Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

LowOrderMomsCSRBatch.java

/* file: LowOrderMomsCSRBatch.java */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of computing low order moments in the batch processing mode.
//
// Input matrix is stored in the compressed sparse row (CSR) format with
// one-based indexing.
*/
package com.intel.daal.examples.moments;
import com.intel.daal.algorithms.low_order_moments.*;
import com.intel.daal.data_management.data.CSRNumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.examples.utils.Service;
/*
// Input data set is stored in the compressed sparse row format
*/
import com.intel.daal.services.DaalContext;
class LowOrderMomsCSRBatch {
/* Input data set parameters */
private static final String datasetFileName = "../data/batch/covcormoments_csr.csv";
private static CSRNumericTable dataTable;
private static Result result;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Read the input data from a file */
dataTable = Service.createSparseTable(context, datasetFileName);
/* Create algorithm objects to compute low order moments using the default method */
Batch algorithm = new Batch(context, Float.class, Method.fastCSR);
/* Set input objects for the algorithm */
algorithm.input.set(InputId.data, dataTable);
/* Compute low order moments */
result = algorithm.compute();
printResults();
context.dispose();
}
private static void printResults() {
HomogenNumericTable minimum = (HomogenNumericTable) result.get(ResultId.minimum);
HomogenNumericTable maximum = (HomogenNumericTable) result.get(ResultId.maximum);
HomogenNumericTable sum = (HomogenNumericTable) result.get(ResultId.sum);
HomogenNumericTable sumSquares = (HomogenNumericTable) result.get(ResultId.sumSquares);
HomogenNumericTable sumSquaresCentered = (HomogenNumericTable) result.get(ResultId.sumSquaresCentered);
HomogenNumericTable mean = (HomogenNumericTable) result.get(ResultId.mean);
HomogenNumericTable secondOrderRawMoment = (HomogenNumericTable) result.get(ResultId.secondOrderRawMoment);
HomogenNumericTable variance = (HomogenNumericTable) result.get(ResultId.variance);
HomogenNumericTable standardDeviation = (HomogenNumericTable) result.get(ResultId.standardDeviation);
HomogenNumericTable variation = (HomogenNumericTable) result.get(ResultId.variation);
Service.printNumericTable("Minimum:", minimum);
Service.printNumericTable("Maximum:", maximum);
Service.printNumericTable("Sum:", sum);
Service.printNumericTable("Sum of squares:", sumSquares);
Service.printNumericTable("Sum of squared difference from the means:", sumSquaresCentered);
Service.printNumericTable("Mean:", mean);
Service.printNumericTable("Second order raw moment:", secondOrderRawMoment);
Service.printNumericTable("Variance:", variance);
Service.printNumericTable("Standard deviation:", standardDeviation);
Service.printNumericTable("Variation:", variation);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.