C++ API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

low_order_moms_csr_online.cpp

/* file: low_order_moms_csr_online.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of computing low order moments in the online processing mode.
!
! Input matrix is stored in the compressed sparse row (CSR) format with
! one-based indexing.
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
const size_t nBlocks = 4;
const string datasetFileNames[] =
{
"../data/online/covcormoments_csr_1.csv",
"../data/online/covcormoments_csr_2.csv",
"../data/online/covcormoments_csr_3.csv",
"../data/online/covcormoments_csr_4.csv"
};
void printResults(const low_order_moments::ResultPtr &res);
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 4, &datasetFileNames[0], &datasetFileNames[1], &datasetFileNames[2], &datasetFileNames[3]);
/* Create an algorithm to compute low order moments in the online processing mode using the default method */
low_order_moments::Online<float, low_order_moments::fastCSR> algorithm;
for(size_t i = 0; i < nBlocks; i++)
{
CSRNumericTable *dataTable = createSparseTable<float>(datasetFileNames[i]);
/* Set input objects for the algorithm */
algorithm.input.set(low_order_moments::data, CSRNumericTablePtr(dataTable));
/* Compute partial low order moments estimates */
algorithm.compute();
}
/* Finalize the result in the online processing mode */
algorithm.finalizeCompute();
/* Get the computed low order moments */
low_order_moments::ResultPtr res = algorithm.getResult();
printResults(res);
return 0;
}
void printResults(const low_order_moments::ResultPtr &res)
{
printNumericTable(res->get(low_order_moments::minimum), "Minimum:");
printNumericTable(res->get(low_order_moments::maximum), "Maximum:");
printNumericTable(res->get(low_order_moments::sum), "Sum:");
printNumericTable(res->get(low_order_moments::sumSquares), "Sum of squares:");
printNumericTable(res->get(low_order_moments::sumSquaresCentered), "Sum of squared difference from the means:");
printNumericTable(res->get(low_order_moments::mean), "Mean:");
printNumericTable(res->get(low_order_moments::secondOrderRawMoment), "Second order raw moment:");
printNumericTable(res->get(low_order_moments::variance), "Variance:");
printNumericTable(res->get(low_order_moments::standardDeviation), "Standard deviation:");
printNumericTable(res->get(low_order_moments::variation), "Variation:");
}

For more complete information about compiler optimizations, see our Optimization Notice.