Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

QRDenseDistr.java

/* file: QRDenseDistr.java */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of computing QR decomposition in the distributed processing
// mode
*/
package com.intel.daal.examples.qr;
import com.intel.daal.algorithms.qr.*;
import com.intel.daal.data_management.data.DataCollection;
import com.intel.daal.data_management.data.KeyValueDataCollection;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class QRDenseDistr {
/* Input data set parameters */
private static final String[] dataset = { "../data/distributed/qr_1.csv", "../data/distributed/qr_2.csv",
"../data/distributed/qr_3.csv", "../data/distributed/qr_4.csv" };
private static final int nNodes = dataset.length;
private static DataCollection[] dataFromStep1ForStep2 = new DataCollection[nNodes];
private static DataCollection[] dataFromStep1ForStep3 = new DataCollection[nNodes];
private static DataCollection[] dataFromStep2ForStep3 = new DataCollection[nNodes];
private static KeyValueDataCollection inputForStep3FromStep2;
private static NumericTable R;
private static NumericTable[] Qi = new NumericTable[nNodes];
private static DistributedStep1Local qrStep1Local;
private static DistributedStep2Master qrStep2Master;
private static DistributedStep3Local qrStep3Local;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
for (int iNode = 0; iNode < nNodes; iNode++) {
computeStep1Local(iNode);
}
computeStep2Master();
for (int iNode = 0; iNode < nNodes; iNode++) {
computeStep3Local(iNode);
}
/* Print the results */
printResults();
context.dispose();
}
static void computeStep1Local(int block) {
/* Initialize FileDataSource to retrieve the input data from a .csv file */
FileDataSource dataSource = new FileDataSource(context, dataset[block],
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
NumericTable input = dataSource.getNumericTable();
/* Create an algorithm to compute QR decomposition on local nodes */
qrStep1Local = new DistributedStep1Local(context, Float.class, Method.defaultDense);
qrStep1Local.input.set(InputId.data, input);
/* Compute QR decomposition */
DistributedStep1LocalPartialResult pres = qrStep1Local.compute();
dataFromStep1ForStep2[block] = pres.get(PartialResultId.outputOfStep1ForStep2);
dataFromStep1ForStep3[block] = pres.get(PartialResultId.outputOfStep1ForStep3);
}
static void computeStep2Master() {
/* Create an algorithm to compute QR decomposition on the master node */
qrStep2Master = new DistributedStep2Master(context, Float.class, Method.defaultDense);
for (int iNode = 0; iNode < nNodes; iNode++) {
qrStep2Master.input.add(DistributedStep2MasterInputId.inputOfStep2FromStep1, iNode,
dataFromStep1ForStep2[iNode]);
}
/* Compute QR decomposition */
DistributedStep2MasterPartialResult pres = qrStep2Master.compute();
inputForStep3FromStep2 = pres.get(DistributedPartialResultCollectionId.outputOfStep2ForStep3);
for (int iNode = 0; iNode < nNodes; iNode++) {
dataFromStep2ForStep3[iNode] = (DataCollection)inputForStep3FromStep2.get(iNode);
}
Result result = qrStep2Master.finalizeCompute();
R = result.get(ResultId.matrixR);
}
private static void computeStep3Local(int block) {
/* Create an algorithm to compute QR decomposition on the master node */
qrStep3Local = new DistributedStep3Local(context, Float.class, Method.defaultDense);
qrStep3Local.input.set(DistributedStep3LocalInputId.inputOfStep3FromStep1, dataFromStep1ForStep3[block]);
qrStep3Local.input.set(DistributedStep3LocalInputId.inputOfStep3FromStep2, dataFromStep2ForStep3[block]);
/* Compute QR decomposition */
qrStep3Local.compute();
Result result = qrStep3Local.finalizeCompute();
Qi[block] = result.get(ResultId.matrixQ);
}
private static void printResults() {
Service.printNumericTable("Part of orthogonal matrix Q from 1st node:", Qi[0], 10);
Service.printNumericTable("Triangular matrix R:", R);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.