Java* API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

DataStructuresPackedSymmetric.java

/* file: DataStructuresPackedSymmetric.java */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of using packed data structures
*/
package com.intel.daal.examples.datasource;
import java.nio.DoubleBuffer;
import com.intel.daal.data_management.data.PackedSymmetricMatrix;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
class DataStructuresPackedSymmetric {
private static final int nDim = 5;
private static final int nRead = 5;
private static final int firstReadRow = 0;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws FileNotFoundException, IOException, ClassNotFoundException {
System.out.println("Packed symmetric matrix example\n");
int readFeatureIdx;
double[] data = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 };
PackedSymmetricMatrix dataTable = new PackedSymmetricMatrix(context, data, nDim, NumericTable.StorageLayout.lowerPackedSymmetricMatrix);
/* Read a block of rows */
DoubleBuffer dataDouble = DoubleBuffer.allocate(nRead * nDim);
dataDouble = dataTable.getBlockOfRows(firstReadRow, nRead, dataDouble);
System.out.printf("%d rows are read\n", nRead);
printDoubleBuffer(dataDouble, nDim, nRead, "Print 3 rows from packed symmetric matrix as float:");
dataTable.releaseBlockOfRows(firstReadRow, nRead, dataDouble);
/* Read a feature (column) */
DoubleBuffer dataDoubleFeatures = DoubleBuffer.allocate((int) nRead);
readFeatureIdx = 2;
dataDoubleFeatures = dataTable.getBlockOfColumnValues(readFeatureIdx, firstReadRow, nRead, dataDoubleFeatures);
printDoubleBuffer(dataDoubleFeatures, 1, nRead, "Print the third feature of packed symmetric matrix:");
/* Set new value to a buffer and release it */
dataDoubleFeatures.put(1, 239);
dataTable.releaseBlockOfColumnValues(readFeatureIdx, firstReadRow, nRead, dataDoubleFeatures);
/* Read a block of rows */
dataDouble = dataTable.getBlockOfRows(firstReadRow, nRead, dataDouble);
System.out.printf("%d rows are read\n", nRead);
printDoubleBuffer(dataDouble, nDim, nRead, "Print 3 rows from packed symmetric matrix as float:");
dataTable.releaseBlockOfRows(firstReadRow, nRead, dataDouble);
context.dispose();
}
private static void printDoubleBuffer(DoubleBuffer buf, long nColumns, long nRows, String message) {
int step = (int) nColumns;
System.out.println(message);
for (int i = 0; i < nRows; i++) {
for (int j = 0; j < nColumns; j++) {
System.out.format("%6.3f ", buf.get(i * step + j));
}
System.out.println("");
}
System.out.println("");
}
}

For more complete information about compiler optimizations, see our Optimization Notice.