

Intel® Media Server Studio 2017

Video Quality Caliper

Reference Manual

for Metrics Plugin API

API Version 1.0

2 Reference Manual for VQC Metrics Plugin API

LEGAL DISCLAIMER

THIS DOCUMENT CONTAINS INFORMATION ON PRODUCTS IN THE DESIGN PHASE OF
DEVELOPMENT.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S

TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions

marked "reserved" or "undefined." Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The information here is subject to change without notice. Do not finalize a design with this

information.

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web

Site.

MPEG is an international standard for video compression/decompression promoted by ISO.

Implementations of MPEG CODECs, or MPEG enabled platforms may require licenses from

various entities, including Intel Corporation.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007-2016, Intel Corporation. All Rights reserved.

http://www.intel.com/
http://www.intel.com/

3 Reference Manual for VQC Metrics Plugin API

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,

SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not

manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for

more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

4 Reference Manual for VQC Metrics Plugin API

Table of Contents

Overview .. 6

Document Conventions ... 6

Acronyms and Abbreviations .. 6

Version History .. 6

System Requirements ... 6

Installation .. 7

Architecture .. 8

Programming Guide ... 10

Function Reference .. 12

Global Functions ... 12

VQCP_QueryPlugin ... 12

VQCP_CreateMetricInstance .. 13

VQCP_DestroyMetricInstance .. 13

C_Init ... 14

C_QueryMetricInfo ... 14

C_Close .. 15

C_CalculateFrame .. 16

VQCMetricPlugin ... 17

Init .. 17

Close .. 18

QueryMetricInfo ... 18

CalculateFrame .. 19

Structure Reference ... 21

vqcpInfo .. 21

5 Reference Manual for VQC Metrics Plugin API

vqcpMetricInfo ... 22

vqcpParams ... 23

vqcpFrameList .. 24

vqcpFrame .. 25

6 Reference Manual for VQC Metrics Plugin API

Overview

The Intel® Media Server Studio 2017 - Video Quality Caliper supports the implementation

of custom metrics via a C++ plugin interface (API). Custom metrics plugins are implemented

as shared libraries (*.dll or *.so) and this document describes the functions and data structures

which allow users to create custom metrics. Sample code to build a typical plugin is also

provided in the package vqcaliper_plugin_samples.zip. The sample code may be used as a

template for creating additional custom metrics.

Document Conventions

This reference manual uses the Verdana typeface for normal prose. With the exception of

section headings and the table of contents, all code-related items appear in the Courier New

typeface (vqcStatus and Init). All class-related items appear in all cap boldface, such as

DECODE and ENCODE. Member functions appear in initial cap boldface, such as Init and

Reset, and these refer to members of all classes, DECODE, ENCODE. Hyperlinks appear in

underlined boldface, such as vqcStatus.

Acronyms and Abbreviations

VQC Video Quality Caliper

API Application Programming Interface

Version History

Intel® Media Server Studio 2017 – Video Quality Caliper – Metrics Plugin API:

Version 1.0

• Initial implementation

System Requirements

The VQC Metrics Plugin API is supported on the same platforms as the Intel® Media Server

Studio 2017 - Video Quality Caliper with which it was packaged. See the manual

Video_Quality_Caliper_Release_Notes.pdf for the system requirements corresponding to your

installation.

Building a custom metrics plugin also requires a C++ toolchain which can create shared

libraries for your platform (*.dll on Windows, *.so on Linux). The sample code includes project

files for Microsoft Visual Studio 2013 (Windows) and the GNU toolchain (Linux), but other

toolchains may also be used if desired.

7 Reference Manual for VQC Metrics Plugin API

Installation

The VQC Metrics Plugin API provides C++ header files (*.h) which define the functions and

datatypes necessary to implement a custom plugin. Sample code to build an example plugin is

also provided. The header files, sample code, and build instructions are included in the package

vqcaliper_plugin_samples.zip which is installed in the same location as the VQC application

executable. It is recommended to extract the contents of the sample code package to a

convenient location. The sample code package includes a readme.txt with instructions for

building the example plugin.

8 Reference Manual for VQC Metrics Plugin API

Architecture

The VQC Metrics Plugin API allows users to implement custom metrics for use with the Video

Quality Caliper application. Custom metrics plugins are built as shared libraries (*.dll or *.so)

implementing the C++ interface described in this document. The VQC application searches the

plugins\ subdirectory within the main VQC installation directory for any custom metrics

plugins implemented by the user. The custom metrics can be selected and configured in the

Metrics page of the VQC application, in the same manner as the metrics provided with VQC, as

shown below:

Development of the VQC Metrics Plugin API is ongoing and new functionality may be added in

future versions. The following are some important known limitations of the current version:

- In each call to CalculateFrame(), the VQC application only provides the current frame from

each reference and test stream. Past or future frames are not available. The fields

maxFramesPrev and maxFramesFutr must be set to zero in vqcpMetricInfo.

- In each call to CalculateFrame(), the metrics plugin may only return one result per metric.

The field maxNumResults must be set to 1 in vqcpMetricInfo, and the field numResults must

be set to 1 in vqcpResults. Additional results will be ignored by the VQC application.

- During plugin initialization, the VQC application instructs the plugin which of the available

metrics and channels to calculate, via a space-delimted list of metric names in

vqcpParams.subscribedMetrics which enables the plugin to skip processing for metric/channel

9 Reference Manual for VQC Metrics Plugin API

combinations which are not needed. The application may create more than one instance of each

metrics plugin, with a different subset of metrics enabled in each instance. For example,

selecting a metric/channel combination under “Per-Frame chart control” which was not initially

selected as a “Calculate at Start” item will initialize a new instance of the VQCMetricPlugin

object with the requested combination enabled. Therefore each custom metric plugin must be fully

re-entrant and not share modifiable (non-const) data between different instances of the same

object.

- The value of vqcpParams.complexityScale is not used in the current version, and should be

set to zero.

10 Reference Manual for VQC Metrics Plugin API

Programming Guide

This chapter describes the concepts used in programming with the VQC Metrics Plugin API.

Please refer to the relevant chapters in this document, as well as the header file vqcplugins.h,

for additional information about specific functions and datatypes.

Custom metrics plugins are implemented as shared libraries (*.dll or *.so) which are loaded

during startup of the VQC application. Each custom metrics plugin exports the following

functions, which should be declared as extern “C” (i.e. without name-mangling).

vqcStatus VQCP_QueryPlugin(vqcpInfo *pluginInfo)

vqcStatus VQCP_CreateMetricInstance(C_VQCMetricPlugin **metricPlugin)

vqcStatus VQCP_DestroyMetricInstance(C_VQCMetricPlugin *metricPlugin)

The VQC application searches the plugins subdirectory (relative to its installation path) and

loads any shared library which properly implements this interface. Files which do not export

these symbols are skipped. (Note: the VQC application also includes pre-built metrics plugins in

the same directory, but these employ a different interface and may not be loaded via the

process outlined in this document).

The function VQCP_QueryPlugin queries the plugin’s capabilities (i.e. what metrics are supported,

what names to display in the GUI, and other parameters describing each metric). The parameter

pluginInfo is a pointer to a struct of type vqcpInfo. The plugin should fill in the fields of this

structure with the appropriate values. Strings returned via vqcpInfo should be declared as const

and not modified at any time while the shared library is loaded.

The function VQCP_CreateMetricInstance creates a new instance of the custom metric. For each

instance, the plugin should allocate a structure of type C_VQCMetricPlugin and create a new

instance of the plugin object (that is, the derived class which implements the pure virtual functions

defined in VQCMetricPlugin) The plugin should then fill each member C_VQCMetricPlugin with the

appropriate pointer, and return a pointer to this structure.

The function VQCP_DestroyMetricInstance destroys the instance of the custom metric which was

allocated in VQCP_CreateMetricInstance. The plugin should first destroy the instance of the

VQCMetricPlugin object (i.e. C_VQCMetricPlugin->pthis) and then delete the C_VQCMetricPlugin

object itself.

To implement a custom plugin, the programmer defines a new class that inherits

VQCMetricPlugin and implements its pure-virtual functions. The derived class may also define

any number of private, implementation-specific functions and data structures, but these will not

be visible to or used by the VQC application.

The C++ object created with each instance of the plugin is not used directly by the VQC

application. Rather, the C_VQCMetricPlugin receives function pointers to thin C wrapper

functions in the plugin, which in turn make the appropriate function calls into the C++ class.

This is done to simplify the process of calling functions across the DLL boundary. The following

diagram illustrates this architecture.

11 Reference Manual for VQC Metrics Plugin API

12 Reference Manual for VQC Metrics Plugin API

Function Reference

This section describes VQC Metrics Plugin API functions and their operations. All of the functions

listed in this section must be implemented for each custom metrics plugin.

In each function description, only commonly used status codes are documented. The function

may return additional status codes, such as VQC_ERR_INVALID_HANDLE or VQC_ERR_NULL_PTR, in

certain cases. See the vqcStatus enumerator for a list of all status codes.

Global Functions

Global functions perform query functions on a global scale and create/destroy new instances of

the custom metric.

VQCP_QueryPlugin

Syntax

 vqcStatus VQCP_QueryPlugin(vqcpInfo *pluginInfo);

Parameters

 pluginInfo Pointer to vqcpInfo structure

Description

 The application calls this function at runtime to query the capabilities of each metrics

plugin. The plugin should fill in each of the fields in pluginInfo with appopriate data

describing the plugin. Strings should be declared as const and not modified while the

plugin library is loaded into memory.

This function is exported in the shared library (DLL).

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

13 Reference Manual for VQC Metrics Plugin API

VQCP_CreateMetricInstance

Syntax

 vqcStatus VQCP_CreateMetricInstance(C_VQCMetricPlugin **metricPlugin);

Parameters

 metricPlugin Pointer to return C_VQCMetricPlugin object

Description

 The application calls this function to create a new instance of the metrics calculation

object. The plugin creates a new object of type C_VQCMetricPlugin, and also a new

instance of the user’s implementation of the metric, i.e. a class derived from

VQCMetricPlugin. The pointer to the newly-created VQCMetricPlugin object is stored in

C_VQCMetricPlugin->pthis. The remaining members of C_VQCMetricPlugin are

initialized with pointers to the corresponding C interface functions (C_Init, etc.)

The application will pass this VQCMetricPlugin object as a parameter when calling any C

interface function. The plugin may then cast pthis to the class he implemented and call

the corresponding VQCMetricPlugin:: function.

This function is exported in the shared library (DLL).

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

VQCP_DestroyMetricInstance

Syntax

 vqcStatus VQCP_DestroyMetricInstance(C_VQCMetricPlugin *metricPlugin);

Parameters

 metricPlugin Pointer to return C_VQCMetricPlugin object

Description

 The application calls this function to destroy an instance of the metrics calculation

object which was allocated by VQCP_CreateMetricInstance. The plugin should first

14 Reference Manual for VQC Metrics Plugin API

call the destructor for the VQCMetricPlugin object represented by

C_VQCMetricPlugin->pthis, and then destroy C_VQCMetricPlugin *metricPlugin

itself.

This function is exported in the shared library (DLL).

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

C_Init

Syntax

 vqcStatus C_Init(vqcHDL pthis, vqcpParams *params,

 vqcU32 *scratchBufferSize)

Parameters

 pthis Pointer to the VQCMetricPlugin object allocated in
VQCP_CreateMetricInstance

 params Parameters for initializing the plugin

 scratchBufferSize Size of scratch buffer metric requests for this instance.

Description

 The application calls this function to initialize a newly-created instance of the metrics

plugin. The plugin should cast pthis to the object type corresponding with his

implementation of VQCMetricPlugin and then call Init().

This function should be declared extern “C”.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

C_QueryMetricInfo

Syntax

15 Reference Manual for VQC Metrics Plugin API

 vqcStatus C_QueryMetricInfo(vqcHDL pthis, vqcU32 metricId,

 vqcpMetricInfo *metricInfo)

Parameters

 pthis Pointer to the VQCMetricPlugin object allocated in
VQCP_CreateMetricInstance

 metricId Index of metric to query

 metricInfo Structure to receive info about specified metric.

Description

 The application calls this function for each metric that the plugin has implemented.

The total number of metrics is specified in vqcpInfo.numMetrics.

This function should be declared extern “C”.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

C_Close

Syntax

 vqcStatus C_Close(vqcHDL pthis)

Parameters

 pthis Pointer to the VQCMetricPlugin object allocated in
VQCP_CreateMetricInstance

Description

 The application calls this function to destroy a previously-created instance of the

metrics plugin. The plugin should cast pthis to the object type corresponding with his

implementation of VQCMetricPlugin and then call Close().

This function should be declared extern “C”.

Return Status

 VQC_ERR_NONE The function completed successfully.

16 Reference Manual for VQC Metrics Plugin API

Change History

 This function is available since SDK API 1.0.

C_CalculateFrame

Syntax

 vqcStatus C_CalculateFrame(vqcHDL pthis, vqcU32 frameIndex,

 vqcpFrameList *frameListRef, vqcpFrameList *frameListTest,

 vqcHDL scratchBuffer, vqcU32 scratchBufferSize,

 vqcF64 *frameResults, vqcF64 *avgResults);

Parameters

 pthis Pointer to the VQCMetricPlugin object allocated in
VQCP_CreateMetricInstance

 frameIndex Index of current frame.

 frameListRef Array of video frames from the reference stream

 frameListTest Array of video frames from the test stream

 scratchBuffer Pointer to scratch buffer (non-persistent memory)

 scratchBufferSize Actual size of scratch buffer. May be less than what

was requested during initialization.

 frameResults Array of results for each metric calculated

 avgResults Array of average results for each metric calculated

Description

 The application calls this function to run metrics calculation on a pair of video frames

(reference and test). The plugin should cast pthis to the object type corresponding

with his implementation of VQCMetricPlugin and then call CalculateFrame().

This function should be declared extern “C”.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

17 Reference Manual for VQC Metrics Plugin API

VQCMetricPlugin

This class of functions consists of functions for performing metrics calculations. Each metrics

plugin should create a new class which inherits VQCMetricPlugin and implments all of its pure

virtual member functions. A new instance of this class will be created for each test stream, so it

is possible to store stream-specific state information within your derived class. Multiple

instances may also be created for the same test stream, each specifying a different subset of

available metrics to calculate. The implementation should not attempt to share data between

different instances of the same class.

Init

Syntax

 vqcStatus Init(vqcpParams *params, vqcU32 *scratchBufferSize);

Parameters

 params Initialization parameters for the metrics plugin

 scratchBufferSize Size of scratch buffer metric requests for this instance.

Description

 The application calls this function to create a new instance of the metrics calculation

object. When multiple test streams are specified, a new instance is created for each

test stream, so it is possible to store stream-specific state information.

The plugin may also request a scratch buffer, which is a single (typically large) block

of memory allocated by the VQC application, which the metric may use during metrics

calculation in CalculateFrame(). The scratch buffer is not persistent from frame to

frame. Rather, it allows multiple metrics to share the same block of memory for

intermediate calculations (e.g. modified copies of frames), thus reducing overall

memory usage of the application.

In some situations, the application may not allocate a scratch buffer of the requested

size, such as when overall memory usage is too high. Therefore each metric must

check the actual scratch buffer size in each call to CalculateFrame() in order to

know how much scratch memory is actually available.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

18 Reference Manual for VQC Metrics Plugin API

Close

Syntax

 vqcStatus Close(void);

Parameters

 none

Description

 The application calls this function to close an instance of the metrics calculation

object. Any resources which were allocated during Init() may be freed here.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

QueryMetricInfo

Syntax

 vqcStatus QueryMetricInfo(vqcU32 metricId, vqcpMetricInfo *metricInfo;

Parameters

 metricId Index of metric to query

 metricInfo Structure to receive info about specified metric.

Description

 The application calls this function for each metric that the plugin has implemented.

The total number of metrics is specified in vqcpInfo.numMetrics. The plugin should fill in

each field in the metricInfo structure with appropriate information about the metric.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

19 Reference Manual for VQC Metrics Plugin API

CalculateFrame

Syntax

vqcStatus CalculateFrame(vqcU32 frameIndex,

 vqcpFrameList *frameListRef, vqcpFrameList *frameListTest,

 vqcHDL scratchBuffer, vqcU32 scratchBufferSize,

 vqcF64 *frameResults, vqcF64 *avgResults);

Parameters

 frameIndex Index of current frame.

 frameListRef Array of video frames from the reference stream

 frameListTest Array of video frames from the test stream

 scratchBuffer Pointer to scratch buffer (non-persistent memory)

 scratchBufferSize Actual size of scratch buffer. May be less than what

was requested during initialization.

 frameResults Array of results for each metric calculated

 avgResults Array of average results for each metric calculated

Description

 The application calls this function to calculate the metric value for a reference and

test frame pair. vqcpFrameListRef and vqcpFrameListTest each contain an array of

vqcpFrame structs, which contain pointers to the video frames for the reference and

test streams, respectively. The metrics plugin fills vqcpResultsList with a list of

numMetrics objects of type vqcpResults.

The value frameIndex is the the index of the current reference/test pair, i.e. the

index of the frame which the results correspond to.

Note: the current version of the metrics plugin API restricts the number of frames in

frameListRef and frameListTest to exactly 1. i.e. the application only provides the

current frame from each stream, not future or past frames. This functionality may be

added in future versions, in which case the metrics plugin would check the

frameIndex member in each vqcpFrame object to identify the index of each frame.

The maximum number of previous or future frames is determined by the

corresponding fields in vqpcMetricInfo.

Most plugins calculate multiple metrics on each frame (e.g. separate measurement for

each color component). During Init(), the application indicates which metrics should

be calculated by sending the string params->subscribedMetrics. The plugin should

parse this space-separated list of plugins which the application wants to have

calculated, and return the results in the same order that the metrics are specified in

the subscribedMetrics string.

20 Reference Manual for VQC Metrics Plugin API

scratchBuffer contains a pointer to a scratch buffer that the metric may use during

this call to CalculateFrame(). This memory is not persistent from frame to frame. In

some situations, the application may not allocate a scratch buffer of the requested

size, such as when overall memory usage is too high. Therefore each metric must

check the actual scratch buffer size in order to know how much scratch memory is

actually available. If scratchBufferSize is less than was requested during

initialization, the metric may only use as much memory as was actually provided.

Results for the current frame and the average of all frames are returned in

frameResults and avgResults, respectively. If more than one result is returned for

each metric (vqcpMetricInfo.numResults) these values are packed together.

Note: the current version only supports one results value for each metric (a frame

value and average value) so vqcpMetricInfo.numResults must be set to 1.

Return Status

 VQC_ERR_NONE The function completed successfully.

Change History

 This function is available since SDK API 1.0.

21 Reference Manual for VQC Metrics Plugin API

Structure Reference

In the following structure references, all reserved fields must be zero.

vqcpInfo

Definition

typedef struct {

 vqcVersion apiVersion;

 vqcVersion pluginVersion;

 vqcU32 position;

 const vqcChar *pluginName;

 vqcU32 numMetrics;

 vqcU32 reserved1[16];

 vqcHDL reserved2[4];

} vqcpInfo;

Description

 This structure contains information about the metrics plugin. The application uses this info

to register the plugin and add appropriate controls to the Metrics tab in the graphical user

interface.

Members

 apiVersion

Version of the metrics plugin API used to build the shared

library. The application will skip plugins built with an

incompatible version of the API (i.e. a newer metrics plugin

mixed with an older version of the VQC application).

 pluginVersion

Version of the metrics plugin. If multiple plugins with the

same className are found in the plugins directory, the

VQC application will only load the latest one (highest

version).

 position

Integer value to control the order in which plugins are

showin the Metrics tab. Custom metrics plugins always

appear at the end of the list, after the plugins provided

with the application. If multiple custom metrics plugins

have the same value for position, the application will

decide the order of appearance.

 pluginName
Name of this plugin. This is displayed in bold lettering in

the Metrics tab, above the corresponding group of metrics.

22 Reference Manual for VQC Metrics Plugin API

 numMetrics

The number of different metrics implemented by this

plugin. During initialization, the application will inform the

plugin which metrics to calculate, based on which metrics

are selected/de-selected on the Metrics tab.

The maximum number of metrics that can be implemented
in a plugin is MAX_NUM_METRICS = 64.

 reserved1 must be set to zero

 reserved2 must be set to zero

Change History

 This structure is available since SDK API 1.0.

vqcpMetricInfo

Definition

typedef struct {

 const vqcChar *metrName;

 vqcF64 rangeMin;

 vqcF64 rangeMax;

 vqcF64 invalidResVal;

 vqcU32 maxFramesPrev;

 vqcU32 maxFramesFutr;

 vqcU32 numResults;

 vqcU32 complexityScale;

 vqcU32 reserved1[16];

 vqcHDL reserved2[4];

} vqcpMetricInfo;

Description

 This structure contains information about each metric available in the plugin.

Members

 metrName

Name of the metric, displayed in the “Metrics” tab in the

VQC application (e.g. “PSNR-Y”) The name must be in the

format “metricName-chan” where chan is “Y”, “U”, “V”, or

“O”. This allows each metric to be mapped correctly to the

GUI controls in the Metrics tab in VQC. It is advisable to

implement all 4 channels for every metricName, and return

a default value (e.g. rangeMin) for any channel that is not

implemented. Because hyphen (‘-‘) is used as a channel

23 Reference Manual for VQC Metrics Plugin API

separator, it may not be used elsewhere in the name.

 rangeMin Expected minimum result value for this metric

 rangeMax Expected maximum result value for this metric

 invalidResVal

Special value which plugin can specify to indicate that no

result could be calculated in the call to CalculateFrame.

Recommended default value is NAN from <math.h> but

another value may also be used if desired. If set to zero,

all results will be considered valid.

 maxFramesPrev

Maximum number of previous frames the metric may

access in each call to CalculateFrame. Must be set to zero

in current version (see Known Limitations, above).

 maxFramesFutr

Maximum number of future frames the metric may access

in each call to CalculateFrame. Must be set to zero in

current version (see Known Limitations, above).

 numResults

Maximum number of results which this metric will return

for each call to CalculateFrame. Must be set to one in

current version (see Known Limitations, above).

 complexityScale
Relative estimate of complexity of this metric vs. other

common metrics. Must be set to zero in current version.

 reserved1 must be set to zero

 reserved2 must be set to zero

Change History

 This structure is available since SDK API 1.0.

vqcpParams

Definition

typedef struct {

 vqcU32 fourCC;

 vqcU32 bpp;

 vqcU32 width[3];

 vqcU32 height[3];

 vqcU32 reserved1[16];

 vqcHDL reserved2[4];

} vqcpParams;

24 Reference Manual for VQC Metrics Plugin API

Description

 This structure contains initialization parameters which are passed to the metric plugin.

Members

 fourCC

fourCC code indicating the format of the video frames

which will be passed to the metric plugin. Note: the current

version of the API passes each YUV plane separately, so

fourCC will be set to zero. Chroma sampling of the video

may be determined by comparing width and height of the Y

plane with U/V planes.

 bpp Bits per pixel (same for every plane)

 width Frame width for each plane (0 = Y, 1 = U, 2 = V)

 height Frame height for each plane

 subscribedMetrics

String containing a space-separated list of metrics that

VQC wants this instance of the plugin to calculate in each

call to CalculateFrame(). The plugin should parse this

string and return results for each metric in the order

specified.

 reserved1 must be set to zero

 reserved2 must be set to zero

Change History

 This structure is available since SDK API 1.0.

vqcpFrameList

Definition

typedef struct {

 vqcU32 numFrames;

 vqcpFrame **frame;

 vqcU32 reserved1[16];

 vqcHDL reserved2[4];

} vqcpFrameList;

Description

 This structure contains an array of vcqpFrame structs, which contains the pointers to each

video frame in calls to CalculateFrame.

25 Reference Manual for VQC Metrics Plugin API

Members

 numFrames
Number of elements in frameList. In the current version

of the API, this will always be 1.

 frame
Array of frames for processing. In the current version, only

frameList[0] will be valid.

 reserved1 must be set to zero

 reserved2 must be set to zero

Change History

 This structure is available since SDK API 1.0.

vqcpFrame

Definition

typedef struct {

 vqcU32 frameIndex;

 vqcHDL data[3];

 vqcU32 pitch[3];

} vqcpFrame;

Description

 This structure describes each video frame which is passed to the plugin for metrics

calculation.

Members

 frameIndex Index of the frame (frame 0 = first frame in the stream).

 data

Pointers to YUV data for the frame (0 = Y, 1 = U, 2 = V).

The metric plugin needs to cast each pointer to an

appropriate datatype in order to access the data (e.g.

vqcU8* for 8-bit content, vqcU16* for > 8-bit content).

 pitch
Horizontal step, in bytes, for each YUV plane. This may be

greater than vqcpParams.width due to padding.

Change History

 This structure is available since SDK API 1.0.

