C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

pca_transform_dense_batch.cpp

/* file: pca_transform_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
! Content:
! C++ example of principal component analysis transformation(PCA)
! in the batch processing mode with reduction
!
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
const string dataFileName = "../data/batch/pca_transform.csv";
const size_t nVectors = 4;
const size_t nComponents = 2;
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &dataFileName);
FileDataSource<CSVFeatureManager> dataSource(dataFileName, DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
dataSource.loadDataBlock(nVectors);
/* Create an algorithm for principal component analysis using the SVD method */
pca::Batch<double, pca::svdDense> pcaAlgorithm;
pcaAlgorithm.input.set(pca::data, dataSource.getNumericTable());
pcaAlgorithm.parameter.resultsToCompute = pca::mean | pca::variance | pca::eigenvalue;
/* Compute results of the PCA algorithm*/
pcaAlgorithm.compute();
pca::ResultPtr pcaResult = pcaAlgorithm.getResult();
/* Output basis, eigenvalues and mean values*/
printNumericTable(pcaResult->get(pca::eigenvalues), "Eigenvalues:");
printNumericTable(pcaResult->get(pca::eigenvectors), "Eigenvectors:");
KeyValueDataCollectionPtr resultCollection = pcaResult->get(pca::dataForTransform);
NumericTablePtr eigenvaluesT = NumericTable::cast((*resultCollection)[pca::eigenvalue]);
if (eigenvaluesT.get() != NULL)
printNumericTable(eigenvaluesT, "Eigenvalues kv:");
NumericTablePtr meansT = NumericTable::cast((*resultCollection)[pca::mean]);
if (meansT.get() != NULL)
printNumericTable(meansT, "Means kv:");
NumericTablePtr variancesT = NumericTable::cast((*resultCollection)[pca::variance]);
if (variancesT.get() != NULL)
printNumericTable(variancesT, "Variances kv:");
/* Apply transform with whitening because means and eigenvalues are provided*/
pca::transform::Batch<float> pcaTransform(nComponents);
pcaTransform.input.set(pca::transform::data, dataSource.getNumericTable());
pcaTransform.input.set(pca::transform::eigenvectors, pcaResult->get(pca::eigenvectors));
pcaTransform.input.set(pca::transform::dataForTransform, pcaResult->get(pca::dataForTransform));
pcaTransform.compute();
/* Output transformed data */
pca::transform::ResultPtr pcaTransformResult = pcaTransform.getResult();
printNumericTable(pcaTransformResult->get(pca::transform::transformedData), "Transformed data:");
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.