#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
int main(int argc, char *argv[])
{
Collection<size_t> inDims;
inDims << 2 << 2 << 6 << 8;
TensorPtr dataTensor = TensorPtr(new HomogenTensor<>(inDims, Tensor::doAllocate, 1.0f));
locallyconnected2d::forward::Batch<> locallyconnected2dLayerForward;
locallyconnected2dLayerForward.input.set(forward::data, dataTensor);
locallyconnected2dLayerForward.compute();
locallyconnected2d::forward::ResultPtr forwardResult = locallyconnected2dLayerForward.getResult();
printTensor(forwardResult->get(forward::value), "Forward 2D locally connected layer result (first 5 rows):", 5, 15);
printTensor(forwardResult->get(locallyconnected2d::auxWeights), "2D locally connected layer weights (first 5 rows):", 5, 15);
const Collection<size_t> &gDims = forwardResult->get(forward::value)->getDimensions();
TensorPtr tensorDataBack = TensorPtr(new HomogenTensor<>(gDims, Tensor::doAllocate, 0.01f));
locallyconnected2d::backward::Batch<> locallyconnected2dLayerBackward;
locallyconnected2dLayerBackward.input.set(backward::inputGradient, tensorDataBack);
locallyconnected2dLayerBackward.input.set(backward::inputFromForward, forwardResult->get(forward::resultForBackward));
locallyconnected2dLayerBackward.compute();
backward::ResultPtr backwardResult = locallyconnected2dLayerBackward.getResult();
printTensor(backwardResult->get(backward::gradient),
"2D locally connected layer backpropagation gradient result (first 5 rows):", 5, 15);
printTensor(backwardResult->get(backward::weightDerivatives),
"2D locally connected layer backpropagation weightDerivative result (first 5 rows):", 5, 15);
printTensor(backwardResult->get(backward::biasDerivatives),
"2D locally connected layer backpropagation biasDerivative result (first 5 rows):", 5, 15);
return 0;
}