
1

Power Transitions in Intel® Software Guard

Extensions (Intel® SGX) Applications for

Windows

Scope

This article provides guidelines on handling power transitions for Intel® Software Guard

Extension (Intel® SGX) enabled applications running on Microsoft* Windows*. General

information on Intel SGX can be found on the Intel SGX portal at

https://software.intel.com/en-us/sgx.

Exception Handling and Power Handling

In today’s mobile computer systems, maximizing battery life is a top priority. Minimizing

device power consumption in idle scenarios and eliminating it entirely in standby scenarios

are fundamental objectives toward realizing this goal of longer battery life.

To realize these system-power objectives, the Microsoft* Windows* OS supports power

states such as S0 to S5 and S0ix (connected standby) states. When the system resumes

from a lower power state to the working power state (S0), an application should resume

where it left off. To achieve this objective, the application must first store its context

information before going to a lower power state or sleep state (S1 through S4). In a similar

way, the context information for the application must be restored when returning to a

working power state (S0).

Modern operating systems provide mechanisms to enable applications to be notified of

major power events on the platform. When the computer enters a lower power state, the

OS suspends to RAM or saves to disk context information for future restoration.

For Intel SGX, power transitions from an S0/S1 state to an S2-S5 state cause the protected

memory encryption key for an enclave to be destroyed. This makes the enclave effectively

unreadable; therefore, it must be recreated on a system resume. Enclaves that need to

preserve secrets across S2-S5 power states must save their state information to a disk.

However, applications need to work around two situations to accomplish this goal:

 The Intel SGX architecture does not provide a means of directly messaging power-

transition events into enclaves. So applications register callback functions for such

events. When a callback function is invoked, the application can call the enclave

specifically to save the secret state to disk.

https://software.intel.com/en-us/sgx

2

 The OS does not guarantee that the enclave will be given enough time to seal its entire

internal state. So enclaves that need to preserve state across power transitions must

periodically seal enclave-state data outside the enclave (that is, to a disk or cloud) in

anticipation of a future power transition.

Upon re-instantiation of the application, enclaves are subsequently rebuilt from scratch.

Applications must retrieve their protected states from the disk or cloud. To minimize the

overhead caused by constantly sealing secrets and storing the encrypted data to a disk or

cloud, the enclave writer should design their application enclave to keep as little state

information as possible inside the enclave so that the application can effectively manage a

power-transition event. The less state information stored inside the enclave, the quicker

the enclave will be able to backup this information outside the enclave and to recover from

a power transition.

Methodology (Power Transition)

Windows provides APIs for applications to receive and handle power-event notifications

from the OS. Windows applications can handle the following the power events:

 When a power source changes, such as transitioning between alternating-current

(AC) and direct-current (DC) power

 When a battery’s remaining charge level reaches its minimum threshold

 When the OS resumes from sleep mode

 When the OS requests low-power mode

The OS notifies applications of these power events by using the WindowProc callback

function. However, the application running in Intel SGX enclaves adopts a different

approach, one based on a specific error code returned.

In this approach, during an enclave call (ECALL) to process the secret, if a power transition

occurs that caused the enclave to be lost, the ECALL to the enclave returns the error code:

SGX_ERROR_ENCLAVE_LOST. The application running within the Intel SGX enclave

identifies, via the error code, that a power transition has already happened. This means

that to continue to process the secret, the enclave must be rebuilt. Because the enclave

has already incrementally sealed its data before the power cycle occurred, the newly built

enclave can retrieve the sealed data.

Power-Transition Handling with Intel SGX

Power transitions can happen while processing two types of ECALLs in applications

running in Intel SGX enclaves. These are:

 An initialization ECALL after enclave creation

 A normal ECALL to manipulate secrets within the enclave

3

Initialization ECALL after Enclave Creation

Figure 1 shows the flow for handling of a power transition during initialization ECALL after

enclave creation. Figure 2 shows how these calls are handled in both the untrusted and

trusted code parts of applications.

Start

sgx_create_enclave()

Success
returned?

Token
returned?

Store the launch
token

ECALL to initialize the
enclave global variable

Error code indicates
a power transition

occurred?

Success
returned?

Continue

sgx_destroy_enclave()

Yes

Yes

Yes

Yes

No

No

No

NoExit with error
message

Figure 1. Operations that take place in the course of a power transition during enclave initialization

4

Figure 2. Code called in the course of a power transition during enclave initialization

There is no need to handle power transitions in the sgx_create_enclave function in

Intel SGX application code. This is because power-transition handling is already

implemented in the uRTS (untrusted Run-time System) library. When error code

SGX_ERROR_ENCLAVE_LOST is returned during enclave initialization, the Intel SGX

application identifies that the power transition has happened. The Intel SGX application

subsequently destroys the existing enclave and rebuilds the enclave.

Normal ECALL to Process Secrets within the Enclave

Figures 3 shows the flow for handling a power transition for the most common ECALL type

into an enclave. Figure 4 shows how this call is handled in both the untrusted and trusted

code parts of applications.

sgx_status_tload_and_initialize_enclave
(sgx_enclave_id_t *eid,
structsealed_buf_t *sealed_buf)
{
 for(; ;)
{

 ret =
sgx_create_enclave(ENCLAVE_NAME,
SGX_DEBUG_FLAG, &token, &updated,
eid, NULL);

initialize_enclave(*eid, &retval,
sealed_buf);
 if(ret ==
SGX_ERROR_ENCLAVE_LOST)
 {
/* Power Transition occured, initiate
 enclave rebuilt */

 }
}
}

initialize_enclave(structsealed_buf_t
*sealed_buf)
{

 /* Reinitialize the enclave to recover the
secret data from the input backup sealed
data */

 /* Unseal current sealed data */
sgx_unseal_data((sgx_sealed_data_t
*)temp_sealed_buf, plain_text,
&plain_text_length, (uint8_t
*)&unsealed_data, &unsealed_data_length);
 return status;
}

Trusted Code Untrusted Code

5

Start

Acquire lock

Backup global_eid

Release lock

ECALL to enclave with
backup EID

Error code indicates
a power transition

occurred?

Success
returned?

Acquire lock
Backup EID ==

global_eid?

Update backup EID

Release lock

Create and initialize
enclave to get new

backup EID

Update global_eid
with new backup EID

Exit with error
message

Continue
Yes

Yes Yes

No

No

No

Figure 3. Operations that take place in the course of a power transition during ECALL to process secrets

6

Figure 4. Code called in the course of a power transition during ECALL to process secrets

In the code example, the Intel SGX application has one main thread and two or more child

threads. The main thread creates and initializes the enclave the first time. It handles the

power transition that occurs during loading and initialization. Each child thread is then

responsible for issuing normal ECALLs to process the secret. If, during an ECALL, the

application identifies a power transition and the ECALL returns

SGX_ERROR_ENCLAVE_LOST, the application creates and initializes a new enclave and

retrieves the sealed data.

Once the new enclave is created, the Enclave ID (EID) global variable is updated. The EID is

used by any thread that needs to issue an ECALL for processing the secret. This global EID

can be updated by any one of the running child threads when the new enclave is created.

bool increase_and_seal_data_in_enclave()
{
for(; ;)
{
ret = increase_and_seal_data(
current_eid,
&retval, thread_id,
&sealed_buf
);
 if(ret == SGX_ERROR_ENCLAVE_LOST)
 {
 if(current_eid== global_eid)
 {
load_and_initialize_enclave(
¤t_eid,
&sealed_buf
);
 }
 else

 {
 /* Update the global_eid after
 initializing the enclave
successfully
 */

global_eid= current_eid;
 }
 }
}

increase_and_seal_data(size_ttid,
structsealed_buf_t* sealed_buf)
{

/* Increase and seal the secret
data */

temp_secret = ++g_secret;
sgx_status_t ret =
sgx_seal_data(plain_text_length,
plain_text, sizeof(g_secret),
(uint8_t *)&g_secret, sealed_len,
(sgx_sealed_data_t
*)temp_sealed_buf);

}

Trusted Code Untrusted Code

7

When the SGX_ERROR_ENCLAVE_LOST error code is returned, the application knows that

a power transition has occurred. If the current EID and the stored global EID are equal, then

the current thread rebuilds the enclave, updates the global EID with the newly obtained

EID, and unseals the stored data. Otherwise, if there is a mismatch between the global EID

and current EID, then the application knows that:

 Another thread encountered a power transition

 The other thread already rebuilt the enclave

 There is no need to rebuild the enclave

 The current EID update (with the updated global EID) is correct

Summary

Intel SGX applications cannot depend on Windows power-transition event notification for

sealing secret data, because the OS cannot guarantee that it can give enough time for a

given enclave to seal its secret data to disk. And the WindowProc callback function cannot

be used for notification. So Intel SGX applications uses a specific methodology for dealing

with power-transition events, to achieve minimal data loss.

 Intel SGX applications identify the occurrence of power-transition events based on the

error code SGX_ERROR_ENCLAVE_LOST. Because the error code returns only when a

power-transition event has already occurred and the OS has resumed, an Intel SGX

application’s secret data must be sealed periodically by the enclave when the OS is

running. This allows stored secret data to be retrieved from disk (or the cloud) after the

enclave is rebuilt.

 Also, to minimize the overhead of regularly saving secret data to a disk or cloud, the

secret data that an enclave stores should be kept minimal.

References

1. “Intel SGX SDK Users Guide for Windows OS” – 2016 Intel Corporation.

2. Intel. “Application Power Management for Mobility.” – March 2002 Intel Corporation.

https://software.intel.com/sites/default/files/m/4/2/6/apmm_wp.pdf.

https://software.intel.com/sites/default/files/m/4/2/6/apmm_wp.pdf

