C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

gbt_classification_training_types.h
1 /* file: gbt_classification_training_types.h */
2 /*******************************************************************************
3 * Copyright 2014-2017 Intel Corporation
4 * All Rights Reserved.
5 *
6 * If this software was obtained under the Intel Simplified Software License,
7 * the following terms apply:
8 *
9 * The source code, information and material ("Material") contained herein is
10 * owned by Intel Corporation or its suppliers or licensors, and title to such
11 * Material remains with Intel Corporation or its suppliers or licensors. The
12 * Material contains proprietary information of Intel or its suppliers and
13 * licensors. The Material is protected by worldwide copyright laws and treaty
14 * provisions. No part of the Material may be used, copied, reproduced,
15 * modified, published, uploaded, posted, transmitted, distributed or disclosed
16 * in any way without Intel's prior express written permission. No license under
17 * any patent, copyright or other intellectual property rights in the Material
18 * is granted to or conferred upon you, either expressly, by implication,
19 * inducement, estoppel or otherwise. Any license under such intellectual
20 * property rights must be express and approved by Intel in writing.
21 *
22 * Unless otherwise agreed by Intel in writing, you may not remove or alter this
23 * notice or any other notice embedded in Materials by Intel or Intel's
24 * suppliers or licensors in any way.
25 *
26 *
27 * If this software was obtained under the Apache License, Version 2.0 (the
28 * "License"), the following terms apply:
29 *
30 * You may not use this file except in compliance with the License. You may
31 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
32 *
33 *
34 * Unless required by applicable law or agreed to in writing, software
35 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
36 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37 *
38 * See the License for the specific language governing permissions and
39 * limitations under the License.
40 *******************************************************************************/
41 
42 /*
43 //++
44 // Implementation of gradient boosted trees classification training algorithm interface.
45 //--
46 */
47 
48 #ifndef __GBT_CLASSIFICATION_TRAINING_TYPES_H__
49 #define __GBT_CLASSIFICATION_TRAINING_TYPES_H__
50 
51 #include "algorithms/algorithm.h"
52 #include "algorithms/classifier/classifier_training_types.h"
53 #include "algorithms/gradient_boosted_trees/gbt_classification_model.h"
54 #include "algorithms/gradient_boosted_trees/gbt_training_parameter.h"
55 
56 namespace daal
57 {
58 namespace algorithms
59 {
60 namespace gbt
61 {
62 namespace classification
63 {
73 namespace training
74 {
79 enum Method
80 {
81  xboost = 0,
83  defaultDense = 0
84 };
85 
90 enum LossFunctionType
91 {
92  crossEntropy, /* Multinomial deviance */
93  custom /* custom function type */
94 };
95 
99 namespace interface1
100 {
107 /* [Parameter source code] */
108 struct DAAL_EXPORT Parameter : public classifier::Parameter, public daal::algorithms::gbt::training::Parameter
109 {
111  Parameter(size_t nClasses) : classifier::Parameter(nClasses), loss(crossEntropy) {}
112  services::Status check() const DAAL_C11_OVERRIDE;
113  LossFunctionType loss; /* Defaut is crossEntropy */
114 };
115 /* [Parameter source code] */
116 
117 
123 class DAAL_EXPORT Result : public classifier::training::Result
124 {
125 public:
126  DECLARE_SERIALIZABLE_CAST(Result);
127 
128  Result();
129  virtual ~Result() {}
130 
136  ModelPtr get(classifier::training::ResultId id) const;
137 
143  void set(classifier::training::ResultId id, const ModelPtr &value);
144 
152  template <typename algorithmFPType>
153  DAAL_EXPORT services::Status allocate(const daal::algorithms::Input *input, const daal::algorithms::Parameter *parameter, const int method);
154 
162  services::Status check(const daal::algorithms::Input *input, const daal::algorithms::Parameter *par, int method) const DAAL_C11_OVERRIDE;
163 
164 protected:
166  template<typename Archive, bool onDeserialize>
167  services::Status serialImpl(Archive *arch)
168  {
169  return daal::algorithms::Result::serialImpl<Archive, onDeserialize>(arch);
170  }
171 };
172 typedef services::SharedPtr<Result> ResultPtr;
173 
174 } // namespace interface1
175 using interface1::Parameter;
176 using interface1::Result;
177 using interface1::ResultPtr;
178 
179 } // namespace daal::algorithms::gbt::classification::training
181 }
182 }
183 }
184 } // namespace daal
185 #endif // __GBT_CLASSIFICATION_TRAINING_TYPES_H__
daal::algorithms::gbt::classification::training::defaultDense
Definition: gbt_classification_training_types.h:83
daal::algorithms::gbt::classification::training::LossFunctionType
LossFunctionType
Loss function type.
Definition: gbt_classification_training_types.h:90
daal
Definition: algorithm_base_common.h:57
daal::algorithms::gbt::classification::training::Method
Method
Computation methods for gradient boosted trees classification model-based training.
Definition: gbt_classification_training_types.h:79
daal::algorithms::gbt::classification::training::xboost
Definition: gbt_classification_training_types.h:81
daal::algorithms::gbt::classification::training::interface1::Parameter::Parameter
Parameter(size_t nClasses)
Definition: gbt_classification_training_types.h:111
daal::algorithms::gbt::classification::training::interface1::Parameter
Gradient Boosted Trees algorithm parameters.
Definition: gbt_classification_training_types.h:108
daal::algorithms::classifier::training::ResultId
ResultId
Definition: classifier_training_types.h:106
daal::algorithms::math::abs::value
Definition: abs_types.h:112
daal::algorithms::gbt::classification::training::interface1::Result
Provides methods to access the result obtained with the compute() method of model-based training...
Definition: gbt_classification_training_types.h:123

For more complete information about compiler optimizations, see our Optimization Notice.