#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
const string datasetFileName = "../data/batch/kmeans_init_dense.csv";
const size_t nMaxIterations = 1000;
const double cAccuracyThreshold = 0.01;
const size_t nClusters = 20;
template <typename Type>
Type getSingleValue(const NumericTablePtr& pTbl)
{
BlockDescriptor<Type> block;
pTbl->getBlockOfRows(0, 1, readOnly, block);
Type value = block.getBlockPtr()[0];
pTbl->releaseBlockOfRows(block);
return value;
}
template <kmeans::init::Method method>
static void runKmeans(const NumericTablePtr& inputData, size_t nClusters, const char* methodName, double oversamplingFactor = -1.0)
{
kmeans::init::Batch<float, method> init(nClusters);
init.input.set(kmeans::init::data, inputData);
if(oversamplingFactor > 0)
init.parameter.oversamplingFactor = oversamplingFactor;
std::cout << "K-means init parameters: method = " << methodName;
if(method == kmeans::init::parallelPlusDense)
std::cout << ", oversamplingFactor = " << init.parameter.oversamplingFactor << ", nRounds = " << init.parameter.nRounds;
std::cout << std::endl;
init.compute();
NumericTablePtr centroids = init.getResult()->get(kmeans::init::centroids);
kmeans::Batch<> algorithm(nClusters, nMaxIterations);
algorithm.input.set(kmeans::data, inputData);
algorithm.input.set(kmeans::inputCentroids, centroids);
algorithm.parameter.accuracyThreshold = cAccuracyThreshold;
std::cout << "K-means algorithm parameters: maxIterations = " << algorithm.parameter.maxIterations
<< ", accuracyThreshold = " << algorithm.parameter.accuracyThreshold << std::endl;
algorithm.compute();
const float goalFunc = getSingleValue<float>(algorithm.getResult()->get(kmeans::objectiveFunction));
const int nIterations = getSingleValue<int>(algorithm.getResult()->get(kmeans::nIterations));
std::cout << "K-means algorithm results: Objective function value = " << goalFunc*1e-6
<< "*1E+6, number of iterations = " << nIterations << std::endl << std::endl;
}
int main(int argc, char *argv[])
{
FileDataSource<CSVFeatureManager> dataSource(datasetFileName, DataSource::doAllocateNumericTable, DataSource::doDictionaryFromContext);
dataSource.loadDataBlock();
NumericTablePtr inputData = dataSource.getNumericTable();
runKmeans<kmeans::init::deterministicDense>(inputData, nClusters, "deterministicDense");
runKmeans<kmeans::init::randomDense>(inputData, nClusters, "randomDense");
runKmeans<kmeans::init::plusPlusDense>(inputData, nClusters, "plusPlusDense");
runKmeans<kmeans::init::parallelPlusDense>(inputData, nClusters, "parallelPlusDense", 0.5);
runKmeans<kmeans::init::parallelPlusDense>(inputData, nClusters, "parallelPlusDense", 2.0);
return 0;
}