Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

KDTreeKNNDenseBatch.java

/* file: KDTreeKNNDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2017 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Content:
// Java example of k nearest neighbors algorithm in the batch processing mode.
*/
package com.intel.daal.examples.kdtree_knn_classification;
import com.intel.daal.algorithms.kdtree_knn_classification.Model;
import com.intel.daal.algorithms.kdtree_knn_classification.prediction.*;
import com.intel.daal.algorithms.kdtree_knn_classification.training.*;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class KDTreeKNNDenseBatch {
/* Input data set parameters */
private static final String trainDatasetFileName = "../data/batch/k_nearest_neighbors_train.csv";
private static final String testDatasetFileName = "../data/batch/k_nearest_neighbors_test.csv";
private static final int nFeatures = 5;
static Model model;
static NumericTable results;
static NumericTable testGroundTruth;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() {
/* Initialize FileDataSource to retrieve the input data from a .csv file */
FileDataSource trainDataSource = new FileDataSource(context, trainDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and labels */
NumericTable trainData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.DoNotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.DoNotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Create an algorithm object to train the k nearest neighbors model with the default dense method */
TrainingBatch kNearestNeighborsTrain = new TrainingBatch(context, Float.class, TrainingMethod.defaultDense);
kNearestNeighborsTrain.input.set(InputId.data, trainData);
kNearestNeighborsTrain.input.set(InputId.labels, trainGroundTruth);
/* Build the k nearest neighbors model */
TrainingResult trainingResult = kNearestNeighborsTrain.compute();
model = trainingResult.get(TrainingResultId.model);
}
private static void testModel() {
/* Initialize FileDataSource to retrieve the input data from a .csv file */
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for testing data and labels */
NumericTable testData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.DoNotAllocate);
testGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.DoNotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testGroundTruth);
/* Retrieve the data from an input file */
testDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to predict values of k nearest neighbors with the default method */
PredictionBatch kNearestNeighborsPredict = new PredictionBatch(context, Float.class,
PredictionMethod.defaultDense);
kNearestNeighborsPredict.input.set(NumericTableInputId.data, testData);
kNearestNeighborsPredict.input.set(ModelInputId.model, model);
/* Compute prediction results */
PredictionResult predictionResult = kNearestNeighborsPredict.compute();
results = predictionResult.get(PredictionResultId.prediction);
}
private static void printResults() {
NumericTable expected = testGroundTruth;
Service.printNumericTable("Classification results (first 20 observations): ", results, 20);
Service.printNumericTable("KD-tree based kNN classification results (first 20 observations):", expected, 20);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.