Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

PCATransformDenseBatch.java

/* file: PCATransformDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Content:
// Java example of PCA transformation algorithm
*/
package com.intel.daal.examples.pca_transform;
import com.intel.daal.algorithms.pca.Batch;
import com.intel.daal.algorithms.pca.InputId;
import com.intel.daal.algorithms.pca.Method;
import com.intel.daal.algorithms.pca.Result;
import com.intel.daal.algorithms.pca.ResultId;
import com.intel.daal.algorithms.pca.ResultsToComputeId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.CSRNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import com.intel.daal.algorithms.pca.*;
import com.intel.daal.algorithms.pca.transform.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.KeyValueDataCollection;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import com.intel.daal.algorithms.pca.ResultId;
class PCATransformDenseBatch {
private static final String dataset = "../data/batch/pca_transform.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data */
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
dataSource.loadDataBlock();
NumericTable input = dataSource.getNumericTable();
/* Create a PCA algorithm */
Batch algorithm =
new Batch(context, Float.class, Method.correlationDense);
/* Set an input object for the algorithm */
algorithm.input.set(InputId.data, input);
algorithm.parameter.setResultsToCompute(ResultsToComputeId.mean | ResultsToComputeId.variance | ResultsToComputeId.eigenvalue);
/* Compute PCA */
Result result = algorithm.compute();
Service.printNumericTable("Eigenvalues:",result.get(ResultId.eigenValues));
Service.printNumericTable("Eigenvectors:",result.get(ResultId.eigenVectors));
//KeyValueDataCollection resultCollection = result.get(TransformDataInputId.dataForTransform);
Service.printNumericTable("Eigenvalues kv:",result.get(ResultId.eigenValues));
Service.printNumericTable("Means kv:",result.get(ResultId.means));
Service.printNumericTable("Variances kv:",result.get(ResultId.variances));
long a=2;
TransformInput inputDataAlg = new TransformInput(context,a);
//inputDataAlg.set(TransformInputId.eigenvectors, result.get(ResultId.eigenVectors));
long b=3;
KeyValueDataCollection dataCollection = new KeyValueDataCollection(context);
/* Create a PCA transform algorithm */
TransformBatch transformAlgorithm = new TransformBatch(context, Float.class, TransformMethod.defaultDense, 2);
/* Set an input object for the algorithm */
transformAlgorithm.input.set(TransformInputId.data, input);
ResultId transformResultId = new ResultId(TransformDataInputId.dataForTransform.getValue());
int id = transformResultId.getValue();
//System.out.println(id);
/* Set eigenvectors for the algorithm */
transformAlgorithm.input.set(TransformInputId.eigenvectors, result.get(ResultId.eigenVectors));
NumericTable trNumTable = result.get(ResultId.means);
transformAlgorithm.input.set(TransformDataInputId.dataForTransform,dataCollection);
/* Compute PCA transfromation */
TransformResult transformResult = transformAlgorithm.compute();
/* Print the results of stage */
//Service.printNumericTable("First 4 rows of the input data:", input, 4);
//Service.printNumericTable("First 4 rows of the PCA transformation result:",
// transformResult.get(TransformResultId.transformedData), 4);
Service.printNumericTable("Transformed data:", transformResult.get(TransformResultId.transformedData));
context.dispose();
}
}

For more complete information about compiler optimizations, see our Optimization Notice.