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Learning Objectives

• Explain the difference between over-fitting and under-
fitting a model

• Describe Bias-variance tradeoffs
• Find the optimal training and test data set splits, cross-

validation, and model complexity versus error
• Apply a linear regression model for supervised learning
• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/
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Choosing Between Different Complexities
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How Well Does the Model Generalize?
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Underfitting vs Overfitting
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Bias – Variance Tradeoff
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Training and Test Splits
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fit the model

measure performance
- predict label with model

- compare with actual value

- measure error
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Using Training and Test Data
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X_train

X_test

Y_train

model

KNN( X_train, Y_train ).fit()

.predict( X_test )

model

Fitting Training and Test Data
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KNN( X_train, Y_train ).fit()

.predict( X_test )
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Import the train and test split function

from sklearn.model_selection import train_test_split

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

Train and Test Splitting: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Import the train and test split function

from sklearn.model_selection import train_test_split

Train and Test Splitting: The Syntax



Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Train and Test Splitting: The Syntax



Train and Test Splitting: The Syntax

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Other method for splitting data:

from sklearn.model_selection import ShuffleSplit



Beyond a Single Test Set: Cross Validation
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Beyond a Single Test Set: Cross Validation
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Beyond a Single Test Set: Cross Validation
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Beyond a Single Test Set: Cross Validation
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Beyond a Single Test Set: Cross Validation
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Beyond a Single Test Set: Cross Validation
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Model Complexity vs Error

Underfitting: training and cross validation error are high
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Model Complexity vs Error

Overfitting: training error is low, cross validation is high
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Model Complexity vs Error

Just right: training and cross validation errors are low
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Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,      

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

Cross Validation: The Syntax



Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,      

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

Cross Validation: The Syntax



Cross Validation: The Syntax

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,      

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold
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Introduction to Linear Regression
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Introduction to Linear Regression

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥

𝛽0= 80 million, 𝛽1= 0.6
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Predicting from Linear Regression

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥
𝛽0= 80 million, 𝛽1= 0.6

Predict 175 Million Gross for 160 Million Budget
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Which Model Fits the Best?
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Calculating the Residuals
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Calculating the Residuals
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Mean Squared Error
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Minimum Mean Squared Error
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Cost Function
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Modelling Best Practice

• Use cost function to fit model

• Develop multiple models 

• Compare results and choose best one
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• Fitting involves minimizing cost 

function (slow)

• Model has few parameters 

(memory efficient)

• Prediction involves calculation (fast)

• Fitting involves storing training data 
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• Model has many parameters 

(memory intensive)

• Prediction involves finding closest 

neighbors (slow)

Comparing Linear Regression and KNN

Linear Regression K Nearest Neighbors
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Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

Linear Regression: The Syntax
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from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value
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y_predict = LR.predict(X_test)

Linear Regression: The Syntax



Linear Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)





Advanced

Linear Regression



Scaling is a Type of Feature Transformation
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Transformation of Data Distributions

• Predictions from linear regression 

models assume residuals are normally 

distributed

• Features and predicted data are 

often skewed

• Data transformations can solve this 

issue 
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Transformation of Data Distributions

from numpy import log, log1p

from scipy.stats import boxcox



Transformation of Data Distributions

• Predictions from linear regression 

models assume residuals are normally 

distributed

• Features and predicted data are 

often skewed

• Data transformations can solve this 

issue 



Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered 

features (True or False)

• Ordinal: categorical, ordered 

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation
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Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered 

features (True or False)

• Ordinal: categorical, ordered 

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder



Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered 

features (True or False)

• Ordinal: categorical, ordered 

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

from sklearn.feature_extraction import DictVectorizer

from pandas import get_dummies



Addition of Polynomial Features
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Addition of Polynomial Features

• Capture higher order features of 

data by adding polynomial 

features
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Addition of Polynomial Features

• Capture higher order features of 

data by adding polynomial 

features

• "Linear regression" means linear 

combinations of features

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1 log(𝑥)
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Addition of Polynomial Features

• Can also include variable 

interactions

• How is the correct functional 

form chosen?

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2

Check relationship of each variable 

or with outcome
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Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)



Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)



Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)




