Java* API Reference for Intel® Data Analytics Acceleration Library 2019

List of all members
Parameter Class Reference

Base class for parameters of the decision forest regression training algorithm. More...

Detailed Description

Member Function Documentation

long getFeaturesPerNode ( )

Returns number of features tried as possible splits by the decision forest regression training algorithm If 0 then p/3 is used, where p is the total number of features.

Returns
Number of features
double getImpurityThreshold ( )

Returns threshold value used as stopping criteria: if the impurity value in the node is smaller than the threshold then the node is not split anymore

Returns
Impurity threshold
long getMaxTreeDepth ( )

Returns maximal tree depth. Default is 0 (unlimited)

Returns
Maximal tree depth
long getMinObservationsInLeafNode ( )

Returns minimal number of samples per node. Default is 5

Returns
Minimal number of samples
long getNTrees ( )

Returns number of trees to be created by the decision forest regression training algorithm

Returns
Number of trees
double getObservationsPerTreeFraction ( )

Returns fraction of observations used for a training of one tree, 0 to 1. Default is 1 (sampling with replacement)

Returns
Fraction of observations
long getResultsToCompute ( )

Gets the 64 bit integer flag that indicates the results to compute

Returns
The 64 bit integer flag that indicates the results to compute
int getSeed ( )
Deprecated:
This item will be removed in a future release.

Returns the seed for the random numbers generator used by the algorithm

Returns
Seed for the seed for the random numbers generator used by the algorithm
VariableImportanceModeId getVariableImportanceMode ( )

Returns variable importance computation mode

Returns
Variable importance computation mode
void setEngine ( com.intel.daal.algorithms.engines.BatchBase  engine)

Sets the engine to be used by the algorithm

Parameters
engineto be used by the algorithm
void setFeaturesPerNode ( long  value)

Sets the number of features tried as possible splits by decision forest regression training algorithm. If 0 then p/3 is used, where p is the total number of features.

Parameters
valueNumber of features
void setImpurityThreshold ( double  value)

Sets threshold value used as stopping criteria

Parameters
valueImpurity threshold
void setMaxTreeDepth ( long  value)

Sets maximal tree depth. Default is 0 (unlimited)

Parameters
valueMaximal tree depth
void setMinObservationsInLeafNode ( long  value)

Sets minimal number of samples per node. Default is 5

Parameters
valueMinimal number of samples
void setNTrees ( long  nTrees)

Sets the number of trees to be created by the decision forest regression training algorithm

Parameters
nTreesNumber of trees
void setObservationsPerTreeFraction ( double  value)

Sets fraction of observations used for a training of one tree, 0 to 1

Parameters
valueFraction of observations
void setResultsToCompute ( long  resultsToCompute)

Sets the 64 bit integer flag that indicates the results to compute

Parameters
resultsToComputeThe 64 bit integer flag that indicates the results to compute
void setSeed ( int  seed)
Deprecated:
This item will be removed in a future release.

Sets the seed for the random numbers generator used by the algorithm

Parameters
seedSeed for the random numbers generator used by the algorithm
void setVariableImportanceMode ( VariableImportanceModeId  value)

Sets the variable importance computation mode

Parameters
valueVariable importance computation mode

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.