
White Paper
Intel® Software Guard Extensions (Intel® SGX)

1

Debugging Intel® Software Guard Extensions
(Intel® SGX) Enclaves for Linux* OS

Scope

This paper describes the process for debugging an Intel® Software Guard Extensions (Intel® SGX) enclave

for the Linux* OS using the GDB debugger. The paper covers prerequisites and typical steps to debug an

enclave using the GDB debugger with the Intel SGX GDB “plugin” from the Intel SGX SDK for Linux. Also

included are descriptions of common errors that can occur in enclave code. This paper assumes a basic

understanding of Intel SGX. Information on Intel SGX can be found on the Intel SGX portal at:

https://software.intel.com/sgx.

Introduction

Much of the debugging process for Intel SGX enabled applications is similar to any other application

developed for Linux. For example, the GDB debugger can introspect application code in trusted memory

in the same way as with typical (non-SGX) applications. But the protected nature of Intel SGX enclaves

prevents the GDB debugger from introspecting enclave code.

However, the Intel SGX GDB “plugin” (sgx-gdb) included in the Intel SGX SDK, does provide debugging

access to protected enclave code. sgx-gdb allows you to set breakpoints, inspect/modify enclave

variables, and step through enclave code.

Debugging preconditions

Project setup

Make sure the following software has been downloaded, built, and installed (open-source links

included):

 Intel® SGX Linux driver (https://github.com/01org/linux-sgx-driver)

 Intel® SGX Platform SW (https://github.com/01org/linux-sgx)

 Intel® SGX SDK (same GitHub project as Platform SW above)

Another options is to download pre-built SDK and PSW installer binaries at: https://01.org/intel-

software-guard-extensions/downloads.

If you can build the code samples in the SDK, then your SDK configuration is ready to run sgx-gdb. If not,

debug your SDK installation so you can run the SDK code samples.

https://software.intel.com/sgx
https://github.com/01org/linux-sgx-driver
https://github.com/01org/linux-sgx

White Paper
Intel® Software Guard Extensions (Intel® SGX)

2

Build configurations

The Intel SGX architecture supports two modes of operation for enclaves: Debug mode and Production

(non-debug) mode. Production mode enclaves have the full protection provided by the architecture.

Debug mode enclaves do not have the full protection to allow introspection by debuggers.

There are three build configurations for Intel SGX enabled applications:

Debug: Compiler optimizations are disabled and symbol information is saved. This mode is suitable for

source-level debugging. Enclaves built in debug mode are launched in enclave-debug mode. Enclaves

built in Debug mode can be debugged using the full capabilities of the sgx-gdb. (See below on Pre-

Release debug limitations.)

Pre-Release: Compiler optimizations are enabled and symbols are not saved. But the enclave is set to

debug mode so that production-level code can be debugged. Once your Debug mode enclave is working,

you can rebuild the enclave in Pre-Release mode to apply compiler optimizations to look for

performance issues and work out any final issues before moving to Release. Enclaves in Pre-Release

mode can also be used with sgx-gdb, but since debug symbols are not saved and compiler optimizations

are enabled, debug support is limited when compared with Debug mode enclaves.

Release: Compiler optimizations are enabled and no symbol information is saved. This mode is suitable

for production build, performance testing, and final product release. Enclaves built in this mode are

launched in enclave-production (non-debug) mode and cannot be introspected using sgx-gdb (or any

debugger).

For details on the three configurations, see the following white paper:

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-

configuration.pdf.

Enclave debug setting

To debug an enclave, developers must:

1. Select a build configuration that allows debugging of enclaves (Debug or Pre-Release mode)

2. Launch the enclave in Debug mode

By default, the Makefile sets parameters to build enclaves in Debug mode, which allows debugging.

Supported Makefile parameters are listed in Table 1.

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf
https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf

White Paper
Intel® Software Guard Extensions (Intel® SGX)

3

Table 1. Intel SGX Makefile Command Parameters

Build Configuration Make Command Parameters

*Debug SGX_MODE=HW

SGX_DEBUG=1

Pre-Release SGX_MODE=HW

SGX_DEBUG=0

SGX_PRERELEASE=1

Release SGX_MODE=HW

SGX_DEBUG=0

Simulation SGX_MODE=SIM

SGX_DEBUG=1

*Debug configuration is the default (SGX_MODE=HW, SGX_DEBUG=1).

The build configuration in the Makefile sets a helper macro in the underlying SDK call where the

enclave is created, as follows:

ret = sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG, &token,
 &updated, &global_eid, NULL);

For Debug and Pre-Release builds, the helper macro SGX_DEBUG_FLAG is 1 to launch the enclave in

debug mode. For Release builds, the helper macro SGX_DEBUG_FLAG is 0 to launch the enclave in non-

debug mode.

You can also set the value of the debug parameter directly, as follows:

sgx_create_enclave(const char *file_name, const int debug,

 sgx_launch_token_t *launch_token, int *launch_token_updated,

 sgx_enclave_id_t *enclave_id, sgx_misc_attribute_t *misc_attr)

The debug parameter above should be set to 1 to launch the enclave in debug mode and to 0 to launch

the enclave in non-debug mode.

GDB debugger for enclaves

GDB must be invoked with sgx-gdb to allow introspection of enclave code.

Debugging an enclave is similar to debugging a shared library. But some standard GDB features are not

available for use inside enclave code. Table 1 lists some unsupported GDB commands for enclaves.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

4

Table 1. GDB commands not available inside enclaves

GDB Command Notes

info sharedlibrary Does not show the status of the loaded enclave

next/step Does not allows to execute the next/step outside
the enclave from inside the enclave. To go outside

the enclave use the finish command.

call/print Does not support calling outside the enclave from
within an enclave function, or calling inside the
enclave from a function in the untrusted domain.

charset Only supports GDB's default charset.

gcore Does not support debugging an enclave with the
application dump file

Note: In addition to supporting GDB functions, the sgx-gdb “plugin” also supports measuring peak

stack/heap usage of enclave code by invoking the Enclave Memory Measurement Tool (EMMT).

Information on the EMMT tool is provided later in this paper.

Steps to debug an enclave

The sequence in this section is based on the LocalAttestation sample code distributed with the SDK.

Follow these steps to debug an Intel SGX enclave:

1. Make sure you can build and run the SDK SampleCode applications.

2. Compile and run the SampleCode/LocalAttestion application in Debug mode.

Once the build is complete, invoke the GDB debugger by running the sgx-gdb script, as shown in
Figure 1 (user input in blue). This invokes GDB, loads the sgx-gdb “plugin”, and loads application
symbols that were saved during the build.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

5

<user>projects/linux-sgx/SampleCode/LocalAttestation$ sgx-gdb ./app

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Source directories searched: /opt/intel/sgxsdk/lib64/gdb-sgx-plugin:$cdir:$cwd

Setting environment variable "LD_PRELOAD" to null value.

Reading symbols from ./app...done.

(gdb)

Figure 1: sgx-gdb invocation

3. Now set two breakpoints inside the enclave code (break/b command), as shown in Figure 2.

(gdb) b test_message_exchange

Function "test_message_exchange" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (test_message_exchange) pending.

(gdb) b test_enclave_to_enclave_call

Function "test_enclave_to_enclave_call" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 2 (test_enclave_to_enclave_call) pending.

(gdb)

Figure 2: Setting sgx-gdb breakpoints

4. Run the application (run/r command), as shown in Figure 3. Execution halts at the first breakpoint.

gdb) run

Starting program: /home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/app

detect urts is loaded, initializing

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

add-symbol-file '/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave1.so'

0x7ffff60f8640 -readnow -s .interp 0x7ffff60f6238 -s .note.gnu.build-id 0x7ffff60f6254 -s

.gnu.hash 0x7ffff60f6278 -s .dynsym 0x7ffff60f62b0 -s .dynstr 0x7ffff60f6358 -s

.gnu.version 0x7ffff60f63a4 -s .gnu.version_d 0x7ffff60f63b8 -s .rela.dyn 0x7ffff60f63f0 -

s .rodata 0x7ffff61ac000 -s .eh_frame_hdr 0x7ffff61b1f80 -s .eh_frame 0x7ffff61b3708 -s

.gcc_except_table 0x7ffff61c4068 -s .init_array 0x7ffff63c4b68 -s .fini_array

0x7ffff63c4b78 -s .data.rel.ro 0x7ffff63c4bc0 -s .dynamic 0x7ffff63c4e40 -s .got

0x7ffff63c4fc0 -s .got.plt 0x7ffff63c5000 -s .data 0x7ffff63c5020 -s .bss 0x7ffff63c6540

add-symbol-file '/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave2.so'

0x7ffff58f8640 -readnow -s .interp 0x7ffff58f6238 -s .note.gnu.build-id 0x7ffff58f6254 -s

.gnu.hash 0x7ffff58f6278 -s .dynsym 0x7ffff58f62b0 -s .dynstr 0x7ffff58f6358 -s

.gnu.version 0x7ffff58f63a4 -s .gnu.version_d 0x7ffff58f63b8 -s .rela.dyn 0x7ffff58f63f0 -

s .rodata 0x7ffff59ab000 -s .eh_frame_hdr 0x7ffff59b0f80 -s .eh_frame 0x7ffff59b2708 -s

.gcc_except_table 0x7ffff59c3068 -s .init_array 0x7ffff5bc3b68 -s .fini_array

0x7ffff5bc3b78 -s .data.rel.ro 0x7ffff5bc3bc0 -s .dynamic 0x7ffff5bc3e40 -s .got

0x7ffff5bc3fc0 -s .got.plt 0x7ffff5bc4000 -s .data 0x7ffff5bc4020 -s .bss 0x7ffff5bc5540

White Paper
Intel® Software Guard Extensions (Intel® SGX)

6

add-symbol-file '/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave3.so'

0x7ffff50f8640 -readnow -s .interp 0x7ffff50f6238 -s .note.gnu.build-id 0x7ffff50f6254 -s

.gnu.hash 0x7ffff50f6278 -s .dynsym 0x7ffff50f62b0 -s .dynstr 0x7ffff50f6358 -s

.gnu.version 0x7ffff50f63a4 -s .gnu.version_d 0x7ffff50f63b8 -s .rela.dyn 0x7ffff50f63f0 -

s .rodata 0x7ffff51ac000 -s .eh_frame_hdr 0x7ffff51b1f80 -s .eh_frame 0x7ffff51b3708 -s

.gcc_except_table 0x7ffff51c4068 -s .init_array 0x7ffff53c4b68 -s .fini_array

0x7ffff53c4b78 -s .data.rel.ro 0x7ffff53c4bc0 -s .dynamic 0x7ffff53c4e40 -s .got

0x7ffff53c4fc0 -s .got.plt 0x7ffff53c5000 -s .data 0x7ffff53c5020 -s .bss 0x7ffff53c6540

Avaliable Enclaves

Enclave1 - EnclaveID 432500000002

Enclave2 - EnclaveID 432500000003

Enclave3 - EnclaveID 432500000004

Secure Channel Establishment between Source (E1) and Destination (E2) Enclaves successful !!!

Breakpoint 1, 0x00007ffff60fa3a4 in test_message_exchange (src_enclave_id=0,

dest_enclave_id=0) at Enclave1/Enclave1.cpp:149

149 {

(gdb)

Figure 3: sgx-gdb breakpoint hit

Backtrace from the current execution frame using the backtrace/bt command, as shown in Figure 4.

(gdb) bt

#0 0x00007ffff60fa3a4 in test_message_exchange (src_enclave_id=0, dest_enclave_id=0) at

Enclave1/Enclave1.cpp:149

#1 0x00007ffff60f89c4 in sgx_test_message_exchange (pms=0x7fffffffe2b0) at Enclave1/Enclave1_t.c:169

#2 0x00007ffff60fd679 in do_ecall ()

#3 0x00007ffff60fd4d8 in enter_enclave ()

#4 0x00007ffff60ff1eb in enclave_entry ()

#5 0x00007ffff7bb1f3c in __morestack () from /opt/intel/sgxsdk/sdk_libs/libsgx_urts_sim.so

#6 0x00007ffff7baf687 in do_ecall(int, void const*, void const*, CTrustThread*) () from

/opt/intel/sgxsdk/sdk_libs/libsgx_urts_sim.so

#7 0x00007ffff7baae99 in CEnclave::ecall(int, void const*, void*) () from

/opt/intel/sgxsdk/sdk_libs/libsgx_urts_sim.so

#8 0x00007ffff7bae0e2 in sgx_ecall () from /opt/intel/sgxsdk/sdk_libs/libsgx_urts_sim.so

#9 0x0000000000401222 in Enclave1_test_message_exchange (eid=73826192850946, retval=0x7fffffffe2f0,

src_enclave_id=73826192850946, dest_enclave_id=73826192850947) at Enclave1/Enclave1_u.c:237

#10 0x0000000000402791 in main (argc=1, argv=0x7fffffffe3e8) at App/App.cpp:168

(gdb)

Figure 4: sgx-gdb back trace

Here are some useful GDB commands (examples not shown):

 The parameter/p <parameter name> shows the current state of a parameter.

 The continue/c command moves execution to the next breakpoint.

 The frame/f command displays the current sgx-gdb frame.

 The step/s command executes until the line of source code changes (step executes into a

function call).

5. The next/n command executes over a function calls to the next line of code, as shown in Figure 5,
but does not trace into a function call.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

7

(gdb) n

Breakpoint 1, test_message_exchange (src_enclave_id=73826192850946,

dest_enclave_id=73826192850947) at Enclave1/Enclave1.cpp:149

149 {

(gdb) n

150 ATTESTATION_STATUS ke_status = SUCCESS;

(gdb) n

161 target_fn_id = 0;

(gdb) n

162 msg_type = MESSAGE_EXCHANGE;

(gdb) n

163 max_out_buff_size = 50;

(gdb) n

164 secret_data = 0x12345678; //Secret Data here is shown only for purpose of

demonstration.

(gdb) n

167 ke_status = marshal_message_exchange_request(target_fn_id, msg_type, secret_data,

&marshalled_inp_buff, &marshalled_inp_buff_len);

(gdb) n

168 if(ke_status != SUCCESS)

(gdb) n

173 std::map<sgx_enclave_id_t, dh_session_t>::iterator it =

g_src_session_info_map.find(dest_enclave_id);

(gdb) n

174 if(it != g_src_session_info_map.end())

(gdb)

Figure 5: sgx-gdb next/n command

Note: Neither step/s nor next/n allows execution to exit the enclave.

6. To step outside the enclave, use the finish command, as shown in Figure 6.

(gdb) finish

Run till exit from #0 test_message_exchange (src_enclave_id=73826192850946,

dest_enclave_id=73826192850947) at Enclave1/Enclave1.cpp:174

0x00007ffff60f89c4 in sgx_test_message_exchange (pms=0x7fffffffe2b0) at

Enclave1/Enclave1_t.c:169

169 ms->ms_retval = test_message_exchange(ms->ms_src_enclave_id, ms-

>ms_dest_enclave_id);

Value returned is $1 = 0

(gdb) finish

Run till exit from #0 0x00007ffff60f89c4 in sgx_test_message_exchange (pms=0x7fffffffe2b0)

at Enclave1/Enclave1_t.c:169

0x00007ffff60fd679 in do_ecall ()

Value returned is $2 = SGX_SUCCESS

(gdb) finish

Run till exit from #0 0x00007ffff60fd679 in do_ecall ()

0x00007ffff60fd4d8 in enter_enclave ()

(gdb)

Figure 6: sgx-gdb finish command

Notes:

 You can measure peak stack/heap usage by enabling the sgx_emmt tool in sgx-gdb. Follow these

steps:

White Paper
Intel® Software Guard Extensions (Intel® SGX)

8

o Make sure that your SGX application has the symbol g_peak_heap_used in the global section

of the enclave linker script. For an introduction to this script, see Creating Intel Software

Guard Extensions Projects in the Intel SGX SDK Developers Reference.
o In sgx-gdb, use the enable sgx_emmt command before running the app. Figure 7 shows the

results of sgx_emmt when run in sgx-gdb. (disable sgx_emmt disables the sgx_emmt tool.)

 Details on the sgx_emmt tool are provide at:

https://software.intel.com/sites/default/files/managed/09/37/Enclave-Measurement-

Tool-Intel-SGX.pdf.

(Previous screen display edited)

Close Session between Source (E2) and Destination (E3) Enclaves successful !!!

Enclave: "/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave

 [Peak stack used]: 8 KB

 [Peak heap used]: 16 KB

remove-symbol-file -a 140737321600576

Enclave: "/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave

 [Peak stack used]: 8 KB

 [Peak heap used]: 16 KB

remove-symbol-file -a 140737313211968

Enclave: "/home/dsmith/projects/linux-sgx/SampleCode/LocalAttestation/libenclave

 [Peak stack used]: 8 KB

 [Peak heap used]: 16 KB

remove-symbol-file -a 140737304823360

Close Session between Source (E3) and Destination (E1) Enclaves successful !!!

Hit a key....

Figure 7: sgx-gdb executing showing sgx_emmt results

Common issues during debugging

This section summarizes common errors you may see in enclaves during debugging.

Notes:

 The code used to generated error examples is not real-world code. It was written to intentionally

generate the errors described.

 Certain exceptions are reported back to the enclave, which, therefore, provides an opportunity to

handle them by including exception handling code.

Illegal Instruction in enclave

Intel SGX prohibits execution of CPU instructions inside an enclave that would gather host system

attributes, perform I/O, or require a higher privilege level than ring 3. When code that depends on

underlying illegal HW instructions attempts to execute, the enclave aborts with an Invalid Opcode

Exception (#UD) at the machine level. See Figure 8 for the Linux exception message and sgx-gdb

backtrace based on the machine level exception. For a list of instructions that are illegal in enclaves, see

Section 39.6.1 in Intel 64- and 32-bit Architectures Software Developer’s Manual, Volume 3D,

Part 4.

https://software.intel.com/sites/default/files/managed/09/37/Enclave-Measurement-Tool-Intel-SGX.pdf
https://software.intel.com/sites/default/files/managed/09/37/Enclave-Measurement-Tool-Intel-SGX.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

White Paper
Intel® Software Guard Extensions (Intel® SGX)

9

Program received signal SIGILL, Illegal instruction.

do_cpuid_instn () at Enclave/illegal_instruction.S:59

59 cpuid /* Illegal instruction */

=> 0x00007ffff5401ea8 <do_cpuid_instn+3>: 0f a2 cpuid

(gdb) bt

#0 do_cpuid_instn () at Enclave/illegal_instruction.S:59

#1 0x00007ffff5401dbe in test_illegal_instructions_ecall (op_type=2) at

Enclave/Enclave.cpp:189

#2 0x00007ffff54017a2 in sgx_test_illegal_instructions_ecall (pms=0x7fffffffde10)

at Enclave/Enclave_t.c:101

#3 0x00007ffff5403740 in enter_enclave ()

#4 0x00007ffff5404c96 in enclave_entry ()

#5 0x00007ffff7bbb43b in __morestack () from /usr/lib/libsgx_urts.so

#6 0x00007ffff7bbe227 in CEnclave::ecall(int, void const*, void*) () from

/usr/lib/libsgx_urts.so

#7 0x00007ffff7bbfb22 in sgx_ecall () from /usr/lib/libsgx_urts.so

#8 0x0000000000400f0a in test_illegal_instructions_ecall (eid=2,

retval=0x7fffffffde44, op_type=2) at App/Enclave_u.c:99

#9 0x00000000004016fd in main (argc=1, argv=0x7fffffffe158) at App/App.cpp:555

(gdb)

Figure 8. Example CPUID (illegal) instruction in enclave

Buffer overflow in enclave

While Intel SGX SDK does not prevent developers from writing enclave code that can overflow a buffer,

it does support runtime security features that help detect buffer overflows. The enclave aborts (based

on a UD2 instruction at the machine level) with the Linux error message shown in Figure 9 when a buffer

overflow is detected. Also shown is sgx-gdb backtrace data for the error.

Program received signal SIGILL, Illegal instruction.

0x00007ffff5004e67 in abort ()

(gdb) bt

#0 0x00007ffff5004e67 in abort ()

#1 0x00007ffff5004f39 in __stack_chk_fail ()

#2 0x00007ffff5001eb0 in test_buffer_overflow_ecall (sync_flag=0x6032e8

<sync_flag>, ptr=0x7ffff5245010 "", cnt=528) at Enclave/Enclave.cpp:234

#3 0x00007ffff50018c5 in sgx_test_buffer_overflow_ecall (pms=0x7fffffffddf0) at

Enclave/Enclave_t.c:139

#4 0x00007ffff50037d0 in enter_enclave ()

#5 0x00007ffff5004be6 in enclave_entry ()

#6 0x00007ffff7bbb43b in __morestack () from /usr/lib/libsgx_urts.so

#7 0x00007ffff7bbe227 in CEnclave::ecall(int, void const*, void*) () from

/usr/lib/libsgx_urts.so

#8 0x00007ffff7bbfb22 in sgx_ecall () from /usr/lib/libsgx_urts.so

#9 0x0000000000400e7e in test_buffer_overflow_ecall (eid=2, retval=0x7fffffffde44,

sync_flag=0x6032e8 <sync_flag>, ptr=0x7fffffffde50 "", cnt=528) at

App/Enclave_u.c:115

#10 0x000000000040166e in main (argc=1, argv=0x7fffffffe158) at App/App.cpp:668

(gdb)

Figure 9. Example buffer overflow in enclave

White Paper
Intel® Software Guard Extensions (Intel® SGX)

10

C++ runtime exception thrown in enclave

If a C++ runtime exception occurs in enclave code and it is not caught, the enclave, as shown in Figure

10.

Program received signal SIGILL, Illegal instruction.

0x00007ffff5004d97 in abort ()

(gdb) bt

#0 0x00007ffff5004d97 in abort ()

#1 0x00007ffff501e65b in std::terminate() ()

#2 0x00007ffff501e86a in report_failure(_Unwind_Reason_Code,

__cxxabiv1::__cxa_exception*) ()

#3 0x00007ffff501e8bd in throw_exception(__cxxabiv1::__cxa_exception*) ()

#4 0x00007ffff501e915 in __cxa_throw ()

#5 0x00007ffff5001d37 in test_cxx_exception_function () at Enclave/Enclave.cpp:159

#6 0x00007ffff5001d56 in test_cxx_exception_ecall () at Enclave/Enclave.cpp:171

#7 0x00007ffff5001829 in sgx_test_cxx_exception_ecall (pms=0x7fffffffde10) at

Enclave/Enclave_t.c:88

#8 0x00007ffff5003700 in enter_enclave ()

#9 0x00007ffff5004b16 in enclave_entry ()

#10 0x00007ffff7bbb43b in __morestack () from /usr/lib/libsgx_urts.so

#11 0x00007ffff7bbe227 in CEnclave::ecall(int, void const*, void*) () from

/usr/lib/libsgx_urts.so

#12 0x00007ffff7bbfb22 in sgx_ecall () from /usr/lib/libsgx_urts.so

#13 0x0000000000400d71 in test_cxx_exception_ecall (eid=2, retval=0x7fffffffde44)

at App/Enclave_u.c:89

#14 0x00000000004015dd in main (argc=1, argv=0x7fffffffe158) at App/App.cpp:630

(gdb)

Figure 10. Example C++ runtime exception in enclave

Uncaught exception thrown in enclave

When an uncaught exception is thrown in an enclave, the enclave aborts with the message shown in

Figure 11. The test case for generating this message is divide-by-zero.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

11

Program received signal SIGFPE, Arithmetic exception.

0x00007ffff5401d7f in integer_division (a=0, b=0) at Enclave/Enclave.cpp:173

173 return a / b;

 0x00007ffff5401d7b <integer_division(int, int)+10>: 8b 45 fc mov

eax,DWORD PTR [rbp-0x4]

 0x00007ffff5401d7e <integer_division(int, int)+13>: 99 cdq

=> 0x00007ffff5401d7f <integer_division(int, int)+14>: f7 7d f8 idiv

DWORD PTR [rbp-0x8]

(gdb) bt

#0 0x00007ffff5401d7f in integer_division (a=0, b=0) at Enclave/Enclave.cpp:173

#1 0x00007ffff5401db4 in test_illegal_instructions_ecall (op_type=1) at

Enclave/Enclave.cpp:186

#2 0x00007ffff54017a2 in sgx_test_illegal_instructions_ecall (pms=0x7fffffffde10)

at Enclave/Enclave_t.c:101

#3 0x00007ffff5403740 in enter_enclave ()

#4 0x00007ffff5404c96 in enclave_entry ()

#5 0x00007ffff7bbb43b in __morestack () from /usr/lib/libsgx_urts.so

#6 0x00007ffff7bbe227 in CEnclave::ecall(int, void const*, void*) () from

/usr/lib/libsgx_urts.so

#7 0x00007ffff7bbfb22 in sgx_ecall () from /usr/lib/libsgx_urts.so

#8 0x0000000000400f0a in test_illegal_instructions_ecall (eid=2,

retval=0x7fffffffde44, op_type=1) at App/Enclave_u.c:99

#9 0x00000000004016fd in main (argc=1, argv=0x7fffffffe158) at App/App.cpp:575

(gdb)

Figure 11. Example uncaught exception in enclave

Intel SGX enclave recovery (multiple threads)

In multi-threaded applications, it is important that only one thread perform the recovery of an enclave

lost due to power events. If more than one thread could validly be responsible for attempted to handle

the SGX_ERR_ENCLAVE_LOST message on an application abort, logic must be created that decides which

thread will perform the actual recovery. If this is not done, the application can get trapped in an endless

chain of enclave recovery operations. For details, see https://software.intel.com/articles/intel-sgx-

tutorial-part-9-power-events-and-data-sealing.

Summary

The combination of GDB, the Intel sgx-gdb “plugin”, and the Intel SGX Debug and Pre-Release mode

capabilities allow you to debug enclaves for Intel SGX applications for Linux.

Make sure you install the Intel SGX Linux driver, Intel SGX Platform SW, and Intel SGX SDK and can run

the sample applications in the SDK.

Build/execute your enclave in Debug configuration (or Simulation configuration) and step through the

code with the sgx-gdb, using breakpoints and other GDB commands to identify and correct errors. The

Debug configuration (or Simulation configuration) allows the full capabilities of the Intel SGX Debugger

to be used with your enclaves.

https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing
https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing

White Paper
Intel® Software Guard Extensions (Intel® SGX)

12

References

1. Intel Software Guard Extensions SDK Users Guide for Linux OS — 2017 Intel Corporation.

https://software.intel.com/sgx-sdk/documentation.

2. Intel Software Guard Extensions SDK Developer Reference for Linux OS — 2017 Intel Corporation.

https://software.intel.com/sgx-sdk/documentation.

3. Intel Software Guard Extensions PSW Release Notes for Linux OS — 2017 Intel Corporation.

https://software.intel.com/sgx-sdk/download.

4. Intel SGX Support Forums: https://software.intel.com/forums/intel-software-guard-

extensions-intel-sgx — Intel.

https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/download
https://software.intel.com/forums/intel-software-guard-extensions-intel-sgx
https://software.intel.com/forums/intel-software-guard-extensions-intel-sgx

White Paper
Intel® Software Guard Extensions (Intel® SGX)

13

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY

THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,

INTEL® ASSUMES NO LIABILITY WHATSOEVER AND INTEL® DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL® AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,

DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY

WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL® OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL® PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

No computer system can provide absolute security under all conditions. Built-in security features available on

select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results

may vary depending upon configuration. Consult your system manufacturer for more details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™, Intel® Atom™, and Intel® Xeon® are trademarks of Intel Corporation

in the U.S. and/or other countries. Other names and brands may be claimed as the property of others.

* Other names and brands may be claimed as properties of others.

Copyright © 2018 Intel® Corporation

