#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::data_management;
using namespace daal::algorithms;
using namespace daal::algorithms::classifier::quality_metric;
string trainDatasetFileName = "../data/batch/svm_multi_class_train_dense.csv";
string testDatasetFileName = "../data/batch/svm_multi_class_test_dense.csv";
const size_t nFeatures = 20;
const size_t nClasses = 5;
services::SharedPtr<svm::training::Batch<> > training(new svm::training::Batch<>());
services::SharedPtr<svm::prediction::Batch<> > prediction(new svm::prediction::Batch<>());
multi_class_classifier::training::ResultPtr trainingResult;
classifier::prediction::ResultPtr predictionResult;
kernel_function::KernelIfacePtr kernel(new kernel_function::linear::Batch<>());
multi_class_classifier::quality_metric_set::ResultCollectionPtr qualityMetricSetResult;
NumericTablePtr predictedLabels;
NumericTablePtr groundTruthLabels;
void trainModel();
void testModel();
void testModelQuality();
void printResults();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 2, &trainDatasetFileName, &testDatasetFileName);
training->parameter.cacheSize = 100000000;
training->parameter.kernel = kernel;
prediction->parameter.kernel = kernel;
trainModel();
testModel();
testModelQuality();
printResults();
return 0;
}
void trainModel()
{
FileDataSource<CSVFeatureManager> trainDataSource(trainDatasetFileName,
DataSource::notAllocateNumericTable,
DataSource::doDictionaryFromContext);
NumericTablePtr trainData(new HomogenNumericTable<>(nFeatures, 0, NumericTable::doNotAllocate));
NumericTablePtr trainGroundTruth(new HomogenNumericTable<>(1, 0, NumericTable::doNotAllocate));
NumericTablePtr mergedData(new MergedNumericTable(trainData, trainGroundTruth));
trainDataSource.loadDataBlock(mergedData.get());
multi_class_classifier::training::Batch<> algorithm(nClasses);
algorithm.parameter.training = training;
algorithm.parameter.prediction = prediction;
algorithm.input.set(classifier::training::data, trainData);
algorithm.input.set(classifier::training::labels, trainGroundTruth);
algorithm.compute();
trainingResult = algorithm.getResult();
}
void testModel()
{
FileDataSource<CSVFeatureManager> testDataSource(testDatasetFileName,
DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
NumericTablePtr testData(new HomogenNumericTable<>(nFeatures, 0, NumericTable::doNotAllocate));
groundTruthLabels = NumericTablePtr(new HomogenNumericTable<>(1, 0, NumericTable::doNotAllocate));
NumericTablePtr mergedData(new MergedNumericTable(testData, groundTruthLabels));
testDataSource.loadDataBlock(mergedData.get());
multi_class_classifier::prediction::Batch<> algorithm(nClasses);
algorithm.parameter.training = training;
algorithm.parameter.prediction = prediction;
algorithm.input.set(classifier::prediction::data, testData);
algorithm.input.set(classifier::prediction::model,
trainingResult->get(classifier::training::model));
algorithm.compute();
predictionResult = algorithm.getResult();
}
void testModelQuality()
{
predictedLabels = predictionResult->get(classifier::prediction::prediction);
multi_class_classifier::quality_metric_set::Batch qualityMetricSet(nClasses);
multiclass_confusion_matrix::InputPtr input =
qualityMetricSet.getInputDataCollection()->getInput(multi_class_classifier::quality_metric_set::confusionMatrix);
input->set(multiclass_confusion_matrix::predictedLabels, predictedLabels);
input->set(multiclass_confusion_matrix::groundTruthLabels, groundTruthLabels);
qualityMetricSet.compute();
qualityMetricSetResult = qualityMetricSet.getResultCollection();
}
void printResults()
{
printNumericTables<int, float>(groundTruthLabels.get(), predictedLabels.get(),
"Ground truth", "Classification results",
"SVM classification results (first 20 observations):", 20);
multiclass_confusion_matrix::ResultPtr qualityMetricResult =
qualityMetricSetResult->getResult(multi_class_classifier::quality_metric_set::confusionMatrix);
printNumericTable(qualityMetricResult->get(multiclass_confusion_matrix::confusionMatrix), "Confusion matrix:");
BlockDescriptor<> block;
NumericTablePtr qualityMetricsTable = qualityMetricResult->get(multiclass_confusion_matrix::multiClassMetrics);
qualityMetricsTable->getBlockOfRows(0, 1, readOnly, block);
float *qualityMetricsData = block.getBlockPtr();
std::cout << "Average accuracy: " << qualityMetricsData[multiclass_confusion_matrix::averageAccuracy ] << std::endl;
std::cout << "Error rate: " << qualityMetricsData[multiclass_confusion_matrix::errorRate ] << std::endl;
std::cout << "Micro precision: " << qualityMetricsData[multiclass_confusion_matrix::microPrecision ] << std::endl;
std::cout << "Micro recall: " << qualityMetricsData[multiclass_confusion_matrix::microRecall ] << std::endl;
std::cout << "Micro F-score: " << qualityMetricsData[multiclass_confusion_matrix::microFscore ] << std::endl;
std::cout << "Macro precision: " << qualityMetricsData[multiclass_confusion_matrix::macroPrecision ] << std::endl;
std::cout << "Macro recall: " << qualityMetricsData[multiclass_confusion_matrix::macroRecall ] << std::endl;
std::cout << "Macro F-score: " << qualityMetricsData[multiclass_confusion_matrix::macroFscore ] << std::endl;
qualityMetricsTable->releaseBlockOfRows(block);
}