
August 2010 Altera Corporation

AN624-1.0

© 2010 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Debugging with System Console Over
TCP/IP
Application Note
This application note describes software that supports debugging your custom SOPC
Builder component with the Altera® System Console over a TCP/IP communication
channel. The application note provides a software application that reads System
Console commands from a TCP/IP socket and converts them from the Avalon
Streaming (Avalon-ST) packet protocol format in which they arrive at the FPGA, to
the appropriate Avalon Memory-Mapped (Avalon-MM) commands. It can pass those
commands to any Avalon-MM slave component in the SOPC Builder system that is
connected to the Nios II processor data master port. The software application converts
the Avalon-MM responses to the Avalon-ST packet protocol format and passes them
back through the TCP/IP communication channel.

You can use this design example as a basis for testing your own custom SOPC Builder
component using the System Console over a TCP/IP connection, by replacing the
component under test in the design example with your own custom component. The
only requirement is that the designated SOPC Builder component have an
Avalon-MM slave port connected to the Nios II processor data master port.

Introduction
The System Console is an interactive console for low-level system debug of SOPC
Builder based systems over various communication channels, including JTAG and
TCP/IP. The System Console provides read and write access to the IP cores
instantiated in your SOPC Builder system. The System Console is useful for low-level
scripted or interactive testing and debugging of IP cores.

This application note demonstrates the use of TCP/IP as a communications channel
for the System Console. Using an already established System Console packet protocol,
this solution provides a flexible TCP/IP service for use with the System Console. The
solution leverages full System Console support on the host to access this TCP/IP
channel. The pluggable architecture of System Console supports this additional
host-target communications channel. The System Console has a simple set of
Tcl-based commands for communicating with various parts of your SOPC Builder
system.

The sctcp application provides a channel for communication over TCP/IP sockets
from the System Console running on a development host to an SOPC Builder system
running on an FPGA. The sctcp application is a sockets-based application for the
Nios II processor that leverages the NicheStack TCP/IP networking stack.

The example hardware design includes an Avalon-MM SOPC Builder on-chip
memory component that the host controls through the TCP/IP networking stack. You
can substitute your own custom SOPC Builder component with an Avalon-MM slave
port and debug it using this methodology.
Subscribe

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-624
http://www.altera.com/common/legal.html

Page 2 Prerequisites
After completing this document, you have the knowledge to use the System Console
to debug Avalon-MM SOPC Builder peripheral component hardware through a
TCP/IP connection.

Prerequisites
This application note assumes that you are familiar with reading and writing
embedded software and that you have read and followed the step-by-step procedures
for building a microprocessor system in the Nios II Hardware Development Tutorial.

This application note also assumes that you are familiar with networking setup
requirements. If a DHCP server is available, the software uses it to obtain an IP
address. Otherwise, the software uses a predefined IP address specified in the sctcp.h
software application source file. To gain additional familiarity with network setup,
refer to the Using the NicheStack TCP/IP Stack – Nios II Edition Tutorial.

f For complete details of the MicroC/OS-II real-time operating system for the Nios II
processor, refer to the MicroC/OS-II Real-Time Operating System chapter of the Nios II
Software Developer's Handbook.

f For complete details of NicheStack TCP/IP Networking Stack initialization and
configuration for the Nios II processor, refer to the Ethernet and the NicheStack TCP/IP
Stack – Nios II Edition chapter of the Nios II Software Developer's Handbook.

System Console tcp_master TCP/IP service
The example design uses the tcp_master service of the System Console, available in
the Quartus II software v10.0. This service enables the System Console to control any
Avalon-MM slave. The example design does not demonstrate the tcp_bytestream
service provided by the System Console to control Avalon-ST components.

f For more information about System Console service masters and the System Console
commands that use a service master, refer to the Analyzing and Debugging Designs with
System Console chapter in volume 3 of the Quartus II Handbook.

Software Design Overview
The software creates a MicroC/OS-II task for communication with System Console
using NicheStack TCP/IP Networking Stack sockets. The task reads System Console
commands in the form of bytes from a TCP/IP socket. These bytes represent Avalon
streaming packet data. The task then extracts, interprets and executes each System
Console command by reading and writing to the memory mapped interface of the
SOPC Builder component under test. Next, the task converts the System Console
command results to Avalon streaming packet data bytes and writes the bytes to the
TCP/IP socket for transmission back to the System Console tool running on the
development host.
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/hb/qts/qts_qii53028.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_tcpip.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

Hardware and Software Requirements Page 3
 Communicating over the TCP/IP channel, System Console uses the tcp_master
master service to control any Avalon-MM slave SOPC Builder component. An on-chip
memory serves as an example SOPC Builder hardware component under test in this
design. Connect the slave port for any Avalon-MM SOPC Builder component that you
desire to test to the Nios II processor’s data master port in the SOPC Builder
connection panel.

Hardware and Software Requirements
This tutorial requires the following hardware and software:

■ Quartus® II software version 10.0 or later

■ Nios II Embedded Design Suite (EDS) version 10.0 or later

■ Altera USB-Blaster™ cable

■ RJ-45 connected Ethernet cable on the same network as the PC development host

This application note uses as a reference the following Altera development kit board:

■ Nios II Embedded Evaluation Kit, Cyclone® III Edition (NEEK)

To complete this tutorial, your Altera development board must have the following
connections:

■ Connected through a USB-Blaster connection to the host computer

■ Connected through an Ethernet cable to the same network as the PC development
host

Design Example Files
The software design files for this application note are available from the Debugging
with System Console over TCP/IP Design Example web page of the Altera website.
The hardware design files for the design walkthrough are available from the Nios II
Ethernet Standard Design Example web page.

The following sections describe the files.

Hardware Design Files
The Nios II Ethernet Standard Design Example web page of the Altera website
contains the hardware design files that correspond to this design example
walkthrough. The system is available in several different .zip files that target different
Altera development boards. On the web page, locate the Nios II Ethernet Standard
Design Example .zip file that corresponds to your board. For example, the correct file
for the NEEK is niosii-ethernet-standard-3c25.zip.

For the initial hardware design, you need not use a design example from the Nios II
Ethernet Standard Design Example web page. You can use any SOPC Builder
hardware design with a Nios II processor that is NicheStack capable. The design
example walkthrough provides the information to add a component to be tested with
the software application. The software application works correctly with any
qualifying initial hardware design with the addition of the new component under
test.
August 2010 Altera Corporation Debugging with System Console Over TCP/IP

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-debug-sys-console-tcpip.html
http://www.altera.com/support/examples/nios2/exm-debug-sys-console-tcpip.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Page 4 Design Example Files
The design example .zip file, described in “Application Files”, contains prebuilt
versions of the Quartus II project and hardware image file that you generate in this
walkthrough starting from the NEEK version of the Nios II Ethernet Standard Design
Example.

To make the hardware design files available for the design example walkthough,
download and unzip the file in a new working directory, <Nios_II_Ethernet_Standard>.
Make sure the path name has no spaces.

Application Files
The AN624_Debugging_with_System_Console_over_TCPIP.zip file you can
download from the Debugging with System Console over TCP/IP Design Example
web page contains the following design example files:

■ Software program files and board support package (BSP) creation script for the
software application

■ Pre-generated Quartus II project files and an SRAM Object File (.sof) for a specific
final hardware design

Downloading the Application Files
To make the application files available for the design example walkthrough, follow
these steps:

1. Download and unzip the file in a new working directory, <sctcp>. Make sure the
path name has no spaces.

2. Copy the <sctcp>/software_examples directory to your
<Nios_II_Ethernet_Standard> directory.
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

http://www.altera.com/support/examples/nios2/exm-debug-sys-console-tcpip.html
http://www.altera.com/support/examples/nios2/exm-debug-sys-console-tcpip.html

Design Example Files Page 5
Application File Descriptions
The application files provide a complete software application and BSP to
communicate with System Console over NicheStack TCP/IP Networking Stack
sockets. Irrespective of the hardware design you use, the software is located in the
<sctcp>/software_examples directory. Figure 1 shows the
AN624_Debugging_with_System_Console_over_TCPIP.zip directory structure.

Table 1 lists the application source files located in the src directory in Figure 1.

Figure 1. Application Software Files Directory Structure

 software_examples

 sctcp

create-this-app

 bsp

app

AN624_Debugging_with_System_Console_over_TCPIP
Installation directory

.

.

system_console_commands.tcl

. Pre-generated Quartus II project files,
SOPC Builder files, and .sof file

 src
Application source code files

create-this-bsp

 sctcp_bsp

Table 1. sctcp Application Source Files

File Description

alt_2_wire.c Contains utilities that provide a low-level interface to the EEPROM devices

alt_2_wire.h Defines utilities that provide a low-level interface to the EEPROM devices

alt_eeprom.c Contains utilities that read, write, dump, and fill the contents of the EEPROM devices

alt_eeprom.h Defines utilities that read, write, dump, and fill the contents of the EEPROM devices

alt_error_handler.c Contains three error handlers, one each for the Nios II sctcp application, NicheStack TCP/IP
Stack, and MicroC/OS-II

alt_error_handler.h Contains definitions and function prototypes for the three software component-specific error
handlers

iniche_init.c Defines main(), which initializes MicroC/OS-II and the NicheStack TCP/IP stack and processes
the MAC and IP addresses; contains the PHY management tasks; defines function prototypes

sctcp.c
Defines the tasks and functions that utilize the NicheStack TCP/IP Stack sockets interface to
interpret System Console commands received on a socket and compose responses to send back
over the socket to System Console host tool

sctcp.h Defines the task prototypes and task priorities used in the sctcp application

tcp_channel_master.c Defines the TCPChannelMaster function, which processes commands coded in the Avalon
Streaming Packet Protocol
August 2010 Altera Corporation Debugging with System Console Over TCP/IP

Page 6 Design Example Construction
The alt_2_wire.c and .h and the alt_eeprom.c and .h application source files
implement the alt_eeprom software component, used for retrieval of the MAC
address from EEPROM on the NEEK. These source files serve no other function for
the sctcp application. The remaining files implement the sctcp application.

Design Example Construction
The following exercise shows you how to construct hardware and software with
which the System Console can communicate using the Avalon-ST packet protocol to
and from an SOPC Builder hardware component under test. This design example
includes software to communicate with SOPC Builder hardware components through
the System Console over NicheStack TCP/IP Networking Stack sockets. This
application note uses the Nios II Ethernet Standard Example Design for the NEEK as
the reference starting point.

Additionally, the <sctcp> directory provides a completed reference design for the
NEEK. If you have a NEEK, you can skip the hardware system creation stage, and use
this hardware design.

Creating the Hardware System
In the following steps you create a system capable of communicating with System
Console over TCP/IP, with an on-chip memory used to represent any SOPC Builder
component IP hardware under test, by starting with the Nios II Ethernet Standard
Design Example hardware design.

Getting Started with Creation of the Example Design
To begin building the hardware system, follow these steps:

1. Change directory to <Nios_II_Ethernet_Standard>.

2. Open the Quartus II software.

3. On the File menu, click Open Project (not Open).

4. Browse and load the Quartus II Project File (.qpf) from the newly-created
directory.

5. On the Tools menu, click SOPC Builder.

Adding an On-Chip RAM Memory
In this section, you add an on-chip memory to the system. This memory component is
representative of any Avalon-MM SOPC Builder component that you wish to test
with the System Console.

To add an on-chip memory, perform the following steps:

1. In the Component Library, expand Memories and Memory Controllers, expand
On-Chip, and then click On-Chip Memory (RAM or ROM).

2. Click Add. The On-Chip Memory (RAM or ROM) wizard interface appears.
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

Design Example Construction Page 7
3. Under Memory type, perform the following parameter value selections:

■ Select RAM (Writable)

■ Turn off Dual-port access

■ Set Block type to Auto

■ Turn on Initialize memory content

4. For Data width, select 32.

5. In the Total memory size box, type 4096 and select Bytes to specify a memory size
of 4 KBytes.

6. Under Read latency, for Slave s1, select 1.

7. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the on-chip memory named onchip_memory2_0 now appears at the
bottom of the System Contents description.

8. In the Clock column, double-click and select sdram_sysclk.

9. In the Base column, double-click and type 0x00001000.

10. Connect the slave port for onchip_memory2_0 to cpu/data_master.

11. Ensure no other connections target the slave port for onchip_memory2_0.

The modified Nios II Ethernet Standard Design Example hardware design is also
available in the AN624_Debugging_with_System_Console_over_TCPIP.zip file. You
can compare your completed system to the predefined system located in <sctcp>.

Generating and Compiling the Hardware System Design
In this section, you generate HDL for the SOPC Builder system, and then compile the
project in the Quartus II software to produce an SRAM Object File (.sof) for
programming the FPGA.

To generate and compile the system, perform the following steps:

1. In SOPC Builder, click the System Generation tab.

2. Turn off Simulation. Create project simulator files. System generation requires
less time when this option is off.

3. Click Generate. This might take a few moments. A Stop button replaces the
Generate button, indicating generation is taking place.

When generation is complete, the Generate button replaces the Stop button, and a
SUCCESS: SYSTEM GENERATION COMPLETED message displays.

4. After generation completes, click Exit in SOPC Builder to return to the Quartus II
software.

5. On the Processing menu, click Start Compilation to compile the project in the
Quartus II software.

6. When compilation completes and displays the Full compilation was successful
message box, click OK.

7. On the Tools menu, click Programmer.
August 2010 Altera Corporation Debugging with System Console Over TCP/IP

Page 8 Design Example Construction
8. Turn on the Program/Configure checkbox for the .sof file in the Quartus II
Programmer.

9. Click Start to download the FPGA configuration data to your target hardware.

Creating Software for the System
In the following steps, you build an application and a BSP at the command line in a
Nios II Command Shell. If any errors require debugging at run-time, you can use the
Nios II Software Build Tools for Eclipse to import the application and BSP projects,
and debug the software interaction with the hardware.

To build the application and BSP projects for this application note, follow these steps:

1. Start a Nios II Command Shell.

2. Change directory to the hardware design directory that contains your Quartus II
project file. If you use the prebuilt hardware design that accompanies this
application note, the directory is <sctcp>. If you construct the hardware from the
Nios II Ethernet Standard design, the directory is <Nios_II_Ethernet_Standard>.

3. Change directory to software_examples/app/sctcp.

4. Build the project by typing the following command:
./create-this-app r

The sctcp application software project and BSP project are created and built, and the
software image file sctcp.elf appears in the directory.

After you make any hardware design changes in SOPC Builder, you can most easily
regenerate the application and BSP by performing the following steps:

1. Delete all folders and files except the create-this-bsp script from
software_examples/bsp/sctcp_bsp.

2. Delete the file software_examples/app/sctcp/Makefile.

3. Repeat the preceding set of steps to build the application and BSP projects.

Using System Console with the TCP/IP Channel
To use the System Console with the sctcp application, follow these steps:

1. To start the System Console, from a Nios II Command Shell, type the following
command:
system-console & r

2. To start the sctcp application, follow these steps:

a. In a Nios II Command Shell, change directory to the application build
directory, <sctcp>/software_examples/app/sctcp.

b. Type the following command:
nios2-download -g sctcp.elf; nios2-terminal r

Note the IP address displayed in the nios2-terminal startup messages.
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

Design Example Construction Page 9
Figure 2 shows an example display following the download of sctcp.elf.

3. Use the add_service command in the System Console to add a tcp_master service
at port 30 at the nios2-terminal IP address. For example, if the IP address
displayed in the nios2-terminal startup messages is 137.57.235.55, in the system
console, type the following command:
add_service tcp_master my_service 137.57.235.55 30 r

The System Console responds with the following path for the new service:
/connections/tcp_master/my_service

4. In the System Console, set a variable <tcp_master_path> to the path to the new
tcp_master, by typing the following command:
set tcp_master_path [lindex [get_service_paths master] 0] r

Figure 2. sctcp.elf Download Display
August 2010 Altera Corporation Debugging with System Console Over TCP/IP

Page 10 System Console TCP/IP Channel and sctcp Design Notes
5. Open the tcp_master service using the <tcp_master_path> variable, by typing the
following command:
open_service master $tcp_master_path r

6. Use the tcp_master service to write values to the on-chip memory component, by
typing the following command:
master_write_memory $tcp_master_path 0x1000 [list 1 2 3 4 5 6 7 8] r

The command references the component by its base address. In Step 9 on page 7,
you set the base address of the on-chip memory component to 0x1000.

7. Use the tcp_master service to read back those values, by typing the following
command:
master_read_memory $tcp_master_path 0x1000 8 r

The System Console responds with the following values read from memory:
0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

Figure 3 shows the sequence of commands in the System Console.

System Console TCP/IP Channel and sctcp Design Notes
The amount of data that can be exchanged with a single System Console command is
limited by the amount of Java heap space available to the System Console on the
development host. To avoid exhausting the Java heap, ensure that the size of each
transaction is less than 100,000 bytes.

Most of the processing time is used for NicheStack TCP/IP stack packet processing.
Many different optimization techniques are available to increase the system
throughput. The Nios II processor runs at 50 MHz in this design, but it could run
much faster, depending on the other requirements of your custom SOPC Builder
system. The NicheStack networking stack has a zero-copy interface, which you can
employ for greater efficiency. Other techniques for boosting performance include
using an Altera Vectored Interrupt Controller (VIC), and locating interrupt service
routines in single clock-cycle latency tightly coupled on-chip memory.

Figure 3. System Console GUI with Commands Using the tcp_master Service
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

Conclusion Page 11
f For information about accelerating a Nios II-based hardware system running the
NicheStack TCP/IP Networking Stack, refer to AN 440: Accelerating Nios II Networking
Applications.

You can replace the entire hardware system with a different processor and Ethernet
hardware, if you adapt the sctcp software for the new hardware system. Specifically,
the software that interprets the System Console packet-protocol commands received
on a socket must run correctly with a TCP/IP stack for the new processor and
Ethernet hardware.

f For details on the packet protocol that the System Console uses, refer to the Avalon-ST
Bytes to Packets and Packets to Bytes Converter Cores chapter and the SPI Slave/JTAG to
Avalon Master Bridge Cores chapter in the Embedded Peripherals IP User Guide. Both of
these chapters include a figure with an example that illustrates the relevant
conversion.

Conclusion
In this application note you built software to support the System Console in
communicating through a TCP/IP channel to an Avalon slave component,
onchip_memory2_0, that you added to the Nios II Ethernet Standard Design Example
SOPC Builder system. The software extracts System Console-generated read and
write commands, encapsulated in an Avalon-ST packet protocol, from a socket. To test
your own hardware, you can replace the on-chip RAM memory onchip_memory2_0
in the hardware design with your own SOPC Builder hardware component.

Document Revision History
Table 2 shows the revision history for this document.

Table 2. Document Revision History

Date Version Changes

August 2010 1.0 Initial release.
August 2010 Altera Corporation Debugging with System Console Over TCP/IP

http://www.altera.com/literature/an/an440.pdf
http://www.altera.com/literature/an/an440.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Page 12 Document Revision History
Debugging with System Console Over TCP/IP August 2010 Altera Corporation

	Debugging with System Console Over TCP/IP
	Introduction
	Prerequisites
	System Console tcp_master TCP/IP service
	Software Design Overview
	Hardware and Software Requirements
	Design Example Files
	Hardware Design Files
	Application Files
	Downloading the Application Files
	Application File Descriptions

	Design Example Construction
	Creating the Hardware System
	Getting Started with Creation of the Example Design
	Adding an On-Chip RAM Memory

	Generating and Compiling the Hardware System Design
	Creating Software for the System
	Using System Console with the TCP/IP Channel

	System Console TCP/IP Channel and sctcp Design Notes
	Conclusion
	Document Revision History

