Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

datastructures_merged.py

1 # file: datastructures_merged.py
2 #===============================================================================
3 # Copyright 2014-2018 Intel Corporation
4 # All Rights Reserved.
5 #
6 # If this software was obtained under the Intel Simplified Software License,
7 # the following terms apply:
8 #
9 # The source code, information and material ("Material") contained herein is
10 # owned by Intel Corporation or its suppliers or licensors, and title to such
11 # Material remains with Intel Corporation or its suppliers or licensors. The
12 # Material contains proprietary information of Intel or its suppliers and
13 # licensors. The Material is protected by worldwide copyright laws and treaty
14 # provisions. No part of the Material may be used, copied, reproduced,
15 # modified, published, uploaded, posted, transmitted, distributed or disclosed
16 # in any way without Intel's prior express written permission. No license under
17 # any patent, copyright or other intellectual property rights in the Material
18 # is granted to or conferred upon you, either expressly, by implication,
19 # inducement, estoppel or otherwise. Any license under such intellectual
20 # property rights must be express and approved by Intel in writing.
21 #
22 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
23 # notice or any other notice embedded in Materials by Intel or Intel's
24 # suppliers or licensors in any way.
25 #
26 #
27 # If this software was obtained under the Apache License, Version 2.0 (the
28 # "License"), the following terms apply:
29 #
30 # You may not use this file except in compliance with the License. You may
31 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
32 #
33 #
34 # Unless required by applicable law or agreed to in writing, software
35 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
36 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37 #
38 # See the License for the specific language governing permissions and
39 # limitations under the License.
40 #===============================================================================
41 
42 
43 
44 
45 import os
46 import sys
47 
48 import numpy as np
49 
50 from daal.data_management import (
51  HomogenNumericTable, MergedNumericTable, BlockDescriptor, readWrite, readOnly
52 )
53 
54 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
55 if utils_folder not in sys.path:
56  sys.path.insert(0, utils_folder)
57 from utils import printArray
58 
59 
60 if __name__ == "__main__":
61 
62  print("Merged numeric table example\n")
63 
64  nFeatures1 = 5
65  nFeatures2 = 6
66  firstReadRow = 3
67  nRead = 1
68 
69  # Example of using homogeneous numeric table
70  data1 = np.array([
71  (0.0, 0.1, 0.2, 0.3, 0.4),
72  (1.0, 1.1, 1.2, 1.3, 1.4),
73  (2.0, 2.1, 2.2, 2.3, 2.4),
74  (3.0, 3.1, 3.2, 3.3, 3.4),
75  (4.0, 4.1, 4.2, 4.3, 4.4),
76  ])
77 
78  data2 = np.array([
79  (0.5, 0.6, 0.7, 0.8, 0.9, 1),
80  (1.5, 1.6, 1.7, 1.8, 1.9, 2),
81  (2.5, 2.6, 2.7, 2.8, 2.9, 3),
82  (3.5, 3.6, 3.7, 3.8, 3.9, 4),
83  (4.5, 4.6, 4.7, 4.8, 4.9, 5),
84  ])
85 
86  # Create two homogen numeric tables from data arrays
87  dataTable1 = HomogenNumericTable(data1)
88  dataTable2 = HomogenNumericTable(data2)
89 
90  # Create merged numeric table consisting of two homogen numeric tables
91  dataTable = MergedNumericTable()
92  dataTable.addNumericTable(dataTable1)
93  dataTable.addNumericTable(dataTable2)
94 
95  block = BlockDescriptor()
96 
97  # Read one row from merged numeric table
98  dataTable.getBlockOfRows(firstReadRow, nRead, readWrite, block)
99  printArray(
100  block.getArray(), nFeatures1 + nFeatures2, block.getNumberOfRows(),
101  block.getNumberOfColumns(), "Print 1 row from merged numeric table as double:"
102  )
103 
104  # Modify row of the merged numeric table
105  row = block.getArray()
106  for i in range(nFeatures1 + nFeatures2):
107  row[0][i] *= row[0][i]
108  dataTable.releaseBlockOfRows(block)
109 
110  # Read the same row from homogen numeric tables
111  dataTable1.getBlockOfRows(firstReadRow, nRead, readOnly, block)
112  printArray(
113  block.getArray(), nFeatures1, block.getNumberOfRows(),
114  block.getNumberOfColumns(), "Print 1 row from first homogen numeric table as double:"
115  )
116  dataTable1.releaseBlockOfRows(block)
117 
118  dataTable2.getBlockOfRows(firstReadRow, nRead, readOnly, block)
119  printArray(
120  block.getArray(), nFeatures2, block.getNumberOfRows(),
121  block.getNumberOfColumns(), "Print 1 row from second homogen numeric table as double:"
122  )
123  dataTable2.releaseBlockOfRows(block)

For more complete information about compiler optimizations, see our Optimization Notice.