C++ API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

mn_naive_bayes_csr_batch.cpp

/* file: mn_naive_bayes_csr_batch.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of Naive Bayes classification in the batch processing mode.
!
! The program trains the Naive Bayes model on a supplied training data set in
! compressed sparse rows (CSR) format and then performs classification of
! previously unseen data.
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::multinomial_naive_bayes;
typedef float algorithmFPType; /* Algorithm floating-point type */
/* Input data set parameters */
string trainDatasetFileName = "../data/batch/naivebayes_train_csr.csv";
string trainGroundTruthFileName = "../data/batch/naivebayes_train_labels.csv";
string testDatasetFileName = "../data/batch/naivebayes_test_csr.csv";
string testGroundTruthFileName = "../data/batch/naivebayes_test_labels.csv";
const size_t nTrainObservations = 8000;
const size_t nTestObservations = 2000;
const size_t nClasses = 20;
training::ResultPtr trainingResult;
classifier::prediction::ResultPtr predictionResult;
void trainModel();
void testModel();
void printResults();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 2, &trainDatasetFileName, &testDatasetFileName);
trainModel();
testModel();
printResults();
return 0;
}
void trainModel()
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> trainGroundTruthSource(trainGroundTruthFileName,
DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the data from input files */
CSRNumericTablePtr trainData(createSparseTable<float>(trainDatasetFileName));
trainGroundTruthSource.loadDataBlock(nTrainObservations);
/* Create an algorithm object to train the Naive Bayes model */
training::Batch<algorithmFPType, training::fastCSR> algorithm(nClasses);
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(classifier::training::data, trainData);
algorithm.input.set(classifier::training::labels, trainGroundTruthSource.getNumericTable());
/* Build the Naive Bayes model */
algorithm.compute();
/* Retrieve the algorithm results */
trainingResult = algorithm.getResult();
}
void testModel()
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file */
CSRNumericTablePtr testData(createSparseTable<float>(testDatasetFileName));
/* Create an algorithm object to predict Naive Bayes values */
prediction::Batch<algorithmFPType, prediction::fastCSR> algorithm(nClasses);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(classifier::prediction::data, testData);
algorithm.input.set(classifier::prediction::model, trainingResult->get(classifier::training::model));
/* Predict Naive Bayes values */
algorithm.compute();
/* Retrieve the algorithm results */
predictionResult = algorithm.getResult();
}
void printResults()
{
FileDataSource<CSVFeatureManager> testGroundTruth(testGroundTruthFileName,
DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
testGroundTruth.loadDataBlock(nTestObservations);
printNumericTables<int, int>(testGroundTruth.getNumericTable().get(),
predictionResult->get(classifier::prediction::prediction).get(),
"Ground truth", "Classification results",
"NaiveBayes classification results (first 20 observations):", 20);
}

For more complete information about compiler optimizations, see our Optimization Notice.