

Power Delivery Network (PDN) Tool User Guide

101 Innovation Drive San Jose, CA 95134 www.altera.com

Document Version: Document Date: 2.0 March 2009

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products are any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Contents

Chapter 1. Power Delivery Network (PDN) Tool User Guide

Introduction	
Application of the Tool	1-1
PDN Decoupling Methodology Review	1-1
PDN Circuit Topology	1-1
Setting Up the PDN Tool	
Pre-Layout Instructions	
Tabs in the PDN Tool	
Summary	1-19
Document Revision History	Info-1
How to Contact Altera	Info-1
Typographic Conventions	Info-2

Introduction

PCB designers must estimate the number, value, and type of decoupling capacitors required to develop an efficient PCB decoupling strategy during the early design phase, without going through extensive pre-layout simulations. The Altera's Power Delivery Network (PDN) tool provides these critical pieces of information.

The PDN tool is a Microsoft Excel-based spreadsheet tool used to calculate an impedance profile based on user inputs. For a given power supply, the spreadsheet requires only basic design information, such as the board stackup, transient current information, and ripple specifications to come up with the impedance profile and the optimum number of capacitors to meet the desired impedance target. The results obtained through the spreadsheet tool are intended only as a preliminary estimate and not as a specification. For an accurate impedance profile, Altera® recommends a post-layout simulation approach using any of the available EDA tools, such as Sigrity PowerSI, Ansoft SIWave, Cadence Allegro PCB PI, etc.

This version of the PDN tool is a general purpose tool for helping with the PCB decoupling design. Altera has family-specific PDN tools for its FPGA devices that help reduce over-design in PCB decoupling by taking the effects of device-related parameters into consideration.

 For the availability of the PDN tool that targets your device, refer to the Altera website at www.altera.com.

Application of the Tool

The purpose of the tool is to design a robust power delivery network by determining an optimum number, type, and value of decoupling capacitors required to meet the desired target impedance up to the target frequency. This spreadsheet tool is useful for exploring the various what-if scenarios during the early design phase, without extensive and time consuming pre-layout analysis.

PDN Decoupling Methodology Review

The PDN tool is based on a lumped equivalent model representation of the power delivery network topology. Figure 1–1 shows a schematic representation of the circuit topology, modeled as part of the tool.

PDN Circuit Topology

For first order analysis, the voltage regulator module (VRM) can be simply modeled as a series-connected resistor and inductor, as shown in Figure 1–1. At low frequencies, up to approximately 50 KHz, the VRM has a very low impedance and is capable of responding to the instantaneous current requirements of the FPGA. The ESR and ESL values can be obtained from the VRM manufacturer. Beyond lower frequencies, the VRM impedance is primarily inductive, making it incapable of meeting the transient current requirement. The on-board discrete decoupling capacitors must provide the required low impedance from low to high frequencies, depending on the capacitor intrinsic parasitics (R_{cN} , C_{cNr} , L_{cN}) and the capacitor mounting inductance (L_{mntN}). The interplanar capacitance between the power-ground planes typically has lower inductance than the discrete decoupling capacitor network, making it more effective at higher frequencies (tens of MHz). The effectiveness of the decoupling capacitors is limited by the PCB spreading inductance and the ball grid array (BGA) via inductance that a given capacitor encounters with respect to the FPGA. To simplify the circuit topology, the PDN tool models the distributed nature of PCB spreading, BGA inductance, and resistance with a single lumped inductor and resistor.

Figure 1–1. PDN Circuit Topology

Setting Up the PDN Tool

Figure 1–2 shows the various tabs of the PDN tool spreadsheet.

```
Figure 1–2. Tabs in the PDN Tool
```

```
BO
H → M Release_Notes / Introduction / Decap_Selection / Library / BGA_Ma / Plane_Cap / Cap_Mount / X2Y_Mount / BOM /
Ready
```

Table 1–1 describes the PDN tool tabs.

Tab	Description
Release Notes	This tab provides the legal disclaimers, the revision history of the tool, and the user agreement.
Introduction	This tab shows the schematic representation of the circuit that is modeled as part of the PDN tool. The tab also provides a brief Quick Start instruction on using the tool.
Decap Selection	This tab provides an interface to input the various parameters and observe the resultant impedance profile. This is the main user interface to the tool.

 Table 1–1.
 Description of Tabs in PDN Tool (Sheet 1 of 2)

Tab	Description
Library	This tab points to various libraries (capacitor, dielectric materials, and so on) that are called by other tabs. You can change the default values listed as part of these libraries.
BGA Via	This tab provides an interface to calculate the BGA mounting inductance based on design-specific via parameters and the number of vias.
Plane Cap	This tab provides an interface to calculate the plane capacitance based on design-specific parameters.
Cap Mount	This tab provides an interface to input design-specific parameters for calculating the capacitor mounting inductance for two different capacitor orientations (Via on Side [VOS] and Via on End [VOE]).
X2Y Mount	This tab provides an interface to input design-specific parameters for calculating the capacitor mounting inductance for X2Y type capacitors.
ВОМ	The Bill of Materials (BOM) tab provides a summary of the final capacitor count required to meet the target impedance.

Table 1–1. Description of Tabs in PDN Tool (Sheet 2 of 2)

The PDN tool is designed to provide an accurate estimate on the number and types of capacitors required to design a robust PDN, regardless of where you are in the design phase. The accuracy of the results is highly dependent on the user inputs for the various parameters.

You can explore the tool by following the **Quick Start** instructions listed in the **Introduction** tab.

In the pre-layout phase of the design cycle, when no specific information about the board stackup and board layout is known, you can follow the "Pre-Layout Instructions" on page 1–3 to explore the solution space when finalizing key design parameters, such as stackup, plane size, capacitor count, capacitor orientation, and so on.

If you have finalized the board stackup and have access to board database and layout information, you can step through the various tabs and enter the required information to arrive at a very accurate decoupling scheme.

Pre-Layout Instructions

In the pre-layout phase, you can ignore the **Plane Cap**, **Cap Mount**, **X2Y Mount**, and **BGA Via** tabs and go directly to the **Library** tab when you do not have layout information. Figure 1–3 shows the fields located in the **Library** tab for entering the various parameters.

If available, enter the values shown in Figure 1–3 in the **Library** tab. To use the default values, go directly to the **Decap Selection** tab to begin the analysis.

	3 and	212		and a		100	_	The second s	-	ALC: YOUR	-	-	-20
oupling Cap L	62	81		102	06	63		0805	12	96		Custom	N.
-	6 904	0.300	A 151	CALL CALL	0.361	LISE (nH)	0.275	0.500	045	1000	0.00	0.300	mail (n)
	0.00	0.300	0.101	0.400	0.104	0.500	0.179	0.600	0.410	1000	0.01	0.300	1000
	0.072	0.300	0.083	0.400	0.134	0.500	0.718	0.600	0.177	1000	0.001	0.300	1000
	0.052	0.300	0.060	0.400	0.097	0.500	0.078	0.600	0.117	1000	0.001	0.000	1000
	0.029	0.300	0.043	0.400	0.069	0.500	0.051	0.600	0.076	1000	0.001	0.300	1000
	0.036	0.300	0.038	0.400	0.050	0.500	0.000	0.600	0.050	1000	0.001	0.300	1000
	0.626	0.300	0.028	0.400	0.036	0.500	0.022	0.600	0.033	1000	0.001	0.300	1.000
	0.018	0.300	0.020	0.400	0.026	0.500	0.014	0.600	0.021	1000	0.001	0.300	1000
	0.014	0.300	0.0%	0.400	0.023	0.500	0.009	0.600	0.014	1900	0.001	0.300	1000
	0.000	0.500	0.000	0.400	0.002	0.500	0.004	0.600	0.006	1000	0.001	0.300	1000
	0.006	0.300	8.007	0.400	0.008	0.500	0.004	0.600	0.005	1000	0.001	0.300	1000
	0.001	0.300	0.002	D.400	0.003	0.500	0.004	0.600	0.005	1,000	0.001	0.000	1.000
	0.001	0.300	0.002	0.400	0.003	0.500	0.004	0.600	0.005	1000	100.0	0.300	1000
	0.001	0.300	0.002	0.600	0.002	0.500	0.004	0.600	0.005	1.000	0.01	0.300	100
	0.001	0.300	0.002	0.400	0.003	0.500	0.004	0.600	0.005	1000	0.007	0.300	1000
_	1		1	14	-			-	100	2		-	-
Exe LiFE		Bulk		_	Custom		1	UGA Yia 4	Plane		Custom		
	CSR (Q)	ESE [mH]	.must [nit	ETHELED I	THE REAL	.mot (nH	1	Ca	2	LISH (OT	a statistic	C (of)	Contraction
	0.390	2,200	1500	0.00	2,300	200	1	BGA Via	-	0.004	0.018	NRA	2
	0.347	2,200	1500	0.000	2,300	1700	1 12	Plane Cap		0.015	N/A	8.015	
	0.940	2.200	1000	0.030	2.300	1/00		-					
	0.0%6	2 100	1600	0.030	2,300	1200							
	0.043	2,300	1700	0.030	2,300	1700							
	0.049	2,300	1700	0.030	2,300	1700							
	0.030	2.300	1700	0.030	2,300	120	2						
	0.630	2.300	1700	0.0.0	2.300	1700							
_	-	-		-	-		_				_	-	
	ESH(0)	ESL (alt)		-		03 C C C 1-14		COL COLO	10			-	
	0.001	106-459		A MAIL	0.006	0.056	EBH [3]	ESH, [BP1]	1004101	LISE (NPI)	8,1999 (12)	ESE [INN]	
60.	0.004	20.00		0.0072	0.000	0.056					_	_	
6	0.001	30.00	6.4	0.0047	0.041	0.056							
	_	-	-4	0.01	0.030	0.056		22 - L	1 P			_	
ding Fi and L	Rs (0)	Ls (eH)		0.022	0.020	0.056		. /					
2	0	0		0.047	0.017	0.056			-1				
	0.0005	0.015		0.1	0.010	0.056							
	0.001	0.030		0.22	0.007	0.056			2 S			-	
all	0.000	0.045		0.33	0.008	0.056			-				
om 🧉	0.002	0.020	De.	0.47	0.008	0.056		2	2				
COLUMN T DO THE O			2		0.005	0.056	0.042	0.050	-			-	
ctric Materia	4.00			0.10			0.007	8.956	0.000	0.054	_	_	
1000.0	4 10			0.47	_		_	-	0.006	0.056			
1000-13025	240				_			-	0.000		8.003	0.0%	
FI406	2.80			0.1			2		1. A.		0.01	0.054	
R408	3.70					_							
FR370HR	4.04												
-	2.60												
and the second se	3.48												
\$ 43508	2.2.2												

Figure 1–3. Library Tab

Notes to Figure 1–3:

The numbers in Figure 1–3 correspond to the following steps 1, 2, 3, 4, 5.

- (1) Enter the ESR, ESL, and L_{mount} values for the capacitors under the **Custom** field.
- (2) Enter the effective BGA via (loop) parasitics for the power supply being decoupled.
- (3) Enter the plane capacitance seen by the power/ground plane pair on the board for the power supply under Plane Cap.
- (4) Enter the VRM parasitics, if available, under the Custom row.
- (5) Enter the effective spreading inductance seen by the decoupling capacitors in the Custom row.

For more information on the **Decap Selection** tab, refer to "Decap Selection Tab" on page 1–16.

Figure 1–4 shows the various components (VRM, Spreading, BGA Via, and Plane Cap) of the PDN. In the **Decap Selection** tab, select the option most applicable for your design to begin the analysis for a given power supply. In this example, use the values populated in the **Custom** field in the **Library** tab, choose the **Custom** setting for the various parameters in the **Decap Selection** tab.

Summary	Options	R	ι (Ω) —	L (nH)	C (µF)
VRM	Linear	- 1.0)E-03	1.0E+01	N/A
Spreading	Low	0.	0005	0.0150	N/A
BGA Via	Calculate	0.1	0002	0.0261	N/A
Plane Cap	Calculate	j – 0.	0019	N/A	0.0630
	Ignore				
	Calculate				
	Custom	_			

Figure 1–4. Options for the PDN Components

The following information helps you accurately calculate the Z_{TARGET} for any power rail:

- The maximum transient current requirements for all devices in the system that are powered by the power rail under consideration. You can obtain this information from the manufacturers of the respective devices.
 - Altera provides the PowerPlay Early Power Estimator (EPE) tool to estimate power consumption for all its FPGA and CPLD devices. You can download the EPE tool from the PowerPlay Early Power Estimator Downloads for your target Altera device. You can also use the Quartus® II PowerPlay Power Analyzer for an accurate estimation when the design is implemented.
- The maximum allowable AC ripple on the power rail as a percentage of the supply voltage. You can obtain this information from the power supply tolerance specifications of the devices being supplied by the power rail under consideration.
- Information regarding the Frequency Target (F_{TARGET}) to which the board PDN decoupling needs to be effective.

The upper limit of the frequency target for a given supply can be determined from the plot where the series combination of the plane spreading inductance and the BGA via inductance ($Z_{\text{SPREAD}} + Z_{\text{VIA}}$) profile crosses the Z_{TARGET} profile. Figure 1–5 shows the upper limit of frequency target calculation.

Decoupling using PCB capacitors becomes ineffective at high frequency. There is a cut-off frequency that you must decouple the power supply up to. This frequency ranges from tens of MHz to higher depending on the parameters, such as parasitic inductance, OPD capacitors, and ODC, of selected power rail. Altera has new family-specific PDN tools released that provide a suggested cut-off frequency, $F_{EFFECTIVE}$, as the guide line for PCB decoupling.

For information regarding the availability of the PDN tool that targets your device, refer to the Altera website at www.altera.com.

You must determine the proper F_{TARGET} in case the information regarding the PCB decoupling cut-off frequency is not available. You must decouple the power supply up to this frequency and expect the package and die parasitics to take over the decoupling for higher frequencies. For most supplies, this frequency is around 80 MHz for any power supply with reasonable Z_{TARGET} . Expect this frequency to be even lower, in the range of 50 MHz for the core power supply. Expect the device to take over at a frequency lower than the maximum frequency target that can be achieved on an optimally designed board (specifically for the Stratix[®] II GX, Stratix III, and Stratix IV device families).

After all this information is available, Z_{TARGET} can be calculated as:

Equation 1–1.

Z _{TARGET} =	VoltageRail • 	
-----------------------	-------------------	--

For example, to reliably decouple a 0.9-volt power rail up to 50 MHz with 5% AC ripple and a maximum current of 4 A, (assuming 50% of which is transcient current), Z_{TARGET} can be calculated as:

Equation 1-2.

$$Z_{TARGET} = \left[\frac{(0.9)(0.05)}{4x0.5}\right] = 0.0225$$

Figure 1–6 shows the Z_{TARGET} calculation from the PDN tool.

Figure 1–6. Z_{TARGET} Calculation

Summary	Summary Options		L (nH)	C (µF)
VRM	Linear	1.0E-03	1.0E+01	N/A
Spreading	Low	0.0005	0.0150	N/A
BGA Via	Calculate	0.0027	0.3304	N/A
Plane Cap	Calculate	0.0019	N/A	0.0630
Target Imp	edance	Units	Value	Legend
Target Imp Supply Volt	edance tage (Min)	Units V	Value	Legend N/A
Target Impo Supply Volt I max	edance tage (Min)	Units V A	Value 1.1 3	Legend N/A N/A
Target Imp Supply Volt I max Transient C	edance tage (Min) Current	Units V A %	Value 1.1 3 50	Legend N/A N/A N/A
Target Imp Supply Volt I max Transient C Vripple (+/-)	edance tage (Min) Current)	Units V A %	Value 1.1 3 50 5	Legend N/A N/A N/A N/A
Target Impo Supply Volt I max Transient C Vripple (+/- Frequency	edance tage (Min) Current) target	Units V A % % MHz	Value 1.1 3 50 5 80	Legend N/A N/A N/A N/A Ftarget

To achieve a very low impedance profile (Zeff) below the target impedance (Z_{TARGET}) up to the desired frequency, the power delivery network relies on the VRM, the on-board discrete decoupling capacitors, inter-plane capacitance, and a low value of spreading and mounting inductances.

Figure 1–7 shows one of the capacitor combinations that you can select to ensure that the effective impedance remains below 0.0225 Ω until the frequency range of interest (50 MHz). There are many combinations, but the ideal solution is to minimize the quantity and the type of capacitors required to achieve a flat impedance profile below the target impedance.

1E+9

Zc8

Zc13 Zc14

Zc19

Zc21

Zc22 Zc23 Zc24 Zc25

0.8500

ADERA. PDN Design Tool v1.1 100 Save Custom Restore Custom Restore Default Zvrn 10 Summary Options R (Ω) L (nH) C (µF) VRM Linear -N/A 1 0.1 0.1 0.0 Spreading BGA Via Plane Cap Low N/A N/A Calculate N/A Calculate Target Impedance Valu Legend Supply Voltage (Min) I max v 0.9 N/A N/A A % % 4 Zplar Transient Current 50 N/A 0.001 Zs Vripple (+/-) 5 N/A Frequency target Ztarget = ΔV / Δl MHz 50 Ftarget Ftarget Zν 0 0.0001 -1E+3 1E+4 1E+5 1E+6 Frequency (Hz) 1E+8 1E+7 Zoom Chart Decoupling Caps Eqv. ESL (nH) Eqv. Lmnt (nH) CAP Layer BOTTOM Eqv. Cap (µF) Eqv. ESR (Ω) Value (uF) Footpr OTY Legend 0.001 0201 VOS 0 0.0022 0201 BOTTOM 0.0047 0402 BOTTOM VOS 0 BOTTOM VOS 0.0050 0.0333 0.0563 0.01 0402 12 0.1° 0.022 0402 BOTTOM VOS 3 0.0143 From Library 0.047 0402 BOTTOM VOS 3 0.141 0.012 0.133 0.22 0.1 0603 BOTTOM VOE Π BOTTOM 0603 VOS 0 0.47 0603 BOTTOM VOS 8 3.760 0.0029 0.0625 0.0828 1 0805 BOTTOM VOS 0 2.2 VOS 0805 BOTTOM VOS 4.7 0.0010 4 0805 BOTTOM 18.8 User1 User2 TOP TOP 0805 VOS VOS 0805 User3 User4 0805 TOP Zc15 0805 TOP VOS Bulk Caps CAP Footprid Bulk Bulk Bulk Eqv. ESR (Ω) Eqv. ESL (nH) Value (µF) QTY Eqv. Cap (µF) Eqv. Lmnt (nH) 1 an 0 entati Legen 10 0 22 100 100

Figure 1–7. Decoupling Example

From Library

User5 User6 Total Dec

Bulk Bulk Bulk Bulk

Bulk Bulk

ара

220 330

470

ng & E

N/A

rs Used

N/A

0

660.0000

0.0245

1.1500

Tabs in the PDN Tool

This section describes the various tabs in detail. You can input design-specific information in the various tabs to arrive at a very accurate PDN profile for a given power supply.

Library Tab

Figure 1–8 shows the Library tab.

		·	·		·						PDN Des	ign Tool	v1.1
Librar								Save Cust	om	Restore C	ustom	Resto	e Default
Decoupling Cap (µ	0 ESB (0)	201 ESL (5H)	04 ESB (01	02 ESL (nH)	06 ESB (0)	03 ESL (541	08 ESB (01	105 ESL (541	12 ESB (0)	06 ESL (641)	ESB (0)	Custom	mot (oH)
0.001	0.101	0.300	0.161	0.400	0.261	0.500	0.276	0.600	0.415	1.000	0.001	0.300	1.000
0.0022	0.100	0.300	0.115	0.400	0.186	0.500	0.179	0.600	0.269	1.000	0.001	0.300	1.000
0.0047	0.072	0.300	0.083	0.400	0.134	0.500	0.118	0.600	0.177	1.000	0.001	0.300	1.000
0.022	0.052	0.300	0.060	0.400	0.097	0.500	0.078	0.600	0.076	1.000	0.001	0.300	1.000
0.047	0.036	0.300	0.038	0.400	0.050	0.500	0.033	0.600	0.050	1.000	0.001	0.300	1.000
0.1	0.026	0.300	0.028	0.400	0.036	0.500	0.022	0.600	0.033	1.000	0.001	0.300	1.000
0.22	0.018	0.300	0.020	0.400	0.026	0.500	0.014	0.600	0.021	1.000	0.001	0.300	1.000
0.47	0.014	0.300	0.016	0.400	0.023	0.500	0.009	0.600	0.014	1.000	0.001	0.300	1.000
2.2	0.008	0.300	0.002	0.400	0.012	0.500	0.007	0.600	0.006	1.000	0.001	0.300	1.000
4.7	0.006	0.300	0.007	0.400	0.008	0.500	0.004	0.600	0.005	1.000	0.001	0.300	1.000
User1	0.001	0.300	0.002	0.400	0.003	0.500	0.004	0.600	0.005	1.000	0.001	0.300	1.000
User2	0.001	0.300	0.002	0.400	0.003	0.500	0.004	0.600	0.005	1.000	0.001	0.300	1.000
Usera lisera	0.001	0.300	0.002	0.400	0.003	0.500	0.004	0.600	0.005	1000	0.001	0.300	1000
Bulk Can (cE)		Bulk			Custom			BGA Via	a & Plane		Custom		
to	ESR (Ω)	ESL (nH)	.mnt (nH	ESR (Ω)	ESL (nH)	.mnt (nH)	C	ар	ESR (Ω)	ESL (nH)	C (uF)	
10	0.190	2.200	1.500	0.030	2.300	1.700		BGA Via Blanc C	20	0.0004	0.018	0.015	
47	0.147	2.200	1500	0.030	2.300	1700		Fiane C.	ah	0.015	NIA	0.015	
100	0.060	2.300	1.600	0.030	2.300	1.700							
220	0.056	2.300	1.600	0.030	2.300	1.700							
330	0.049	2.300	1.700	0.030	2.300	1.700							
470 Hoor5	0.043	2,300	1700	0.030	2.300	1700							
User6	0.030	2.300	1.700	0.030	2.300	1.700							
YRM	ESR (Ω)	ESL (nH)		Vav C	06	303 ECL (-1.0	U8	105 ECL (-11)	12	U6 ECL (-11)	12	10 ECL (~1.0	
Ignore Linear	0.001	10.00		0 001	0.095	0.056	Ean [8]	ESE (IIH)	Ean [8]	ESE (IIII)	con (a)	ESE (IIII)	
Switcher	0.001	20.00		0.0022	0.064	0.056							
Custom	0.001	30.00		0.0047	0.041	0.056							
	D- (0)	1 - 1-142		0.01	0.030	0.056							
Spreading H and L Ignore	HS [1]	LS (NH)		0.022	0.020	0.056							
Low	0.0005	0.015		0.1	0.010	0.056							
Medium	0.001	0.030		0.22	0.007	0.056							
High	0.0015	0.045		0.33	0.008	0.056							
Custom	0.002	0.020	1	0.47	0.008	0.056				ļ			
Dielectric Materia	Er	1		0.18	0.000	0.000	0.007	0.056					
FB4	4.00			0.22					0.008	0.056			
Nelco 4000-6	4.10			0.47					0.006	0.056			
Nelco 4000-13EPS	3.40			1							0.003	0.056	
Isola FR406	3.80			0.1							0.01	0.056	
Isola FR370HR	4.04												
Getek	3.60												
Rogers 4350B	3.48												
Gustoin	3.00												
Note: Default capaciti	or ESR and	ESL values	have been	derived us	ing Spice to	als provider	d by varicu.	s device vei	ndors. Thes	e tools maj	be obtaine	ed directly k	com the
vendors website, a few	r of which a	re listed her	e www.kei	net.com	www.avx.co		murata.con	77 - <mark>101001011</mark>	ishay.com	and www.g	ageo.com	among ol	hers All
unter deradit values af	e (grocial Va	over cong r	LV 19251 800	wacy, cera	on values m	ay ne oveni	noem and 54	ระสบ ตกเก่ เป	ISACOTT VAIDE	s verennine	o ny me Us	e7.	

This tab is divided into the following sections:

- Two-Terminal Decoupling Capacitors (High/Mid Frequency)
- X2Y Decoupling Capacitors (High/Mid Frequency) (High/Mid Frequency)
- Bulk Capacitors (Mid/Low Frequency)
- BGA Via and Plane Capacitance

- VRM Library
- Spreading R, L Parasitics
- Dielectric Material Library

You can change each of the default values listed in the respective sections to meet the specific requirements of your design.

Two-Terminal Decoupling Capacitors

The decoupling capacitors section contains the default ESR and ESL values for the various two-terminal capacitors in different footprints (0201, 0402, 0603, 0805, and 1206). You also can either modify the default values or enter your own custom values in the **Custom** field. If you use a non-two-terminal capacitor, such as an IDC-type capacitor, you must use the **Custom** field to enter the capacitor parasitics and the corresponding mounting inductance.

The decoupling capacitors section also provides the option for the user-defined capacitors (such as User1, ..., User4). You can define the ESR and ESL parasitics for the various footprints and enter the corresponding capacitor value in the **Decap Selection** tab. Choose the corresponding footprint when defining the capacitor values.

X2Y Decoupling Capacitors (High/Mid Frequency)

The decoupling capacitors section contains the default ESR and ESL values for the various X2Y capacitors in different footprints (0603, 0805, 1206, and 1210). You also can replace the default ESR and ESL values with your own custom values.

Bulk Capacitors

The bulk capacitors section contains the commonly used capacitor values for decoupling the power supply at mid/low frequencies. You can change the default values to reflect the parameters specific to the design.

BGA Via and Plane Capacitance

The BGA via and plane capacitance section provides an option to directly enter the values for effective via loop inductance under the BGA and plane capacitance during the pre-layout phase when no design-specific information is available.

If you have access to design-specific information, you can ignore this section and enter the design-specific information in the **Plane Cap** and **BGA Via** tabs that calculate the plane capacitance and the BGA via parasitics, respectively.

VRM Library

The VRM section lists the default values for both the linear and switcher regulators. You can change the VRM parasitics listed under the linear/switcher rows or add the custom parasitics for the VRM relevant to the design in the **Custom** field.

Spreading R, L Parasitics

The spreading R, L library provides various options for the default effective spreading inductance values that the decoupling capacitors see with respect to the FPGA based on the quality of the PDN design.

You can choose a **Low** value of effective spreading inductance if you have optimally designed your PDN. Optimum PDN design involves implementing the following design rules:

- PCB stackup that provides a wide solid power/ground sandwich for a given supply with a thin dielectric between the planes. This minimizes the current loop, which reduces the spreading inductance. The thickness of the dielectric material between the power/ground pair directly influences the amount of spreading/loop inductance that a decoupling cap can see with respect to the FPGA.
- Placing Capacitors closer to the FPGA from an electrical standpoint.
- Minimizing via perforations in the power/ground sandwich in the current path from the decoupling caps to the FPGA device.

Due to layout and design constraints, the PDN design might not be optimum; thus, you can choose either a **Medium** or **High** value of spreading R and L. You also can change the default values or use the **Custom** field listed in the library specific to the design.

Dielectric Material Library

The dielectric materials section lists the dielectric constant values for the various dielectric materials. These values are used in the plane capacitance calculations listed under the **Plane Cap** tab. You can change the values listed in this section.

If you change the default values listed in the various sections in the **Library** tab, you can save the changes by clicking **Save Custom**. You can restore the default library by clicking **Restore Default** located at the top right corner of the **Library** page. You also can restore the saved custom library by clicking **Restore Custom**.

Plane Cap Tab

The **Plane Cap** tab is used to calculate the distributed plane capacitance in microfarads (µf) that develops between the power/ground planes with a parallel plate capacitor equation. Figure 1–9 shows the **Plane Cap** tab.

Figure 1–9. Plane Cap Tab

You can enter the details specific to this design, for example plane dimensions, dielectric material, and plane configuration to calculate an accurate capacitance value. Similar to the **Library** tab, you can save custom values, restore custom values, and restore the default settings.

Cap Mount Tab

The **Cap Mount** tab, shown in Figure 1–10, is used to calculate the capacitor mounting inductance seen by the decoupling capacitor.

Figure 1–10. Cap Mount Tab

The capacitor mounting calculation is based on the assumption that the decoupling capacitor is a two-terminal device. The capacitor mounting calculation is applicable for any two-terminal capacitor with the following footprints: 0201, 0402, 0603, 0805, 1206, and so on. Based on the layout, you can enter all the information and the tool will provide a mounting inductance for a capacitor mounted on either the top or bottom layer of the board. Depending on the layout, you can choose between Via on End or Via on Side to acheive an accurate capacitor mounting inductance value.

If you plan to use a different footprint capacitor other than a regular two-terminal capacitor or X2Y capacitor for decoupling , you can skip using the **Cap Mount** tab and directly enter the capacitor parasitics and capacitor mounting inductance in the **Library** tab (under the **Custom** field in the **Decoupling Cap** section of the library). As with the other tabs, you can save the changes made to the tab, restore the changes, and restore the tab back to the default settings.

X2Y Mount Tab

The **X2Y Mount** tab, shown in Figure 1–11, is used to calculate the capacitor mounting inductance seen by the X2Y decoupling capacitor.

User inputs in this tab are similar to those in the **Cap Mount** tab except that the VOE or VOS options are not required. If you plan to use a different footprint capacitor other than those available in the tool, you can skip using this tab and directly enter the capacitor parasitics and capacitor mounting inductance in the **Library** tab (replacing the preset value with your own data in the **X2Y Decoupling Cap** section). As with the other tabs, you have can save the changes made to the tab, restore the changes, and restore the tab back to the default settings.

BGA Via Tab

The **BGA Via** tab is used to calculate the vertical via loop inductance under the BGA pin field. Figure 1–12 shows teh BGA Via tab.

Figure 1–12. BGA Via Tab

This tab takes the layout-specific information, such as the via drill diameter, via length, via pitch, and the number of power/ground via pairs under the BGA for an effective via loop inductance and resistance value.

Decap Selection Tab

The **Decap Selection** tab, shown in Figure 1–13, is the main tab where you perform the analysis.

	ERA.								PDN Design 1	Tool v1
Save Cus	tom Re	store Custo	n Res	store Default	100				Zyn	-
Summany	Ontione	B (0)	L (oll)	C (05)	10					
VDM	options	4.05.02	4.05.04	N/A				\sim		
VRW Spreading	Linear	0.0005	0.0150	N/A	— 1					
BGA Yia	Calculate	0.0002	0.0261	N/A	g '					
Plane Can	Calculate	0.0019	N/A	0.0630	8			\rightarrow		
					E 0.1					4
					pa	Ztarget		X	XXXX	
Target Imp	edance	Units	Value	Legend	Ē				1VW XX	
Supply Vol	tage (Min)	V	0.9	N/A	-0.01			XX		
max		A	4	N/A		Zeff				Zplane
Transient (Current	%	50	N/A	0.001					· · ·
Vripple (+/-	-)	%	5	N/A	0.001	Z5	/0-/34/2			
Frequency	target	MHz	50	Ftarget		7			Ftarget	
Ztarget = ∆	N/A	Ω	0.0225	Ztarget	0.0001	+ - · · · · · · · · · · · · · · · · · ·	· · · · · · ·	·····	u <u> </u>	
D P	0			Zoom Chart	1	E+3 1E+4	1E+5 Fre	1E+6 11 quency (Hz)	E+7 1E+8	1E+9
Decoupling	l Caps									
010	1111			A	0.711	E O (E)	E E05 (0)	E E01 (10)		
CAP	Value (µF)	Footprint	Layer	Orientation	QTY	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend
САР	Value (µF) 0.001	Footprint 0201	Layer BOTTOM	Orientation VOS	QТҮ 0	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1
CAP	Value (µF) 0.001 0.0022	Footprint 0201 0201	Layer BOTTOM BOTTOM	Orientation VOS VOS	QTY O	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1 Zc2
САР	Value (µF) 0.001 0.0022 0.0047	Footprint 0201 0201 0402	Layer BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS	QTY 0 0	Eqv. Cap (μF)	Eqv. ESR (Ω)	Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3
САР	Value (µF) 0.001 0.0022 0.0047 0.01	Footprint 0201 0201 0402 0402	Layer BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS	QTY 0 0 12	Eqv. Cap (μF) 0.1200	Equ. ESR (Ω) 0.0050	Eqv. ESL (nH)	Equ. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4
CAP	Value (µF) 0.001 0.0022 0.0047 0.01 0.022	Footprint 0201 0201 0402 0402 0402 0402	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS	QTY 0 0 12 3	Eqv. Cap (μF) 0.1200 0.0660	Eqv. ESR (Ω) 0.0050 0.0143 2.02427	Eqv. ESL (nH) 0.0333 0.1333 0.1309	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5
CAP	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047	Footprint 0201 0201 0402 0402 0402 0402	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS	QTY 0 12 3 3	Eqv. Cap (μF) 0.1200 0.0660 0.1410	Eqv. ESR (Ω) 0.0050 0.0143 0.0127	Eqv. ESL (nH) 0.0333 0.1333 0.1333	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc4 Zc5 Zc6
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1	Footprint 0201 0402 0402 0402 0402 0402 0402 0603	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS	QTY 0 12 3 3 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410 	Eqv. ESR (Ω) 0.0050 0.0143 0.0127	Eqv. ESL (nH) 0.0333 0.1333 0.1333	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc3 Zc4 Zc5 Zc6 Zc6
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22	Footprint 0201 0402 0402 0402 0402 0402 0603 0603	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS VOE VOE	QTY 0 12 3 0 0 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410	Eqv. ESR (Ω) 0.0050 0.0143 0.0127	Eqv. ESL (nH) 0.0333 0.1333 0.1333 	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc4 Zc5 Zc6 Zc7 Zc8
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47	Footprint 0201 0402 0402 0402 0402 0402 0603 0603 0603	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS VOE VOS VOS	QTY 0 12 3 0 0 0 8	Eqv. Cap (µF) 	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0828	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc8
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 1	Footprint 0201 0402 0402 0402 0402 0402 0603 0603 0603 0603	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS VOS VOS VOS VOS	QTV 0 12 3 3 0 0 8 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600	Eqv. ESR (Ω)	Eqv. ESL. (nH) 0.0333 0.1333 0.1333 0.0625	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0828	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc6 Zc7 Zc8 Zc8 Zc9 Zc9 Zc9
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2	Footprint 0201 0402 0402 0402 0402 0402 0603 0603 0603 0603 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS VOS VOS VOS VOS VOS VOS VOS VOS VOS	QTV 0 12 3 3 0 0 8 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625 	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0828	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc9 Zc10 Zc11
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 0201 0402 0402 0402 0402 0402 0603 0603 0603 0603 0603 0805 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM	Orientation VOS	QTY 0 12 3 0 0 8 0 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000	Eqv. ESR (೧)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.1333 0.0625 0.0525	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0828 0.0828 0.1600	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12
CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 0201 0402 0402 0402 0402 0603 0603 0603 0603 0805 0805 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM DOTTOM	Orientation VOS	QTY 0 12 3 3 0 0 8 0 8 0 1 4	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.033 0.1333 0.1333 0.0625 0.1500	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc7 Zc10 Zc11 Zc12 Zc13
CAP From Library User1 User2	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 0201 0201 0402 0402 0402 0603 0603 0603 0603 0805 0805 0805 0805 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP	Orientation VOS	01Y 0 12 3 3 0 0 8 0 8 0 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000	Eqv. ESR (∩)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625 0.1500	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0628 0.1600	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc7 Zc10 Zc11 Zc12 Zc13 Zc14 Zc14
CAP From Library User1 User2 User3	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 2201 0201 0402 0403 0603 0603 0805 0	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	01Y 0 12 3 3 0 0 0 8 0 0 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625 0.1500	Eqv. Lmnt (nH) 0.0563 0.2252 0.2252 0.0828 0.1600	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc7 Zc8 Zc1 Zc11 Zc12 Zc13 Zc14 Zc15
CAP From Library User1 User2 User3 User4	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 0201 0201 0402 0402 0402 0402 0402 0402	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	017 0 0 12 3 3 0 0 0 8 0 0 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000 18.8000	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.0625 0.1500 0.1500	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc16
CAP From Library User1 User2 User3 User4	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7	Footprint 0201 0201 0402 0402 0402 0402 0603 0603 0603 0603 0603 0603 0603 0605 0805 0805 0805 0805 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	QTV 0 12 3 0 0 0 8 0 0 4	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625 0.1500	Eqv. Lmnt (nH) 0.0563 0.2252 0.0828 0.0828 0.1600	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc6 Zc7 Zc7 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc16
CAP From Library User1 User2 User3 User3 User3 User3 User3 User3	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF)	Footprint 0201 0201 0402 0402 0402 0402 0402 0402 0603 0603 0603 0603 0603 0605 0805 0	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM DOP TOP TOP	Orientation VOS	QTV 0 12 3 3 0 0 8 0 0 8 0 0 4 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000 18.8000	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.1500	Eqv. Lmnt (nH) 0.0583 0.2252 0.2252 0.0628 0.0628 0.1600	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc1 Zc12 Zc11 Zc12 Zc14 Zc15 Zc16
CAP From Library User1 User2 User3 User4 Bulk Caps CAP	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10	Footprint 0201 0201 0201 0402 0402 0402 0402 0402 0402 0402 0402 0603 0603 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS VOS	QTY 0 12 3 0 0 0 8 0 0 4 4	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000 Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.0625 0.1500 0.1500 Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12 Zc12 Zc13 Zc14 Zc15 Zc14 Zc15 Zc16 Legend
CAP From Library User1 User3 User3 User4 Bulk Caps CAP	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22	Footprint 0201 0201 0402 0402 0402 0402 0603 0603 0603 0605 0	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS VOS VOS VOS VOS VOS VOS VOS	QTV 0 12 3 3 0 0 8 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000 Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH)	Eqv. Lmnt (nH) 0.0563 0.2252 0.0828 0.0828 0.1600 Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc15 Zc15 Zc16 Legend Zc17 Zc17 Zc14 Zc17 Zc14 Zc2 Zc3 Zc4 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc9 Zc1 Zc1 Zc1 Zc1 Zc9 Zc1 Zc1 Zc1 Zc9 Zc1 Zc1 Zc1 Zc1 Zc1 Zc1 Zc1 Zc1
CAP From Library User1 User2 User3 User4 Bulk Caps CAP	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100	Footprint 0201 0201 0402 0402 0402 0402 0603 0603 0603 0603 0603 0605 0	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM COP TOP TOP	Orientation VOS VOS VOS VOS VOS VOS VOS VOS	QTV 0 12 3 3 0 0 0 8 0 0 4 4 4 0 2 1 7 7 0	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 18.8000 Eqv. Cap (µF) Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.033 0.133 0.133 0.133 0.0625 0.1500 0.1500 Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc15 Zc15 Zc15 Zc16 Zc17 Zc18 Zc12 Zc12 Zc13 Zc14 Zc12 Zc2 Zc3 Zc3 Zc4 Zc7 Zc8 Zc9 Zc10 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc19 Zc11 Zc12 Zc13 Zc14 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc19 Zc10 Zc11 Zc12 Zc15 Zc16 Zc17 Zc18 Zc12 Zc13 Zc12 Zc13 Zc12 Zc13 Zc12 Zc13 Zc15 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc16 Zc17 Zc18 Zc17 Zc18 Zc18 Zc18 Zc17 Zc18 Zc17 Zc18 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc18 Zc17 Zc18
CAP From Library User1 User2 User3 User4 Bulk Caps CAP From	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100 100	Footprint 0201 0201 0201 0402 0402 0402 0402 0402 0603 0603 0603 0605 0804 0804 0804 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	QTV 0 12 3 0 0 0 8 0 0 4 4 4 0 0	Eqv. Cap (µF) 0.1200 0.0660 0.0660 0.0660 0.0410 3.7600 13.8000	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.0625 0.1500 0.1500 Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc1 Zc12 Zc13 Zc14 Zc15 Zc16 Zc16 Zc17 Zc18 Zc19 Zc29 Zc29
CAP From Library User1 User3 User3 User4 Bulk Caps CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100 100 220	Footprint 0201 0201 0402 0402 0402 0402 0603 0603 0603 0603 0605 0605 0805 0	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS VOS	QTV 0 12 3 3 0 0 0 8 8 0 0 4 4 4 0 0 0 0 0 0	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.033 0.1333 0.1333 0.0625 0.1500 0.1500 Eqv. ESL (nH) Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc8 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc16 Zc16 Zc16 Zc19 Zc20 Zc20 Zc20
CAP From Library User1 User2 User3 User4 Bulk Caps CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100 100 220 330	Footprint 0201 0201 0201 0402 0402 0402 0402 0402 0603 0603 0805 0804 9ulk 9ulk 9ulk 9ulk 9ulk 9ulk	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS VOS VOS VOS VOS VOS VOS VOS	QTV 0 12 3 3 0 0 0 8 0 0 4 4 4 0 0 0 2	Eqv. Cap (µF)	Eqv. ESR (೧)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.0625 0.1500 Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc9 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc15 Zc15 Zc15 Zc18 Zc17 Zc18 Zc20 Zc21 Zc21 Zc21
CAP From Library User1 User2 User3 User4 Bulk Caps CAP From Library	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.222 0.47 1 2.2 4.7 Value (µF) 10 22 100 100 220 330 470	Footprint 0201 0201 0201 0201 0402 0402 0402 0402 0402 0402 0402 0603 0603 0805 0804 0804 0804 0804 0804 904 904	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS VOS	QTV 0 12 3 0 0 0 8 0 0 0 4 4 	Eqv. Cap (µF) 0.1200 0.0660 0.1410 3.7600 3.7600	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.0333 0.1333 0.1333 0.1333 0.0625 0.1500 Eqv. ESL (nH) 1.1500 1.1500	Eqv. Lmnt (nH)	Legend Zc2 Zc3 Zc4 Zc5 Zc8 Zc7 Zc8 Zc7 Zc8 Zc7 Zc8 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc15 Zc16 Zc19 Zc21 Zc21 Zc22 Zc22
CAP From Library User1 User3 User3 User4 Bulk Caps CAP From Library User5_	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100 100 220 330 470	Footprint 0201 0201 0402 0402 0402 0402 0603 0603 0603 0603 0605 0805 0805 0805 0805 0805 0805 0805	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	QTV 0 12 3 3 0 0 0 8 8 0 0 4 4 4 0 0 0 0 2	Eqv. Cap (µF)	Eqv. ESR (Ω)	Eqv. ESL (nH) 0.033 0.1333 0.1333 0.0625 0.1500 0.1500 1.1500 1.1500 1.1500	Eqv. Lmnt (nH)	Legend Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc7 Zc7 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc16 Zc16 Zc16 Zc17 Zc18 Zc19 Zc20 Zc21 Zc23 Zc23 Zc23 Zc23
CAP From Library User1 User2 User3 User4 Bulk Caps CAP From Library User5 User6	Value (µF) 0.001 0.0022 0.0047 0.01 0.022 0.047 0.1 0.22 0.47 1 2.2 4.7 Value (µF) 10 22 100 100 220 330 470	Footprint 0201 0201 0201 0201 0402 0402 0402 0402 0603 0603 0805 0804 081k 081k 081k 081k 081k 081k 081k	Layer BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM BOTTOM TOP TOP TOP	Orientation VOS	QTV 0 12 3 3 0 0 0 8 0 0 4 4 4 0 0 2 2	Eqv. Cap (µF)	Eqv. ESR (೧)	Eqv. ESL (nH)	Eqv. Lmnt (nH)	Legend Zc2 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7 Zc8 Zc7 Zc7 Zc8 Zc7 Zc10 Zc11 Zc12 Zc13 Zc14 Zc15 Zc16 Zc17 Zc18 Zc17 Zc18 Zc17 Zc18 Zc12 Zc21 Zc21 Zc21 Zc21 Zc21 Zc21 Zc21

In the **Decap Selection** window, you can either enable or disable the following components of the PDN:

- VRM
- Spreading Parasitics
- BGA Via
- Plane Capacitance

VRM

You can choose either to **Ignore** or include the VRM parasitics for a **Linear**, **Switcher**, or **Custom** VRM parasitics.

Spreading Parasitics

Based on the design, you can select either a **Low**, **Medium**, **High**, or **Custom** value for the effective spreading R, L values that the decoupling capacitors see with respect to the FPGA. You can ignore the spreading inductance. Ignoring the spreading inductance leads to an optimistic result and is not an accurate representation of the impedance profile that the FPGA encounters.

The **Ignore** option helps you understand that the spreading inductance in combination with the BGA via inductance is the limiting factor from a PCB perspective to decouple the FPGA at high frequencies. Be careful when choosing the **Ignore** option while estimating a final capacitor count.

BGA Via

Based on the design, you can either **Ignore** the BGA via component or **Calculate** the effective via inductance based on the layout. If you are in the middle of layout, you can directly enter the effective loop R, L via parasitics in the **Library** tab and choose the **Custom** setting under **BGA Via** to include the via parasitics.

Plane Capacitance

Based on the design, you can either **Ignore** the interplanar capacitance between the power and ground plane, or **Calculate** the plane capacitance based on the layout. If you are in the middle of layout, you can directly enter the plane capacitance in the **Library** tab and choose the **Custom** setting under **Plane Cap** to include the plane capacitance parasitics.

The next section in the **Decap Selection** tab deals with target impedance calculation that was described earlier in the user guide.

The final section in the **Decap Selection** tab provides the ability to select the various high/mid frequency decoupling capacitors based on footprint, layer, and orientation to meet the target impedance you can choose X2Y type of capacitors in the Footprint column besides two-terminal capacitors. The capacitance value for the X2Y capacitor may be different from that of the two-terminal capacitor. A warning message of "Wrong Footprint" is displayed if you choose a wrong combination of capacitance and footprint. You can define custom capacitor values (such as User1, ..., User4) needed for high/mid frequency decoupling specific to the design. However, you cannot change the capacitor parasitics (ESR and ESL) in this tab. This can only be done in the Library tab.

You can change the parasitics of the bulk decoupling capacitors in the **Library** tab and define the mounting inductance specific to the design. You also can define custom capacitor values (such as User5, User6) for low/mid frequency decoupling specific to the design.

As provided in other tabs, you can save and restore the final capacitor count and other settings for a specific set of assumptions. You can also revert back to default settings.

BOM Tab

Figure 1–14 shows the **BOM** tab.

Figure 1–14. BOM Tab

When the analysis is done, you can print the final Zeff profile and capacitor count to achieve the profile by clicking **Print BOM** on the top right corner. It defaults to the default printer assigned on the **File** menu under **Print**. You can also export the data as an **.xls** file by clicking **Export Data**.

Summary

This user guide provides a brief overview of the various tabs in the PDN tool. You can quickly and accurately design a robust PDN by calculating an optimum number of capacitors that meet the target impedance requirements for a given power supply.

Document Revision History

The table below displays the revision history for the chapters in this User Guide.

Date	Document Version	Changes Made
March 2009	2.0	 Added X2Y Mount information.
		 Added X2Y Decoupling Capacitors information.
		 Added PDN Decoupling Methodology Review section.
		 Updated PDN Circuit Topology section.
		 Updated Pre-Layout Instructions section.
		 Updated graphics.
		 Converted to the 8.5 × 11 template.
April 2008	1.0	Initial release.

How to Contact Altera

For the most up-to-date information about Altera[®] products, refer to the following table.

Contact (1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Non-technical support (General)	Email	nacomp@altera.com
Non-technical support (Software Licensing)	Email	authorization@altera.com

Note to table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, file names, file name extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \ qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Design.
Italic type	Internal timing parameters and variables are shown in italic type. Examples: t_{PIA} , $n + 1$.
	Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <i><file name="">, <project name="">.pof</project></file></i> file.
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.
"Subheading Title"	References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions."
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
1., 2., 3., and a., b., c., etc.	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.
••	Bullets are used in a list of items when the sequence of the items is not important.
\checkmark	The checkmark indicates a procedure that consists of one step only.
1 P	The hand points to information that requires special attention.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or the user's work.
WARNING	A warning calls attention to a condition or possible situation that can cause injury to the user.
4	The angled arrow indicates you should press the Enter key.
•	The feet direct you to more information on a particular topic.

This document uses the typographic conventions shown below.