Input parameters for the layer algorithm
More...
◆ addInputGradient()
virtual services::Status addInputGradient |
( |
const data_management::TensorPtr & |
igTensor, |
|
|
size_t |
index |
|
) |
| |
|
virtual |
Adds tensor with input gradient to the input object of the layer algorithm
- Parameters
-
[in] | igTensor | Tensor with input gradient |
[in] | index | Index of the tensor with input gradient |
- Returns
- Status of computations
Reimplemented in Input.
◆ check()
Checks an input object for the layer algorithm
- Parameters
-
[in] | par | Parameter of algorithm |
[in] | method | Computation method of the algorithm |
- Returns
- Status of computations
Reimplemented from Input.
Reimplemented in Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, Input, and Input.
◆ get() [1/2]
data_management::TensorPtr get |
( |
InputId |
id | ) |
const |
Returns input Tensor of the layer algorithm
- Parameters
-
[in] | id | Identifier of the input tensor |
- Returns
- Input tensor that corresponds to the given identifier
◆ get() [2/2]
Returns input Tensor of the layer algorithm
- Parameters
-
[in] | id | Identifier of the input tensor |
- Returns
- Input tensor that corresponds to the given identifier
◆ getLayout()
Returns the layout of the input object for the layer algorithm
- Returns
- Layout of the input object for the layer algorithm
Reimplemented in Input.
◆ set() [1/2]
void set |
( |
InputId |
id, |
|
|
const data_management::TensorPtr & |
ptr |
|
) |
| |
Sets input for the layer algorithm
- Parameters
-
[in] | id | Identifier of the input object |
[in] | ptr | Pointer to the object |
◆ set() [2/2]
Sets input for the layer algorithm
- Parameters
-
[in] | id | Identifier of the input object |
[in] | ptr | Pointer to the object |
◆ setInputFromForward()
Sets input structure retrieved from the result of the forward layer
- Parameters
-
[in] | result | Result of the forward layer |
- Returns
- Status of computations
Reimplemented in Input.
The documentation for this class was generated from the following file: