package com.intel.daal.examples.neural_networks;
import com.intel.daal.algorithms.neural_networks.layers.softmax_cross.*;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultLayerDataId;
import com.intel.daal.algorithms.neural_networks.layers.loss.LossForwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputLayerDataId;
import com.intel.daal.data_management.data.Tensor;
import com.intel.daal.data_management.data.HomogenTensor;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class LossSoftmaxEntrLayerDenseBatch {
private static DaalContext context = new DaalContext();
static double dataArray[] = {
2.74, 0.81, 3.03, 3.04, 0.27, 0.23, 3.31, 2.32,
3.16, 3.64, 1.30, 0.65, 1.76, 2.72, 4.93, 4.91,
1.71, 0.85, 3.47, 0.33, 0.76, 2.25, 0.34, 1.16,
3.00, 3.81, 3.30, 3.05, 4.94, 4.32, 3.14, 3.95,
3.52, 4.57, 4.93, 3.54, 3.68, 1.98, 2.52, 0.81,
4.97, 1.42, 4.98, 2.24, 0.07, 4.66, 2.19, 3.06,
3.37, 3.05, 0.64, 3.83, 1.53, 1.57, 2.16, 4.45,
2.21, 2.87, 1.39, 0.82, 2.39, 0.30, 3.38, 3.66,
0.67, 3.27, 2.95, 1.78, 0.62, 3.64, 1.56, 0.80,
3.42, 2.18, 2.92, 3.77, 4.91, 2.66, 4.95, 1.13,
1.52, 3.22, 4.18, 1.27, 2.11, 1.40, 0.72, 4.55,
0.48, 2.75, 4.74, 0.49, 0.70, 0.53, 4.56, 3.46,
2.69, 2.33, 3.02, 2.98
};
static float groundTruthArray[] = {
3, 4, 4, 0,
4, 3, 4, 1,
2, 0, 1, 0,
3, 4, 2, 3,
2, 2, 0, 0
};
static long[] dims = {5, 5, 4};
static long[] gtDims = {5, 1, 4};
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
HomogenTensor data = new HomogenTensor(context, dims, dataArray);
HomogenTensor groundTruth = new HomogenTensor(context, gtDims, groundTruthArray);
Service.printTensor("Forward softmax cross-entropy layer input data:", data, 0, 0);
Service.printTensor("Forward softmax cross-entropy layer input ground truths:", groundTruth, 0, 0);
SoftmaxCrossForwardBatch forwardLayer = new SoftmaxCrossForwardBatch(context, Float.class, SoftmaxCrossMethod.defaultDense);
forwardLayer.input.set(LossForwardInputId.data, data);
forwardLayer.input.set(LossForwardInputId.groundTruth, groundTruth);
SoftmaxCrossForwardResult forwardResult = forwardLayer.compute();
Service.printTensor("Forward softmax cross-entropy layer result (first 5 rows):", forwardResult.get(ForwardResultId.value), 5, 0);
Service.printTensor("Forward softmax cross-entropy layer probabilities estimations (first 5 rows):", forwardResult.get(SoftmaxCrossLayerDataId.auxProbabilities), 5, 0);
SoftmaxCrossBackwardBatch backwardLayer = new SoftmaxCrossBackwardBatch(context, Float.class, SoftmaxCrossMethod.defaultDense);
backwardLayer.input.set(BackwardInputLayerDataId.inputFromForward, forwardResult.get(ForwardResultLayerDataId.resultForBackward));
SoftmaxCrossBackwardResult backwardResult = backwardLayer.compute();
Service.printTensor("Backward softmax cross-entropy layer result (first 5 rows):", backwardResult.get(BackwardResultId.gradient), 5, 0);
context.dispose();
}
}