
Intel® SDK for OpenCL™ Applications is a comprehensive environment for
developing and optimizing OpenCL applications on Intel® platforms, and part of an
increasingly rich portfolio of Intel tools for heterogeneous programming.

This paper explains how to install Intel for OpenCL Applications for Linux* onto
Ubuntu* 16.04 and get the Intel® OpenCL code samples up and running in the
Eclipse* integrated development environment (IDE).

We assume you already have Ubuntu set up with the Eclipse IDE for C++
development installed. Specifically, the environment includes:

• Ubuntu 16.04

• Eclipse Oxygen*

Installation
We did all the setup on a fresh, clean Ubuntu 16.04 build.

To set up the Ubuntu environment, we recommend you follow the instructions in
Getting Started in Linux with Intel® SDK for OpenCL™ Applications, which has two
main parts:

1. Install the OpenCL code drivers. The first step is to install the OpenCL code
drivers onto your Ubuntu system. This can be done using the script that is
provided. Explaining the details of this script is beyond the scope of this
document.

2. Install Intel SDK for OpenCL Applications. On page 2, you will find a script
that installs the Intel SDK for OpenCL applications. This script performs all the
necessary steps to put the SDK in the proper locations.

These two scripts can take a little while to run. Once the run completes, the Intel
SDK for OpenCL applications has been installed in the location shown in Figure 1.

Getting the OpenCL Code Samples
Intel has several OpenCL code samples for both Windows* and Linux at Intel® SDK
for OpenCL™ Applications Support. If you scroll, you will see a link to download the
Linux samples, or you can click "OpenCL 1.2 samples."

What Gets Extracted
After extracting your samples onto the hard drive, you should see something
similar to Figure 2. We placed our samples in Home/Dev/IntelOpenCLSamples.

Installing Intel® SDK for OpenCL™ Applications for Linux* onto Ubuntu* 16.04 and
getting the Intel® OpenCL code samples up and running in the Eclipse* IDE

A How-To Guide for Intel® SDK
for OpenCL™ Applications

High-Performance Computing
Comprehensive Development Environment

Contents

Installation . 1

Getting the OpenCL Code Samples 1

Example Descriptions. 2

The Common Folder 2

Creating the Projects in Eclipse:

Oxygen . 3

Create a New Eclipse Project 3

Project File References 7

Software

White PaPer

https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/articles/sdk-for-opencl-gsg
https://software.intel.com/en-us/intel-opencl-support/code-samples
https://software.intel.com/en-us/intel-opencl-support/code-samples
https://software.intel.com/en-us/intel-opencl

White Paper | Intel® SDK for OpenCL™ Applications

Figure 1. Intel SDK for OpenCL Applications installation

Figure 2. Extracting samples onto the hard drive

Example Descriptions
Each sample folder has a .PDF file that gives you a full description
of each project. Here’s a brief description of each sample:

• BitonicSort. Demonstrates how to sort an arbitrary input
array of integer values with OpenCL software technology
using Single Instruction Multiple Data (SIMD) bitonic
sorting networks.

• CapsBasic. Demonstrates how to query all OpenCL
platforms available on the system and lists all devices for
a given platform.

• GEMM (General Matrix Multiply). Demonstrates how to
efficiently utilize an OpenCL device to perform a general
matrix multiply operation on two dense square matrices.

• GodRays. Demonstrates how to use high dynamic range
(HDR) rendering with the God Rays (crepuscular rays)
effect in OpenCL software technology.

• MedianFilter. Demonstrates how to use medial filter in
OpenCL software technology by optimizing the filtration
process using implicit single instruction, multiple data
(SIMD) code vectorization performed by the built-in
OpenCL software technology compiler vectorizer.

• MonteCarlo. Demonstrates implementation of the Monte
Carlo simulation for the European stock option pricing.

• MotionEstimation. Provides step-by-step guidelines on
using Intel’s motion estimation extension for OpenCL
software technology .

• MotionEstimation Advanced. Expands motion
estimation by including a set of host-callable functions
for frame-based video motion estimation.

• MultiDeviceBasic. Sample utilizes the capabilities of the
multidevice system, CPU/GPU.

• ProGrapicsOpt. Demonstrates how to optimize OpenCL
software technology kernels for running on graphics
devices with the Intel® Processor Graphics optimization
sample based on the Sobel Filter* algorithm.

• SimpleOptimizations. Demonstrates simple ways
to measure the performance of OpenCL software
technology kernels in an application.

• ToneMapping. Demonstrates how to use HDR rendering
with the tone mapping effect in OpenCL software
technology.

The samples come ready to be compiled on either Windows
or Linux. At the root of the entire samples folder, and in each
individual project folder, are Visual Studio* files that are not
needed for the Linux environment. We removed them, since
they were unnecessary.

The Common Folder
The “common” folder contains wrapper .hpp and .cpp source
code files that aid in the sample apps. These are specific
to the SDK samples and are not part of the Intel SDK for
OpenCL Applications library itself.

While it may not be necessary, we copied the common folder
to the default Intel SDK for OpenCL Applications install
location and put it in the Includes folder (Figure 3). This is
because we wanted to better organize our projects and have
just one main include directory. In Eclipse, we reference
this location in every project. The rationale is that this is
Intel’s implementation of OpenCL software technology
and samples, and some of the extra classes created in the
common folder could be useful in other projects.

2

White Paper | Intel® SDK for OpenCL™ Applications

Figure 3. Copying the common folder to the default Intel SDK
for OpenCL applications install location and putting it in the
Includes folder

Creating the Projects in Eclipse: Oxygen*

Assumptions
As mentioned, Oxygen is the current version that’s available
at the time of this writing. We also assume you have a basic
knowledge of using the IDE and know how to create a C++
project and set the Eclipse workspace.

Overview of the Process
There are 14 samples, each of which will be converted into an
Eclipse project. They all follow the same basic pattern:

• Create a new Eclipse C++ project with the same name as
the original source sample.

• Set up the properties for the project: Header file
location, OpenCL lib path, and so on.

• Create a “Src” folder and copy in all required .CPP files.

• Create a “Resources” folder for any extra files needed
per sample project.

• Rebuild the Project C/C++ Index.

• Compile and fix any issues.

Create a New Eclipse Project

Step 1: Create a New Project
From the File menu, choose "New C/C++ project." In Figure 4,
you can see we were working with the “SimpleOptimization”
project. We chose an empty project with Linux GCC.

Click “next.” The Select Configurations dialog box (Figure 5)
appears.

Figure 4.Choose an Empty Project with Linux GCC

Figure 5. Select Configurations dialog box

3

White Paper | Intel® SDK for OpenCL™ Applications

Click “Advanced Settings.” The Properties dialog box for the
Eclipse project appears.

It’s not mandatory to click “Advanced Settings” at this
stage to fill out the project properties. You can instead
click “Finish,” and, once the project is created, enter this
information later by right-clicking a project and choosing
"Properties."

Step 2: Add the Include File Paths
Add the paths to both the OpenCL software technology
header files (Figure 6). Recall that we copied the entire
common folder from the samples folder to be in the same
location as the Intel SDK for OpenCL applications installation
location. You may or may not have done this already, but you
will need to add a reference to the common folder no matter
where you have it on your hard drive.

Step 3: Add the OpenCL Software Technology
Library and Path
You need to add both the OpenCL software technology
library itself and the path where Eclipse should look for the
library (Figure 7).

Step 4: Choose Compiler Options
We added the -std=c++11 flag under “Miscellaneous” settings
(Figure 8). We found that some code sample applications
needed this, so we added it to all of the projects.

Figure 6. Adding the paths to both the OpenCL software
technology header files

Figure 7. Adding the OpenCL software technology library and
the library search path

Figure 8. Adding the -std=c++11 flag under “Miscellaneous”
settings

4

White Paper | Intel® SDK for OpenCL™ Applications

Step 5: Post Build Command
This step is not required. It copies everything from the
Resources folder into the Debug folder so that once the
compile is done, you can jump into a terminal, navigate to the
executable, and have everything ready to go in the proper
folder (Figure 9).

Once you have completed filling in the project properties,
click “Apply and close.” The Select Configurations dialog box
appears. Click “Finish.” You now have an empty project set up
and ready to go.

Step 6: Create a Src Folder
At this point, there is an empty project with no source code
files. By convention, it’s common to put source code files in
a Src folder. Next, you need to create a new folder called Src
that will hold all the .CPP files.

• Right-click the name of the project.

• Click “New” and then “Folder.

• Name the new folder Src.

Your project now has a Src folder under the root.

Figure 9. Optional Post Build command

Figure 10. Creating a src folder

Step 7: Copy the Application and Supporting
CPP Files
Now that you have a folder to hold the CPP files, we need to
copy the existing sample files into this new Src folder. This
is as simple as navigating to the original Samples folder for
a given project, grabbing the .CPP files, and dropping them
into the Eclipse IDE’s corresponding project (Figure 11).

Figure 11. Copying the application and supporting .CPP files

In Figure 11, there is only one .CPP file that we need, the
SimpleOptimizations.cpp file, which happens to be the main
app source code file.
Step 8: Copy the CPP Files from the Common Folder

Next, you need to determine which .CPP files from the
Samples common folder you need to copy into the Src
folder. To do this, look at the main source code file (in this
case, the SimpleOptimizations.cpp file show in Figure 12).

5

White Paper | Intel® SDK for OpenCL™ Applications

Figure 12. Determining which .CPP files from the Samples
common folder to copy into the Src folder
Looking at Figure 12, you can see that this file relies on
Basic.hpp, Cmdparser.hpp, and Oclobject.hpp. This means
you need to import the corresponding .CPP files from the
Common folder and place them into the project’s Src folder.

As previously mentioned, we put a copy of the Common
folder alongside the Intel SDK for OpenCL Applications
include folder, which is located at: /opt/intel/opencl/include.

After grabbing all the files needed for the project to compile
properly, you will end up with a Src folder that looks like
Figure 13.

Figure 13. Src folder

Step 9: Create the “Resources” Folder

This folder contains the .CL kernel files, images, and any
other files that are needed at the application’s runtime.
Collecting all the files into one folder makes it easy for the
post-build process to easily find them to copy into the Debug
folder.

Not all projects have extra files that need to run. If not, you
can omit this step for that project. Otherwise, just as we did
with the Src folder, right-click the project, click “New” and
then “Folder” and then name it “Resources.”

Now we have to go back to the original Samples project
folder. For this example, we can see that there is only one
additional file, SimpleOptimizations.CL (Figure 14).

Figure 14. SimpleOptimizations.CL folder

Copy SimpleOptimizations.CL into the Eclipse project’s
Resource folder. You should now have a Resources folder
that looks like Figure 15.

Step 10: Re-Index C++

Because the Eclipse IDE has syntax completion similar to
Visual Studio, sometimes it needs to be re-indexed so that it
knows about new source code. To do this, from the Project
menu, click “C/C++ Index” and then “Rebuild” (Figure 16).

Figure 15. Resources folder

Figure 16. Re-indexing C++

6

White Paper | Intel® SDK for OpenCL™ Applications

Project File References

Here are some useful links that discuss how to set up Eclipse
properly that so it can detect and know about the new source
code headers and classes:

• https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.
eclipse.cdt.doc.user%2Freference%2Fcdt_u_prop_
general_sd_entries.htm

• https://www.eclipse.org/community/eclipse_
newsletter/2013/october/article4.php

Below is a list of the files we added to each project Src and
Resources folder. This list includes only the supporting files
needed for each project and not the actual project main
source code files.

At the time of this writing, every sample application compiled
and ran with the exception of MotionEstimation* and
MotionEstimationAdvanced*. We suspect this is due to the
fact that we have an Nvidia* graphics card in our system and
have not downloaded the proper Nvidia drivers. On a system
with Intel graphic technology, this should run.

NOTE: We’re not sure why the original developers put the
cmdoptions.hpp/cpp file in the original project rather than in
the common folder. However, because there are a couple of
projects that use these files, we left things as they were and
left them in each individual folder’s Src location.

BitonicSort

• Src: BitonicSort.cpp, basic.cpp, cmdparser.cpp,
oclobject.cpp, utils.cpp

• Resources: BitonicSort.cl

CapsBasic

• Src: CapsBasic.cpp

• Resources: N/A

GEMM

• Src: Gemm.cpp, basic.cpp, cmdparser.cpp, oclobject.cpp,
utils.cpp, cmdoptions.cpp, cmdoptions.hpp

• Resources: gemm.cl

GodRays

• Src: GodRays.cpp, basic.cpp, cmdparser.cpp,
GodRaysNative.cpp, oclobject.cpp, stdafx.cpp, utils.cpp

• Resources: GodRays.cl, GodRays.rgb

MedianFilter

• Src: MedianFilter.cpp, basic.cpp, cmdparser.cpp,
oclobject.cpp, utils.cpp

• Resources: MedianFilter.cl

MonteCarlo

• Src: MonteCarlo.cpp, basic.cpp, cmdparser.cpp,
oclobject.cpp, utils.cpp, cmdoptions.cpp

• Resources: MonteCarlo.cl

MotionEstimation

• Src: basic.cpp, cmdparser.cpp,
MotionEstimationAdvanced.cpp, oclobject.cpp, utils.cpp,
yuv_utils.cpp

• Resources: video_1920x1080_5frames.yuv

MotionEstimationAdvanced

• Src: basic.cpp, cmdparser.cpp, MotionEstimation.cpp,
oclobject.cpp, utils.cpp, yuv_utils.cpp

• Resources: mea_video_1920x1080_5Frames.yuv

MultiDeviceBasic

• Src: basic.cpp, cmdparser.cpp, kernel.cpp, multi.cpp,
multidevice.cpp, oclobject.cpp, shared.cpp, system.cpp,
utils.cpp

• Resources: cpu+mic.system-level.sh, cpu+multimic.
system-level.sh, multimic.system-level.sh, universal.
system-level.sh

ProGraphicsOpt

• Src: ProGraphicsOpt.cpp, basic.cpp, cmdparser.cpp,
oclobject.cpp, stdafx.cpp, utils.cpp

• Resources: ProGraphicsOpt.cl

SimpleOptimizations

• Src: SimpleOptimizations.cpp, basic.cpp, cmdparser.cpp,
oclobject.cpp, utils.cpp

• Resources: impleOptimizations.cl

ToneMapping

• Src: ToneMapping.cpp, ToneMappingNative.cpp, basic.
cpp, cmdparser.cpp, oclobject.cpp, utils.cpp

• Resources: ToneMapping.cl, ToneMapping.rgb

ToneMappingMultiDevice

• Src: oneMappingMultiDevice.cpp, ToneMappingNative.
cpp, basic.cpp, cmdparser.cpp, oclobject.cpp, utils.cpp

• Resource: oneMappingMultiDevice.cl,
ToneMappingMultiDevice.rgb

7

https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_prop_general_sd_entries.htm
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_prop_general_sd_entries.htm
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_prop_general_sd_entries.htm
https://www.eclipse.org/community/eclipse_newsletter/2013/october/article4.php
https://www.eclipse.org/community/eclipse_newsletter/2013/october/article4.php

White Paper | Intel® SDK for OpenCL™ Applications

 Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implemen-
tation of these updates may make these results inapplicable to your device or system.

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are mea-
sured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go
to www.intel.com/benchmarks.

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configu-
ration. Check with your system manufacturer or retailer or learn more at intel.com.

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any

warranty arising from course of performance, course of dealing, or usage in trade.
 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representa-

tive to obtain the latest forecast, schedule, specifications, and roadmaps.
 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on

request.
 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
 This sample source code is released under the Intel Sample Source Code License Agreement.
 For more information regarding performance and optimization choices in Intel® Software Development Products, see our Optimization Notice: https://software.intel.com/articles/optimization-

notice#opt
 Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 *Other names and brands may be claimed as the property of others.
 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
 Copyright © 2018 Intel Corporation Printed in USA 0218/SS

Software

	Installation
	Installation

