Input object for linear regression model-based training in the second step of the distributed processing mode
More...
template<>
class daal::algorithms::linear_regression::training::interface1::DistributedInput< step2Master >
◆ add()
Adds an input object for linear regression model-based training in the second step of the distributed processing mode
- Parameters
-
[in] | id | Identifier of the input object |
[in] | partialResult | Input object |
◆ check()
Checks an input object for linear regression model-based training in the second step of the distributed processing mode
- Returns
- Status of computations
Reimplemented from Input.
◆ get()
Gets an input object for linear regression model-based training in the second step of the distributed processing mode
- Parameters
-
[in] | id | Identifier of the input object |
- Returns
- Input object that corresponds to the given identifier
◆ getNumberOfDependentVariables()
size_t getNumberOfDependentVariables |
( |
| ) |
const |
|
virtual |
Returns the number of dependent variables
- Returns
- Number of dependent variables
Implements InputIface.
◆ getNumberOfFeatures()
size_t getNumberOfFeatures |
( |
| ) |
const |
|
virtual |
Returns the number of columns in the input data set
- Returns
- Number of columns in the input data set
Implements InputIface.
◆ set()
Sets an input object for linear regression model-based training in the second step of the distributed processing mode
- Parameters
-
[in] | id | Identifier of the input object |
[in] | ptr | Input object |
The documentation for this class was generated from the following file: