#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
static const size_t nDim = 3;
static const size_t dims[] = {3, 2, 4};
static float dataArray[3][2][4] = {{{ 1, 2, 3, 4},
{ 5, 6, 7, 8}},
{{ 9, 10, 11, 12},
{13, 14, 15, 16}},
{{17, 18, 19, 20},
{21, 22, 23, 24}}};
int main(int argc, char *argv[])
{
TensorPtr dataTensor(new HomogenTensor<>(nDim, dims, (float *)dataArray));
printTensor3d(dataTensor, "Forward maximum pooling layer input:");
maximum_pooling3d::forward::Batch<> forwardLayer(nDim);
forwardLayer.input.set(forward::data, dataTensor);
forwardLayer.compute();
maximum_pooling3d::forward::ResultPtr forwardResult = forwardLayer.getResult();
printTensor3d(forwardResult->get(forward::value),
"Forward maximum pooling layer result:");
printTensor3d(forwardResult->get(maximum_pooling3d::auxSelectedIndices),
"Forward maximum pooling layer selected indices:");
maximum_pooling3d::backward::Batch<> backwardLayer(nDim);
backwardLayer.input.set(backward::inputGradient, forwardResult->get(forward::value));
backwardLayer.input.set(backward::inputFromForward, forwardResult->get(forward::resultForBackward));
backwardLayer.compute();
backward::ResultPtr backwardResult = backwardLayer.getResult();
printTensor3d(backwardResult->get(backward::gradient),
"Backward maximum pooling layer result:");
return 0;
}