C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

eltwise_sum_layer_dense_batch.cpp

/* file: eltwise_sum_layer_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2017 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
! Content:
! C++ example of forward and backward element-wise sum layer usage
!
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
/* Input data set parameters */
string datasetName = "../data/batch/layer.csv";
/* Number of input tensors */
const size_t nInputs = 3;
int main()
{
/* Create an algorithm to compute forward element-wise sum layer results using default method */
eltwise_sum::forward::Batch<> eltwiseSumLayerForward;
/* Read datasetFileName from a file and create a tensor to store input data */
for (size_t i = 0; i < nInputs; i++)
{
TensorPtr tensorData = readTensorFromCSV(datasetName);
/* Set input objects for the forward element-wise sum layer */
eltwiseSumLayerForward.input.set(forward::inputLayerData, tensorData, i);
}
/* Compute forward element-wise sum layer results */
eltwiseSumLayerForward.compute();
/* Print the results of the forward element-wise sum layer */
eltwise_sum::forward::ResultPtr forwardResult = eltwiseSumLayerForward.getResult();
printTensor(forwardResult->get(forward::value), "Forward element-wise sum layer result (first 5 rows):", 5);
printNumericTable(forwardResult->get(eltwise_sum::auxNumberOfCoefficients),
"Forward element-wise sum layer number of inputs (number of coefficients)", 1);
/* Create an algorithm to compute backward element-wise sum layer results using default method */
eltwise_sum::backward::Batch<> eltwiseSumLayerBackward;
/* Set input objects for the backward element-wise sum layer */
eltwiseSumLayerBackward.input.set(backward::inputGradient, readTensorFromCSV(datasetName));
eltwiseSumLayerBackward.input.set(backward::inputFromForward, forwardResult->get(forward::resultForBackward));
/* Compute backward element-wise sum layer results */
eltwiseSumLayerBackward.compute();
/* Print the results of the backward element-wise sum layer */
eltwise_sum::backward::ResultPtr backwardResult = eltwiseSumLayerBackward.getResult();
for (size_t i = 0; i < nInputs; i++)
{
printTensor(backwardResult->get(backward::resultLayerData, i),
"Backward element-wise sum layer backward result (first 5 rows):", 5);
}
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.