Java* API Reference for Intel® Data Analytics Acceleration Library 2019

DataSourceFeatureExtraction.java

/* file: DataSourceFeatureExtraction.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example for using of data source feature extraction
*/
package com.intel.daal.examples.datasource;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.*;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class DataSourceFeatureExtraction {
/* Input data set parameters */
private static final String dataset = "../data/batch/kmeans_dense.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data */
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
/* Filter in 3 chosen columns from a .csv file */
dataSource.getFeatureManager().addModifier(new ColumnFilter(context).list(new long[]{1, 2, 5}));
/* Consider column with index 1 as categorical and convert it into 3 binary categorical features */
dataSource.getFeatureManager().addModifier(new OneHotEncoder(context, 1, 3));
/* Load data from .csv file */
dataSource.loadDataBlock();
NumericTable table = dataSource.getNumericTable();
/* Print result */
Service.printNumericTable("Loaded data", table, 4, 20);
context.dispose();
}
}

For more complete information about compiler optimizations, see our Optimization Notice.