Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

List of all members
PackedTriangularMatrix Class Reference

Class that provides methods to access triangular matrices. More...

Class Constructor

PackedTriangularMatrix ( DaalContext  context,
PackedTriangularMatrixImpl  impl 
)

Constructs packed triangular matrix using implementation provided by user

Parameters
contextContext to manage created packed triangular matrix
implImplementation of packed triangular matrix
PackedTriangularMatrix ( DaalContext  context,
double[]  data,
long  nDim,
NumericTable.StorageLayout  layout 
)

Constructs packed triangular matrix from the array of doubles

Parameters
contextContext to manage created packed triangular matrix
dataArray of size nVectors x nDim
nDimNumber of features in numeric table
layoutData layout of the numeric table, NumericTable.StorageLayout.upperPackedTriangularMatrix or NumericTable.StorageLayout.lowerPackedTriangularMatrix
PackedTriangularMatrix ( DaalContext  context,
float[]  data,
long  nDim,
NumericTable.StorageLayout  layout 
)

Constructs packed triangular matrix from the array of floats

Parameters
contextContext to manage created packed triangular matrix
dataArray of size nVectors x nDim
nDimNumber of features in numeric table
layoutData layout of the numeric table, NumericTable.StorageLayout.upperPackedTriangularMatrix or NumericTable.StorageLayout.lowerPackedTriangularMatrix
PackedTriangularMatrix ( DaalContext  context,
long[]  data,
long  nDim,
NumericTable.StorageLayout  layout 
)

Constructs packed triangular matrix from the array of longs

Parameters
contextContext to manage created packed triangular matrix
dataArray of size nVectors x nDim
nDimNumber of features in numeric table
layoutData layout of the numeric table, NumericTable.StorageLayout.upperPackedTriangularMatrix or NumericTable.StorageLayout.lowerPackedTriangularMatrix
PackedTriangularMatrix ( DaalContext  context,
int[]  data,
long  nDim,
NumericTable.StorageLayout  layout 
)

Constructs packed triangular matrix from the array of integers

Parameters
contextContext to manage created packed triangular matrix
dataArray of size nVectors x nDim
nDimNumber of features in numeric table
layoutData layout of the numeric table, NumericTable.StorageLayout.upperPackedTriangularMatrix or NumericTable.StorageLayout.lowerPackedTriangularMatrix
PackedTriangularMatrix ( DaalContext  context,
long  cTable 
)

Constructs packed triangular matrix from C++ packed triangular matrix

Parameters
contextContext to manage created packed triangular matrix
cTablePointer to C++ numeric table

Detailed Description

Member Function Documentation

void assign ( long  constValue)

Fills a numeric table with a constant

Parameters
constValueConstant to initialize entries of the packed triangular matrix
void assign ( int  constValue)

Fills a numeric table with a constant

Parameters
constValueConstant to initialize entries of the packed triangular matrix
void assign ( double  constValue)

Fills a numeric table with a constant

Parameters
constValueConstant to initialize entries of the packed triangular matrix
void assign ( float  constValue)

Fills a numeric table with a constant

Parameters
constValueConstant to initialize entries of the packed triangular matrix
DoubleBuffer getBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
DoubleBuffer  buf 
)

Gets block of values for a given feature and returns it to java.nio.DoubleBuffer. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufBuffer to store results
Returns
Block of values of the feature packed into the DoubleBuffer
FloatBuffer getBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
FloatBuffer  buf 
)

Gets block of values for a given feature and returns it to java.nio.FloatBuffer. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufBuffer to store results
Returns
Block of values of the feature packed into the FloatBuffer
IntBuffer getBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
IntBuffer  buf 
)

Gets block of values for a given feature and returns it to java.nio.IntBuffer. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufBuffer to store results
Returns
Block of values of the feature packed into the IntBuffer
DoubleBuffer getBlockOfRows ( long  vectorIndex,
long  vectorNum,
DoubleBuffer  buf 
)

Reads block of rows from the table and returns it to java.nio.DoubleBuffer. This method needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufBuffer to store results
Returns
Block of table rows packed into DoubleBuffer
FloatBuffer getBlockOfRows ( long  vectorIndex,
long  vectorNum,
FloatBuffer  buf 
)

Reads block of rows from the table and returns it to java.nio.FloatBuffer. This method needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufBuffer to store results
Returns
Block of table rows packed into FloatBuffer
IntBuffer getBlockOfRows ( long  vectorIndex,
long  vectorNum,
IntBuffer  buf 
)

Reads block of rows from the table and returns it to java.nio.IntBuffer. This method needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufBuffer to store results
Returns
Block of table rows packed into IntBuffer
Object getDataObject ( )

Gets data as an Object

Returns
Table data as an Object
Class<? extends Number> getNumericType ( )

Gets numeric type of data stored in numeric table

Returns
Numeric type of table data
DoubleBuffer getPackedArray ( DoubleBuffer  buf)

Gets the whole packed array and returns it to java.nio.DoubleBuffer

Parameters
bufBuffer to store results

return DoubleBuffer containing whole packed array

FloatBuffer getPackedArray ( FloatBuffer  buf)

Gets the whole packed array and returns it to java.nio.FloatBuffer

Parameters
bufBuffer to store results

return FloatBuffer containing whole packed array

IntBuffer getPackedArray ( IntBuffer  buf)

Gets the whole packed array and returns it to java.nio.IntBuffer

Parameters
bufBuffer to store results

return IntBuffer containing whole packed array

void releaseBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
DoubleBuffer  buf 
)

Transfers the values of a given feature from the input DoubleBuffer into a block of values of the feature in the table. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufInput DoubleBuffer of size vectorNum
void releaseBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
FloatBuffer  buf 
)

Transfers the values of a given feature from the input FloatBuffer into a block of values of the feature in the table. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufInput FloatBuffer of size vectorNum
void releaseBlockOfColumnValues ( long  featureIndex,
long  vectorIndex,
long  vectorNum,
IntBuffer  buf 
)

Transfers the values of a given feature from the input IntBuffer into a block of values of the feature in the table. This function needs to be defined by user in the subclass of this class.

Parameters
featureIndexIndex of the feature
vectorIndexIndex of the first row to include into the block
vectorNumNumber of values in the block
bufInput IntBuffer of size vectorNum
void releaseBlockOfRows ( long  vectorIndex,
long  vectorNum,
FloatBuffer  buf 
)

Transfers the data from the input FloatBuffer into a block of table rows. This function needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufInput FloatBuffer with the capacity vectorNum * nColumns, where nColumns is the number of columns in the table
void releaseBlockOfRows ( long  vectorIndex,
long  vectorNum,
DoubleBuffer  buf 
)

Transfers the data from the input DoubleBuffer into a block of table rows. This function needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufInput DoubleBuffer with the capacity vectorNum * nColumns, where nColumns is the number of columns in the table
void releaseBlockOfRows ( long  vectorIndex,
long  vectorNum,
IntBuffer  buf 
)

Transfers the data from the input IntBuffer into a block of table rows. This function needs to be defined by user in the subclass of this class.

Parameters
vectorIndexIndex of the first row to include into the block
vectorNumNumber of rows in the block
bufInput IntBuffer with the capacity vectorNum * nColumns, where nColumns is the number of columns in the table
void releasePackedArray ( DoubleBuffer  buf)

Release a packed array from the input DoubleBuffer

Parameters
bufInput DoubleBuffer with the capacity nDim * (nDim + 1) / 2, where nDim is the matrix dimension
void releasePackedArray ( FloatBuffer  buf)

Release a packed array from the input FloatBuffer

Parameters
bufInput FloatBuffer with the capacity nDim * (nDim + 1) / 2, where nDim is the matrix dimension
void releasePackedArray ( IntBuffer  buf)

Release a packed array from the input IntBuffer

Parameters
bufInput IntBuffer with the capacity nDim * (nDim + 1) / 2, where nDim is the matrix dimension

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.