C++ API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

cor_csr_batch.cpp

/* file: cor_csr_batch.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of correlation matrix computation in the batch
! processing mode
!
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters
Input matrix is stored in the compressed sparse row format with one-based indexing
*/
const string datasetFileName = "../data/batch/covcormoments_csr.csv";
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &datasetFileName);
/* Read datasetFileName from a file and create a numeric table to store input data */
CSRNumericTablePtr dataTable(createSparseTable<float>(datasetFileName));
/* Create an algorithm to compute correlation matrix using the default method */
covariance::Batch<float, covariance::fastCSR> algorithm;
algorithm.input.set(covariance::data, dataTable);
/* Set the parameter to choose the type of the output matrix */
algorithm.parameter.outputMatrixType = covariance::correlationMatrix;
/* Compute a correlation matrix */
algorithm.compute();
/* Get the computed correlation matrix */
covariance::ResultPtr res = algorithm.getResult();
printNumericTable(res->get(covariance::correlation), "Correlation matrix (upper left square 10*10) :", 10, 10);
printNumericTable(res->get(covariance::mean), "Mean vector:", 1, 10);
return 0;
}

For more complete information about compiler optimizations, see our Optimization Notice.