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1 Introduction 

Side channel methods are techniques that may allow an attacker to gain information through 
observing the system, such as measuring microarchitectural properties about the system. This 
document considers multiple side channel methods: branch target injection, bounds check bypass, and 
speculative store bypass. 

Section 2 describes branch target injection and presents mitigation techniques based on indirect 
branch control mechanisms, which are new interfaces between the processor and system software. 

Section 3 describes bounds check bypass as well as mitigation techniques based on software 
modification. 

Section 4 describes speculative store bypass as well as mitigation techniques through Speculative 
Store Bypass Disable or through software modification. 

Section 5 describes CPUID enumeration and the architectural MSRs that are available for use in some 

mitigations. 
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2 Indirect Branch Control 

Mitigation 

 Overview of Branch Target Injection 

Intel processors use indirect branch predictors to determine the operations that are speculatively 

executed after a near indirect branch instruction. Branch target injection is a side channel method that 
takes advantage of the indirect branch predictors. By controlling the operation of the indirect branch 

predictors (“training”), an attacker can cause certain instructions to be speculatively executed and 
then use the effects for side channel analysis. 

 Overview of Indirect Branch Control Mechanisms 

Intel has developed mitigation techniques for branch target injection. One technique uses indirect 
branch control mechanisms, which are new interfaces between the processor and system software. 
These mechanisms allow system software to prevent an attacker from controlling a victim's indirect 
branch predictions (e.g., by invalidating the indirect branch predictors at appropriate times). 

Three indirect branch control mechanisms are defined in this specification: 

• Indirect Branch Restricted Speculation (IBRS): Restricts speculation of indirect branches. 

• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch predictions from 

being controlled by a sibling Hyperthread. 

• Indirect Branch Predictor Barrier (IBPB): Prevents indirect branch predictions after the barrier 
from being controlled by software executed before the barrier. 

Appropriately written software can use these indirect branch control mechanisms to defend against 

branch target injection attacks. 

 Background and Terminology 

 Indirect Branch Prediction 

The processor uses indirect branch predictors to control only the operation of the branch instructions 

enumerated in the table below. 

Table 2-1. Instructions that use Indirect Branch Predictors 

Branch Type Instruction Opcode 

Near Call Indirect CALL r/m16, CALL r/m32, CALL r/m64 FF /2 

Near Jump Indirect JMP r/m16, JMP r/m32, JMP r/m64 FF /4 

Near Return RET, RET Imm16 C3, C2 Iw 
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References in this document to indirect branches are only to near call indirect, near jump indirect and 

near return instructions.  

 Indirect Branch Prediction and Intel® Hyper-Threading 

Technology (Intel® HT Technology)  

In a processor supporting Intel® Hyper-Threading Technology, a core (or physical processor) may 

include multiple logical processors. In such a processor, the logical processors sharing a core may 
share indirect branch predictors. As a result of this sharing, software on one of a core’s logical 
processors may be able to control the predicted target of an indirect branch executed on another 
logical processor of the same core.  

This sharing occurs only within a core. Software executing on a logical processor of one core cannot 

control the predicted target of an indirect branch by a logical processor of a different core.  

 Return Stack Buffer (RSB) 

The Return Stack Buffer (RSB) is a microarchitectural structure that holds predictions for execution of 
near RET instructions. 

Each execution of a near CALL instruction with a non-zero displacement1 adds an entry to the RSB 
that contains the address of the instruction sequentially following that CALL instruction. The RSB is not 
used or updated by far CALL, far RET, or IRET instructions.  

 Predictor Mode 

Intel processors support different modes of operation corresponding to different degrees of privilege.  

VMX root operation (for a virtual-machine monitor, or host) is more privileged than VMX non-root 
operation (for a virtual machine, or guest). Within either VMX root operation or VMX non-root 
operation, supervisor mode (CPL < 3) is more privileged than user mode (CPL= 3). 

To prevent attacks based on branch target injection, it can be important to ensure that less privileged 

software cannot control use of the branch predictors by more privileged software. For this reason, it is 
useful to introduce the concept of predictor mode. There are four predictor modes: host-supervisor, 
host-user, guest-supervisor, and guest-user. 

The guest predictor modes are considered less privileged than the host predictor modes. Similarly, the 

user predictor modes are considered less privileged than the supervisor predictor modes. 

There are operations that may be used to transition between unrelated software components but 
which do not change CPL or cause a VMX transition. These operations do not change predictor mode.  
Examples include MOV to CR3, VMPTRLD, EPTP switching (using VM function 0), and 

GETSEC[SENTER]. 

 
1 A CALL with a target of the next sequential instruction has zero displacement. 
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 Indirect Branch Control Mechanisms 

 Indirect Branch Restricted Speculation (IBRS) 

Indirect branch restricted speculation (IBRS) is an indirect branch control mechanism that 
restricts speculation of indirect branches. A processor supports IBRS if it enumerates 
CPUID.(EAX=7H,ECX=0):EDX[26] as 1. 

2.4.1.1 IBRS:  Basic Support 

Processors that support IBRS provide the following guarantees without any enabling by software: 

• The predicted targets of near indirect branches executed in an enclave (a protected container 
defined by Intel® SGX) cannot be controlled by software executing outside the enclave. 

• If the default treatment of SMIs and SMM is active, software executed before a system-
management interrupt (SMI) cannot control the predicted targets of indirect branches 
executed in system-management mode (SMM) after the SMI. 

2.4.1.2 IBRS: Support Based on Software Enabling 

IBRS provides a method for critical software to protect their indirect branch predictions. 

If software sets IA32_SPEC_CTRL.IBRS to 1 after a transition to a more privileged predictor mode, 
predicted targets of indirect branches executed in that predictor mode with IA32_SPEC_CTRL.IBRS = 
1 cannot be controlled by software that was executed in a less privileged predictor mode.2 
Additionally, when IA32_SPEC_CTRL.IBRS is set to 1, the predicted targets of indirect branches cannot 

be controlled by another logical processor. 

If IA32_SPEC_CTRL.IBRS is already 1 before a transition to a more privileged predictor mode, some 
processors may allow the predicted targets of indirect branches executed in that predictor mode to be 
controlled by software that executed before the transition. Software can avoid this by using WRMSR 
on the IA32_SPEC_CTRL MSR to set the IBRS bit to 1 after any such transition, regardless of the bit’s 
previous value. It is not necessary to clear the bit first; writing it with a value of 1 after the transition 
suffices, regardless of the bit’s original value. 

Setting IA32_SPEC_CTRL.IBRS to 1 does not suffice to prevent the predicted target of a near return 
from using an RSB entry created in a less privileged predictor mode. Software can avoid this by using 
an RSB overwrite sequence3 following a transition to a more privileged predictor mode. It is not 
necessary to use such a sequence following a transition from user mode to supervisor mode if 
supervisor-mode execution prevention (SMEP) is enabled. SMEP prevents execution of code on user 

mode pages, even speculatively, when in supervisor mode. User mode code can only insert its own 
return addresses into the RSB; not the return addresses of targets on supervisor mode code pages. 

On parts without SMEP where separate page tables are used for the OS and applications, the OS page 
tables can map user code as no-execute. The processor will not speculatively execute instructions 
from a translation marked no-execute. 

 
2 A transition to a more privileged predictor mode through an INIT# is an exception to this and may 
not be sufficient to prevent the predicted targets of indirect branches executed in the new predictor 

mode from being controlled by software operating in a less privileged predictor mode. 
3 An RSB overwrite sequence is a sequence of instructions that includes 32 more near CALL 
instructions with non-zero displacements than it has near RETs.  
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Enabling IBRS does not prevent software from controlling the predicted targets of indirect branches of 

unrelated software executed later at the same predictor mode (for example, between two different 
user applications, or two different virtual machines). Such isolation can be ensured through use of the 
IBPB command, described in Section 2.4.3, “Indirect Branch Predictor Barrier (IBPB)”. 

Enabling IBRS on one logical processor of a core with Intel Hyper-Threading Technology may affect 
branch prediction on other logical processors of the same core. For this reason, software should 

disable IBRS (by clearing IA32_SPEC_CTRL.IBRS) prior to entering a sleep state (e.g., by executing 
HLT or MWAIT) and re-enable IBRS upon wakeup and prior to executing any indirect branch. 

2.4.1.3 Enhanced IBRS 

Some processors may enhance IBRS by simplifying software enabling and improving performance.  A 

processor supports enhanced IBRS if RDMSR returns a value of 1 for bit 1 of the 
IA32_ARCH_CAPABILITIES MSR. 

Enhanced IBRS supports an ‘always on’ model in which IBRS is enabled once (by setting 

IA32_SPEC_CTRL.IBRS) and never disabled. If IA32_SPEC_CTRL.IBRS = 1 on a processor with 
enhanced IBRS, the predicted targets of indirect branches executed cannot be controlled by software 
that was executed in a less privileged predictor mode or on another logical processor. 

As a result, software operating on a processor with enhanced IBRS need not use WRMSR to set 

IA32_SPEC_CTRL.IBRS after every transition to a more privileged predictor mode. Software can 
isolate predictor modes effectively simply by setting the bit once. Software need not disable enhanced 
IBRS prior to entering a sleep state such as MWAIT or HLT. 

On processors with enhanced IBRS, an RSB overwrite sequence may not suffice to prevent the 
predicted target of a near return from using an RSB entry created in a less privileged predictor mode.  

Software can prevent this by enabling SMEP (for transitions from user mode to supervisor mode) and 

by having IA32_SPEC_CTRL.IBRS set during VM exits. Processors with enhanced IBRS still support the 
usage model where IBRS is set only in the OS/VMM for OSes that enable SMEP. To do this, such 
processors will ensure that guest behavior cannot control the RSB after a VM exit once IBRS is set, 
even if IBRS was not set at the time of the VM exit. If the guest has cleared IBRS, the hypervisor 
should set IBRS after the VM exit, just as it would do on processors supporting IBRS but not enhanced 

IBRS. As with IBRS, enhanced IBRS does not prevent software from affecting the predicted target of 
an indirect branch executed at the same predictor mode. For such cases, software should use the IBPB 
command, described in Section 2.4.3, “Indirect Branch Predictor Barrier (IBPB)”. 

 Single Thread Indirect Branch Predictors (STIBP) 

Single thread indirect branch predictors (STIBP) is an indirect branch control mechanism that 
restricts the sharing of branch prediction between logical processors on a core. A processor supports 

STIBP if it enumerates CPUID.(EAX=7H,ECX=0):EDX[27] as 1. 

As noted in Section 2.3.2, “Indirect Branch Prediction and Intel® Hyper-Threading Technology (Intel® 
HT Technology)”, the logical processors sharing a core may share indirect branch predictors, allowing 
one logical processor to control the predicted targets of indirect branches by another logical processor 

of the same core. Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor prevents 
the predicted targets of indirect branches on any logical processor of that core from being controlled 
by software that executes (or executed previously) on another logical processor of the same core. 

Recall that indirect branch predictors are never shared across cores. Thus, the predicted target of an 
indirect branch executed on one core can never be affected by software operating on a different core. 

It is not necessary to set IA32_SPEC_CTRL.STIBP to isolate indirect branch predictions from software 
operating on other cores. 
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Many processors do not allow the predicted targets of indirect branches to be controlled by software 

operating on another logical processor, regardless of STIBP. These include processors on which Intel 
Hyper-Threading Technology is not enabled and those that do not share indirect branch predictors 
between logical processors. To simplify software enabling and enhance workload migration, STIBP 
may be enumerated (and setting IA32_SPEC_CTRL.STIBP allowed) on such processors.  

A processor may enumerate support for the IA32_SPEC_CTRL MSR (e.g., by enumerating 

CPUID.(EAX=7H,ECX=0):EDX[26] as 1) but not for STIBP (CPUID.(EAX=7H,ECX=0):EDX[27] is 
enumerated as 0). On such processors, execution of WRMSR to IA32_SPEC_CTRL ignores the value of 
bit 1 (STIBP) and does not cause a general-protection exception (#GP) if bit 1 of the source operand 
is set. It is expected that this fact will simplify virtualization in some cases. 

As noted in Section 2.4.1, “Indirect Branch Restricted Speculation (IBRS)”, enabling IBRS prevents 
software operating on one logical processor from controlling the predicted targets of indirect branches 

executed on another logical processor. For that reason, it is not necessary to enable STIBP when IBRS 
is enabled. 

Enabling STIBP on one logical processor of a core with Intel Hyper-Threading Technology may affect 
branch prediction on other logical processors of the same core. For this reason, software should 
disable STIBP (by clearing IA32_SPEC_CTRL.STIBP) prior to entering a sleep state (e.g., by executing 
HLT or MWAIT) and re-enable STIBP upon wakeup and prior to executing any indirect branch. 

 Indirect Branch Predictor Barrier (IBPB) 

The indirect branch predictor barrier (IBPB) is an indirect branch control mechanism that 

establishes a barrier, preventing software that executed before the barrier from controlling the 
predicted targets of indirect branches executed after the barrier on the same logical processor. A 
processor supports IBPB if it enumerates CPUID.(EAX=7H,ECX=0):EDX[26] as 1. 

Unlike IBRS and STIBP, IBPB does not define a new mode of processor operation that controls the 

branch predictors. As a result, it is not enabled by setting a bit in the IA32_SPEC_CTRL MSR. Instead, 
IBPB is a “command” that software executes when necessary. 

Software executes an IBPB command by writing the IA32_PRED_CMD MSR to set bit 0 (IBPB). This 
can be done either using the WRMSR instruction or as part of a VMX transition that loads the MSR 
from an MSR-load area. Software that executed before the IBPB command cannot control the 

predicted targets of indirect branches executed after the command on the same logical processor. The 
IA32_PRED_CMD MSR is write-only, and it is not necessary to clear the IBPB bit before writing it with 
a value of 1. 

IBPB can be used in conjunction with IBRS to account for cases that IBRS does not cover: 

• As noted in Section 2.4.1, “Indirect Branch Restricted Speculation (IBRS)”, IBRS does not 
prevent software from controlling the predicted target of an indirect branch of unrelated 
software (e.g., a different user application or a different virtual machine) executed at the 

same predictor mode. Software can prevent such control by executing an IBPB command 
when changing the identity of software operating at a particular predictor mode (e.g., when 

changing user applications or virtual machines). 

• Software may choose to clear IA32_SPEC_CTRL.IBRS in certain situations (e.g., for execution 
with CPL = 3 in VMX root operation). In such cases, software can use an IBPB command on 
certain transitions (e.g., after running an untrusted virtual machine) to prevent software that 
executed earlier from controlling the predicted targets of indirect branches executed 
subsequently with IBRS disabled. 
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 Retpoline 

 

An alternative approach, developed by Google, to using IBRS is a software approach called ‘retpoline’. 
Details of retpoline are described in Retpoline: A Branch Target Injection Mitigation4.  

 

 
4 https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-
Mitigation.pdf 

https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
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3 Bounds Check Bypass Mitigation 

 Overview of Bounds Check Bypass 
Bounds check bypass is a side channel method that takes advantage of the speculative execution that 

may occur following a conditional branch instruction. Specifically, the method is used in situations in 
which the processor is checking whether an input is in bounds (e.g., while checking whether the index 
of an array element being read is within acceptable values). The processor may issue operations 
speculatively before the bounds check resolves. If the attacker contrives for these operations to 
access out-of-bound memory, information may be leaked to the attacker in certain circumstances. 

 Bounds Check Bypass Mitigation 
Bounds check bypass can be mitigated through the modification of software to constrain speculation in 
confused deputies. Specifically, software can insert a speculation stopping barrier between a bounds 
check and a later operation that could cause a speculative side channel. The LFENCE instruction, or 
any serializing instruction, can serve as such a barrier. These instructions suffice regardless of 
whether the bounds checking is implemented using conditional branches or through the use of bound-

checking instructions (BNDCL and BNDCU) that are part of the Intel® Memory Protection Extensions 
(Intel® MPX). 
 
The LFENCE instruction and the serializing instructions all ensure that no later instruction will execute, 
even speculatively, until all prior instructions have completed locally. The LFENCE instruction has lower 
latency than the serializing instructions and thus is recommended.  
 

Other instructions such as CMOVcc, AND, ADC, SBB and SETcc can also be used to prevent bounds 

check bypass by constraining speculative execution on current family 6 processors (Intel® Core™, 
Intel® Atom™, Intel® Xeon® and Intel® Xeon Phi™ processors). However, these instructions may not 
be guaranteed to do so on future Intel processors. Intel intends to release further guidance on the 
usage of instructions to constrain speculation in the future before processors with different behavior 
are released.  

Memory disambiguation (described in Section 4.1 “Overview of Speculative Store Bypass”) can 
theoretically impact such speculation constraining sequences when they involve a load from memory.  

In the following example, a CMOVG instruction is inserted to prevent a side channel from being 

created with data from any locations beyond the array bounds. 

 
CMP RDX, [array_bounds] 
JG out_of_bounds_input 

MOV RCX, 0 

MOV RAX, [RDX + 0x400000] 
CMOVG RAX, RCX 
<Further code that causes cache movement based on RAX value> 

 
As an example, assume the value at ‘array_bounds’ is 0x20, but that value was only just stored to 
‘array_bounds and that the prior value at ‘array_bounds’ was significantly higher, such as 0xFFFF. The 

processor can execute the CMP instruction speculatively using a value of 0xFFFF for the loaded value 
due to the memory disambiguation mechanism. The instruction will eventually be re-executed with the 
intended array bounds of 0x20. This can theoretically cause the above sequence to support the 
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creation of a side channel that reveals information about the memory at addresses up to 0xFFFF 

instead of constraining it to addresses below 0x20.  
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4 Speculative Store Bypass 

Mitigation 

 Overview of Speculative Store Bypass 

Many Intel processors use memory disambiguation predictors that allows loads to be executed 

speculatively before it is known whether the load’s address overlaps with a preceding store’s address. 
This may happen if a store’s address is unknown when the load is ready to execute. If the processor 

predicts that the load address will not overlap with the unknown store address, the load may execute 
speculatively. However, if there was indeed an overlap, then the load may consume stale data. When 
this occurs, the processor will re-execute the load to ensure a correct result. 

Through the memory disambiguation predictors, an attacker can cause certain instructions to be 
executed speculatively and then use the effects for side channel analysis. For example, consider the 
following scenario: 

Assume that a key K exists. The attacker is allowed to know the value of M, but not the value 

of key K. X is a variable in memory.  

1. X = &K; // Attacker manages to get variable with address of K stored into pointer X 

<at some later point> 

2. X = &M;   // Does a store of address of M to pointer X 

3. Y = Array[*X & 0xFFFF]; // Dereferences address of M which is in pointer X in order to 

          // load from array at index specified by M[15:0] 

When the above code runs, the load from address X that occurs as part of step 3 may execute 
speculatively and, due to memory disambiguation, initially receive a value of address of K 
instead of the address of M. When this value of address of K is dereferenced, the array is 
speculatively accessed with an index of K[15:0] instead of M[15:0]. The CPU will later re-
execute the load from address X and use M[15:0] as the index into the array. However, the 
cache movement caused by the earlier speculative access to the array may be analyzed by the 
attacker to infer information about K[15:0]. 

 Speculative Store Bypass Mitigation Mechanisms 

Intel has developed mitigation techniques for speculative store bypass. It can be mitigated by 

software modifications, or if that is not feasible, then the use of Speculative Store Bypass Disable 
(SSBD), which prevents a load from executing speculatively until the addresses of all older stores are 

known. 

 Software-Based Mitigations 

Speculative store bypass can be mitigated through numerous software-based approaches. This section 

describes two such software-based mitigations: process isolation and the selective use of LFENCE. 
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4.2.1.1 Process Isolation  

One approach is to move all secrets into a separate address space from untrusted code. For example, 

creating separate processes for different websites so that secrets of one website are not mapped into 

the same address space as code from a different, possibly malicious, website. Similar techniques can 

be used for other runtime environments that rely on language based security to run trusted and 
untrusted code within the same process. This may also be useful as a defense in depth to prevent 

trusted code from being manipulated to create a side channel. Protection Keys can also be valuable in 

providing such isolation5. 

4.2.1.2 Using LFENCE to Control Speculative Load Execution 

Software can insert an LFENCE between a store (for example, the store of address of M in step 2 of 

Section 4.1) and the subsequent load (for example, the load that dereferences X in step 3 of Section 

4.1) to prevent the load from executing before the previous store’s address is known. The LFENCE can 
also be inserted between the load and any subsequent usage of the data returned which might create 

a side channel (for example, the access to Array in step 3 of Section 4.1). Software should not apply 

this mitigation broadly, but instead only apply it where there is a realistic risk of an exploit; including 
that the attacker can control the old value in the memory location, there is a realistic chance of the 

load executing before the store address is known, and there is a disclosure gadget that reveals the 

contents of sensitive memory. 

 Speculative Store Bypass Disable (SSBD) 

If the earlier software-based mitigations are not feasible, then employing Speculative Store Bypass 
Disable (SSBD) will mitigate speculative store bypass. 

When SSBD is set, loads will not execute speculatively until the addresses of all older stores are 
known. This ensures that a load does not speculatively consume stale data values due to bypassing an 
older store on the same logical processor. 

4.2.2.1 Basic Support 

Software can disable speculative store bypass on a logical processor by setting 
IA32_SPEC_CTRL.SSBD to 1.  

Both enclave and SMM code will behave as if SSBD is set regardless of the actual value of the MSR bit. 
The processor will ensure that a load within enclave or SMM code does not speculatively consume 

stale data values due to bypassing an older store on the same logical processor. 

4.2.2.2 Software Usage Guideline 

Enabling SSBD can prevent exploits based on speculative store bypass. However, this may reduce 
performance. Intel provides the following recommendations for the use of such a mitigation.  

• Intel recommends software set SSBD for applications and/or execution runtimes relying on 
language-based security mechanisms. Examples include managed runtimes and just-in-time 

 
5 See Section 4.4, “Protection Keys”, of the Intel Analysis of Speculative Execution Side Channels 
White Paper, available here: https://software.intel.com/sites/default/files/managed/b9/f9/336983-
Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf.  

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
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translators. If software is not relying on language-based security mechanisms, for example 

because it is using process isolation, then setting SSBD may not be needed.  

• Intel is currently not aware of any practical exploit for Operating Systems, Virtual Machine 
Monitors, or other applications that do not rely on language-based security.  Intel encourages 
its users to consider their particular security needs in determining whether to set SSBD 
outside context of language-based security mechanisms. 

These recommendations may be updated in the future. 

On Intel® Core™ and Intel® Xeon® processors that enable Intel® Hyper-Threading Technology and do 

not support enhanced IBRS, setting SSBD on a logical processor may impact the performance of a 
sibling logical processor on the same core. Intel recommends that the SSBD MSR bit be cleared when 
in an idle state on such processors. 

Operating Systems should provide an API through which a process can request it be protected by 

SSBD mitigation. 

Virtual Machine Monitors should allow a guest to determine whether to enable SSBD mitigation by 
providing direct guest access to IA32_SPEC_CTRL. 
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5 CPUID Enumeration and 

Architectural MSRs 

Processor support for the new mitigation mechanisms is enumerated using the CPUID instruction and 
several architectural MSRs. 

 Enumeration by CPUID 

The CPUID instruction enumerates support for the mitigation mechanisms using five feature flags in 

CPUID.(EAX=7H,ECX=0):EDX: 

• CPUID.(EAX=7H,ECX=0):EDX[26] enumerates support for indirect branch restricted 
speculation (IBRS) and the indirect branch predictor barrier (IBPB). Processors that set this bit 
support the IA32_SPEC_CTRL MSR and the IA32_PRED_CMD MSR. They allow software to set 

IA32_SPEC_CTRL[0] (IBRS) and IA32_PRED_CMD[0] (IBPB). 

• CPUID.(EAX=7H,ECX=0):EDX[27] enumerates support for single thread indirect branch 
predictors (STIBP). Processors that set this bit support the IA32_SPEC_CTRL MSR. They allow 
software to set IA32_SPEC_CTRL[1] (STIBP). 

• CPUID.(EAX=7H,ECX=0):EDX[28] enumerates support for L1D_FLUSH. Processors that set 
this bit support the IA32_FLUSH_CMD MSR. They allow software to set IA32_FLUSH_CMD[0] 
(L1D_FLUSH). 

• CPUID.(EAX=7H,ECX=0):EDX[29] enumerates support for the IA32_ARCH_CAPABILITIES 

MSR. 

• CPUID.(EAX=7H,ECX=0):EDX[31] enumerates support for Speculative Store Bypass Disable 
(SSBD). Processors that set this bit support the IA32_SPEC_CTRL MSR. They allow software to 
set IA32_SPEC_CTRL[2] (SSBD). 

The mitigation mechanisms may be introduced to a processor by loading a microcode update. In such 

cases, software should re-evaluate the enumeration after loading that microcode update. 
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Table 5-1. CPUID Leaf 07H, Sub-leaf 0: Updated EDX Register Details 

Initial EAX 
Value 

Information Provided About the Processor 

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value) 

07H  NOTES: 
Leaf 07H main leaf (ECX = 0).  
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. 

EDX Bits 25-00: Reserved 
Bit 26: IBRS and IBPB supported 
Bit 27: STIBP supported 
Bit 28: L1D_FLUSH supported 
Bit 29: IA32_ARCH_CAPABILITIES supported 
Bit 30: Reserved 
Bit 31: SSBD supported 

NOTE: The table above is not intended to provide full details of this leaf; see the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 2A (CPUID instruction), for full details on CPUID 
leaf 07H. 

 IA32_ARCH_CAPABILITIES MSR 

Additional features are enumerated by the IA32_ARCH_CAPABILITIES MSR (MSR index 10AH). This is 

a read-only MSR that is supported if CPUID.(EAX=7H,ECX=0):EDX[29] is enumerated as 1. 
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Table 5-2. IA32_ARCH_CAPABILITIES MSR Details 

Register Address 

Register Name / Bit Fields Bit Description Comment 

Hex Dec 

10AH 266 IA32_ARCH_CAPABILITIES Enumeration of Architectural 
Features (RO) 

If CPUID.(EAX=07H, 
ECX=0):EDX[29]=1. 

0 RDCL_NO: The processor is not 
susceptible to Rogue Data Cache 
Load (RDCL)6.  

 

1 IBRS_ALL: The processor supports 
enhanced IBRS. 

 

2 RSBA: The processor supports RSB 
Alternate. Alternative branch 
predictors may be used by RET 
instructions when the RSB is 
empty. SW using retpoline may be 
affected by this behavior. 

 

3 SKIP_L1DFL_VMENTRY: A value of 
1 indicates the hypervisor need not 
flush the L1D on VM entry7. 

 

4 SSB_NO: Processor is not 
susceptible to Speculative Store 
Bypass.8 

 

63:5 Reserved.  

 
6 See Section 2.2.3, “Rogue Data Cache Load”, of the Intel Analysis of Speculative Execution Side 

Channels White Paper, available here: 
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-
Execution-Side-Channels-White-Paper.pdf. 
7 See section 5.2.4, “Nested VMM environments,” of the Description and mitigation overview for L1 

Terminal Fault white paper. 
8 See Section 2.2.5, “Variant 4: Speculative Store Bypass”, of the Intel Analysis of Speculative 

Execution Side Channels White Paper, available here: 
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-
Execution-Side-Channels-White-Paper.pdf. 

https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
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Figure 5-1. IA32_ARCH_CAPABILITIES MSR 

 

 

 IA32_SPEC_CTRL MSR 

The IA32_SPEC_CTRL MSR bits are defined as logical processor scope. On some core implementations, 
the bits may impact sibling logical processors on the same core. 

This MSR has a value of 0 after reset and is unaffected by INIT# or SIPI#. 

Like IA32_TSC_DEADLINE MSR (MSR index 6E0H), the x2APIC MSRs (MSR indices 802H to 83FH) and 

IA32_PRED_CMD (MSR index 49H), WRMSR to IA32_SPEC_CTRL (MSR index 48H) is not defined as a 

serializing instruction. 

WRMSR to IA32_SPEC_CTRL does not execute until all prior instructions have completed locally and no 
later instructions begin execution until the WRMSR completes. 

Table 5-3. IA32_SPEC_CTRL MSR Details 

Register Address 

Register Name / Bit Fields Bit Description Comment 

Hex Dec 

48H 72 IA32_SPEC_CTRL Speculation Control (R/W) If any one of the 
enumeration conditions 
for defined bit field 
positions holds. 

0 Indirect Branch Restricted 
Speculation (IBRS). Restricts 
speculation of indirect branch. 

If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1. 

1 Single Thread Indirect Branch 
Predictors (STIBP). Prevents 
indirect branch predictions on all 
logical processors on the core 

If CPUID.(EAX=07H, 
ECX=0):EDX[27]=1.9 

 
9 Processors that support the IA32_SPEC_CTRL MSR but not STIBP (CPUID.(EAX=07H, 

ECX=0):EDX[27:26] = 01b) will not cause an exception due to an attempt to set STIBP (bit 1). 
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from being controlled by any 
sibling logical processor in the 
same core. 

2 Speculative Store Bypass Disable 
(SSBD) delays speculative 
execution of a load until the 
addresses for all older stores are 
known. 

If CPUID.(EAX=07H, 
ECX=0):EDX[31]=1.10 

63:3 Reserved.  

Figure 5-2. IA32_SPEC_CTRL MSR 

Reserved

IA32_SPEC_CTRL MSR
2 1 063

IBRS

STIBP

SSBD

3

 

 IA32_PRED_CMD MSR 

The IA32_PRED_CMD MSR gives software a way to issue commands that affect the state of predictors. 

Table 5-4. IA32_PRED_CMD MSR Details 

Register Address 

Register Name / Bit Fields Bit Description Comment 

Hex Dec 

49H 73 IA32_PRED_CMD Prediction Command (WO) If any one of the 
enumeration conditions 
for defined bit field 
positions holds. 

0 Indirect Branch Prediction Barrier 
(IBPB). 

If CPUID.(EAX=07H, 
ECX=0):EDX[26]=1. 

63:1 Reserved.  

 
10 Future processor implementations that support the IA32_SPEC_CTRL MSR but without SSBD 

support will not cause an exception due to an attempt to set SSBD (bit 2). This may not be true for all 
current processors that support the IA32_SPEC_CTRL MSR, in particular when the latest microcode 
update has not been loaded. 
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Figure 5-3. IA32_PRED_CMD MSR 

Reserved

IA32_PRED_CMD MSR
1 063

IBPB
 

 

Like IA32_TSC_DEADLINE MSR (MSR index 6E0H), the X2APIC MSRs (MSR indices 802H to 83FH) and 
IA32_SPEC_CTRL (MSR index 48H), WRMSR to IA32_PRED_CMD (MSR index 49H) is not defined as a 

serializing instruction. 

WRMSR to IA32_PRED_CMD does not execute until all prior instructions have completed locally and no 

later instructions begin execution until the WRMSR completes. 

 

 IA32_FLUSH_CMD MSR 

The IA32_FLUSH_CMD MSR gives software a way to invalidate structures with finer granularity than 
other architectural methods. 

Like the IA32_TSC_DEADLINE MSR (MSR index 6E0H), the X2APIC MSRs (MSR indices 802H to 83FH), 
and the IA32_SPEC_CTRL MSR (MSR index 48H), WRMSR to the IA32_FLUSH_CMD MSR (MSR index 
10BH) is not defined as a serializing instruction. 

WRMSR to the IA32_FLUSH_CMD MSR does not execute until all prior instructions have completed 

locally, and no later instructions begin execution until the WRMSR completes. 

Table 5-5. IA32_FLUSH_CMD MSR details 

Register address Register name / Bit 
fields 

Bit decription Comment 

Hex Dec 

10BH 267 IA32_FLUSH_CMD Flush 

Command 

(WO) 

If any one of the 

enumeration 

conditions for 
defined bit field 
positions holds. 

0 L1D_FLUSH: 
Writeback and 
invalidate the 
L1 data cache. 

If CPUID.(EAX=07H, 
ECX=0):EDX[28]=1. 
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Register address Register name / Bit 
fields 

Bit decription Comment 

Hex Dec 

63:1 Reserved  

The L1D_FLUSH command allows for finer granularity invalidation of caching structures than existing 
mechanisms like WBINVD. It will writeback and invalidate the L1 data cache, including all cachelines 
brought in by preceding instructions, without invalidating all caches (for example, L2 or LLC). Some 
processors may also invalidate the first level instruction cache on a L1D_FLUSH command. The L1 

data and instruction caches may be shared across the logical processors of a core. This command can 

be used by a VMM to mitigate the L1TF exploit. Refer to the Description and mitigation overview for L1 
Terminal Fault white paper. 


