Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

PCASVDDenseBatch.java

/* file: PCASVDDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of principal component analysis (PCA) using the singular
// value decomposition (SVD) method in the batch processing mode
*/
package com.intel.daal.examples.pca;
import com.intel.daal.algorithms.pca.Batch;
import com.intel.daal.algorithms.pca.InputId;
import com.intel.daal.algorithms.pca.Method;
import com.intel.daal.algorithms.pca.Result;
import com.intel.daal.algorithms.pca.ResultId;
import com.intel.daal.algorithms.pca.ResultsToComputeId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class PCASVDDenseBatch {
/* Input data set parameters */
private static final String dataset = "../data/batch/pca_normalized.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data from a .csv file */
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
dataSource.loadDataBlock();
/* Create an algorithm to compute PCA decomposition using the SVD method */
Batch pcaAlgorithm = new Batch(context, Float.class, Method.svdDense);
/* Set the input data */
NumericTable data = dataSource.getNumericTable();
pcaAlgorithm.input.set(InputId.data, data);
pcaAlgorithm.parameter.setResultsToCompute(ResultsToComputeId.mean | ResultsToComputeId.variance | ResultsToComputeId.eigenvalue);
pcaAlgorithm.parameter.setIsDeterministic(true);
/* Compute PCA decomposition */
Result res = pcaAlgorithm.compute();
NumericTable eigenValues = res.get(ResultId.eigenValues);
NumericTable eigenVectors = res.get(ResultId.eigenVectors);
NumericTable means = res.get(ResultId.means);
NumericTable variances = res.get(ResultId.variances);
Service.printNumericTable("Eigenvalues:", eigenValues);
Service.printNumericTable("Eigenvectors:", eigenVectors);
Service.printNumericTable("Means:", means);
Service.printNumericTable("Variances:", variances);
context.dispose();
}
}

For more complete information about compiler optimizations, see our Optimization Notice.