Java* API Reference for Intel® Data Analytics Acceleration Library 2018 Update 3

DfRegDenseBatch.java

/* file: DfRegDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2018 Intel Corporation.
*
* This software and the related documents are Intel copyrighted materials, and
* your use of them is governed by the express license under which they were
* provided to you (License). Unless the License provides otherwise, you may not
* use, modify, copy, publish, distribute, disclose or transmit this software or
* the related documents without Intel's prior written permission.
*
* This software and the related documents are provided as is, with no express
* or implied warranties, other than those that are expressly stated in the
* License.
*******************************************************************************/
/*
// Content:
// Java example of decision forest regression.
//
// The program trains the decision forest regression model on a supplied
// training data set and then predicts previously unseen data.
*/
package com.intel.daal.examples.decision_forest;
import com.intel.daal.algorithms.decision_forest.regression.*;
import com.intel.daal.algorithms.decision_forest.regression.prediction.*;
import com.intel.daal.algorithms.decision_forest.regression.training.*;
import com.intel.daal.algorithms.decision_forest.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
import com.intel.daal.data_management.data.*;
class DfRegDenseBatch {
/* Input data set parameters */
private static final String trainDataset = "../data/batch/df_regression_train.csv";
private static final String testDataset = "../data/batch/df_regression_test.csv";
private static final int nFeatures = 13;
/* Decision forest regression algorithm parameters */
private static final int nTrees = 100;
private static NumericTable testGroundTruth;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
TrainingResult trainingResult = trainModel();
PredictionResult predictionResult = testModel(trainingResult);
printResults(predictionResult);
context.dispose();
}
private static TrainingResult trainModel() {
/* Retrieve the data from the input data sets */
FileDataSource trainDataSource = new FileDataSource(context, trainDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and labels */
NumericTable trainData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Set feature as categorical */
trainData.getDictionary().setFeature(Float.class,3,DataFeatureUtils.FeatureType.DAAL_CATEGORICAL);
/* Create algorithm objects to train the decision forest regression model */
TrainingBatch algorithm = new TrainingBatch(context, Float.class, TrainingMethod.defaultDense);
algorithm.parameter.setNTrees(nTrees);
algorithm.parameter.setVariableImportanceMode(VariableImportanceModeId.MDA_Raw);
algorithm.parameter.setResultsToCompute(ResultsToComputeId.computeOutOfBagError|ResultsToComputeId.computeOutOfBagErrorPerObservation);
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.dependentVariable, trainGroundTruth);
/* Train the decision forest regression model */
TrainingResult trainingResult = algorithm.compute();
Service.printNumericTable("Variable importance results: ", trainingResult.get(ResultNumericTableId.variableImportance));
Service.printNumericTable("OOB error: ", trainingResult.get(ResultNumericTableId.outOfBagError));
Service.printNumericTable("OOB error per observation (first 10 rows):", trainingResult.get(ResultNumericTableId.outOfBagErrorPerObservation), 10);
return trainingResult;
}
private static PredictionResult testModel(TrainingResult trainingResult) {
FileDataSource testDataSource = new FileDataSource(context, testDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for testing data and labels */
NumericTable testData = new HomogenNumericTable(context, Float.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
testGroundTruth = new HomogenNumericTable(context, Float.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testGroundTruth);
/* Retrieve the data from an input file */
testDataSource.loadDataBlock(mergedData);
/* Set feature as categorical */
testData.getDictionary().setFeature(Float.class,3,DataFeatureUtils.FeatureType.DAAL_CATEGORICAL);
/* Create algorithm objects for decision forest regression prediction with the fast method */
PredictionBatch algorithm = new PredictionBatch(context, Float.class, PredictionMethod.defaultDense);
/* Pass a testing data set and the trained model to the algorithm */
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
/* Compute prediction results */
return algorithm.compute();
}
private static void printResults(PredictionResult predictionResult) {
NumericTable predictionResults = predictionResult.get(PredictionResultId.prediction);
Service.printNumericTable("Decision forest prediction results (first 10 rows):", predictionResults, 10);
Service.printNumericTable("Ground truth (first 10 rows):", testGroundTruth, 10);
}
}

For more complete information about compiler optimizations, see our Optimization Notice.