C++ API Reference for Intel® Data Analytics Acceleration Library 2019 Update 4

mn_naive_bayes_csr_distr.cpp

/* file: mn_naive_bayes_csr_distr.cpp */
/*******************************************************************************
* Copyright 2014-2019 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
! Content:
! C++ example of Naive Bayes classification in the distributed processing
! mode.
!
! The program trains the Naive Bayes model on a supplied training data set in
! compressed sparse rows (CSR)__format and then performs classification of
! previously unseen data.
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::multinomial_naive_bayes;
typedef float algorithmFPType; /* Algorithm floating-point type */
/* Input data set parameters */
const string trainDatasetFileNames[4] =
{
"../data/distributed/naivebayes_train_csr_1.csv", "../data/distributed/naivebayes_train_csr_2.csv",
"../data/distributed/naivebayes_train_csr_3.csv", "../data/distributed/naivebayes_train_csr_4.csv"
};
const string trainGroundTruthFileNames[4] =
{
"../data/distributed/naivebayes_train_labels_1.csv", "../data/distributed/naivebayes_train_labels_2.csv",
"../data/distributed/naivebayes_train_labels_3.csv", "../data/distributed/naivebayes_train_labels_4.csv"
};
string testDatasetFileName = "../data/distributed/naivebayes_test_csr.csv";
string testGroundTruthFileName = "../data/distributed/naivebayes_test_labels.csv";
const size_t nClasses = 20;
const size_t nBlocks = 4;
const size_t nTrainVectorsInBlock = 8000;
const size_t nTestObservations = 2000;
void trainModel();
void testModel();
void printResults();
training::ResultPtr trainingResult;
classifier::prediction::ResultPtr predictionResult;
CSRNumericTablePtr trainData[nBlocks];
CSRNumericTablePtr testData;
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 10,
&trainDatasetFileNames[0], &trainDatasetFileNames[1],
&trainDatasetFileNames[2], &trainDatasetFileNames[3],
&trainGroundTruthFileNames[0], &trainGroundTruthFileNames[1],
&trainGroundTruthFileNames[2], &trainGroundTruthFileNames[3],
&testDatasetFileName, &testGroundTruthFileName);
trainModel();
testModel();
printResults();
return 0;
}
void trainModel()
{
training::Distributed<step2Master, algorithmFPType, training::fastCSR> masterAlgorithm(nClasses);
for(size_t i = 0; i < nBlocks; i++)
{
/* Read trainDatasetFileNames and create a numeric table to store the input data */
trainData[i] = CSRNumericTablePtr(createSparseTable<float>(trainDatasetFileNames[i]));
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> trainLabelsSource(trainGroundTruthFileNames[i], DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the data from an input file */
trainLabelsSource.loadDataBlock(nTrainVectorsInBlock);
/* Create an algorithm object to train the Naive Bayes model on the local-node data */
training::Distributed<step1Local, algorithmFPType, training::fastCSR> localAlgorithm(nClasses);
/* Pass a training data set and dependent values to the algorithm */
localAlgorithm.input.set(classifier::training::data, trainData[i]);
localAlgorithm.input.set(classifier::training::labels, trainLabelsSource.getNumericTable());
/* Build the Naive Bayes model on the local node */
localAlgorithm.compute();
/* Set the local Naive Bayes model as input for the master-node algorithm */
masterAlgorithm.input.add(training::partialModels, localAlgorithm.getPartialResult());
}
/* Merge and finalize the Naive Bayes model on the master node */
masterAlgorithm.compute();
masterAlgorithm.finalizeCompute();
/* Retrieve the algorithm results */
trainingResult = masterAlgorithm.getResult();
}
void testModel()
{
/* Read testDatasetFileName and create a numeric table to store the input data */
testData = CSRNumericTablePtr(createSparseTable<float>(testDatasetFileName));
/* Create an algorithm object to predict Naive Bayes values */
prediction::Batch<algorithmFPType, prediction::fastCSR> algorithm(nClasses);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(classifier::prediction::data, testData);
algorithm.input.set(classifier::prediction::model, trainingResult->get(classifier::training::model));
/* Predict Naive Bayes values */
algorithm.compute();
/* Retrieve the algorithm results */
predictionResult = algorithm.getResult();
}
void printResults()
{
FileDataSource<CSVFeatureManager> testGroundTruth(testGroundTruthFileName,
DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
testGroundTruth.loadDataBlock(nTestObservations);
printNumericTables<int, int>(testGroundTruth.getNumericTable().get(),
predictionResult->get(classifier::prediction::prediction).get(),
"Ground truth", "Classification results",
"NaiveBayes classification results (first 20 observations):", 20);
}

For more complete information about compiler optimizations, see our Optimization Notice.