C++ API Reference for Intel® Data Analytics Acceleration Library 2018 Update 3

decision_forest_training_parameter.h
1 /* file: decision_forest_training_parameter.h */
2 /*******************************************************************************
3 * Copyright 2014-2018 Intel Corporation.
4 *
5 * This software and the related documents are Intel copyrighted materials, and
6 * your use of them is governed by the express license under which they were
7 * provided to you (License). Unless the License provides otherwise, you may not
8 * use, modify, copy, publish, distribute, disclose or transmit this software or
9 * the related documents without Intel's prior written permission.
10 *
11 * This software and the related documents are provided as is, with no express
12 * or implied warranties, other than those that are expressly stated in the
13 * License.
14 *******************************************************************************/
15 
16 /*
17 //++
18 // Decision forest training parameter class
19 //--
20 */
21 
22 #ifndef __DECISION_FOREST_TRAINING_PARAMETER_H__
23 #define __DECISION_FOREST_TRAINING_PARAMETER_H__
24 
25 #include "algorithms/algorithm.h"
26 #include "data_management/data/numeric_table.h"
27 #include "data_management/data/data_serialize.h"
28 #include "services/daal_defines.h"
29 #include "algorithms/engines/mt19937/mt19937.h"
30 
31 namespace daal
32 {
33 namespace algorithms
34 {
43 namespace decision_forest
44 {
48 namespace training
49 {
58 enum VariableImportanceMode
59 {
60  none, /* Do not compute */
61  MDI, /* Mean Decrease Impurity.
62  Computed as the sum of weighted impurity decreases for all nodes where the variable is used,
63  averaged over all trees in the forest */
64  MDA_Raw, /* Mean Decrease Accuracy (permutation importance).
65  For each tree, the prediction error on the out-of-bag portion of the data is computed
66  (error rate for classification, MSE for regression).
67  The same is done after permuting each predictor variable.
68  The difference between the two are then averaged over all trees. */
69  MDA_Scaled /* Mean Decrease Accuracy (permutation importance).
70  This is MDA_Raw value scaled by its standard deviation. */
71 };
72 
77 enum ResultToComputeId
78 {
79  computeOutOfBagError = 0x00000001ULL,
80  computeOutOfBagErrorPerObservation = 0x00000002ULL
81 };
82 
86 namespace interface1
87 {
88 
95 /* [Parameter source code] */
96 class DAAL_EXPORT Parameter
97 {
98 public:
99  Parameter() : nTrees(100),
100  observationsPerTreeFraction(1.),
101  featuresPerNode(0), maxTreeDepth(0),
102  minObservationsInLeafNode(0),
103  seed(77),
104  impurityThreshold(0.),
105  varImportance(none),
106  resultsToCompute(0),
107  memorySavingMode(false),
108  bootstrap(true),
109  engine(engines::mt19937::Batch<>::create()) {}
110 
111  size_t nTrees;
112  double observationsPerTreeFraction;
114  size_t featuresPerNode;
117  size_t maxTreeDepth;
118  size_t minObservationsInLeafNode;
120  size_t seed;
121  engines::EnginePtr engine;
122  double impurityThreshold;
124  VariableImportanceMode varImportance;
125  DAAL_UINT64 resultsToCompute;
126  bool memorySavingMode;
127  bool bootstrap;
128 };
129 /* [Parameter source code] */
130 } // namespace interface1
131 using interface1::Parameter;
133 } // namespace training
134 }
135 }
136 } // namespace daal
137 #endif
daal::algorithms::decision_forest::training::interface1::Parameter::engine
engines::EnginePtr engine
Definition: decision_forest_training_parameter.h:121
daal::algorithms::decision_forest::training::interface1::Parameter::bootstrap
bool bootstrap
Definition: decision_forest_training_parameter.h:127
daal
Definition: algorithm_base_common.h:31
daal::algorithms::decision_forest::training::interface1::Parameter::maxTreeDepth
size_t maxTreeDepth
Definition: decision_forest_training_parameter.h:117
daal::algorithms::decision_forest::training::interface1::Parameter::impurityThreshold
double impurityThreshold
Definition: decision_forest_training_parameter.h:122
daal::algorithms::decision_forest::training::interface1::Parameter::minObservationsInLeafNode
size_t minObservationsInLeafNode
Definition: decision_forest_training_parameter.h:118
daal_defines.h
daal::algorithms::decision_forest::training::interface1::Parameter::resultsToCompute
DAAL_UINT64 resultsToCompute
Definition: decision_forest_training_parameter.h:125
daal::algorithms::decision_forest::training::VariableImportanceMode
VariableImportanceMode
Variable importance computation mode.
Definition: decision_forest_training_parameter.h:58
daal::algorithms::decision_forest::training::interface1::Parameter
Parameters for the decision forest algorithm.
Definition: decision_forest_training_parameter.h:96
daal::algorithms::decision_forest::training::interface1::Parameter::observationsPerTreeFraction
double observationsPerTreeFraction
Definition: decision_forest_training_parameter.h:112
daal::algorithms::decision_forest::training::interface1::Parameter::memorySavingMode
bool memorySavingMode
Definition: decision_forest_training_parameter.h:126
daal::algorithms::decision_forest::training::interface1::Parameter::nTrees
size_t nTrees
Definition: decision_forest_training_parameter.h:111
daal::algorithms::decision_forest::training::interface1::Parameter::featuresPerNode
size_t featuresPerNode
Definition: decision_forest_training_parameter.h:114
daal::algorithms::decision_forest::training::interface1::Parameter::varImportance
VariableImportanceMode varImportance
Definition: decision_forest_training_parameter.h:124
daal::algorithms::decision_forest::training::interface1::Parameter::seed
size_t seed
Definition: decision_forest_training_parameter.h:120
daal::algorithms::decision_forest::training::ResultToComputeId
ResultToComputeId
Definition: decision_forest_training_parameter.h:77

For more complete information about compiler optimizations, see our Optimization Notice.