C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

max_pool3d_layer_dense_batch.cpp

/* file: max_pool3d_layer_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
! Content:
! C++ example of neural network forward and backward three-dimensional maximum pooling layers usage
!
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
static const size_t nDim = 3;
static const size_t dims[] = {3, 2, 4};
static float dataArray[3][2][4] = {{{ 1, 2, 3, 4},
{ 5, 6, 7, 8}},
{{ 9, 10, 11, 12},
{13, 14, 15, 16}},
{{17, 18, 19, 20},
{21, 22, 23, 24}}};
int main(int argc, char *argv[])
{
TensorPtr dataTensor(new HomogenTensor<>(nDim, dims, (float *)dataArray));
printTensor3d(dataTensor, "Forward maximum pooling layer input:");
/* Create an algorithm to compute forward pooling layer results using maximum method */
maximum_pooling3d::forward::Batch<> forwardLayer(nDim);
forwardLayer.input.set(forward::data, dataTensor);
/* Compute forward pooling layer results */
forwardLayer.compute();
/* Get the computed forward pooling layer results */
maximum_pooling3d::forward::ResultPtr forwardResult = forwardLayer.getResult();
printTensor3d(forwardResult->get(forward::value),
"Forward maximum pooling layer result:");
printTensor3d(forwardResult->get(maximum_pooling3d::auxSelectedIndices),
"Forward maximum pooling layer selected indices:");
/* Create an algorithm to compute backward pooling layer results using maximum method */
maximum_pooling3d::backward::Batch<> backwardLayer(nDim);
backwardLayer.input.set(backward::inputGradient, forwardResult->get(forward::value));
backwardLayer.input.set(backward::inputFromForward, forwardResult->get(forward::resultForBackward));
/* Compute backward pooling layer results */
backwardLayer.compute();
/* Get the computed backward pooling layer results */
backward::ResultPtr backwardResult = backwardLayer.getResult();
printTensor3d(backwardResult->get(backward::gradient),
"Backward maximum pooling layer result:");
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.