package com.intel.daal.examples.neural_networks;
import com.intel.daal.algorithms.neural_networks.layers.spatial_maximum_pooling2d.*;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultLayerDataId;
import com.intel.daal.algorithms.neural_networks.layers.ForwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputLayerDataId;
import com.intel.daal.data_management.data.Tensor;
import com.intel.daal.data_management.data.HomogenTensor;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import com.intel.daal.data_management.data.NumericTable;
class SpatMaxPool2DLayerDenseBatch {
private static final String datasetFileName = "../data/batch/layer.csv";
private static DaalContext context = new DaalContext();
private static long pyramidHeight = 2;
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
long[] dimensionSizes = new long[4];
dimensionSizes[0] = 2;
dimensionSizes[1] = 1;
dimensionSizes[2] = 16;
dimensionSizes[3] = 16;
double[] data = new double[512];
Tensor dataTensor = new HomogenTensor(context, dimensionSizes, data, 1.0);
long nDim = dataTensor.getDimensions().length;
Service.printTensor("Forward two-dimensional maximum pooling input (first 10 rows):", dataTensor, 10, 0);
SpatialMaximumPooling2dForwardBatch spatialMaxPooling2DLayerForward = new SpatialMaximumPooling2dForwardBatch(context, Float.class,
SpatialMaximumPooling2dMethod.defaultDense,
pyramidHeight, nDim);
spatialMaxPooling2DLayerForward.input.set(ForwardInputId.data, dataTensor);
SpatialMaximumPooling2dForwardResult forwardResult = spatialMaxPooling2DLayerForward.compute();
Service.printTensor("Forward two-dimensional maximum pooling result (first 5 rows):", forwardResult.get(ForwardResultId.value), 5, 0);
Service.printTensor("Forward two-dimensional maximum pooling layer selected indices (first 5 rows):",
forwardResult.get(SpatialMaximumPooling2dLayerDataId.auxSelectedIndices), 5, 0);
SpatialMaximumPooling2dBackwardBatch spatialMaxPooling2DLayerBackward = new SpatialMaximumPooling2dBackwardBatch(context, Float.class,
SpatialMaximumPooling2dMethod.defaultDense,
pyramidHeight, nDim);
spatialMaxPooling2DLayerBackward.input.set(BackwardInputId.inputGradient, forwardResult.get(ForwardResultId.value));
spatialMaxPooling2DLayerBackward.input.set(BackwardInputLayerDataId.inputFromForward,
forwardResult.get(ForwardResultLayerDataId.resultForBackward));
SpatialMaximumPooling2dBackwardResult backwardResult = spatialMaxPooling2DLayerBackward.compute();
Service.printTensor("Backward two-dimensional maximum pooling result (first 10 rows):", backwardResult.get(BackwardResultId.gradient), 10, 0);
context.dispose();
}
}