Python* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

datastructures_merged.py

1 #===============================================================================
2 # Copyright 2014-2017 Intel Corporation
3 # All Rights Reserved.
4 #
5 # If this software was obtained under the Intel Simplified Software License,
6 # the following terms apply:
7 #
8 # The source code, information and material ("Material") contained herein is
9 # owned by Intel Corporation or its suppliers or licensors, and title to such
10 # Material remains with Intel Corporation or its suppliers or licensors. The
11 # Material contains proprietary information of Intel or its suppliers and
12 # licensors. The Material is protected by worldwide copyright laws and treaty
13 # provisions. No part of the Material may be used, copied, reproduced,
14 # modified, published, uploaded, posted, transmitted, distributed or disclosed
15 # in any way without Intel's prior express written permission. No license under
16 # any patent, copyright or other intellectual property rights in the Material
17 # is granted to or conferred upon you, either expressly, by implication,
18 # inducement, estoppel or otherwise. Any license under such intellectual
19 # property rights must be express and approved by Intel in writing.
20 #
21 # Unless otherwise agreed by Intel in writing, you may not remove or alter this
22 # notice or any other notice embedded in Materials by Intel or Intel's
23 # suppliers or licensors in any way.
24 #
25 #
26 # If this software was obtained under the Apache License, Version 2.0 (the
27 # "License"), the following terms apply:
28 #
29 # You may not use this file except in compliance with the License. You may
30 # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 #
32 #
33 # Unless required by applicable law or agreed to in writing, software
34 # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
35 # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 #
37 # See the License for the specific language governing permissions and
38 # limitations under the License.
39 #===============================================================================
40 
41 ## <a name="DAAL-EXAMPLE-PY-DATASTRUCTURES_MERGED"></a>
42 ## \example datastructures_merged.py
43 
44 import os
45 import sys
46 
47 import numpy as np
48 
49 from daal.data_management import (
50  HomogenNumericTable, MergedNumericTable, BlockDescriptor, readWrite, readOnly
51 )
52 
53 utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
54 if utils_folder not in sys.path:
55  sys.path.insert(0, utils_folder)
56 from utils import printArray
57 
58 
59 if __name__ == "__main__":
60 
61  print("Merged numeric table example\n")
62 
63  nFeatures1 = 5
64  nFeatures2 = 6
65  firstReadRow = 3
66  nRead = 1
67 
68  # Example of using homogeneous numeric table
69  data1 = np.array([
70  (0.0, 0.1, 0.2, 0.3, 0.4),
71  (1.0, 1.1, 1.2, 1.3, 1.4),
72  (2.0, 2.1, 2.2, 2.3, 2.4),
73  (3.0, 3.1, 3.2, 3.3, 3.4),
74  (4.0, 4.1, 4.2, 4.3, 4.4),
75  ])
76 
77  data2 = np.array([
78  (0.5, 0.6, 0.7, 0.8, 0.9, 1),
79  (1.5, 1.6, 1.7, 1.8, 1.9, 2),
80  (2.5, 2.6, 2.7, 2.8, 2.9, 3),
81  (3.5, 3.6, 3.7, 3.8, 3.9, 4),
82  (4.5, 4.6, 4.7, 4.8, 4.9, 5),
83  ])
84 
85  # Create two homogen numeric tables from data arrays
86  dataTable1 = HomogenNumericTable(data1)
87  dataTable2 = HomogenNumericTable(data2)
88 
89  # Create merged numeric table consisting of two homogen numeric tables
90  dataTable = MergedNumericTable()
91  dataTable.addNumericTable(dataTable1)
92  dataTable.addNumericTable(dataTable2)
93 
94  block = BlockDescriptor()
95 
96  # Read one row from merged numeric table
97  dataTable.getBlockOfRows(firstReadRow, nRead, readWrite, block)
98  printArray(
99  block.getArray(), nFeatures1 + nFeatures2, block.getNumberOfRows(),
100  block.getNumberOfColumns(), "Print 1 row from merged numeric table as double:"
101  )
102 
103  # Modify row of the merged numeric table
104  row = block.getArray()
105  for i in range(nFeatures1 + nFeatures2):
106  row[0][i] *= row[0][i]
107  dataTable.releaseBlockOfRows(block)
108 
109  # Read the same row from homogen numeric tables
110  dataTable1.getBlockOfRows(firstReadRow, nRead, readOnly, block)
111  printArray(
112  block.getArray(), nFeatures1, block.getNumberOfRows(),
113  block.getNumberOfColumns(), "Print 1 row from first homogen numeric table as double:"
114  )
115  dataTable1.releaseBlockOfRows(block)
116 
117  dataTable2.getBlockOfRows(firstReadRow, nRead, readOnly, block)
118  printArray(
119  block.getArray(), nFeatures2, block.getNumberOfRows(),
120  block.getNumberOfColumns(), "Print 1 row from second homogen numeric table as double:"
121  )
122  dataTable2.releaseBlockOfRows(block)

For more complete information about compiler optimizations, see our Optimization Notice.