

License Plate Recognition using Training
Toolbox based on LPRNet Model

Implementation Guide

__

 March 2019

 iii

 Contents

1. Introduction .. 1

2. System Requirements .. 2

3. About LPRNet .. 3

4. Retraining LPRNet ... 4

4.1. Downloading the LPRNet Repository ... 4

4.2. Preprocessing the Datasets .. 5

4.2.1. Annotating the Datasets .. 5

4.2.2. Split the Datasets into Train and Validation Labels .. 5

4.3. Package Adjustments ... 5

4.3.1. Script Placement Adjustments .. 6

4.3.2. Package Adjustments (Workaround) .. 6

4.3.3. Workaround Package Initiation ... 6

4.4. Editing the Configuration file ... 6

4.4.1. Editing the config file ... 6

4.4.2. Editing the main logic for training our custom datasets .. 7

4.5. Training the Model .. 7

4.6. Evaluating the Trained Model ... 7

5. Inferencing the Trained Model ... 8

5.1. Inferencing using LPRNet Inference Script ... 8

5.2. Inferencing using Intel® Distribution of OpenVINO™ toolkit Inference Engine 8

5.3. Hardware that support the LPRNet Model using the Intel® Distribution of OpenVINO™ toolkit .. 9

6. Reference Section ... 10

 iv

List of Abbreviations

Abbreviation Expanded Form

API Application Program Interface

CNN Convolutional Neural Network

LPRNet License Plate Recognition Network

FPGA Field Programmable Gate Array

IR Intermediate Representation

Open VINO Open Visual Inferencing and Neural Network Optimization

OpenCL Open Computing Language

OpenCV Open Computer Vision

POC Proof of Concept

LP License Plate

 License Plate Recognition - Implementation Guide

 1

1. Introduction

There is a need to design, develop, and test license plates recognition and vehicle attributes
detection prototype to demonstrate the feasibility of Intel® Distribution of OpenVINO™ toolkit and
LPRNet TensorFlow* training toolbox. The Intel Distribution of OpenVINO toolkit pre-trained
model scales to detect vehicle and corresponding vehicle attributes such as color, license plate
recognition and detection with sufficient accuracy and performance for a trained scenario.
Keeping in mind of variation in the scenarios, these pre-trained models are open-sourced so that
you can use it to train on your own dataset and use it efficiently in your environment.

The toolkit is a comprehensive toolkit for quickly developing applications and solutions that
emulate human vision. Based on CNNs, the toolkit extends computer vision workloads across
Intel® hardware, maximizing performance.

The toolkit:

 Enables the CNN-based deep learning inference on the edge.

 Supports heterogeneous execution across Intel's computer vision accelerators, using a
common API for the CPU, Integrated Graphics, Intel® Movidius™ Neural Compute Stick
(NCS), and FPGA. However, you are not covering Intel Movidius NCS and FPGA in this
lab.

 Speeds time-to-market through an easy-to-use library of computer vision functions and
pre-optimized kernels.

 Includes optimized calls for computer vision standards, including OpenCV, OpenCL™,
and OpenVX*.

 License Plate Recognition - Implementation Guide

 2

2. System Requirements

Hardware Requirements

 Processor : x86_64 is the only supported architecture

 Memory : At least 2GB RAM

 Hard Disk : 32GB HDD

 Network : Network adapter with active internet connection

Software Requirements

 Operating System : Ubuntu* 16.04 LTS 64 bit

 Git

 Intel Distribution of OpenVINO toolkit

 Python* 3.4-3.6

 TensorFlow

https://docs.openvinotoolkit.org/latest/_docs_install_guides_installing_openvino_linux.html

 License Plate Recognition - Implementation Guide

 3

3. About LPRNet

Automatic License Plate Recognition is a challenging and important task which is used in traffic
management, digital security surveillance, vehicle recognition, parking management of big cities.
This task is a complex problem due to many factors which include but are not limited to: blurry
images, poor lighting conditions, variability of license plates numbers (including special
characters logograms for China, Japan), physical impact (deformations), weather conditions.

LPRNet is based on Deep Convolutional Neural Network. Recent studies proved effectiveness
and superiority of Convolutional Neural Networks in many Computer Vision tasks such as image
classification, object detection and semantic segmentation. However, running most of them on
embedded devices still remains a challenging problem.

Let us summarize the LPRNet as follows:

 LPRNet is a real-time framework for high-quality license plate recognition supporting
template and character independent variable-length license plates, performing LPR
without character pre-segmentation, trainable end-to-end from scratch for different
national license plates.

 LPRNet is the first real-time approach that does not use Recurrent Neural Networks and
is light in weight enough to run on variety of platforms, including embedded devices.

 Application of LPRNet to real traffic surveillance video shows that our approach is robust
enough to handle difficult cases, such as perspective and camera-dependent distortions,
hard lighting conditions, change of viewpoint, and so on.

BSG0739

 License Plate Recognition - Implementation Guide

 4

4. Retraining LPRNet

This section describes how to retrain LPRNet model with custom datasets of any country license
plate with reference to LPRNet training toolbox for Chinese license plate. For example, taking
synthetic Brazil license plates. The following steps are involved for retraining:

 Downloading the LPRNet repository

 Preprocessing the datasets

 Package adjustments

 Editing the configuration file

 Training the model

 Evaluating the trained model

After completing these steps, you can retrain LPRNet model and recognize license plates of any
nation.

Note In this process, you are not using virtual environment setup as described in the git
repositories of the training toolbox.

4.1. Downloading the LPRNet Repository

Download openvino_training_extensions repository under develop branch which contains
LPRNet and SSD_detector for the Chinese Car using GitHub* link. Setup the toolkit training
extensions using the quick start guide given in the link.

When you visit the LPRnet specific folder in the link in training toolbox, you will see the steps to
train the LPRNet model for Chinese LP.

Note:

1. Don’t download the master repository because there are some files missing so download
the repository under the develop branch.

2. There could be some change in the folder structures then mentioned in the documents as
training toolbox project get updated by owner time to time.

Extract the downloaded repository to desired directory. Next you need to download the datasets
(images) for retraining the model by default the LPRNet model provides a link to download the
Chinese license plates which has around 300000 images. So download the datasets which you
want to retrain the model with.

Copy the downloaded datasets to the <LPRNet extracted directory>/openvino_training_extensions-
develop/data/synthetic_chinese_license_plates/crops/ directory

https://github.com/opencv/openvino_training_extensions/tree/develop/tensorflow_toolkit/lpr
https://github.com/opencv/openvino_training_extensions/tree/develop/tensorflow_toolkit/lpr

 License Plate Recognition - Implementation Guide

 5

4.2. Preprocessing the Datasets

Next step is to perform the dataset preprocessing which includes the following:

 Annotating the datasets

 Split the datasets into train and validation labels

4.2.1. Annotating the Datasets

Navigate to openvino_training_extensions-develop/data/synthetic_chinese_license_plates/ and

write the annotations for the images in annotation text file. The annotation file should have all
the image paths followed by the number plate data. The license plate data can have special
symbols followed by alphabets/numbers.

 For example: <path_to_the_image> <special_symbol><remaing_Alphabets/numbers>

 E.g. home/intel/Downloads/Datasets/License_plates/000001.jpg BSG0739

 000001.jpg

4.2.2. Split the Datasets into Train and Validation Labels

Access the following openvino_training_extensions-develop/data/synthetic_chinese_license_plates/
directory and execute the script make_train_split.py to split into train and Val files. These are

used for training and validation. This script automatically splits the entire datasets in the ratio 9:1
for training and validation.

Execute the python file by using the following command:

$ python3 make_train_split.py home/intel/openvino_training_extensions-

develop/data/synthetic_chinese_license_plates/annotation

You can view two files named train and val which are annotation forms of train and validation
files.

4.3. Package Adjustments

As the next step, you need to make some adjustments or workarounds because there are some
missing files in the downloaded repository. You need to copy them in their respective places since
the repository is in the development stage. It is not 100 percent deployable. Perform the following
changes:

BSG0739

 License Plate Recognition - Implementation Guide

 6

 Script Placement Adjustments

 Package Adjustments(workaround)

 Workaround Package Initiation

4.3.1. Script Placement Adjustments

Navigate to the openvino_training_extensions-develop/tensorflow_toolkit/lpr directory and
move the train.py, eval.py, export.py, infer.py, infer_ie.py to the
openvino_training_extensions-develop/tensorflow_toolkit directory. You need to perform
this because the individual scripts are looking for packages in the moved directory.

4.3.2. Package Adjustments (Workaround)

Copy the script spatial_transformer.py from the GitHub page. Paste it in
openvino_training_extensions-develop/tensorflow_toolkit/lpr/toolbox/ directory. At the time
of release of this repository, there was no spatial_transformer.py script in the corresponding
folder. So, you need to explicitly download the file and place it in the corresponding directory.

4.3.3. Workaround Package Initiation

Go to openvino_training_extensions-develop/tensorflow_toolkit/lpr directory, and open
trainer.py file and change the line 7 command spatial_transformer path to
lpr.toolbox.spatial_transformer. Because the train script is checking for the spatial_transformer
file so in the previous step you downloaded the file and initiated the script.

4.4. Editing the Configuration file

You need to make some changes in the configuration file as the next step. This is to point to the
correct folders for training our datasets.

Editing is done for the following files:

 Editing the config file

 Editing the main logic for training our custom datasets

4.4.1. Editing the config file

Go to openvino_training_extensions-develop/tensorflow_toolkit/lpr/chinese_lp directory
and open config.py file and change the train path to
<root_directory>/openvino_training_extensions-
develop/data/synthetic_chinese_license_plates/train under train class.

https://github.com/opencv/openvino_training_extensions/blob/91c1bd4566dc152c019d12d79abd200f642c2efa/training_toolbox/lpr/toolbox/spatial_transformer_layer.py

 License Plate Recognition - Implementation Guide

 7

This is to make the script aware of where the train annotation file is located during training our
datasets.

4.4.2. Editing the main logic for training our custom datasets

Open openvino_training_extensions-develop/tensorflow_toolkit/lpr/toolbox/utils.py, look
for the definition of the variable ‘lpr_patterns’ and set the corresponding regular expression
based on the annotation labels you used for datasets.

Ex: '^ [A-Z]{3}[0-9]{4}$' for labels starting with 3 alphabets and followed by four numericals.

If there are special symbols used in datasets then you can refer the Chinese license plate regular
expressions which are by default given. If you are not using any special symbols then comment
out those lines

4.5. Training the Model

The next step is very important since you made all the configurations and did all the
workarounds (folder structure) in the previous step. Go to openvino_training_extensions-
develop/tensorflow_toolkit/ directory and execute the command for training.

 $ python3 train.py lpr/chinese_lp/config.py

After training is over you can see the checkpoints in the model_test directory.

4.6. Evaluating the Trained Model

Go to openvino_training_extensions-develop/tensorflow_toolkit/lpr/chinese_lp directory
and open config.py file and change the ‘val path’ to openvino_training_extensions-
develop/data/synthetic_chinese_license_plates/val. Under eval class and change the
checkpoint path to openvino_training_extensions-
develop/tensorflow_toolkit/lpr/chinese_lp/model_test/model.ckpt-68500.ckpt i.e., the latest
checkpoint file generated while training the model in the previous step.

Go to /home/intel/openvino_training_extensions-develop/tensorflow_toolkit/ directory and
execute the following command to evaluate.

 $ python3 eval.py lpr/chinese_lp/config.py

After evaluating, you may get the test accuracy above 90%. It may differ depending on the
number of datasets, steps and so on.

 License Plate Recognition - Implementation Guide

 8

5. Inferencing the Trained Model

Inferencing the trained model which you got from the previous steps can be done in two ways:

 Inferencing using LPRNet inference script

 Inferencing using toolkit Inference engine

5.1. Inferencing using LPRNet Inference Script

Make the similar changes in the config file under the infer class i.e., giving the checkpoint directory
and path to the text file. You have to create a text file manually which has the complete path to
the images you want to test or infer separated by newline.

E.g. /home/intel/Downloads/Datasets/test/01.jpg

 /home/intel/Downloads/Datasets/test/02.jpg

 ………

 ………..

Go to /home/intel/openvino_training_extensions-develop/tensorflow_toolkit/ directory and
execute the following command to check the license plate recognition.

 $ python3 infer.py lpr/chinese_lp/config.py

An output screen with the license plate image and the corresponding recognized license plate
number appears.

5.2. Inferencing using Intel® Distribution of OpenVINO™ toolkit
Inference Engine

In this LPRNet, you can do the inferencing using the toolkit Inference engine as a backend.
Perform the following steps, to do this:

Go to /home/intel/openvino_training_extensions-develop/tensorflow_toolkit/ and execute
the script export.py by providing the required arguments.

 $ python3 export.py lpr/chinese_lp/config.py

/opt/intel/computer_vision_sdk_2018.5.431/deployment_tools/model_optim

izer/mo.py

 We can find the corresponding .xml, .bin and frozen.pb file are being generated in
model_test/ie_model directory.

These .xml and .bin files are given as input to the ‘infer_ie.py’ in
/home/intel/openvino_training_extensions-develop/tensorflow_toolkit/ directory to get the
output. Execute the following to perform this activity.

 License Plate Recognition - Implementation Guide

 9

$ python3 infer_ie.py --
model=lpr/chinese_lp/model_test/ie_model/graph.xml

lpr/chinese_lp/config.py

../data/synthetic_chinese_license_plates/AYU4716.jpg --

cpu_extension=/opt/intel/computer_vision_sdk_2018.5.431/deployment_too

ls/inference_engine/samples/build/intel64/Release/lib/libcpu_extension

.so

An output screen with the license plate image and the corresponding recognized license plate
number appears.

5.3. Hardware that support the LPRNet Model using the Intel®
Distribution of OpenVINO™ toolkit

 Intel® CPU x86_64

 Integrated Graphics from Intel

 FPGA

 Intel® Movidius™ Vision Processing Unit (VPU)

 License Plate Recognition - Implementation Guide

 10

6. Reference Section

1. Intel Distribution of OpenVINO toolkit:

https://docs.openvinotoolkit.org/latest/_docs_install_guides_installing_openvino_linux.html

2. LPRNet: https://arxiv.org/pdf/1806.10447.pdf

3. LPRNet training toolbox and SSD_detector for Chinese license plate:

https://github.com/opencv/openvino_training_extensions/tree/develop/tensorflow_toolkit/lpr

4. spatial_transformer.py:

https://github.com/opencv/openvino_training_extensions/blob/91c1bd4566dc152c019d12d79abd

200f642c2efa/training_toolbox/lpr/toolbox/spatial_transformer_layer.py

https://docs.openvinotoolkit.org/latest/_docs_install_guides_installing_openvino_linux.html
https://arxiv.org/pdf/1806.10447.pdf
https://github.com/opencv/openvino_training_extensions/tree/develop/tensorflow_toolkit/lpr
https://github.com/opencv/openvino_training_extensions/blob/91c1bd4566dc152c019d12d79abd200f642c2efa/training_toolbox/lpr/toolbox/spatial_transformer_layer.py
https://github.com/opencv/openvino_training_extensions/blob/91c1bd4566dc152c019d12d79abd200f642c2efa/training_toolbox/lpr/toolbox/spatial_transformer_layer.py

	1. Introduction
	2. System Requirements
	3. About LPRNet
	4. Retraining LPRNet
	4.1. Downloading the LPRNet Repository
	4.2. Preprocessing the Datasets
	4.2.1. Annotating the Datasets
	4.2.2. Split the Datasets into Train and Validation Labels

	4.3. Package Adjustments
	4.3.1. Script Placement Adjustments
	4.3.2. Package Adjustments (Workaround)
	4.3.3. Workaround Package Initiation

	4.4. Editing the Configuration file
	4.4.1. Editing the config file
	4.4.2. Editing the main logic for training our custom datasets

	4.5. Training the Model
	4.6. Evaluating the Trained Model

	5. Inferencing the Trained Model
	5.1. Inferencing using LPRNet Inference Script
	5.2. Inferencing using Intel® Distribution of OpenVINO™ toolkit Inference Engine
	5.3. Hardware that support the LPRNet Model using the Intel® Distribution of OpenVINO™ toolkit

	6. Reference Section

