Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

List of all members
Parameter Class Reference

Parameters of the EM for GMM algorithm. More...

Detailed Description

Parameters of the EM for GMM algorithm

Member Function Documentation

double getAccuracyThreshold ( )

Retrieves the threshold for the termination of the algorithm

Returns
Threshold for the termination of the algorithm
CovarianceStorageId getCovarianceStorage ( )

Retrieves identifier of covariance type in the EM for GMM algorithm

Returns
identifier of covariance type in the EM for GMM algorithm
long getMaxIterations ( )

Retrieves the maximal number of iterations

Returns
Maximal number of iterations
long getNComponents ( )

Retrieves the number of components in the Gaussian mixture model

Returns
Number of components
double getRegularizationFactor ( )

Retrieves the factor for covariance regularization value in case of ill-conditional data

Returns
Factor for covariance regularization value in case of ill-conditional data
void setAccuracyThreshold ( double  accuracyThreshold)

Sets the threshold for the termination of the algorithm

Parameters
accuracyThresholdThreshold for the termination of the algorithm
void setCovarianceStorage ( CovarianceStorageId  covarianceStorage)

Sets the identifier of covariance type in the EM for GMM algorithm

Parameters
covarianceStorageidentifier of covariance type in the EM for GMM algorithm
void setMaxIterations ( long  maxIterations)

Sets the maximal number of iterations

Parameters
maxIterationsMaximal number of iterations
void setNComponents ( long  nComponents)

Sets the number of components in the Gaussian mixture model

Parameters
nComponentsNumber of components in the Gaussian mixture model
void setRegularizationFactor ( double  regularizationFactor)

Sets the factor for covariance regularization value in case of ill-conditional data

Parameters
regularizationFactorFactor for covariance regularization value in case of ill-conditional data

The documentation for this class was generated from the following file:

For more complete information about compiler optimizations, see our Optimization Notice.