Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

List of all members
DistributedStep1Local Class Reference

Computes the results of the correlation or variance-covariance matrix algorithm in the first step of the distributed processing mode. More...

Class Constructor

◆ DistributedStep1Local() [1/2]

Constructs the correlation or variance-covariance matrix algorithm in the first step of the distributed precessing mode by copying input objects and parameters of another algorithm for correlation or variance-covariance matrix computation

Parameters
contextContext to manage the correlation or variance-covariance matrix algorithm
otherAn algorithm to be used as the source to initialize the input objects and parameters of the algorithm

◆ DistributedStep1Local() [2/2]

DistributedStep1Local ( DaalContext  context,
Class<? extends Number >  cls,
Method  method 
)

Constructs the correlation or variance-covariance matrix algorithm in the first step of the distributed processing mode

Parameters
contextContext to manage the correlation or variance-covariance matrix algorithm
clsData type to use in intermediate computations of the correlation or variance-covariance matrix, Double.class or Float.class
methodComputation method, Method

Detailed Description

References

Member Function Documentation

◆ clone()

DistributedStep1Local clone ( DaalContext  context)

Returns the newly allocated correlation or variance-covariance matrix algorithm in the first step of the distributed processing mode on master node with a copy of input objects and parameters of this correlation or variance-covariance matrix algorithm

Parameters
contextContext to manage the correlation or variance-covariance matrix algorithm
Returns
The newly allocated algorithm

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.