Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

datastructures_packedtriangular.py

1 # file: datastructures_packedtriangular.py
2 #===============================================================================
3 # Copyright 2014-2017 Intel Corporation
4 # All Rights Reserved.
5 #
6 # If this software was obtained under the Intel Simplified Software License,
7 # the following terms apply:
8 #
9 # The source code, information and material ("Material") contained herein is
10 # owned by Intel Corporation or its suppliers or licensors, and title to such
11 # Material remains with Intel Corporation or its suppliers or licensors. The
12 # Material contains proprietary information of Intel or its suppliers and
13 # licensors. The Material is protected by worldwide copyright laws and treaty
14 # provisions. No part of the Material may be used, copied, reproduced,
15 # modified, published, uploaded, posted, transmitted, distributed or disclosed
16 # in any way without Intel's prior express written permission. No license under
17 # any patent, copyright or other intellectual property rights in the Material
18 # is granted to or conferred upon you, either expressly, by implication,
19 # inducement, estoppel or otherwise. Any license under such intellectual
20 # property rights must be express and approved by Intel in writing.
21 #
22 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
23 # notice or any other notice embedded in Materials by Intel or Intel's
24 # suppliers or licensors in any way.
25 #
26 #
27 # If this software was obtained under the Apache License, Version 2.0 (the
28 # "License"), the following terms apply:
29 #
30 # You may not use this file except in compliance with the License. You may
31 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
32 #
33 #
34 # Unless required by applicable law or agreed to in writing, software
35 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
36 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
37 #
38 # See the License for the specific language governing permissions and
39 # limitations under the License.
40 #===============================================================================
41 
42 #
43 # ! Content:
44 # ! Python example of using packed data structures
45 # !*****************************************************************************
46 
47 #
48 ## <a name = "DAAL-EXAMPLE-PY-DATASTRUCTURES_PACKEDTRIANGULAR"></a>
49 ## \example datastructures_packedtriangular.py
50 #
51 from __future__ import print_function
52 
53 import os
54 import sys
55 
56 import numpy as np
57 
58 from daal.data_management import PackedTriangularMatrix, NumericTableIface, BlockDescriptor, readOnly, readWrite
59 
60 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
61 if utils_folder not in sys.path:
62  sys.path.insert(0, utils_folder)
63 from utils import printArray
64 
65 
66 if __name__ == "__main__":
67 
68  print("Packed triangular matrix example")
69  print()
70 
71  nDim = 5
72  firstReadRow = 0
73  nRead = 5
74 
75  # Example of using a packed triangular matrix
76  data = np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4], dtype=np.float64)
77 
78  dataTable = PackedTriangularMatrix(NumericTableIface.lowerPackedTriangularMatrix, data)
79 
80  block = BlockDescriptor()
81 
82  # Read a block of rows
83  dataTable.getBlockOfRows(firstReadRow, nRead, readOnly, block)
84  print("{} rows read".format(block.getNumberOfRows()))
85 
86  printArray(block.getArray(), nDim, block.getNumberOfRows(), block.getNumberOfColumns(),
87  "Print 3 rows from packed triangular matrix:")
88 
89  # Read a feature(column) and write into it
90  readFeatureIdx = 2
91  dataTable.getBlockOfColumnValues(readFeatureIdx, firstReadRow, nDim, readWrite, block)
92  printArray(block.getArray(), 1, block.getNumberOfRows(), block.getNumberOfColumns(),
93  "Print the third feature of packed triangular matrix:")
94 
95  # Set new value to a buffer and release it
96  dataBlock = block.getArray()
97  dataBlock[readFeatureIdx - 1] = -1
98  dataBlock[readFeatureIdx + 1] = -2
99  dataTable.releaseBlockOfColumnValues(block)
100 
101  # Read a block of rows. Ensure that data has changed
102  dataTable.getBlockOfRows(firstReadRow, nRead, readOnly, block)
103  print("{} rows read".format(block.getNumberOfRows()))
104  printArray(block.getArray(), nDim, block.getNumberOfRows(), block.getNumberOfColumns(),
105  "Print 3 rows from packed triangular matrix as float:")

For more complete information about compiler optimizations, see our Optimization Notice.