Parameter of the Adagrad algorithm.
More...
◆ Parameter() [1/2]
Constructs the parameter for the Adagrad algorithm
- Parameters
-
context | Context to manage the parameter for the Adagrad algorithm |
◆ Parameter() [2/2]
Constructs the parameter for the Adagrad algorithm
- Parameters
-
context | Context to manage the Adagrad algorithm |
cObject | Pointer to C++ implementation of the parameter |
◆ getBatchIndices()
Gets the numeric table that represents 32 bit integer indices of terms in the objective function. If no indices are provided, the implementation will generate random indices.
- Returns
- The numeric table that represents 32 bit integer indices of terms in the objective function. If no indices are provided, the implementation will generate random indices.
◆ getDegenerateCasesThreshold()
double getDegenerateCasesThreshold |
( |
| ) |
|
Retrieves the value needed to avoid degenerate cases in square root computing
- Returns
- The value needed to avoid degenerate cases in square root computing
◆ getLearningRate()
Gets the numeric table that contains value of the learning rate
- Returns
- The numeric table that contains value of the learning rate
◆ getSeed()
- Deprecated:
- This item will be removed in a future release.
Gets the seed for random generation of 32 bit integer indices of terms in the objective function.
- Returns
- The seed for random generation of 32 bit integer indices of terms in the objective function.
◆ setBatchIndices()
The numeric table that represents 32 bit integer indices of terms in the objective function. If no indices are provided, the implementation will generate random indices.
- Parameters
-
batchIndices | The numeric table that represents 32 bit integer indices of terms in the objective function. If no indices are provided, the implementation will generate random indices. |
◆ setDegenerateCasesThreshold()
void setDegenerateCasesThreshold |
( |
double |
degenerateCasesThreshold | ) |
|
Sets the value needed to avoid degenerate cases in square root computing
- Parameters
-
degenerateCasesThreshold | The value needed to avoid degenerate cases in square root computing |
◆ setEngine()
Sets the engine to be used by the algorithm
- Parameters
-
engine | to be used by the algorithm |
◆ setLearningRate()
Sets the numeric table that contains value of the learning rate
- Parameters
-
learningRate | The numeric table that contains value of the learning rate |
◆ setSeed()
- Deprecated:
- This item will be removed in a future release.
Sets the seed for random generation of 32 bit integer indices of terms in the objective function.
- Parameters
-
seed | The seed for random generation of 32 bit integer indices of terms in the objective function. |
The documentation for this class was generated from the following file:
- optimization_solver/adagrad/Parameter.java