/******************************************************************************* * Copyright 2011-2017 Intel Corporation All Rights Reserved. * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. *******************************************************************************/ /* ! Content: ! A simple example of single-precision real-to-complex out-of-place 2D ! FFT using Intel(R) MKL DFTI ! !****************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <float.h> #include "mkl_service.h" #include "mkl_dfti.h" static void init_r(float *x, int N1, int N2, int H1, int H2); static void init_c(MKL_Complex8 *x, int N1, int N2, int H1, int H2); static int verify_c(MKL_Complex8 *x, int N1, int N2, int H1, int H2); static int verify_r(float *x, int N1, int N2, int H1, int H2); /* Define the format to printf MKL_LONG values */ #if !defined(MKL_ILP64) #define LI "%li" #else #define LI "%lli" #endif int main(void) { /* Size of 2D transform */ int N1 = 4, N2 = 5; /* Arbitrary harmonic used to verify FFT */ int H1 = -1, H2 = 2; /* Execution status */ MKL_LONG status = 0; /* Pointers to input and output data */ float *x_real = 0; MKL_Complex8 *x_cmplx = 0; DFTI_DESCRIPTOR_HANDLE hand = 0; char version[DFTI_VERSION_LENGTH]; DftiGetValue(0, DFTI_VERSION, version); printf("%s\n", version); printf("Example basic_sp_real_dft_2d\n"); printf("Forward-Backward single-precision 2D real out-of-place FFT\n"); printf("Configuration parameters:\n"); printf(" DFTI_PRECISION = DFTI_SINGLE\n"); printf(" DFTI_FORWARD_DOMAIN = DFTI_REAL\n"); printf(" DFTI_DIMENSION = 2\n"); printf(" DFTI_LENGTHS = {%i, %i}\n", N1, N2); printf(" DFTI_PLACEMENT = DFTI_NOT_INPLACE\n"); printf(" DFTI_CONJUGATE_EVEN_STORAGE = DFTI_COMPLEX_COMPLEX\n"); /*printf(" DFTI_PACKED_FORMAT = DFTI_CCE_FORMAT\n");*/ printf("Create DFTI descriptor\n"); { MKL_LONG N[2]; N[0] = N1; N[1] = N2; status = DftiCreateDescriptor(&hand, DFTI_SINGLE, DFTI_REAL, 2, N); if (0 != status) goto failed; } printf("Set configuration: out-of-place\n"); status = DftiSetValue(hand, DFTI_PLACEMENT, DFTI_NOT_INPLACE); if (0 != status) goto failed; printf("Set configuration: CCE storage\n"); status = DftiSetValue(hand, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX); if (0 != status) goto failed; /* This is not needed for DFTI_COMPLEX_COMPLEX storage */ /* status = DftiSetValue(hand, DFTI_PACKED_FORMAT, DFTI_CCE_FORMAT); */ /* if (0 != status) goto failed; */ printf("Set input strides = "); { MKL_LONG rs[3]; rs[0] = 0; rs[1] = N2; rs[2] = 1; printf("{"LI", "LI", "LI"}\n", rs[0],rs[1],rs[2]); status = DftiSetValue(hand, DFTI_INPUT_STRIDES, rs); if (0 != status) goto failed; } printf("Set output strides = "); { MKL_LONG cs[3]; cs[0] = 0; cs[1] = N2/2+1; cs[2] = 1; printf("{"LI", "LI", "LI"}\n", cs[0],cs[1],cs[2]); status = DftiSetValue(hand, DFTI_OUTPUT_STRIDES, cs); if (0 != status) goto failed; } printf("Commit the descriptor\n"); status = DftiCommitDescriptor(hand); if (0 != status) goto failed; printf("Allocate data arrays\n"); x_real = (float *)mkl_malloc(N1*N2*sizeof(float), 64); if (0 == x_real) goto failed; x_cmplx = (MKL_Complex8*)mkl_malloc(N1*(N2/2+1)*sizeof(MKL_Complex8), 64); if (0 == x_cmplx) goto failed; printf("Initialize data for r2c transform\n"); init_r(x_real, N1, N2, H1, H2); printf("Compute real-to-complex transform\n"); status = DftiComputeForward(hand, x_real, x_cmplx); if (0 != status) goto failed; printf("Verify the result\n"); status = verify_c(x_cmplx, N1, N2, H1, H2); if (0 != status) goto failed; printf("Reconfigure DFTI descriptor for backward transform\n"); printf("Set input strides = "); { MKL_LONG cs[3]; cs[0] = 0; cs[1] = N2/2+1; cs[2] = 1; printf("{"LI", "LI", "LI"}\n", cs[0],cs[1],cs[2]); status = DftiSetValue(hand, DFTI_INPUT_STRIDES, cs); if (0 != status) goto failed; } printf("Set output strides = "); { MKL_LONG rs[3]; rs[0] = 0; rs[1] = N2; rs[2] = 1; printf("{"LI", "LI", "LI"}\n", rs[0],rs[1],rs[2]); status = DftiSetValue(hand, DFTI_OUTPUT_STRIDES, rs); if (0 != status) goto failed; } printf("Commit the descriptor\n"); status = DftiCommitDescriptor(hand); if (0 != status) goto failed; printf("Initialize data for c2r transform\n"); init_c(x_cmplx, N1, N2, H1, H2); printf("Compute backward transform\n"); status = DftiComputeBackward(hand, x_cmplx, x_real); if (0 != status) goto failed; printf("Verify the result of the backward transform\n"); status = verify_r(x_real, N1, N2, H1, H2); if (0 != status) goto failed; cleanup: printf("Free DFTI descriptor\n"); DftiFreeDescriptor(&hand); printf("Free data arrays\n"); mkl_free(x_real); mkl_free(x_cmplx); printf("TEST %s\n",0==status ? "PASSED" : "FAILED"); return status; failed: printf(" ERROR, status = "LI"\n", status); status = 1; goto cleanup; } /* Compute (K*L)%M accurately */ static float moda(int K, int L, int M) { return (float)(((long long)K * L) % M); } /* Initialize array x(N) to produce unit peaks at x(H) and x(N-H) */ static void init_r(float *x, int N1, int N2, int H1, int H2) { float TWOPI = 6.2831853071795864769f, phase, factor; int n1, n2, S1, S2, index; /* Generalized strides for row-major addressing of x */ S2 = 1; S1 = N2; factor = (2*(N1-H1)%N1==0 && 2*(N2-H2)%N2==0) ? 1.0f : 2.0f; for (n1 = 0; n1 < N1; n1++) { for (n2 = 0; n2 < N2; n2++) { phase = moda(n1,H1,N1) / N1; phase += moda(n2,H2,N2) / N2; index = n1*S1 + n2*S2; x[index] = factor * cosf( TWOPI * phase ) / (N1*N2); } } } /* Verify that x has unit peak at H */ static int verify_c(MKL_Complex8 *x, int N1, int N2, int H1, int H2) { float err, errthr, maxerr; int n1, n2, S1, S2, index; /* Generalized strides for row-major addressing of x */ S2 = 1; S1 = N2/2+1; /* * Note, this simple error bound doesn't take into account error of * input data */ errthr = 2.5f * logf( (float)N1*N2 ) / logf(2.0f) * FLT_EPSILON; printf(" Check if err is below errthr %.3lg\n", errthr); maxerr = 0; for (n1 = 0; n1 < N1; n1++) { for (n2 = 0; n2 < N2/2+1; n2++) { float re_exp = 0.0f, im_exp = 0.0f, re_got, im_got; if ((( n1-H1)%N1==0 && ( n2-H2)%N2==0) || ((-n1-H1)%N1==0 && (-n2-H2)%N2==0)) { re_exp = 1; } index = n1*S1 + n2*S2; re_got = x[index].real; im_got = x[index].imag; err = fabsf(re_got - re_exp) + fabsf(im_got - im_exp); if (err > maxerr) maxerr = err; if (!(err < errthr)) { printf(" x[%i][%i]: ",n1,n2); printf(" expected (%.7g,%.7g), ",re_exp,im_exp); printf(" got (%.7g,%.7g), ",re_got,im_got); printf(" err %.3lg\n", err); printf(" Verification FAILED\n"); return 1; } } } printf(" Verified, maximum error was %.3lg\n", maxerr); return 0; } /* Initialize array x(N) to produce unit peak at x(H) */ static void init_c(MKL_Complex8 *x, int N1, int N2, int H1, int H2) { float TWOPI = 6.2831853071795864769f, phase; int n1, n2, S1, S2, index; /* Generalized strides for row-major addressing of x */ S2 = 1; S1 = N2/2+1; for (n1 = 0; n1 < N1; n1++) { for (n2 = 0; n2 < N2/2+1; n2++) { phase = moda(n1,H1,N1) / N1; phase += moda(n2,H2,N2) / N2; index = n1*S1 + n2*S2; x[index].real = cosf( TWOPI * phase ) / (N1*N2); x[index].imag = -sinf( TWOPI * phase ) / (N1*N2); } } } /* Verify that x has unit peak at H */ static int verify_r(float *x, int N1, int N2, int H1, int H2) { float err, errthr, maxerr; int n1, n2, S1, S2, index; /* Generalized strides for row-major addressing of x */ S2 = 1; S1 = N2; /* * Note, this simple error bound doesn't take into account error of * input data */ errthr = 2.5f * logf( (float)N1*N2 ) / logf(2.0f) * FLT_EPSILON; printf(" Check if err is below errthr %.3lg\n", errthr); maxerr = 0; for (n1 = 0; n1 < N1; n1++) { for (n2 = 0; n2 < N2; n2++) { float re_exp = 0.0f, re_got; if ((n1-H1)%N1==0 && (n2-H2)%N2==0) { re_exp = 1; } index = n1*S1 + n2*S2; re_got = x[index]; err = fabsf(re_got - re_exp); if (err > maxerr) maxerr = err; if (!(err < errthr)) { printf(" x[%i][%i]: ",n1,n2); printf(" expected %.7g, ",re_exp); printf(" got %.7g, ",re_got); printf(" err %.3lg\n", err); printf(" Verification FAILED\n"); return 1; } } } printf(" Verified, maximum error was %.3lg\n", maxerr); return 0; }