Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 3

LCNLayerDenseBatch.java

/* file: LCNLayerDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of local contrast normalization layer in the batch processing mode
*/
package com.intel.daal.examples.neural_networks;
import com.intel.daal.algorithms.neural_networks.layers.lcn.*;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.ForwardResultLayerDataId;
import com.intel.daal.algorithms.neural_networks.layers.ForwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardResultId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputId;
import com.intel.daal.algorithms.neural_networks.layers.BackwardInputLayerDataId;
import com.intel.daal.data_management.data.Tensor;
import com.intel.daal.data_management.data.HomogenTensor;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class LCNLayerDenseBatch {
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Create collection of dimension sizes of the input data tensor */
long[] dimensionSizes = new long[4];
dimensionSizes[0] = 2;
dimensionSizes[1] = 1;
dimensionSizes[2] = 3;
dimensionSizes[3] = 4;
/* Create input daat tensor */
float[] data = new float[24];
Tensor dataTensor = new HomogenTensor(context, dimensionSizes, data, 1.0f);
/* Create an algorithm to compute forward local contrast normalization layer results using default method */
LcnForwardBatch lcnLayerForward = new LcnForwardBatch(context, Float.class, LcnMethod.defaultDense);
/* Set input objects for the forward local contrast normalization layer */
lcnLayerForward.input.set(ForwardInputId.data, dataTensor);
/* Compute forward local contrast normalization layer results */
LcnForwardResult forwardResult = lcnLayerForward.compute();
/* Print the results of the forward local contrast normalization layer */
Service.printTensor("Forward local contrast normalization layer result:", forwardResult.get(ForwardResultId.value),5,12);
Service.printTensor("Centered data tensor:", forwardResult.get(LcnLayerDataId.auxCenteredData),5,12);
Service.printTensor("Sigma tensor:", forwardResult.get(LcnLayerDataId.auxSigma),5,12);
Service.printTensor("C tensor:", forwardResult.get(LcnLayerDataId.auxC),5,1);
Service.printTensor("Inverted max(sigma, C):", forwardResult.get(LcnLayerDataId.auxInvMax),5,12);
/* Create input gradient tensor for backward local contrast normalization layer */
float[] backData = new float[24];
Tensor tensorDataBack = new HomogenTensor(context, dimensionSizes, backData, 0.01f);
/* Create an algorithm to compute backward local contrast normalization layer results using default method */
LcnBackwardBatch lcnLayerBackward = new LcnBackwardBatch(context, Float.class, LcnMethod.defaultDense);
/* Set input objects for the backward local contrast normalization layer */
lcnLayerBackward.input.set(BackwardInputId.inputGradient, tensorDataBack);
lcnLayerBackward.input.set(BackwardInputLayerDataId.inputFromForward,
forwardResult.get(ForwardResultLayerDataId.resultForBackward));
/* Compute backward local contrast normalization layer results */
LcnBackwardResult backwardResult = lcnLayerBackward.compute();
/* Get the computed backward local contrast normalization layer results */
Service.printTensor("Local contrast normalization layer backpropagation gradient result:", backwardResult.get(BackwardResultId.gradient),5,12);
context.dispose();
}
}

For more complete information about compiler optimizations, see our Optimization Notice.