EMON User Guide

Intel Corporation
www.intel.com

Legal Information

EMON User Guide

Contents

Legal Information.....cccciiiciiiiimicinrssnse s snrs s srs s nra s sss s asa s snnnnssnannnnnns 4
ReViSion HiStOry..iiciiiciimetmsnsmsnssanssanssanssssssasssanssasssnnssnsssnnssnnssnnsnnnsnnnss 5
Chapter 1: About This Document
| L= g To [T I 8 o 1= oLl P 6
Related Information ... e e 6

Chapter 2: Usage

Informative OplioNS .. .o 7
—h [-list-event-modifiers]ccoiiiii e 7
—pmu-types [available] ..o 7
-1 [pmu-type] [-experimental | -all]...ccoviiiiiii e 7
-? | -H [pmu-type] [-experimental | -all]...ccooiiiiiiiii e 8
S VBNt MM > i e 8
T 0 11 S 9
e PP 9
kY2 9

Event Collection OptioNS. .. c.iiiiiiiii i i i e e 10
SC <eveNtl, eVENT, .. > e 10
e 0] 1Y w11 o 12
B 0] =TT M £ =1 1 (=P 13
U EIME N SEC> i e 13
e TR (0T 1= 14
L UM > e e 14
=S KAIAY > ittt e e 15
s S P 15
-Nb | ~NON-DBIOCKING v 15
e PP 15
Lo 1] 0 I BT YT o 0 o T [16
U0 I I B TY=T ol 0 T Yo [16
S 1= LU 1= P 16
L1151 U = 16
=1 10 L P 16

INPUL/OULPUL OPtiONS . ittt e e e aaas 16
- <OUEPUL il o 17
—F <oUEPUL il o 17
S INPUE Il e 17
Lo [P 17
kY2 P 17
NP 18
s T PP 18
] 18
S 18
Lo P 18
T PP 19
2 19
LU 19
S P 20

[IoTa o1 g Te @] o u 0] o 1= 20

Contents

--dump-driver-1og [file_Name]cciiiiiiiii i 20
--decode-driver-log [input_file] ...cociiiiiiiii 20
--extract-driver-log <input core dump> [output file]........ccooeviiiiiinnnnnn. 20
(0 T=T ol @ ol [0 o = PP 20
—eXPENMENEA .o e 20
S 911 gl 0 11 L] o} 20
B VZ=] 010 1= < PR 21

Chapter 3: Examples

= 1= T P 22
MUIti-group Core EVENES vt 22
Multi-group Core and UNncore EVENES ..ot s e e 23

Chapter 4: Help and Troubleshoot

Getting Started With EMONt e e i e as 24
(D =Tor= T gl L= B =T P 24
EXperimental EVeNES ..o e 24
Deprecated EVENES i 24

EMON User Guide

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

Intel, the Intel logo, Intel Atom, Intel Core, Intel Xeon Phi, VTune and Xeon are trademarks of Intel
Corporation in the U.S. and/or other countries.

*QOther names and brands may be claimed as the property of others.

Intel, the Intel logo, Intel Atom, Intel Core, Intel Xeon Phi, VTune and Xeon are trademarks of Intel
Corporation in the U.S. and/or other countries.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
Copyright 2015-2018 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed
by the express license under which they were provided to you (License). Unless the License provides
otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other
than those that are expressly stated in the License.

Revision History

Revision History

Revision Description Revision Date
Number
1.0 Initial release. January 2013
2.0 Completed major documentation updates and renamed to February 2016
EMON User’s Guide.
Added Installation and Examples chapters.
Updated examples in section 2.2 General Options: Collection.
2.1 Added and removed event modifiers. February 2017
2.2 Updated SEP driver version. April 2017
2.3 Updated examples in chapters 3 and 4. September 2017
2.4 Updated the guide with missing options and added June 2018

description where required.

1 EMON User Guide

About This Document

EMON is a low-level command-line tool that provides the ability to profile application and system
performance. The tool leverages counters from hardware Performance Monitoring Units (PMUs) to collect
performance monitoring events.

Users have the option of specifying hardware events and attributes. EMON allocates and configures the
required event resources in the PMU to retrieve event counts from the processor core and uncore. The tool
collects the number of occurrences of selected events for the duration of collection.

Intended Audience

This document is intended for developers who use EMON to analyze performance data.

Related Information

For information on Performance Monitoring Unit (PMU), go to http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.html.

Usage 2

Usage

Use EMON with the following syntax:

emon [general-options] -C "event-definitions" [application-command-line]

The following example collects event data for INST RETIRED.ANY and BR_INST RETIRED.ALL BRANCHES for
a default duration of 3 s:

The output from EMON can be visualized as a table with multiple columns, as shown in the following image:

—bash-4.2% emon -C "INST RETIRED.ANY,BR INST RETIRED.ALL BRANCHES"
Version Info: public Vv10.1.0 (Feb 1 2018 at 10:02:03) Intel(R) Processor code n
amed Skylake M:94 5:0

INST RETIRED.ANY 6,624,328,106 274,851,528 471,225 42,430,304 2
7,446,155 34,653 18,628,052 ©93,730 584,915

BR_INST RETIRED.ALL BRANCHES 6,624,328,106 68,725,647 87,641 7,221,01
5 5,068,433 6,467 3,438,193 122,322 119, %68

3.000s5 real

The first column of EMON output contains the event name, and the second column contains clockticks spent
during collection duration (6,624,328,106 in our example) followed by event counts on each processor core/
uncore unit. In this example, the platform contains eight logical cores. An event count column corresponds to
each core.

Informative Options

This section lists all EMON options with examples to illustrate the behavior of certain options.

-h [-list-event-modifiers]

Display help information. The tool lists and describes all supported event modifiers if the sub-option -1ist-
event-modifiers is specified. For details on event modifiers, see Event Modifiers.

—pmu-types [available]

Display the PMU types supported by the platform. Add the ‘available’ parameter to display PMU types
available on the current system.

-1 [pmu-type] [-experimental | -all]

List the event names that can be monitored on the host platform. This command excludes events that are
not available in the system even though the tool supports their collection. For example, if a system does not
have an FPGA, all events related to FPGA are ignored.

-bash-4.25 emon -1

INST RETIRED.ANY

CPU_CLE UNHALTED.THREAD

CPU CLK UNHALTED.THREAD ANY

CPU_CLK UNHALTED.REF TSC

LD BLOCKS.STORE FORWARD

LD BLOCKS.NO SR

2 EMON User Guide

Event list can be filtered by adding a PMU type from —-pmu-types command. For example:

emon -1 core

Experimental events are those events that have not been validated in hardware. To list experimental along
with regular events, use the following command:

emon -1 -experimental

To list all events that the tool supports on the current platform, use the following command:

emon -1 -all

NOTE With -al1l option, the command lists experimental events, deprecated events, template events,
and all other events enabled for the given platform.

-? | -H [pmu-type] [-experimental | -all]

Print events that can be monitored on the host platform along with a brief description. This command
excludes events that are not available in the system even though the tool provides support for them. For
example, if a system does not have an FPGA, all events related to FPGA are ignored.
-bash-4.2%5 emon -7
INST RETIRED.ANY

Instructions retired from execution.

CPU_CLK UNHALTED.THREAD
Core cycles when the thread is not in halt state

CPFU CLK UNHALTED.THREARD ANY
Core cycles when at least one thread on the physical core is not in halt

state.

Event list can be filtered by adding a PMU type from -pmu-types command.
For example:

emon -? core

Experimental events are those events that have not been validated in hardware. To list experimental along
with regular events, use the following command:

emon -? -experimental

To list all events that the tool supports on the current platform, use the following command:

emon -? -all

NOTE This command lists experimental events, deprecated events, template events, and all other
events enabled for the given platform.

-1 <event name>

Print description of a given event.

—bash-4.25 emon —! INST RETIRED.ZANY

INST_RETIRED.ANY
Instructions retired from execution.

If the given event does not have the relevant hardware support in the current system, EMON displays a
warning saying that the event is not available for collection in the system.

Usage 2

--dry-run

Lists event groups with names of events that will be scheduled together. In the following example, EMON
splits the command execution into two runs. The first execution includes events under Event Set 0, and
second execution includes those under Event Set 1.

-M

Print the operating system (OS) processor to hardware logical/physical processor mapping.

-V

Display build and version information of the tool along with other details about the hardware platform. This
option also prints OS processor to hardware logical/physical processor mapping.

2 EMON User Guide

Event Collection Options

EMON collects event data for processor core and uncore. This section lists all EMON options related to data
collection with examples to illustrate the behavior of certain options.

-C <event1l,event2,...>

Specify one or more events for which the performance data will be collected. Events to monitor can
optionally be embedded within double-quotes (") and should be separated by a comma (,). Both core and
uncore events can be specified for monitoring. However, when user specifies only uncore events in the
command line, the tool collects all the fixed core events along with the specified uncore events.

-bash-4.2% emon -C "INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCH.ES"
Version Info: public Vv10.1.0 (Feb 1 2018 at 10:02:03) Intel(R) Processor code n
amed Skylake M:94 5:0

INST RETIRED.ANY 6,624,328,106 274,851,528 471,225 42,430,304 2
7,446,155 34,653 18,628,052 693,730 584,915

BR_INST RETIRED.ALL BRANCHES 6,624,328,106 68,725,647 87,641 7,221,01
5 5,068,433 6,467 3,438,193 122,322 119, %68

3.000s real

Data Collection and Event Multiplexing

The number of events that can be monitored simultaneously in a single run is limited by the number of
hardware performance counters in the PMU of a processor. Certain events have restrictions that disallows
their programming in all counters.

To overcome the limitation of available performance counters on the hardware, EMON splits events into
multiple event groups. Each group consists of events that can be collected simultaneously in a single run.
The tool schedules an independent data collection for each event group. Events are split in to multiple groups
under following two conditions:

o If all events specified in the command line cannot fit into available performance counters on the platform,
the tool automatically splits them in to multiple groups.

e User can control splitting of events in to groups while specifying event lists in the command line. To do so,
use a semicolon to demarcate group separation instead of using a comma. To understand this use case,
see Multi-group Core Events.

Event Modifiers

Individual core/uncore event behavior can be modified using modifiers. The [:modifier=val] option
enables you to specify individual event modifiers along with the respective values for a given platform.

Event modifiers are attached to event names delimited by a colon (:). They may or may not take values.
Where applicable, values are of the following format: <yes/no>, <0/1>, <dec/hex values>. In some
special cases explicitly mentioned, they could take other string values.

Basic Event Modifiers

The following table lists the basic event modifiers and provides a short description of each modifier.

Modifier Description

:USER | Specifies that events are counted only when the processor is operating at privilege
levels 1, 2, or 3. This flag can be used in conjunction with the SUP flag.

cusr=<0/1>

10

Usage 2

Modifier Description

:SUP| :0s Specifies that events are counted only when the processor is operating at privilege level
0. This flag can be used in conjunction with the USER flag.

:ALL Event data is collected regardless of the current privilege level.

:cp In Check Point. When this modifier is specified, the data result will not include counts
that occurred inside of an aborted Transactional Synchronization eXtensions (TSX)
region.

ttx In Transaction. When this modifier is specified, the data result will only include counts

that occurred inside a TSX region, regardless of whether that region was aborted or
committed.

Advanced Event Modifiers

The following table lists the event modifiers for more advanced users with an understanding of hardware

PMU.

Modifier

Description

ramt<0/1>

:c<cmask>

:e<0/1>

:1<0/1>

ru<umask>

:p<0/1>

Sets (1) or clears (0) the event’s Any Thread control bit. A value of 0
causes the event to be counted on a per logical core basis, when applicable.
A value of 1 causes the event to be counted on a per physical core basis.

Value that will be compared to the count of the specified event during a
single cycle per core. If the event count is greater than or equal to this
value, the counter is incremented by one; otherwise, the counter is not
incremented. The value must be in the range of 0x0 to Oxff.

Enables edge detection of the selected event when set. This counts the
number of times the condition (specified with the cmask and invert values)
switched from false to true (only during the rising edge).

Edge detection can only be enabled when CMASK and ANYTHR flags are
set.

For example,
emon -11 -t0.1 -C "MACHINE CLEARS.COUNT,
MACHINE CLEARS.COUNT:amtl:el:cl"

When the invert flag is set, inverts : ¢ <cmask> comparison, so that both
greater than or equal to and less than comparisons can be made (<0>:
greater than equal to comparison, <1>: less than comparison).

Invert flag is ignored when :c<cmask> is programmed to 0. A value of O
disables invert and 1 enables it.

<umask> indicates the value of the event’s unit mask to identify a specific
microarchitectural condition. The <umask> value must be in the range 0x0
to Oxff.

When set, enables toggling of PMi pin for each event occurrence rather than
during counter overflow.

11

2 EMON User Guide

Modifier

Description

:request=<request name
as string>

:response=<response
name as string>

:t=<threshold num>

:rx_match=<value>
:rx_mask=<value>
:tx match=<value>

:tx mask=<value>
:state=<value>
rtid=<value>
:filterO=<value>
:filterl=<value>

:nc=<value>

:opc=<value>

:nid=<value>

:msr=<msr_index>

:scope=<thread/
Module/package>
:type=<static/
Freerun>
:ccst_debug=

<hex num>

Programming request type in the off-core response facility for a transaction
request to the uncore. The request type specification must be accompanied
by a response type.

Programming response type in the off-core response facility for a
transaction request to the uncore. The response type specification must be
accompanied by a request type.

Threshold programming for uncore PMON_CTLXx register. For events that
increment more than 1 per cycle, if the threshold value is greater than 1,
the data register will accumulate instances in which the event increment is
>= threshold.

Modifiers are all applicable to uncore Intel® QuickPath Interconnect (Intel®
QPI) for programming filter registers.

Applicable to uncore CHA to program state bit field of filter MSR_O.
Applicable to uncore CBO to program tid bit field of filter MSR_O.
Applicable to CBO/CHA to program filter MSR_O.

Applicable to CBO/CHA to program filter MSR_1.

Applicable to CBO/CHA to filter non-coherent requests by programming nc
bit field of filter MSR_1.

Applicable to CBO/CHA to filter events based on their OPCODE by
programming opc bit field of filter MSR_1.

Applicable to CBO/CHA to filter events by programming nid bit field of filter
MSR_1.

Read static and freerun event counts based on msr index provided in the
command line.

Set scope for power events specified through :msr event modifier. The
scope needs to be one of the 3 strings from the modifier column.

Set type of power events specified through :msr event modifier. The event
type needs to be one of 2 string from the modifier column.

Applicable to Power Control Unit (PCU) for programming debug MSR.

-preset-list

Presets are predefined event sets made available by the tool. This option lists all available presets.

12

Usage 2

-preset <name>

Collect data for the given preset. To obtain available presets, use emon -preset-1list command. Presets
cannot be used along with -C option. When presets are used in combination with -v or -S options, EMON
generates spreadsheet-friendly output.

-t <time in sec>

Time (seconds) that an event set is monitored for. Default value is 3 s. To run EMON for the duration of
application execution, use -t0 along with an application. EMON Kkills the application after it finishes executing
all given event sets for the specified duration when -t0 is not specified.

The following command executes until matrix application finishes:
emon -t0 -C "INST RETIRED.ANY" matrix "4 4096"
The following command kills the application and terminates after 10 s:

emon -tl0 -C "INST RETIRED.ANY" matrix "4 4096"

13

2 EMON User Guide

-l <loops>
The number of times each event set is monitored. Default value is 1. Event sets are interleaved.

For example, if two events sets A and B are specified and time equals 4 and loops equal 2, event set A is
monitored for 4 seconds, and then event set B is monitored for 4 seconds, and then event set A is monitored
for 4 seconds, and, finally, event set B is monitored for 4 seconds.

-bash-4.25 emon -t4 -12 -C "INST RETIRED.ANY,BR INST RETIRED.ALL BRANCHES"

Version Info: public Vv10.1.0 (Feb 1 2018 at 10702:05) Intel (R) Processor code named 3
kylake M:94 S5:0

INST RETIRED.ANY 8,832,408,718 402,554,887 319,429 1,557,350 56,881
466 1,493 24,947,222 1,322,551 246,641

BR_INST RETIRED.ALL BRANCHES 8,6832,408,718 98,360,811 52,483 287,100 9,662,
202 291 4,610,595 248,737 44,103

INST RETIRED.ANY 8,832,171,044 402,845,212 339,033 2,483,690 56,617
, 358 1,493 25,033,773 521,139 83,362

BR_INST RETIRED.ALL BRANCHES 8,6832,171,044 98,461,085 55,996 479,673 9,614,
240 291 4,627,796 161,736 15,905

8.000s5 real

When launched with an application and the total monitoring time is less than application execution time,
EMON Kkills the application after executing all loops. In the following example, each loop runs for 3 s for a
total duration of 6 s, after which EMON would kill matrix application and exit:

emon -12 -C "INST RETIRED.ANY" matrix "16 8192"

When specified with an application and the total monitoring time is greater than application execution time,
EMON continues executing loops in the remaining time. In the following example, each loop runs for 3 s for a
total duration of 30 s while matrix application is expected to finish much sooner:

emon -110 -C "INST RETIRED.ANY" matrix "2 1024"

When specified with time 0 s and an application, EMON executes each loop for the duration of application
execution. For example, in the following command assuming matrix application takes about 6 s to complete,
each loop could run for ~6 s for a total duration of 18 s:

emon -t0 -13 -C "INST RETIRED.ANY" matrix "2 1024"

-L <time>

Range for random delay of the monitor interval, specified in seconds. A random delay of 0 s to <time> is
introduced between each sample. When used, each monitor interval is the value of the -t switch plus the
random delay between 0 and <time> milliseconds. Defaults to 0 m. This functionality will be automatically
disabled if -t switch issetto O s.

14

Usage 2

-s <delay>

One time delay in seconds before monitoring is started.

-wW

Limit loops. The number of loops is limited by the application's execution time. For example, if the total
monitoring time specified by the time and loop switches is greater than the actual application execution time,
the collection is stopped after the application exits.

NOTE In the example below, even with -110, EMON exits after first loop.

-nb | -non-blocking
Start EMON collection in the background.

-p
Start EMON in paused state. If collection is never resumed, EMON exits after monitoring interval ends. In the
following example, EMON would exit after 3 s if the collection is never resumed using emon -resume.

15

2 EMON User Guide

-bash-4.25 emon -p -C "INST RETIRED.ANY"
Version Info: public V10.1.0 (Feb 1 2018 at 10:02:03) Intel(R) Processor code named S
kylake M:94 5:0

Emon collector successfully paused.
Emon collector was started in PRUSE mode and never RESUMED

-osm | -os-mode

Collect data for operating system processes only.

-um | -user-mode

Collect data for user-mode processes only.

-pause

When EMON is running in non-blocking mode or in the background, use emon -pause to pause a running
collection.

If EMON is running in the foreground, use the following steps to pause collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep_vars. sh file in the
current Bash* shell.

For example, if EMON is installed in /opt/intel/emon, source /opt/intel/emon/sep vars.sh.
2. From the new shell, issue emon -pause to pause collection.

Collection ends if the total monitoring time elapses while paused.

-resume

When EMON is running in non-blocking mode or in the background, use emon -resume to resume a paused
collection.

If EMON is running in the foreground, use the following steps to resume collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep_vars. sh file in the
current Bash* shell.

For example, if EMON is installed in /opt/intel/emon, source /opt/intel/emon/sep vars.sh.
2. From the new shell, issue emon -resume to resume collection.

-stop

When EMON is running in non-blocking mode or in the background, use emon -stop to stop a running
collection.

If EMON is running in the foreground, use the following steps to stop collection:

1. Open a Bash* shell, and then set up EMON run time environment by sourcing sep vars.sh file in the
current Bash* shell.

For example, if EMON is installed in /opt/intel/emon source /opt/intel/emon/sep vars.sh.
2. From the new shell, issue emon -stop to stop collection.

Input/Output Options

This section lists all options related to tool input/output with examples to illustrate the behavior of certain
options. The default output mode is text-based command-line output. Additionally, EMON provides options to
generate text or spreadsheet output in to files.

16

Usage 2

-f <output file>

EMON output is written to <output file>. The -f switch creates a new output file.

-F <output file>

EMON output is appended to <output file>. If <output file> does not exist, it will be created.

-i <input file>

EMON command-line arguments are provided by <input file>. Comments are indicated with a hashtag
(#) . All text following a hashtag in an input file is ignored.

Create an input text file with desired options. Input options can be separated by spaces or new lines. Event
list following -C can either use a new-line separator or a comma (,). Use a semicolon (;) to start a new
group.

-qg -¢ -t0.1 -1100000

=7 (

group 1

INST_RETIRED.ANY

CPU_CLK_UNHALTED.REF_TSC

CPU_CLK_UNHALTED. THREAD_ANY

IDQ _UOPS_NOT_DELIVERED.CORE

UOPS_ISSUED. ANY

group 2
INST_RETIRED.ANY
CPU_CLK_UNHALTED.REF_T5C
CPU_CLK_UNHALTED. THREAD
UOPS_EXECUTED. THREAD

)

-q

Default text output to command line. Minimal information is output.

-V

EMON generates output in a spreadsheet-friendly format. Use -f or —-F options to create spreadsheet-friendly
output files.

In this mode, data is hierarchically presented (packages->devices->Specific Core/Uncore units-
>event counts), making it easier to observe event counts on a particular core or uncore unit.

#5TART OF COLLECTION
timestamp packaged
core
epoch timestamp CPUOD CPUL
INST_RETIRED.ANY CPU_CLK_UNHALTED.REF_TSC |INST_RETIRED.ANY CPU_CLK_UNHALTED.REF_TSC
1513339162 91383522 203404 690042 1012915 1101392
1513339162 91578992 130092 333748 70126 309016
1513339162 91539592 206355 653220 989880 290416
1513339162 91533148
1513339162 91416858 202878 432668 1185631 933560
1513339162 91404752 216053 417924 3765 9500
1513339162 91502090 4545325 6282312 3421485 4038526

17

2 EMON User Guide

-A

Display normalized event counts across all groups and loops in quiet mode output format.
-bash-4.25 emon -C "INST_BETIRED.ANY;CPU_CLK_UNHALTED.REF_ISC,BR_INST_BETIRED.AL
L BRANCHES" -A -12

Version Info: public V10.1.0 (Feb 1 2018 at 10:02:03) Intel(R) Processor code n
amed Skylake M:94 5:0

INST RETIRED.ANY 26,496,917,642 1,158,248,352 91,805, 388 40,546, 3
38 170,800,158 140,754 438,728 2,617,788 4,646,138

CPU CLK UNHALTED.REF TSC 26,496,917,642 1,001,455,072 92,137,264 3
3,349,448 130,950,224 107,272 22,264 3,483,488 3,424,240

BR _INST RETIRED.ALL BRANCHES 26,496,917,642 289,739,752 16,272,750 5
148, 626 29,036,688 9,358 1,392 431, €10 707,630

12.000s real

To calculate the final counts:

1. Calculate normalized count for each event across groups (i.e., add counts of all occurrences of an event
across groups and divide the accumulated value by actual humber of occurrences of that event in the

groups).

2. Multiply normalized count by total number of scheduled groups.

3. If there is more than one loop, repeat steps 1 and 2 for each loop and add corresponding event counts
from each loop.

-S

Compute-tool defined performance metrics using normalized event counts and display in a semicolon-
separated, spreadsheet-friendly format. The normalized event counts are calculated from raw event counts
described in -2 option. Use -f or -F options to create spreadsheet-friendly output files.

emon -preset pgx -S

-Sr

Behaves similar to -s option but additionally stores and displays raw event counts in a spreadsheet-friendly
format.

emon -preset pgx -Sr ./raw counts file.csv -f ./metrics file.csv

-X

Spreadsheet-friendly format. The results are output in tab-separated format. This only works for single group
collection.

-C

Print system time (date-time) for each time interval. It is only available in the command-line output.

18

Usage 2

-d

Results are printed in formatted decimal. Formatted decimal includes comma separators. Formatted decimal
is the default.

-Nn

Print wall clock, user, and system time for each time interval. It is only available in the command-line output.

Results are printed in unformatted decimal. Unformatted decimal does not include comma separators.

19

2 EMON User Guide

=X

Results are printed in hex with a leading '0x'.

Logging Options

--dump-driver-log [file_name]

Dump the contents of the sampling driver’s internal log to the given file in binary format. Default file name is
driver log.dump if none specified.

emon --dump-driver-log

--decode-driver-log [input_file]

Decode the log buffer dump to text format. Default file to decode would be driver log.dump if none is
specified.

emon --decode-driver-log

--extract-driver-log <input core dump> [output file]

Identifies and extracts the most recent instance of the driver log from the specified uncompressed core dump
into the output file. Default output file is driver log.dump if none specified.

emon --extract-driver-log ./core.dump

Other Options

-experimental

Experimental events are those events that have not been validated in hardware. When used with emon -1,
all available experimental events are displayed along with regular events. To list experimental along with
regular events, use the following command:

emon -1 -experimental
To run collection on experimental events, use:

emon -C "<EVENT1,EVENT2>" -experimental

--per-cpu-tsc
Display timestamp counter value on each core.

-bash-4.25 emon —-per-cpu-tsc —-C CPU CLK UNHALTED.REF TSC
Version Info: private V10.1.5 (Feb 7 2018 at 10:20:23) Intel(R) Processor code
named Skylake M:94 5:0

T5C VALUE 6,624,421,270 6,624,421,270 6,624,422,342 6,624,422,5%92 6
, 624,422,840 6,624,424,212 6,624,422,464 6,624,422,774 6,624,422,694
CPU CLE UNHALTED.REF TSC 6,624,421,270 238,880,068 21,227,344 1
4,733,616 35,609,888 384,008 98,072 3,766,112 91,816

3.000s real

20

Usage 2

-verbose
Display EMON output in verbose mode.

21

3 EMON User Guide

Examples

This chapter describes the most common EMON use cases.

Basic

This is the most basic EMON command to run a collection.

-bash-4.2% emon -C "CPU CLK UNHALTED.REF TSC"
Version Info: public Vv10.1.0 (Feb 1 2018 at 10:02:03) Intel(R) Processor code n
amed Skylake M:94 5:0

CPU CLK UNHALTED.REF TSC 6,624,417,122 259,372,748 465,060 1,634,10
4 32 804,440 369,840 23,364,872 1,093,144 106, 9%6
3.000s5 real

If not otherwise specified, EMON will monitor once for an interval of 3 s. To change either the interval length
or the number of intervals (or loops), use the -t or -1 options, respectively.

The basic command creates the data output in quiet mode, which means a minimal amount of output. To
print out the headers for importing into a spreadsheet, specify the spreadsheet mode with the -x flag.

-bash-4.25 emon -C "CPU CLK UNHALTED.REF TSC" -X

Sample Clocks CPU CLK UNHALTED.REF TSC[CPUO] CPU CLK UNHALTED.REF TSC[CPUl] C
PU CLK UNHRLTED.REF TSC[CPUZ] CPU CLK UNHALTED.REF TSC[CPU3] CPU CLK UNHALTED
-REF TSC[CPU4] CPU_CLK UNHALTED.REF TSC[CPUS] CPU_CLK UNHALTED.REF TSC[CPUG] c
PU CLK UNHALTED.REF TSC[CPU?]

1 6,624,180,154 250,550,132 9,470,296 1,108,968 32,837,2
84 13,784 23,350,152 961,492 425,500

Multi-group Core Events

Events can be broken in to multiple groups forcibly through command line or automatically scheduled in to
multiple groups by the tool due to hardware counter restrictions. EMON command launches multiple groups
forcibly as shown below (note the semicolon (:) instead of comma (,):

-bash-4.25 emon -C "INST " RETIRED.ANY;BR INST RETIRED.ALL BRANCHES"
Version Info: public v10.1.0 (Feb 1 2018 at 10:02: 03) Intel{R) Processor code n
amed Skylake M:94 5:0

INST RETIRED.ANY 6,624,410,488 274,984,311 1,218,972 27,115,8
27 42,626,387 3,627 1,815 ©99,888 19,076,530

BR _INST RETIRED.ALL BRANCHES 6,624,183, 628 69,023,582 218,417 5,111,40
6 7,240,253 10,010 348 436,437 3,438,438

©.000s real

Assuming a CPU core has four general purpose (GP) counters, the tool can program only four GP events in a
single iteration of event collection. The remaining events will be moved into new groups. EMON performs
multiple runs for each group. In the following example, the GP event UOPS_ISSUED.ANY is scheduled in a
second run.

22

Examples 3

Multi-group Core and Uncore Events

The number of events programmed in each group for a device depends on available counters on that device.
For example, group 0 could have 4 GP events on a core, 2 GP events per CBO unit, 1 GP event per PCU unit,
and so on. In the following example, the first group has 4 GP events on a core and 2 GP events on CBO. The

remaining core and CBO events are scheduled in the next group.

4 EMON User Guide

Help and Troubleshoot

This chapter provides helpful tips and troubleshooting guidance.

Getting Started With EMON

To get started with EMON:

1. Identify hardware events of interest using emon -1/-7? options.

NOTE For details on event descriptions, see Intel® Software Developer’s Manual (Intel® SDM)
documentation. Events mentioned in the examples in this guide may not work on all platforms since
each platform has its own event lists.

2. Identify processor and memory configuration using emon -v.
3. Refer to the applicable sections in this document or use emon -h to understand the available tool
options and example usages.

Discarded Events

The following situations could result in discarded events:

e An event could be discarded if it is not available on the platform. If an event is discarded due to this
reason, the event will not be displayed by emon -1.

e An event could be discarded if the system does not come with the device types that support the event.
For example, if a system does not come with FPGA units, FPGA events would be discarded.

e If it is a private event and needs special access privileges. In such a case, the event will not be displayed
by emon -1. By using an non-disclosure agreement (NDA) release package, this problem can be resolved.

Experimental Events

Some events are available as experimental events if they are not verified in the hardware. These events are
not displayed by emon -1. To get event list along with available experimental events use, emon -1 -
experimental or emon -1 -all. To collect data on experimental events, use emon -C -experimental.

Deprecated Events

Certain events are marked deprecated by the tool. EMON will stop supporting deprecated events in future
product releases. The tool provides replacement suggestions in place of deprecated events. To obtain a list of
deprecated events, use emon -2 and look for "deprecated" string.

24

	Legal Information
	Contents
	Revision History
	About This Document
	Intended Audience
	Related Information

	Usage
	Informative Options
	–h [-list-event-modifiers]
	–pmu-types [available]
	-1 [pmu-type] [-experimental | -all]
	-? | -H [pmu-type] [-experimental | -all]
	-! <event name>
	--dry-run
	-M
	-v

	Event Collection Options
	-C <event1,event2,...>
	-preset-list
	-preset <name>
	-t <time in sec>
	-l <loops>
	-L <time>
	-s <delay>
	-w
	-nb | -non-blocking
	-p
	-osm | -os-mode
	-um | -user-mode
	-pause
	-resume
	-stop

	Input/Output Options
	-f <output file>
	-F <output file>
	-i <input file>
	-q
	-V
	-A
	-S
	-Sr
	-X
	-c
	-d
	-n
	-u
	-x

	Logging Options
	--dump-driver-log [file_name]
	--decode-driver-log [input_file]
	--extract-driver-log <input core dump> [output file]

	Other Options
	-experimental
	--per-cpu-tsc
	-verbose

	Examples
	Basic
	Multi-group Core Events
	Multi-group Core and Uncore Events

	Help and Troubleshoot
	Getting Started With EMON
	Discarded Events
	Experimental Events
	Deprecated Events

