Developer Reference for Intel® Integrated Performance Primitives Cryptography 2018

GFpxMethod

Returns a reference to the implementation of arithmetic operations over GF(pd).

Syntax

const IppsGFpMethod* ippsGFpxMethod_com(void);

const IppsGFpMethod* ippsGFpxMethod_binom2(void);

const IppsGFpMethod* ippsGFpxMethod_binom3(void);

const IppsGFpMethod* ippsGFpxMethod_binom(void);

const IppsGFpMethod* ippsGFpxMethod_binom2_epid2(void);

const IppsGFpMethod* ippsGFpxMethod_binom3_epid2(void);

Include Files

ippcp.h

Description

Each of these functions returns a pointer to a structure containing an implementation of arithmetic operations over GF(pd).

ippsGFpxMethod_com assumes an arbitrary value of the field polynomial g(x); each of the rest of the functions returns a pointer to the implementation of arithmetic operations over GF(pd) tailored for a particular value of g(x). See the table below for the correspondence between method functions and values of the field polynomial g(x).

Function Value of the field polynomial g(x)
ippsGFpxMethod_com g(x) = xd + xd - 1ad - 1 + xd - 2ad - 2 + ⋯ + x1a1 + a0, ai ∈ GF(p)
ippsGFpxMethod_binom2 g(x) = x2 - a0, a0 ∈ GF(p)
ippsGFpxMethod_binom3 g(x) = x3 - a0, a0 ∈ GF(p)
ippsGFpxMethod_binom g(x) = xd - a0, a0 ∈ GF(p)
ippsGFpxMethod_binom2_epid2

g(x) = x2 - a0, a0 ∈ GF(q), a0 = 1

g(w) = w2 - V0, v0 ∈ GF((q2)3), V0 = 0 · v2 + v + 0

ippsGFpxMethod_binom3_epid2 g(v) = v3 - U0, U0 ∈ GF(q2), U0 = u + 2

Note

ippsGFpxMethod_binom2_epid2() and ippsGFpxMethod_binom3_epid2() are designed especially for the construction of finite field extensions for applications that use the Intel® Enhanced Privacy ID 2.0 scheme.