Provides methods to access the result obtained with the compute() method of decision forest model-based training.
More...
| def allocate_{Float64|Float32} |
( |
|
self, |
|
|
|
input, |
|
|
|
parameter, |
|
|
|
method |
|
) |
| |
Allocates memory to store the result of decision forest model-based training
- Parameters
-
| input | Pointer to an object containing the input data |
| method | Computation method for the algorithm |
| parameter | Parameter of decision forest model-based training |
- Returns
- Status of allocation
- Full Names
allocate_Float64 is for float64
allocate_Float32 is for float32
| def check |
( |
|
self, |
|
|
|
input, |
|
|
|
par, |
|
|
|
method |
|
) |
| |
Checks the result of decision forest model-based training
- Parameters
-
| input | Input object for the algorithm |
| par | Parameter of the algorithm |
| method | Computation method |
- Returns
- Status of checking
Returns the result of decision forest model-based training
- Parameters
-
| id | Identifier of the result |
- Returns
- Result that corresponds to the given identifier
| def getSerializationTag |
( |
|
self | ) |
|
getSerializationTag(Result self) -> int
| def getTable |
( |
|
self, |
|
|
|
id |
|
) |
| |
Returns the result of decision forest model-based training
- Parameters
-
| id | Identifier of the result |
- Returns
- Result that corresponds to the given identifier
| def set |
( |
|
self, |
|
|
|
id, |
|
|
|
value |
|
) |
| |
Sets the result of decision forest model-based training
- Parameters
-
| id | Identifier of the result |
| value | Result |
| def setTable |
( |
|
self, |
|
|
|
id, |
|
|
|
value |
|
) |
| |
Sets the result of decision forest model-based training
- Parameters
-
| id | Identifier of the result |
| value | Result |
The documentation for this class was generated from the following file:
- decision_forest/regression/training.py