Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

datastructures_rowmerged.py

1 #===============================================================================
2 # Copyright 2014-2017 Intel Corporation
3 # All Rights Reserved.
4 #
5 # If this software was obtained under the Intel Simplified Software License,
6 # the following terms apply:
7 #
8 # The source code, information and material ("Material") contained herein is
9 # owned by Intel Corporation or its suppliers or licensors, and title to such
10 # Material remains with Intel Corporation or its suppliers or licensors. The
11 # Material contains proprietary information of Intel or its suppliers and
12 # licensors. The Material is protected by worldwide copyright laws and treaty
13 # provisions. No part of the Material may be used, copied, reproduced,
14 # modified, published, uploaded, posted, transmitted, distributed or disclosed
15 # in any way without Intel's prior express written permission. No license under
16 # any patent, copyright or other intellectual property rights in the Material
17 # is granted to or conferred upon you, either expressly, by implication,
18 # inducement, estoppel or otherwise. Any license under such intellectual
19 # property rights must be express and approved by Intel in writing.
20 #
21 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 # notice or any other notice embedded in Materials by Intel or Intel's
23 # suppliers or licensors in any way.
24 #
25 #
26 # If this software was obtained under the Apache License, Version 2.0 (the
27 # "License"), the following terms apply:
28 #
29 # You may not use this file except in compliance with the License. You may
30 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 #
32 #
33 # Unless required by applicable law or agreed to in writing, software
34 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 #
37 # See the License for the specific language governing permissions and
38 # limitations under the License.
39 #===============================================================================
40 
41 #
42 # ! Content:
43 # ! Python row merged data structures example.
44 # !*****************************************************************************
45 
46 #
47 
48 
49 #
50 
51 import os
52 import sys
53 
54 import numpy as np
55 
56 from daal.data_management import (
57  DictionaryIface, HomogenNumericTable, RowMergedNumericTable, BlockDescriptor, convertToHomogen, readWrite, readOnly
58 )
59 
60 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
61 if utils_folder not in sys.path:
62  sys.path.insert(0, utils_folder)
63 from utils import printArray, printNumericTable
64 
65 if __name__ == "__main__":
66 
67  print("Row merged numeric table example\n")
68 
69  nObservations1 = 5
70  nObservations2 = 6
71  nFeatures = 5
72  firstReadRow = 3
73  nRead = 6
74  featureIdx = 2
75 
76  # Example of using homogeneous numeric table
77  data1 = np.array([(0.0, 0.1, 0.2, 0.3, 0.4,),
78  (1.0, 1.1, 1.2, 1.3, 1.4,),
79  (2.0, 2.1, 2.2, 2.3, 2.4,),
80  (3.0, 3.1, 3.2, 3.3, 3.4,),
81  (4.0, 4.1, 4.2, 4.3, 4.4,),])
82 
83  data2 = np.array([(0.5, 0.6, 0.7, 0.8, 0.9,),
84  (1.5, 1.6, 1.7, 1.8, 1.9,),
85  (2.5, 2.6, 2.7, 2.8, 2.9,),
86  (3.5, 3.6, 3.7, 3.8, 3.9,),
87  (4.5, 4.6, 4.7, 4.8, 4.9,),
88  (5.5, 5.6, 5.7, 5.8, 5.9,),])
89 
90  # Create row merged numeric table consisting of two homogen numeric tables
91  table1 = HomogenNumericTable(DictionaryIface.equal, data1)
92  table2 = HomogenNumericTable(DictionaryIface.equal, data2)
93 
94  dataTable = RowMergedNumericTable()
95  dataTable.addNumericTable(table1)
96  dataTable.addNumericTable(table2)
97 
98  block = BlockDescriptor()
99 
100  # Read one row from merged numeric table
101  dataTable.getBlockOfRows(0, nObservations1 + nObservations2, readWrite, block)
102  printArray(block.getArray(), nFeatures, block.getNumberOfRows(), block.getNumberOfColumns(),
103  "Print rows from row merged numeric table as float:")
104 
105  # Modify row of the merged numeric table
106  row = block.getArray()
107  for i in range(nObservations1 + nObservations2):
108  row[i][featureIdx] *= row[i][featureIdx]
109  dataTable.releaseBlockOfRows(block)
110 
111  dataTable.getBlockOfRows(0, nObservations1 + nObservations2, readOnly, block)
112  printArray(block.getArray(), nFeatures, block.getNumberOfRows(), block.getNumberOfColumns(),
113  "Print rows from row merged numeric table as float:")
114  dataTable.releaseBlockOfRows(block)
115 
116  finalizedTable = convertToHomogen(dataTable)
117 
118  printNumericTable(finalizedTable, "Row merged table converted to homogen numeric table")

For more complete information about compiler optimizations, see our Optimization Notice.