C++ API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

qr_dense_distr.cpp

/* file: qr_dense_distr.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of computing QR decomposition in the distributed processing
! mode
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
const size_t nBlocks = 4;
const string datasetFileNames[] =
{
"../data/distributed/qr_1.csv",
"../data/distributed/qr_2.csv",
"../data/distributed/qr_3.csv",
"../data/distributed/qr_4.csv"
};
void computestep1Local(size_t block);
void computeOnMasterNode();
void finalizeComputestep1Local(size_t block);
data_management::DataCollectionPtr dataFromStep1ForStep2[nBlocks];
data_management::DataCollectionPtr dataFromStep1ForStep3[nBlocks];
data_management::DataCollectionPtr dataFromStep2ForStep3[nBlocks];
NumericTablePtr R;
NumericTablePtr Qi[nBlocks];
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 4, &datasetFileNames[0], &datasetFileNames[1], &datasetFileNames[2], &datasetFileNames[3]);
for (size_t i = 0; i < nBlocks; i++)
{
computestep1Local(i);
}
computeOnMasterNode();
for (size_t i = 0; i < nBlocks; i++)
{
finalizeComputestep1Local(i);
}
/* Print the results */
printNumericTable(Qi[0], "Part of orthogonal matrix Q from 1st node:", 10);
printNumericTable(R , "Triangular matrix R:");
return 0;
}
void computestep1Local(size_t block)
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileNames[block], DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the input data */
dataSource.loadDataBlock();
/* Create an algorithm to compute QR decomposition on the local node */
qr::Distributed<step1Local> algorithm;
algorithm.input.set( qr::data, dataSource.getNumericTable() );
/* Compute QR decomposition */
algorithm.compute();
dataFromStep1ForStep2[block] = algorithm.getPartialResult()->get( qr::outputOfStep1ForStep2 );
dataFromStep1ForStep3[block] = algorithm.getPartialResult()->get( qr::outputOfStep1ForStep3 );
}
void computeOnMasterNode()
{
/* Create an algorithm to compute QR decomposition on the master node */
qr::Distributed<step2Master> algorithm;
for (size_t i = 0; i < nBlocks; i++)
{
algorithm.input.add( qr::inputOfStep2FromStep1, i, dataFromStep1ForStep2[i] );
}
/* Compute QR decomposition */
algorithm.compute();
qr::DistributedPartialResultPtr pres = algorithm.getPartialResult();
KeyValueDataCollectionPtr inputForStep3FromStep2 = pres->get( qr::outputOfStep2ForStep3 );
for (size_t i = 0; i < nBlocks; i++)
{
dataFromStep2ForStep3[i] = services::staticPointerCast<data_management::DataCollection, SerializationIface>((*inputForStep3FromStep2)[i]);
}
qr::ResultPtr res = algorithm.getResult();
R = res->get(qr::matrixR);
}
void finalizeComputestep1Local(size_t block)
{
/* Create an algorithm to compute QR decomposition on the master node */
qr::Distributed<step3Local> algorithm;
algorithm.input.set( qr::inputOfStep3FromStep1, dataFromStep1ForStep3[block] );
algorithm.input.set( qr::inputOfStep3FromStep2, dataFromStep2ForStep3[block] );
/* Compute QR decomposition */
algorithm.compute();
algorithm.finalizeCompute();
qr::ResultPtr res = algorithm.getResult();
Qi[block] = res->get(qr::matrixQ);
}

For more complete information about compiler optimizations, see our Optimization Notice.