
Model Generalization

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement

Learning Objectives

• Explain the difference between over-fitting and under-
fitting a model

• Describe Bias-variance tradeoffs
• Find the optimal training and test data set splits, cross-

validation, and model complexity versus error
• Apply a linear regression model for supervised learning
• Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/

K Value Affects Decision Boundary

Number of Malignant Nodes

0

Age

60

40

20

10 20

Number of Malignant Nodes

0

60

40

20

10 20

K = 34K = 1

Choosing Between Different Complexities

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

How Well Does the Model Generalize?

Poor at Training

Poor at Predicting
Just Right

Good at Training

Poor at Predicting

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

Underfitting vs Overfitting

Underfitting Just Right Overfitting

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

Bias – Variance Tradeoff

High Bias

Low Variance
Just Right

Low Bias

High Variance

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 4 Polynomial Degree = 15

Training and Test Splits

Training and Test Splits

Training
Data

Test
Data

fit the model

measure performance
- predict label with model

- compare with actual value

- measure error

Test
Data

Using Training and Test Data

Training
Data

Test DataTraining Data

Using Training and Test Data

0.0 1.0 2.00.0 1.0 2.0

1.0

2.0

3.0

4.0

x108 x108

1.0

2.0

3.0

4.0

x108x108

0.0 1.0 2.00.0 1.0 2.0

1.0

2.0

3.0

4.0

x108 x108

1.0

2.0

3.0

4.0

x108x108

Fit the model

Using Training and Test Data

Test DataTraining Data

0.0 1.0 2.00.0 1.0 2.0

1.0

2.0

3.0

4.0

x108 x108

1.0

2.0

3.0

4.0

x108x108

Make predictions

Using Training and Test Data

Test DataTraining Data

0.0 1.0 2.00.0 1.0 2.0

1.0

2.0

3.0

4.0

x108 x108

1.0

2.0

3.0

4.0

x108x108

Measure error

Using Training and Test Data

Test DataTraining Data

X_train

X_test

Y_train

model

KNN(X_train, Y_train).fit()

.predict(X_test)

model

Fitting Training and Test Data

Y_predictTest
Data

Training
Data

X_train

X_test

Y_train

model

KNN(X_train, Y_train).fit()

.predict(X_test)

model

Y_predict

Fitting Training and Test Data

error_metric(Y_test, Y_predict) test error
Y_test

Test
Data

Training
Data

Import the train and test split function

from sklearn.model_selection import train_test_split

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

Train and Test Splitting: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

Import the train and test split function

from sklearn.model_selection import train_test_split

Train and Test Splitting: The Syntax

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Train and Test Splitting: The Syntax

Train and Test Splitting: The Syntax

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Other method for splitting data:

from sklearn.model_selection import ShuffleSplit

Beyond a Single Test Set: Cross Validation

Training
Data

Validation
Data

0.0 1.0 2.0

1.0

2.0

3.0

4.0

x108 x108

x108

Best model for this test set

Beyond a Single Test Set: Cross Validation

0.0 1.0 2.0

1.0

2.0

3.0

4.0

x108

Test DataTraining Data

Beyond a Single Test Set: Cross Validation

Training
Data 1

Validation
Data 1

Beyond a Single Test Set: Cross Validation

Training
Data 2

Validation
Data 2

Beyond a Single Test Set: Cross Validation

Training
Data 3

Validation
Data 3

Beyond a Single Test Set: Cross Validation

Training
Data 4

Validation
Data 4

Beyond a Single Test Set: Cross Validation

Test SplitTraining Split Training Split Training Split

Test SplitTraining Split Training Split Training Split

Test SplitTraining Split Training Split Training Split

Test Split Training Split Training Split Training Split

+

+

+

Average cross validation results.

Beyond a Single Test Set: Cross Validation

Test SplitTraining Split Training Split Training Split

Test SplitTraining Split Training Split Training Split

Test SplitTraining Split Training Split Training Split

Test Split Training Split Training Split Training Split

+

+

+

Average cross validation results.Average cross validation results.

Model Complexity vs Error
e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

Model Complexity vs Error
e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

Model Complexity vs Error
e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

Model Complexity vs Error

Underfitting: training and cross validation error are high

e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

X

Y

Model

True Function

Samples

Polynomial Degree = 1

Model Complexity vs Error

Overfitting: training error is low, cross validation is high

model complexity

e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

X

Y

Model

True Function

Samples

Polynomial Degree = 15

Model Complexity vs Error

Just right: training and cross validation errors are low

e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error

X

Y

Model

True Function

Samples

Polynomial Degree = 4

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

Cross Validation: The Syntax

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

Cross Validation: The Syntax

Cross Validation: The Syntax

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

cross_val = cross_val_score(KNN, X_data, y_data, cv=4,

scoring='neg_mean_squared_error')

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

Introduction to

Linear Regression

Introduction to Linear Regression

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Introduction to Linear Regression

coefficient 0

box office

revenue
movie

budgetcoefficient 1

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Introduction to Linear Regression

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥

𝛽0= 80 million, 𝛽1= 0.6

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Predicting from Linear Regression

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥
𝛽0= 80 million, 𝛽1= 0.6

Predict 175 Million Gross for 160 Million Budget

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Which Model Fits the Best?

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Calculating the Residuals

𝑦𝛽 𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

predicted

value

observed

value

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Calculating the Residuals

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Mean Squared Error

1

𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Minimum Mean Squared Error

min
𝛽0,𝛽1

1

𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Cost Function

𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

0.0

1.0

2.0

x108

1.0
x108

2.0

Budget

B
o
x
 O

ff
ic

e

Modelling Best Practice

• Use cost function to fit model

• Develop multiple models

• Compare results and choose best one

෍

𝑖=1

𝑚

𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠
(𝑖) 2

Total Sum of Squares (TSS):

1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
Correlation Coefficient (R2):

Other Model Metrics

Sum of Squared Error (SSE): ෍

𝑖=1

𝑚

𝑦𝛽(𝑥
(𝑖)) − 𝑦𝑜𝑏𝑠

(𝑖) 2

෍

𝑖=1

𝑚

𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠
(𝑖) 2

Total Sum of Squares (TSS):

1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
Correlation Coefficient (R2):

Other Measures of Error

Sum of Squared Error (SSE): ෍

𝑖=1

𝑚

𝑦𝛽(𝑥
(𝑖)) − 𝑦𝑜𝑏𝑠

(𝑖) 2

Other Measures of Error

Sum of Squared Error (SSE): ෍

𝑖=1

𝑚

𝑦𝛽(𝑥
(𝑖)) − 𝑦𝑜𝑏𝑠

(𝑖) 2

෍

𝑖=1

𝑚

𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠
(𝑖) 2

Total Sum of Squares (TSS):

1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
Correlation Coefficient (R2):

• Fitting involves minimizing cost

function (slow)

• Model has few parameters

(memory efficient)

• Prediction involves calculation (fast)

• Fitting involves storing training data

(fast)

• Model has many parameters

(memory intensive)

• Prediction involves finding closest

neighbors (slow)

Comparing Linear Regression and KNN

Linear Regression K Nearest Neighbors

• Fitting involves minimizing cost

function (slow)

• Model has few parameters

(memory efficient)

• Prediction involves calculation (fast)

• Fitting involves storing training data

(fast)

• Model has many parameters

(memory intensive)

• Prediction involves finding closest

neighbors (slow)

Comparing Linear Regression and KNN

Linear Regression K Nearest Neighbors

• Fitting involves minimizing cost

function (slow)

• Model has few parameters

(memory efficient)

• Prediction involves calculation (fast)

• Fitting involves storing training data

(fast)

• Model has many parameters

(memory intensive)

• Prediction involves finding closest

neighbors (slow)

Comparing Linear Regression and KNN

Linear Regression K Nearest Neighbors

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

Linear Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

Linear Regression: The Syntax

Linear Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

Advanced

Linear Regression

Scaling is a Type of Feature Transformation

Number of Surgeries

Age

60

40

20

12345

24

22

20

18

Number of Surgeries

60

40

20

1 2 4 53

Transformation of Data Distributions

• Predictions from linear regression

models assume residuals are normally

distributed

• Features and predicted data are

often skewed

• Data transformations can solve this

issue

Transformation of Data Distributions

• Predictions from linear regression

models assume residuals are normally

distributed

• Features and predicted data are

often skewed

• Data transformations can solve this

issue

Transformation of Data Distributions

from numpy import log, log1p

from scipy.stats import boxcox

Transformation of Data Distributions

• Predictions from linear regression

models assume residuals are normally

distributed

• Features and predicted data are

often skewed

• Data transformations can solve this

issue

Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered

features (True or False)

• Ordinal: categorical, ordered

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered

features (True or False)

• Ordinal: categorical, ordered

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered

features (True or False)

• Ordinal: categorical, ordered

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder

Feature Types

• Continuous: numerical values

• Nominal: categorical, unordered

features (True or False)

• Ordinal: categorical, ordered

features (movie ratings)

• Standard Scaling, Min-Max Scaling

• One-hot encoding (0, 1)

• Ordinal encoding (0, 1, 2, 3)

Feature Type Transformation

from sklearn.feature_extraction import DictVectorizer

from pandas import get_dummies

Addition of Polynomial Features

• Capture higher order features of

data by adding polynomial

features

• "Linear regression" means linear

combinations of features

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2

Budget
B
o
x
 O

ff
ic

e

Addition of Polynomial Features

• Capture higher order features of

data by adding polynomial

features

• "Linear regression" means linear

combinations of features

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3

Budget
B
o
x
 O

ff
ic

e

Addition of Polynomial Features

• Capture higher order features of

data by adding polynomial

features

• "Linear regression" means linear

combinations of features

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2

Budget
B
o
x
 O

ff
ic

e

Addition of Polynomial Features

• Capture higher order features of

data by adding polynomial

features

• "Linear regression" means linear

combinations of features

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1 log(𝑥)

Budget
B
o
x
 O

ff
ic

e

Addition of Polynomial Features

• Can also include variable

interactions

• How is the correct functional

form chosen?

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2

Check relationship of each variable

or with outcome

Addition of Polynomial Features

• Can also include variable

interactions

• How is the correct functional

form chosen?

𝑦𝛽 𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2

Check relationship of each variable

or with outcome

Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)

Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)

Polynomial Features: The Syntax

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

polyFeat = PolynomialFeatures(degree=2)

Create the polynomial features and then transform the data

polyFeat = polyFeat.fit(X_data)

X_poly = polyFeat.transform(X_data)

