Developer Guide for Intel® Data Analytics Acceleration Library 2019 Update 5
The mean squared error algorithm accepts the input described below. Pass the Input ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
Input ID |
Input |
|
---|---|---|
argument |
Numeric table of size (p + 1) x 1 with the input argument θ of the objective function. |
|
data |
Numeric table of size n x p with the data xij. |
|
dependentVariables |
Numeric table of size n x 1 with dependent variables yi. |
The mean squared error algorithm accepts the optional input described below. Pass the Optional Input ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
Input ID |
Input |
---|---|
weights |
Optional input. Pointer to the 1 x n numeric table with weights of samples. The input can be an object of any class derived from NumericTable except for PackedTriangularMatrix and PackedSymmetricMatrix. By default, all weights are equal to 1. |
gramMatrix |
Optional input. Pointer to the p x p numeric table with pre-computed Gram matrix. The input can be an object of any class derived from NumericTable except for PackedTriangularMatrix and PackedSymmetricMatrix. By default, the table is set to empty numeric table. |
The mean squared error algorithm has the following parameters. Some of them are required only for specific values of the computation method parameter method:
Parameter |
Default Value |
Description |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
penaltyL1 |
0 |
The numeric table of size 1 x nDependentVariables with L1 regularized coefficients. |
|||||||||||||
penaltyL2 |
0 |
The numeric table of size 1 x nDependentVariables with L2 regularized coefficients. |
|||||||||||||
interceptFlag |
true |
Flag to indicate whether or not to compute the intercept. |
|||||||||||||
algorithmFPType |
float |
The floating-point type that the algorithm uses for intermediate computations. Can be float or double. |
|||||||||||||
method |
defaultDense |
Performance-oriented computation method. |
|||||||||||||
numberOfTerms |
Not applicable |
The number of terms in the objective function. |
|||||||||||||
batchIndices |
NULL |
The numeric table of size 1 x m, where m is the batch size, with a batch of indices to be used to compute the function results. If no indices are provided, the implementation uses all the terms in the computation. This parameter can be an object of any class derived from NumericTable except for PackedTriangularMatrix and PackedSymmetricMatrix. |
|||||||||||||
resultsToCompute |
gradient |
The 64-bit integer flag that specifies which characteristics of the objective function to compute. Provide one of the following values to request a single characteristic or use bitwise OR to request a combination of the characteristics:
|
For the output of the mean squared error algorithm, see Output for objective functions.