
Altera Corporation
AN-414-1.0

May 2006, version 1.0
The JRunner Software Driver:
An Embedded Solution for

PLD JTAG Configuration

Application Note 414
Introduction The JRunnerTM software driver is developed to configure Altera® FPGA
devices in JTAG mode through the ByteBlaster II or ByteBlasterMV
download cables for embedded configurations. Source code for the driver
is provided to enable you to customize the I/O control routines for your
system.

The JRunner driver supports the configuration file in a Raw Binary File
(.rbf) format generated by the Altera Quartus® II software. The input file
to the JRunner driver is in the Chain Description File (.cdf) format.

The JRunner software was developed and tested on the Windows
platform (NT, 2000, and XP).

How JRunner
Software Works

JRunner software utilizes JTAG interface to configure Altera devices in
embedded configurations. This software consists of controller and
parsers to process the information required from the input files such as
device information and configuration data.

This software requires the following two external files:

■ A Raw Binary File containing information on configuration images.
■ A Chain Description File containing information on the Altera PLDs.

Block Diagram

Figure 1 shows the JRunner software block diagram, its interfaces to
external files, and the device chain. The JTAG controller manages the data
processing as well as the JTAG configuration process.
 1

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Figure 1. JRunner Block Diagram And Interfaces

Source Files

The JRunner source code is written in ANSI C and is divided into
modules that reside in separate files. Table 1 describes the JRunner source
code files.

1 The source codes are available for download from the Altera
website (www.altera.com). For the complete list of supported
Altera devices, refer to the source codes README file.

External Files

Raw Binary
 File

Chain
Description
File (.cdf)

RBF
Parser

JTAG
Controller

JTAG
Configuration

I/O
Device 1

Device N

JTAG-compatible
Devices Chain

Device
Identification

and .cdf Parser

Device
Information

JRunner

(.rbf)

Table 1. Source Files

File Description Platform
Independent

jrunner.c Contains the main () function. It manages the processing of the
programming input file, invokes the configuration process, and handles
configuration errors.

Yes

jb_const.h Contains program and user-defined variables and constants. Yes

jb_device.h Contains Altera device information and requires updates for new devices. Yes

jb_jtag.c
jb_jtag.h

Handles the JTAG instructions and keep track of the JTAG state machine
(JSM).

Yes

jb_io.c
jb_io.h

Handles the I/O control functions, file processing functions and string
processing functions, and may be customized to work with your system.

No
2 Altera Corporation

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Directory Structure

The downloaded JRunner driver is stored in the structure as shown in
Table 2.

Input Files

The JRunner software driver supports the Raw Binary File programming
source file. In addition, this driver requires a Chain Description File
generated by the Quartus II software. The Chain Description File contains
information on the devices in the JTAG chain. Modify the Chain
Description File, which is generated by Quartus II software, before using
it with the JRunner drivers. Modify the file as follows:

1. Open the Chain Description File in text format.

2. Replace the SRAM Object File (.sof) extension with the specified file
name (<filename>.sof). Use the Raw Binary File (.rbf) extension.
The file name is usually in the fifth or sixth line of the Chain
Description File.

1 The JRunner software only supports configuration of Altera
devices.

f For more information on creating a Chain Description File, refer to the
Quartus II online help.

The JRunner driver processes the action code for each device in the Chain
Description File. The supported action codes are as follows:

■ CFG and IGN for PROGRAM
■ BYPASS JTAG instructions

Table 2. Directory Structure

Folders
in

JRunner
Files Available Description

bin JRunner_exe, note.txt Executable file for JRunner
driver

doc readme.txt JRunner documentation

source jrunner.c, jb_const.h,
jb_device.h, jb_jtag.c, jb_jtag.h,
jb_io.c, jb_io.h

Source files
Altera Corporation 3

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
How To Use JRunner

After modifying the Chain Description File, type the following command
line at the Windows command prompt to configure the device:

JRunner <design file name>.cdf

Important
Parameters &
Functions

This software is developed to ease users in configuring Altera devices in
embedded systems. JTAG configuration pins such as TDI, TMS, TCK and
TDO are needed in order to use this software.

I/O Pin Assignment

Reading and writing of data to and from the I/O port registers on
non-Windows NT platforms requires parallel port architecture mapping.
This mapping reduces the number of required source code modifications.
Table 3 shows the assignments of the JTAG configuration pins to the
parallel port registers.

Table 3. Pin Assignment of the JTAG Configuration Signals to the Parallel
Port Registers

Bit 7 6 5 4 3 2 1 0

Port 0 (1) - TDI - - - - TMS TCK

Port 1 (1) TDO#
(2)

- - - - - -

Port 2 (1) - - - - - - - -

Notes to Table 3:
(1) The port refers to the index from the base address of the parallel port. For

example, 0x378.
(2) Inverted signal.
4 Altera Corporation

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Program and User-defined Constants

The source code has program and user-defined constants. You should set
the values for the user-defined constants if the driver needs to be
modified. Do not change the program constants. Table 4 summarizes the
program and user-defined constants.

Table 4. Program and User-defined Constants

Constant Type File Description

WINDOWS Program jb_io.h Designates the Windows NT operating system.

EMBEDDED Program jb_io.h Designates an embedded system or other operating
system.

SIG_TCK Program jb_const.h TCK signal (Port 0, Bit 0).

SIG_TMS Program jb_io.h TMS signal (Port 0, Bit 1.)

SIG_TDI Program jb_io.h TDI signal (Port 0, Bit 6).

SIG_TDO Program jb_const.h TDO signal (Port 1, Bit 7).

CDF_IDCODE_LEN Program jb_const.h The maximum characters allocated for the part name

CDF_PNAME_LEN Program jb_const.h The maximum characters allocated for the Chain
Description File path.

CDF_PATH_LENGTH Program jb_const.h The maximum characters allocated for the Chain
Description File name.

MAX_DEVICE_ALLOW User-defined jb_const.h The maximum number of devices in the chain.

MAX_CONFIG_COUNT User-defined jb_const.h The maximum number of auto-reconfiguration
attempts allowed when the program detects an error.

INIT_COUNT User-defined jb_const.h The number of clock cycles to toggle after the
configuration is done to initialize the device. Each
device family requires a specific number of clock
cycles.
Altera Corporation 5

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Global Variables

Table 5 summarizes the global variables used when reading from or
writing to the I/O ports. Map the I/O ports of your system to these global
variables.

Table 5. Global Variables

Global Variable Type Description

sig_port_maskbit[W][X] 2-dimensional
integer array

Variable holding a signal's port number and bit position in
the port registers. (1) (2)

W= 0 refers to SIG_TCK W = 1 refers to SIG_TMS W = 2
refers to SIG_TDI W = 3 refers to SIG_TDO.

X=0 refers to the signal's port number. For example, the
signal SIG_TCK falls into port 0.

X=1 refers to the signal's bit position. For example, the
signal SIG_TCK is in bit 0 of port 0.

port_data[Y] Integer array The current value of each port. This value updates each
time a write is done to the ports. (1)

Notes to Table 5:
(1) The port number refers to the index from the base address of the parallel port. For example, 0x378.
(2) The signal refers to these signals: SIG_TCK, SIG_TMS, SIG_TDI, and SIG_TDO.
6 Altera Corporation

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
I/O Routines

Table 6 describes the parameters and the return value of some of the
functions in the source code. Only functions declared in the jb_io.c are
discussed, because you must customize these functions in order to use the
JRunner software on platforms other than Windows NT. These functions
contain the I/O control routines.

JTAG
Configuration
Flow Using
JRunner

JRunner driver is developed using JTAG configuration state machines
with the addition of several parameters and constants to represent the
number of devices in JTAG-compatible devices chain and related
information.

Program Flow

Figure 2 illustrates the program flow of the JRunner software driver. The
MAX_DEVICE_ALLOW, MAX_CONFIG_COUNT, and INIT_COUNT
constants determine the flow of the configuration process.

Refer to Table 4 for more information on these constants.

Table 6. I/O Control Functions

Function Parameters Return
Value Description

readport int port integer Reads the value of the port and returns it. Only the
least significant byte contains valid data. (1)

writeport int port
int data
int buffer_enable

none Writes the data to the port. Data of the integer type
is passed to the function. Only the least significant
byte contains valid data. Each bit of the least
significant byte represents the signal in the port, as
discussed in Table 1. (1)
The functions in jrunner.c that call the writeport
function organize the bits prior to sending them to
the writeport function. Only the specific bits are
changed as needed before passing them to the
writeport function as data. The data is written to
the parallel port immediately if
buffer_enable=0. If buffer_enable=1,
the operations are stored in the buffer and flushed
once the number of operations reaches 256.

Note to Table 6:
(1) The port refers to the index from the base address of the parallel port. For example, 0x378.
Altera Corporation 7

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Figure 2. JRunner Program Flow

End

Start

Parse the Chain Description File
(.cdf)

Verify Programming Files

Verify JTAG Hardware Chain

Process Device Records in (.cdf) Device List

ActionCode
= "CFG"

No

ActionCode
= "CFG"

No

Yes

Open Programming FIles and Get File Size.
Reset Byte Counter and Configuration Center.

Start Configuration and Increase
 Configuration Counter

Get 1 Byte and Send it to I/O Port.
Increase Byte Counter

Byte Counter
= File Size

Read CONF_DONE

CONF_DONE=
HIGH ?

No

Toggle TCK for
 INIT_COUNT Cycles

Done with all
Devices in

Chain ?

Configuration
 Count =

MAX_CONFIG_COUNT

No

No

No

Yes

Yes

Yes
Yes
8 Altera Corporation

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
How To Port
JRunner Driver
To An Embedded
Platform

As JRunner is developed to enable configuration in an embedded
platform, the source codes have been written in ways to users can easily
port them to platforms of their preference.

Porting the Source Code to Other Platforms or Embedded
Systems

Two separate platform-dependent routines handle read and write
operations in the I/O control module. The read operation reads the value
of the required pin. To port the source code to other platforms or
embedded systems, you must implement your I/O control routines in the
existing I/O control functions, readport and writeport (see Table 6).
You can implement your I/O control routines between the following
compiler directives:

#if PORT == WINDOWS_NT
/* original source code */
#else if PORT == EMBEDDED
/* put your I/O control routines source code here */
#endif

Reading Data from the I/O Ports

The readport function accepts port as an integer parameter and returns
an integer value. Your code should map or translate the port value
defined in the parallel port architecture (see Table 3) to the I/O port
definition of your system.

For example, when reading from port 1, your source code should read the
CONF_DONE signal from the bit defined in Table 3. Then your code should
rearrange the signal within an integer variable so that the value of
CONF_DONE is represented in bit position 7 of the integer. This maps your
system's I/O ports to the pin in the pin assignments of the parallel port
architecture. By adding these lines of translation code to the jb_io.c file,
you can avoid modifying code in the jrunner.c file.

Writing Data to the I/O Ports

The writeport function accepts three integer parameters: port, data,
and buffer_enable. Modify the writeport function in the same way
as you did for the readport function. Your code maps or translates the
port value defined in the parallel port architecture (see Table 3) to the I/O
port definition of your system.

For example, when writing to port 0, your source code should identify the
TDI, TMS, and TCK signals represented in each bit of the data parameter.
The source code should mask the data variable with the
Altera Corporation 9

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
sig_port_maskbit variable (see Table 5) to extract the value of the
signal to write. To extract TDI from data, for instance, mask data with
sig_port_maskbit [SIG_TDI][1].

Example

Figure 3 shows an embedded system holding four configuration signals
in the port registers D0, D1, D6, and D7 of an embedded microprocessor.
When reading from the I/O port, the I/O control routine reads the values
of the port registers and maps them to the particular bits in the parallel
port registers (P0 to P2).

When writing, the values of the signals are stored in the parallel port
registers and sent to the corresponding data registers (D0, D1, D6, and
D7).

Figure 3. Example of I/O Reading and Writing Mapping

Conclusion You can easily port the JRunner JTAG embedded source code to other
platforms. The JRunner software is a simple, inexpensive embedded
system for JTAG configuration of Altera FPGAs.

JTAG
Controller

Device 1

JTAG-compatible
Devices Chain

JRunner

Mapping

Designer I/O Port

P1B7
P0B6

P0B1
P0B0

D0
D1
D2
D3
D4
D5
D6
D7

Device N
10 Altera Corporation

Application Note 414: The JRunner Software Driver:An Embedded Solution for PLD JTAG Configuration
Altera Corporation 11

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
literature@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

	The JRunner Software Driver: An Embedded Solution for PLD JTAG Configuration
	Introduction
	How JRunner Software Works
	Block Diagram
	Source Files
	Directory Structure
	Input Files
	How To Use JRunner

	Important Parameters & Functions
	I/O Pin Assignment
	Program and User-defined Constants
	Global Variables
	I/O Routines

	JTAG Configuration Flow Using JRunner
	Program Flow

	How To Port JRunner Driver To An Embedded Platform
	Porting the Source Code to Other Platforms or Embedded Systems
	Reading Data from the I/O Ports
	Writing Data to the I/O Ports
	Example

	Conclusion

