Developer Reference for Intel® Integrated Performance Primitives Cryptography 2019
Returns a reference to the implementation of arithmetic operations over GF(pd).
const IppsGFpMethod* ippsGFpxMethod_com(void);
const IppsGFpMethod* ippsGFpxMethod_binom2(void);
const IppsGFpMethod* ippsGFpxMethod_binom3(void);
const IppsGFpMethod* ippsGFpxMethod_binom(void);
const IppsGFpMethod* ippsGFpxMethod_binom2_epid2(void);
const IppsGFpMethod* ippsGFpxMethod_binom3_epid2(void);
ippcp.h
Each of these functions returns a pointer to a structure containing an implementation of arithmetic operations over GF(pd).
ippsGFpxMethod_com assumes an arbitrary value of the field polynomial g(x); each of the rest of the functions returns a pointer to the implementation of arithmetic operations over GF(pd) tailored for a particular value of g(x). See the table below for the correspondence between method functions and values of the field polynomial g(x).
Function | Value of the field polynomial g(x) |
---|---|
ippsGFpxMethod_com | g(x) = xd + xd - 1ad - 1 + xd - 2ad - 2 + ⋯ + x1a1 + a0, ai ∈ GF(p) |
ippsGFpxMethod_binom2 | g(x) = x2 - a0, a0 ∈ GF(p) |
ippsGFpxMethod_binom3 | g(x) = x3 - a0, a0 ∈ GF(p) |
ippsGFpxMethod_binom | g(x) = xd - a0, a0 ∈ GF(p) |
ippsGFpxMethod_binom2_epid2 | g(x) = x2 - a0, a0 ∈ GF(q), a0 = 1 g(w) = w2 - V0, v0 ∈ GF((q2)3), V0 = 0 · v2 + v + 0 |
ippsGFpxMethod_binom3_epid2 | g(v) = v3 - U0, U0 ∈ GF(q2), U0 = u + 2 |
ippsGFpxMethod_binom2_epid2() and ippsGFpxMethod_binom3_epid2() are designed especially for the construction of finite field extensions for applications that use the Intel® Enhanced Privacy ID 2.0 scheme.