C++ API Reference for Intel® Data Analytics Acceleration Library 2019

cov_dense_batch.cpp

/* file: cov_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of dense variance-covariance matrix computation in the batch
! processing mode
!
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
const string datasetFileName = "../data/batch/covcormoments_dense.csv";
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &datasetFileName);
FileDataSource<CSVFeatureManager> dataSource(datasetFileName, DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create an algorithm to compute a dense variance-covariance matrix using the default method */
covariance::Batch<> algorithm;
algorithm.input.set(covariance::data, dataSource.getNumericTable());
/* Compute a dense variance-covariance matrix */
algorithm.compute();
/* Get the computed dense variance-covariance matrix */
covariance::ResultPtr res = algorithm.getResult();
printNumericTable(res->get(covariance::covariance), "Covariance matrix:");
printNumericTable(res->get(covariance::mean), "Mean vector:");
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.