Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

DtRegTraverseModel.java

/* file: DtRegTraverseModel.java */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of decision tree regression model traversal
//
// The program trains the decision tree regression model on a training
// datasetFileName and prints the trained model by its depth-first traversing.
*/
package com.intel.daal.examples.decision_tree;
import com.intel.daal.algorithms.tree_utils.regression.TreeNodeVisitor;
import com.intel.daal.algorithms.tree_utils.regression.LeafNodeDescriptor;
import com.intel.daal.algorithms.tree_utils.SplitNodeDescriptor;
import com.intel.daal.algorithms.decision_tree.regression.Model;
import com.intel.daal.algorithms.decision_tree.regression.prediction.*;
import com.intel.daal.algorithms.decision_tree.regression.training.*;
import com.intel.daal.algorithms.decision_tree.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import com.intel.daal.data_management.data.*;
class DtRegPrintNodeVisitor extends TreeNodeVisitor {
@Override
public boolean onLeafNode(LeafNodeDescriptor desc) {
if(desc.level != 0)
printTab(desc.level);
System.out.println("Level " + desc.level + ", leaf node. Response value = " + desc.response +
", Impurity = " + desc.impurity + ", Number of samples = " + desc.nNodeSampleCount);
return true;
}
public boolean onSplitNode(SplitNodeDescriptor desc){
if(desc.level != 0)
printTab(desc.level);
System.out.println("Level " + desc.level + ", split node. Feature index = " + desc.featureIndex + ", feature value = " + desc.featureValue +
", Impurity = " + desc.impurity + ", Number of samples = " + desc.nNodeSampleCount);
return true;
}
private void printTab(long level) {
String s = "";
for (long i = 0; i < level; i++) {
s += " ";
}
System.out.print(s);
}
}
class DtRegTraverseModel {
/* Input data set parameters */
private static final String trainDataset ="../data/batch/decision_tree_train.csv";
private static final String pruneDataset ="../data/batch/decision_tree_prune.csv";
private static final int nFeatures = 5; /* Number of features in training and testing data sets */
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
TrainingResult trainingResult = trainModel();
printModel(trainingResult);
context.dispose();
}
private static TrainingResult trainModel() {
/* Retrieve the data from the input data sets */
FileDataSource trainDataSource = new FileDataSource(context, trainDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and dependent variables */
NumericTable trainData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Retrieve the pruning data from the input data sets */
FileDataSource pruneDataSource = new FileDataSource(context, pruneDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for pruning data and dependent variables */
NumericTable pruneData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable pruneGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable pruneMergedData = new MergedNumericTable(context);
pruneMergedData.addNumericTable(pruneData);
pruneMergedData.addNumericTable(pruneGroundTruth);
/* Retrieve the pruning data from an input file */
pruneDataSource.loadDataBlock(pruneMergedData);
/* Create algorithm objects to train the decision tree regression model */
TrainingBatch algorithm = new TrainingBatch(context, Float.class, TrainingMethod.defaultDense);
/* Pass the training data set with labels, and pruning dataset with labels to the algorithm */
algorithm.input.set(TrainingInputId.data, trainData);
algorithm.input.set(TrainingInputId.dependentVariables, trainGroundTruth);
algorithm.input.set(TrainingInputId.dataForPruning, pruneData);
algorithm.input.set(TrainingInputId.dependentVariablesForPruning, pruneGroundTruth);
/* Train the decision forest regression model */
return algorithm.compute();
}
private static void printModel(TrainingResult trainingResult) {
Model m = trainingResult.get(TrainingResultId.model);
DtRegPrintNodeVisitor visitor = new DtRegPrintNodeVisitor();
m.traverseDFS(visitor);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.