

Sampling Enabling Product

User's Guide

Copyright © Intel Corporation

All Rights Reserved

Version: 1.9

 Sampling Enabling Product

2

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.
Current characterized errata are available on request.

Intel, the Intel logo, VTune are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the
property of others

© 2017 Intel Corporation.

This product includes software developed by the Apache Software Foundation (http://www.apache.org). The following software license applies to
the software developed by the Apache Software Foundation.

Copyright (c) 2000-2004, The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

 Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

 Redistributing in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

The end-user documentation included with the redistribution, if any, must include the following acknowledgment:

"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

 The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote products derived from this software without prior
written permission. For written permission, please contact apache@apache.org.

 Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of the
Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The OpenSource GNU C++ runtime library source files can be downloaded at ftp://ftp.gnu.org/pub/gnu/gcc under the terms of the GNU General
Public License or the GNU Lesser General Public License as published by the Free Software Foundation. Specific terms are available online at
www.gnu.org or alternatively from the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. These links are
provided in the hope that they will be useful, but the linked sites are not under the control of Intel and Intel is not responsible for the content of any
linked site, or any link contained in a linked site. If you decide to access any of the third party sites linked to this site, you do so entirely at your own
risk.

http://www.apache.org/
http://www.apache.org/
mailto:apache@apache.org?subject=Permission%20to%20use%20Apache%20name
ftp://ftp.gnu.org/pub/gnu/gcc
http://www.gnu.org/

About this Document

User's Guide 3

Contents
1 About this Document ... 6

1.1 Intended Audience .. 6
1.2 Conventions and Symbols ... 6
1.3 Related Information .. 7

2 Installation .. 8

2.1 Installing SEP with Intel VTune Amplifier ... 8
2.2 Installing SEP without Intel VTune Amplifier .. 8

2.2.1 Linux* ... 8
2.2.2 Windows*... 9
2.2.3 FreeBSD* ... 10
2.2.4 Android* .. 11

3 Using SEP ... 12

3.1 Usage Examples ... 12
3.2 Starting Data Collection ... 13

3.2.1 Specifying an Application to Analyze .. 13
3.2.2 Running Delayed Collection .. 13
3.2.3 Running Collection Indefinitely .. 14

3.3 Viewing Collection Status .. 14
3.4 Ending Data Collection ... 14

3.4.1 Pausing Sampling Collection ... 14
3.4.2 Resuming Collection.. 14
3.4.3 Stopping Collection ... 15
3.4.4 Canceling Collection .. 15

3.5 Counting Collection .. 15
3.6 Configuring Data Collection ... 15

3.6.1 Specifying Sample After Value ... 15
3.6.2 Counting Events .. 16

4 SEP Commands ... 18

5 SEP Options... 19

-app <full-path-to-the-application>[-args <”list of application arguments”>] .. 19
-atype <atype name1>, <atype name2>, … .. 19
-atypelist [-config] [-details] [<atype1>, <atype2>,…] .. 19
-c | -count20
-cec | -chipset-event-config .. 21
-cm | -cpu-mask ”processor numbers” ... 21
-d | -duration <in seconds> ... 22
-ebc | -event-based-counts [tfactor=<value>] .. 22
-ec | -event-config [-dc | -data-config <optional-data1>,<optional-data2>…] “<event-

name1>”:modifier1=val:modifier2=val/constraint1={:modifier3=val:modifier4=val}, “<event-
name2>”... ... 22

 Sampling Enabling Product

4

-em | -event-multiplexing [dts=<time in milliseconds>] | [trigger=<fixed counter> factor=<value>] |
[tfactor=<value>] .. 25

fpc <full pebs capture> .. 26
-lbr <capture_mode> .. 27
-lbr-filter <filter1>:<filter2>:<filter3> ... 27
-mic [dev=<id_1> [,<id_2>,...<id_n>]] .. 28
-mr | -multi-run .. 28
[-nb | -non-blocking] .. 28
-of | -options-from-file <file name> .. 28
-osm | -os-mode ... 29
-out | -output-file <file name> ... 29
-p-state 29
-sam | -sample-after-multiplier <value> ... 30
-sd | -sampling-delay <delay in seconds> .. 30
-sp | -start-paused ... 30
-um | -user-mode ... 30
-verbose 31

6 Using Intel VTune Amplifier with SEP ... 32

6.1 Advanced Hotspots Analysis ... 33
6.2 Microarchitecture Analysis .. 33
6.3 Custom Analysis Type ... 34
6.4 Viewing SEP Results in Intel VTune Amplifier ... 35

Revision History

Revision
Number

Description Revision Date

1.0 Completed major documentation changes on previous version of the
Sampling Enabling Product User’s Guide and reset the document
revision level from 3.12 to 1.0.
Added commands for pausing, stopping, and resuming collection.
Removed obsolete options.
Added the --atypes and -fpc options.

November 2015

1.1 Removed obsolete option. December 2015

1.2 Added Installation chapter. February 2016

1.3 Upgraded version to SEP 4.0.
Added Using Intel VTune Amplifier with SEP chapter.

March 2016

1.4 Replaced obsolete --atypes option with new --atypelist option. September 2016

1.5 Fixed location of drivers for FreeBSD*. October 2016

1.6 Added new event modifiers for IA32/Intel® 64 architectures. February 2017

1.7 Upgraded version to SEP 4.1.
Updated with support for Intel VTune Amplifier 2018 Beta.

April 2017

1.8 Removed obsolete examples. Fixed -cpu-mask and -lbr-filter
examples.

June 2017

1.9 Updated -pmu-types description. November 2017

 Sampling Enabling Product

6

1 About this Document
This document explains the various options that the Sampling Enabling Product (SEP) provides and
how to use them to collect performance data on your application.

SEP is a standalone command-line tool that provides the event based sampling (EBS) and counting
functionality on a local system. The hardware based sampling is a low-overhead, system-wide profiling
that helps identify which modules and functions are consuming the most time, giving a detailed look at
the operating system and application. SEP enables you to configure the data collection, perform the
system-wide profiling and store the results in a .tb7 file.

You can import the .tb7 file into the Intel® VTune™ Amplifier and display the information graphically.

NOTE: SEP and Intel VTune Amplifier will continue to support the .tb6 format for results generated with the
previous releases of SEP. Unless otherwise indicated, use the latest drivers.

1.1 Intended Audience
Read this document if you are a software engineer interested in monitoring the performance of your
software on IA-32 or Intel 64 systems. For the full list of supported systems, see the SEP README.txt
file.

1.2 Conventions and Symbols
The following conventions are used in this document.

Table 1 Conventions and Symbols used in this Document

This type style Indicates an element of syntax, reserved word, keyword, filename, computer output, or part
of a program example. The text appears in lowercase unless uppercase is significant.

This type style Indicates the exact characters you type as input. Also used to highlight the elements of a
graphical user interface such as buttons and menu names.

This type style Indicates a placeholder for an identifier, an expression, a string, a symbol, or a value.
Substitute one of these items for the placeholder.

[items]

Indicates that the items enclosed in brackets are optional.

{ item | item } Indicates to select only one of the items listed between braces. A vertical bar (|) separates
the items.

... (ellipses) Indicates that you can repeat the preceding item.

About this Document

User's Guide 7

1.3 Related Information
• For information on the Intel® VTune Amplifier, go to https://software.intel.com/en-us/intel-

vtune-amplifier-xe-support/documentation
• For information on Performance Monitoring Unit (PMU) counters, go to

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html

• For information on troubleshooting SEP in the Intel Embedded Tool Suite, go to
https://software.intel.com/en-us/articles/troubleshooting-issues-with-sep-in-the-embedded-
tool-suite-intel-system-studio

https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/en-us/articles/troubleshooting-issues-with-sep-in-the-embedded-tool-suite-intel-system-studio
https://software.intel.com/en-us/articles/troubleshooting-issues-with-sep-in-the-embedded-tool-suite-intel-system-studio

 Sampling Enabling Product

8

2 Installation
SEP can be run on Linux*, Windows*, FreeBSD*, or Android* systems. Follow the installation instructions
for the system on which you want to run SEP.

2.1 Installing SEP with Intel VTune Amplifier
SEP is automatically installed with Intel VTune Amplifier. The drivers may need to be manually installed
if the installation fails. For more information, see “Building and Managing the Sampling Drivers” in the
Intel VTune Amplifier Installation Guide for your operating system or in the VTune Amplifier help.

2.2 Installing SEP without Intel VTune Amplifier
Follow the installation instructions for the system on which you want to run SEP.

2.2.1 Linux*
1. Create a directory where you want to install SEP. For example: /opt/intel/sep
2. Copy the SEP install package (sep_4.*_linux.tar.bz2) to this directory.
3. Unpack the SEP install Package. For example: tar --xjzf sep_4.1_linux.tar.bz2

The following directories should appear in the specified location for Linux*:
bin32
bin64
config
docs
include
sepdk
 inc
sep_vars.sh
SEP_Users_Guide.pdf

The following directories should appear in the specified location for a Linux system with Intel® Many
Integrated Core Architecture (Intel® MIC Architecture):
bin32
bin64
 k1om
config
docs
include
mic_sepdk
 inc
 src

Installation

User's Guide 9

sep_vars.sh
SEP_Users_Guide.pdf

4. Install SEP and build the driver.

 For Linux:

1. Navigate to the sepdk directory: cd /opt/intel/sep/sepdk
2. Build the SEP driver using the following command: ./build-driver -ni
3. Install the SEP sampling driver using the following command: ./insmod-sep --g

<user_group>

 For Linux with Intel MIC Architecture:

1. Navigate to the K1om directory: cd /opt/intel/sep/bin64/k1om
2. Install SEP using the following command: sudo ./sep_micboot_install.sh
3. Restart the service using the following command: sudo service mpss restart
4. Run the following command: micctrl -w

5. Navigate to the directory from which you want to run SEP.
6. Create a bash shell: sh
7. Set up the SEP runtime environment by sourcing the sep_vars.sh file in the current bash shell:

source /opt/intel/sep/sep_vars.sh
8. Start SEP using the following command: sep --version

2.2.2 Windows*
1. Create a directory where you want to install SEP. For example: C:/Program Files

(x86)/IntelSWTools/sep
2. Extract the SEP install package (sep_4.*_windows.zip or sep4_win_mic.zip) into this

directory.

The following directories should appear in the specified location for Windows*:
bin32
bin64
config
include
docs
sep_vars.cmd
SEP_Users_Guide.pdf

The following directories should appear in the specified location for a Windows system with Intel
MIC Architecture:
bin32
 k1om
bin64
config
include
docs

 Sampling Enabling Product

10

sep_vars.cmd
SEP_Users_Guide.pdf

3. Install and register the sampling driver.

 For Windows: Install and register the sampling driver from the bin32 or bin64 directory using
the following command: sepreg.exe --i

 For Windows with Intel MIC Architecture:

1. Navigate to the bin32/k1om directory.
2. Install SEP using the following command from within that directory:

sep_micboot_install.cmd
3. Run the following command: net start mpss

4. Run the following command to set the appropriate environment variables and adjust the path to
run SEP in the current shell: sep_vars.cmd

5. Start SEP using the following command: sep -- version

2.2.3 FreeBSD*
1. Create a directory where you want to install SEP. For example: /opt/intel/sep
2. Copy the SEP install package (sep_4.*_freebsd_<version>.tar.bz2) to this location.
3. Unpack the SEP install Package. For example: tar --xjzf

sep_4.1_freebsd_x86_64_10.tar.bz2

The following directories should appear in the specified location:

bin
config
docs
include
sepdk
 fbsd_kernel
 inc
 dev
 modules
sep_vars.sh
SEP_Users_Guide.pdf

4. Navigate to the sepdk/fbsd_kernel/modules directory.
5. Build the sampling driver using the following command: make
6. Install the sampling driver using the following commands:

make install
kldload sep pax

Installation

User's Guide 11

To allow multiple users in the group to access the driver, use the following commands:

• sudo kenv hw.sep.gid=`getent group <user_group> | awk -F: '{print
$3;}'` ;

• sudo kenv hw.pax.gid=`getent group <user_group> | awk -F: '{print
$3;}'` ;

• kldstat -q -m sep && sudo kldunload sep ;
• kldstat -q -m pax && sudo kldunload pax;
• kldload sep pax

7. Navigate to the directory from which you want to run SEP.
8. Create a bash shell: sh
9. Set up the SEP runtime environment by sourcing the sep_vars.sh file in the current bash shell:

source /opt/intel/sep/sep_vars.sh
10. Start SEP using the following command: sep --version

2.2.4 Android*
The OneAndroid userdebug release contains the sep4_* and sepint4_* drivers. Use the following steps
to install the binaries on your Android* device from your host Windows or Linux system.

1. On your host system, create a directory where you want to install SEP. For example:

 On a Windows host: C:/Program Files (x86)/IntelSWTools/sep
 On a Linux host: /opt/intel/sep

2. Extract the SEP install package (Windows: sep-4.*-for-OneAndroid.zip Linux: sep-4.*-
for-OneAndroid.tar.bz2) into this directory.

The following directories should appear in the specified location:

bin32
bin64
config
tools
sep_android_install.cmd
sep_android_install.sh
sepdk
sep_vars.sh

3. Open a command prompt and navigate to the directory you just created.
4. Run the following command to install SEP:

 Windows: sep_android_install.cmd
 Linux: sep_android_install.sh

5. Run the following command to connect to your Android device: adb shell
6. Navigate to the data/sep directory. For example: cd /data/sep
7. Run the following command to set up the environment variables on your Android device: .

./sep_vars.sh

 Sampling Enabling Product

12

3 Using SEP
NOTE: SEP and Intel VTune Amplifier will continue to support the .tb6 format for results generated with the

previous releases of SEP. Unless otherwise indicated, use the latest drivers.

To analyze your system or application performance with SEP, follow this usage model:

 sep <SEP Commands[SEP Options]>

where:

• <commands> are basic SEP commands controlling data collection (start, stop, pause, cancel
collection, and so on) and providing help information

• [options] are collector options of the following types:

 generic collector options used to specify an application to analyze, if any, and configure
collection runs

 event-specific options used to specify processor events to monitor and enable event counting

 chipset-specific options used to enable chipset profiling and specify events to monitor

 generic event modifiers used to configure event options

When the data collection is started, SEP does the following:

• Executes the specified application, if any, and collects performance data.

• Resolves symbol information for user and system modules.

• Collects performance data in a *.tb7 file.

To view data collected with SEP, use the graphical interface of the Intel® VTune™ Amplifier. For more
information, see Using Intel VTune Amplifier with SEP.

3.1 Usage Examples
Start a 20-second sampling session with default events and create a randomly named
tbsNNNNNNNNNN.tb7 file:

sep -start

Start a 10-second sampling session on events <event 1> with sample after value 4515 and <event 2>
with the default sample after value, and create a tb6 file named test.tb7.

sep -start -d 10 -ec "<event 1>":sa=4515, "<event 2>" -out test

Start a 20-second counting session using default events, and create a counts data file called
test.txt.

sep -start -out test -count

Using SEP

User's Guide 13

3.2 Starting Data Collection
To start a sampling collection, run:
sep --start <collection_options>

where:

• -start is the command launching the sampling data collector

• <collection_options> are sampling collector configuration options

When a sampling collection is started, the default behavior of this call is blocking, which means that the
control is returned back to the user only after the sampling collection finishes.

You can control the duration of a sampling data collection using one of the following methods, but not
both:

• Specify duration: SEP runs for the duration specified with the --d collector option. You can start an
asynchronous session by specifying zero duration.

• Exit collection when application terminates: SEP runs while the application is running. SEP session
stops only when the application terminates. You can stop the sampling session explicitly using the -
stop command.

NOTE: You can specify an application only if SEP is configured to have a single run. In the case of multiple
runs (when selected events cannot be grouped in one run), the application launch option will not be
valid.

3.2.1 Specifying an Application to Analyze
SEP enables launching an application using the -app switch. For example:

sep --start --app sample

SEP starts the workload and collects data until the application finishes (or is forcibly terminated) or SEP
is stopped explicitly using the -stop command as follows:

 sep --stop

3.2.2 Running Delayed Collection
Start delay is a separate time interval that is not a part of duration. For example, if you have an activity
with duration of 60 seconds and a start delay of 10 seconds, then SEP will start collecting samples after
10 seconds and run for 60 seconds taking a total time of 70 seconds.

To have the sampling collection delayed, use the --sd collector option. For example, to start a standard
20-second sampling session with a 10-second delay, enter:

sep --start --sd 10

 Sampling Enabling Product

14

3.2.3 Running Collection Indefinitely
Set the duration to zero to run sampling indefinitely as follows:
sep --start --d 0 -nb

This option is not available if you selected events that require multiple sampling runs.

You can always stop the sampling activity using the -stop command as follows:

sep -stop

3.3 Viewing Collection Status
A successful EBS run gives the following message:

SEP is collecting samples based on the following events <event names
separated by a comma >

An unsuccessful run gives the following message:
SEP failed to start sampling collection due to one of the following
reason(s): <error message>

3.4 Ending Data Collection
Typically data collection continues until the application terminates. When SEP is explicitly stopped, it
will not terminate the application on the user’s behalf. In general, SEP will only launch the application
but never forcibly terminate it.

3.4.1 Pausing Sampling Collection
To pause a sampling collection, use the following command:
sep --pause

When a SEP run is paused, the duration of the run does not change. For example, if a SEP run is started
for duration of 60 seconds and it is paused after approximately 20 seconds, then the sampling activity
will still complete after 60 seconds, but the data is only collected during the first 20 seconds before it
was paused.

3.4.2 Resuming Collection
To resume a sampling collection that was previously paused, use the following command:

sep --resume

When the SEP resume command is issued, the collection that was previously paused is resumed and
the sampling data is collected from that time.

Using SEP

User's Guide 15

3.4.3 Stopping Collection
To stop a sampling collection that was previously started, use the following command:
sep --stop

This command stops the collection and generates the .tb6 file.

3.4.4 Canceling Collection
To cancel a sampling collection that was previously started, use the following command:
sep --cancel

This command command cancels the collection and discards the data collected.

3.5 Counting Collection
SEP supports two collection modes: sampling and counting. The default collection mode is the
sampling mode.

Use the following command to collect data in counting mode:
sep --start --c <options>

When this option is specified, SEP collects counter data of the specified event for the duration of the
collection. When –c option is not specified, SEP collects the data in sampling mode.

3.6 Configuring Data Collection

3.6.1 Specifying Sample After Value
The Sample after value (SAV) is the frequency or the number of events after which SEP interrupts the
processor to collect a sample during data collection.

SEP initially computes a default sample after value (SAV) for the default events (Clockticks or CPU
Cycles and retired instructions) as follows:
SAV for default events = CPU frequency * sample interval in microseconds.

The steps to calculate the sample after value for any event are the following:

1. Calculate the targeted (or expected) number of samples:
Targeted Number of Samples =
(Sampling Duration / Sampling Interval) * Number of processors

2. Calculate the average number of event counts for a single processor
Avg. number of event counts = Total event counts across all CPUs / Number of CPUs

 Sampling Enabling Product

16

3. Finally, compute the sample after value (SAV) as
Sample After Value (SAV) = Average number of event counts (as in 2) / Targeted number of samples
(as in 1).

The minimum value for SAV is 1. The sample after value should not be zero or a negative value.

To specify the sample after value for your sampling collection, use the :sa event modifier option. For
example, to collect samples after 1000000 CPU_CLK_UNHALTED.THREAD events, enter:
sep --start --ec CPU_CLK_UNHALTED.THREAD:sa=1000000

3.6.2 Counting Events
To count selected events, use the -count option. For example:

sep --start --count

As a result of this run, a file with the .txt extension (XXX.txt) is created and all of the counts for this
sampling session (which may have multiple runs) are appended to the file. Even when an SEP activity
generates multiple .tb6 files, it will always generate only one XXX.txt file, per SEP session. Duration of
0 is allowed for the -count and a single run as the XXX.txt output file can be written at the time of
sep -stop.

The zero duration/multiple run restriction also applies to the -count option as it is for a regular
sampling run.

3.6.2.1 Event Count File Format
When the --count option is specified, SEP generates a file that contains the count information for all
the events, selected across all the runs, in a session. Only one file will be generated per SEP session. The
count file contains two types of output: informational and data.

• Each informational output always starts with #sep: keyword as the first argument ($1 Perl
notation). The next keyword in the informational output represents the type of the information.

• Currently the supported informational output types are

 version -- version of SEP

 header -- format of the event count data

 date – date and time when the session was initiated

• The event count data follows after the informational output. The format of the data output is
specified in the header keyword.

3.6.2.2 Fixed Counter Support
On Intel® Core™2 Duo, Intel® Core™ i7, Intel® Atom™ processors and processors based on the Intel®
microarchitecture code named Sandy Bridge, three fixed counters are implemented to count
“CPU_CLK_UNHALTED.CORE” (CPU_CLK_UNHALTED.THREAD on Intel Core i7 processors),
“INST_RETIRED.ANY”, and “CPU_CLK_UNHALTED.REF_TSC” events respectively. When one or more of

Using SEP

User's Guide 17

these three events are specified in the event configuration, the corresponding fixed counters are used.
On Intel Atom and Intel Core2 Duo processors, the two general counters are still available for counting
other Performance Monitoring Unit (PMU) events. Therefore, you can count up to five events in a single
run; three fixed events and two general events. On Intel Core i7 processors, there are four general
counters available in addition to the three fixed counters. Thus, one can count/sample up to seven
events in a single run on Intel Core i7 processors.

In the following example, SEP counts five events in a single run:
sep -start --c --ec "CPU_CLK_UNHALTED.CORE","INST_RETIRED.ANY",
"CPU_CLK_UNHALTED.REF_TSC","BR_INST_RETIRED.ANY","SIMD_INST_RETIRED.ANY"

 Sampling Enabling Product

18

4 SEP Commands
This chapter details the SEP commands.

Table 3-1 SEP Commands

Command Action

-start [SEP Options] Start collection with given options.

 --atypelist [-config] [--
details] [atype1,
atype2,…]

Get a list of Pre-defined analysis types (atypes). When specified without
any other options, the –atypes command lists all available atypes. Add
the --config option to provide a path to the atype configuration file in
the SEP installation directory. Add the --details option to list all
atypes with related events. Specify a comma-separated list of atypes to
get events for the specific atypes listed.

-pause Pause the current collection.

-resume Resume the current collection that is paused.

-stop Stop the current collection.

-cancel Cancel the current collection.

-mark Insert a mark during sampling.

-mark-off Insert an end marker during sampling.

-pmu-types [available] Display the PMU types supported by the platform. Add the ‘available’
parameter to display PMU types available on this system.
Use the output from this command with --el to generate a list of
events supported on the system for the given PMU type.

-el | -event-list [pmu-
type] [-desc]

List events supported on the platform. Can be filtered by adding a PMU
type (from --pmu-types command).
Add the --desc option to print the description of each event.

-help | /? Display help information.

-version Display version or build information.

SEP Options

User's Guide 19

5 SEP Options
This chapter details the SEP options in alphabetical order.

-app <full-path-to-the-application>[-args <”list of application
arguments”>]
Specify the application to be launched for data collection

Specify the application to be launched with SEP. You need to specify the full path to the application. For
example, on Windows* OS:
sep --start --app C:\Users\test\sample.exe
sep --start --app C:\Users\test\sample.exe --args ‘‘1 10 5’’

If the application takes arguments, the list of arguments can be specified
using --args option.

NOTE: The --d | -duration option is not supported with this option. The SEP data collection continues
indefinitely until the launched application terminates or SEP is stopped explicitly with the sep -stop
command.

-atype <atype name1>, <atype name2>, …
Pre-defined set of events

Pre-defined analysis types (atypes) corresponding to a certain set of events.

Use this instead of --ec. Do not use --ec and --atype together. Only one atype can be specified per
Performance Monitoring Unit (PMU) type, such as core, or imc.

-atypelist [-config] [-details] [<atype1>, <atype2>,…]
List available analysis types

Lists the available pre-defined analysis types (atypes).

Use this command without any options to get the list of available atypes and then use the --atype
option to run a specific atype-based profile from this list.

• -config: provides the path to the atype configuration file located in the SEP installation
directory.

• -details: lists all atypes with related events.
• -details <atype1>, <atype2>: Lists events for the specified comma-separated list of

atypes provided with the command.

 Sampling Enabling Product

20

Example Analysis Type List Commands
Provide a list of available analysis types with the following command:
sep -atypelist

Example output:

Atype: bandwidth
Atype: general_exploration

Provide a list of available analysis types and the location of the analysis type configuration file with the
following command:

sep -atypelist --config

Example output:
Atype: bandwidth
Config_File:
/home/…/install/sep/release_posix/bin32/./../config/sampling/../atypes/ivybri
dge_atype.txt
Atype: general_exploration
Config_File:
/home/…/install/sep/release_posix/bin32/./../config/sampling/../atypes/ivybri
dge_atype.txt

Provide a list of events for a specific analysis type with the following command:

sep --atypelist --details general_exploration

Example output:
Atype: general_exploration

INST_RETIRED.PREC_DIST
BACLEARS.ANY
OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_0
MACHINE_CLEARS.COUNT
LD_BLOCKS.NO_SR

-c | -count
Count selected events

Use the -c option to count the selected events. The event counting results are available in the output
file with the .txt extension. This is the format of the XXX.txt file:

event, cpu #, count, duration

Each event and processor pair has a separate line.

SEP Options

User's Guide 21

-cec | -chipset-event-config
Specify events to monitor

The chipset support in SEP is limited to chipset event counts data.

Chipset event configuration options begin with the -cec or -chipset-event-config switch. Specify
the events(s) to monitor and embed the event names within double quotes("). Each event should be
delimited by a comma (,).

To list the supported chipset events, run sep --el chipset.

The chipset event counts data is available in a .csv file (the file name is the same as the .tb7 file name
except for the file extension). The .csv file contains multiple data points with comma separated list of
chipset and CPU event counts along with CPU number, timestamp and IP in each line as shown below:

CPU number,Timestamp,Instruction Pointer,<event name1>,<event-name2>...,<cpu
event name1>,<cpu event name2>

Example Chipset Commands
List chipset event names along with CPU event names:

sep -el chipset

Run sampling collection for 10 seconds with CPU_CLK_UNHALTED.THREAD as the trigger event and
count MCH data for "MCH D clock" event and save the results into the chipsetdata.csv file:

sep -start -d 10 -ec "CPU_CLK_UNHALTED.THREAD" -cec "MCH D clock" -out
chipsetdata

Use a specific sample after value (SAV) for the Clockticks trigger event. The collection includes two
chipset events - MCH D Clock and ICH Link Clock:

sep -start -d 10 -ec "CPU_CLK_UNHALTED.THREAD":sa=400000 -cec "MCH D
Clock,ICH Link Clock" -out chipsetdata

Same as previous command but collect chipset counts only when the trigger is from CPU 0:
sep -start -d 10 -ec "CPU_CLK_UNHALTED.THREAD":sa=400000 -cec "MCH D
Clock,ICH Link Clock" -out chipsetdata -cm "0"

NOTE: The CPU event names can differ from processor to processor.

NOTE: The chipset support in SEP requires that the chipset counters (for example, CHAP) are enabled
through BIOS or some other means. The SEP tool will not work if the chipset counters are disabled.

-cm | -cpu-mask ”processor numbers”
Specify what processors to collect data from

Use the --cm option to specify a CPU mask that defines the processors from which you want to collect
data. Enter the processor numbers or processor ranges separated by commas. For example:
sep --start -cm 2-5,10,12-14

 Sampling Enabling Product

22

In this example the only following processors are sampled: 2, 3, 4, 5, 10, 12, 13, 14.

NOTE: The -count option is not supported with this option.

-d | -duration <in seconds>
Specify duration for the sampling collection

Use the -d option to specify duration for the sampling collection. The default is 20 seconds. Set
duration to zero to run collection for an indefinite amount of time until it is stopped explicitly with the
sep -stop command.

-ebc | -event-based-counts [tfactor=<value>]
Enable event-based counting

Use this option to collect sampling data and event counts data for the list of events specified in -ec
option. The event count information is collected and added at the end of each sample.

For sampling on Intel® Many Integrated Core Architecture (Intel® MIC architecture), -ebc must be used
in conjunction with -mic flag.

tfactor is supported only on first generation Intel® Xeon Phi™ product family formerly code named
Knights Corner. The tfactor value is used to specify timer interrupt interval. It can be a number in
[0,..,15]. If a tfactor value is not specified, the default value is 0, indicating a 2 millisecond time
interval. The larger the tfactor value, the larger the period between interrupts. The first time-out is
non-deterministic due to implementation, but all subsequent time-outs are deterministic with the
period defined.

NOTE: The -ebc option can be used in conjunction with the --em option.

-ec | -event-config [-dc | -data-config <optional-
data1>,<optional-data2>…] “<event-
name1>”:modifier1=val:modifier2=val/constraint1={:modifier
3=val:modifier4=val}, “<event-name2>”...
Configure the events that are sampled

Event configuration options begin with --ec switch. Specify the event(s) to monitor and embed the
event names within double quotes (“). If no events are specified, the platform's default clockticks and
instructions retired events are used.

The [:modifier=val] option enables you to specify individual event modifiers along with the
respective values for a given platform. The modifiers can be generic to an event as well as specific to a
constraint (or an event qualifier). The constraint specific special modifiers appear after

SEP Options

User's Guide 23

[/constraint=]. The modifier values can be in decimal or hexadecimal format. Only specific
modifiers accept the value as a string. Each event specification is delimited by a comma (,).

Uncore events can also be specified on supported platforms.

Example command line:

sep --start --d 10 --out outfile --ec
‘‘CPU_CLK_UNHALTED.THREAD’’,‘‘UNC_IMC_NORMAL_READS.ANY’’

The output may look like this (showing one line as an example):
00000000 64--0010:0xFFFFFFFF8048D609-0 p-0x00000000 c-03 t-0x00000000 sgno-
0x00000000 ei-00 tsc-0x000103B115A1E4C8 gid-0001 extra_00-0x0000000000000C28
sample

In this example, gid is group_id=1 and extra_00 is the uncore event
(UNC_IMC_NORMAL_READS.ANY). In this interval, the uncore event's count equals 0xC28. The total
count for the whole run is equal to the sum of all the UNC_IMC_NORMAL_READS.ANY fields in the
sfudmp5 output.

Supported modifiers and constraints are listed in the following sections.

Event Modifiers

:sa | sample-after = <sample after value>
The Sample After Value (SAV) for the event indicates the number of events after which a sample is
collected. See Specifying Sample After Value for information on how to compute SAV.

The values for the following attributes can be either in hex or decimal format. For example:
sep --start --ec CPU_CLK_UNHALTED.THREAD:sa=1000000

Event Modifiers for IA32/Intel® 64 Architectures
The following table lists the event modifiers for IA32/Intel® 64 architectures and provides a short
description of each modifier.

Table 4-1 Event Modifiers for the P6 Processor Family

Modifier Description

:USR=<yes/no> Specifies that events are counted only when the processor is operating at
privilege levels 1, 2, or 3. This flag can be used in conjunction with the OS flag.

:OS=<yes/no> Specifies that events are counted only when the processor is operating at
privilege level 0. This flag can be used in conjunction with the USR flag.

:ANYTHR=<yes/no> Enables counting of the event (or condition) while in any processor thread on the
core are in C0 power state.
When not set, the event on the counter will count only while the logical
processor (with that event / condition programmed) is in C0 (not halted).

 Sampling Enabling Product

24

:PRECISE=<yes/no> Enable the PEBS feature for the PEBSable event.

:CMASK=<mask value> Specifies the mask value that will be compared by the logical processor to the
events count of the detected microarchitectural condition during a single cycle. If
the event count is greater than or equal to this mask, the counter is incremented
by one. Otherwise the counter is not incremented.
The value must be in the range of 0 to 255. The default value is defined by the
event list.

:e=<yes/no> Enables edge detection of the selected microarchitectural condition when set.
The logical processor counts the number of deasserted to asserted transitions
for any condition that can be expressed by other fields. The default value is
defined by the event list.

NOTE: Edge detection is enabled only when CMASK and ANYTHR flags are set.

For example,

sep -start -ec
"MACHINE_CLEARS.COUNT:anythr=yes:cmask=1:e=yes"

:inv=<yes/no> When the invert flag is set, inverts :CMASK comparison, so that both greater than
or equal to and less than comparisons can be made (<no>: greater than
comparison, <yes>: less than comparison).
If :CMASK is programmed to 0, INV flag is ignored. The default value is defined
by the event list.

Event Modifiers for Transactional Synchronization Extension (TSX)
The following table lists the event modifiers for supporting Transactional Synchronization Extension
(TSX) and provides a short description of each modifier. The TSX feature is supported on platforms with
Intel Haswell processor family and later.

Table 4-2 Event Modifiers for Transactional Synchronization Extension (TSX) support

Modifier Description

:tx In Transaction – When this modifier is specified, the sampling data will only
include samples that occurred inside a TSX region, regardless of whether that
region was aborted or committed.
For example,
sep --start --d 10 --ec ‘‘INST_RETIRED.ANY’’:tx

:cp In Check Point – When this modifier is specified, the sampling data will not
include samples that occurred inside of an aborted TSX region.
For example,

sep --start --d 10 --ec ‘‘INST_RETIRED.ANY’’:cp

SEP Options

User's Guide 25

-em | -event-multiplexing [dts=<time in milliseconds>] |
[trigger=<fixed counter> factor=<value>] | [tfactor=<value>]
Enable event multiplexing

Use the --em option to enable event multiplexing. Event multiplexing is the ability to sample multiple
groups of events within a single sampling run.

When using this option, you specify a list of events to be counted and a counting interval, based on the
sample after value (SAV) of a specified trigger event. The interval is specified in a PMU event unit such
as Instructions Retired or Clockticks. The event that dictates the counting interval must be interruptible
and is defined as a trigger event. The trigger should be a fixed counter. The default trigger is
CPU_CLK_UNHALTED.CORE (or CPU_CLK_UNHALTED.THREAD for Intel Core i7 processors). The default
factor is 50. Only one trigger event is allowed. Events are grouped for each counting interval. Each
group of events is counted in a round-robin fashion and this is repeated until the workload terminates
or until a specified limit (max samples or sampling duration) is reached.

For example:
sep -start --d 20 -em -ec "INST_RETIRED.ANY:sa=2000000",
"CPU_CLK_UNHALTED.CORE","CPU_CLK_UNHALTED.REF_TSC","INST_RETIRED.ANY_P","UOPS
_RETIRED.ANY"

This SEP run collects the counts of the following events every time the sample value for instructions
retired reaches 2000000: CPU_CLK_UNHALTED.CORE, CPU_CLK_UNHALTED.REF_TSC,
INST_RETIRED.ANY_P, and UOPS_RETIRED.ANY.

At the end of each interval, SEP collects the values of fixed counters and programmable counters along
with other data such as TID, PID, and core ID.

Two trigger modes are available, depending on the platform:

• Time-based event multiplexing for Intel Core and Pentium processor families. For this type of
multiplexing, the dts (default time slice) specifies the duration between cycles for each event
group.

• Trigger-based event multiplexing for all other processors. For this type of multiplexing, the trigger
should be a fixed counter:

• On Intel Atom and Intel Core2, the default trigger event is CPU_CLK_UNHALTED.CORE.

• On Intel Core i7 and Intel microarchitecture code named Sandy Bridge, the default trigger event is
CPU_CLK_UNHALTED.THREAD.

The default factor is 50 milliseconds on all platforms.

When the -ebc option is specified along with -em -trigger <event_name>:

• The trigger event specified in -em trigger="<trigger-event>" is used for triggering the
interrupt.

• No other events interrupt or overflow. The counts for all the events are recorded when the trigger
event overflows along with other sampling profile data.

 Sampling Enabling Product

26

• In case of multiple EM groups, groups are scheduled in round-robin fashion. The groups are
swapped for every overflow of the trigger event (with factor=1). This can be controlled by changing
factor value. The default value for factor is 50. The counters for all non-trigger events are reset to
zero when the group is swapped. With factor=1, since the groups are swapped on every interrupt
(per CPU), the event counts are the increments since the last interrupt for a specific CPU.

• The data is available in the .tb7 file.

• Only fixed counter events can be used as trigger events in EM mode.

• Event group id is added as a separate column for each sample with a prefix gid-xxxx, just before
the extra columns.

For example:
sep --start -d 10 -ec
"BR_INST_RETIRED.MISPRED","L1D_SPLIT.LOADS","L1D_SPLIT.STORES","MUL","DIV","L
1D_ALL_REF","L1D_REPL" -ebc -em trigger="INST_RETIRED.ANY" factor=1 -out
data1

For event multiplexing on Intel MIC Architecture, -em must be used in conjunction with -mic flag.

tfactor is used only on Intel MIC Architecture to specify the interrupt period to switch between
groups. tfactor can be a number in [0,..,15]. If tfactor is not specified, the default value is 4,
indicating a 32ms time interval. The larger the tfactor value, the larger the period between interrupts.

The first time-out is non-deterministic due to implementation, but all subsequent time-outs will be
deterministic with the period defined.

This option is not supported in Intel Xeon Phi Software Development Vehicle (formerly code named
Knights Ferry).

Example for Intel Core or Intel® Pentium™ processor families (time-based trigger):
 sep -start -em dts=100 -ec "Instructions Retired",
 "Branch Instructions Executed", "Clockticks",
 "L2 Cache Request Misses"

Example for Intel Atom or Intel Core2 Duo processor families (event-based trigger)

 sep -start -em trigger="CPU_CLK_UNHALTED.CORE" factor=100
 -ec "<event 1>","<event 2>", ... "<event n>"
 "UOPS_RETIRED.ANY:sa=0:int=no"

Example for processors with Intel MIC Architecture (timer-based trigger):
 sep -start -mic -em tfactor=3
 -ec "<event 1>","<event 2>", ... "<event n>"

NOTE: Event multiplexing is enabled by default on all platforms.

fpc <full pebs capture>
Full pebs buffer information

SEP Options

User's Guide 27

Collects the full PEBS buffer information in the sampling data. The PEBS data collected includes all the
fields relevant for the hardware platform.

-lbr <capture_mode>
Collect LBR (Last Branch Records) information

Enables capturing the running trace of most recent branches, interrupts, or exceptions on LBR MSR
stack. This option is valid only for the Intel Core2 Duo processor family and for Intel Core i7 processors.
SEP defines a set of predefined modes that capture specific set of branches. The following LBR capture
modes are supported in SEP:

• no_filter - Captures all branches

• near_call - Captures near relative and near indirect calls

• near_call_jmp - Captures near_call branches along with near relative and indirect jumps
(Available only on the Intel Core processor family)

• near_call_ret - Captures near_call branches along with near return calls

• near_call_jmp_ret - Captures near_call_jmp branches along with near return calls (available
only on the Intel Core processor family)

• call_stack - Captures call stack information (available on 4th Generation Intel Core Processors
and Intel Atom processors based on Intel microarchitecture code named Silvermont)

In addition to the capture mode, you can also filter by the following:

• :usr - Captures only user mode branches

• :os - Captures only operating system mode branches.

For example: -lbr call_stack:os captures only operating system mode call stack information.

The supported capture modes depend on the architecture. SEP will print a warning message if a user-
specified capture mode is not supported on the platform that is running SEP.

-lbr-filter <filter1>:<filter2>:<filter3>
Enable last branch records (LBR) Filtering in sampling.

With this option, the user can control which set of branches are filtered out from the collection. The
user can specify one or more filter names separated with a colon (:). SEP supports the following filter
modes:

• JCC - Filter conditional branches

• NEAR_REL_CALL - Filter near relative calls

• NEAR_IND_CALL - Filter near indirect calls

• NEAR_RET - Filter near returns

 Sampling Enabling Product

28

• NEAR_IND_JMP - Filter near unconditional indirect jumps except near indirect calls and near
returns

• NEAR_REL_JMP - Filter near unconditional relative branches except near relative calls

• FAR_BRANCH - Filter far branches

For example:

$sep --start --ec "CPU_CLK_UNHALTED.CORE" --lbr-filter JCC:FAR_BRANCH

This filters out conditional and far branches from the LBR information. SEP does not support collecting
LBR information on Fixed Counter events. Be sure to specify at least one General Purpose event in the
event configuration to trigger LBR collection.

-mic [dev=<id_1> [,<id_2>,...<id_n>]]
Run sampling on Intel MIC Architecture device

If an Intel MIC aArchitecture device is present, all commands are sent to the sampling collector running
on that platform.

One or more target Intel MIC Architecture devices can be specified. The default is device 0.

-mr | -multi-run
Enable multiple runs

Enable a separate run per event-group. This option overrides the default event multiplexing in case of
multiple event groups and does a separate application run per event-group.

For example:

sep -start --d 20 -mr -ec "INST_RETIRED.ANY:sa=2000000",
"CPU_CLK_UNHALTED.CORE","CPU_CLK_UNHALTED.REF_TSC","INST_RETIRED.ANY_P","UOPS
_RETIRED.ANY"

NOTE: The --em and --mr options CANNOT be specified together.

[-nb | -non-blocking]
Switch to non-blocking mode

Use this option to switch SEP to non-blocking mode. SEP starts in the background. You regain control
after data collection starts. When SEP is in background the default behavior is “blocking”.

-of | -options-from-file <file name>
Read SEP options from a file

SEP Options

User's Guide 29

Use this option to specify a file from which the SEP options are read. SEP reads the options from the
specified file and applies them.

The options specified in the file use the command line options. The options can be specified in the
same line or multiple lines.

For example, this is the content of the my_clocks.txt:
-d 10
-ec CPU_CLK_UNHALTED.THREAD:sa=1000000
-out clock_out

You can get the same results using the following two command lines:
sep --start -of my_clocks.txt

Or,

sep -start -d 10 -ec CPU_CLK_UNHALTED.THREAD:sa=1000000 -out clock_out

NOTE: Command-line options will override options from a file.

-osm | -os-mode
Enable sampling for OS processes only

Collect sampling data for operating system processes only.

-out | -output-file <file name>
Specify the file name for the output file

Specify the name of the output file where the data is collected. The file extension depends on the type
of data collection.

• For a sampling run, the extension is .tb7.

• For a counting run, the extension is .txt.

If the option is not specified, the base file name of the output file starts with ebs followed by a string of
10 random digits.

In the case of multiple runs, an output file is generated for each run and the specified file name is
appended with a unique identifier to generate distinct file names.

For example, the name foo is saved as foo_001.tb7, foo_002.tb7.

-p-state
Collects MPERF, APERF and all fixed register counts on PMI trigger

Use this option to collect the APERF/MPERF MSR data and fixed counter events. This option can be
used independently of all other options.

 Sampling Enabling Product

30

The APERF/MPERF ratio provides actual CPU performance over marked (rated) performance, which is
useful in performance and power measurements.

This option also counts fixed counter events CPU_CLK_UNHALTED.THREAD/CORE and
INST_RETIRED.ANY on PMI trigger of CPU_CLK_UNHALTED.REF_TSC event.

This feature provides an accurate P-State/Turbo-State frequency Profile and CPI value.

Sample run:
sep -start -d 10 -ec <event_list> -p-state -out test

Sample output:

SampleID <…> Module Name Process Name <…> Time (msec) INST_RETIRED.ANY
 CPU_CLK_UNHALTED.THREAD MPERF APERF

-sam | -sample-after-multiplier <value>
Specify sample after value multiplier

Use the -sam option to specify a value between 0.01 and 100.0 by which the sample after values are
scaled.

-sd | -sampling-delay <delay in seconds>
Specify delay of data collection

Use the -sd option to specify the number of seconds to delay sampling while your application
executes. The default is 0 sec.

The sampling delay is a separate time value that is not a part of collection. For example, if you have an
activity with duration of 60 seconds and a start delay of 10 seconds, SEP starts collecting samples after
10 seconds and runs for 60 seconds, taking a total time of 70 seconds.

-sp | -start-paused
Start data collection in paused mode

Use the --sp option to start data collection in pause mode. To start collection, use the -resume
command.

-um | -user-mode
Enable sampling for user-mode processes only

Enable sampling data collection for user-mode processes only.

This option is supported on Windows* and Linux* OS only.

SEP Options

User's Guide 31

-verbose
Display information on actions performed during collection

Display information on actions performed during collection.

 Sampling Enabling Product

32

6 Using Intel VTune Amplifier with SEP
Intel VTune Amplifier includes hardware event-based sampling analysis types that provide a way to run
a SEP collection using a graphical user interface. The following VTune Amplifier analysis types are
relevant to SEP:

• Advanced Hotspots: Event-based sampling analysis that monitors all the software executing on
your system including the operating system modules.

• General Exploration: Event-based analysis that helps identify the most significant hardware
issues affecting the performance of your application.

• Memory Access: Event-based analysis that measures a set of metrics to identify memory access
related issues (for example, specific to NUMA architectures).

• TSX Exploration: Event-based sampling analysis that is targeted for Intel processors supporting
Intel Transactional Synchronization Extensions (Intel TSX).

• TSX Hotspots: Event-based sampling analysis that is targeted for Intel processors supporting
Intel TSX.

• Custom Analysis: User-created analysis types that can be based on the available collection
types or based on the existing predefined analysis configurations.

Additional information about each analysis type can be found in the Intel VTune Amplifier help.

The SEP drivers are automatically installed with VTune Amplifier. If the driver installation was
unsuccessful, installation steps are available from the “Building and Managing the Sampling Drivers”
section in the Intel VTune Amplifier Installation Guide for your operating system.

The .tb6 or .tb7 result files generated by a SEP command can be imported into VTune Amplifier to view
in a graphical interface.

Using Intel VTune Amplifier with SEP

User's Guide 33

6.1 Advanced Hotspots Analysis
Select the Advanced Hotspots option from the Algorithm Analysis category on the Analysis Type tab
in VTune Amplifier. The Details section of the Advanced Hotspots analysis shows the default events
selected for the analysis type. For Advanced Hotspots, the default events include
CPU_CLK_UNHALTED.REF_TSC, CPU_CLK_UNHALTED.THREAD and INST_RETIRED.ANY.

Use the buttons to start the collection or start the collection paused. After collection begins, it can be
paused, resumed, or stopped.

The Advanced Hotspots analysis type is equivalent to running a SEP collection in a non-blocking mode.
For example:

sep --start --out test --d 0 --nb

While the SEP collection is running, you can pause and resume the collection using the –pause and -
resume commands. For example:
sep --pause
sep -resume

The collection can be stopped using the –stop option. For example:

sep --stop

6.2 Microarchitecture Analysis
The Microarchitecture Analysis category includes General Exploration, Memory Access, TSX
Exploration, and TSX Hotspots, which are all related to the –atypelist option in SEP. As with Advanced
Hotspots, the Details section of each of these analysis types lists the events collected by the type. For
example, the General Exploration analysis type lists all hardware events related to general
performance issues.

 Sampling Enabling Product

34

The available analysis types for the current platform can be listed using the following command:
sep -atypelist

After determining the available analysis types, you can run a command to analyze the types. For
example, the following command would be the same as the General Exploration analysis type in VTune
Amplifier:

sep --start --atype general_exploration --out test

You can collect more than one type of microarchitecture analysis type at once by separating each type
with a comma. For example, the following command would be the same as both General Exploration
and Memory Access:
sep --start --atype general_exploration, memory_bandwidth --out test

6.3 Custom Analysis Type
Users can create custom analysis types in VTune Amplifier that use hardware event-based sampling.
Additional information and instructions for creating a custom analysis type are available in the “Custom
Analysis” topic in the VTune Amplifier help.

A custom analysis type is equivalent to customized events in SEP using the following option:
-ec ‘‘<event1>, <event2>, …’’

For example, the following command starts a collection using the default duration of 20 seconds with
two custom events:
sep --start --ec ‘‘BR_INST_EXEC.ALL_BRANCHES, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE’’
--out test

https://software.intel.com/en-us/vtune-amplifier-help

Using Intel VTune Amplifier with SEP

User's Guide 35

6.4 Viewing SEP Results in Intel VTune Amplifier
The .tb6 or .tb7 result files generated by a SEP collection can be imported and viewed in VTune
Amplifier. Click the Import button on the toolbar or select the Import Result action from the action
drop-down list to open the Import page. Click Browse, select the .tb6 or .tb7 file, and click Import.

The result file opens in the Hardware Events viewpoint. Additional information about this viewpoint, as
well as information about interpreting result data, is available in the VTune Amplifier help.

https://software.intel.com/en-us/vtune-amplifier-help

	1 About this Document
	1.1 Intended Audience
	1.2 Conventions and Symbols
	1.3 Related Information

	2 Installation
	2.1 Installing SEP with Intel VTune Amplifier
	2.2 Installing SEP without Intel VTune Amplifier
	2.2.1 Linux*
	2.2.2 Windows*
	2.2.3 FreeBSD*
	2.2.4 Android*

	3 Using SEP
	3.1 Usage Examples
	3.2 Starting Data Collection
	3.2.1 Specifying an Application to Analyze
	3.2.2 Running Delayed Collection
	3.2.3 Running Collection Indefinitely

	3.3 Viewing Collection Status
	3.4 Ending Data Collection
	3.4.1 Pausing Sampling Collection
	3.4.2 Resuming Collection
	3.4.3 Stopping Collection
	3.4.4 Canceling Collection

	3.5 Counting Collection
	3.6 Configuring Data Collection
	3.6.1 Specifying Sample After Value
	3.6.2 Counting Events
	3.6.2.1 Event Count File Format
	3.6.2.2 Fixed Counter Support

	4 SEP Commands
	5 SEP Options
	-app <full-path-to-the-application>[-args <”list of application arguments”>]
	-atype <atype name1>, <atype name2>, …
	-atypelist [-config] [-details] [<atype1>, <atype2>,…]
	Example Analysis Type List Commands

	-c | -count
	-cec | -chipset-event-config
	Example Chipset Commands

	-cm | -cpu-mask ”processor numbers”
	-d | -duration <in seconds>
	-ebc | -event-based-counts [tfactor=<value>]
	-ec | -event-config [-dc | -data-config <optional-data1>,<optional-data2>…] “<event-name1>”:modifier1=val:modifier2=val/constraint1={:modifier3=val:modifier4=val}, “<event-name2>”...
	Event Modifiers
	:sa | sample-after = <sample after value>
	Event Modifiers for IA32/Intel® 64 Architectures
	Event Modifiers for Transactional Synchronization Extension (TSX)

	-em | -event-multiplexing [dts=<time in milliseconds>] | [trigger=<fixed counter> factor=<value>] | [tfactor=<value>]
	fpc <full pebs capture>
	-lbr <capture_mode>
	-lbr-filter <filter1>:<filter2>:<filter3>
	-mic [dev=<id_1> [,<id_2>,...<id_n>]]
	-mr | -multi-run
	[-nb | -non-blocking]
	-of | -options-from-file <file name>
	-osm | -os-mode
	-out | -output-file <file name>
	-p-state
	-sam | -sample-after-multiplier <value>
	-sd | -sampling-delay <delay in seconds>
	-sp | -start-paused
	-um | -user-mode
	-verbose

	6 Using Intel VTune Amplifier with SEP
	6.1 Advanced Hotspots Analysis
	6.2 Microarchitecture Analysis
	6.3 Custom Analysis Type
	6.4 Viewing SEP Results in Intel VTune Amplifier

	Legal Information

