_taps Instances for a Multi-Channel Symmetric FIR Filter

architecture arch of tap_delay_chain is

  signal tap_forward  : tap_array_type(0 to engine_size_c-1);
  signal tap_fold     : tap_array_type(0 to 0);
  signal tap_backward : tap_array_type(0 to engine_size_c-2);

.... 

begin
  -- forward path each tap is period_c + 1 deep.  Number of taps excludes the
  -- first tap.
  forward_tap : component shift_taps
    generic map (
      din_width_c         => din_width_c,
      entire_tap_length_c => (engine_size_c-1)*(period_c + 1),
      tap_depth_c         => period_c+1,
      num_taps_c          => engine_size_c-1)
    port map (
      clk       => clk,
      reset     => reset,
      en        => en,
      data_in   => data_in,
      data_taps => tap_forward(1 to engine_size_c -1));
  tap_forward(0) <= data_in;

  -- the folding point has one tap, but it is period_c deep
  mid_tap : component shift_taps
    generic map (
      din_width_c         => din_width_c,
      entire_tap_length_c => period_c,
      tap_depth_c         => period_c,
      num_taps_c          => 1)

port map (
      clk       => clk,
      reset     => reset,
      en        => en,
      data_in   => tap_forward(engine_size_c-1),
      data_taps => tap_fold);

  --backward taps are period_c-1 deep
  backward_tap : component shift_taps
    generic map (
      din_width_c         => din_width_c,
      entire_tap_length_c => (engine_size_c-1)*(period_c - 1),
      tap_depth_c         => period_c -1,
      num_taps_c          => engine_size_c-1)
    port map (
      clk       => clk,
      reset     => reset,
      en        => en,
      data_in   => tap_fold(0),
      data_taps => tap_backward);

  data_taps(0 to engine_size_c-1)                   <= tap_forward;
  data_taps(engine_size_c)                          <= tap_fold(0);
  data_taps(engine_size_c + 1 to 2*engine_size_c-1) <= tap_backward;
end architecture arch;
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This VHDL example generates a 128-tap 12-channel single-rate systolic FIR filter with 
27-bit symmetric coefficients that uses 64 DSP blocks. The number of delay elements 
in the tap-delay line is 1461.

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 11 summarizes the 
reported usage.

Inferring a Multi-Channel Interpolation Direct Form FIR Filter
The design example in the VHDL/interpolation_fir directory contains VHDL code 
from which the Quartus II software infers a 128-tap four-channel interpolation 
direct-form FIR filter with 27-bit coefficients and rate change factor 4. The structure of 
this filter is shown in Figure 20 on page 17. The MUX at the input to each multiplier 
selects the current polyphase filter data from the <rate change factor> taps that feed the 
current multiplier. The MUXes have a common select line. The input data format 
understood by the FIR filter is the format shown in Figure 18 on page 17. The output 
data format is shown in Figure 19 on page 17.

During the mapping stage of compilation, when the Quartus II software identifies a 
coefficient select, a multiplier, or a multiplier-adder, it maps the function to the 
appropriate device atoms. If the design targets a Stratix V device with DSP blocks, the 
Quartus II software can implement this function in a DSP block instead of in custom 
logic, depending on the device resources already committed.

In Figure 3, consecutive DSP blocks alternate in their configuration. Pairs of blocks are 
configured in two 27×27 multiplier adder operational mode. To ensure the Quartus II 
software infers the multipliers in DSP blocks, you must resize the multiplication result 
to be exactly the sum of the multiplicand data width and the coefficient data width. To 
ensure the Quartus II software infers the chainout adder, you must declare its 
addition output bit width to be exactly one more than the multiplier output signal 
width in each DSP block. 

Table 11. DSP Block Usage for VHDL Example Multi-Channel Single-Rate FIR Filter

Statistic Number Used Available per Block

Independent 27×27 (one) 64 1.00

DSP Block 64 —

DSP 27-bit Element 64 1.00

Signed Multiplier 64 —

Dedicated Output Adder Chain 63 —
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Example 9 shows the VHDL code that enforces the width of the multiplication result. 
This code is located in the VHDL interpolation_fir.vhd file.

Example 10 shows the VHDL code that enforces the width of the chainout adder in 
every second DSP block. This code is located in the VHDL interpolation_fir.vhd file.

The multi-channel interpolation FIR filter requires four coefficient sets, to match the 
number of polyphase decomposed subfilters—the rate change factor. For multiple 
coefficient sets, the Quartus II software infers the dedicated coefficient storage in DSP 
blocks only if the coefficients are stored in a ROM structure. 

Example 9. VHDL Code for Inferring the Width of the Multiplication Result

mult_map : for n in 0 to engine_size_c -1 generate
    mult : process (reset, clk) is
    begin  -- process mult
      if reset = '1' then
        multout(n) <= (others => '0');
      elsif rising_edge(clk) and (reg_in_valid = '1') then
        multout(n) <= resize(taps(n)*coeff_row(n), din_width_c+coeff_width_c);
      end if;
    end process mult;
  end generate mult_map; 

Example 10. VHDL Code for Inferring the Width of the Chainout Adder

sumof2_gen : for k in 0 to engine_size_c/2-1 generate
    sumof2_add : process (multout(2*k), multout(2*k+1)) is
    begin  -- process sumof2_add
      sumof2(k) <= resize(multout(2*k), sumof2_bitwidth_c)

+ resize(multout(2*k+1), sumof2_bitwidth_c);
    end process sumof2_add;
  end generate sumof2_gen;
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Example 11 and Example 12 show the VHDL code that meets this requirement. The 
code in Example 11 creates ROM initialization values for the coefficients in a DSP 
block. The Quartus II software infers a ROM whose depth is the rate change factor for 
the FIR filter. This code is located in the VHDL coeff_rom.vhd file. 

Example 11. VHDL Code to Infer Dedicated Coefficient Storage Per DSP Block

entity coeff_rom is
generic
    (coeff_width_c : natural := 27;
     contents_c    : memory_t;          -- coefficients for 1 multiplier across
                                  -- rate_c polyphases
     rate_c        : natural := 4);
  port
    (addr : in  natural range 0 to rate_c - 1;
     q    : out word_t);
end entity;

architecture rtl of coeff_rom is
  -- Build a 2-D array type for the RoM
  -- initialize ROM contents to the input coefficients vector
  function init_rom
    return memory_t is
    variable tmp : memory_t := (others => (others => '0'));
  begin
    for addr_pos in 0 to rate_c - 1 loop
      -- Initialize each address with the coeff vector
      tmp(addr_pos) := contents_c(addr_pos);
    end loop;
    return tmp;
  end init_rom;

  -- Declare the ROM signal and specify a default value. The Quartus II
  -- software will create a memory initialization file (.mif) based on the 
  -- default value.
  signal rom : memory_t := init_rom;
-- this is combinational logic
begin
  process(addr)
  begin
    q <= rom(addr);
  end process;
end rtl;
March 2017 Altera Corporation AN639: Inferring Stratix V DSP Blocks for FIR Filtering Applications



Page 40 VHDL Examples
The code in Example 12 instantiates one of these ROM blocks for each DSP block and 
collects the coefficients for the current polyphase for all the blocks in an array 
coeff_row. This code is located in the VHDL interpolation_fir.vhd file.

The select signal controls a data MUX and coefficient selection, to ensure the input 
data and coefficients from the same polyphase filter are aligned properly. 

The multi-channel interpolation FIR filter tap-delay line is implemented with the 
altshift_taps megafunction. Because this FIR filter does not assume symmetric 
coefficients, only a single altshift_taps instance is required. The VHDL code to ensure 
inference of the altshift_taps megafunction appears in the VHDL shift_taps.vhd file. 
This code includes the entity definition shown in Example 7 on page 35 and a 
simplified version of the instantiations in Example 8 on page 36. The distance 
between taps is 4, the ratio of the device clock frequency to the input data channel 
rate, divided by the number of channels.

This VHDL example generates a 128-tap four-channel interpolation direct-form FIR 
filter with 27-bit symmetric coefficients and rate change factor 4 that uses 32 DSP 
blocks. The number of delay elements in the tap-delay line is 496.

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 12 summarizes the 
reported usage.

Figure 13 on page 14 shows the input data provided for this design example, and 
Figure 14 on page 15 shows the result of simulating the design example testbench on 
this input data. 

Example 12. VHDL Code to Use Coefficient Storage Correctly Across DSP Blocks

-- an engine_size_c by rate_c matrix; each row is used to initialize a coeff ROM
  constant coeff_matrix_signed_c : memory_array_t := coeff_type_conv;
-- an engine_size_c by 1 vector, each element feeds a DSP block
  signal coeff_row               : coeff_row_signed_t;

rom_gen : for i in 0 to engine_size_c-1 generate
    rom_inst : component coeff_rom
      generic map (
        coeff_width_c => coeff_width_c,
        contents_c    => coeff_matrix_signed_c(i),
        rate_c        => rate_c)
      port map (
        addr => sel,
        q    => coeff_row(i));
  end generate rom_gen;

Table 12. DSP Block Usage for VHDL Example Decimation FIR Filter

Statistic Number Used Available per Block

Sum of two 27×27 16 0.5

DSP Block 32 —

DSP 27-bit Element 32 1.00

Signed Multiplier 32 —

Dedicated Coefficient Storage 32 —
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Inferring a Multi-Channel Decimation Direct Form FIR Filter
The design example in the VHDL/decimation_fir directory contains VHDL code 
from which the Quartus II software infers a 128-tap four-channel decimation 
direct-form FIR filter with 27-bit coefficients and rate change factor 4. The structure of 
this filter is shown in Figure 25 on page 20. The accumulator at the final stage 
supports multiple channels. The input and output data formats are shown in 
Figure 24 on page 19. 

The multi-channel decimation direct form FIR filter does not support inference of the 
DSP block internal accumulator, because of the choice of data format. With the 
interleaved output data format in Figure 24, accumulating requires multiple cycles of 
delay. The output data format used by the Verilog HDL multi-channel interpolation 
FIR filter example supports a single-cycle delay between data words from the same 
channel. Therefore, it supports the inference of the DSP block internal accumulator. 
However, the output data format used by the VHDL multi-channel interpolation FIR 
filter example does not support single-cycle delay between data words from the same 
channel. If the number of channels is 1, you might be able to use the internal 
accumulator for this example to improve latency and resource utilization, depending 
on your operating clock rate.

During the mapping stage of compilation, when the Quartus II software identifies a 
coefficient select, a multiplier, or a multiplier-adder, it maps the function to the 
appropriate device atoms. If the design targets a Stratix V device with DSP blocks, the 
Quartus II software can implement this function in a DSP block instead of in custom 
logic, depending on the device resources already committed.

The VHDL code from which the Quartus II software infers the tap-delay line, and 
from which it infers the multipliers, coefficient storage, and chainout adder 
configuration in the DSP blocks, is the same as the code for the interpolation 
direct-form FIR filter described in “Inferring a Multi-Channel Interpolation Direct 
Form FIR Filter” on page 37.

The distance between taps is 16, which is the ratio of the device clock frequency to the 
input data channel rate. The final accumulator delay is 4.

This VHDL example generates a 128-tap four-channel decimation direct-form FIR 
filter with 27-bit symmetric coefficients and rate change factor 4 that uses 32 DSP 
blocks. The number of delay elements in the tap-delay line is 496.

After compilation, the Analysis & Synthesis DSP Block Usage Summary report shows 
the features of the DSP blocks that are configured for use. Table 13 summarizes the 
reported usage.

Table 13. DSP Block Usage for VHDL Example Interpolation FIR Filter

Statistic Number Used Available per Block

Sum of two 27×27 16 0.5

DSP Block 32 —

DSP 27-bit Element 32 1.00

Signed Multiplier 32 —

Dedicated Coefficient Storage 32 —
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Document Revision History
Table 14 shows the revision history for this application note.

Table 14. Document Revision History

Date Version Changes

March 2017 2.0 Updated the URL to the example designs in the “Downloading the Example Applications” 
section.

January 2011 1.0 Initial release.
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