

 i

White Paper

A Tour Beyond BIOS with the UEFI

TPM2 Support in EDKII

Jiewen Yao

Intel Corporation

Vincent J. Zimmer

Intel Corporation

September 2014

 ii

Executive Summary

This paper presents the design and boot flow of the TPM2 support in the Security

Package of the EDKII. The EDKII code acts as the “Root of Trust for Measurement”

(RTM) in this scenario.

Prerequisite
This paper assumes that audience has EDKII/UEFI firmware development experience.

This paper assumes the audience has basic knowledge of the Trusted Platform Module

(TPM) and does not introduce detail on that. For the general concept of trusted boot, the

audience can refer to [Trusted Platform] and [Win8 Secure Boot].

 iii

Table of Contents

Overview .. 4

Introduction to the TPM2 ... 4

Introduction to the EDKII.. 4

Algorithm Flexibility ... 6

Why algorithm flexibility? ... 6

How to choose the algorithm? .. 6

Event log reporting ... 7

Simplified Management .. 8

Supported PPI (Physical Presence Interface) .. 8

Dedicate BIOS Support... 10

Platform Hierarchy .. 10

UEFI Platform Boot Process .. 11

TrEE protocol ... 11

Event Log ... 11

Secure Boot ... 11

Hardware Interface .. 13

TPM1.2 v.s TPM2.0 .. 13

dTPM2.0 v.s fTPM2.0 .. 13

TPM2 ACPI table .. 14

dTPM2.0 FIFO v.s CRB ... 14

Platform Reset Attack Mitigation .. 15

Memory override ... 15

Conclusion ... 16

Glossary .. 17

References ... 18

 4

Overview

Introduction to the TPM2

TPM2 (trusted platform module 2) is defined in TCG (Trusted Computing Group). The goal is to

replace the TPM1.2 (Trusted Platform Module 1.2) because of various limitations in TPM1.2,

including SHA-1 nature of TPM 1.2 [SHA-1]. See [TPM2] for detail.

A) For BIOS perspective, the main difference is below:

1) Algorithm Flexibility: TPM1.2 only supports SHA1, TPM2.0 can support any hash

algorithm. So TPM2 does not use EFI_TCG_PROTOCOL [TCG Protocol], but

EFI_TrEE_PROTOCOL [TrEE Protocol]

2) Simplify management: TPM1.2 has enable/activate/disable/deactivate state. TPM2

removes those concepts. So TPM2 replaces ACPI PPI interface [TCG PPI] with a

simplified version PPI interface [TrEE ACPI].

3) Dedicate BIOS Support: TPM1.2 can only be taken owner ship and used by OS. TPM2

adds a storage hierarchy controlled by platform firmware, so OEM can use this hierarchy

regardless of the support provided to OS. This solution is OEM specific, so there is no

generic solution.

B) Some BIOS features in TPM1.2 and TPM2 are the same or only have minor differences.

1) UEFI Platform Boot Process: This PCR measurement component is nearly same in [TCG

Platform]. TPM2 [TrEE Protocol] has some special requirements for PCR7, such as

measuring the UEFI Secure Boot authorities [UEFI Secure Boot].

2) TPM Hardware Interface: The first generation discrete TPM2 can still use TPM1.2 FIFO

interface defined in [TCG TIS] plus Cancel [TrEE ACPI]. The later TPM2 can use new

CRB interface defined in [TCG PTP]

3) Platform Reset Attack Mitigation [TPM MOR]: This is pure software/firmware solution.

Introduction to the EDKII

EDKII is open source implementation for UEFI firmware. TPM2 support in UEFI is added to

SecurityPkg (https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg).

The main [TrEE Protocol] related component is at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEPei and

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe.

The main [TrEE ACPI] related component is at

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm and

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTrEEPhysicalPresenceLib.

In next 6 sections, we will introduce all of above parts in detail.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEPei
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTrEEPhysicalPresenceLib

 5

Summary
This section provided an overview of TPM2 BIOS related components and EDKII.

 6

Algorithm Flexibility

In the first three sections, the focus will include the differences between TPM1.2 and TPM2.0.

Why algorithm flexibility?

TPM1.2 is constrained by its data structure to using RSA and SHA1. However, SHA1 is

deprecated due to its known weakness. So we need a solution. Simply to shift to another hash

algorithm is not necessarily safe in the long term. Also, different geographies may want to

choose different hash algorithm, like SHA256 versus SM3 [SM3].

As a solution, TPM2.0 specification just defines the framework of algorithm. TPM2.0 vendor

can decide to implement which algorithm in the chip. TPM2.0 specification predefined SHA1,

SHA256, SHA384, SHA512, and SM3_256. And it can be extended in the future.

How to choose the algorithm?

A TPM2.0 may maintain multiple banks of PCR. A PCR bank is a collection of PCR that are

Extended with the same hash algorithm. PCR banks are identified by the hash algorithm used to

Extend the PCR in that bank.

For example, a TPM2.0 may support SHA1, SHA256, and SM3_256 at same time. That means

this TPM2.0 has 3 banks – SHA1 Bank, SHA256 Bank and SM3_256 Bank. TPM2.0 exposes a

TPM2_PCR_Allocate, which can be used to allocate active Bank. For example, if only SHA1

and SHA256 are needed, BIOS can call TPM2_PCR_Allocate(SHA1 + SHA256). If only

SM3_256 is needed, BIOS can call TPM2_PCR_Allocate(SM3_256). Then at next boot, only the

allocated PCR Bank is active and visible.

In EDKII, we have Tpm2CommandLib/Tpm2PcrAllocate() at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2I

ntegrity.c). So user can use this API to allocate desired PCR Bank.

Then user can choose HashLibTpm2

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashLibTpm2) to extend

data to PCR register. This library uses TPM2_HashSequenceStart/ TPM2_SequenceUpdate/

TPM2_EventSequenceComplete for large data, or TPM2_PCR_Event for small data.

Above is a hardware solution. There might be concern on performance because the TPM2 may

use the FIFO interface on the LPC bus [LPC]. As an alternative, a BIOS implementation may

choose a software solution by calculating all the hash values by main CPU, and only call

TPM2_PCR_Extend as last step. If so, the user needs to choose the other hash library instance at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashLibBaseCryptoRouter)

HashLibBaseCryptoRouter is just a router, so the user also needs to choose which hash algorithm

is used. EDKII provide 2 default ones, SHA1 is at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashInstanceLibSha1) and

SHA256 is at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashInstanceLibSha256)

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2Integrity.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2Integrity.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashLibTpm2
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashLibBaseCryptoRouter
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashInstanceLibSha1
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/HashInstanceLibSha256

 7

See below figure, the left side yellow box, TPM2 instance for HashLib is hardware solution. It

depends on TPM_PCR_Allocate to decide which PCR bank to use. The right side green box,

Crypto instance for HashLib is software solution. PCR selection depends on which hash

algorithm instance to be linked at build time, and policy selected at runtime. For example, an

OEM can build in all SHA1/SHA256/SM3 instances into one BIOS, and expose a BIOS setup

option to let the user or OS choose which one is desired. And only the hash algorithm chosen

will take effect in the end.

Figure 1 hash algorithm selection

Event log reporting

[TrEE Protocol] 1.0 version only supports TCG1.2 log format, so only SHA1 is in the event log

area in this 1.0 version specification.

Summary
This section describes the TPM2 algorithm flexibility support in EDKII.

 8

Simplified Management

Supported PPI (Physical Presence Interface)

TPM2 removed enable/disable/activate/deactivate concept, so the PPI interface is simplified.

According to [TrEE ACPI], it only defines:

1) TPM2_ClearControl(NO) + TPM2_Clear

2) SetNoPPIClear_False

3) SetNoPPIClear_True

The TPM2 PPI design is similar as TPM1.2. There is TrEE SMM driver

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm) to expose ACPI

interface, accept request from OS and write to UEFI variable. And there is a PPI library

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTrEEPhysicalPresenceL

ib) to process the request. The library should be linked with BDS and called before PI EndOfDxe

event.

The PPI variable defined in

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Include/Guid/TrEEPhysicalPresence

Data.h) is implementation specific, not defined in any standard. EDKII uses 2 different variables.

L"TrEEPhysicalPresence" variable is to record the OS request, it is read-write.

L"TrEEPhysicalPresenceFlags" variable is to save TPM Management Flags and corresponding

operations. It should be protected from malicious software. So EDKII use variable lock protocol

to set it to be read-only after PPI process.

See the right side of below picture. The left side is for MOR which will be introduced later.

Figure 2 EDKII TPM2 PPI and MOR

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTrEEPhysicalPresenceLib
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTrEEPhysicalPresenceLib
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Include/Guid/TrEEPhysicalPresenceData.h
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Include/Guid/TrEEPhysicalPresenceData.h

 9

Summary
This section describes the TPM2 management, PPI related implementation.

 10

Dedicate BIOS Support

TPM 2.0 adds a Storage hierarchy controlled by platform firmware, letting the OEM benefit

from the cryptographic capabilities of the TPM regardless of the support provided to the OS.

This solution is OEM specific, so there is no generic solution.

Platform Hierarchy

EDKII provides library for TPM2 hierarchy, like Tpm2HierarchyChangeAuth.

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2H

ierarchy.c)

For example, TPM_HierarchyChangeAuth should be called during BIOS boot. The Auth value

should be saved as secret, so that only platform firmware can send command required platform

Auth.

Summary
This section describes the TPM2 platform hierarchy. Again it is not documented as standard on

how to use platform hierarchy, which is designed for OEM use.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2Hierarchy.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib/Tpm2Hierarchy.c

 11

UEFI Platform Boot Process

We introduced the difference between TPM1.2 and TPM2.0. Now let’s focus on similar feature

between TPM1.2 and TPM2.0 in next 3 sections.

TrEE protocol

TPM2.0 uses [TrEE Protocol], while TPM1.2 uses [TCG Protocol]. Detail below:

1) TrEE_PROTOCOL.GetCapability() returns a capability structure, which is similar as

TCG_PROTOCOL.StatusCheck().

2) TrEE_PROTOCOL.GetEventLog() returns event log location, which is also similar as

TCG_PROTOCOL.StatusCheck().

3) TrEE_PROTOCOL.HashLogExtendEvent() hash data and record to event log, which is

similar as TCG_PROTOCOL.HashLogExtendEvent (). There is one special feature in TrEE

protocol is that, it can input a flag to hash PE/COFF image directly.

4) TrEE_PROTOCOL.SubmitCommand() runs TPM2 command, which is similar as

TCG_PROTOCOL.PassThroughToTpm().

The TrEE protocol implantation is at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe).

Event Log

Most UEFI platform boot process [TCG Platform] should be unchanged between TPM1.2 and

TPM2.0. If a component is measured in TPM1.2 boot, most likely it is measured in TPM2.0 boot.

In PEI phase, the event log (measurement for CRTM Version, main BIOS, FvImage) is recorded

at (https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEPei). In DXE phase, the

event log (measurement for boot variable, SMBIOS table, multi-processor information, etc) is

recorded at (https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe).

In order to support TCG trusted boot, BIOS will also measure PE/COFF image and GPT partition.

The TPM2 version is at

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTpm2MeasureBootLib).

Platform is also required to use TrEE Protocol or TCG protocol to measure platform specific

component like static ACPI table, or CPU Microcode. EDKII provide a TPM measurement

library

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTpmMeasurementLib)

to abstract the TPM1.2 or TPM2.0. So platform just need call TpmMeasureAndLogData() API

no matter there is TPM1.2 on system or TPM2.0 on system.

Secure Boot

According to [TrEE Protocol], for Windows, PCR[7] is used to reflect the UEFI 2.3.1 Secure

Boot policy. This policy relies on the firmware authenticating all boot components launched

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEPei
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTpm2MeasureBootLib
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeTpmMeasurementLib

 12

prior to the UEFI environment and the UEFI platform initialization code (or earlier firmware

code) invariantly recording the Secure Boot policy information into PCR[7].

Platform firmware adhering to the policy must therefore measure the following values into

PCR[7]: PK, KEK, db/dbx, L"SecureBoot", and the entries in the

EFI_IMAGE_SECURITY_DATABASE that are used to validate EFI Drivers or EFI Boot

Applications in the boot path.

The first 4 items are recorded at UEFI Auth Variable driver.

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/VariableAuthenticated/RuntimeDxe

/Measurement.c).

The last item is recorded at UEFI Secure Boot Image Verification library.

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeImageVerificationLib/

Measurement.c).

Figure 3 EDKII TPM2 measured boot

Summary
This section describes the UEFI Platform Boot Process for TPM2.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/VariableAuthenticated/RuntimeDxe/Measurement.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/VariableAuthenticated/RuntimeDxe/Measurement.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeImageVerificationLib/Measurement.c
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/DxeImageVerificationLib/Measurement.c

 13

Hardware Interface

TPM1.2 v.s TPM2.0

We know that TPM2.0 hardware may use same [TPM TIS] interface as TPM1.2. So how BIOS

know if there is TPM1.2 on platform or TPM2.0 on platform?

EDKII TrEEConfig driver

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEConfig) will do the

detection at BIOS boot runtime. During normal boot, TpmDetection.c will check if dTPM

present by reading TPM Base address (0xFED40000 for PC). If dTPM is present, this module

will send TPM1.2 startup command. If startup success, it means TPM1.2 on system. Or it means

TPM2.0 on system. This TPM module selection information will be saved into a PCD -

PcdTpmInstanceGuid. Later, TcgPei/Dxe/Smm and TrEEPei/Dxe/Smm will check this PCD to

determine if it need running. So all TPM1.2 and TPM2.0 code are integrated, but at most one of

them will run. Worst case is that no TPM module detected, so that none of them will run.

Later in DxePhase, this PCD will be saved into a UEFI variable, with read-only attribute. So in

S3 resume phase, there is no need to do the detection again, but to use the UEFI variable data.

dTPM2.0 v.s fTPM2.0

TPM2.0 may have different implementation. dTPM2.0 uses TCG defined standard interface. A

platform may have fTPM2.0 (firmware TPM2.0) implementation, which does not use [TPM TIS]

interface. Instead fTPM2.0 can have a Control Area interface defined in [TrEE ACPI]. If a

platform has fTPM2.0, it might need have its own TrEEConfig driver and have its own logic on

fTPM2.0 detection.

In EDKII, we design a set of library to hide the TPM2.0 device difference. In previous figure 3,

all TrEE drivers call Tpm2CommandLib

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib), which

hide how to send command to TPM2 device.

See figure 4 below, the Tpm2CommandLib calls Tpm2DeviceLib to sub TPM2 command.

Tpm2DeviceLib can have different instances. E.g. Tpm2DeviceLibTrEE

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibTrEE) is

the instance to consume TrEE protocol, which is typically used by PlatformBds and all TPM2

application.

Tpm2DeviceLibRouter

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibRouter) is

another instance, which is typically used by TrEEPei and TrEEDxe driver. This library instance

can do runtime TPM2.0 interface selection. Tpm2DeviceLibRouter need link different TPM2

device NULL instance. EDKII provides dTPM2.0 instance

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibDTpm). A

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEEConfig
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2CommandLib
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibTrEE
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibRouter
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Library/Tpm2DeviceLibDTpm

 14

platform may provide fTPM2.0 instance. During runtime, Tpm2DeviceLibRouter will do

selection based upon the PCD – PcdTpmInstanceGuid value set by TrEEConfig driver, and send

command to the expected TPM device.

Figure 4 EDKII TPM2 device selection

TPM2 ACPI table

Now we resolve the BIOS issue on TPM2 device selection. Then how OS know the information?

[TrEE ACPI] defined a TPM2 ACPI table, which has a field - Start Method. 6 is reserved for the

Memory mapped I/O Interface (TIS 1.2+Cancel), which is for early dTPM2.0. 7 or 8 means

using the Command Response Buffer Interface, which is for fTPM.

dTPM2.0 FIFO v.s CRB

Later [TCG PTP] specification brings Command Response Buffer interface into standard, so a

dTPM2.0 implementation may also choose CRB interface.

Summary
This section describes the TPM2 hardware interface.

 15

Platform Reset Attack Mitigation

Memory override

The memory override feature [TCG MOR] is to mitigate platform reset attack. TPM2.0 has

exactly same interface with TPM1.2.

The ACPI OS interface is produced by TrEESmm driver.

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm). TrEESmm driver

will write MOR variable, which is defined in [TCG MOR] specification.

In next boot, the MOR variable will be checked by a silicon specific MRC (Memory reference

code) driver. If MOR bit is set, the MRC code will clear memory right after memory

initialization to remove secret from DRAM.

An ATA bus driver

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Ata/AtaBusDxe) can also

refer to MOR variable. If MOR bit is set, ATA bus driver will send TPer Reset command to reset

eDrive to lock all protected bands. Again, this is to protect the secret in eDriver.

Finally, the MOR driver

(https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/MemoryOverwriteControl) will

clear MOR bit.

See figure 2 left side.

Summary
This section describes the TPM MOR feature.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/TrEESmm
https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Bus/Ata/AtaBusDxe
https://svn.code.sf.net/p/edk2/code/trunk/edk2/SecurityPkg/Tcg/MemoryOverwriteControl

 16

Conclusion

TPM is important for TCG trusted boot and need be supported in UEFI BIOS. TPM2 is latest

TPM standard. This paper describes detail boot flow of TPM2 based trusted boot in the EDKII

SecurityPkg.

 17

Glossary

PCR – Platform Configuration Register (in TPM)

PI – Platform Initialization. Volume 1-5 of the UEFI PI specifications.

TCG – Trusted Computing Group.

TPM – Trusted Platform Module

UEFI – Unified Extensible Firmware Interface. Firmware interface between the platform and

the operating system. Predominate interfaces are in the boot services (BS) or pre-OS. Few

runtime (RT) services.

 18

References

[EDK2] UEFI Developer Kit www.tianocore.org

[LPC] Low pin-count bus http://www.intel.com/design/chipsets/industry/lpc.htm

[SHA-1] Bruce Schneier, “SHA-1 broken”

https://www.schneier.com/blog/archives/2005/02/sha1_broken.html

[SM3] SM3 Hash function, http://tools.ietf.org/id/draft-shen-sm3-hash-00.txt

[TPM2] Trusted Platform Module Library Specification, Family "2.0",

http://www.trustedcomputinggroup.org/resources/tpm_library_specification

[TCG MOR] PC Client Work Group Platform Reset Attack Mitigation Specification

http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_

mitigation_specification_version_10

[TCG PTP] PC Client Platform TPM Profile Specification

http://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profile_ptp_specificat

ion

[TCG Platform] TCG EFI Platform Specification

http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification

[TCG PPI] TCG Physical Presence Interface Specification

http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification

[TCG Protocol] TCG EFI Protocol Specification

http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_specification

[TCG TIS] PC Client Work Group PC Client Specific TPM Interface Specification

http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm

_interface_specification_tis

[TrEE Protocol] Trusted Execution Environment EFI protocol http://msdn.microsoft.com/en-

us/library/windows/hardware/jj923068.aspx

[TrEE ACPI] Trusted Execution Environment ACPI Profile http://msdn.microsoft.com/en-

us/library/windows/hardware/jj923067.aspx

[Trusted Platform] Zimmer, Dasari, Brogan, “Trusted Platforms - UEFI, PI and TCG-based

firmware” September 2009, http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-

outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

http://www.tianocore.org/
http://www.intel.com/design/chipsets/industry/lpc.htm
https://www.schneier.com/blog/archives/2005/02/sha1_broken.html
http://tools.ietf.org/id/draft-shen-sm3-hash-00.txt
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profile_ptp_specification
http://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profile_ptp_specification
http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification
http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification
http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_specification
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923068.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923068.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923067.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj923067.aspx
http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf
http://www.cs.berkeley.edu/~kubitron/courses/cs194-24-S14/hand-outs/SF09_EFIS001_UEFI_PI_TCG_White_Paper.pdf

 19

[UEFI] Unified Extensible Firmware Interface (UEFI) Specification, Version 2.4.b

www.uefi.org

[UEFI Book] Zimmer, et al, “Beyond BIOS: Developing with the Unified Extensible Firmware

Interface,” 2
nd

 edition, Intel Press, January 2011

[UEFI Overview] Zimmer, Rothman, Hale, “UEFI: From Reset Vector to Operating System,”

Chapter 3 of Hardware-Dependent Software, Springer, February 2009

[UEFI Secure Boot] Magnus Nystrom, Martin Nicholes, Vincent Zimmer, "UEFI Networking

and Pre-OS Security," in Intel Technology Journal - UEFI Today: Boostrapping the

Continuum, Volume 15, Issue 1, pp. 80-101, October 2011, ISBN 978-1-934053-43-0, ISSN

1535-864X

https://www.researchgate.net/publication/235258577_UEFI_Networking_and_Pre-

OS_Security/file/9fcfd510b3ff7138f4.pdf

[UEFI PI Specification] UEFI Platform Initialization (PI) Specifications, volumes 1-5, Version

1.3 www.uefi.org

[Win8 Secure Boot] Windows 8 Boot Security FAQ http://technet.microsoft.com/en-

us/windows/dn168169.aspx

http://www.uefi.org/
https://www.researchgate.net/publication/235258577_UEFI_Networking_and_Pre-OS_Security/file/9fcfd510b3ff7138f4.pdf
https://www.researchgate.net/publication/235258577_UEFI_Networking_and_Pre-OS_Security/file/9fcfd510b3ff7138f4.pdf
http://www.uefi.org/
http://technet.microsoft.com/en-us/windows/dn168169.aspx
http://technet.microsoft.com/en-us/windows/dn168169.aspx

 20

Authors

Jiewen Yao (jiewen.yao@intel.com) is EDKII BIOS architect, EDKII FSP

package maintainer with Software and Services Group at Intel Corporation.

Vincent J. Zimmer (vincent.zimmer@intel.com) is a Senior Principal

Engineer with the Software and Services Group at Intel Corporation. Vincent

chairs the security and network subteams in the UEFI Forum and was the co-

author of the original EFI TCG Protocol and Platform Specifications for

TPM1.2.

mailto:jiewen.yao@intel.com
mailto:vincent.zimmer@intel.com

 21

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Intel, the Intel logo, Intel. leap ahead. and Intel. Leap ahead. logo, and other Intel product name are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and

other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2014 by Intel Corporation. All rights reserved

