C++ API Reference for Intel® Data Analytics Acceleration Library 2019

impl_als_dense_batch.cpp

/* file: impl_als_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of the implicit alternating least squares (ALS) algorithm in
! the batch processing mode.
!
! The program trains the implicit ALS model on a dense training data set.
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms::implicit_als;
/* Input data set parameters */
string trainDatasetFileName = "../data/batch/implicit_als_dense.csv";
/* Algorithm parameters */
const size_t nFactors = 2;
NumericTablePtr dataTable;
ModelPtr initialModel;
training::ResultPtr trainingResult;
void initializeModel();
void trainModel();
void testModel();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &trainDatasetFileName);
initializeModel();
trainModel();
testModel();
return 0;
}
void initializeModel()
{
/* Read trainDatasetFileName from a file and create a numeric table to store the input data */
FileDataSource<CSVFeatureManager> dataSource(trainDatasetFileName, DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the input data */
dataSource.loadDataBlock();
dataTable = dataSource.getNumericTable();
/* Create an algorithm object to initialize the implicit ALS model with the default method */
training::init::Batch<> initAlgorithm;
initAlgorithm.parameter.nFactors = nFactors;
/* Pass a training data set and dependent values to the algorithm */
initAlgorithm.input.set(training::init::data, dataTable);
/* Initialize the implicit ALS model */
initAlgorithm.compute();
initialModel = initAlgorithm.getResult()->get(training::init::model);
}
void trainModel()
{
/* Create an algorithm object to train the implicit ALS model with the default method */
training::Batch<> algorithm;
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(training::data, dataTable);
algorithm.input.set(training::inputModel, initialModel);
algorithm.parameter.nFactors = nFactors;
/* Build the implicit ALS model */
algorithm.compute();
/* Retrieve the algorithm results */
trainingResult = algorithm.getResult();
}
void testModel()
{
/* Create an algorithm object to predict recommendations of the implicit ALS model */
prediction::ratings::Batch<> algorithm;
algorithm.parameter.nFactors = nFactors;
algorithm.input.set(prediction::ratings::model, trainingResult->get(training::model));
algorithm.compute();
NumericTablePtr predictedRatings = algorithm.getResult()->get(prediction::ratings::prediction);
printNumericTable(predictedRatings, "Predicted ratings:");
}

For more complete information about compiler optimizations, see our Optimization Notice.