C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 2

neural_networks_training.h
1 /* file: neural_networks_training.h */
2 /*******************************************************************************
3 * Copyright 2014-2018 Intel Corporation
4 * All Rights Reserved.
5 *
6 * If this software was obtained under the Intel Simplified Software License,
7 * the following terms apply:
8 *
9 * The source code, information and material ("Material") contained herein is
10 * owned by Intel Corporation or its suppliers or licensors, and title to such
11 * Material remains with Intel Corporation or its suppliers or licensors. The
12 * Material contains proprietary information of Intel or its suppliers and
13 * licensors. The Material is protected by worldwide copyright laws and treaty
14 * provisions. No part of the Material may be used, copied, reproduced,
15 * modified, published, uploaded, posted, transmitted, distributed or disclosed
16 * in any way without Intel's prior express written permission. No license under
17 * any patent, copyright or other intellectual property rights in the Material
18 * is granted to or conferred upon you, either expressly, by implication,
19 * inducement, estoppel or otherwise. Any license under such intellectual
20 * property rights must be express and approved by Intel in writing.
21 *
22 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
23 * notice or any other notice embedded in Materials by Intel or Intel's
24 * suppliers or licensors in any way.
25 *
26 *
27 * If this software was obtained under the Apache License, Version 2.0 (the
28 * "License"), the following terms apply:
29 *
30 * You may not use this file except in compliance with the License. You may
31 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
32 *
33 *
34 * Unless required by applicable law or agreed to in writing, software
35 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
36 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37 *
38 * See the License for the specific language governing permissions and
39 * limitations under the License.
40 *******************************************************************************/
41 
42 /*
43 //++
44 // Implementation of the interface for neural network model-based training
45 // in the batch processing mode
46 //--
47 */
48 
49 #ifndef __NEURAL_NETWORKS_TRAINING_H__
50 #define __NEURAL_NETWORKS_TRAINING_H__
51 
52 #include "algorithms/algorithm.h"
53 
54 #include "services/daal_defines.h"
55 #include "algorithms/neural_networks/neural_networks_types.h"
56 #include "algorithms/neural_networks/neural_networks_training_types.h"
57 #include "algorithms/neural_networks/neural_networks_training_model.h"
58 #include "algorithms/neural_networks/layers/layer.h"
59 
60 namespace daal
61 {
62 namespace algorithms
63 {
67 namespace neural_networks
68 {
69 namespace training
70 {
71 namespace interface1
72 {
82 template<typename algorithmFPType, Method method, CpuType cpu>
83 class DAAL_EXPORT BatchContainer : public TrainingContainerIface<batch>
84 {
85 public:
91  BatchContainer(daal::services::Environment::env *daalEnv);
93  ~BatchContainer();
97  services::Status compute() DAAL_C11_OVERRIDE;
98  services::Status setupCompute() DAAL_C11_OVERRIDE;
99  services::Status resetCompute() DAAL_C11_OVERRIDE;
100 };
101 
117 template<typename algorithmFPType = DAAL_ALGORITHM_FP_TYPE, Method method = defaultDense>
118 class Batch : public daal::algorithms::Training<batch>
119 {
120 public:
121  typedef algorithms::neural_networks::training::Input InputType;
122  typedef algorithms::neural_networks::training::Parameter ParameterType;
123  typedef algorithms::neural_networks::training::Result ResultType;
124 
126  Batch(services::SharedPtr<optimization_solver::iterative_solver::Batch > optimizationSolver_) : parameter(optimizationSolver_)
127  {
128  initialize();
129  };
130 
136  Batch(const Batch<algorithmFPType, method> &other) : parameter(other.parameter), input(other.input)
137  {
138  initialize();
139  }
140 
141  virtual ~Batch() {}
142 
150  services::Status initialize(const services::Collection<size_t> &sampleSize, const training::Topology &topology)
151  {
152  ResultPtr result = getResult();
153  if (!result || !result->get(neural_networks::training::model))
154  {
155  return services::Status(services::ErrorNullModel);
156  }
157  _result->get(neural_networks::training::model)->initialize<algorithmFPType>(sampleSize, topology, parameter);
158  return services::Status();
159  }
160 
165  ResultPtr getResult()
166  {
167  return _result;
168  }
169 
176  services::Status setResult(const ResultPtr& res)
177  {
178  DAAL_CHECK(res, services::ErrorNullResult)
179  _result = res;
180  _res = _result.get();
181  return services::Status();
182  }
183 
189  services::SharedPtr<Batch<algorithmFPType, method> > clone() const
190  {
191  return services::SharedPtr<Batch<algorithmFPType, method> >(cloneImpl());
192  }
193 
198  virtual int getMethod() const DAAL_C11_OVERRIDE { return(int) method; }
199 
200  InputType input;
201  ParameterType parameter;
203 protected:
204  void initialize()
205  {
206  Training<batch>::_ac = new __DAAL_ALGORITHM_CONTAINER(batch, BatchContainer, algorithmFPType, method)(&_env);
207  _in = &input;
208  _par = &parameter;
209  _result.reset(new ResultType());
210  }
211 
212  virtual Batch<algorithmFPType, method> *cloneImpl() const DAAL_C11_OVERRIDE
213  {
214  return new Batch<algorithmFPType, method>(*this);
215  }
216 
217  virtual services::Status allocateResult() DAAL_C11_OVERRIDE
218  {
219  services::Status s = _result->allocate<algorithmFPType>(&input, &parameter, (int) method);
220  _res = _result.get();
221  return s;
222  }
223 
224 private:
225  ResultPtr _result;
226 };
228 } // namespace interface1
229 using interface1::Batch;
230 using interface1::BatchContainer;
231 
232 } // namespace training
233 } // namespace neural_networks
234 } // namespace algorithms
235 } // namespace daal
236 #endif
daal::algorithms::neural_networks::training::interface1::Topology
Class defining a neural network topology - a set of layers and connection between them - on the train...
Definition: neural_networks_training_topology.h:66
daal::algorithms::neural_networks::training::interface1::Batch::Batch
Batch(const Batch< algorithmFPType, method > &other)
Definition: neural_networks_training.h:136
daal::services::interface1::Environment::_envStruct
The environment structure.
Definition: env_detect.h:95
daal::services::interface1::Status
Class that holds the results of API calls. In case of API routine failure it contains the list of err...
Definition: error_handling.h:491
daal
Definition: algorithm_base_common.h:57
daal::algorithms::neural_networks::training::interface1::Batch::clone
services::SharedPtr< Batch< algorithmFPType, method > > clone() const
Definition: neural_networks_training.h:189
daal::algorithms::neural_networks::training::interface1::Batch::parameter
ParameterType parameter
Definition: neural_networks_training.h:201
daal::algorithms::neural_networks::training::interface1::Batch::getMethod
virtual int getMethod() const DAAL_C11_OVERRIDE
Definition: neural_networks_training.h:198
daal::algorithms::neural_networks::training::interface1::Batch::Batch
Batch(services::SharedPtr< optimization_solver::iterative_solver::Batch > optimizationSolver_)
Definition: neural_networks_training.h:126
daal::algorithms::neural_networks::training::interface1::BatchContainer
Class containing methods to train neural network model using algorithmFPType precision arithmetic...
Definition: neural_networks_training.h:83
daal::algorithms::neural_networks::training::interface1::Batch
Provides methods for neural network model-based training in the batch processing mode.
Definition: neural_networks_training.h:118
daal::algorithms::neural_networks::training::interface1::Input
Input objects of the neural network training algorithm.
Definition: neural_networks_training_input.h:126
daal_defines.h
daal::batch
Definition: daal_defines.h:132
daal::services::interface1::SharedPtr
Shared pointer that retains shared ownership of an object through a pointer. Several SharedPtr object...
Definition: daal_shared_ptr.h:187
daal::algorithms::neural_networks::training::interface1::Parameter
Class representing the parameters of neural network.
Definition: neural_networks_training_model.h:85
daal::algorithms::neural_networks::training::interface1::Batch::getResult
ResultPtr getResult()
Definition: neural_networks_training.h:165
daal::services::interface1::SharedPtr::get
T * get() const
Definition: daal_shared_ptr.h:332
daal::algorithms::neural_networks::training::interface1::Result
Provides methods to access result obtained with the compute() method of the neural network training a...
Definition: neural_networks_training_result.h:91
daal::algorithms::neural_networks::training::interface1::Batch::input
InputType input
Definition: neural_networks_training.h:200
daal::services::ErrorNullModel
Definition: error_indexes.h:109
daal::algorithms::neural_networks::training::interface1::Batch::initialize
services::Status initialize(const services::Collection< size_t > &sampleSize, const training::Topology &topology)
Definition: neural_networks_training.h:150
daal::algorithms::neural_networks::training::model
Definition: neural_networks_training_result.h:78
daal::algorithms::neural_networks::training::interface1::Batch::setResult
services::Status setResult(const ResultPtr &res)
Definition: neural_networks_training.h:176
daal::services::ErrorNullResult
Definition: error_indexes.h:122
daal::algorithms::TrainingContainerIface
Abstract interface class that provides virtual methods to access and run implementations of the model...
Definition: training.h:76
daal::algorithms::Training
Provides methods to train models that depend on the data provided. For example, these methods enable ...
Definition: training.h:86
daal::services::interface1::Collection
Class that implements functionality of the Collection container.
Definition: collection.h:69

For more complete information about compiler optimizations, see our Optimization Notice.