C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

List of all members
KernelIface Class Referenceabstract

Abstract class that specifies the interface of the algorithms for computing kernel functions in the batch processing mode. More...

Class Declaration

Constructor & Destructor Documentation

◆ KernelIface()

KernelIface ( const KernelIface other)
inline

Constructs an algorithm for computing kernel functions by copying input objects and parameters of another algorithm for computing kernel functions

Parameters
[in]otherAn algorithm to be used as the source to initialize the input objects and parameters of the algorithm

Member Function Documentation

◆ clone()

services::SharedPtr<KernelIface> clone ( ) const
inline

Returns a pointer to the newly allocated algorithm for computing kernel functions with a copy of input objects and parameters of this algorithm for computing kernel functions

Returns
Pointer to the newly allocated algorithm

◆ getInput()

virtual Input* getInput ( )
pure virtual

Get input objects for the kernel function algorithm

Returns
Input objects for the kernel function algorithm

Implemented in Batch< algorithmFPType, method >, and Batch< algorithmFPType, method >.

◆ getParameter()

virtual ParameterBase* getParameter ( )
pure virtual

Get parameters of the kernel function algorithm

Returns
Parameters of the kernel function algorithm

Implemented in Batch< algorithmFPType, method >, and Batch< algorithmFPType, method >.

◆ getResult()

ResultPtr getResult ( )
inline

Returns the structure that contains computed results of the kernel function algorithm

Returns
the Structure that contains computed results of the kernel function algorithm

◆ setResult()

services::Status setResult ( const ResultPtr res)
inline

Registers user-allocated memory to store results of the kernel function algorithm

Parameters
[in]resStructure to store the results

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.