Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

kernel_func_lin_dense_batch.py

1 #===============================================================================
2 # Copyright 2014-2017 Intel Corporation
3 # All Rights Reserved.
4 #
5 # If this software was obtained under the Intel Simplified Software License,
6 # the following terms apply:
7 #
8 # The source code, information and material ("Material") contained herein is
9 # owned by Intel Corporation or its suppliers or licensors, and title to such
10 # Material remains with Intel Corporation or its suppliers or licensors. The
11 # Material contains proprietary information of Intel or its suppliers and
12 # licensors. The Material is protected by worldwide copyright laws and treaty
13 # provisions. No part of the Material may be used, copied, reproduced,
14 # modified, published, uploaded, posted, transmitted, distributed or disclosed
15 # in any way without Intel's prior express written permission. No license under
16 # any patent, copyright or other intellectual property rights in the Material
17 # is granted to or conferred upon you, either expressly, by implication,
18 # inducement, estoppel or otherwise. Any license under such intellectual
19 # property rights must be express and approved by Intel in writing.
20 #
21 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 # notice or any other notice embedded in Materials by Intel or Intel's
23 # suppliers or licensors in any way.
24 #
25 #
26 # If this software was obtained under the Apache License, Version 2.0 (the
27 # "License"), the following terms apply:
28 #
29 # You may not use this file except in compliance with the License. You may
30 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 #
32 #
33 # Unless required by applicable law or agreed to in writing, software
34 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 #
37 # See the License for the specific language governing permissions and
38 # limitations under the License.
39 #===============================================================================
40 
41 ## <a name="DAAL-EXAMPLE-PY-KERNEL_FUNCTION_LINEAR_DENSE_BATCH"></a>
42 ## \example kernel_func_lin_dense_batch.py
43 
44 import os
45 import sys
46 
47 from daal.algorithms import kernel_function
48 from daal.data_management import FileDataSource, DataSourceIface
49 
50 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
51 if utils_folder not in sys.path:
52  sys.path.insert(0, utils_folder)
53 from utils import printNumericTable
54 
55 DAAL_PREFIX = os.path.join('..', 'data')
56 
57 # Input data set parameters
58 leftDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'kernel_function.csv')
59 rightDatasetFileName = os.path.join(DAAL_PREFIX, 'batch', 'kernel_function.csv')
60 
61 # Kernel algorithm parameters
62 k = 1.0 # Linear kernel coefficient in the k(X,Y) + b model
63 b = 0.0 # Linear kernel coefficient in the k(X,Y) + b model
64 
65 if __name__ == "__main__":
66 
67  # Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file
68  leftDataSource = FileDataSource(
69  leftDatasetFileName, DataSourceIface.doAllocateNumericTable,
70  DataSourceIface.doDictionaryFromContext
71  )
72 
73  rightDataSource = FileDataSource(
74  rightDatasetFileName, DataSourceIface.doAllocateNumericTable,
75  DataSourceIface.doDictionaryFromContext
76  )
77 
78  # Retrieve the data from the input file
79  leftDataSource.loadDataBlock()
80  rightDataSource.loadDataBlock()
81 
82  # Create algorithm objects for the kernel algorithm using the default method
83  algorithm = kernel_function.linear.Batch()
84 
85  # Set the kernel algorithm parameter
86  algorithm.parameter.k = k
87  algorithm.parameter.b = b
88  algorithm.parameter.computationMode = kernel_function.matrixMatrix
89 
90  # Set an input data table for the algorithm
91  algorithm.input.set(kernel_function.X, leftDataSource.getNumericTable())
92  algorithm.input.set(kernel_function.Y, rightDataSource.getNumericTable())
93 
94  # Compute the linear kernel function and get the computed results
95  # (Result class from daal.algorithms.kernel_function)
96  result = algorithm.compute()
97 
98  # Print the results
99  printNumericTable(result.get(kernel_function.values), "Values")

For more complete information about compiler optimizations, see our Optimization Notice.