Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

datastructures_homogen.py

1 #===============================================================================
2 # Copyright 2014-2017 Intel Corporation
3 # All Rights Reserved.
4 #
5 # If this software was obtained under the Intel Simplified Software License,
6 # the following terms apply:
7 #
8 # The source code, information and material ("Material") contained herein is
9 # owned by Intel Corporation or its suppliers or licensors, and title to such
10 # Material remains with Intel Corporation or its suppliers or licensors. The
11 # Material contains proprietary information of Intel or its suppliers and
12 # licensors. The Material is protected by worldwide copyright laws and treaty
13 # provisions. No part of the Material may be used, copied, reproduced,
14 # modified, published, uploaded, posted, transmitted, distributed or disclosed
15 # in any way without Intel's prior express written permission. No license under
16 # any patent, copyright or other intellectual property rights in the Material
17 # is granted to or conferred upon you, either expressly, by implication,
18 # inducement, estoppel or otherwise. Any license under such intellectual
19 # property rights must be express and approved by Intel in writing.
20 #
21 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 # notice or any other notice embedded in Materials by Intel or Intel's
23 # suppliers or licensors in any way.
24 #
25 #
26 # If this software was obtained under the Apache License, Version 2.0 (the
27 # "License"), the following terms apply:
28 #
29 # You may not use this file except in compliance with the License. You may
30 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 #
32 #
33 # Unless required by applicable law or agreed to in writing, software
34 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 #
37 # See the License for the specific language governing permissions and
38 # limitations under the License.
39 #===============================================================================
40 
41 ## <a name="DAAL-EXAMPLE-PY-DATASTRUCTURES_HOMOGEN"></a>
42 ## @example datastructures_homogen.py
43 
44 import os
45 import sys
46 
47 import numpy as np
48 
49 from daal.data_management import HomogenNumericTable, BlockDescriptor, readOnly
50 
51 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
52 if utils_folder not in sys.path:
53  sys.path.insert(0, utils_folder)
54 from utils import printArray
55 
56 
57 if __name__ == "__main__":
58 
59  print("Homogeneous numeric table example\n")
60 
61  data = np.array([(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),
62  (1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2),
63  (2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3),
64  (3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4),
65  (4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5),
66  (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 1),
67  (6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 2),
68  (7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 3),
69  (8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 4),
70  (9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 5),])
71 
72  nObservations = len(data)
73  nFeatures = len(data[0])
74  firstReadRow = 0
75  nRead = 3
76  # Construct AOS numericTable for a data array with nFeatures fields and nObservations elements
77  # Dictionary will be initialized with type information from ndarray
78  dataTable = HomogenNumericTable(data)
79  block = BlockDescriptor()
80  num_cols = block.getNumberOfColumns()
81  dataTable.getBlockOfRows(firstReadRow, nRead, readOnly, block)
82  print("%s rows are read" % (block.getNumberOfRows()))
83  printArray(
84  block.getArray(), nFeatures, block.getNumberOfRows(), 11,
85  "Print 3 rows from homogeneous data array as double:"
86  )
87  dataTable.releaseBlockOfRows(block)
88 
89  readFeatureIdx = 2
90  dataTable.getBlockOfColumnValues(readFeatureIdx, firstReadRow, nObservations, readOnly, block)
91  printArray(block.getArray(), 1, 10, 1, "Print the third feature of homogeneous data:")
92  dataTable.releaseBlockOfColumnValues(block)
93 
94  data[0][0] = 999
95  dataFromNumericTable = dataTable.getArray()
96  printArray(dataFromNumericTable, nFeatures, nObservations, 11, "Data from getArray:")
97 
98  newData = np.array([(1.0, 2.0),
99  (3.0, 4.0),
100  (5.0, 6.0),])
101 
102  nNewVectors = len(newData)
103  nNewFeatures = len(newData[0])
104 
105  # Set new data to HomogenNumericTable. It mush have the same type as the numeric table.
106  dataTable = HomogenNumericTable(newData)
107 
108  # Set a new number of columns and rows
109  dataTable.setNumberOfColumns(nNewFeatures)
110  dataTable.setNumberOfRows(nNewVectors)
111 
112  # Ensure the data has changed
113  readFeatureIdx = 1
114  dataTable.getBlockOfColumnValues(readFeatureIdx, firstReadRow, nNewVectors, readOnly, block)
115  printArray(block.getArray(), 1, 3, 1, "Print the second feature of new data:")
116  dataTable.releaseBlockOfColumnValues(block)

For more complete information about compiler optimizations, see our Optimization Notice.