C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 1

initializers_dense_batch.cpp

/* file: initializers_dense_batch.cpp */
/*******************************************************************************
* Copyright 2014-2017 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
! Content:
! C++ example of initializers
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
int main(int argc, char *argv[])
{
/* Create collection of dimension sizes of the input data tensor */
Collection<size_t> inDims;
inDims.push_back(2);
inDims.push_back(1);
inDims.push_back(3);
inDims.push_back(4);
TensorPtr tensorData = TensorPtr(new HomogenTensor<>(inDims, Tensor::doAllocate));
/* Fill tensor data using truncated gaussian initializer */
/* Create an algorithm to initialize data using default method */
initializers::truncated_gaussian::Batch<> truncatedGaussInitializer(0.0, 1.0);
/* Set input object and parameters for the truncated gaussian initializer */
truncatedGaussInitializer.input.set(initializers::data, tensorData);
/* Compute truncated gaussian initializer */
truncatedGaussInitializer.compute();
/* Print the results of the truncated gaussian initializer */
printTensor(tensorData, "Data with truncated gaussian distribution:");
/* Fill tensor data using gaussian initializer */
/* Create an algorithm to initialize data using default method */
initializers::gaussian::Batch<> gaussInitializer(1.0, 0.5);
/* Set input object for the gaussian initializer */
gaussInitializer.input.set(initializers::data, tensorData);
/* Compute gaussian initializer */
gaussInitializer.compute();
/* Print the results of the gaussian initializer */
printTensor(tensorData, "Data with gaussian distribution:");
/* Fill tensor data using uniform initializer */
/* Create an algorithm to initialize data using default method */
initializers::uniform::Batch<> uniformInitializer(-5.0, 5.0);
/* Set input object and parameters for the uniform initializer */
uniformInitializer.input.set(initializers::data, tensorData);
/* Compute uniform initializer */
uniformInitializer.compute();
/* Print the results of the uniform initializer */
printTensor(tensorData, "Data with uniform distribution:");
/* Fill layer weights using xavier initializer */
/* Create an algorithm to compute forward fully-connected layer results using default method */
fullyconnected::forward::Batch<> fullyconnectedLayerForward(5);
/* Set input objects and parameter for the forward fully-connected layer */
fullyconnectedLayerForward.input.set(forward::data, tensorData);
fullyconnectedLayerForward.parameter.weightsInitializer.reset(new initializers::xavier::Batch<>());
/* Compute forward fully-connected layer results */
fullyconnectedLayerForward.compute();
/* Print the results of the xavier initializer */
printTensor(fullyconnectedLayerForward.input.get(layers::forward::weights), "Weights filled by xavier initializer:");
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.