Java* API Reference for Intel® Data Analytics Acceleration Library 2019

SVDDenseDistr.java

/* file: SVDDenseDistr.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of singular value decomposition (SVD) in the distributed
// processing mode
*/
package com.intel.daal.examples.svd;
import com.intel.daal.algorithms.svd.*;
import com.intel.daal.data_management.data.DataCollection;
import com.intel.daal.data_management.data.KeyValueDataCollection;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVDDenseDistr {
/* Input data set parameters */
private static final String[] dataset = { "../data/distributed/svd_1.csv", "../data/distributed/svd_2.csv",
"../data/distributed/svd_3.csv", "../data/distributed/svd_4.csv" };
private static final int nNodes = dataset.length;
private static DataCollection[] dataFromStep1ForStep2 = new DataCollection[nNodes];
private static DataCollection[] dataFromStep1ForStep3 = new DataCollection[nNodes];
private static DataCollection[] dataFromStep2ForStep3 = new DataCollection[nNodes];
private static KeyValueDataCollection inputForStep3FromStep2;
private static NumericTable S;
private static NumericTable V;
private static NumericTable[] U = new NumericTable[nNodes];
private static DistributedStep1Local svdStep1Local;
private static DistributedStep2Master svdStep2Master;
private static DistributedStep3Local svdStep3Local;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
for (int iNode = 0; iNode < nNodes; iNode++) {
computeStep1Local(iNode);
}
computeStep2Master();
for (int iNode = 0; iNode < nNodes; iNode++) {
computeStep3Local(iNode);
}
Service.printNumericTable("Singular values:", S);
Service.printNumericTable("Right orthogonal matrix V:", V);
Service.printNumericTable("Part of left orthogonal matrix U from 1st node:", U[0], 10);
context.dispose();
}
static void computeStep1Local(int i) {
/* Initialize FileDataSource to retrieve the input data from a .csv file */
FileDataSource dataSource = new FileDataSource(context, dataset[i],
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
/* Retrieve the input data */
dataSource.loadDataBlock();
/* Create an algorithm to compute SVD on local nodes */
svdStep1Local = new DistributedStep1Local(context, Float.class, Method.defaultDense);
/* Set the input data on local nodes */
NumericTable input = dataSource.getNumericTable();
svdStep1Local.input.set(InputId.data, input);
/* Compute SVD */
DistributedStep1LocalPartialResult pres = svdStep1Local.compute();
/* Get the results for next steps */
dataFromStep1ForStep2[i] = pres.get(PartialResultId.outputOfStep1ForStep2);
dataFromStep1ForStep3[i] = pres.get(PartialResultId.outputOfStep1ForStep3);
}
static void computeStep2Master() {
/* Create an algorithm to compute SVD on the master node */
svdStep2Master = new DistributedStep2Master(context, Float.class, Method.defaultDense);
/* Set the results calculated in step 1 */
for (int iNode = 0; iNode < nNodes; iNode++) {
svdStep2Master.input.add(DistributedStep2MasterInputId.inputOfStep2FromStep1, iNode,
dataFromStep1ForStep2[iNode]);
}
/* Compute SVD */
DistributedStep2MasterPartialResult pres = svdStep2Master.compute();
/* Get the result for step 3 */
for (int iNode = 0; iNode < nNodes; iNode++) {
dataFromStep2ForStep3[iNode] = pres.get(DistributedPartialResultCollectionId.outputOfStep2ForStep3, iNode);
}
Result result = svdStep2Master.finalizeCompute();
/* Get final singular values and a matrix of right singular vectors */
S = result.get(ResultId.singularValues);
V = result.get(ResultId.rightSingularMatrix);
}
static void computeStep3Local(int i) {
/* Create an algorithm to compute SVD on local nodes */
svdStep3Local = new DistributedStep3Local(context, Float.class, Method.defaultDense);
/* Set the results calculated in steps 1 and 3 */
svdStep3Local.input.set(DistributedStep3LocalInputId.inputOfStep3FromStep1, dataFromStep1ForStep3[i]);
svdStep3Local.input.set(DistributedStep3LocalInputId.inputOfStep3FromStep2, dataFromStep2ForStep3[i]);
/* Compute SVD */
svdStep3Local.compute();
Result result = svdStep3Local.finalizeCompute();
/* Get final matrices of left singular vectors */
U[i] = result.get(ResultId.leftSingularMatrix);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.