Python* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 5

zscore_dense_batch.py

1 # file: zscore_dense_batch.py
2 #===============================================================================
3 # Copyright 2014-2019 Intel Corporation.
4 #
5 # This software and the related documents are Intel copyrighted materials, and
6 # your use of them is governed by the express license under which they were
7 # provided to you (License). Unless the License provides otherwise, you may not
8 # use, modify, copy, publish, distribute, disclose or transmit this software or
9 # the related documents without Intel's prior written permission.
10 #
11 # This software and the related documents are provided as is, with no express
12 # or implied warranties, other than those that are expressly stated in the
13 # License.
14 #===============================================================================
15 
16 #
17 # ! Content:
18 # ! Python example of Z-score normalization algorithm.
19 # !*****************************************************************************
20 
21 #
22 
23 
24 #
25 
26 import os
27 import sys
28 
29 import daal.algorithms.normalization.zscore as zscore
30 from daal.data_management import DataSourceIface, FileDataSource
31 
32 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
33 if utils_folder not in sys.path:
34  sys.path.insert(0, utils_folder)
35 from utils import printNumericTable
36 
37 # Input data set parameters
38 datasetName = os.path.join('..', 'data', 'batch', 'normalization.csv')
39 
40 if __name__ == "__main__":
41 
42  # Retrieve the input data
43  dataSource = FileDataSource(datasetName,
44  DataSourceIface.doAllocateNumericTable,
45  DataSourceIface.doDictionaryFromContext)
46  dataSource.loadDataBlock()
47 
48  data = dataSource.getNumericTable()
49 
50  # Create an algorithm
51  algorithm = zscore.Batch(method=zscore.sumDense)
52 
53  # Set an input object for the algorithm
54  algorithm.input.set(zscore.data, data)
55 
56  # Compute Z-score normalization function
57  res = algorithm.compute()
58 
59  printNumericTable(data, "First 10 rows of the input data:", 10)
60  printNumericTable(res.get(zscore.normalizedData), "First 10 rows of the z-score normalization result:", 10)

For more complete information about compiler optimizations, see our Optimization Notice.