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Learning Objectives

• Explain supervised learning and how it can be applied to 
regression and classification problems

• Apply K-Nearest Neighbor (KNN) algorithm for 
classification

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware



What is Machine Learning?

Machine learning allows 

computers to learn and 

infer from data.
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Regression: Numeric Answers
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Classification: Categorical Answers
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Classification: Categorical Answers
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• Target: predicted category or value of the data 

(column to predict)

• Features: properties of the data used for prediction 

(non-target columns)

• Example: a single data point within the data (one 

row)

• Label: the target value for a single data point

Machine Learning Vocabulary
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K – Nearest Neighbors



What is Classification?

A flower shop wants to guess a 

customer's purchase from similarity 

to most recent purchase.
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K Nearest Neighbors Classification
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What is Needed to Select a KNN Model?



• Correct value for 'K'

• How to measure closeness of neighbors?
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Methods for determining 'K' will be discussed in next lesson
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Number of Malignant Nodes

Age

Euclidean Distance (L2 Distance)

∆ Age
d
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𝑑 = ∆𝑁𝑜𝑑𝑒𝑠2 + ∆𝐴𝑔𝑒2



Number of Malignant Nodes

Age
∆ Age

∆ Nodes

Manhattan Distance (L1 or City Block Distance)

𝑑 = ∆𝑁𝑜𝑑𝑒𝑠 + ∆𝐴𝑔𝑒
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Comparison of Feature Scaling Methods

• Standard Scaler: mean center data and scale to unit 

variance

• Minimum-Maximum Scaler: scale data to fixed range 

(usually 0–1)

• Maximum Absolute Value Scaler: scale maximum 

absolute value



Feature Scaling: The Syntax

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class

StdSc = StandardScaler()

Fit the scaling parameters and then transform the data

StdSc = StdSc.fit(X_data)

X_scaled = KNN.transform(X_data)

Other scaling methods exist: MaxAbsScaler, MinMaxScaler.
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Multiclass KNN Decision Boundary
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Regression with KNN
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Characteristics of a KNN Model

• Fast to create model because it simply stores 

data

• Slow to predict because many distance 

calculations

• Can require lots of memory if data set is large



Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

KNN = KNeighborsClassifier(n_neighbors=3)

Fit the instance on the data and then predict the expected value

KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)

The fit and predict/transform syntax will show up throughout the course.

K Nearest Neighbors: The Syntax



Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

K Nearest Neighbors: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc
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K Nearest Neighbors: The Syntax

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

KNN = KNeighborsClassifier(n_neighbors=3)

Fit the instance on the data and then predict the expected value

KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)

Regression can be done with KNeighborsRegressor.




