Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

set_number_of_threads.py

1 #===============================================================================
2 # Copyright 2014-2017 Intel Corporation
3 # All Rights Reserved.
4 #
5 # If this software was obtained under the Intel Simplified Software License,
6 # the following terms apply:
7 #
8 # The source code, information and material ("Material") contained herein is
9 # owned by Intel Corporation or its suppliers or licensors, and title to such
10 # Material remains with Intel Corporation or its suppliers or licensors. The
11 # Material contains proprietary information of Intel or its suppliers and
12 # licensors. The Material is protected by worldwide copyright laws and treaty
13 # provisions. No part of the Material may be used, copied, reproduced,
14 # modified, published, uploaded, posted, transmitted, distributed or disclosed
15 # in any way without Intel's prior express written permission. No license under
16 # any patent, copyright or other intellectual property rights in the Material
17 # is granted to or conferred upon you, either expressly, by implication,
18 # inducement, estoppel or otherwise. Any license under such intellectual
19 # property rights must be express and approved by Intel in writing.
20 #
21 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 # notice or any other notice embedded in Materials by Intel or Intel's
23 # suppliers or licensors in any way.
24 #
25 #
26 # If this software was obtained under the Apache License, Version 2.0 (the
27 # "License"), the following terms apply:
28 #
29 # You may not use this file except in compliance with the License. You may
30 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 #
32 #
33 # Unless required by applicable law or agreed to in writing, software
34 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 #
37 # See the License for the specific language governing permissions and
38 # limitations under the License.
39 #===============================================================================
40 
41 ## <a name="DAAL-EXAMPLE-PY-SET_NUMBER_OF_THREADS"></a>
42 ## \example set_number_of_threads.py
43 
44 import os
45 
46 import daal.algorithms.kmeans as kmeans
47 import daal.algorithms.kmeans.init as init
48 from daal.data_management import FileDataSource, DataSourceIface
49 from daal.services import Environment
50 
51 # Input data set parameters
52 datasetFileName = os.path.join('..', 'data', 'batch', 'kmeans_dense.csv')
53 
54 # K-Means algorithm parameters
55 nClusters = 20
56 nIterations = 5
57 nThreads = 2
58 nThreadsInit = None
59 nThreadsNew = None
60 
61 if __name__ == "__main__":
62 
63  # Get the number of threads that is used by the library by default
64  nThreadsInit = Environment.getInstance().getNumberOfThreads()
65 
66  # Set the maximum number of threads to be used by the library
67  Environment.getInstance().setNumberOfThreads(nThreads)
68 
69  # Get the number of threads that is used by the library after changing
70  nThreadsNew = Environment.getInstance().getNumberOfThreads()
71 
72  # Initialize FileDataSource to retrieve the input data from a .csv file
73  dataSource = FileDataSource(
74  datasetFileName, DataSourceIface.doAllocateNumericTable,
75  DataSourceIface.doDictionaryFromContext
76  )
77 
78  # Retrieve the data from the input file
79  dataSource.loadDataBlock()
80 
81  # Get initial clusters for the K-Means algorithm
82  initAlg = init.Batch(nClusters)
83 
84  initAlg.input.set(init.data, dataSource.getNumericTable())
85  res = initAlg.compute()
86  centroids = res.get(init.centroids)
87 
88  # Create an algorithm object for the K-Means algorithm
89  algorithm = kmeans.Batch(nClusters, nIterations)
90 
91  algorithm.input.set(kmeans.data, dataSource.getNumericTable())
92  algorithm.input.set(kmeans.inputCentroids, centroids)
93 
94  # Run computations
95  unused_result = algorithm.compute()
96 
97  print("Initial number of threads: {}".format(nThreadsInit))
98  print("Number of threads to set: {}".format(nThreads))
99  print("Number of threads after setting: {}".format(nThreadsNew))

For more complete information about compiler optimizations, see our Optimization Notice.