C++ API Reference for Intel® Data Analytics Acceleration Library 2019

cor_csr_distr.cpp

/* file: cor_csr_distr.cpp */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of correlation matrix computation in the distributed
! processing mode
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
typedef float algorithmFPType; /* Algorithm floating-point type */
/* Input data set parameters */
const size_t nBlocks = 4;
const string datasetFileNames[] =
{
"../data/distributed/covcormoments_csr_1.csv",
"../data/distributed/covcormoments_csr_2.csv",
"../data/distributed/covcormoments_csr_3.csv",
"../data/distributed/covcormoments_csr_4.csv"
};
covariance::PartialResultPtr partialResult[nBlocks];
covariance::ResultPtr result;
void computestep1Local(size_t i);
void computeOnMasterNode();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 4, &datasetFileNames[0], &datasetFileNames[1], &datasetFileNames[2], &datasetFileNames[3]);
for(size_t i = 0; i < nBlocks; i++)
{
computestep1Local(i);
}
computeOnMasterNode();
printNumericTable(result->get(covariance::correlation), "Correlation matrix (upper left square 10*10) :", 10, 10);
printNumericTable(result->get(covariance::mean), "Mean vector:", 1, 10);
return 0;
}
void computestep1Local(size_t block)
{
CSRNumericTable *dataTable = createSparseTable<float>(datasetFileNames[block]);
/* Create an algorithm to compute a correlation matrix in the distributed processing mode using the default method */
covariance::Distributed<step1Local, algorithmFPType, covariance::fastCSR> algorithm;
/* Set input objects for the algorithm */
algorithm.input.set(covariance::data, CSRNumericTablePtr(dataTable));
/* Compute partial estimates on local nodes */
algorithm.compute();
/* Get the computed partial estimates */
partialResult[block] = algorithm.getPartialResult();
}
void computeOnMasterNode()
{
/* Create an algorithm to compute a correlation matrix in the distributed processing mode using the default method */
covariance::Distributed<step2Master, algorithmFPType, covariance::fastCSR> algorithm;
/* Set input objects for the algorithm */
for (size_t i = 0; i < nBlocks; i++)
{
algorithm.input.add(covariance::partialResults, partialResult[i]);
}
/* Set the parameter to choose the type of the output matrix */
algorithm.parameter.outputMatrixType = covariance::correlationMatrix;
/* Compute a partial estimate on the master node from the partial estimates on local nodes */
algorithm.compute();
/* Finalize the result in the distributed processing mode */
algorithm.finalizeCompute();
/* Get the computed correlation matrix */
result = algorithm.getResult();
}

For more complete information about compiler optimizations, see our Optimization Notice.