#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::neural_networks::layers;
using namespace daal::data_management;
using namespace daal::services;
string datasetName = "../data/batch/layer.csv";
string weightsName = "../data/batch/layer.csv";
size_t dataDimension = 0;
size_t weightsDimension = 2;
int main()
{
TensorPtr tensorData = readTensorFromCSV(datasetName);
TensorPtr tensorWeights = readTensorFromCSV(weightsName);
prelu::forward::Batch<> forwardPreluLayer;
forwardPreluLayer.parameter.dataDimension = dataDimension;
forwardPreluLayer.parameter.weightsDimension = weightsDimension;
forwardPreluLayer.parameter.weightsAndBiasesInitialized = true;
forwardPreluLayer.input.set(forward::data, tensorData);
forwardPreluLayer.input.set(forward::weights, tensorWeights);
forwardPreluLayer.compute();
prelu::forward::ResultPtr forwardResult = forwardPreluLayer.getResult();
printTensor(forwardResult->get(forward::value), "Forward prelu layer result (first 5 rows):", 5);
const Collection<size_t> &gDims = forwardResult->get(forward::value)->getDimensions();
TensorPtr tensorDataBack = TensorPtr(new HomogenTensor<>(gDims, Tensor::doAllocate, 0.01f));
prelu::backward::Batch<> backwardPreluLayer;
backwardPreluLayer.parameter.dataDimension = dataDimension;
backwardPreluLayer.parameter.weightsDimension = weightsDimension;
backwardPreluLayer.input.set(backward::inputGradient, tensorDataBack);
backwardPreluLayer.input.set(backward::inputFromForward, forwardResult->get(forward::resultForBackward));
backwardPreluLayer.compute();
backward::ResultPtr backwardResult = backwardPreluLayer.getResult();
printTensor(backwardResult->get(backward::gradient), "Backward prelu layer result (first 5 rows):", 5);
printTensor(backwardResult->get(backward::weightDerivatives), "Weights derivative (first 5 rows):", 5);
return 0;
}