Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

PCACorDenseBatch.java

/* file: PCACorDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Content:
// Java example of principal component analysis (PCA) using the correlation
// method in the batch processing mode
*/
package com.intel.daal.examples.pca;
import com.intel.daal.algorithms.pca.Batch;
import com.intel.daal.algorithms.pca.InputId;
import com.intel.daal.algorithms.pca.Method;
import com.intel.daal.algorithms.pca.Result;
import com.intel.daal.algorithms.pca.ResultId;
import com.intel.daal.algorithms.pca.ResultsToComputeId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class PCACorDenseBatch {
/* Input data set parameters */
private static final String dataset = "../data/batch/pca_normalized.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data from a .csv file */
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
dataSource.loadDataBlock();
/* Create an algorithm to compute PCA decomposition using the correlation method */
Batch pcaAlgorithm = new Batch(context, Float.class, Method.correlationDense);
/* Set the input data */
NumericTable data = dataSource.getNumericTable();
pcaAlgorithm.parameter.setResultsToCompute(ResultsToComputeId.mean | ResultsToComputeId.variance | ResultsToComputeId.eigenvalue);
pcaAlgorithm.parameter.setIsDeterministic(true);
/* Set the input data */
pcaAlgorithm.input.set(InputId.data, data);
/* Compute PCA decomposition */
Result res = pcaAlgorithm.compute();
NumericTable eigenValues = res.get(ResultId.eigenValues);
NumericTable eigenVectors = res.get(ResultId.eigenVectors);
NumericTable means = res.get(ResultId.means);
NumericTable variances = res.get(ResultId.variances);
Service.printNumericTable("Eigenvalues:", eigenValues);
Service.printNumericTable("Eigenvectors:", eigenVectors);
Service.printNumericTable("Means:", means);
Service.printNumericTable("Variances:", variances);
context.dispose();
}
}

For more complete information about compiler optimizations, see our Optimization Notice.