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1 Introduction 

This document describes the software programming interface for the Intel® Architecture instruction set 
extensions pertaining to the Key Locker feature. 

Key Locker provides a mechanism to encrypt and decrypt data with an AES key without having access 
to the raw key value by converting AES keys into “handles”. These handles can be used to perform the 
same encryption and decryption operations as the original AES keys, but they only work on the current 
system and only until they are revoked. If software revokes Key Locker handles (e.g., on a reboot), 
then any previous handles can no longer be used. 

Once a key handle has been created, the original keys that were wrapped into those handles can be 
erased from memory. Most adversaries generally cannot obtain the actual AES keys, except during that 
brief period when software is requesting that the key handles be created.  

If the OS chooses a policy that revokes the handles on each reboot, then any handles that may have 
been stolen should no longer be useful to the attacker after the reboot. 

There is no arbitrary limit on the number of key handles that can be created. An internal wrapping key 
is used to create the handles, each of which is essentially an encrypted form of an underlying AES key. 
The internal wrapping key can be created and loaded by privileged software, or it can be randomly 
generated by the CPU in a way that is designed not to reveal its value to any software. 

On many platforms, software can back up the current internal wrapping key and also restore it. This 
can enable the OS to save and restore the keys across the S3 (sleep) and S4 (hibernate) system sleep 
states, as well as provide a method to distribute an internal wrapping key across the entire platform 
without putting it in memory. 

Software cryptographic libraries may be able to use the Key Locker instructions without fundamentally 
changing their API, providing an easy way for software to gain improved security for their AES keys 
without having to directly add support for the Key Locker instructions. 

1.1 Basic Instructions and Usage 
Key Locker consists of three types of instructions:  

1) Instructions to create handles from an AES key (ENCODEKEY128 and ENCODEKEY256). 

2) Instructions to use handles to perform AES encryption or decryption (AESDEC128KL, 
AESDEC256KL, AESDECWIDE128KL, AESDECWIDE256K, AESENC128KL, AESENC256KL, 
AESENCWIDE128KL, and AESENCWIDE256KL). 

3) Instruction to load an internal wrapping key (LOADIWKEY). 

1.1.1 Instructions to Create Handles 

Key Locker adds two instructions that take AES keys and create handles. They also take input on which 
restrictions are requested on how the handle can be used. They use the current IWKey (see section 
1.2) to create a handle. The output handle contains an encrypted version of the AES key as well as 
metadata. The entire handle is designed to include integrity protection, such that any modification of 
the handle (e.g., to edit the metadata) or usage of the handle with a different IWKey should be 
detected.  

ENCODEKEY128 takes a 128-bit AES key as input and produces a 384-bit handle. 

ENCODEKEY256 takes a 256-bit AES key as input and produces a 512-bit handle. 
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Many software usages will want to overwrite the AES key after the handle is generated so that later 
vulnerabilities should be limited to a stolen handle, not the original AES key. 

More details on the algorithm used to create the handle are available in section A.4. 

In addition to producing the handle, the ENCODEKEY* instructions also indicate the type of IWKey that 
was loaded and zero registers XMM4, XMM5 and XMM6. It is possible that future enhancements to Key 
Locker will produce non-zero values for XMM4-6 (e.g., to indicate further information about the IWKey 
specified). 

1.1.1.1 Handle Restrictions 

Each handle includes an AAD (Additional Authentication Data) field which is designed to be integrity 
protected but not encrypted. It is used to hold metadata of the handle, including its restrictions. 

When a Key Locker handle is created via one of the ENCODEKEY* instructions, SW can specify the 
following restrictions by setting the indicated bit the handle’s AAD field: 

1) Ring 0 only (bit 0 of AAD): Handle can be used only in CPL 0 (supervisor mode); it cannot be 
used in application modes (CPL >0). 

2) No-Encrypt (bit 1 of AAD): Handle cannot be used for encryption. 

3) No-Decrypt (bit 2 of AAD): Handle cannot be used for decryption. 

Multiple restriction bits may be set in a single handle. Handle restriction failures (including AAD 
reserved bits set) will result in the AES*KL instructions setting RFLAGS.ZF and not performing the 
requested encryption or decryption. 

Ring 0 only handles may be useful for OS keys that are not intended for usage by applications. If a 
malicious application manages to steal such a handle, it should not be able to use it within the 
application itself. Note that ring 0 handles can be created at any privilege level despite only being 
usable for encryption/decryption at ring 0. 

No-decrypt and no-encrypt handles may be useful in pairs when one side of a protocol only needs to 
create messages (with encryption) and the other side of the protocol only needs to read messages 
(with decryption). This would require using an AES mode that uses both AES encryption and decryption 
(e.g., AES-CBC), rather than an AES mode that only uses encryption (e.g., AES-CTR). 

1.1.2 Instructions to Use Handles to Perform AES Encryption or Decryption 

Key Locker instructions can take a handle and either plaintext or cipher text and encrypt/decrypt it. 
Details on different Key Locker instructions are shown in Table 2-1. 
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Table 2-1. Key Locker Instructions 

Instruction AES Key Size Encrypt or Decrypt Single 128-bit Block vs.  
Eight 128-bit Blocks 

AESENC128KL 

128-bit 

Encrypt 
Non-wide (single 128-bit block) 

AESENCWIDE128KL  Wide (eight 128-bit blocks) 

AESDEC128KL 
Decrypt 

Non-wide (single 128-bit block) 

AESDECWIDE128KL Wide (eight 128-bit blocks) 

AESENC256KL 

256-bit 

Encrypt 
Non-wide (single 128-bit block) 

AESENCWIDE256KL Wide (eight 128-bit blocks) 

AESDEC256KL 
Decrypt 

Non-wide (single 128-bit block) 

AESDECWIDE256KL Wide (eight 128-bit blocks) 

 

The ‘wide’ instructions that operate on eight 128-bit blocks have higher performance on parallel AES 
modes like AES-CTR than executing eight iterations of a non-wide Key Locker instruction. 

After every Key Locker AES encryption/decryption operation, software should check ZF in order to 
ensure that the operation did not fail (e.g., due to a corrupted handle or a restriction failure). Failure to 
do this check might lead to using plaintext as ciphertext (or vice versa) when the instruction fails. 

1.1.3 Instruction to Load the Internal Wrapping Key 

The internal wrapping key (Key Locker IWKey) is used to convert between handles and the original 
keys. The internal wrapping key is written by the LOADIWKEY instruction. It is important that it is kept 
secret from attackers in order to help prevent them from manually unwrapping handles in order to 
obtain the original keys. For this reason there is no operation to read out the internal wrapping key, 
although there are “IWKeyBackup” MSRs that can be used to back up the internal wrapping key 
without revealing its value (see section 4). 

As the internal wrapping key is considered system state, LOADIWKEY can only execute in supervisor 
mode (CPL 0). In order to support VM context switch and migration, a VMM can also cause a VM exit on 
guest execution of LOADIWKEY in order to capture the IWKey value.  

It is recommended that LOADIWKEY be executed early in the OS boot in order to reduce the chance 
that software has been loaded that an attacker can exploit to watch the LOADIWKEY’s data. 

It is possible for LOADIWKEY to specify that the internal wrapping key it loads cannot be backed up 
through the IWKeyBackup MSRs. This is designed to ensure that the internal wrapping key cannot be 
revealed through any vulnerabilities found in the future in the backup or restore mechanisms; but 
blocks usages that require those MSRs (like maintaining handles across S3 or S4 sleep states).  

LOADIWKEY can either directly load the specified argument or can request a hardware generated 
random internal wrapping key. When LOADIWKEY requests a hardware generated  random key, the 
processor reads 384 bits of random data (from the same on-chip random number generator that 
supplied the random data read by RDSEED) and XORs it with the LOADIWKEY’s arguments. Because 
the data is XORed, software can combine their own entropic data with that supplied by the hardware 
random bit generator.  
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There is no instruction or VM execution control for a virtual-machine monitor (VMM) to read the values 
of hardware generated random internal wrapping keys. This fact limits the ability of a VMM to move a 
virtual machine from one processor to another. Because of this limitation, a VMM may choose to not 
enumerate support for hardware generated random internal wrapping keys when it virtualizes the 
CPUID instruction.  

Hardware random internal wrapping keys can be backed up and restored (unless the LOADIWKEY 
specified that no such backup is allowed) through MSRs. The output of the ENCODEKEY* instructions 
indicate properties of the internal wrapping key that was used to create the handle, including whether 
it is was from the on-chip hardware random number generator and whether it can be backed up 
through MSRs. 

1.2 IWKey  
The IWKey is an internal wrapping key used by the Key Locker ENCODEKEY* and AES*KL instructions. 
It is logical processor scoped and is written through the LOADIWKEY instruction. It is designed not to 
be directly readable by software. 

The internal wrapping key currently consists of: 

1) IntegrityKey[127:0] - A 128-bit integrity key used to check that handles have not been 
tampered with. 

2) EncryptionKey[255:0] - A 256-bit encryption key used in wrapping/unwrapping to help protect 
confidentiality of the keys indicated by the handles. 

3) KeySource [3:0] – The only allowed values are 0 (AES GCM SIV wrapping algorithm with SW 
specified keys) and 1 (AES GCM SIV wrapping algorithm with random keys enforced by 
hardware). 

4) NoBackup flag – when set, this IWKey cannot be backed up. 

IWKeyBackup (described in section 4) has the same format as IWKey. 

1.3 CR4.KL 
Key Locker introduces a new “KL” bit in CR4 (bit 19) in order to help prevent usage of Key Locker when 
it is not properly enabled by system software. This can also help prevent guests of legacy VMMs from 
using Key Locker. 

CR4.KL existence is enumerated by CPUID.KL (CPUID.(EAX=07H, ECX=0H).ECX.KL[bit 23]).  

When CR4.KL is 0, all Key Locker instructions will #UD, including the AES*KL, ENCODEKEY128, 
ENCODEKEY256 and LOADIWKEY instructions, and CPUID.AESKLE (CPUID.19H:EBX[0]) will be 0. The 
Key Locker IWKeyBackup MSRs (described later) are not affected by the value of CR4.KL. 

1.4 Handle Format 
Handles for 128-bit AES keys are 384 bits in size and have the following format: 

• Handle[127:0] = AAD 
• Handle[255:128] = Integrity Tag 
• Handle[383:256] = Ciphertext 
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Handles for 256-bit AES keys are 512 bits in size and have the following format: 

• Handle[127:0] = AAD
• Handle[255:128] = Integrity Tag
• Handle[383:256] = Ciphertext[127:0]
• Handle[511:384] = Ciphertext[255:128]

The AAD (Additional Authentication Data) format for both types of handles have the following format: 

• AAD[0] = Handle is not usable if CPL > 0
• AAD[1] = Handle is not usable for encryption
• AAD[2] = Handle is not usable for decryption
• AAD[23:3] = Reserved
• AAD[27:24] = Key Type. 0 indicates AES-128 handle and 1 indicates AES-256 handle. All other

key types are currently reserved.
• AAD[127:28] = Reserved

1.5 Intel® Transactional Synchronization Extensions (Intel® TSX) 
Operation 

On some implementations, Key Locker instructions will cause Intel TSX aborts when executed inside an 
Intel TSX transaction.  
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2 CPUID Enumeration of Key Locker Support 

Hardware support for Key Locker is enumerated through CPUID.KL: CPUID.(07H,0).ECX[23] = 1. This 
indicates that the Key Locker feature is supported by the processor and CPUID leaf 19H gives more 
information about Key Locker capabilities.  

A separate CPUID bit, CPUID.AESKLE: CPUID.19H.EBX[0]=1 indicates that the operating system and 
system firmware (e.g., BIOS) have enabled Key Locker AES instructions (AES KL is enabled). Software 
should first determine that CPUID leaf 19H is supported (by checking that CPUID.KL is enumerated) 
before looking at leaf 19H bits like CPUID.AESKLE. AESKLE bit will be 0 unless CR4.KL is set. Some 
implementations may need system firmware enabling of Key Locker. If CR4.KL is set but AESKLE is not 
enumerated (reads as 0) then it may be that system firmware enabling of Key Locker is needed on that 
implementation and was not performed.  

When deciding whether to enable Key Locker, the operating system should check CPUID.KL. 

Software that wishes to use Key Locker to help protect AES keys (e.g., applications) should check that 
CPUID.KL and the CPUID.AESKLE bits are both set. CPUID.KL will indicate that CPUID.19H (and thus 
AESKLE) is valid and AESKLE will indicate that the OS (and, if needed, system firmware) have enabled 
Key Locker. 

For determining the other features of Key Locker, use the definitions shown in Table 2-1. Invoke CPUID 
as (instantiating the register and bit fields appropriately): CPUID.19H:REG[bit #]. 

Table 2-1. Key Locker CPUID Definitions for Leaf 19H 

Register Bit Position(s) Contents 

EAX 0 KL restriction of CPL0-only supported. 

EAX 1 KL restriction of no-encrypt supported. 

EAX 2 KL restriction of no-decrypt supported. 

EAX 31:3 Reserved. 

EBX 0 AESKLE: When 1, the AES Key Locker instructions are fully enabled.  

EBX 1 Reserved. 

EBX 2 WIDE_KL: When 1, the AES wide Key Locker instructions are 
supported. 

EBX 3 Reserved. 

EBX 4 When 1, the platform supports the IWKeyBackup MSRs and backing 
up the internal wrapping key. 

EBX 31:5 Reserved. 

ECX 0 When 1, the NoBackup parameter to LOADIWKEY is supported. 

ECX 1 When 1, KeySource encoding of 1 (randomization of the internal 
wrapping key) is supported. 

ECX 31:2 Reserved. 

EDX 31:0 Reserved. 
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3 Instructions 

 

3.1 Notation 
Instructions described in this chapter follow the general documentation convention established in Intel® 
64 and IA-32 Architectures Software Developer’s Manual Volume 2A.1 Additionally, the Key Locker 
instructions use notation conventions as described below.  

In the instruction encoding, the MODRM byte is represented several ways depending on the role it 
plays. The MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit 
MODRM.RM field. When all bits of the MODRM byte have fixed values for an instruction, the 2-hex 
nibble value of that byte is presented after the opcode in the encoding boxes on the instruction 
description pages. When only some fields of the MODRM byte must contain fixed values, those values 
are specified as follows: 

If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is 
denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb 
correspond to the 3-bits of the MODMR.RM field. 

If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 
0b01, or 0b10, then we use the notation !(11). 

If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as 
mm:101:bbb.  

  

 
1 Note that historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the 
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the MODRM.MOD and 
MODRM.RM fields in the encoding boxes. 
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3.2 AESDEC128KL 
 

Opcode/Instruction Op/
En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 DD !(11):rrr:bbb 
AESDEC128KL xmm, m384 A V/V AESKLE 

Decrypt xmm using 128-bit AES 
key indicated by handle at m384 
and store result in xmm. 

3.2.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4 

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA 

3.2.2 Description 

The AESDEC128KL instruction performs 10 rounds of AES to decrypt the first operand using the 128-bit 
key indicated by the handle from the second operand. It stores the result in the first operand. 

3.2.3 Operation 
AESDEC128KL 

Handle := UnalignedLoad of 384 bit (SRC);  // Load is not guaranteed to be atomic. 
Illegal Handle = (HandleReservedBitSet (Handle) || 

(Handle[0] AND (CPL > 0)) || 
Handle [2]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128); 

 If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
 (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

  DEST := AES128Decrypt (DEST, UnwrappedKey) ; 
RFLAGS.ZF := 0; 

} 
} 
RFLAGS.OF, SF, AF, PF, CF := 0; 

3.2.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 
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3.2.5 Exceptions 
#UD  If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

#PF If a page fault occurs. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.2.6 Intrinsics 

unsigned char  _mm_aesdec128kl_u8(__m128i* odata, __m128i idata, const void* h); 
  



 
Intel Key Locker  
 
 
 
 
 

Page 17   343965-001US, Rev. 1.0 

3.3 AESDEC256KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 DF !(11):rrr:bbb 
AESDEC256KL xmm, m512 A V/V AESKLE 

Decrypt xmm using 256-bit AES 
key indicated by handle at m512 
and store result in xmm. 

3.3.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4 

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA 

3.3.2 Description 

The AESDEC256KL instruction performs 14 rounds of AES to decrypt the first operand using the 256-bit 
key indicated by the handle from the second operand. It stores the result in the first operand. 

3.3.3 Operation 
AESDEC256KL 

Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic. 
Illegal Handle = (HandleReservedBitSet (Handle) || 

(Handle[0] AND (CPL > 0)) || 
Handle [2]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256); 

       If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

DEST := AES256Decrypt (DEST, UnwrappedKey) ; 
RFLAGS.ZF := 0; 

  } 
} 
RFLAGS.OF, SF, AF, PF, CF := 0; 

3.3.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 
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3.3.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.3.6 Intrinsics 

unsigned char _mm_aesdec256kl_u8(__m128i* odata, __m128i idata, const void* h); 
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3.4 AESDECWIDE128KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 D8 !(11):001:bbb 
AESDECWIDE128KL m384, 

<XMM0-7> 
A V/V 

 AESKLE 

WIDE_KL 

Decrypt XMM0-7 using 128-bit 
AES key indicated by handle at 
m384 and store each resultant 
block back to its corresponding 
register. 

3.4.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operands 2-9 

A NA ModRM:r/m (r) Implicit XMM0-7 (r, w) 

3.4.2 Description 

The AESDECWIDE128KL instruction performs ten rounds of AES to decrypt each of the eight blocks in 
XMM0-7 using the 128-bit key indicated by the handle from the second operand. It replaces each input 
block in XMM0-7 with its corresponding decrypted block. 

3.4.3 Operation 
AESDECWIDE128KL 

Handle := UnalignedLoad of 384 bit (SRC);  // Load is not guaranteed to be atomic. 
Illegal Handle = (HandleReservedBitSet (Handle) || 

(Handle[0] AND (CPL > 0)) || 
Handle [2]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128); 

If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
 (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey); 
If Authentic == 0 { 

RFLAGS.ZF := 1; 
} ELSE { 

 XMM0 := AES128Decrypt (XMM0, UnwrappedKey) ; 
  XMM1 := AES128Decrypt (XMM1, UnwrappedKey) ; 
  XMM2 := AES128Decrypt (XMM2, UnwrappedKey) ; 
  XMM3 := AES128Decrypt (XMM3, UnwrappedKey) ; 
  XMM4 := AES128Decrypt (XMM4, UnwrappedKey) ; 
  XMM5 := AES128Decrypt (XMM5, UnwrappedKey) ; 
  XMM6 := AES128Decrypt (XMM6, UnwrappedKey) ; 
  XMM7 := AES128Decrypt (XMM7, UnwrappedKey) ; 

 RFLAGS.ZF := 0; 
} 

} 
RFLAGS.OF, SF, AF, PF, CF := 0; 
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3.4.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 

3.4.5 Exceptions 
#UD   If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

 If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

If CPUID.19H:EBX.WIDE_KL [bit 2] = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.4.6 Intrinsics 

unsigned char _mm_aesdecwide128kl_u8(__m128i odata[8], const __m128i  idata[8], const void* h); 
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3.5 AESDECWIDE256KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 D8 !(11):011:bbb 
AESDECWIDE256KL m512, 

<XMM0-7> 
A V/V  AESKLE WIDE_KL 

Decrypt XMM0-7 using 256-bit 
AES key indicated by handle at 
m512 and store each resultant 
block back to its corresponding 
register. 

3.5.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operands 2-9 

A NA ModRM:r/m (r) Implicit XMM0-7 (r, w) 

3.5.2 Description 

The AESDECWIDE256KL instruction performs 14 rounds of AES to decrypt each of the eight blocks in 
XMM0-7 using the 256-bit key indicated by the handle from the second operand. It replaces each input 
block in XMM0-7 with its corresponding decrypted block. 

3.5.3 Operation 
AESDECWIDE256KL 

Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic. 
Illegal Handle = (HandleReservedBitSet (Handle) || 

(Handle[0] AND (CPL > 0)) || 
Handle [2]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256); 

       If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

  
  XMM0 := AES256Decrypt (XMM0, UnwrappedKey) ; 
  XMM1 := AES256Decrypt (XMM1, UnwrappedKey) ; 
  XMM2 := AES256Decrypt (XMM2, UnwrappedKey) ; 
  XMM3 := AES256Decrypt (XMM3, UnwrappedKey) ; 
  XMM4 := AES256Decrypt (XMM4, UnwrappedKey) ; 
  XMM5 := AES256Decrypt (XMM5, UnwrappedKey) ; 
  XMM6 := AES256Decrypt (XMM6, UnwrappedKey) ; 
  XMM7 := AES256Decrypt (XMM7, UnwrappedKey) ; 
  RFLAGS.ZF := 0; 

} 
 } 

 
RFLAGS.OF, SF, AF, PF, CF := 0; 
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3.5.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 

3.5.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

If CPUID.19H:EBX.WIDE_KL [bit 2] = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.5.6 Intrinsics 

unsigned char _mm_aesdecwide256kl_u8(__m128i odata[8], const __m128i  idata[8], const void* h); 
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3.6 AESENC128KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 DC !(11):rrr:bbb 
AESENC128KL xmm, m384 A V/V  AESKLE 

Encrypt xmm using 128-bit AES 
key indicated by handle at m384 
and store result in xmm. 

3.6.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4 

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA 

3.6.2 Description 

The AESENC128KL instruction performs ten rounds of AES to encrypt the first operand using the 128-
bit key indicated by the handle from the second operand. It stores the result in the first operand. 

3.6.3 Operation 
AESENC128KL 

Handle := UnalignedLoad of 384 bit (SRC); // Load is not guaranteed to be atomic. 
Illegal Handle = ( 

HandleReservedBitSet (Handle) || 
(Handle[0] AND (CPL > 0)) || 
Handle [1]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128 
); 

 If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
 (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

  DEST := AES128Encrypt (DEST, UnwrappedKey) ; 
RFLAGS.ZF := 0; 

} 
 } 

RFLAGS.OF, SF, AF, PF, CF := 0; 

3.6.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 
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3.6.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.6.6 Intrinsics 

unsigned char _mm_aesenc128kl_u8(__m128i* odata,  __m128i idata, const void* h); 
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3.7 AESENC256KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 DE !(11):rrr:bbb 
AESENC256KL xmm, m512 A V/V  AESKLE 

Encrypt xmm using 256-bit AES 
key indicated by handle at m512 
and store result in xmm. 

3.7.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4 

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA 

3.7.2 Description 

The AESENC256KL instruction performs 14 rounds of AES to encrypt the first operand using the 256-bit 
key indicated by the handle from the second operand. It stores the result in the first operand. 

3.7.3 Operation 
AESENC256KL 

Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic. 
Illegal Handle = ( 

HandleReservedBitSet (Handle) || 
(Handle[0] AND (CPL > 0)) || 
Handle [1]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256 

); 
       If (Illegal Handle) { 

RFLAGS.ZF := 1; 
} ELSE { 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

DEST := AES256Encrypt (DEST, UnwrappedKey) ; 
RFLAGS.ZF := 0; 

} 
 } 

RFLAGS.OF, SF, AF, PF, CF := 0; 

3.7.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 
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3.7.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.7.6 Intrinsics 

unsigned char _mm_aesenc256kl_u8(__m128i* odata, __m128i idata, const void* h); 
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3.8 AESENCWIDE128KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 D8 !(11):000:bbb 
AESENCWIDE128KL m384, 
<XMM0-7> 

A V/V  AESKLE WIDE_KL 

Encrypt XMM0-7 using 128-bit 
AES key indicated by handle at 
m384 and store each resultant 
block back to its corresponding 
register. 

3.8.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operands 2-9 

A NA ModRM:r/m (r) Implicit XMM0-7 (r, w) 

3.8.2 Description 

The AESENCWIDE128KL instruction performs ten rounds of AES to encrypt each of the eight blocks in 
XMM0-7 using the 128-bit key indicated by the handle from the second operand. It replaces each input 
block in XMM0-7 with its corresponding encrypted block. 

3.8.3 Operation 
AESENCWIDE128KL 

Handle := UnalignedLoad of 384 bit (SRC);  // Load is not guaranteed to be atomic. 
Illegal Handle = ( 

HandleReservedBitSet (Handle) || 
(Handle[0] AND (CPL > 0)) || 
Handle [1]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128 
); 

If (Illegal Handle) { 
RFLAGS.ZF := 1; 

} ELSE { 
 (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey); 
If Authentic == 0 { 

RFLAGS.ZF := 1; 
} ELSE { 

  XMM0 := AES128Encrypt (XMM0, UnwrappedKey) ; 
  XMM1 := AES128Encrypt (XMM1, UnwrappedKey) ; 
  XMM2 := AES128Encrypt (XMM2, UnwrappedKey) ; 
  XMM3 := AES128Encrypt (XMM3, UnwrappedKey) ; 
  XMM4 := AES128Encrypt (XMM4, UnwrappedKey) ; 
  XMM5 := AES128Encrypt (XMM5, UnwrappedKey) ; 
  XMM6 := AES128Encrypt (XMM6, UnwrappedKey) ; 
  XMM7 := AES128Encrypt (XMM7, UnwrappedKey) ; 

 RFLAGS.ZF := 0; 
} 

} 
RFLAGS.OF, SF, AF, PF, CF := 0; 
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3.8.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 

3.8.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.AESKLE = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

If CPUID.19H:EBX.WIDE_KL [bit 2] = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.8.6 Intrinsics 

unsigned char _mm_aesencwide128kl_u8(__m128i odata[8], const __m128i  idata[8], const void* h); 
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3.9 AESENCWIDE256KL 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 D8 !(11):010:bbb 
AESENCWIDE256KL m512, 
<XMM0-7> 

A V/V  AESKLE WIDE_KL 

Encrypt XMM0-7 using 256-bit 
AES key indicated by handle at 
m512 and store each resultant 
block back to its corresponding 
register. 

3.9.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operands 2-9 

A NA ModRM:r/m (r) Implicit XMM0-7 (r, w) 

3.9.2 Description 

The AESENCWIDE256KL instruction performs 14 rounds of AES to encrypt each of the eight blocks in 
XMM0-7 using the 256-bit key indicated by the handle from the second operand. It replaces each input 
block in XMM0-7 with its corresponding encrypted block. 

3.9.3 Operation 
AESENCWIDE256KL 

Handle := UnalignedLoad of 512 bit (SRC); // Load is not guaranteed to be atomic. 
Illegal Handle = ( 

HandleReservedBitSet (Handle) || 
(Handle[0] AND (CPL > 0)) || 
Handle [1]   || 
HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256 

); 
        If (Illegal Handle) { 

RFLAGS.ZF := 1; 
        } ELSE { 

(UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey); 
If (Authentic == 0) { 

RFLAGS.ZF := 1; 
} ELSE { 

  XMM0 := AES256Encrypt (XMM0, UnwrappedKey) ; 
  XMM1 := AES256Encrypt (XMM1, UnwrappedKey) ; 
  XMM2 := AES256Encrypt (XMM2, UnwrappedKey) ; 
  XMM3 := AES256Encrypt (XMM3, UnwrappedKey) ; 
  XMM4 := AES256Encrypt (XMM4, UnwrappedKey) ; 
  XMM5 := AES256Encrypt (XMM5, UnwrappedKey) ; 
  XMM6 := AES256Encrypt (XMM6, UnwrappedKey) ; 
  XMM7 := AES256Encrypt (XMM7, UnwrappedKey) ; 

RFLAGS.ZF := 0; 
  } 

} 
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RFLAGS.OF, SF, AF, PF, CF := 0; 

3.9.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to a handle violation. 
The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0. 

3.9.5 Exceptions 
#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

If CPUID.19H:EBX.WIDE_KL [bit 2] = 0. 

#NM If CR0.TS = 1. 

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector. 

If the memory address is in a non-canonical form. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

 If a memory address referencing the SS segment is in a non-canonical form. 

3.9.6 Intrinsics 

unsigned char _mm_aesencwide256kl_u8(__m128i odata[8], const __m128i  idata[8], const void* h); 
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3.10 ENCODEKEY128 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 FA 11:rrr:bbb 
ENCODEKEY128 r32, r32, 
<XMM0-2>, <XMM4-6> 

A V/V  AESKLE 
Wrap a 128-bit AES key from 
XMM0 into a key handle and 
output handle in XMM0-2. 

3.10.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operands 4-5 Operands 6-8 

A NA ModRM:reg (w) ModRM:r/m (r) Implicit XMM0 (r, w) Implicit XMM1-2 (w) Implicit XMM4-6 (w) 

3.10.2 Description 

The ENCODEKEY128 instruction wraps a 128-bit AES key from the implicit operand XMM0 into a key 
handle that is then stored in the implicit destination operands XMM0-2. 

The explicit source operand specifies handle restrictions, if any. 

The explicit destination operand is populated with information on the source of the key and its 
attributes. XMM4 through XMM6 are reserved for future usages and software should not rely upon them 
being zeroed.  

3.10.3 Operation 
ENCODEKEY128 

    #GP (0) if a reserved bit1 in SRC[31:0] is set 
InputKey[127:0] := XMM0; 
KeyMetadata[2:0] = SRC[2:0]; 
KeyMetadata[23:3] = 0; // Reserved for future usage 
KeyMetadata[27:24] = 0; // KeyType is AES-128 (value of 0) 
KeyMetadata[127:28] = 0; // Reserved for future usage 

 
 // KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey128 

Handle[383:0] := WrapKey128(InputKey[127:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], 
IWKey.Encryption Key[255:0]); 

 
DEST[0] := IWKey.NoBackup; 
DEST[4:1] := IWKey.KeySource[3:0]; 
DEST[31:5] = 0;2 

 

 

1 SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if 
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0.  
SRC[0], which indicates a CPL0-only restriction, is reserved if CPUID.19H:EAX[0] is 0. 

. 
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XMM0 := Handle[127:0]; // AAD 
XMM1 := Handle[255:128]; // Integrity Tag 
XMM2 := Handle[383:256]; // CipherText 
XMM4 := 0; // Reserved for future usage 
XMM5 := 0; // Reserved for future usage 
XMM6 := 0; // Reserved for future usage 

 
RFLAGS.OF, SF, ZF, AF, PF, CF := 0; 

3.10.4 Flags Affected 

All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently 
defined operations, future extensions may report information in the flags. 

3.10.5 Exceptions 
#GP  If reserved bit is set in source register value. 

#UD   If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

 If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

3.10.6 Intrinsics 

unsigned int _mm_encodekey128_u32(unsigned int htype,  __m128i key, void* h); 
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3.11  ENCODEKEY256 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 FB 11:rrr:bbb 
ENCODEKEY256 r32, r32 
<XMM0-6> 

A V/V  AESKLE 
Wrap a 256-bit AES key from 
XMM1:XMM0 into a key handle 
and store it in XMM0-3. 

3.11.1 Instruction Operand Encoding 

 

Op/
En 

Tuple Operand 1 Operand 2 Operands 3-4 Operands 5-9 

A NA ModRM:reg (w) ModRM:r/m (r) Implicit XMM0-1 (r, w) Implicit XMM2-6 (w) 

3.11.2 Description 

The ENCODEKEY256 instruction wraps a 256-bit AES key from the implicit operand XMM1:XMM0 into a 
key handle that is then stored in the implicit destination operands XMM0-3. 

The explicit source operand is a general-purpose register and specifies what handle restrictions should 
be built into the handle. 

The explicit destination operand is populated with information on the source of the key and its 
attributes. XMM4 through XMM6 are reserved for future usages and software should not rely upon them 
being zeroed.  

3.11.3 Operation 
ENCODEKEY256 

    #GP (0) if a reserved bit1 in SRC[31:0] is set 
InputKey[255:0] := XMM1:XMM0; 
KeyMetadata[2:0] = SRC[2:0]; 
KeyMetadata[23:3] = 0; // Reserved for future usage 
KeyMetadata[27:24] = 1; // KeyType is AES-256 (value of 1) 
KeyMetadata[127:28] = 0; // Reserved for future usage 
 

 // KeyMetadata is the AAD input and InputKey is the Plaintext input for WrapKey128 
Handle[511:0] := WrapKey256(InputKey[255:0], KeyMetadata[127:0], IWKey.Integrity Key[127:0], 

IWKey.Encryption Key[255:0]); 
 

DEST[0] := IWKey.NoBackup; 
DEST[4:1] := IWKey.KeySource[3:0]; 
DEST[31:5] = 0;  
 

 

1  SRC[31:3] are currently reserved for future usages. SRC[2], which indicates a no-decrypt restriction, is reserved if 
CPUID.19H:EAX[2] is 0. SRC[1], which indicates a no-encrypt restriction, is reserved if CPUID.19H:EAX[1] is 0.  
SRC[0], which indicates a CPL0-only restriction, is reserved if CPUID.19H:EAX[0] is 0. 
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XMM0 := Handle[127:0]; // AAD 
XMM1 := Handle[255:128]; //  Tag 
XMM2 := Handle[383:256]; // CipherText[127:0] 
XMM3 := Handle[511:384]; // CipherText[255:128] 
 
XMM4 := 0; // Reserved for future usage 
XMM5 := 0; // Reserved for future usage 
XMM6 := 0; Integrity// Reserved for future usage 
 
RFLAGS.OF, SF, ZF, AF, PF, CF := 0; 

3.11.4 Flags Affected 

All arithmetic flags (OF, SF, ZF, AF, PF, CF) are cleared to 0. Although they are cleared for the currently 
defined operations, future extensions may report information in the flags. 

3.11.5 Exceptions 
#GP If reserved bit is set in source register value. 

#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CPUID.19H:EBX.AESKLE [bit 0] = 0.  

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

3.11.6 Intrinsics 

unsigned int _mm_encodekey256_u32(unsigned int htype, __m128i key_lo, __m128i key_hi, void* h); 
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3.12  LOADIWKEY 
 

Opcode/Instruction Op
/En 

64/32-
bit Mode 
Support 

CPUID Flag Description 

F3 0F 38 DC 11:rrr:bbb 
LOADIWKEY xmm1, xmm2, 
<EAX>, <XMM0> 

A V/V  KL Load internal wrapping key from 
xmm1, xmm2, and XMM0. 

3.12.1 Instruction Operand Encoding 

 

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4 

A NA ModRM:reg (r) ModRM:r/m (r) Implicit EAX (r) Implicit XMM0 (r) 

3.12.2 Description 

The LOADIWKEY instruction writes the Key Locker internal wrapping key, which is called IWKey. This 
IWKey is used by the ENCODEKEY* instructions to wrap keys into handles. Conversely, the 
AESENC/DEC* instructions use IWKey to unwrap those keys from the handles and help verify the 
handle integrity. For security reasons, no instruction is designed to allow software to directly read the 
IWKey value. 

IWKey includes two cryptographic keys as well as metadata. The two cryptographic keys are loaded 
from register sources so that LOADIWKEY can be executed without the keys ever being in memory. 

The key input operands are: 

• The 256-bit encryption key is loaded from the two explicit operands. 
• The 128-bit integrity key is loaded from the implicit operand XMM0. 

The implicit operand EAX specifies the KeySource and whether backing up the key is permitted: 

• EAX[0] – When set, the wrapping key being initialized is not permitted to be backed up to 
platform-scoped storage. 

• EAX[4:1] – This specifies the KeySource, which is the type of key. Currently only two encodings 
are supported. A KeySource of 0 indicates that the key input operands described above should 
be directly stored as the internal wrapping keys. LOADIWKEY with a KeySource of 1 will have 
random numbers from the on-chip random number generator XORed with the source registers 
(including XMM0) so that the software that executes the LOADIWKEY does not know the actual 
IWKey encryption and integrity keys. Software can choose to put additional random data into 
the source registers so that other sources of random data are combined with the hardware 
random number generator supplied value. Software should always check ZF after executing 
LOADIWKEY with KeySource of 1 as this operation may fail due to it being unable to get 
sufficient full-entropy data from the on-chip random number generator. Both KeySource of 0 
and 1 specify that IWKey be used with the AES-GCM-SIV algorithm. CPUID.19H.ECX[1] 
enumerates support for KeySource of 1. All other KeySource encodings are reserved.  

• EAX[31:5] – Reserved.  
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3.12.3 Operation 
LOADIWKEY 

IF CPL > 0 { //  LOADKWKEY only allowed at ring 0 (supervisor mode) 
#GP (0); 

} 
IF “LOADIWKEY exiting” VM execution control set {  

VMexit; 
} 
IF EAX[4:1] > 1  {  // Reserved KeySource encoding used 

#GP (0); 
} 
IF EAX[31:5] != 0 {  // Reserved bit in EAX is set 

#GP (0); 
} 
IF EAX[0] AND (CPUID.19H.ECX[0] == 0) { // NoBackup is not supported on this part 
  #GP (0); 
} 
IF (EAX[4:1] == 1) AND (CPUID.19H.ECX[1] == 0) { // KeySource of 1 is not supported on this part 
 #GP (0); 
} 
IF (EAX[4:1] == 0) { // KeySource of 0.  

IWKey.Encryption Key[127:0] := SRC2[127:0]: 
IWKey.Encryption Key[255:128] := SRC1[127:0];  
IWKey.IntegrityKey[127:0] := XMM0[127:0];  
IWKey.NoBackup = EAX [0];  

  IWKey.KeySource = EAX [4:1];  
RFLAGS.ZF := 0; 

 } ELSE { // KeySource of 1. See RDSEED definition for details of randomness 
IF HW_NRND_GEN.ready == 1 { // Full-entropy random data from RDSEED was received 

IWKey.Encryption Key[127:0] := SRC2[127:0] XOR HW_NRND_GEN.data[127:0];  
IWKey.Encryption Key[255:128] := SRC1[127:0] XOR HW_NRND_GEN.data[255:128];  
IWKey.Encryption Key[255:0] := SRC2[127:0]:SRC1[127:0] XOR HW_NRND_GEN.data[255:0];  
IWKey.IntegrityKey[127:0] := XMM0[127:0] XOR HW_NRND_GEN.data[383:256];  

 IWKey.NoBackup = EAX [0];  
   IWKey.KeySource = EAX [4:1];  

RFLAGS.ZF := 0; 
   } ELSE {  // Random data was not returned from RDSEED. IWKey was not loaded 
    RFLAGS.ZF := 1; 
   } 
 }  
 

RFLAGS.OF, SF, AF, PF, CF := 0; 

3.12.4 Flags Affected 

ZF is set to 0 if the operation succeeded and set to 1 if the operation failed due to full-entropy random 
data not being received from RDSEED. The other arithmetic flags (OF, SF, AF, PF, CF) are cleared to 0.  
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3.12.5 Exceptions 
#GP If CPL > 0. 

If EAX[4:1] > 1. 

If EAX[31:5] != 0. 

If (EAX[0] == 1) AND (CPUID.19H.ECX[0] == 0). 

If (EAX[4:1] == 1) AND (CPUID.19H.ECX[1] == 0). 

#UD If the LOCK prefix is used. 

If CPUID.07H:ECX.KL [bit 23] = 0.  

If CR4.KL = 0. 

If CR0.EM = 1. 

If CR4.OSFXSR = 0. 

#NM If CR0.TS = 1. 

3.12.6 Intrinsics 

void _mm_loadiwkey(unsigned int ctl, __m128i intkey, __m128i enkey_lo, __m128i enkey_hi); 
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4 Backup MSRs 

4.1 Backing Up and Restoring the Internal Wrapping Key 
When IWKeyBackup support is enumerated, the logical processor scoped IWKey can be copied to or 
from a platform scoped state called IWKeyBackup. Copying IWKey to IWKeyBackup is called ‘backing 
up IWKey’ and copying IWKeyBackup to IWKey is called ‘restoring IWKey’. 

IWKeyBackup and the path between it and IWKey are designed to be protected against software and 
simple hardware attacks (e.g., encrypted and integrity protected on physical buses between sockets). 
This means that IWKeyBackup can be used to distribute an IWKey within the logical processors in a 
platform in a more protected manner. One logical processor can write IWKey with a secret value and 
then back up that IWKey to IWKeyBackup. The other logical processors can then copy IWKeyBackup to 
their own IWKey.  

IWKeyBackup is also maintained across S3 (sleep) and S4 (hibernate) sleep states on platforms 
supporting those states. This allows the OS to use IWKeyBackup to back up a platform’s IWKey across 
S3 and S4 sleep states to maintain handles using that IWKey across those sleep states. 

IWKeyBackup may also be maintained across S5 (soft off) and G3 (mechanical off) state on some 
systems, but this is not architecturally guaranteed and thus software should not depend on that. 
Because it may be maintained, software that needs to ensure that all handles are truly revoked (e.g., 
before powering off the system) should overwrite IWKeyBackup so that it is not available later to make 
those handles work. 

It is also possible for a VMM to use IWKeyBackup to maintain the host’s IWKey so that it can be 
restored after executing a guest (which ran with the guest’s IWKey loaded). Because of the high 
latency of copying to and from IWKeyBackup on current processors, this would not be performant to 
execute frequently (e.g., before each VM entry or after each VM exit) and these MSRs should not be 
included in VM entry or VM exit MSR load areas. 

Backing up or restoring IWKey involves several MSRs, all of which are enumerated by 
CPUID.19H:EBX[4]: 

• IA32_COPY_LOCAL_TO_PLATFORM (write-only, address D91H) 
• IA32_COPY_PLATFORM_TO_LOCAL (write-only, address D92H) 
• IA32_COPY_STATUS (read-only, address 990H) 
• IA32_IWKEYBACKUP_STATUS (read-only, address 991H) 

IA32_COPY_LOCAL_TO_PLATFORM is a write-only MSR that can be used to issue commands to copy 
data from the current logical processor to a platform scoped state. It can be used to copy IWKey for 
this logical processor to the IWKeyBackup register for the platform. 

IA32_COPY_PLATFORM_TO_LOCAL is a write-only MSR that can be used to issue commands to copy 
data from platform scoped state to the current logical processor. It can be used to copy IWKeyBackup 
for the platform to the IWKey for this logical processor. 

IA32_COPY_STATUS is a read-only logical processor scoped MSR that indicates whether the most 
recent write to IA32_COPY_PLATFORM_TO_LOCAL or IA32_COPY_LOCAL_TO_PLATFORM executed from 
this logical processor succeeded or failed. 

IA32_IWKEYBACKUP_STATUS is a read-only MSR that indicates attributes of IWKeyBackup. 

On some systems, system firmware enabling of Key Locker may be needed for CPUID.19H:EBX[4] to 
enumerate as 1. 
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4.2 IA32_COPY_LOCAL_TO_PLATFORM MSR 
IA32_COPY_LOCAL_TO_PLATFORM MSR is designed to support copying IWKey content to the 
IWKeyBackup register when a WRMSR sets IA32_COPY_LOCAL_TO_PLATFORM[0]. It is possible for this 
write to fail, for example because IWKey.NoBackup is set, so software should always check after a 
write that it succeeded. 

Software can determine whether a copy of IWKey to IWKeyBackup succeeded through checking 
IA32_COPY_STATUS[0] immediately after the WRMSR to set IA32_COPY_LOCAL_TO_PLATFORM[0]. A 
value of 1 in IA32_COPY_STATUS[0] indicates that the write to IWKeyBackup succeeded.  

IWKeyBackup also includes an integrity measurement. It may be possible to corrupt IWKeyBackup due 
to two simultaneous writes from different logical processors that are writing different values. It is also 
possible to corrupt an IWKeyBackup read (restore) due to that read occurring simultaneously with a 
write of a different value. Because of the IWKeyBackup integrity measurement, the CPU is designed to 
detect that the IWKeyBackup read would be of a corrupted value and in that situation it is designed not 
to mark the read valid (meaning IA32_COPY_STATUS[0] will be 0) or modify IWKey.  

After IWKeyBackup is written, the platform will ensure it is written to a storage which is persistent 
across sleep (S3) and hibernate (S4) sleep states. If this persistent storage is not on the same die as 
IWKeyBackup, then it is designed to be encrypted, integrity protected and (when available) replay 
protected. An older write to IWKeyBackup (IA32_COPY_LOCAL_TO_PLATFORM[0] set) that has not yet 
completed updating the persistent storage (and thus has not yet set 
IA32_IWKEYBACKUP_STATUS[Backup/Restore Valid] may cause younger writes to fail. 

Although younger writes to IWKeyBackup may be blocked by an older write that has not yet updated 
the persistent storage, reads are not blocked. A read of IWKeyBackup (using 
IA32_COPY_PLATFORM_TO_LOCAL[0]) may be initiated (e.g., on another logical processor) as soon as 
a write is verified to have completed successfully (IA32_COPY_STATUS[0] was set). 

 

Register address Architectural MSR Name / Bit 
Fields 

MSR/Bit 
Description  

Comment 

Hex Decimal 

D91 3473 IA32_COPY_LOCAL_TO_PLATFORM Copy local state 
to platform 
state (W) 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23]  
== 1)) 

0 IWKeyBackup - 
Copy IWKey to 
IWKeyBackup 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23]  
== 1)) 

63:1 Reserved  
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4.3 IA32_COPY_PLATFORM_TO_LOCAL MSR 
IA32_COPY_PLATFORM_TO_LOCAL MSR is designed to support copying IWKeyBackup content (a 
platform register) to the IWKey register of the current logical processor when a WRMSR sets 
IA32_COPY_PLATFORM_TO_LOCAL[0]. It is possible for this write to fail, for example if it is reading 
IWKeyBackup simultaneously with a write to IWKeyBackup, so software should always check after the 
write that it succeeded. Software can determine whether a copy of IWKeyBackup to IWKey succeeded 
through checking IA32_COPY_STATUS[0] after the WRMSR to set 
IA32_COPY_PLATFORM_TO_LOCAL[0]; a value of 1 in IA32_COPY_STATUS[0] indicates that the write 
to IWKey succeeded.  

 

Register address Architectural MSR Name / Bit 
Fields 

MSR/Bit 
Description  

Comment 

Hex Decimal 

D92 3474 IA32_COPY_PLATFORM_TO_LOCAL Copy platform 
state to local  
state (W) 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23]  == 
1)) 

0 IWKeyBackup - 
Copy 
IWKeyBackup 
to IWKey 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(EAX=07H, 
ECX=0H).ECX[23]  == 
1)) 

63:1 Reserved  
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4.4 IA32_COPY_STATUS MSR 
Each bit in the read-only IA32_COPY_STATUS MSR at address 990H indicates whether the most recent 
command executed through the corresponding bit in IA32_PLATFORM_TO_LOCAL MSR or 
IA32_LOCAL_TO_PLATFORM MSR was successful (a value of 1) or unsuccessful (a value of 0). The 
reset value is 0. 

This MSR is logical processor scoped and can be read immediately after an MSR write to cause a 
backup or restore operation. It is cleared by cold/warm reset and unaffected by INIT. 

Register 
address 

Architectural MSR Name 
/ Bit Fields 

MSR/Bit Description  Comment 

Hex Decimal 

990 2448 IA32_COPY_STATUS Status of most recent 
platform to local or local to 
platform copies 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23]  
== 1)) 

0 IWKEY_COPY_SUCCESSFUL: 
Status of most recent copy 
to or from IWKeyBackup  

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23]  
== 1)) 

63:1 Reserved  

4.5 IA32_IWKEYBACKUP_STATUS MSR 
The IA32_IWKEYBACKUP_STATUS MSR (read-only, platform scoped) provides information about the 
status of the Key Locker IWKeyBackup register. It is cleared on a successful copy of IWKey to 
IWKeyBackup by any logical processor (one that sets 
IA32_COPY_STATUS[IWKEY_COPY_SUCCESSFUL]) and becomes evaluated again at a later point. It is 
also cleared by cold/warm reset and unaffected by INIT.  

Register 
address 

Architectural MSR 
Name / Bit Fields 

MSR/Bit Description  Comment 

Hex Decimal 

991 2449 IA32_IWKEYBACKUP
_STATUS 

Information about IWKeyBackup 
register 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23
]  == 1)) 

0  Backup/restore valid. Cleared 
when a write to IWKeyBackup is 
initiated, and then set when the 
latest write of IWKeyBackup has been 
written to storage that persists across 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23
]  == 1)) 
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Register 
address 

Architectural MSR 
Name / Bit Fields 

MSR/Bit Description  Comment 

Hex Decimal 

S3/S4 sleep state. If S3/S4 is entered 
between when an IWKeyBackup write 
occurs and when this bit is set, then 
IWKeyBackup may not be recovered 
after S3/S4 exit. During S3/S4 sleep 
state exit (system wakeup), this bit is 
cleared. It is set again when 
IWKeyBackup is restored from 
persistent storage and thus available 
to be copied to IWKey using 
IA32_COPY_PLATFORM_TO_LOCAL 
MSR. Another write to IWKeyBackup 
(via 
IA32_COPY_LOCAL_TO_PLATFORM 
MSR) may fail if a previous write has 
not yet set this bit. 

1 Reserved  

2 Backup key storage read/write 
error. Updated prior to 
backup/restore valid being set. Set 
when an error is encountered while 
backing up or restoring a key to 
persistent storage 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23
]  == 1)) 

3 IWKeyBackup consumed. Set after 
the previous backup operation has 
been consumed by the platform. This 
does not indicate that the system is 
ready for a second IWKeyBackup 
write as the previous IWKeyBackup 
write may still need to set 
Backup/restore valid. 

IF ((CPUID.19H:EBX[4] 
== 1)   && 
(CPUID.(07H,0).ECX[23
]  == 1)) 

63:4 Reserved  
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5 OS Enabling 

5.1 OS Boot  
On processors where CPUID.KL is enumerated, the OS boot process should set CR4.KL and then 
execute LOADIWKEY with a random number as input. When support for HW randomized IWKey and 
IWKeyBackup is enumerated (CPUID.19H.ECX[1] and CPUID.19H.EBX[4] are both set), software may 
wish LOADIWKEY to specify a KeySource of 1 in order to have hardware random numbers be combined 
with whatever is specified by software (e.g., random numbers from a software defined pool). When 
specifying a KeySource of 1, software should check after LOADIWKEY that RFLAGS.ZF is 0 and retry 
the LOADIWKEY if RFLAGS.ZF is 1 (which indicates that a lack of availability of full-entropy data caused 
LOADIWKEY to not complete). If repeated LOADIWKEYs do not succeed (RFLAGS.ZF set each time), 
then full-entropy data from the on-chip random number generator was unavailable and software may 
wish to instead use a KeySource of 0.  

The OS should not allow applications to execute with CR4.KL set unless LOADIWKEY successfully 
loaded as applications may presume that IWKey is properly initialized when CR4.KL is set. 

An OS should ensure that the IWKey is the same on each logical processor so that an application’s 
handles work regardless of which logical processor it is executing on. This can be done by using a 
software specified IWKey (KeySource of 0) and passing that through memory to the other logical 
processors so that each can execute LOADIWKEY with the same value. Alternatively, it can be done by 
executing LOADIWKEY on one logical processor, then copying the IWKey from that logical processor to 
IWKeyBackup by using IA32_COPY_LOCAL_TO_PLATFORM MSR, and then, on every other logical 
processor, copying to IWKey from IWKeyBackup using IA32_COPY_PLATFORM_TO_LOCAL MSR. 
Software can immediately do a copy to IWKey from IWKeyBackup after a successful backup (write) to 
IWKeyBackup completed (IA32_COPY_STATUS[0] was set on the writing logical processor), without 
needing to check IA32_IWKEYBACKUP_STATUS MSR. A second write to IWKeyBackup may need to wait 
until the previous write has completed and set IA32_IWKEY_BACKUP_STATUS[Backup/Restore Valid]. 
Most usages will not need to do a second write to IWKeyBackup soon after boot, but it may occur when 
a system quickly does a kernel soft reset or revokes the handles by overwriting all IWKeys as well as 
IWKeyBackup; particularly in artificial test environments. IWKeyBackup supports both software 
specified IWKey (KeySource of 0) as well as keys combined with data from the on-chip hardware 
random number generator(KeySource of 1) and is enumerated through CPUID.19H.EBX[4].  

By loading IWKey early in the boot process (before most software components are loaded) and not 
recording the IWKey value, vulnerabilities in later loaded software components will not be able to single 
step the system to watch the IWKey value being loaded (as the IWKey loading has already occurred). 

On some platforms, system firmware enabling may be needed for Key Locker to be used. On such 
platforms, if the system firmware has not properly enabled Key Locker then CPUID.AESKLE may stay 0 
even though CR4.KL is set. It is also possible that some systems will not enumerate support for 
IWKeyBackup if system firmware did not properly enable Key Locker. 

On systems that support S3 and S4 sleep states, the OS may want to copy the LoadIWKey value to 
IWKeyBackup by setting IA32_COPY_LOCAL_TO_PLATFORM[0] at boot. This gives the platform more 
time to write IWKeyBackup into persistent storage (and set IA32_IWKEYBACKUP_STATUS[0]) before 
there is a request to enter S3 or S4 sleep states (in order that entry to those sleep states is not 
delayed. Platforms that support S3 and S4 sleep states but do not support IWKeyBackup will need to 
find some other means to maintain the IWKey across the S3/S4 sleep states. If no other means is 
available, they may choose to not enable Key Locker.  
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5.2 OS Shutdown 
Shutting down the system (either S5 soft off or G3 mechanical off) involves closing all applications and 
thus is a good time to revoke handles. Although the next boot of the OS will normally load a new 
IWKey and thus revoke those handles, some security usage models may not want to trust the next 
boot of the OS to perform that revocation (e.g., in case the OS is swapped with a malicious one).  

In order to reduce the risk that an attacker could re-use handles across the shutdown even in such 
situations, the OS can overwrite IWKey and IWKeyBackup before powering off the system. Specifically, 
it can use LOADIWKEY on each logical processor to overwrite IWKey (e.g., with zeroes or a new 
random value) and can copy an overwritten IWKey from one of those logical processors to 
IWKeyBackup using IA32_COPY_LOCAL_TO_PLATFORM[0]. Note that this write to IWKeyBackup may 
fail if a previous write to IWKeyBackup (e.g., the boot write) has not already completed and set 
IA32_IWKEY_BACKUP_STATUS[Backup/Restore Valid]. Before resetting the processor, software can 
help ensure that this new overwriting of IWKeyBackup has overwritten its persistent storage copy by 
waiting for IA32_IWKEYBACKUP_STATUS[Backup/Restore Valid] to be set again. 

5.3 Entering S3 or S4 System Sleep States (Sleep or Hibernate) 
Entering S3 (sleep) or S4 (hibernate) states will power off all processors and thus will lead to losing the 
IWKey (as it is cleared by reset when the system is powered back on). In order to maintain IWKey (so 
that application handles created before entering S3 or S4 continue to work after waking up), software 
should make sure that IWKeyBackup is written (e.g., at boot) and  
IA32_IWKEYBACKUP_STATUS[Backup/Restore Valid] is set so that it is maintained across S3/S4. If 
there was an error when writing to persistent storage, then IA32_IWKEYBACKUP_STATUS[Backup key 
storage read/write error] will be set. 

5.4 Exiting S3 or S4 System Sleep States (Waking from Sleep or 
Hibernate) 

On waking up from S3 or S4 sleep states, the OS will want to recover the previous IWKey so that 
application handles created before entering S3/S4 state continue to work after waking up from S3/S4. 

If the previous IWKeyBackup completed its write to persistent storage before entering S3/S4 sleep 
states, then the restoration process will automatically start on exiting S3/S4 sleep states. 

The OS should check that IWKeyBackup is ready to be copied by waiting until 
IA32_IWKEYBACKUP_STATUS[Backup/Restore Valid] is set. When IWKeyBackup is ready, WRMSR to 
set IA32_COPY_PLATFORM_TO_LOCAL[0] can be executed on each logical processor in order to restore 
IWKey on those logical processors. If the OS is unable to properly restore IWKey after an S3/S4 (e.g. 
IA32_IWKEYBACKUP_STATUS[Backup/restore valid] is not set after a retry or the IWKey restore from 
IWKeyBackup fails), then it may want  to log an error and either clear CR4.KL or shutdown the system.  

 



 
Intel Key Locker  
 
 
 
 
 

Page 45   343965-001US, Rev. 1.0 

6 Application Enabling 

Applications can either directly use the Key Locker instructions or can use a software library that allows 
selecting Key Locker for maintenance of its AES keys.  

Software can use CPUID.AESKLE to determine that the system and OS support Key Locker. This CPUID 
bit is only set when the OS has set CR4.KL. Any OS which has done that should also have written 
IWKey to a random value1.  

Once the application has obtained the AES key that it wants to use (e.g., the result of key negotiation 
with another entity or what is unsealed from a TPM), it should use ENCODEKEY128 (for 128-bit AES 
key) or ENCODEKEY256 (for 256-bit AES key) to create the handle. Handle restrictions (e.g., no-
encrypt or no-decrypt) can be specified through the SRC register and are detailed in section 1.1.1.1. 

Along with the handle, ENCODEKEY128 and ENCODEKEY256 also produce information about the IWKey 
used to create the handle. For example, bit 0 of the destination register indicates whether IWKey is 
forbidden from being written to IWKeyBackup. A value of 0 in bits 4:1 of the destination register 
indicates that the IWKey used to help protect this handle was specified by system software and a value 
of 1 indicates that the IWKey is random and thus is designed not to be known by any software 
(including system software).  

Intel SGX enclaves that do not have system software within their trust boundary may be designed to  
refuse to use an IWKey that does not use the on-chip hardware random number generator in order to 
help ensure that Key Locker handles provide defense in depth against system software attackers that 
also obtain the handle; but this may limit Key Locker usage. Note that Key Locker is designed so that it 
does not significantly reduce security for enclave software to use it when a system software adversary 
knows the IWKey value, although such usage also does not help improve the enclave security.  

When the application wishes to perform encryption or decryption instructions, it should pass the handle 
along with the corresponding plaintext or ciphertext to the AES*KL instructions. Software doing parallel 
AES operations (like AES-CTR mode) may wish to use the wide instructions in order to encrypt/decrypt 
multiple blocks in parallel. Software doing serial AES operations (like AES-CBC encryption)  should use 
the non-wide instructions.  As an example, software doing an AES CBC encryption using a 256-bit AES 
key should use AESENC256KL. 

If a handle or IWKey becomes corrupted (e.g., through malicious system software that changes the 
IWKey) or a restriction is violated, the AES*KL fails and sets RFLAGS.ZF. In this situation, the 
destination is unmodified and thus holds plaintext (if an encryption operation is being performed) or 
ciphertext (if a decryption operation is being performed). Software should thus be careful to check that 
ZF is 0 after each execution of an AES*KL instruction.  

The application should protect the handle as it would normally protect a key; even though it is 
designed to not be usable remotely or after handle revocation, it could still be used by an adversary on 
that system until handles are revoked (by the OS or VMM overwriting IWKey and any backup of it). 

 

 

 

1 Note that if IWKey is not initialized (and thus all of its fields are 0), then an ENCODEKEY128 with 
input of 0 will create a handle with an integrity tag of 0x8720849214a248ad_898940a278c095dc and 
ciphertext of 0xd3e9d22b334fb3c2_3382228c8474c308. The AES GCM SIV algorithm’s integrity check 
requires a non-zero IWKey to properly detect changes in the handle. 
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7 Virtualization Support 

7.1 Virtualization Strategies 
A VMM may need the ability to be able to context switch and migrate guests as well as have the ability 
to save a guest to disk and resume it later (e.g., after the host has rebooted and thus revoked its 
handles). 

A VMM can do this by causing a VM exit when a guest loads IWKey and recording the IWKey that the 
guest expects. The VMM can then load this IWKey (using LOADIWKEY) before running that guest. This 
may mean doing a LOADIWKEY on each context switch to a guest that is using Key Locker (has CR4.KL 
set).  

Note that a VMM may wish to enumerate no support for hardware generated random IWKeys to the 
guest (i.e., enumerate CPUID.19H:ECX[1] as 0) as such IWKeys cannot be easily context switched. A 
guest ENCODEKEY* will return the type of IWKey used (IWKey.KeySource) and thus is designed to 
notice if a VMM virtualized a hardware generated random IWKey with a software specified IWKey. 

Although a system using virtualization will need to hold the IWKey of guests so that they can be loaded 
on guest context switch, an attacker of a guest not only needs to recover the handle but also needs to 
observe the IWKey values maintained by the VMM in order to unwrap that handle and recover the AES 
key. This is more difficult for an attacker than simply stealing the handle.  

Because the IWKey is designed not to be directly readable from the processor, a VMM that starts after 
IWKey is loaded should be unable to determine that IWKey value. If the VMM is also using Key Locker 
(separate from guest usage), then each loading of a guest IWKey will overwrite the VMM’s IWKey. The 
VMM that needs to use Key Locker may either need to save away its own IWKey in memory/registers 
(which would impact security as an adversary that can observe arbitrary VMM memory may be able to 
steal both the handles and IWKey as well as require the VMM to be running before the first IWKey load) 
or need to use IWKeyBackup to restore its own IWKey before using VMM handles or not allow guest 
usage of Key Locker (so that no guest IWKey needs to be loaded). Initial implementations may take a 
significant amount of time to perform a copy of IWKeyBackup to IWKey (via an MSR write to 
IA32_COPY_PLATFORM_LOCAL[0]) so it may cause a significant performance impact to reload IWKey 
after each VM exit. It is thus recommended that VMMs only restore IWKey right before needing to use 
a handle, or even avoid using Key Locker for VMM usages if Key Locker is enumerated to guests (so 
that either the VMM uses Key Locker or the guests use Key Locker but not both).  

The VMM can use the MSR bitmap to catch guest usage of IA32_COPY_LOCAL_TO_PLATFORM, 
IA32_COPY_PLATFORM_TO_LOCAL, IA32_COPY_STATUS, and IA32_IWKEYBACKUP_STATUS MSRs. 
They can be virtualized through software recording the guest expectation of IWKeyBackup as well as 
IWKey. This avoids the guest needing to actually read or write the actual platform IWKeyBackup; the 
guest interaction would be with the virtual IWKeyBackup. 

VMMs that are unaware of Key Locker should not allow guests to set CR4.KL (as the VMM should 
already be preventing guests from setting CR4 bits of which the VMM is not aware). This will cause Key 
Locker instructions to generate a #UD exception on guests of such VMMs. 

7.2 Tertiary Processor-Based VM-Execution Controls 
A new 64-bit vector of controls is defined to govern the handling of synchronous events, mainly those 
caused by the execution of specific instructions. This vector is called the tertiary processor-based VM-
execution controls. Software can use the VMREAD and VMWRITE instructions to access the tertiary 
processor-based VM-execution controls using the encoding pair 2034H/2035H. 
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Bit 17 of the primary processor-based VM-execution controls is defined as “activate tertiary controls.” 
It determines whether the tertiary processor-based VM-execution controls are used. If that bit is 0, VM 
entry and VMX non-root operation function as if all the tertiary processor-based VM-execution controls 
were 0. Processors that support only the 0-setting of bit 17 of the primary processor-based VM-
execution controls do not support the tertiary processor-based VM-execution controls. Thus, a 
processor supports the tertiary processor-based VM-execution controls if and only if 
IA32_VMX_PROCBASED_CTLS[49] = 1.1 

Processors that support the tertiary processor-based VM-execution controls also support the 
IA32_VMX_PROCBASED_CTLS3 MSR (index 492H). This MSR enumerates the allowed 1-settings of 
these controls. Specifically, VM entry allows bit X of the tertiary processor-based VM-execution controls 
to be 1 if and only if bit X of the MSR is set to 1. If bit X of the MSR is cleared to 0, VM entry fails if 
control X and the “activate tertiary controls” primary processor-based VM-execution control are both 1. 

7.3 LOADIWKEY VM Exiting 
For a VMM to capture the IWKey values of guests, processors that support Key Locker also support a 
new ”LOADIWKEY exiting” VM-execution control in bit 0 of the tertiary processor-based VM-execution 
controls. A processor supports the 1-setting of this control if it sets bit 49 of the 
IA32_VMX_PROCBASED_CTLS MSR and bit 0 of the IA32_VMX_PROCBASED_CTLS3 MSR. See Section 
7.2 for details.  

If the “activate tertiary controls” VM-execution control and the “LOADIWKEY exiting” VM-execution 
control are both 1, an execution of LOADIWKEY in VMX non-root operation causes a VM exit. Such a VM 
exit uses a basic exit reason of 45H (69 decimal) but no exit qualification. The length of the instruction 
is stored in the VM-exit instruction-length field and information about the instruction operands is stored 
in the VM-exit instruction-information field (details are provided in Table 7-1). 

Table 7-1. Format of the VM-Exit Instruction-Information Field as Used for LOADIWKEY 

Bit 
Position(s) 

Contents 

2:0 Undefined 

6:3 Reg1: 

0=XMM0 

1=XMM1 

… 

7=XMM7 

8-15 represent XMM8-XMM15, respectively (used only on processors that support 
Intel® 64 architecture) 

9:7 Undefined 

10 Set to 1 (reg format) 

14:11 Undefined 

17:15 Undefined (Segreg) 

27:18 Undefined (IndexReg and BaseReg) 

 
1 If IA32_VMX_BASIC[55] = 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR exists and is identical to 
IA32_VMX_PROCBASED_CTLS in bit positions 63:32. Thus, if IA32_VMX_BASIC[55] = 1, a processor supports the 
tertiary processor-based VM-execution controls if and only if IA32_VMX_TRUE_PROCBASED_CTLS [49] = 1. 
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31:28 Reg2: 

0=XMM0 

1=XMM1 

… 

7=XMM7 

8-15 represent XMM8-XMM15, respectively (used only on processors that support 
Intel 64 architecture) 
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Appendix A 

A.2 Key Locker Performance 
The long-term goal for Key Locker is to have performance that is comparable with direct usage of AES-
NI instructions. Serial algorithm modes like AES CBC encryption should use instructions that encrypt or 
decrypt a single block at a time (e.g., AESENC128KL), while parallel algorithm modes like AES CTR or 
AES GCM should use instructions that encrypt or decrypt multiple blocks at a time (e.g., 
AESENCWIDE128KL). 

In order to improve performance, the processor may store recently used handles and their associated 
keys or round keys for the currently loaded IWKey in a ‘handle cache’.  For security reasons, this 
handle cache is designed not to be accessible except through using the Key Locker instructions; the 
keys or round keys are designed to be not directly readable by software. The size of the handle cache 
may differ between implementations. 

Some initial implementations may have lower performance than direct usage of AES-NI, particularly 
serial algorithms.  

A.3 Functions Used in Instructions 

A.3.1 HandleReservedBitSet (Handle) 

This will evaluate to true if a reserved bit is set in the handle. The reserved bits are bits 127:28 and 
23:3 of the handle. 

A.3.2 HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128 

This will evaluate to true if the Handle key type field (bits 27:24) is not 0. 

A.3.3 HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES256 

This will evaluate to true if the Handle Key Type field (bits 27:24) is not 1. 

A.3.4 UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey)  

Intel Key Locker uses the AES-GCM-SIV algorithm to unwrap and verify the integrity handles using 
IWKey.EncryptionKey as the encryption key and IWKey.IntegrityKey as the integrity key1. The results 
will be whether the integrity check passes and the decrypted result. The unwrapped result should not 
be used if the integrity check fails.  

The AES-GCM-SIV algorithm is described in detail in section A.4. This algorithm uses AES GCM SIV with 
input of 128 bits of ciphertext (handle[383:256]), 128 bits of additional authenticated data 
(handle[127:0]), and 128 bits of an integrity tag (handle[255:128]) and it results in a 128-bit 
unwrapped result as well as an indication of whether the integrity check passes. 

 
1 Note that the integrity key is called the message-authentication key and the encryption key 
is called the message-encryption key in the AES-GCM-SIV RFC8452 specification at 
https://tools.ietf.org/html/rfc8452 

 

https://tools.ietf.org/html/rfc8452
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A.3.5 UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey)  

Intel Key Locker uses the AES-GCM-SIV algorithm to unwrap and verify the integrity handles using 
IWKey.EncryptionKey as the encryption key and IWKey.IntegrityKey as the integrity key1. The results 
will be whether the integrity check passes and the decrypted result. The unwrapped result should not 
be used if the integrity check fails.  

The AES-GCM-SIV algorithm is described in detail in section A.4. This algorithm uses AES GCM SIV with 
input of 256 bits of ciphertext (handle[511:256]), 128 bits of additional authenticated data 
(handle[127:0]), and 128 bits of an integrity tag (handle[255:128]) and it results in a 256-bit 
unwrapped result as well as an indication of whether the integrity check passes. 

A.3.6 WrapKey128(Plaintext[127:0], AAD[127:0], Integrity Key[127:0], 
Encryption Key[255:0]) 

Intel Key Locker uses the AES-GCM-SIV algorithm to unwrap handles and verify their integrity.  

The AES-GCM-SIV algorithm is described in detail in section A.4. Note that the C-code in that section 
contains a char *handle input that holds the output of the function.  

This version is for 128-bit plaintext. 

A.3.7 WrapKey256(Plaintext[255:0], AAD[127:0], Integrity Key[127:0], 
Encryption Key[255:0]) 

Intel Key Locker uses the AES-GCM-SIV algorithm to unwrap handles and verify their integrity.  

The AES-GCM-SIV algorithm is described in detail in section A.4. Note that the C-code in that section 
contains a char *handle input that holds the output of the function.  

This version is for 256-bit plaintext. 

A.4 AES ECB Algorithm 
This section specifies the algorithm for AES ECB including AES128Encrypt, AES128Decrypt, 
AES256Encrypt, AES256Decrypt functions which are used in the Key Locker pseudocode. AES is also 
described in the NIST FIPS 197 document. 

A.4.1 AES-128 Key Expansion  
#include <wmmintrin.h>  
inline __m128i AES_128_ASSIST (__m128i temp1, __m128i temp2)  
 {  

__m128i temp3;  
temp2 = _mm_shuffle_epi32 (temp2 ,0xff);  
temp3 = _mm_slli_si128 (temp1, 0x4);  
temp1 = _mm_xor_si128 (temp1, temp3);  
temp3 = _mm_slli_si128 (temp3, 0x4);  
temp1 = _mm_xor_si128 (temp1, temp3);  
temp3 = _mm_slli_si128 (temp3, 0x4);  
temp1 = _mm_xor_si128 (temp1, temp3);  

 
1 Note that the integrity key is called the message-authentication key and the encryption key 
is called the message-encryption key in the AES-GCM-SIV RFC8452 specification at 
https://tools.ietf.org/html/rfc8452 

https://tools.ietf.org/html/rfc8452
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temp1 = _mm_xor_si128 (temp1, temp2);  
return temp1;  

}  
  
void AES_128_Key_Expansion (const unsigned char *userkey,  unsigned char *key)  
 {  

__m128i temp1, temp2;  
__m128i *Key_Schedule = (__m128i*)key;  
temp1 = _mm_loadu_si128((__m128i*)userkey);  
Key_Schedule[0] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1 ,0x1);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[1] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x2);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[2] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x4);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[3] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x8);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[4] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x10);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[5] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x20);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[6] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x40);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[7] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x80);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[8] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x1b);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[9] = temp1;  
temp2 = _mm_aeskeygenassist_si128 (temp1,0x36);  
temp1 = AES_128_ASSIST(temp1, temp2);  
Key_Schedule[10] = temp1;  

 } 

A.4.2 AES-256 Key Expansion  
#include <wmmintrin.h>  
inline void KEY_256_ASSIST_1(__m128i* temp1, __m128i * temp2)  
{  

__m128i temp4;  
*temp2 = _mm_shuffle_epi32(*temp2, 0xff);  
temp4 = _mm_slli_si128 (*temp1, 0x4);  
*temp1 = _mm_xor_si128 (*temp1, temp4);  
temp4 = _mm_slli_si128 (temp4, 0x4);  
*temp1 = _mm_xor_si128 (*temp1, temp4);  
temp4 = _mm_slli_si128 (temp4, 0x4);  
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*temp1 = _mm_xor_si128 (*temp1, temp4);  
*temp1 = _mm_xor_si128 (*temp1, *temp2);  

}  
inline void KEY_256_ASSIST_2(__m128i* temp1, __m128i * temp3)  
{  

__m128i temp2,temp4;  
temp4 = _mm_aeskeygenassist_si128 (*temp1, 0x0);  
temp2 = _mm_shuffle_epi32(temp4, 0xaa);  
temp4 = _mm_slli_si128 (*temp3, 0x4);  
*temp3 = _mm_xor_si128 (*temp3, temp4);  
temp4 = _mm_slli_si128 (temp4, 0x4);  
*temp3 = _mm_xor_si128 (*temp3, temp4);  
temp4 = _mm_slli_si128 (temp4, 0x4);  
*temp3 = _mm_xor_si128 (*temp3, temp4);  
*temp3 = _mm_xor_si128 (*temp3, temp2);  

}  
void AES_256_Key_Expansion (const unsigned char *userkey, unsigned char *key)  
{  

__m128i temp1, temp2, temp3;  
__m128i *Key_Schedule = (__m128i*)key;  
temp1 = _mm_loadu_si128((__m128i*)userkey);  
temp3 = _mm_loadu_si128((__m128i*)(userkey+16));  
Key_Schedule[0] = temp1;  
Key_Schedule[1] = temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x01);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[2]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[3]=temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x02);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[4]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[5]=temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x04);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[6]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[7]=temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x08);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[8]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[9]=temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x10);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[10]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[11]=temp3;  
temp2 = _mm_aeskeygenassist_si128 (temp3,0x20);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[12]=temp1;  
KEY_256_ASSIST_2(&temp1, &temp3);  
Key_Schedule[13]=temp3;  
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temp2 = _mm_aeskeygenassist_si128 (temp3,0x40);  
KEY_256_ASSIST_1(&temp1, &temp2);  
Key_Schedule[14]=temp1;  

}     

A.4.3 AES128Encrypt 
#include <wmmintrin.h>  
void AES128Encrypt(unsigned char *dest, //pointer to the PLAINTEXT/CIPHERTEXT 
 const char *userkey) //pointer to AES128 encryption key 
{ 

__m128i tmp; 
__m128i *key[10]; 
int i; 
tmp = _mm_loadu_si128 ((__m128i*)dest)); 
AES_128_Key_Expansion (userkey,key); 
tmp = _mm_xor_si128 (tmp,((__m128i*)key)[0]); 
for(i=1; i <10; i++) { 

tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[i]); 
} 
tmp = _mm_aesenclast_si128 (tmp,((__m128i*)key)[i]); 
_mm_storeu_si128 ((__m128i*)dest),tmp); 

} 

A.4.4 AES128Decrypt 
#include <wmmintrin.h>  
void AES128Decrypt(unsigned char *dest, //pointer to the CIPHERTEXT/PLAINTEXT 
const char *userkey) //pointer to the expanded key schedule 
{ 

__m128i tmp; 
__m128i key[10], key_decrypt[10]; 
int i, round; 
AES_128_Key_Expansion (userkey, key); 
key_decrypt [0] = key [10]; 
 for (round = 1; round <10; round++) { 

key_decrypt [round] = _mm_aesimc_si128(key[10 - round]); 
} 
 key_decrypt [10] = key[0]; 
tmp = _mm_loadu_si128 ((__m128i*)dest); 
tmp = _mm_xor_si128 (tmp,((__m128i*)key_decrypt)[0]); 
for(i=1; i <10; i++) { 

tmp = _mm_aesdec_si128 (tmp,((__m128i*)key_decrypt)[i]); 
} 
tmp = _mm_aesdeclast_si128 (tmp,((__m128i*)key)[i]); 
_mm_storeu_si128 ((__m128i*)dest)[i], tmp); 

} 

A.4.5 AES256Encrypt 
#include <wmmintrin.h> 
void AES256Encrypt(unsigned char *dest, //pointer to the PLAINTEXT/CIPHERTEXT 
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const char *userkey) //pointer to AES128 encryption key 
{ 

__m128i tmp; 
__m128i *key[14]; 
int i; 
tmp = _mm_loadu_si128 ((__m128i*)dest)); 
AES_256_Key_Expansion (userkey,key); 
tmp = _mm_xor_si128 (tmp,((__m128i*)key)[0]); 
for(i=1; i <14; i++) { 

tmp = _mm_aesenc_si128 (tmp,((__m128i*)key)[i]); 
} 
tmp = _mm_aesenclast_si128 (tmp,((__m128i*)key)[i]); 
_mm_storeu_si128 ((__m128i*)dest),tmp); 

} 

A.4.6 AES256Decrypt 
#include <wmmintrin.h>  
void AES256Decrypt(unsigned char *dest, //pointer to the CIPHERTEXT/PLAINTEXT 
const char *userkey) //pointer to the expanded key schedule 
{ 

__m128i tmp; 
__m128i key[14], key_decrypt[14]; 
int I, round; 
AES_256_Key_Expansion (userkey, key); 
key_decrypt [0] = key [14];  
for (round = 1; round <14; round++){ 

key_decrypt [round] = _mm_aesimc_si128(key[14 - round]); 
} 
 key_decrypt [14] = key[0]; 
tmp = _mm_loadu_si128((__m128i*)dest); 
tmp = _mm_xor_si128 (tmp,((__m128i*)key_decrypt)[0]); 
for(i=1; i <14; i++) { 

tmp = _mm_aesdec_si128 (tmp,((__m128i*)key_decrypt)[i]); 
} 
tmp = _mm_aesdeclast_si128 (tmp,((__m128i*)key_decrypt)[i]);  
_mm_storeu_si128((__m128i*)dest)[i], tmp); 

} 

A.5 AES-GCM-SIV Algorithm 

A.5.1 Background on AES-GCM-SIV and Usage by Key Locker 

Key Locker uses the AES-GCM-SIV1 algorithm in order to wrap the keys supplied to the ENCODEKEY* 
instructions.  It is designed to be high performance and to support both confidentiality as well as 
integrity and to support additional authentication data. The Key Locker usage does not use a nonce and 
allows directly specifying a 128-bit integrity (aka message-authentication) key and a 256-bit 
confidentiality (aka message-encryption) key via the inputs to the LOADIWKEY instruction instead of 
deriving those keys from a single key and a nonce.  

 
1 Described in more detail at https://tools.ietf.org/html/rfc8452. 

https://tools.ietf.org/html/rfc8452
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A.5.2 AES GCM SIV Algorithm 

This section explains the usage of AES-GCM-SIV by the Key Locker instructions. It does this through 
the below C code, which gives the same results as the CPU implementation of the AES-GCM-SIV 
functions in the Key Locker instruction pseudocode. This C-code can be examined to understand what 
the Key Locker instruction pseudocode does. 

 
#include <stdint.h> 
#include <string.h> 
#include <wmmintrin.h> 
#include <emmintrin.h> 
# include <smmintrin.h> 
#include "measurements.h" 
  
#if !defined (ALIGN16) 
#if defined (__GNUC__) 
#  define ALIGN16  __attribute__  ( (aligned (16))) 
# else 
 
#  define ALIGN16 __declspec (align (16)) 
# endif 
#endif 
 
void Horner_Step(uint8_t* A, uint8_t* B, uint8_t* H, uint8_t* res) 
{ 
    register __m128i _A, _B, _H, TMP1, TMP2, TMP3, TMP4, POLY; 
    POLY = _mm_setr_epi32(0x1,0,0,0xc2000000); 
    _H = _mm_loadu_si128((__m128i*)H); 
    _A = _mm_loadu_si128((__m128i*)A); 
    _B = _mm_loadu_si128((__m128i*)B); 
    _A = _mm_xor_si128(_A, _B); 
    TMP1 = _mm_clmulepi64_si128(_A, _H, 0x00); 
    TMP4 = _mm_clmulepi64_si128(_A, _H, 0x11); 
    TMP2 = _mm_clmulepi64_si128(_A, _H, 0x10); 
    TMP3 = _mm_clmulepi64_si128(_A, _H, 0x01); 
    TMP2 = _mm_xor_si128(TMP2, TMP3); 
    TMP3 = _mm_slli_si128(TMP2, 8); 
    TMP2 = _mm_srli_si128(TMP2, 8); 
    TMP1 = _mm_xor_si128(TMP3, TMP1); 
    TMP4 = _mm_xor_si128(TMP4, TMP2); 
    TMP2 = _mm_clmulepi64_si128(TMP1, POLY, 0x10); 
    TMP3 = _mm_shuffle_epi32(TMP1, 78); 
    TMP1 = _mm_xor_si128(TMP3, TMP2); 
    TMP2 = _mm_clmulepi64_si128(TMP1, POLY, 0x10); 
    TMP3 = _mm_shuffle_epi32(TMP1, 78); 
    TMP1 = _mm_xor_si128(TMP3, TMP2);         
    _A = _mm_xor_si128(TMP4, TMP1);     
    _mm_storeu_si128((__m128i*)res, _A); 
} 
  
void AES256_KS1_ENC1_On_The_Fly(const unsigned char* PT, unsigned char* CT,  
                   unsigned char* KS, unsigned char* key){ 
    register __m128i xmm1, xmm2, xmm3, xmm4, con3, xmm14, b1, mask, con1, _P1, _AAD, POLY, _LENBLK; 
    int i=0; 
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    __m128i* Key_Schedule =  (__m128i*)KS; 
    mask = _mm_setr_epi32(0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d); 
    con1 = _mm_setr_epi32(1,1,1,1); 
    con3 = _mm_setr_epi8(-1,-1,-1,-1,-1,-1,-1,-1,4,5,6,7,4,5,6,7); 
    xmm4 = _mm_setzero_si128(); 
    xmm14 = _mm_setzero_si128(); 
    xmm1 = _mm_loadu_si128((__m128i*)key); 
    xmm3 = _mm_loadu_si128(&(((__m128i*)key)[1])); 
    _mm_storeu_si128(&Key_Schedule[0], xmm1); 
    b1 = _mm_loadu_si128((__m128i*)PT); 
    b1 = _mm_xor_si128(b1, xmm1); 
    b1 = _mm_aesenc_si128(b1, xmm3); 
    _mm_storeu_si128(&Key_Schedule[1], xmm3); 
    for (i=0; i<6; i++) 
    { 
        xmm2 = _mm_shuffle_epi8(xmm3, mask); 
        xmm2 = _mm_aesenclast_si128(xmm2, con1); 
        con1 = _mm_slli_epi32(con1, 1); 
        xmm4 = _mm_slli_epi64 (xmm1, 32); 
        xmm1 = _mm_xor_si128(xmm1, xmm4); 
        xmm4 = _mm_shuffle_epi8(xmm1, con3); 
        xmm1 = _mm_xor_si128(xmm1, xmm4); 
        xmm1 = _mm_xor_si128(xmm1, xmm2); 
        _mm_storeu_si128(&Key_Schedule[(i+1)*2], xmm1); 
        b1 = _mm_aesenc_si128(b1, xmm1); 
         
        xmm2 = _mm_shuffle_epi32(xmm1, 0xff); 
        xmm2 = _mm_aesenclast_si128(xmm2, xmm14); 
        xmm4 = _mm_slli_epi64(xmm3, 32); 
        xmm3 = _mm_xor_si128(xmm4, xmm3); 
        xmm4 = _mm_shuffle_epi8(xmm3, con3); 
        xmm3 = _mm_xor_si128(xmm4, xmm3); 
        xmm3 = _mm_xor_si128(xmm2, xmm3); 
        _mm_storeu_si128(&Key_Schedule[(i+1)*2+1], xmm3); 
        b1 = _mm_aesenc_si128(b1, xmm3); 
    } 
    xmm2 = _mm_shuffle_epi8(xmm3, mask); 
    xmm2 = _mm_aesenclast_si128(xmm2, con1); 
    xmm4 = _mm_slli_epi64 (xmm1, 32); 
    xmm1 = _mm_xor_si128(xmm1, xmm4); 
    xmm4 = _mm_shuffle_epi8(xmm1, con3); 
    xmm1 = _mm_xor_si128(xmm1, xmm4); 
    xmm1 = _mm_xor_si128(xmm1, xmm2); 
    _mm_storeu_si128(&Key_Schedule[14], xmm1); 
    b1 = _mm_aesenclast_si128(b1, xmm1); 
    _mm_storeu_si128((__m128i*)CT, b1);     
} 
  
void AES_256_Encrypt(uint8_t* PT, uint8_t* CT, uint8_t* KS) 
{ 
    __m128i block1; 
    uint8_t TMP_KS[16*15]={0}; 
    block1 = _mm_loadu_si128((__m128i*)PT); 
    memcpy(TMP_KS,KS,(sizeof(uint8_t)*16*15)); 
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    block1 = _mm_xor_si128(block1, *((__m128i*)(TMP_KS+16*0))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*1))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*2))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*3))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*4))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*5))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*6))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*7))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*8))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*9))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*10))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*11))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*12))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*13))); 
    block1 = _mm_aesenclast_si128(block1, *((__m128i*)(TMP_KS+16*14))); 
    _mm_storeu_si128((__m128i*)CT, block1); 
} 
void AES_256_Encrypt_x2(uint8_t* PT, uint8_t* PT1, uint8_t* CT, uint8_t* CT1, uint8_t* KS) 
{ 
    __m128i block1, block2; 
    uint8_t TMP_KS[16*15]={0}; 
    block1 = _mm_loadu_si128((__m128i*)PT); 
    block2 = _mm_loadu_si128((__m128i*)PT1); 
    memcpy(TMP_KS,KS,(sizeof(uint8_t)*16*15)); 
    block1 = _mm_xor_si128(block1, *((__m128i*)(TMP_KS+16*0))); 
    block2 = _mm_xor_si128(block2, *((__m128i*)(TMP_KS+16*0))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*1))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*1))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*2))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*2))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*3))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*3))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*4))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*4))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*5))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*5))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*6))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*6))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*7))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*7))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*8))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*8))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*9))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*9))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*10))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*10))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*11))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*11))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*12))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*12))); 
    block1 = _mm_aesenc_si128(block1, *((__m128i*)(TMP_KS+16*13))); 
    block2 = _mm_aesenc_si128(block2, *((__m128i*)(TMP_KS+16*13))); 
    block1 = _mm_aesenclast_si128(block1, *((__m128i*)(TMP_KS+16*14))); 
    block2 = _mm_aesenclast_si128(block2, *((__m128i*)(TMP_KS+16*14))); 
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    _mm_storeu_si128((__m128i*)CT, block1); 
    _mm_storeu_si128((__m128i*)CT1, block2);  
} 

A.5.2.1 SIV_KEY_WRAP_16B 
void SIV_KEY_WRAP_16B(uint8_t* K1,uint8_t* K2, uint8_t* AAD, uint8_t* PT, uint8_t* CT, uint8_t* T) 
{ 
    __m128i zero = _mm_setzero_si128(); 
    uint8_t TMP[64] = {0}; 
    uint8_t KS[16*15] = {0}; 
    __m128i LENBLK; 
    __m128i AND_MASK, TOP_ONE; 
    uint8_t TMP_PT[64]={0}; 
    TOP_ONE = _mm_setr_epi32(0,0,0,0x80000000); 
    LENBLK = _mm_setr_epi32(16*8, 0, 16*8, 0); 
    AND_MASK = _mm_setr_epi32(0xffffffff,0xffffffff,0xffffffff,0x7fffffff); 
    Horner_Step(AAD, (uint8_t*)&zero, K1, TMP); 
    Horner_Step(PT, TMP, K1, TMP); 
    Horner_Step(TMP, (uint8_t*)&LENBLK, K1, TMP); 
     
    // TMP = POLYVAL; 
    *(__m128i*)TMP = _mm_and_si128(*(__m128i*)TMP, AND_MASK); 
     
    AES256_KS1_ENC1_On_The_Fly(TMP, TMP, KS, K2); 
     
    _mm_storeu_si128((__m128i*)T, *(__m128i*)TMP); 
    *(__m128i*)TMP = _mm_or_si128(*(__m128i*)TMP, TOP_ONE); 
    AES_256_Encrypt(TMP, TMP, KS); 
        memcpy(TMP_PT,PT,(sizeof(uint8_t)*32)); 
    *(__m128i*)TMP = _mm_xor_si128(*(__m128i*)TMP, *((__m128i*)TMP_PT)); 
    _mm_storeu_si128((__m128i*)CT, *(__m128i*)TMP); 
} 

A.5.2.2 SIV_KEY_WRAP_32B 
void SIV_KEY_WRAP_32B(uint8_t* K1,uint8_t* K2, uint8_t* AAD, uint8_t* PT, uint8_t* CT, uint8_t* T) 
{ 
    __m128i zero = _mm_setzero_si128(); 
    uint8_t TMP[64] = {0}; 
    uint8_t TMP1[64] = {0}; 
    uint8_t KS[16*15] = {0}; 
    __m128i ONE, AND_MASK, LENBLK, TOP_ONE; 
    uint8_t TMP_PT[64]={0}; 
    ONE = _mm_setr_epi32(1,0,0,0); 
    TOP_ONE = _mm_setr_epi32(0,0,0,0x80000000); 
    LENBLK = _mm_setr_epi32(16*8, 0, 32*8, 0); 
    AND_MASK = _mm_setr_epi32(0xffffffff,0xffffffff,0xffffffff,0x7fffffff); 
    Horner_Step(AAD, (uint8_t*)&zero, K1, TMP); 
    Horner_Step(PT, TMP, K1, TMP); 
    Horner_Step(PT+16, TMP, K1, TMP); 
    Horner_Step(TMP, (uint8_t*)&LENBLK, K1, TMP); 
    // TMP = POLYVAL; 
    *(__m128i*)TMP = _mm_and_si128(*(__m128i*)TMP, AND_MASK); 
    AES256_KS1_ENC1_On_The_Fly(TMP, TMP, KS, K2); 



 
Intel Key Locker  
 
 
 
 
 

Page 59   343965-001US, Rev. 1.0 

    _mm_storeu_si128((__m128i*)T, *(__m128i*)TMP); 
    *(__m128i*)TMP = _mm_or_si128(*(__m128i*)TMP, TOP_ONE); 
    *(__m128i*)TMP1 = _mm_add_epi32(*(__m128i*)TMP, ONE); 
    AES_256_Encrypt_x2(TMP, TMP1, TMP, TMP1, KS); 
    memcpy(TMP_PT,PT,(sizeof(uint8_t)*32)); 
    *(__m128i*)TMP = _mm_xor_si128(*(__m128i*)TMP, *((__m128i*)TMP_PT)); 
    *(__m128i*)TMP1 = _mm_xor_si128(*(__m128i*)TMP1, *((__m128i*)(TMP_PT+16))); 
    _mm_storeu_si128((__m128i*)CT, *(__m128i*)TMP); 
    _mm_storeu_si128((__m128i*)(CT+16), *(__m128i*)TMP1); 
} 

A.5.2.3 SIV_KEY_UNWRAP_32B 
int SIV_KEY_UNWRAP_32B(uint8_t* K1,uint8_t* K2, uint8_t* AAD, uint8_t* CT, uint8_t* T, uint8_t* PT) 
{ 
    __m128i zero = _mm_setzero_si128(); 
    uint8_t TMP[64] = {0}; 
        uint8_t TMP_T[64] = {0}; 
    uint8_t TMP1[64] = {0}; 
    uint8_t TMP2[64] = {0}; 
    uint8_t KS[16*15] = {0}; 
    uint8_t TMP_CT[64]={0}; 
    __m128i ONE, AND_MASK, LENBLK, TOP_ONE; 
    ONE = _mm_setr_epi32(1,0,0,0); 
    TOP_ONE = _mm_setr_epi32(0,0,0,0x80000000); 
    LENBLK = _mm_setr_epi32(16*8, 0, 32*8, 0); 
    AND_MASK = _mm_setr_epi32(0xffffffff,0xffffffff,0xffffffff,0x7fffffff); 
        memcpy(TMP_T,T,(sizeof(uint8_t)*16)); 
    *(__m128i*)TMP = _mm_or_si128(*(__m128i*)TMP_T, TOP_ONE); 
    *(__m128i*)TMP1 = _mm_add_epi32(*(__m128i*)TMP, ONE); 
    AES256_KS1_ENC1_On_The_Fly(TMP, TMP, KS, K2); 
    AES_256_Encrypt(TMP1, TMP1, KS); 
    memcpy(TMP_CT,CT,(sizeof(uint8_t)*32)); 
    *(__m128i*)TMP = _mm_xor_si128(*(__m128i*)TMP, *((__m128i*)TMP_CT)); 
    *(__m128i*)TMP1 = _mm_xor_si128(*(__m128i*)TMP1, *((__m128i*)(TMP_CT+16))); 
    Horner_Step(AAD, (uint8_t*)&zero, K1, TMP2); 
    Horner_Step(TMP, TMP2, K1, TMP2); 
    Horner_Step(TMP1, TMP2, K1, TMP2); 
    Horner_Step(TMP2, (uint8_t*)&LENBLK, K1, TMP2); 
    // TMP = POLYVAL; 
    *(__m128i*)TMP2 = _mm_and_si128(*(__m128i*)TMP2, AND_MASK); 
    AES_256_Encrypt(TMP2, TMP2, KS); 
    if (memcmp(TMP2, TMP_T, 16)==0) 
    { 
        _mm_storeu_si128((__m128i*)(PT), *(__m128i*)TMP); 
        _mm_storeu_si128((__m128i*)(PT+16), *(__m128i*)TMP1); 
        return 1; 
    } 
    return 0; 
} 

A.5.2.4 SIV_KEY_UNWRAP_16B 
int SIV_KEY_UNWRAP_16B(uint8_t* K1,uint8_t* K2, uint8_t* AAD, uint8_t* CT, uint8_t* T, uint8_t* PT) 
{ 
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    __m128i zero = _mm_setzero_si128(); 
    uint8_t TMP[64] = {0}; 
    uint8_t TMP2[64] = {0}; 
    uint8_t KS[16*15] = {0}; 
    __m128i AND_MASK, LENBLK, TOP_ONE; 
    uint8_t TMP_CT[64]; 
    uint8_t TMP_T[64]; 
    memcpy(TMP_T,T,sizeof(uint8_t)*16); 
  
    TOP_ONE = _mm_setr_epi32(0,0,0,0x80000000); 
    LENBLK = _mm_setr_epi32(16*8, 0, 16*8, 0); 
    AND_MASK = _mm_setr_epi32(0xffffffff,0xffffffff,0xffffffff,0x7fffffff); 
    *(__m128i*)TMP = _mm_or_si128(*(__m128i*)TMP_T, TOP_ONE); 
    AES256_KS1_ENC1_On_The_Fly(TMP, TMP, KS, K2); 
    memcpy(TMP_CT,CT,sizeof(uint8_t)*32); 
    *(__m128i*)TMP = _mm_xor_si128(*(__m128i*)TMP, *((__m128i*)TMP_CT)); 
    Horner_Step(AAD, (uint8_t*)&zero, K1, TMP2); 
    Horner_Step(TMP, TMP2, K1, TMP2); 
    Horner_Step(TMP2, (uint8_t*)&LENBLK, K1, TMP2); 
    // TMP = POLYVAL; 
    *(__m128i*)TMP2 = _mm_and_si128(*(__m128i*)TMP2, AND_MASK); 
    AES_256_Encrypt(TMP2, TMP2, KS); 
    if (memcmp(TMP2, T, 16)==0) 
    { 
        _mm_storeu_si128((__m128i*)(PT), *(__m128i*)TMP); 
        return 1; 
    } 
    return 0; 
} 

A.5.2.5 WrapKey128 
char *  WrapKey128(unsigned char *aeskey, unsigned char *aeskeymetadata, unsigned char *integritykey, 
unsigned char *encryptionkey, unsigned char *handle) 
{  
    unsigned char ciphertext[16] = {0};  
    unsigned char authtag[16] = {0}; 
    int i; 
    SIV_KEY_WRAP_16B (integritykey, encryptionkey, aeskeymetadata, aeskey, ciphertext, authtag); 
    for (i=0; i<16; i++) { 
        handle[i] = aeskeymetadata[i]; 
        handle[i+16] = authtag[i]; 
        handle[i+32] = ciphertext[i]; 
    } 
    return handle; 
} 

A.5.2.6  WrapKey256 
char * WrapKey256(unsigned char *aeskey, unsigned char *aeskeymetadata, unsigned char *integritykey, unsigned 
char *encryptionkey, unsigned char *handle) 
{  
    unsigned char ciphertext[32] = {0};  
    unsigned char authtag[16] = {0}; 
    int i; 
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    SIV_KEY_WRAP_32B(integritykey, encryptionkey, aeskeymetadata, aeskey, ciphertext, authtag); 
    for (i=0; i<16; i++) { 
        handle[i] = aeskeymetadata[i]; 
        handle[i+16] = authtag[i]; 
        handle[i+32] = ciphertext[i]; 
        handle[i+48] = ciphertext[i+16]; 
    } 
    return handle; 
} 

A.5.2.7 UnwrapKeyAndAuthenticate384 
int UnwrapKeyAndAuthenticate384(const unsigned char *handle, const unsigned char *iwkey, unsigned char 
*unwrappedkey)  
{ 
    unsigned char integritykey[16] = {0}; 
    unsigned char encryptionkey[32] = {0}; 
    unsigned char aad[16] = {0}; 
    unsigned char authtag[16] = {0}; 
    int i; 
    for (i=0; i<32; i++) { 
          encryptionkey[i] = iwkey[i+16]; 
    } 
    for (i=0;i<16;i++) { 
          integritykey[i] = iwkey[i]; 
          aad[i] = handle[i]; 
          authtag[i] = handle[i+16]; 
   } 
 
   unsigned char ciphertext[16]; 
   for(i=0;i<16;i++) 
      ciphertext[i] = handle[i+32]; 
   return SIV_KEY_UNWRAP_16B(integritykey, encryptionkey, aad, ciphertext, authtag, unwrappedkey); 
} 

A.5.2.8 UnwrapKeyAndAuthenticate512 
int UnwrapKeyAndAuthenticate512(const unsigned char *handle, const unsigned char *iwkey, unsigned char 
*unwrappedkey)  
{ 
    unsigned char integritykey[16] = {0}; 
    unsigned char encryptionkey[32] = {0}; 
    unsigned char aad[16] = {0}; 
    unsigned char authtag[16] = {0}; 
    int i; 
     for (i=0; i<32; i++) { 
          encryptionkey[i] = iwkey[i+16]; 
    } 
    for (i=0;i<16;i++) { 
          integritykey[i] = iwkey[i]; 
          aad[i] = handle[i]; 
          authtag[i] = handle[i+16]; 
    } 
    unsigned char ciphertext[32]; 
    for(i=0; i<32; i++) 
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          ciphertext[i] = handle[i+32]; 
    return SIV_KEY_UNWRAP_32B(integritykey, encryptionkey, aad, ciphertext, authtag, unwrappedkey); 
} 

A.6 Key Locker Security Properties 
Key Locker is designed to help to prevent an attacker who breaks into a system after a key is wrapped 
from being able to use that wrapped key after revocation, or on another system, or in violation of the 
specified handle restrictions (e.g., at ring 3 for a handle restricted to ring 0).  

When used outside of a Trusted Execution Environment (TEE), an attacker who breaks into a system 
before the key is wrapped may be able to observe the key before it is turned into a handle (e.g., 
through single stepping and watching the ENCODEKEY* instruction inputs), or observe the IWKey that 
is used to help protect the Key Locker handles (e.g., through single stepping and watching the 
LOADIWKEY inputs when KeySource of 0 is used). 

Key Locker may be particularly effective in adding protection to a key when the key is turned into a 
handle early in the boot process, as less software being loaded also means less victims for an attacker 
to target in order to escalate privileges or find an information disclosure. However, Key Locker should 
also reduce risk when used later due to the significant reduction of when the key can be disclosed 
(e.g., before the handle is generated instead of during the entire lifetime of the key).  

ENCODEKEY* instructions take the key value from registers instead of memory in order to support 
software that wants to avoid storing the key to memory until it has the increased protection resulting 
from being wrapped into a Key Locker handle.  

Key Locker handles contain integrity measurements to help detect attempts to change the handle (e.g., 
changing the restrictions). These measurements also are designed to detect using the wrong key size 
or using a different IWKey than the handle was created with. Software should use care to check the ZF 
after each operation in order to detect these cases. 

Key Locker does not prevent denial of service by more privileged system software overwriting the 
IWKey or IWKeyBackup. There are many existing methods for more privileged software to deny 
execution to less privileged software. 

Key Locker was not designed to prevent usage of a wrapped key in ways allowed by the handle 
restrictions unless the IWKey was revoked. Revoking a Key Locker handle involves overwriting the 
IWKey value used to create the handle. This may include overwriting the IWKey value on other logical 
processors (if they contain it), as well as overwriting the IWKey value in IWKeyBackup (if the IWKey 
was backed up there) and waiting for the new IWKeyBackup to overwrite the persistent storage (which 
causes IA32_IWKEYBACKUP_STATUS[Backup/Restore valid] to be set). 

Key Locker provides some level of protection against simple hardware attacks including probes of 
external buses, but was not designed to fully protect against all attackers that are able to physically 
probe values within the CPU die or modify data values on external buses. 

If an attacker discovers both a handle and the IWKey used to generate it, they can unwrap the handle 
in order to obtain the original key, which can then be directly used by the attacker for encryption and 
decryption. Key Locker security relies upon keeping the IWKey secret from potential attackers. 

A.6.1 Key Locker Usage with TEE 

Trusted Execution Environments (TEE) modes can provide a more trusted place to execute operations. 
One example of such a TEE is an Intel SGX enclave. Another example is a VMX guest that runs trusted 
services that are isolated from other less trusted code that runs outside that VMX guest. 

A Key Locker handle can be generated by ENCODEKEY* inside a TEE in order to further guard the key. 
This provides improved protection against an attacker who is already present on the system before 
handle generation but has not penetrated the TEE. Such an attacker cannot single step and observe 
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the key value before it is converted into a handle when that conversion process is protected by the 
TEE. In order to better guard TEEs that do not control IWKey (e.g., enclaves) against an attacker 
knowing the IWKey (as handles only increase protection against attackers who do not know the 
IWKey), the TEE can check the destination register after the ENCODEKEY* and refuse to run unless the 
IWKey has a KeySource of 1. Note that such a TEE policy may prevent that software from working with 
virtualization, as IWKey with a KeySource of 1 cannot be fully virtualized at this time.  

A more privileged entity that changes IWKey underneath a TEE will result in the previously created 
handles not working for encryption or decryption and setting RFLAGS.ZF to indicate that. Usages of Key 
Locker should always check ZF in order to help detect this. Although this could be used as a denial of 
service on the TEE, there already exist many techniques that more privileged entities (e.g., OSes or 
VMMs) can use to deny service to less privileged entities that they manage.  

Some usage models may be served by having a TEE generate the key and wrap it to a handle but 
allowing the handle itself to be used outside of the TEE. To support usages like this, applications at ring 
3 can create handles restricted to system software which runs at ring 0 usage. These usages require 
that the TEE and the SW using the handle both use the same IWKey. If there is no such usage, then 
separate IWKeys could be used for the TEE and the rest of the software (e.g., when the TEE is a 
separate VMX guest). This would help prevent the handles of the TEE from being used by software 
outside of the TEE if they are stolen (e.g., through an information disclosure attack), provided that the 
attacker is not also able to steal the IWKey value used for the TEE. 

A TEE that trusts the IWKey when it is first launched, but not when it is later called (due to concerns of 
a later privilege escalation attack that overwrites the IWKey with a known non-random value) may be 
able to generate a handle of a known value when it is first called. It can later use that handle to help 
confirm that the IWKey that was used early in the boot is still the current IWKey. This may be less 
effective if the attacker is able to single step the TEE as it may be able to restore the original IWKey 
only when the TEE is checking the IWKey and use the attacker-known IWKey the rest of the time.  

A.6.2 Ability of Other Software to Use Handles 

Key Locker handles are linked to the IWKey that was used to create them. This means that an attacker 
who steals the handle but not the original key should not be able to encrypt or decrypt with that 
original key (e.g., using the handle) unless they can use the stolen handle with its corresponding 
IWKey.  

If the attacker is not able to discover the IWKey value (e.g., because it was loaded into the processor 
before the attacker was able to perform information disclosure or privilege escalation), then the 
attacker should not be able to set up that IWKey value on another system or after it is revoked and 
thus should not be able to use the stolen handles on another system or after IWKey revocation. If 
IWKey revocation is performed on reboot, as recommended, this can help prevent usage of previously 
obtained handles after a reboot. 

If a VMM is using different IWKeys for different guests (which is expected to be the normal case), then 
a handle stolen from one guest generally will not be usable in a different attacker’s guest unless the 
attacker also manages to obtain the IWKey from the VMM. A VMM that wishes paravirtualized guests to 
share handles would need to use the same IWKey for both. 

It is also possible to create handles that include restrictions (e.g., a ring 0 only handle that can only 
encrypt and not decrypt). 

Ring 0 only handles may be useful for OS keys that are not intended for usage by applications. If a 
malicious application manages to steal such a handle, it should not be able to use it within the 
application itself. Note that ring 0 handles can be created at any privilege level despite only being 
usable for encryption/decryption at CPL 0. 

No-decrypt and no-encrypt handles may be useful in pairs where one side of a protocol only needs to 
create messages (with encryption) and the other side of the protocol only needs to read messages 
(with decryption). This would require using an AES mode that uses both AES encryption and decryption 
(e.g., AES-CBC) rather than an AES mode that only uses encryption (e.g., AES-CTR). 
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An attacker that obtains the victim’s handle and is using the same IWKey as the victim can use that 
handle in ways allowed by the handle’s restrictions. The expected usage model is to have the same 
IWKey for all applications, which may allow handles stolen by a different application to be used until 
they are revoked (e.g., by reboot). Currently, restrictions do not limit handle usage to a specific 
application. 

A.6.3 CCA/CPA – Limitations of Encryption/Decryption as a Service 

Although usage of Key Locker can help protect the value of the key within the handle, chosen 
ciphertext attacks (CCA) and chosen plaintext attacks (CPA) may reveal data patterns. For example, 
AES ECB mode will always encrypt the same plaintext value into the same ciphertext value. Thus, an 
attacker who knows that a given block of ciphertext was created from a plaintext of 0 knows that other 
ciphertext blocks with the same value also map to plaintext of 0 and may be able to find patterns in the 
ciphertext. 

Users of AES should be careful that the algorithm mode they select provides the necessary resistance 
against CCA and CPA attacks. This is true regardless of whether the key value is guarded by Key Locker 
or by another mechanism (e.g., using a hardware security module (HSM)). 

A.6.4 Resistance to Side Channels 

To improve performance, Key Locker instructions may use a cache of recently used handles. Although 
software should not be able to directly observe the values in the cache, usage of handles inside the 
cache will be faster than using handles that are not in the cache. This means that a timing-based side 
channel attack may be able to observe if another entity on the same processor is using the exact same 
handle.  

Additionally, some implementations may do a partial lookup of cache entries based on a subset of the 
integrity tag of the handle, which can lead to different latency for handles if they match only that 
subset of a handle store in the Key Locker handle cache. Only bits within the bottom 64 bits of the 
integrity tag will be used this way. The AAD, ciphertext, and upper 64 bits of the tag will not be used 
for partial lookups. Because some subset of the bottom 64 bits of the tag may be used for a partial 
lookup, a malicious user of Key Locker instructions may be able to use a timing-based side channel 
attack to reveal that subset of handle bits of other Key Locker users. That is why only bits within the 
bottom 64 bits of the integrity tag are used for partial lookups. An attacker who is able to infer 64 bits 
of the integrity tag will have no information about the rest of the integrity tag or the ciphertext portion 
of the handle. This provides a 320-bit container for a 256-bit AES key and a 192-bit container for a 
128-bit AES key. It will be more difficult for the attacker to guess the unknown bits of the handle than 
it would be for them to directly guess the entire AES key itself. 

Although an attacker should not be able to use the key cache to infer enough bits of the other handle 
to guess their value, an attacker may theoretically be able to use the key cache to infer the pattern of 
handle usage of other Key Locker users on the processor. 

A.7 System Firmware Enabling 

A.7.1 SMM and STM 

Current implementations of Key Locker will not allow usage of AES Key Locker instructions in SMM. This 
is enumerated to SMM software through CPUID.AESKLE being 0 when in SMM, including both default 
treatment and dual-monitor treatment of SMIs. Future implementations that support SMM may allow 
CPUID.AESKLE to be 1 when in SMM to indicate that AES*KL and ENCODEKEY* instructions can be 
used in this mode. 
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A.7.2 Feature Config 

On parts that support MSR_FEATURE_CONFIG (MSR address 13CH), AES Key Locker instructions are 
not available if the MSR_FEATURE_CONFIG[1:0] has a value of 11b. MSR_FEATURE_CONFIG[1:0] 
value of 11b will also cause CPUID.AESKLE to be 0, thus causing all AES Key Locker instructions to 
generate a #UD exception. 
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